xref: /freebsd/sys/amd64/vmm/vmm.c (revision cd0d51baaa4509a1db83251a601d34404d20c990)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/module.h>
38 #include <sys/sysctl.h>
39 #include <sys/malloc.h>
40 #include <sys/pcpu.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/proc.h>
44 #include <sys/rwlock.h>
45 #include <sys/sched.h>
46 #include <sys/smp.h>
47 #include <sys/systm.h>
48 
49 #include <vm/vm.h>
50 #include <vm/vm_object.h>
51 #include <vm/vm_page.h>
52 #include <vm/pmap.h>
53 #include <vm/vm_map.h>
54 #include <vm/vm_extern.h>
55 #include <vm/vm_param.h>
56 
57 #include <machine/cpu.h>
58 #include <machine/pcb.h>
59 #include <machine/smp.h>
60 #include <machine/md_var.h>
61 #include <x86/psl.h>
62 #include <x86/apicreg.h>
63 
64 #include <machine/vmm.h>
65 #include <machine/vmm_dev.h>
66 #include <machine/vmm_instruction_emul.h>
67 
68 #include "vmm_ioport.h"
69 #include "vmm_ktr.h"
70 #include "vmm_host.h"
71 #include "vmm_mem.h"
72 #include "vmm_util.h"
73 #include "vatpic.h"
74 #include "vatpit.h"
75 #include "vhpet.h"
76 #include "vioapic.h"
77 #include "vlapic.h"
78 #include "vpmtmr.h"
79 #include "vrtc.h"
80 #include "vmm_stat.h"
81 #include "vmm_lapic.h"
82 
83 #include "io/ppt.h"
84 #include "io/iommu.h"
85 
86 struct vlapic;
87 
88 /*
89  * Initialization:
90  * (a) allocated when vcpu is created
91  * (i) initialized when vcpu is created and when it is reinitialized
92  * (o) initialized the first time the vcpu is created
93  * (x) initialized before use
94  */
95 struct vcpu {
96 	struct mtx 	mtx;		/* (o) protects 'state' and 'hostcpu' */
97 	enum vcpu_state	state;		/* (o) vcpu state */
98 	int		hostcpu;	/* (o) vcpu's host cpu */
99 	int		reqidle;	/* (i) request vcpu to idle */
100 	struct vlapic	*vlapic;	/* (i) APIC device model */
101 	enum x2apic_state x2apic_state;	/* (i) APIC mode */
102 	uint64_t	exitintinfo;	/* (i) events pending at VM exit */
103 	int		nmi_pending;	/* (i) NMI pending */
104 	int		extint_pending;	/* (i) INTR pending */
105 	int	exception_pending;	/* (i) exception pending */
106 	int	exc_vector;		/* (x) exception collateral */
107 	int	exc_errcode_valid;
108 	uint32_t exc_errcode;
109 	struct savefpu	*guestfpu;	/* (a,i) guest fpu state */
110 	uint64_t	guest_xcr0;	/* (i) guest %xcr0 register */
111 	void		*stats;		/* (a,i) statistics */
112 	struct vm_exit	exitinfo;	/* (x) exit reason and collateral */
113 	uint64_t	nextrip;	/* (x) next instruction to execute */
114 };
115 
116 #define	vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx))
117 #define	vcpu_lock_init(v)	mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN)
118 #define	vcpu_lock(v)		mtx_lock_spin(&((v)->mtx))
119 #define	vcpu_unlock(v)		mtx_unlock_spin(&((v)->mtx))
120 #define	vcpu_assert_locked(v)	mtx_assert(&((v)->mtx), MA_OWNED)
121 
122 struct mem_seg {
123 	size_t	len;
124 	bool	sysmem;
125 	struct vm_object *object;
126 };
127 #define	VM_MAX_MEMSEGS	3
128 
129 struct mem_map {
130 	vm_paddr_t	gpa;
131 	size_t		len;
132 	vm_ooffset_t	segoff;
133 	int		segid;
134 	int		prot;
135 	int		flags;
136 };
137 #define	VM_MAX_MEMMAPS	4
138 
139 /*
140  * Initialization:
141  * (o) initialized the first time the VM is created
142  * (i) initialized when VM is created and when it is reinitialized
143  * (x) initialized before use
144  */
145 struct vm {
146 	void		*cookie;		/* (i) cpu-specific data */
147 	void		*iommu;			/* (x) iommu-specific data */
148 	struct vhpet	*vhpet;			/* (i) virtual HPET */
