1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/kernel.h> 37 #include <sys/module.h> 38 #include <sys/sysctl.h> 39 #include <sys/malloc.h> 40 #include <sys/pcpu.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/proc.h> 44 #include <sys/rwlock.h> 45 #include <sys/sched.h> 46 #include <sys/smp.h> 47 #include <sys/systm.h> 48 49 #include <vm/vm.h> 50 #include <vm/vm_object.h> 51 #include <vm/vm_page.h> 52 #include <vm/pmap.h> 53 #include <vm/vm_map.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_param.h> 56 57 #include <machine/cpu.h> 58 #include <machine/pcb.h> 59 #include <machine/smp.h> 60 #include <machine/md_var.h> 61 #include <x86/psl.h> 62 #include <x86/apicreg.h> 63 64 #include <machine/vmm.h> 65 #include <machine/vmm_dev.h> 66 #include <machine/vmm_instruction_emul.h> 67 68 #include "vmm_ioport.h" 69 #include "vmm_ktr.h" 70 #include "vmm_host.h" 71 #include "vmm_mem.h" 72 #include "vmm_util.h" 73 #include "vatpic.h" 74 #include "vatpit.h" 75 #include "vhpet.h" 76 #include "vioapic.h" 77 #include "vlapic.h" 78 #include "vpmtmr.h" 79 #include "vrtc.h" 80 #include "vmm_stat.h" 81 #include "vmm_lapic.h" 82 83 #include "io/ppt.h" 84 #include "io/iommu.h" 85 86 struct vlapic; 87 88 /* 89 * Initialization: 90 * (a) allocated when vcpu is created 91 * (i) initialized when vcpu is created and when it is reinitialized 92 * (o) initialized the first time the vcpu is created 93 * (x) initialized before use 94 */ 95 struct vcpu { 96 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 97 enum vcpu_state state; /* (o) vcpu state */ 98 int hostcpu; /* (o) vcpu's host cpu */ 99 int reqidle; /* (i) request vcpu to idle */ 100 struct vlapic *vlapic; /* (i) APIC device model */ 101 enum x2apic_state x2apic_state; /* (i) APIC mode */ 102 uint64_t exitintinfo; /* (i) events pending at VM exit */ 103 int nmi_pending; /* (i) NMI pending */ 104 int extint_pending; /* (i) INTR pending */ 105 int exception_pending; /* (i) exception pending */ 106 int exc_vector; /* (x) exception collateral */ 107 int exc_errcode_valid; 108 uint32_t exc_errcode; 109 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 110 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 111 void *stats; /* (a,i) statistics */ 112 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 113 uint64_t nextrip; /* (x) next instruction to execute */ 114 }; 115 116 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx)) 117 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 118 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 119 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 120 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 121 122 struct mem_seg { 123 size_t len; 124 bool sysmem; 125 struct vm_object *object; 126 }; 127 #define VM_MAX_MEMSEGS 3 128 129 struct mem_map { 130 vm_paddr_t gpa; 131 size_t len; 132 vm_ooffset_t segoff; 133 int segid; 134 int prot; 135 int flags; 136 }; 137 #define VM_MAX_MEMMAPS 4 138 139 /* 140 * Initialization: 141 * (o) initialized the first time the VM is created 142 * (i) initialized when VM is created and when it is reinitialized 143 * (x) initialized before use 144 */ 145 struct vm { 146 void *cookie; /* (i) cpu-specific data */ 147 void *iommu; /* (x) iommu-specific data */ 148 struct vhpet *vhpet; /* (i) virtual HPET */ 149 struct vioapic *vioapic; /* (i) virtual ioapic */ 150 struct vatpic *vatpic; /* (i) virtual atpic */ 151 struct vatpit *vatpit; /* (i) virtual atpit */ 152 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ 153 struct vrtc *vrtc; /* (o) virtual RTC */ 154 volatile cpuset_t active_cpus; /* (i) active vcpus */ 155 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */ 156 int suspend; /* (i) stop VM execution */ 157 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 158 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 159 cpuset_t rendezvous_req_cpus; /* (x) rendezvous requested */ 160 cpuset_t rendezvous_done_cpus; /* (x) rendezvous finished */ 161 void *rendezvous_arg; /* (x) rendezvous func/arg */ 162 vm_rendezvous_func_t rendezvous_func; 163 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 164 struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */ 165 struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */ 166 struct vmspace *vmspace; /* (o) guest's address space */ 167 char name[VM_MAX_NAMELEN]; /* (o) virtual machine name */ 168 struct vcpu vcpu[VM_MAXCPU]; /* (i) guest vcpus */ 169 /* The following describe the vm cpu topology */ 170 uint16_t sockets; /* (o) num of sockets */ 171 uint16_t cores; /* (o) num of cores/socket */ 172 uint16_t threads; /* (o) num of threads/core */ 173 uint16_t maxcpus; /* (o) max pluggable cpus */ 174 }; 175 176 static int vmm_initialized; 177 178 static struct vmm_ops *ops; 179 #define VMM_INIT(num) (ops != NULL ? (*ops->init)(num) : 0) 180 #define VMM_CLEANUP() (ops != NULL ? (*ops->cleanup)() : 0) 181 #define VMM_RESUME() (ops != NULL ? (*ops->resume)() : 0) 182 183 #define VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL) 184 #define VMRUN(vmi, vcpu, rip, pmap, evinfo) \ 185 (ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, evinfo) : ENXIO) 186 #define VMCLEANUP(vmi) (ops != NULL ? (*ops->vmcleanup)(vmi) : NULL) 187 #define VMSPACE_ALLOC(min, max) \ 188 (ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL) 189 #define VMSPACE_FREE(vmspace) \ 190 (ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO) 191 #define VMGETREG(vmi, vcpu, num, retval) \ 192 (ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO) 193 #define VMSETREG(vmi, vcpu, num, val) \ 194 (ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO) 195 #define VMGETDESC(vmi, vcpu, num, desc) \ 196 (ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO) 197 #define VMSETDESC(vmi, vcpu, num, desc) \ 198 (ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO) 199 #define VMGETCAP(vmi, vcpu, num, retval) \ 200 (ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO) 201 #define VMSETCAP(vmi, vcpu, num, val) \ 202 (ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO) 203 #define VLAPIC_INIT(vmi, vcpu) \ 204 (ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL) 205 #define VLAPIC_CLEANUP(vmi, vlapic) \ 206 (ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL) 207 208 #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS) 209 #define fpu_stop_emulating() clts() 210 211 SDT_PROVIDER_DEFINE(vmm); 212 213 static MALLOC_DEFINE(M_VM, "vm", "vm"); 214 215 /* statistics */ 216 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 217 218 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL); 219 220 /* 221 * Halt the guest if all vcpus are executing a HLT instruction with 222 * interrupts disabled. 223 */ 224 static int halt_detection_enabled = 1; 225 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 226 &halt_detection_enabled, 0, 227 "Halt VM if all vcpus execute HLT with interrupts disabled"); 228 229 static int vmm_ipinum; 230 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 231 "IPI vector used for vcpu notifications"); 232 233 static int trace_guest_exceptions; 234 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN, 235 &trace_guest_exceptions, 0, 236 "Trap into hypervisor on all guest exceptions and reflect them back"); 237 238 static void vm_free_memmap(struct vm *vm, int ident); 239 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm); 240 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr); 241 242 #ifdef KTR 243 static const char * 244 vcpu_state2str(enum vcpu_state state) 245 { 246 247 switch (state) { 248 case VCPU_IDLE: 249 return ("idle"); 250 case VCPU_FROZEN: 251 return ("frozen"); 252 case VCPU_RUNNING: 253 return ("running"); 254 case VCPU_SLEEPING: 255 return ("sleeping"); 256 default: 257 return ("unknown"); 258 } 259 } 260 #endif 261 262 static void 263 vcpu_cleanup(struct vm *vm, int i, bool destroy) 264 { 265 struct vcpu *vcpu = &vm->vcpu[i]; 266 267 VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic); 268 if (destroy) { 269 vmm_stat_free(vcpu->stats); 270 fpu_save_area_free(vcpu->guestfpu); 271 } 272 } 273 274 static void 275 vcpu_init(struct vm *vm, int vcpu_id, bool create) 276 { 277 struct vcpu *vcpu; 278 279 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus, 280 ("vcpu_init: invalid vcpu %d", vcpu_id)); 281 282 vcpu = &vm->vcpu[vcpu_id]; 283 284 if (create) { 285 KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already " 286 "initialized", vcpu_id)); 287 vcpu_lock_init(vcpu); 288 vcpu->state = VCPU_IDLE; 289 vcpu->hostcpu = NOCPU; 290 vcpu->guestfpu = fpu_save_area_alloc(); 291 vcpu->stats = vmm_stat_alloc(); 292 } 293 294 vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id); 295 vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED); 296 vcpu->reqidle = 0; 297 vcpu->exitintinfo = 0; 298 