149 	struct vioapic	*vioapic;		/* (i) virtual ioapic */
150 	struct vatpic	*vatpic;		/* (i) virtual atpic */
151 	struct vatpit	*vatpit;		/* (i) virtual atpit */
152 	struct vpmtmr	*vpmtmr;		/* (i) virtual ACPI PM timer */
153 	struct vrtc	*vrtc;			/* (o) virtual RTC */
154 	volatile cpuset_t active_cpus;		/* (i) active vcpus */
155 	volatile cpuset_t debug_cpus;		/* (i) vcpus stopped for debug */
156 	int		suspend;		/* (i) stop VM execution */
157 	volatile cpuset_t suspended_cpus; 	/* (i) suspended vcpus */
158 	volatile cpuset_t halted_cpus;		/* (x) cpus in a hard halt */
159 	cpuset_t	rendezvous_req_cpus;	/* (x) rendezvous requested */
160 	cpuset_t	rendezvous_done_cpus;	/* (x) rendezvous finished */
161 	void		*rendezvous_arg;	/* (x) rendezvous func/arg */
162 	vm_rendezvous_func_t rendezvous_func;
163 	struct mtx	rendezvous_mtx;		/* (o) rendezvous lock */
164 	struct mem_map	mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */
165 	struct mem_seg	mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */
166 	struct vmspace	*vmspace;		/* (o) guest's address space */
167 	char		name[VM_MAX_NAMELEN];	/* (o) virtual machine name */
168 	struct vcpu	vcpu[VM_MAXCPU];	/* (i) guest vcpus */
169 	/* The following describe the vm cpu topology */
170 	uint16_t	sockets;		/* (o) num of sockets */
171 	uint16_t	cores;			/* (o) num of cores/socket */
172 	uint16_t	threads;		/* (o) num of threads/core */
173 	uint16_t	maxcpus;		/* (o) max pluggable cpus */
174 };
175 
176 static int vmm_initialized;
177 
178 static struct vmm_ops *ops;
179 #define	VMM_INIT(num)	(ops != NULL ? (*ops->init)(num) : 0)
180 #define	VMM_CLEANUP()	(ops != NULL ? (*ops->cleanup)() : 0)
181 #define	VMM_RESUME()	(ops != NULL ? (*ops->resume)() : 0)
182 
183 #define	VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL)
184 #define	VMRUN(vmi, vcpu, rip, pmap, evinfo) \
185 	(ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, evinfo) : ENXIO)
186 #define	VMCLEANUP(vmi)	(ops != NULL ? (*ops->vmcleanup)(vmi) : NULL)
187 #define	VMSPACE_ALLOC(min, max) \
188 	(ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL)
189 #define	VMSPACE_FREE(vmspace) \
190 	(ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO)
191 #define	VMGETREG(vmi, vcpu, num, retval)		\
192 	(ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO)
193 #define	VMSETREG(vmi, vcpu, num, val)		\
194 	(ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO)
195 #define	VMGETDESC(vmi, vcpu, num, desc)		\
196 	(ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO)
197 #define	VMSETDESC(vmi, vcpu, num, desc)		\
198 	(ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO)
199 #define	VMGETCAP(vmi, vcpu, num, retval)	\
200 	(ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO)
201 #define	VMSETCAP(vmi, vcpu, num, val)		\
202 	(ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO)
203 #define	VLAPIC_INIT(vmi, vcpu)			\
204 	(ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL)
205 #define	VLAPIC_CLEANUP(vmi, vlapic)		\
206 	(ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL)
207 
208 #define	fpu_start_emulating()	load_cr0(rcr0() | CR0_TS)
209 #define	fpu_stop_emulating()	clts()
210 
211 SDT_PROVIDER_DEFINE(vmm);
212 
213 static MALLOC_DEFINE(M_VM, "vm", "vm");
214 
215 /* statistics */
216 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime");
217 
218 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL);
219 
220 /*
221  * Halt the guest if all vcpus are executing a HLT instruction with
222  * interrupts disabled.