vcpu->nmi_pending = 0; 299 vcpu->extint_pending = 0; 300 vcpu->exception_pending = 0; 301 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 302 fpu_save_area_reset(vcpu->guestfpu); 303 vmm_stat_init(vcpu->stats); 304 } 305 306 int 307 vcpu_trace_exceptions(struct vm *vm, int vcpuid) 308 { 309 310 return (trace_guest_exceptions); 311 } 312 313 struct vm_exit * 314 vm_exitinfo(struct vm *vm, int cpuid) 315 { 316 struct vcpu *vcpu; 317 318 if (cpuid < 0 || cpuid >= vm->maxcpus) 319 panic("vm_exitinfo: invalid cpuid %d", cpuid); 320 321 vcpu = &vm->vcpu[cpuid]; 322 323 return (&vcpu->exitinfo); 324 } 325 326 static void 327 vmm_resume(void) 328 { 329 VMM_RESUME(); 330 } 331 332 static int 333 vmm_init(void) 334 { 335 int error; 336 337 vmm_host_state_init(); 338 339 vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) : 340 &IDTVEC(justreturn)); 341 if (vmm_ipinum < 0) 342 vmm_ipinum = IPI_AST; 343 344 error = vmm_mem_init(); 345 if (error) 346 return (error); 347 348 if (vmm_is_intel()) 349 ops = &vmm_ops_intel; 350 else if (vmm_is_amd()) 351 ops = &vmm_ops_amd; 352 else 353 return (ENXIO); 354 355 vmm_resume_p = vmm_resume; 356 357 return (VMM_INIT(vmm_ipinum)); 358 } 359 360 static int 361 vmm_handler(module_t mod, int what, void *arg) 362 { 363 int error; 364 365 switch (what) { 366 case MOD_LOAD: 367 vmmdev_init(); 368 error = vmm_init(); 369 if (error == 0) 370 vmm_initialized = 1; 371 break; 372 case MOD_UNLOAD: 373 error = vmmdev_cleanup(); 374 if (error == 0) { 375 vmm_resume_p = NULL; 376 iommu_cleanup(); 377 if (vmm_ipinum != IPI_AST) 378 lapic_ipi_free(vmm_ipinum); 379 error = VMM_CLEANUP(); 380 /* 381 * Something bad happened - prevent new 382 * VMs from being created 383 */ 384 if (error) 385 vmm_initialized = 0; 386 } 387 break; 388 default: 389 error = 0; 390 break; 391 } 392 return (error); 393 } 394 395 static moduledata_t vmm_kmod = { 396 "vmm", 397 vmm_handler, 398 NULL 399 }; 400 401 /* 402 * vmm initialization has the following dependencies: 403 * 404 * - VT-x initialization requires smp_rendezvous() and therefore must happen 405 * after SMP is fully functional (after SI_SUB_SMP). 406 */ 407 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 408 MODULE_VERSION(vmm, 1); 409 410 static void 411 vm_init(struct vm *vm, bool create) 412 { 413 int i; 414 415 vm->cookie = VMINIT(vm, vmspace_pmap(vm->vmspace)); 416 vm->iommu = NULL; 417 vm->vioapic = vioapic_init(vm); 418 vm->vhpet = vhpet_init(vm); 419 vm->vatpic = vatpic_init(vm); 420 vm->vatpit = vatpit_init(vm); 421 vm->vpmtmr = vpmtmr_init(vm); 422 if (create) 423 vm->vrtc = vrtc_init(vm); 424 425 CPU_ZERO(&vm->active_cpus); 426 CPU_ZERO(&vm->debug_cpus); 427 428 vm->suspend = 0; 429 CPU_ZERO(&vm->suspended_cpus); 430 431 for (i = 0; i < vm->maxcpus; i++) 432 vcpu_init(vm, i, create); 433 } 434 435 /* 436 * The default CPU topology is a single thread per package. 437 */ 438 u_int cores_per_package = 1; 439 u_int threads_per_core = 1; 440 441 int 442 vm_create(const char *name, struct vm **retvm) 443 { 444 struct vm *vm; 445 struct vmspace *vmspace; 446 447 /* 448 * If vmm.ko could not be successfully initialized then don't attempt 449 * to create the virtual machine. 450 */ 451 if (!vmm_initialized) 452 return (ENXIO); 453 454 if (name == NULL || strlen(name) >= VM_MAX_NAMELEN) 455 return (EINVAL); 456 457 vmspace = VMSPACE_ALLOC(0, VM_MAXUSER_ADDRESS); 458 if (vmspace == NULL) 459 return (ENOMEM); 460 461 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 462 strcpy(vm->name, name); 463 vm->vmspace = vmspace; 464 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 465 466 vm->sockets = 1; 467 vm->cores = cores_per_package; /* XXX backwards compatibility */ 468 vm->threads = threads_per_core; /* XXX backwards compatibility */ 469 vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */ 470 471 vm_init(vm, true); 472 473 *retvm = vm; 474 return (0); 475 } 476 477 void 478 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, 479 uint16_t *threads, uint16_t *maxcpus) 480 { 481 *sockets = vm->sockets; 482 *cores = vm->cores; 483 *threads = vm->threads; 484 *maxcpus = vm->maxcpus; 485 } 486 487 uint16_t 488 vm_get_maxcpus(struct vm *vm) 489 { 490 return (vm->maxcpus); 491 } 492 493 int 494 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, 495 uint16_t threads, uint16_t maxcpus) 496 { 497 if (maxcpus != 0) 498 return (EINVAL); /* XXX remove when supported */ 499 if ((sockets * cores * threads) > vm->maxcpus) 500 return (EINVAL); 501 /* XXX need to check sockets * cores * threads == vCPU, how? */ 502 vm->sockets = sockets; 503 vm->cores = cores; 504 vm->threads = threads; 505 vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */ 506 return(0); 507 } 508 509 static void 510 vm_cleanup(struct vm *vm, bool destroy) 511 { 512 struct mem_map *mm; 513 int i; 514 515 ppt_unassign_all(vm); 516 517 if (vm->iommu != NULL) 518 iommu_destroy_domain(vm->iommu); 519 520 if (destroy) 521 vrtc_cleanup(vm->vrtc); 522 else 523 vrtc_reset(vm->vrtc); 524 vpmtmr_cleanup(vm->vpmtmr); 525 vatpit_cleanup(vm->vatpit); 526 vhpet_cleanup(vm->vhpet); 527 vatpic_cleanup(vm->vatpic); 528 vioapic_cleanup(vm->vioapic); 529 530 for (i = 0; i < vm->maxcpus; i++) 531 vcpu_cleanup(vm, i, destroy); 532 533 VMCLEANUP(vm->cookie); 534 535 /* 536 * System memory is removed from the guest address space only when 537 * the VM is destroyed. This is because the mapping remains the same 538 * across VM reset. 539 * 540 * Device memory can be relocated by the guest (e.g. using PCI BARs) 541 * so those mappings are removed on a VM reset. 542 */ 543 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 544 mm = &vm->mem_maps[i]; 545 if (destroy || !sysmem_mapping(vm, mm)) 546 vm_free_memmap(vm, i); 547 } 548 549 if (destroy) { 550 for (i = 0; i < VM_MAX_MEMSEGS; i++) 551 vm_free_memseg(vm, i); 552 553 VMSPACE_FREE(vm->vmspace); 554 vm->vmspace = NULL; 555 } 556 } 557 558 void 559 vm_destroy(struct vm *vm) 560 { 561 vm_cleanup(vm, true); 562 free(vm, M_VM); 563 } 564 565 int 566 vm_reinit(struct vm *vm) 567 { 568 int error; 569 570 /* 571 * A virtual machine can be reset only if all vcpus are suspended. 572 */ 573 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 574 vm_cleanup(vm, false); 575 vm_init(vm, false); 576 error = 0; 577 } else { 578 error = EBUSY; 579 } 580 581 return (error); 582 } 583 584 const char * 585 vm_name(struct vm *vm) 586 { 587 return (vm->name); 588 } 589 590 int 591 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 592 { 593 vm_object_t obj; 594 595 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 596 return (ENOMEM); 597 else 598 return (0); 599 } 600 601 int 602 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 603 { 604 605 vmm_mmio_free(vm->vmspace, gpa, len); 606 return (0); 607 } 608 609 /* 610 * Return 'true' if 'gpa' is allocated in the guest address space. 611 * 612 * This function is called in the context of a running vcpu which acts as 613 * an implicit lock on 'vm->mem_maps[]'. 614 */ 615 bool 616 vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa) 617 { 618 struct mem_map *mm; 619 int i; 620 621 #ifdef INVARIANTS 622 int hostcpu, state; 623 state = vcpu_get_state(vm, vcpuid, &hostcpu); 624 KASSERT(state == VCPU_RUNNING && hostcpu == curcpu, 625 ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu)); 626 #endif 627 628 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 629 mm = &vm->mem_maps[i]; 630 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len) 631 return (true); /* 'gpa' is sysmem or devmem */ 632 } 633 634 if (ppt_is_mmio(vm, gpa)) 635 return (true); /* 'gpa' is pci passthru mmio */ 636 637 return (false); 638 } 639 640 int 641 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem) 642 { 643 struct mem_seg *seg; 644 vm_object_t obj; 645 646 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 647 return (EINVAL); 648 649 if (len == 0 || (len & PAGE_MASK)) 650 return (EINVAL); 651 652 seg = &vm->mem_segs[ident]; 653 if (seg->object != NULL) { 654 if (seg->len == len && seg->sysmem == sysmem) 655 return (EEXIST); 656 else 657 return (EINVAL); 658 } 659 660 obj = vm_object_allocate(OBJT_DEFAULT, len >> PAGE_SHIFT); 661 if (obj == NULL) 662 return (ENOMEM); 663 664 seg->len = len; 665 seg->object = obj; 666 seg->sysmem = sysmem; 667 return (0); 668 } 669 670 int 671 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, 672 vm_object_t *objptr) 673 { 674 struct mem_seg *seg; 675 676 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 677 return (EINVAL); 678 679 seg = &vm->mem_segs[ident]; 680 if (len) 681 *len = seg->len; 682 if (sysmem) 683 *sysmem = seg->sysmem; 684 if (objptr) 685 *objptr = seg->object; 686 return (0); 687 } 688 689 void 690 vm_free_memseg(struct vm *vm, int ident) 691 { 692 struct mem_seg *seg; 693 694 KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS, 695 ("%s: invalid memseg ident %d", __func__, ident)); 696 697 seg = &vm->mem_segs[ident]; 698 if (seg->object != NULL) { 699 vm_object_deallocate(seg->object); 700 bzero(seg, sizeof(struct mem_seg)); 701 } 702 } 703 704 int 705 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first, 706 size_t len, int prot, int flags) 707 { 708 struct mem_seg *seg; 709 struct mem_map *m, *map; 710 vm_ooffset_t last; 711 int i, error; 712 713 if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0) 714 return (EINVAL); 715 716 if (flags & ~VM_MEMMAP_F_WIRED) 717 return (EINVAL); 718 719 if (segid < 0 || segid >= VM_MAX_MEMSEGS) 720 return (EINVAL); 721 722 seg = &vm->mem_segs[segid]; 723 if (seg->object == NULL) 724 return (EINVAL); 725 726 last = first + len; 727 if (first < 0 || first >= last || last > seg->len) 728 return (EINVAL); 729 730 if ((gpa | first | last) & PAGE_MASK) 731 return (EINVAL); 732 733 map = NULL; 734 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 735 m = &vm->mem_maps[i]; 736 if (m->len == 0) { 737 map = m; 738 break; 739 } 740 } 741 742 if (map == NULL) 743 return (ENOSPC); 744 745 error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa, 746 len, 0, VMFS_NO_SPACE, prot, prot, 0); 747 if (error != KERN_SUCCESS) 748 return (EFAULT); 749 750 vm_object_reference(seg->object); 751 752 if (flags & VM_MEMMAP_F_WIRED) { 753 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len, 754 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 755 if (error != KERN_SUCCESS) { 756 vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len); 757 return (error == KERN_RESOURCE_SHORTAGE ? ENOMEM : 758 EFAULT); 759 } 760 } 761 762 map->gpa = gpa; 763 map->len = len; 764 map->segoff = first; 765 map->segid = segid; 766 map->prot = prot; 767 map->flags = flags; 768 return (0); 769 } 770 771 int 772 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, 773 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 774 { 775 struct mem_map *mm, *mmnext; 776 int i; 777 778 mmnext = NULL; 779 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 780 mm = &vm->mem_maps[i]; 781 if (mm->len == 0 || mm->gpa < *gpa) 782 continue; 783 if (mmnext == NULL || mm->gpa < mmnext->gpa) 784 mmnext = mm; 785 } 786 787 if (mmnext != NULL) { 788 *gpa = mmnext->gpa; 789 if (segid) 790 *segid = mmnext->segid; 791 if (segoff) 792 *segoff = mmnext->segoff; 793 if (len) 794 *len = mmnext->len; 795 if (prot) 796 *prot = mmnext->prot; 797 if (flags) 798 *flags = mmnext->flags; 799 return (0); 800 } else { 801 return (ENOENT); 802 } 803 } 804 805 static void 806 vm_free_memmap(struct vm *vm, int ident) 807 { 808 struct mem_map *mm; 809 int error; 810 811 mm = &vm->mem_maps[ident]; 812 if (mm->len) { 813 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa, 814 mm->gpa + mm->len); 815 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d", 816 __func__, error)); 817 bzero(mm, sizeof(struct mem_map)); 818 } 819 } 820 821 static __inline bool 822 sysmem_mapping(struct vm *vm, struct mem_map *mm) 823 { 824 825 if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem) 826 return (true); 827 else 828 return (false); 829 } 830 831 vm_paddr_t 832 vmm_sysmem_maxaddr(struct vm *vm) 833 { 834 struct mem_map *mm; 835 vm_paddr_t maxaddr; 836 int i; 837 838 maxaddr = 0; 839 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 840 mm = &vm->mem_maps[i]; 841 if (sysmem_mapping(vm, mm)) { 842 if (maxaddr < mm->gpa + mm->len) 843 maxaddr = mm->gpa + mm->len; 844 } 845 } 846 return (maxaddr); 847 } 848 849 static void 850 vm_iommu_modify(struct vm *vm, bool map) 851 { 852 int i, sz; 853 vm_paddr_t gpa, hpa; 854 struct mem_map *mm; 855 void *vp, *cookie, *host_domain; 856 857 sz = PAGE_SIZE; 858 host_domain = iommu_host_domain(); 859 860 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 861 mm = &vm->mem_maps[i]; 862 if (!sysmem_mapping(vm, mm)) 863 continue; 864 865 if (map) { 866 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0, 867 ("iommu map found invalid memmap %#lx/%#lx/%#x", 868 mm->gpa, mm->len, mm->flags)); 869 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0) 870 continue; 871 mm->flags |= VM_MEMMAP_F_IOMMU; 872 } else { 873 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0) 874 continue; 875 mm->flags &= ~VM_MEMMAP_F_IOMMU; 876 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0, 877 ("iommu unmap found invalid memmap %#lx/%#lx/%#x", 878 mm->gpa, mm->len, mm->flags)); 879 } 880 881 gpa = mm->gpa; 882 while (gpa < mm->gpa + mm->len) { 883 vp = vm_gpa_hold(vm, -1, gpa, PAGE_SIZE, VM_PROT_WRITE, 884 &cookie); 885 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", 886 vm_name(vm), gpa)); 887 888 vm_gpa_release(cookie); 889 890 hpa = DMAP_TO_PHYS((uintptr_t)vp); 891 if (map) { 892 iommu_create_mapping(vm->iommu, gpa, hpa, sz); 893 iommu_remove_mapping(host_domain, hpa, sz); 894 } else { 895 iommu_remove_mapping(vm->iommu, gpa, sz); 896 iommu_create_mapping(host_domain, hpa, hpa, sz); 897 } 898 899 gpa += PAGE_SIZE; 900 } 901 } 902 903 /* 904 * Invalidate the cached translations associated with the domain 905 * from which pages were removed. 906 */ 907 if (map) 908 iommu_invalidate_tlb(host_domain); 909 else 910 iommu_invalidate_tlb(vm->iommu); 911 } 912 913 #define vm_iommu_unmap(vm) vm_iommu_modify((vm), false) 914 #define vm_iommu_map(vm) vm_iommu_modify((vm), true) 915 916 int 917 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 918 { 919 int error; 920 921 error = ppt_unassign_device(vm, bus, slot, func); 922 if (error) 923 return (error); 924 925 if (ppt_assigned_devices(vm) == 0) 926 vm_iommu_unmap(vm); 927 928 return (0); 929 } 930 931 int 932 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 933 { 934 int error; 935 vm_paddr_t maxaddr; 936 937 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */ 938 if (ppt_assigned_devices(vm) == 0) { 939 KASSERT(vm->iommu == NULL, 940 ("vm_assign_pptdev: iommu must be NULL")); 941 maxaddr = vmm_sysmem_maxaddr(vm); 942 vm->iommu = iommu_create_domain(maxaddr); 943 if (vm->iommu == NULL) 944 return (ENXIO); 945 vm_iommu_map(vm); 946 } 947 948 error = ppt_assign_device(vm, bus, slot, func); 949 return (error); 950 } 951 952 void * 953 vm_gpa_hold(struct vm *vm, int vcpuid, vm_paddr_t gpa, size_t len, int reqprot, 954 void **cookie) 955 { 956 int i, count, pageoff; 957 struct mem_map *mm; 958 vm_page_t m; 959 #ifdef INVARIANTS 960 /* 961 * All vcpus are frozen by ioctls that modify the memory map 962 * (e.g. VM_MMAP_MEMSEG). Therefore 'vm->memmap[]' stability is 963 * guaranteed if at least one vcpu is in the VCPU_FROZEN state. 964 */ 965 int state; 966 KASSERT(vcpuid >= -1 && vcpuid < vm->maxcpus, ("%s: invalid vcpuid %d", 967 __func__, vcpuid)); 968 for (i = 0; i < vm->maxcpus; i++) { 969 if (vcpuid != -1 && vcpuid != i) 970 continue; 971 state = vcpu_get_state(vm, i, NULL); 972 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d", 973 __func__, state)); 974 } 975 #endif 976 pageoff = gpa & PAGE_MASK; 977 if (len > PAGE_SIZE - pageoff) 978 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 979 980 count = 0; 981 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 982 mm = &vm->mem_maps[i]; 983 if (sysmem_mapping(vm, mm) && gpa >= mm->gpa && 984 gpa < mm->gpa + mm->len) { 985 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 986 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 987 break; 988 } 989 } 990 991 if (count == 1) { 992 *cookie = m; 993 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 994 } else { 995 *cookie = NULL; 996 return (NULL); 997 } 998 } 999 1000 void 1001 vm_gpa_release(void *cookie) 1002 { 1003 vm_page_t m = cookie; 1004 1005 vm_page_unwire(m, PQ_ACTIVE); 1006 } 1007 1008 int 1009 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval) 1010 { 1011 1012 if (vcpu < 0 || vcpu >= vm->maxcpus) 1013 return (EINVAL); 1014 1015 if (reg >= VM_REG_LAST) 1016 return (EINVAL); 1017 1018 return (VMGETREG(vm->cookie, vcpu, reg, retval)); 1019 } 1020 1021 int 1022 vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val) 1023 { 1024 struct vcpu *vcpu; 1025 int error; 1026 1027 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1028 return (EINVAL); 1029 1030 if (reg >= VM_REG_LAST) 1031 return (EINVAL); 1032 1033 error = VMSETREG(vm->cookie, vcpuid, reg, val); 1034 if (error || reg != VM_REG_GUEST_RIP) 1035 return (error); 1036 1037 /* Set 'nextrip' to match the value of %rip */ 1038 VCPU_CTR1(vm, vcpuid, "Setting nextrip to %#lx", val); 1039 vcpu = &vm->vcpu[vcpuid]; 1040 vcpu->nextrip = val; 1041 return (0); 1042 } 1043 1044 static bool 1045 is_descriptor_table(int reg) 1046 { 1047 1048 switch (reg) { 1049 case VM_REG_GUEST_IDTR: 1050 case VM_REG_GUEST_GDTR: 1051 return (true); 1052 default: 1053 return (false); 1054 } 1055 } 1056 