223  */
224 static int halt_detection_enabled = 1;
225 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN,
226     &halt_detection_enabled, 0,
227     "Halt VM if all vcpus execute HLT with interrupts disabled");
228 
229 static int vmm_ipinum;
230 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0,
231     "IPI vector used for vcpu notifications");
232 
233 static int trace_guest_exceptions;
234 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN,
235     &trace_guest_exceptions, 0,
236     "Trap into hypervisor on all guest exceptions and reflect them back");
237 
238 static void vm_free_memmap(struct vm *vm, int ident);
239 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm);
240 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr);
241 
242 #ifdef KTR
243 static const char *
244 vcpu_state2str(enum vcpu_state state)
245 {
246 
247 	switch (state) {
248 	case VCPU_IDLE:
249 		return ("idle");
250 	case VCPU_FROZEN:
251 		return ("frozen");
252 	case VCPU_RUNNING:
253 		return ("running");
254 	case VCPU_SLEEPING:
255 		return ("sleeping");
256 	default:
257 		return ("unknown");
258 	}
259 }
260 #endif
261 
262 static void
263 vcpu_cleanup(struct vm *vm, int i, bool destroy)
264 {
265 	struct vcpu *vcpu = &vm->vcpu[i];
266 
267 	VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic);
268 	if (destroy) {
269 		vmm_stat_free(vcpu->stats);
270 		fpu_save_area_free(vcpu->guestfpu);
271 	}
272 }
273 
274 static void
275 vcpu_init(struct vm *vm, int vcpu_id, bool create)
276 {
277 	struct vcpu *vcpu;
278 
279 	KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus,
280 	    ("vcpu_init: invalid vcpu %d", vcpu_id));
281 
282 	vcpu = &vm->vcpu[vcpu_id];
283 
284 	if (create) {
285 		KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already "
286 		    "initialized", vcpu_id));
287 		vcpu_lock_init(vcpu);
288 		vcpu->state = VCPU_IDLE;
289 		vcpu->hostcpu = NOCPU;
290 		vcpu->guestfpu = fpu_save_area_alloc();
291 		vcpu->stats = vmm_stat_alloc();
292 	}
293 
294 	vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id);
295 	vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED);
296 	vcpu->reqidle = 0;
297 	vcpu->exitintinfo = 0;
298 	vcpu->nmi_pending = 0;
299 	vcpu->extint_pending = 0;
300 	vcpu->exception_pending = 0;
301 	vcpu->guest_xcr0 = XFEATURE_ENABLED_X87;
302 	fpu_save_area_reset(vcpu->guestfpu);
303 	vmm_stat_init(vcpu->stats);
304 }
305 
306 int
307 vcpu_trace_exceptions(struct vm *vm, int vcpuid)
308 {
309 
310 	return (trace_guest_exceptions);
311 }
312 
313 struct vm_exit *
314 vm_exitinfo(struct vm *vm, int cpuid)
315 {
316 	struct vcpu *vcpu;
317 
318 	if (cpuid < 0 || cpuid >= vm->maxcpus)
319 		panic("vm_exitinfo: invalid cpuid %d", cpuid);
320 
321 	vcpu = &vm->vcpu[cpuid];
322 
323 	return (&vcpu->exitinfo);
324 }
325 
326 static void
327 vmm_resume(void)
328 {
329 	VMM_RESUME();
330 }
331 
332 static int
333 vmm_init(void)
334 {
335 	int error;
336 
337 	vmm_host_state_init();
338 
339 	vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) :
340 	    &IDTVEC(justreturn));
341 	if (vmm_ipinum < 0)
342 		vmm_ipinum = IPI_AST;
343 
344 	error = vmm_mem_init();
345 	if (error)
346 		return (error);
347 
348 	if (vmm_is_intel())
349 		ops = &vmm_ops_intel;
350 	else if (vmm_is_amd())
351 		ops = &vmm_ops_amd;
352 	else
353 		return (ENXIO);
354 
355 	vmm_resume_p = vmm_resume;
356 
357 	return (VMM_INIT(vmm_ipinum));
358 }
359 
360 static int
361 vmm_handler(module_t mod, int what, void *arg)
362 {
363 	int error;
364 
365 	switch (what) {
366 	case MOD_LOAD:
367 		vmmdev_init();
368 		error = vmm_init();
369 		if (error == 0)
370 			vmm_initialized = 1;
371 		break;
372 	case MOD_UNLOAD:
373 		error = vmmdev_cleanup();
374 		if (error == 0) {
375 			vmm_resume_p = NULL;
376 			iommu_cleanup();
377 			if (vmm_ipinum != IPI_AST)
378 				lapic_ipi_free(vmm_ipinum);
379 			error = VMM_CLEANUP();
380 			/*
381 			 * Something bad happened - prevent new
382 			 * VMs from being created
383 			 */
384 			if (error)
385 				vmm_initialized = 0;
386 		}
387 		break;
388 	default:
389 		error = 0;
390 		break;
391 	}
392 	return (error);
393 }
394 
395 static moduledata_t vmm_kmod = {
396 	"vmm",
397 	vmm_handler,
398 	NULL
399 };
400 
401 /*
402  * vmm initialization has the following dependencies:
403  *
404  * - VT-x initialization requires smp_rendezvous() and therefore must happen
405  *   after SMP is fully functional (after SI_SUB_SMP).