1057 static bool 1058 is_segment_register(int reg) 1059 { 1060 1061 switch (reg) { 1062 case VM_REG_GUEST_ES: 1063 case VM_REG_GUEST_CS: 1064 case VM_REG_GUEST_SS: 1065 case VM_REG_GUEST_DS: 1066 case VM_REG_GUEST_FS: 1067 case VM_REG_GUEST_GS: 1068 case VM_REG_GUEST_TR: 1069 case VM_REG_GUEST_LDTR: 1070 return (true); 1071 default: 1072 return (false); 1073 } 1074 } 1075 1076 int 1077 vm_get_seg_desc(struct vm *vm, int vcpu, int reg, 1078 struct seg_desc *desc) 1079 { 1080 1081 if (vcpu < 0 || vcpu >= vm->maxcpus) 1082 return (EINVAL); 1083 1084 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1085 return (EINVAL); 1086 1087 return (VMGETDESC(vm->cookie, vcpu, reg, desc)); 1088 } 1089 1090 int 1091 vm_set_seg_desc(struct vm *vm, int vcpu, int reg, 1092 struct seg_desc *desc) 1093 { 1094 if (vcpu < 0 || vcpu >= vm->maxcpus) 1095 return (EINVAL); 1096 1097 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1098 return (EINVAL); 1099 1100 return (VMSETDESC(vm->cookie, vcpu, reg, desc)); 1101 } 1102 1103 static void 1104 restore_guest_fpustate(struct vcpu *vcpu) 1105 { 1106 1107 /* flush host state to the pcb */ 1108 fpuexit(curthread); 1109 1110 /* restore guest FPU state */ 1111 fpu_stop_emulating(); 1112 fpurestore(vcpu->guestfpu); 1113 1114 /* restore guest XCR0 if XSAVE is enabled in the host */ 1115 if (rcr4() & CR4_XSAVE) 1116 load_xcr(0, vcpu->guest_xcr0); 1117 1118 /* 1119 * The FPU is now "dirty" with the guest's state so turn on emulation 1120 * to trap any access to the FPU by the host. 1121 */ 1122 fpu_start_emulating(); 1123 } 1124 1125 static void 1126 save_guest_fpustate(struct vcpu *vcpu) 1127 { 1128 1129 if ((rcr0() & CR0_TS) == 0) 1130 panic("fpu emulation not enabled in host!"); 1131 1132 /* save guest XCR0 and restore host XCR0 */ 1133 if (rcr4() & CR4_XSAVE) { 1134 vcpu->guest_xcr0 = rxcr(0); 1135 load_xcr(0, vmm_get_host_xcr0()); 1136 } 1137 1138 /* save guest FPU state */ 1139 fpu_stop_emulating(); 1140 fpusave(vcpu->guestfpu); 1141 fpu_start_emulating(); 1142 } 1143 1144 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 1145 1146 static int 1147 vcpu_set_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate, 1148 bool from_idle) 1149 { 1150 struct vcpu *vcpu; 1151 int error; 1152 1153 vcpu = &vm->vcpu[vcpuid]; 1154 vcpu_assert_locked(vcpu); 1155 1156 /* 1157 * State transitions from the vmmdev_ioctl() must always begin from 1158 * the VCPU_IDLE state. This guarantees that there is only a single 1159 * ioctl() operating on a vcpu at any point. 1160 */ 1161 if (from_idle) { 1162 while (vcpu->state != VCPU_IDLE) { 1163 vcpu->reqidle = 1; 1164 vcpu_notify_event_locked(vcpu, false); 1165 VCPU_CTR1(vm, vcpuid, "vcpu state change from %s to " 1166 "idle requested", vcpu_state2str(vcpu->state)); 1167 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 1168 } 1169 } else { 1170 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 1171 "vcpu idle state")); 1172 } 1173 1174 if (vcpu->state == VCPU_RUNNING) { 1175 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 1176 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 1177 } else { 1178 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 1179 "vcpu that is not running", vcpu->hostcpu)); 1180 } 1181 1182 /* 1183 * The following state transitions are allowed: 1184 * IDLE -> FROZEN -> IDLE 1185 * FROZEN -> RUNNING -> FROZEN 1186 * FROZEN -> SLEEPING -> FROZEN 1187 */ 1188 switch (vcpu->state) { 1189 case VCPU_IDLE: 1190 case VCPU_RUNNING: 1191 case VCPU_SLEEPING: 1192 error = (newstate != VCPU_FROZEN); 1193 break; 1194 case VCPU_FROZEN: 1195 error = (newstate == VCPU_FROZEN); 1196 break; 1197 default: 1198 error = 1; 1199 break; 1200 } 1201 1202 if (error) 1203 return (EBUSY); 1204 1205 VCPU_CTR2(vm, vcpuid, "vcpu state changed from %s to %s", 1206 vcpu_state2str(vcpu->state), vcpu_state2str(newstate)); 1207 1208 vcpu->state = newstate; 1209 if (newstate == VCPU_RUNNING) 1210 vcpu->hostcpu = curcpu; 1211 else 1212 vcpu->hostcpu = NOCPU; 1213 1214 if (newstate == VCPU_IDLE) 1215 wakeup(&vcpu->state); 1216 1217 return (0); 1218 } 1219 1220 static void 1221 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1222 { 1223 int error; 1224 1225 if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0) 1226 panic("Error %d setting state to %d\n", error, newstate); 1227 } 1228 1229 static void 1230 vcpu_require_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1231 { 1232 int error; 1233 1234 if ((error = vcpu_set_state_locked(vm, vcpuid, newstate, false)) != 0) 1235 panic("Error %d setting state to %d", error, newstate); 1236 } 1237 1238 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt) \ 1239 do { \ 1240 if (vcpuid >= 0) \ 1241 VCPU_CTR0(vm, vcpuid, fmt); \ 1242 else \ 1243 VM_CTR0(vm, fmt); \ 1244 } while (0) 1245 1246 static int 1247 vm_handle_rendezvous(struct vm *vm, int vcpuid) 1248 { 1249 struct thread *td; 1250 int error; 1251 1252 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus), 1253 ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid)); 1254 1255 error = 0; 1256 td = curthread; 1257 mtx_lock(&vm->rendezvous_mtx); 1258 while (vm->rendezvous_func != NULL) { 1259 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1260 CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus); 1261 1262 if (vcpuid != -1 && 1263 CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1264 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1265 VCPU_CTR0(vm, vcpuid, "Calling rendezvous func"); 1266 (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg); 1267 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1268 } 1269 if (CPU_CMP(&vm->rendezvous_req_cpus, 1270 &vm->rendezvous_done_cpus) == 0) { 1271 VCPU_CTR0(vm, vcpuid, "Rendezvous completed"); 1272 vm->rendezvous_func = NULL; 1273 wakeup(&vm->rendezvous_func); 1274 break; 1275 } 1276 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion"); 1277 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1278 "vmrndv", hz); 1279 if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) { 1280 mtx_unlock(&vm->rendezvous_mtx); 1281 error = thread_check_susp(td, true); 1282 if (error != 0) 1283 return (error); 1284 mtx_lock(&vm->rendezvous_mtx); 1285 } 1286 } 1287 mtx_unlock(&vm->rendezvous_mtx); 1288 return (0); 1289 } 1290 1291 /* 1292 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1293 */ 1294 static int 1295 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu) 1296 { 1297 struct vcpu *vcpu; 1298 const char *wmesg; 1299 struct thread *td; 1300 int error, t, vcpu_halted, vm_halted; 1301 1302 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1303 1304 vcpu = &vm->vcpu[vcpuid]; 1305 vcpu_halted = 0; 1306 vm_halted = 0; 1307 error = 0; 1308 td = curthread; 1309 1310 vcpu_lock(vcpu); 1311 while (1) { 1312 /* 1313 * Do a final check for pending NMI or interrupts before 1314 * really putting this thread to sleep. Also check for 1315 * software events that would cause this vcpu to wakeup. 1316 * 1317 * These interrupts/events could have happened after the 1318 * vcpu returned from VMRUN() and before it acquired the 1319 * vcpu lock above. 1320 */ 1321 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle) 1322 break; 1323 if (vm_nmi_pending(vm, vcpuid)) 1324 break; 1325 if (!intr_disabled) { 1326 if (vm_extint_pending(vm, vcpuid) || 1327 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1328 break; 1329 } 1330 } 1331 1332 /* Don't go to sleep if the vcpu thread needs to yield */ 1333 if (vcpu_should_yield(vm, vcpuid)) 1334 break; 1335 1336 if (vcpu_debugged(vm, vcpuid)) 1337 break; 1338 1339 /* 1340 * Some Linux guests implement "halt" by having all vcpus 1341 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1342 * track of the vcpus that have entered this state. When all 1343 * vcpus enter the halted state the virtual machine is halted. 1344 */ 1345 if (intr_disabled) { 1346 wmesg = "vmhalt"; 1347 VCPU_CTR0(vm, vcpuid, "Halted"); 1348 if (!vcpu_halted && halt_detection_enabled) { 1349 vcpu_halted = 1; 1350 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1351 } 1352 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1353 vm_halted = 1; 1354 break; 1355 } 1356 } else { 1357 wmesg = "vmidle"; 1358 } 1359 1360 t = ticks; 1361 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); 1362 /* 1363 * XXX msleep_spin() cannot be interrupted by signals so 1364 * wake up periodically to check pending signals. 