406  */
407 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY);
408 MODULE_VERSION(vmm, 1);
409 
410 static void
411 vm_init(struct vm *vm, bool create)
412 {
413 	int i;
414 
415 	vm->cookie = VMINIT(vm, vmspace_pmap(vm->vmspace));
416 	vm->iommu = NULL;
417 	vm->vioapic = vioapic_init(vm);
418 	vm->vhpet = vhpet_init(vm);
419 	vm->vatpic = vatpic_init(vm);
420 	vm->vatpit = vatpit_init(vm);
421 	vm->vpmtmr = vpmtmr_init(vm);
422 	if (create)
423 		vm->vrtc = vrtc_init(vm);
424 
425 	CPU_ZERO(&vm->active_cpus);
426 	CPU_ZERO(&vm->debug_cpus);
427 
428 	vm->suspend = 0;
429 	CPU_ZERO(&vm->suspended_cpus);
430 
431 	for (i = 0; i < vm->maxcpus; i++)
432 		vcpu_init(vm, i, create);
433 }
434 
435 /*
436  * The default CPU topology is a single thread per package.
437  */
438 u_int cores_per_package = 1;
439 u_int threads_per_core = 1;
440 
441 int
442 vm_create(const char *name, struct vm **retvm)
443 {
444 	struct vm *vm;
445 	struct vmspace *vmspace;
446 
447 	/*
448 	 * If vmm.ko could not be successfully initialized then don't attempt
449 	 * to create the virtual machine.
450 	 */
451 	if (!vmm_initialized)
452 		return (ENXIO);
453 
454 	if (name == NULL || strlen(name) >= VM_MAX_NAMELEN)
455 		return (EINVAL);
456 
457 	vmspace = VMSPACE_ALLOC(0, VM_MAXUSER_ADDRESS);
458 	if (vmspace == NULL)
459 		return (ENOMEM);
460 
461 	vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO);
462 	strcpy(vm->name, name);
463 	vm->vmspace = vmspace;
464 	mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF);
465 
466 	vm->sockets = 1;
467 	vm->cores = cores_per_package;	/* XXX backwards compatibility */
468 	vm->threads = threads_per_core;	/* XXX backwards compatibility */
469 	vm->maxcpus = VM_MAXCPU;	/* XXX temp to keep code working */
470 
471 	vm_init(vm, true);
472 
473 	*retvm = vm;
474 	return (0);
475 }
476 
477 void
478 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores,
479     uint16_t *threads, uint16_t *maxcpus)
480 {
481 	*sockets = vm->sockets;
482 	*cores = vm->cores;
483 	*threads = vm->threads;
484 	*maxcpus = vm->maxcpus;
485 }
486 
487 uint16_t
488 vm_get_maxcpus(struct vm *vm)
489 {
490 	return (vm->maxcpus);
491 }
492 
493 int
494 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores,
495     uint16_t threads, uint16_t maxcpus)
496 {
497 	if (maxcpus != 0)
498 		return (EINVAL);	/* XXX remove when supported */
499 	if ((sockets * cores * threads) > vm->maxcpus)
500 		return (EINVAL);
501 	/* XXX need to check sockets * cores * threads == vCPU, how? */
502 	vm->sockets = sockets;
503 	vm->cores = cores;
504 	vm->threads = threads;
505 	vm->maxcpus = VM_MAXCPU;	/* XXX temp to keep code working */
506 	return(0);
507 }
508 
509 static void
510 vm_cleanup(struct vm *vm, bool destroy)
511 {
512 	struct mem_map *mm;
513 	int i;
514 
515 	ppt_unassign_all(vm);
516 
517 	if (vm->iommu != NULL)
518 		iommu_destroy_domain(vm->iommu);
519 
520 	if (destroy)
521 		vrtc_cleanup(vm->vrtc);
522 	else
523 		vrtc_reset(vm->vrtc);
524 	vpmtmr_cleanup(vm->vpmtmr);
525 	vatpit_cleanup(vm->vatpit);
526 	vhpet_cleanup(vm->vhpet);
527 	vatpic_cleanup(vm->vatpic);
528 	vioapic_cleanup(vm->vioapic);
529 
530 	for (i = 0; i < vm->maxcpus; i++)
531 		vcpu_cleanup(vm, i, destroy);
532 
533 	VMCLEANUP(vm->cookie);
534 
535 	/*
536 	 * System memory is removed from the guest address space only when
537 	 * the VM is destroyed. This is because the mapping remains the same
538 	 * across VM reset.
539 	 *
540 	 * Device memory can be relocated by the guest (e.g. using PCI BARs)
541 	 * so those mappings are removed on a VM reset.
542 	 */
543 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
544 		mm = &vm->mem_maps[i];
545 		if (destroy || !sysmem_mapping(vm, mm))
546 			vm_free_memmap(vm, i);
547 	}
548 
549 	if (destroy) {
550 		for (i = 0; i < VM_MAX_MEMSEGS; i++)
551 			vm_free_memseg(vm, i);
552 
553 		VMSPACE_FREE(vm->vmspace);
554 		vm->vmspace = NULL;
555 	}
556 }
557 
558 void
559 vm_destroy(struct vm *vm)
560 {
561 	vm_cleanup(vm, true);
562 	free(vm, M_VM);
563 }
564 
565 int
566 vm_reinit(struct vm *vm)
567 {
568 	int error;
569 
570 	/*
571 	 * A virtual machine can be reset only if all vcpus are suspended.
572 	 */
573 	if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
574 		vm_cleanup(vm, false);
575 		vm_init(vm, false);
576 		error = 0;
577 	} else {
578 		error = EBUSY;
579 	}
580 
581 	return (error);
582 }
583 
584 const char *
585 vm_name(struct vm *vm)
586 {
587 	return (vm->name);
588 }
589 
590 int
591 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
592 {
593 	vm_object_t obj;
594 
595 	if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL)
596 		return (ENOMEM);
597 	else
598 		return (0);
599 }
600 
601 int
602 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len)
603 {
604 
605 	vmm_mmio_free(vm->vmspace, gpa, len);
606 	return (0);
607 }
608 
609 /*
610  * Return 'true' if 'gpa' is allocated in the guest address space.
611  *
612  * This function is called in the context of a running vcpu which acts as
613  * an implicit lock on 'vm->mem_maps[]'.
614  */
615 bool
616 vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa)
617 {
618 	struct mem_map *mm;
619 	int i;
620 
621 #ifdef INVARIANTS
622 	int hostcpu, state;
623 	state = vcpu_get_state(vm, vcpuid, &hostcpu);
624 	KASSERT(state == VCPU_RUNNING && hostcpu == curcpu,
625 	    ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu));
626 #endif
627 
628 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
629 		mm = &vm->mem_maps[i];
630 		if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len)
631 			return (true);		/* 'gpa' is sysmem or devmem */
632 	}
633 
634 	if (ppt_is_mmio(vm, gpa))
635 		return (true);			/* 'gpa' is pci passthru mmio */
636 
637 	return (false);
638 }
639 
640 int
641 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem)
642 {
643 	struct mem_seg *seg;
644 	vm_object_t obj;
645 
646 	if (ident < 0 || ident >= VM_MAX_MEMSEGS)
647 		return (EINVAL);
648 
649 	if (len == 0 || (len & PAGE_MASK))
650 		return (EINVAL);
651 
652 	seg = &vm->mem_segs[ident];
653 	if (seg->object != NULL) {
654 		if (seg->len == len && seg->sysmem == sysmem)
655 			return (EEXIST);
656 		else
657 			return (EINVAL);
658 	}
659 
660 	obj = vm_object_allocate(OBJT_DEFAULT, len >> PAGE_SHIFT);
661 	if (obj == NULL)
662 		return (ENOMEM);
663 
664 	seg->len = len;
665 	seg->object = obj;
666 	seg->sysmem = sysmem;
667 	return (0);
668 }
669 
670 int
671 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem,
672     vm_object_t *objptr)
673 {
674 	struct mem_seg *seg;
675 
676 	if (ident < 0 || ident >= VM_MAX_MEMSEGS)
677 		return (EINVAL);
678 
679 	seg = &vm->mem_segs[ident];
680 	if (len)
681 		*len = seg->len;
682 	if (sysmem)
683 		*sysmem = seg->sysmem;
684 	if (objptr)
685 		*objptr = seg->object;
686 	return (0);
687 }
688 
689 void
690 vm_free_memseg(struct vm *vm, int ident)
691 {
692 	struct mem_seg *seg;
693 
694 	KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS,