1365 */ 1366 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1367 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); 1368 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t); 1369 if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) { 1370 vcpu_unlock(vcpu); 1371 error = thread_check_susp(td, false); 1372 if (error != 0) 1373 return (error); 1374 vcpu_lock(vcpu); 1375 } 1376 } 1377 1378 if (vcpu_halted) 1379 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1380 1381 vcpu_unlock(vcpu); 1382 1383 if (vm_halted) 1384 vm_suspend(vm, VM_SUSPEND_HALT); 1385 1386 return (0); 1387 } 1388 1389 static int 1390 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu) 1391 { 1392 int rv, ftype; 1393 struct vm_map *map; 1394 struct vcpu *vcpu; 1395 struct vm_exit *vme; 1396 1397 vcpu = &vm->vcpu[vcpuid]; 1398 vme = &vcpu->exitinfo; 1399 1400 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1401 __func__, vme->inst_length)); 1402 1403 ftype = vme->u.paging.fault_type; 1404 KASSERT(ftype == VM_PROT_READ || 1405 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1406 ("vm_handle_paging: invalid fault_type %d", ftype)); 1407 1408 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1409 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1410 vme->u.paging.gpa, ftype); 1411 if (rv == 0) { 1412 VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx", 1413 ftype == VM_PROT_READ ? "accessed" : "dirty", 1414 vme->u.paging.gpa); 1415 goto done; 1416 } 1417 } 1418 1419 map = &vm->vmspace->vm_map; 1420 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL); 1421 1422 VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, " 1423 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1424 1425 if (rv != KERN_SUCCESS) 1426 return (EFAULT); 1427 done: 1428 return (0); 1429 } 1430 1431 static int 1432 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu) 1433 { 1434 struct vie *vie; 1435 struct vcpu *vcpu; 1436 struct vm_exit *vme; 1437 uint64_t gla, gpa, cs_base; 1438 struct vm_guest_paging *paging; 1439 mem_region_read_t mread; 1440 mem_region_write_t mwrite; 1441 enum vm_cpu_mode cpu_mode; 1442 int cs_d, error, fault; 1443 1444 vcpu = &vm->vcpu[vcpuid]; 1445 vme = &vcpu->exitinfo; 1446 1447 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1448 __func__, vme->inst_length)); 1449 1450 gla = vme->u.inst_emul.gla; 1451 gpa = vme->u.inst_emul.gpa; 1452 cs_base = vme->u.inst_emul.cs_base; 1453 cs_d = vme->u.inst_emul.cs_d; 1454 vie = &vme->u.inst_emul.vie; 1455 paging = &vme->u.inst_emul.paging; 1456 cpu_mode = paging->cpu_mode; 1457 1458 VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa); 1459 1460 /* Fetch, decode and emulate the faulting instruction */ 1461 if (vie->num_valid == 0) { 1462 error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip + 1463 cs_base, VIE_INST_SIZE, vie, &fault); 1464 } else { 1465 /* 1466 * The instruction bytes have already been copied into 'vie' 1467 */ 1468 error = fault = 0; 1469 } 1470 if (error || fault) 1471 return (error); 1472 1473 if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) { 1474 VCPU_CTR1(vm, vcpuid, "Error decoding instruction at %#lx", 1475 vme->rip + cs_base); 1476 *retu = true; /* dump instruction bytes in userspace */ 1477 return (0); 1478 } 1479 1480 /* 1481 * Update 'nextrip' based on the length of the emulated instruction. 1482 */ 1483 vme->inst_length = vie->num_processed; 1484 vcpu->nextrip += vie->num_processed; 1485 VCPU_CTR1(vm, vcpuid, "nextrip updated to %#lx after instruction " 1486 "decoding", vcpu->nextrip); 1487 1488 /* return to userland unless this is an in-kernel emulated device */ 1489 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1490 mread = lapic_mmio_read; 1491 mwrite = lapic_mmio_write; 1492 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1493 mread = vioapic_mmio_read; 1494 mwrite = vioapic_mmio_write; 1495 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1496 mread = vhpet_mmio_read; 1497 mwrite = vhpet_mmio_write; 1498 } else { 1499 *retu = true; 1500 return (0); 1501 } 1502 1503 error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging, 1504 mread, mwrite, retu); 1505 1506 return (error); 1507 } 1508 1509 static int 1510 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu) 1511 { 1512 int error, i; 1513 struct vcpu *vcpu; 1514 struct thread *td; 1515 1516 error = 0; 1517 vcpu = &vm->vcpu[vcpuid]; 1518 td = curthread; 1519 1520 CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus); 1521 1522 /* 1523 * Wait until all 'active_cpus' have suspended themselves. 1524 * 1525 * Since a VM may be suspended at any time including when one or 1526 * more vcpus are doing a rendezvous we need to call the rendezvous 1527 * handler while we are waiting to prevent a deadlock. 1528 */ 1529 vcpu_lock(vcpu); 1530 while (error == 0) { 1531 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1532 VCPU_CTR0(vm, vcpuid, "All vcpus suspended"); 1533 break; 1534 } 1535 1536 if (vm->rendezvous_func == NULL) { 1537 VCPU_CTR0(vm, vcpuid, "Sleeping during suspend"); 1538 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); 1539 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1540 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); 1541 if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) { 1542 vcpu_unlock(vcpu); 1543 error = thread_check_susp(td, false); 1544 vcpu_lock(vcpu); 1545 } 1546 } else { 1547 VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend"); 1548 vcpu_unlock(vcpu); 1549 error = vm_handle_rendezvous(vm, vcpuid); 1550 vcpu_lock(vcpu); 1551 } 1552 } 1553 vcpu_unlock(vcpu); 1554 1555 /* 1556 * Wakeup the other sleeping vcpus and return to userspace. 1557 */ 1558 for (i = 0; i < vm->maxcpus; i++) { 1559 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1560 vcpu_notify_event(vm, i, false); 1561 } 1562 } 1563 1564 *retu = true; 1565 return (error); 1566 } 1567 1568 static int 1569 vm_handle_reqidle(struct vm *vm, int vcpuid, bool *retu) 1570 { 1571 struct vcpu *vcpu = &vm->vcpu[vcpuid]; 1572 1573 vcpu_lock(vcpu); 1574 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle)); 1575 vcpu->reqidle = 0; 1576 vcpu_unlock(vcpu); 1577 *retu = true; 1578 return (0); 1579 } 1580 1581 int 1582 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1583 { 1584 int i; 1585 1586 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1587 return (EINVAL); 1588 1589 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1590 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1591 vm->suspend, how); 1592 return (EALREADY); 1593 } 1594 1595 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1596 1597 /* 1598 * Notify all active vcpus that they are now suspended. 1599 */ 1600 for (i = 0; i < vm->maxcpus; i++) { 1601 if (CPU_ISSET(i, &vm->active_cpus)) 1602 vcpu_notify_event(vm, i, false); 1603 } 1604 1605 return (0); 1606 } 1607 1608 void 1609 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip) 1610 { 1611 struct vm_exit *vmexit; 1612 1613 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1614 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1615 1616 vmexit = vm_exitinfo(vm, vcpuid); 1617 vmexit->rip = rip; 1618 vmexit->inst_length = 0; 1619 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1620 vmexit->u.suspended.how = vm->suspend; 1621 } 1622 1623 void 1624 vm_exit_debug(struct vm *vm, int vcpuid, uint64_t rip) 1625 { 1626 struct vm_exit *vmexit; 1627 1628 vmexit = vm_exitinfo(vm, vcpuid); 1629 vmexit->rip = rip; 1630 vmexit->inst_length = 0; 1631 vmexit->exitcode = VM_EXITCODE_DEBUG; 1632 } 1633 1634 void 1635 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip) 1636 { 1637 struct vm_exit *vmexit; 1638 1639 KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress")); 1640 1641 vmexit = vm_exitinfo(vm, vcpuid); 1642 vmexit->rip = rip; 1643 vmexit->inst_length = 0; 1644 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1645 vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1); 1646 } 1647 1648 void 1649 vm_exit_reqidle(struct vm *vm, int vcpuid, uint64_t rip) 1650 { 1651 struct vm_exit *vmexit; 1652 1653 vmexit = vm_exitinfo(vm, vcpuid); 1654 vmexit->rip = rip; 1655 vmexit->inst_length = 0; 1656 vmexit->exitcode = VM_EXITCODE_REQIDLE; 1657 vmm_stat_incr(vm, vcpuid, VMEXIT_REQIDLE, 1); 1658 } 1659 1660 void 1661 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip) 1662 { 1663 struct vm_exit *vmexit; 1664 1665 vmexit = vm_exitinfo(vm, vcpuid); 1666 vmexit->rip = rip; 1667 vmexit->inst_length = 0; 1668 vmexit->exitcode = VM_EXITCODE_BOGUS; 1669 vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1); 1670 } 1671 1672 int 1673 vm_run(struct vm *vm, struct vm_run *vmrun) 1674 { 1675 struct vm_eventinfo evinfo; 1676 int error, vcpuid; 1677 struct vcpu *vcpu; 1678 struct pcb *pcb; 1679 uint64_t tscval; 1680 struct vm_exit *vme; 1681 bool retu, intr_disabled; 1682 pmap_t pmap; 1683 1684 vcpuid = vmrun->cpuid; 1685 1686 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1687 return (EINVAL); 1688 1689 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1690 return (EINVAL); 1691 1692 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1693 return (EINVAL); 1694 1695 pmap = vmspace_pmap(vm->vmspace); 1696 vcpu = &vm->vcpu[vcpuid]; 1697 vme = &vcpu->exitinfo; 1698 evinfo.rptr = &vm->rendezvous_func; 1699 evinfo.sptr = &vm->suspend; 1700 evinfo.iptr = &vcpu->reqidle; 1701 restart: 1702 critical_enter(); 1703 1704 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1705 ("vm_run: absurd pm_active")); 1706 1707 tscval = rdtsc(); 1708 1709 pcb = PCPU_GET(curpcb); 1710 set_pcb_flags(pcb, PCB_FULL_IRET); 1711 1712 restore_guest_fpustate(vcpu); 1713 1714 vcpu_require_state(vm, vcpuid, VCPU_RUNNING); 1715 error = VMRUN(vm->cookie, vcpuid, vcpu->nextrip, pmap, &evinfo); 1716 vcpu_require_state(vm, vcpuid, VCPU_FROZEN); 1717 1718 save_guest_fpustate(vcpu); 1719 1720 vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1721 1722 critical_exit(); 1723 1724 if (error == 0) { 1725 retu = false; 1726 vcpu->nextrip = vme->rip + vme->inst_length; 1727 switch (vme->exitcode) { 1728 case VM_EXITCODE_REQIDLE: 1729 error = vm_handle_reqidle(vm, vcpuid, &retu); 1730 break; 1731 case VM_EXITCODE_SUSPENDED: 1732 error = vm_handle_suspend(vm, vcpuid, &retu); 1733 break; 1734 case VM_EXITCODE_IOAPIC_EOI: 1735 vioapic_process_eoi(vm, vcpuid, 1736 vme->u.ioapic_eoi.vector); 1737 break; 1738 case VM_EXITCODE_RENDEZVOUS: 1739 error = vm_handle_rendezvous(vm, vcpuid); 1740 break; 1741 case VM_EXITCODE_HLT: 1742 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1743 error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu); 1744 break; 1745 case VM_EXITCODE_PAGING: 1746 error = vm_handle_paging(vm, vcpuid, &retu); 1747 break; 1748 case VM_EXITCODE_INST_EMUL: 1749 error = vm_handle_inst_emul(vm, vcpuid, &retu); 1750 break; 1751 case VM_EXITCODE_INOUT: 1752 case VM_EXITCODE_INOUT_STR: 1753 error = vm_handle_inout(vm, vcpuid, vme, &retu); 1754 break; 1755 case VM_EXITCODE_MONITOR: 1756 case VM_EXITCODE_MWAIT: 1757 case VM_EXITCODE_VMINSN: 1758 vm_inject_ud(vm, vcpuid); 1759 break; 1760 default: 1761 retu = true; /* handled in userland */ 1762 break; 1763 } 1764 } 1765 1766 if (error == 0 && retu == false) 1767 goto restart; 1768 1769 VCPU_CTR2(vm, vcpuid, "retu %d/%d", error, vme->exitcode); 1770 1771 /* copy the exit information */ 1772 bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit)); 1773 return (error); 1774 } 1775 1776 int 1777 vm_restart_instruction(void *arg, int vcpuid) 1778 { 1779 struct vm *vm; 1780 struct vcpu *vcpu; 1781 enum vcpu_state state; 1782 uint64_t rip; 1783 int error; 1784 1785 vm = arg; 1786 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1787 return (EINVAL); 1788 1789 vcpu = &vm->vcpu[vcpuid]; 1790 state = vcpu_get_state(vm, vcpuid, NULL); 1791 if (state == VCPU_RUNNING) { 1792 /* 1793 * When a vcpu is "running" the next instruction is determined 1794 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'. 1795 * Thus setting 'inst_length' to zero will cause the current 1796 * instruction to be restarted. 1797 */ 1798 vcpu->exitinfo.inst_length = 0; 1799 VCPU_CTR1(vm, vcpuid, "restarting instruction at %#lx by " 1800 "setting inst_length to zero", vcpu->exitinfo.rip); 1801 } else if (state == VCPU_FROZEN) { 1802 /* 1803 * When a vcpu is "frozen" it is outside the critical section 1804 * around VMRUN() and 'nextrip' points to the next instruction. 1805 * Thus instruction restart is achieved by setting 'nextrip' 1806 * to the vcpu's %rip. 1807 */ 1808 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip); 1809 KASSERT(!error, ("%s: error %d getting rip", __func__, error)); 1810 VCPU_CTR2(vm, vcpuid, "restarting instruction by updating " 1811 "nextrip from %#lx to %#lx", vcpu->nextrip, rip); 1812 vcpu->nextrip = rip; 1813 } else { 1814 panic("%s: invalid state %d", __func__, state); 1815 } 1816 return (0); 1817 } 1818 1819 int 1820 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info) 1821 { 1822 struct vcpu *vcpu; 1823 int type, vector; 1824 1825 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1826 return (EINVAL); 1827 1828 vcpu = &vm->vcpu[vcpuid]; 1829 1830 if (info & VM_INTINFO_VALID) { 1831 type = info & VM_INTINFO_TYPE; 1832 vector = info & 0xff; 1833 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 1834 return (EINVAL); 1835 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 1836 return (EINVAL); 1837 if (info & VM_INTINFO_RSVD) 1838 return (EINVAL); 1839 } else { 1840 info = 0; 1841 } 1842 VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info); 1843 vcpu->exitintinfo = info; 1844 return (0); 1845 } 1846 1847 enum exc_class { 1848 EXC_BENIGN, 1849 EXC_CONTRIBUTORY, 1850 EXC_PAGEFAULT 1851 }; 1852 1853 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 1854 1855 static enum exc_class 1856 exception_class(uint64_t info) 1857 { 1858 int type, vector; 1859 1860 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 1861 type = info & VM_INTINFO_TYPE; 1862 vector = info & 0xff; 1863 1864 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 1865 switch (type) { 1866 case VM_INTINFO_HWINTR: 1867 case VM_INTINFO_SWINTR: 1868 case VM_INTINFO_NMI: 1869 return (EXC_BENIGN); 1870 default: 1871 /* 1872 * Hardware exception. 1873 * 1874 * SVM and VT-x use identical type values to represent NMI, 1875 * hardware interrupt and software interrupt. 1876 * 1877 * SVM uses type '3' for all exceptions. VT-x uses type '3' 1878 * for exceptions except #BP and #OF. #BP and #OF use a type 1879 * value of '5' or '6'. Therefore we don't check for explicit 1880 * values of 'type' to classify 'intinfo' into a hardware 1881 * exception. 1882 */ 1883 break; 1884 } 1885 1886 switch (vector) { 1887 case IDT_PF: 1888 case IDT_VE: 1889 return (EXC_PAGEFAULT); 1890 case IDT_DE: 1891 case IDT_TS: 1892 case IDT_NP: 1893 case IDT_SS: 1894 case IDT_GP: 1895 return (EXC_CONTRIBUTORY); 1896 default: 1897 return (EXC_BENIGN); 1898 } 1899 } 1900 1901 static int 1902 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2, 1903 uint64_t *retinfo) 1904 { 1905 enum exc_class exc1, exc2; 1906 int type1, vector1; 1907 1908 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 1909 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 1910 1911 /* 1912 * If an exception occurs while attempting to call the double-fault 1913 * handler the processor enters shutdown mode (aka triple fault). 1914 */ 1915 type1 = info1 & VM_INTINFO_TYPE; 1916 vector1 = info1 & 0xff; 1917 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 1918 VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)", 1919 info1, info2); 1920 vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT); 1921 *retinfo = 0; 1922 return (0); 1923 } 1924 1925 /* 1926 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 1927 */ 1928 exc1 = exception_class(info1); 1929 exc2 = exception_class(info2); 1930 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 1931 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 1932 /* Convert nested fault into a double fault. */ 1933 *retinfo = IDT_DF; 1934 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1935 *retinfo |= VM_INTINFO_DEL_ERRCODE; 1936 } else { 1937 /* Handle exceptions serially */ 1938 *retinfo = info2; 1939 } 1940 return (1); 1941 } 1942 1943 static uint64_t 1944 vcpu_exception_intinfo(struct vcpu *vcpu) 1945 { 1946 uint64_t info = 0; 1947 1948 if (vcpu->exception_pending) { 1949 info = vcpu->exc_vector & 0xff; 1950 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1951 if (vcpu->exc_errcode_valid) { 1952 info |= VM_INTINFO_DEL_ERRCODE; 1953 info |= (uint64_t)vcpu->exc_errcode << 32; 1954 } 1955 } 1956 return (info); 1957 } 1958 1959 int 1960 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo) 1961 { 1962 struct vcpu *vcpu; 1963 uint64_t info1, info2; 1964 int valid; 1965 1966 KASSERT(vcpuid >= 0 && 1967 vcpuid < vm->maxcpus, ("invalid vcpu %d", vcpuid)); 1968 1969 vcpu = &vm->vcpu[vcpuid]; 1970 1971 info1 = vcpu->exitintinfo; 1972 vcpu->exitintinfo = 0; 1973 1974 info2 = 0; 1975 if (vcpu->exception_pending) { 1976 info2 = vcpu_exception_intinfo(vcpu); 1977 vcpu->exception_pending = 0; 1978 VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx", 1979 vcpu->exc_vector, info2); 1980 } 1981 1982 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 1983 valid = nested_fault(vm, vcpuid, info1, info2, retinfo); 1984 } else if (info1 & VM_INTINFO_VALID) { 1985 *retinfo = info1; 1986 valid = 1; 1987 } else if (info2 & VM_INTINFO_VALID) { 1988 *retinfo = info2; 1989 valid = 1; 1990 } else { 1991 valid = 0; 1992 } 1993 1994 if (valid) { 1995 VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), " 1996 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 1997 } 1998 1999 return (valid); 2000 } 2001 2002 int 2003 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2) 2004 { 2005 struct vcpu *vcpu; 2006 2007 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2008 return (EINVAL); 2009 2010 vcpu = &vm->vcpu[vcpuid]; 2011 *info1 = vcpu->exitintinfo; 2012 *info2 = vcpu_exception_intinfo(vcpu); 2013 return (0); 2014 } 2015 2016 int 2017 vm_inject_exception(struct vm *vm, int vcpuid, int vector, int errcode_valid, 2018 uint32_t errcode, int restart_instruction) 2019 { 2020 struct vcpu *vcpu; 2021 uint64_t regval; 2022 int error; 2023 2024 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2025 return (EINVAL); 2026 2027 if (vector < 0 || vector >= 32) 2028 return (EINVAL); 2029 2030 /* 2031 * A double fault exception should never be injected directly into 2032 * the guest. It is a derived exception that results from specific 2033 * combinations of nested faults. 