695 	    ("%s: invalid memseg ident %d", __func__, ident));
696 
697 	seg = &vm->mem_segs[ident];
698 	if (seg->object != NULL) {
699 		vm_object_deallocate(seg->object);
700 		bzero(seg, sizeof(struct mem_seg));
701 	}
702 }
703 
704 int
705 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first,
706     size_t len, int prot, int flags)
707 {
708 	struct mem_seg *seg;
709 	struct mem_map *m, *map;
710 	vm_ooffset_t last;
711 	int i, error;
712 
713 	if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0)
714 		return (EINVAL);
715 
716 	if (flags & ~VM_MEMMAP_F_WIRED)
717 		return (EINVAL);
718 
719 	if (segid < 0 || segid >= VM_MAX_MEMSEGS)
720 		return (EINVAL);
721 
722 	seg = &vm->mem_segs[segid];
723 	if (seg->object == NULL)
724 		return (EINVAL);
725 
726 	last = first + len;
727 	if (first < 0 || first >= last || last > seg->len)
728 		return (EINVAL);
729 
730 	if ((gpa | first | last) & PAGE_MASK)
731 		return (EINVAL);
732 
733 	map = NULL;
734 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
735 		m = &vm->mem_maps[i];
736 		if (m->len == 0) {
737 			map = m;
738 			break;
739 		}
740 	}
741 
742 	if (map == NULL)
743 		return (ENOSPC);
744 
745 	error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa,
746 	    len, 0, VMFS_NO_SPACE, prot, prot, 0);
747 	if (error != KERN_SUCCESS)
748 		return (EFAULT);
749 
750 	vm_object_reference(seg->object);
751 
752 	if (flags & VM_MEMMAP_F_WIRED) {
753 		error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len,
754 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
755 		if (error != KERN_SUCCESS) {
756 			vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len);
757 			return (error == KERN_RESOURCE_SHORTAGE ? ENOMEM :
758 			    EFAULT);
759 		}
760 	}
761 
762 	map->gpa = gpa;
763 	map->len = len;
764 	map->segoff = first;
765 	map->segid = segid;
766 	map->prot = prot;
767 	map->flags = flags;
768 	return (0);
769 }
770 
771 int
772 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid,
773     vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
774 {
775 	struct mem_map *mm, *mmnext;
776 	int i;
777 
778 	mmnext = NULL;
779 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
780 		mm = &vm->mem_maps[i];
781 		if (mm->len == 0 || mm->gpa < *gpa)
782 			continue;
783 		if (mmnext == NULL || mm->gpa < mmnext->gpa)
784 			mmnext = mm;
785 	}
786 
787 	if (mmnext != NULL) {
788 		*gpa = mmnext->gpa;
789 		if (segid)
790 			*segid = mmnext->segid;
791 		if (segoff)
792 			*segoff = mmnext->segoff;
793 		if (len)
794 			*len = mmnext->len;
795 		if (prot)
796 			*prot = mmnext->prot;
797 		if (flags)
798 			*flags = mmnext->flags;
799 		return (0);
800 	} else {
801 		return (ENOENT);
802 	}
803 }
804 
805 static void
806 vm_free_memmap(struct vm *vm, int ident)
807 {
808 	struct mem_map *mm;
809 	int error;
810 
811 	mm = &vm->mem_maps[ident];
812 	if (mm->len) {
813 		error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa,
814 		    mm->gpa + mm->len);
815 		KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d",
816 		    __func__, error));
817 		bzero(mm, sizeof(struct mem_map));
818 	}
819 }
820 
821 static __inline bool
822 sysmem_mapping(struct vm *vm, struct mem_map *mm)
823 {
824 
825 	if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem)
826 		return (true);
827 	else
828 		return (false);
829 }
830 
831 vm_paddr_t
832 vmm_sysmem_maxaddr(struct vm *vm)
833 {
834 	struct mem_map *mm;
835 	vm_paddr_t maxaddr;
836 	int i;
837 
838 	maxaddr = 0;