2034 */ 2035 if (vector == IDT_DF) 2036 return (EINVAL); 2037 2038 vcpu = &vm->vcpu[vcpuid]; 2039 2040 if (vcpu->exception_pending) { 2041 VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to " 2042 "pending exception %d", vector, vcpu->exc_vector); 2043 return (EBUSY); 2044 } 2045 2046 if (errcode_valid) { 2047 /* 2048 * Exceptions don't deliver an error code in real mode. 2049 */ 2050 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_CR0, ®val); 2051 KASSERT(!error, ("%s: error %d getting CR0", __func__, error)); 2052 if (!(regval & CR0_PE)) 2053 errcode_valid = 0; 2054 } 2055 2056 /* 2057 * From section 26.6.1 "Interruptibility State" in Intel SDM: 2058 * 2059 * Event blocking by "STI" or "MOV SS" is cleared after guest executes 2060 * one instruction or incurs an exception. 2061 */ 2062 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0); 2063 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", 2064 __func__, error)); 2065 2066 if (restart_instruction) 2067 vm_restart_instruction(vm, vcpuid); 2068 2069 vcpu->exception_pending = 1; 2070 vcpu->exc_vector = vector; 2071 vcpu->exc_errcode = errcode; 2072 vcpu->exc_errcode_valid = errcode_valid; 2073 VCPU_CTR1(vm, vcpuid, "Exception %d pending", vector); 2074 return (0); 2075 } 2076 2077 void 2078 vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid, 2079 int errcode) 2080 { 2081 struct vm *vm; 2082 int error, restart_instruction; 2083 2084 vm = vmarg; 2085 restart_instruction = 1; 2086 2087 error = vm_inject_exception(vm, vcpuid, vector, errcode_valid, 2088 errcode, restart_instruction); 2089 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 2090 } 2091 2092 void 2093 vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2) 2094 { 2095 struct vm *vm; 2096 int error; 2097 2098 vm = vmarg; 2099 VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx", 2100 error_code, cr2); 2101 2102 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2); 2103 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 2104 2105 vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code); 2106 } 2107 2108 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 2109 2110 int 2111 vm_inject_nmi(struct vm *vm, int vcpuid) 2112 { 2113 struct vcpu *vcpu; 2114 2115 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2116 return (EINVAL); 2117 2118 vcpu = &vm->vcpu[vcpuid]; 2119 2120 vcpu->nmi_pending = 1; 2121 vcpu_notify_event(vm, vcpuid, false); 2122 return (0); 2123 } 2124 2125 int 2126 vm_nmi_pending(struct vm *vm, int vcpuid) 2127 { 2128 struct vcpu *vcpu; 2129 2130 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2131 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 2132 2133 vcpu = &vm->vcpu[vcpuid]; 2134 2135 return (vcpu->nmi_pending); 2136 } 2137 2138 void 2139 vm_nmi_clear(struct vm *vm, int vcpuid) 2140 { 2141 struct vcpu *vcpu; 2142 2143 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2144 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 2145 2146 vcpu = &vm->vcpu[vcpuid]; 2147 2148 if (vcpu->nmi_pending == 0) 2149 panic("vm_nmi_clear: inconsistent nmi_pending state"); 2150 2151 vcpu->nmi_pending = 0; 2152 vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1); 2153 } 2154 2155 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 2156 2157 int 2158 vm_inject_extint(struct vm *vm, int vcpuid) 2159 { 2160 struct vcpu *vcpu; 2161 2162 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2163 return (EINVAL); 2164 2165 vcpu = &vm->vcpu[vcpuid]; 2166 2167 vcpu->extint_pending = 1; 2168 vcpu_notify_event(vm, vcpuid, false); 2169 return (0); 2170 } 2171 2172 int 2173 vm_extint_pending(struct vm *vm, int vcpuid) 2174 { 2175 struct vcpu *vcpu; 2176 2177 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2178 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 2179 2180 vcpu = &vm->vcpu[vcpuid]; 2181 2182 return (vcpu->extint_pending); 2183 } 2184 2185 void 2186 vm_extint_clear(struct vm *vm, int vcpuid) 2187 { 2188 struct vcpu *vcpu; 2189 2190 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2191 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 2192 2193 vcpu = &vm->vcpu[vcpuid]; 2194 2195 if (vcpu->extint_pending == 0) 2196 panic("vm_extint_clear: inconsistent extint_pending state"); 2197 2198 vcpu->extint_pending = 0; 2199 vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1); 2200 } 2201 2202 int 2203 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval) 2204 { 2205 if (vcpu < 0 || vcpu >= vm->maxcpus) 2206 return (EINVAL); 2207 2208 if (type < 0 || type >= VM_CAP_MAX) 2209 return (EINVAL); 2210 2211 return (VMGETCAP(vm->cookie, vcpu, type, retval)); 2212 } 2213 2214 int 2215 vm_set_capability(struct vm *vm, int vcpu, int type, int val) 2216 { 2217 if (vcpu < 0 || vcpu >= vm->maxcpus) 2218 return (EINVAL); 2219 2220 if (type < 0 || type >= VM_CAP_MAX) 2221 return (EINVAL); 2222 2223 return (VMSETCAP(vm->cookie, vcpu, type, val)); 2224 } 2225 2226 struct vlapic * 2227 vm_lapic(struct vm *vm, int cpu) 2228 { 2229 return (vm->vcpu[cpu].vlapic); 2230 } 2231 2232 struct vioapic * 2233 vm_ioapic(struct vm *vm) 2234 { 2235 2236 return (vm->vioapic); 2237 } 2238 2239 struct vhpet * 2240 vm_hpet(struct vm *vm) 2241 { 2242 2243 return (vm->vhpet); 2244 } 2245 2246 bool 2247 vmm_is_pptdev(int bus, int slot, int func) 2248 { 2249 int b, f, i, n, s; 2250 char *val, *cp, *cp2; 2251 bool found; 2252 2253 /* 2254 * XXX 2255 * The length of an environment variable is limited to 128 bytes which 2256 * puts an upper limit on the number of passthru devices that may be 2257 * specified using a single environment variable. 2258 * 2259 * Work around this by scanning multiple environment variable 2260 * names instead of a single one - yuck! 2261 */ 2262 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 2263 2264 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 2265 found = false; 2266 for (i = 0; names[i] != NULL && !found; i++) { 2267 cp = val = kern_getenv(names[i]); 2268 while (cp != NULL && *cp != '\0') { 2269 if ((cp2 = strchr(cp, ' ')) != NULL) 2270 *cp2 = '\0'; 2271 2272 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 2273 if (n == 3 && bus == b && slot == s && func == f) { 2274 found = true; 2275 break; 2276 } 2277 2278 if (cp2 != NULL) 2279 *cp2++ = ' '; 2280 2281 cp = cp2; 2282 } 2283 freeenv(val); 2284 } 2285 return (found); 2286 } 2287 2288 void * 2289 vm_iommu_domain(struct vm *vm) 2290 { 2291 2292 return (vm->iommu); 2293 } 2294 2295 int 2296 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate, 2297 bool from_idle) 2298 { 2299 int error; 2300 struct vcpu *vcpu; 2301 2302 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2303 panic("vm_set_run_state: invalid vcpuid %d", vcpuid); 2304 2305 vcpu = &vm->vcpu[vcpuid]; 2306 2307 vcpu_lock(vcpu); 2308 error = vcpu_set_state_locked(vm, vcpuid, newstate, from_idle); 2309 vcpu_unlock(vcpu); 2310 2311 return (error); 2312 } 2313 2314 enum vcpu_state 2315 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu) 2316 { 2317 struct vcpu *vcpu; 2318 enum vcpu_state state; 2319 2320 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2321 panic("vm_get_run_state: invalid vcpuid %d", vcpuid); 2322 2323 vcpu = &vm->vcpu[vcpuid]; 2324 2325 vcpu_lock(vcpu); 2326 state = vcpu->state; 2327 if (hostcpu != NULL) 2328 *hostcpu = vcpu->hostcpu; 2329 vcpu_unlock(vcpu); 2330 2331 return (state); 2332 } 2333 2334 int 2335 vm_activate_cpu(struct vm *vm, int vcpuid) 2336 { 2337 2338 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2339 return (EINVAL); 2340 2341 if (CPU_ISSET(vcpuid, &vm->active_cpus)) 2342 return (EBUSY); 2343 2344 VCPU_CTR0(vm, vcpuid, "activated"); 2345 CPU_SET_ATOMIC(vcpuid, &vm->active_cpus); 2346 return (0); 2347 } 2348 2349 int 2350 vm_suspend_cpu(struct vm *vm, int vcpuid) 2351 { 2352 int i; 2353 2354 if (vcpuid < -1 || vcpuid >= vm->maxcpus) 2355 return (EINVAL); 2356 2357 if (vcpuid == -1) { 2358 vm->debug_cpus = vm->active_cpus; 2359 for (i = 0; i < vm->maxcpus; i++) { 2360 if (CPU_ISSET(i, &vm->active_cpus)) 2361 vcpu_notify_event(vm, i, false); 2362 } 2363 } else { 2364 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 2365 return (EINVAL); 2366 2367 