839 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
840 		mm = &vm->mem_maps[i];
841 		if (sysmem_mapping(vm, mm)) {
842 			if (maxaddr < mm->gpa + mm->len)
843 				maxaddr = mm->gpa + mm->len;
844 		}
845 	}
846 	return (maxaddr);
847 }
848 
849 static void
850 vm_iommu_modify(struct vm *vm, bool map)
851 {
852 	int i, sz;
853 	vm_paddr_t gpa, hpa;
854 	struct mem_map *mm;
855 	void *vp, *cookie, *host_domain;
856 
857 	sz = PAGE_SIZE;
858 	host_domain = iommu_host_domain();
859 
860 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
861 		mm = &vm->mem_maps[i];
862 		if (!sysmem_mapping(vm, mm))
863 			continue;
864 
865 		if (map) {
866 			KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0,
867 			    ("iommu map found invalid memmap %#lx/%#lx/%#x",
868 			    mm->gpa, mm->len, mm->flags));
869 			if ((mm->flags & VM_MEMMAP_F_WIRED) == 0)
870 				continue;
871 			mm->flags |= VM_MEMMAP_F_IOMMU;
872 		} else {
873 			if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0)
874 				continue;
875 			mm->flags &= ~VM_MEMMAP_F_IOMMU;
876 			KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0,
877 			    ("iommu unmap found invalid memmap %#lx/%#lx/%#x",
878 			    mm->gpa, mm->len, mm->flags));
879 		}
880 
881 		gpa = mm->gpa;
882 		while (gpa < mm->gpa + mm->len) {
883 			vp = vm_gpa_hold(vm, -1, gpa, PAGE_SIZE, VM_PROT_WRITE,
884 					 &cookie);
885 			KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx",
886 			    vm_name(vm), gpa));
887 
888 			vm_gpa_release(cookie);
889 
890 			hpa = DMAP_TO_PHYS((uintptr_t)vp);
891 			if (map) {
892 				iommu_create_mapping(vm->iommu, gpa, hpa, sz);
893 				iommu_remove_mapping(host_domain, hpa, sz);
894 			} else {
895 				iommu_remove_mapping(vm->iommu, gpa, sz);
896 				iommu_create_mapping(host_domain, hpa, hpa, sz);
897 			}
898 
899 			gpa += PAGE_SIZE;
900 		}
901 	}
902 
903 	/*
904 	 * Invalidate the cached translations associated with the domain
905 	 * from which pages were removed.
906 	 */
907 	if (map)
908 		iommu_invalidate_tlb(host_domain);
909 	else
910 		iommu_invalidate_tlb(vm->iommu);
911 }
912 
913 #define	vm_iommu_unmap(vm)	vm_iommu_modify((vm), false)
914 #define	vm_iommu_map(vm)	vm_iommu_modify((vm), true)
915 
916 int
917 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func)
918 {
919 	int error;
920 
921 	error = ppt_unassign_device(vm, bus, slot, func);
922 	if (error)
923 		return (error);
924 
925 	if (ppt_assigned_devices(vm) == 0)
926 		vm_iommu_unmap(vm);
927 
928 	return (0);
929 }
930 
931 int
932 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func)
933 {
934 	int error;
935 	vm_paddr_t maxaddr;
936 
937 	/* Set up the IOMMU to do the 'gpa' to 'hpa' translation */
938 	if (ppt_assigned_devices(vm) == 0) {
939 		KASSERT(vm->iommu == NULL,
940 		    ("vm_assign_pptdev: iommu must be NULL"));
941 		maxaddr = vmm_sysmem_maxaddr(vm);
942 		vm->iommu = iommu_create_domain(maxaddr);
943 		if (vm->iommu == NULL)
944 			return (ENXIO);
945 		vm_iommu_map(vm);
946 	}
947 
948 	error = ppt_assign_device(vm, bus, slot, func);
949 	return (error);
950 }
951 
952 void *
953 vm_gpa_hold(struct vm *vm, int vcpuid, vm_paddr_t gpa, size_t len, int reqprot,
954 	    void **cookie)
955 {
956 	int i, count, pageoff;
957 	struct mem_map *mm;
958 	vm_page_t m;
959 #ifdef INVARIANTS
960 	/*
961 	 * All vcpus are frozen by ioctls that modify the memory map
962 	 * (e.g. VM_MMAP_MEMSEG). Therefore 'vm->memmap[]' stability is
963 	 * guaranteed if at least one vcpu is in the VCPU_FROZEN state.