CPU_SET_ATOMIC(vcpuid, &vm->debug_cpus); 2368 vcpu_notify_event(vm, vcpuid, false); 2369 } 2370 return (0); 2371 } 2372 2373 int 2374 vm_resume_cpu(struct vm *vm, int vcpuid) 2375 { 2376 2377 if (vcpuid < -1 || vcpuid >= vm->maxcpus) 2378 return (EINVAL); 2379 2380 if (vcpuid == -1) { 2381 CPU_ZERO(&vm->debug_cpus); 2382 } else { 2383 if (!CPU_ISSET(vcpuid, &vm->debug_cpus)) 2384 return (EINVAL); 2385 2386 CPU_CLR_ATOMIC(vcpuid, &vm->debug_cpus); 2387 } 2388 return (0); 2389 } 2390 2391 int 2392 vcpu_debugged(struct vm *vm, int vcpuid) 2393 { 2394 2395 return (CPU_ISSET(vcpuid, &vm->debug_cpus)); 2396 } 2397 2398 cpuset_t 2399 vm_active_cpus(struct vm *vm) 2400 { 2401 2402 return (vm->active_cpus); 2403 } 2404 2405 cpuset_t 2406 vm_debug_cpus(struct vm *vm) 2407 { 2408 2409 return (vm->debug_cpus); 2410 } 2411 2412 cpuset_t 2413 vm_suspended_cpus(struct vm *vm) 2414 { 2415 2416 return (vm->suspended_cpus); 2417 } 2418 2419 void * 2420 vcpu_stats(struct vm *vm, int vcpuid) 2421 { 2422 2423 return (vm->vcpu[vcpuid].stats); 2424 } 2425 2426 int 2427 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state) 2428 { 2429 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2430 return (EINVAL); 2431 2432 *state = vm->vcpu[vcpuid].x2apic_state; 2433 2434 return (0); 2435 } 2436 2437 int 2438 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state) 2439 { 2440 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2441 return (EINVAL); 2442 2443 if (state >= X2APIC_STATE_LAST) 2444 return (EINVAL); 2445 2446 vm->vcpu[vcpuid].x2apic_state = state; 2447 2448 vlapic_set_x2apic_state(vm, vcpuid, state); 2449 2450 return (0); 2451 } 2452 2453 /* 2454 * This function is called to ensure that a vcpu "sees" a pending event 2455 * as soon as possible: 2456 * - If the vcpu thread is sleeping then it is woken up. 2457 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2458 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2459 */ 2460 static void 2461 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr) 2462 { 2463 int hostcpu; 2464 2465 hostcpu = vcpu->hostcpu; 2466 if (vcpu->state == VCPU_RUNNING) { 2467 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2468 if (hostcpu != curcpu) { 2469 if (lapic_intr) { 2470 vlapic_post_intr(vcpu->vlapic, hostcpu, 2471 vmm_ipinum); 2472 } else { 2473 ipi_cpu(hostcpu, vmm_ipinum); 2474 } 2475 } else { 2476 /* 2477 * If the 'vcpu' is running on 'curcpu' then it must 2478 * be sending a notification to itself (e.g. SELF_IPI). 2479 * The pending event will be picked up when the vcpu 2480 * transitions back to guest context. 2481 */ 2482 } 2483 } else { 2484 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2485 "with hostcpu %d", vcpu->state, hostcpu)); 2486 if (vcpu->state == VCPU_SLEEPING) 2487 wakeup_one(vcpu); 2488 } 2489 } 2490 2491 void 2492 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr) 2493 { 2494 struct vcpu *vcpu = &vm->vcpu[vcpuid]; 2495 2496 vcpu_lock(vcpu); 2497 vcpu_notify_event_locked(vcpu, lapic_intr); 2498 vcpu_unlock(vcpu); 2499 } 2500 2501 struct vmspace * 2502 vm_get_vmspace(struct vm *vm) 2503 { 2504 2505 return (vm->vmspace); 2506 } 2507 2508 int 2509 vm_apicid2vcpuid(struct vm *vm, int apicid) 2510 { 2511 /* 2512 * XXX apic id is assumed to be numerically identical to vcpu id 2513 */ 2514 return (apicid); 2515 } 2516 2517 int 2518 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest, 2519 vm_rendezvous_func_t func, void *arg) 2520 { 2521 int error, i; 2522 2523 /* 2524 * Enforce that this function is called without any locks 2525 */ 2526 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2527 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus), 2528 ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid)); 2529 2530 restart: 2531 mtx_lock(&vm->rendezvous_mtx); 2532 if (vm->rendezvous_func != NULL) { 2533 /* 2534 * If a rendezvous is already in progress then we need to 2535 * call the rendezvous handler in case this 'vcpuid' is one 2536 * of the targets of the rendezvous. 2537 */ 2538 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress"); 2539 mtx_unlock(&vm->rendezvous_mtx); 2540 error = vm_handle_rendezvous(vm, vcpuid); 2541 if (error != 0) 2542 return (error); 2543 goto restart; 2544 } 2545 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2546 "rendezvous is still in progress")); 2547 2548 RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous"); 2549 vm->rendezvous_req_cpus = dest; 2550 CPU_ZERO(&vm->rendezvous_done_cpus); 2551 vm->rendezvous_arg = arg; 2552 vm->rendezvous_func = func; 2553 mtx_unlock(&vm->rendezvous_mtx); 2554 2555 /* 2556 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2557 * vcpus so they handle the rendezvous as soon as possible. 2558 */ 2559 for (i = 0; i < vm->maxcpus; i++) { 2560 if (CPU_ISSET(i, &dest)) 2561 vcpu_notify_event(vm, i, false); 2562 } 2563 2564 return (vm_handle_rendezvous(vm, vcpuid)); 2565 } 2566 2567 struct vatpic * 2568 vm_atpic(struct vm *vm) 2569 { 2570 return (vm->vatpic); 2571 } 2572 2573 struct vatpit * 2574 vm_atpit(struct vm *vm) 2575 { 2576 return (vm->vatpit); 2577 } 2578 2579 struct vpmtmr * 2580 vm_pmtmr(struct vm *vm) 2581 { 2582 2583 return (vm->vpmtmr); 2584 } 2585 2586 struct vrtc * 2587 vm_rtc(struct vm *vm) 2588 { 2589 2590 return (vm->vrtc); 2591 } 2592 2593 enum vm_reg_name 2594 vm_segment_name(int seg) 2595 { 2596 static enum vm_reg_name seg_names[] = { 2597 VM_REG_GUEST_ES, 2598 VM_REG_GUEST_CS, 2599 VM_REG_GUEST_SS, 2600 VM_REG_GUEST_DS, 2601 VM_REG_GUEST_FS, 2602 VM_REG_GUEST_GS 2603 }; 2604 2605 KASSERT(seg >= 0 && seg < nitems(seg_names), 2606 ("%s: invalid segment encoding %d", __func__, seg)); 2607 return (seg_names[seg]); 2608 } 2609 2610 void 2611 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, 2612 int num_copyinfo) 2613 { 2614 int idx; 2615 2616 for (idx = 0; idx < num_copyinfo; idx++) { 2617 if (copyinfo[idx].cookie != NULL) 2618 vm_gpa_release(copyinfo[idx].cookie); 2619 } 2620 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2621 } 2622 2623 int 2624 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging, 2625 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2626 int num_copyinfo, int *fault) 2627 { 2628 int error, idx, nused; 2629 size_t n, off, remaining; 2630 void *hva, *cookie; 2631 uint64_t gpa; 2632 2633 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2634 2635 nused = 0; 2636 remaining = len; 2637 while (remaining > 0) { 2638 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo")); 2639 error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa, fault); 2640 if (error || *fault) 2641 return (error); 2642 off = gpa & PAGE_MASK; 2643 n = min(remaining, PAGE_SIZE - off); 2644 copyinfo[nused].gpa = gpa; 2645 copyinfo[nused].len = n; 2646 remaining -= n; 2647 gla += n; 2648 nused++; 2649 } 2650 2651 for (idx = 0; idx < nused; idx++) { 2652 hva = vm_gpa_hold(vm, vcpuid, copyinfo[idx].gpa, 2653 copyinfo[idx].len, prot, &cookie); 2654 if (hva == NULL) 2655 break; 2656 copyinfo[idx].hva = hva; 2657 copyinfo[idx].cookie = cookie; 2658 } 2659 2660 if (idx != nused) { 2661 vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo); 2662 return (EFAULT); 2663 } else { 2664 *fault = 0; 2665 return (0); 2666 } 2667 } 2668 2669 void 2670 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr, 2671 size_t len) 2672 { 2673 char *dst; 2674 int idx; 2675 2676 dst = kaddr; 2677 idx = 0; 2678 while (len > 0) { 2679 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2680 len -= copyinfo[idx].len; 2681 dst += copyinfo[idx].len; 2682 idx++; 2683 } 2684 } 2685 2686 void 2687 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr, 2688 struct vm_copyinfo *copyinfo, size_t len) 2689 { 2690 const char *src; 2691 int idx; 2692 2693 src = kaddr; 2694 idx = 0; 2695 while (len > 0) { 2696 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2697 len -= copyinfo[idx].len; 2698 src += copyinfo[idx].len; 2699 idx++; 2700 } 2701 } 2702 2703 /* 2704 * Return the amount of in-use and wired memory for the VM. Since 2705 * these are global stats, only return the values with for vCPU 0 2706 */ 2707 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2708 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2709 2710 static void 2711 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2712 { 2713 2714 if (vcpu == 0) { 2715 vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT, 2716 PAGE_SIZE * vmspace_resident_count(vm->vmspace)); 2717 } 2718 } 2719 2720 static void 2721 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2722 { 2723 2724 if (vcpu == 0) { 2725 vmm_stat_set(vm, vcpu, VMM_MEM_WIRED, 2726 PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace))); 2727 } 2728 } 2729 2730 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2731 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2732