964 	 */
965 	int state;
966 	KASSERT(vcpuid >= -1 && vcpuid < vm->maxcpus, ("%s: invalid vcpuid %d",
967 	    __func__, vcpuid));
968 	for (i = 0; i < vm->maxcpus; i++) {
969 		if (vcpuid != -1 && vcpuid != i)
970 			continue;
971 		state = vcpu_get_state(vm, i, NULL);
972 		KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d",
973 		    __func__, state));
974 	}
975 #endif
976 	pageoff = gpa & PAGE_MASK;
977 	if (len > PAGE_SIZE - pageoff)
978 		panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len);
979 
980 	count = 0;
981 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
982 		mm = &vm->mem_maps[i];
983 		if (sysmem_mapping(vm, mm) && gpa >= mm->gpa &&
984 		    gpa < mm->gpa + mm->len) {
985 			count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map,
986 			    trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1);
987 			break;
988 		}
989 	}
990 
991 	if (count == 1) {
992 		*cookie = m;
993 		return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff));
994 	} else {
995 		*cookie = NULL;
996 		return (NULL);
997 	}
998 }
999 
1000 void
1001 vm_gpa_release(void *cookie)
1002 {
1003 	vm_page_t m = cookie;
1004 
1005 	vm_page_unwire(m, PQ_ACTIVE);
1006 }
1007 
1008 int
1009 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval)
1010 {
1011 
1012 	if (vcpu < 0 || vcpu >= vm->maxcpus)
1013 		return (EINVAL);
1014 
1015 	if (reg >= VM_REG_LAST)
1016 		return (EINVAL);
1017 
1018 	return (VMGETREG(vm->cookie, vcpu, reg, retval));
1019 }
1020 
1021 int
1022 vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val)
1023 {
1024 	struct vcpu *vcpu;
1025 	int error;
1026 
1027 	if (vcpuid < 0 || vcpuid >= vm->maxcpus)
1028 		return (EINVAL);
1029 
1030 	if (reg >= VM_REG_LAST)
1031 		return (EINVAL);
1032 
1033 	error = VMSETREG(vm->cookie, vcpuid, reg, val);
1034 	if (error || reg != VM_REG_GUEST_RIP)
1035 		return (error);
1036 
1037 	/* Set 'nextrip' to match the value of %rip */
1038 	VCPU_CTR1(vm, vcpuid, "Setting nextrip to %#lx", val);
1039 	vcpu = &vm->vcpu[vcpuid];
1040 	vcpu->nextrip = val;
1041 	return (0);
1042 }
1043 
1044 static bool
1045 is_descriptor_table(int reg)
1046 {
1047 
1048 	switch (reg) {
1049 	case VM_REG_GUEST_IDTR:
1050 	case VM_REG_GUEST_GDTR:
1051 		return (true);
1052 	default:
1053 		return (false);
1054 	}
1055 }
1056 
1057 static bool
1058 is_segment_register(int reg)
1059 {
1060 
1061 	switch (reg) {
1062 	case VM_REG_GUEST_ES:
1063 	case VM_REG_GUEST_CS:
1064 	case VM_REG_GUEST_SS:
1065 	case VM_REG_GUEST_DS:
1066 	case VM_REG_GUEST_FS:
1067 	case VM_REG_GUEST_GS:
1068 	case VM_REG_GUEST_TR:
1069 	case VM_REG_GUEST_LDTR:
1070 		return (true);
1071 	default:
1072 		return (false);
1073 	}
1074 }
1075 
1076 int
1077 vm_get_seg_desc(struct vm *vm, int vcpu, int reg,
1078 		struct seg_desc *desc)
1079 {
1080 
1081 	if (vcpu < 0 || vcpu >= vm->maxcpus)
1082 		return (EINVAL);
1083 
1084 	if (!is_segment_register(reg) && !is_descriptor_table(reg))
1085 		return (EINVAL);
1086 
1087 	return (VMGETDESC(vm->cookie, vcpu, reg, desc));
1088 }
1089 
1090 int
1091 vm_set_seg_desc(struct vm *vm, int vcpu, int reg,
1092 		struct seg_desc *desc)
1093 {
1094 	if (vcpu < 0 || vcpu >= vm->maxcpus)
1095 		return (EINVAL);
1096 
1097 	if (!is_segment_register(reg) && !is_descriptor_table(reg))
1098 		return (EINVAL);
1099 
1100 	return (VMSETDESC(vm->cookie, vcpu, reg, desc));
1101 }
1102 
1103 static void
1104 restore_guest_fpustate(struct vcpu *vcpu)
1105 {
1106 
1107 	/* flush host state to the pcb */
1108 	fpuexit(curthread);
1109 
1110 	/* restore guest FPU state */
1111 	fpu_stop_emulating();
1112 	fpurestore(vcpu->guestfpu);
1113 
1114 	/* restore guest XCR0 if XSAVE is enabled in the host */
1115 	if (rcr4() & CR4_XSAVE)
1116 		load_xcr(0, vcpu->guest_xcr0);
1117 
1118 	/*
1119 	 * The FPU is now "dirty" with the guest's state so turn on emulation
1120 	 * to trap any access to the FPU by the host.
1121 	 */
1122 	fpu_start_emulating();
1123 }
1124 
1125 static void
1126 save_guest_fpustate(struct vcpu *vcpu)
1127 {
1128 
1129 	if ((rcr0() & CR0_TS) == 0)
1130 		panic("fpu emulation not enabled in host!");
1131 
1132 	/* save guest XCR0 and restore host XCR0 */
1133 	if (rcr4() & CR4_XSAVE) {
1134 		vcpu->guest_xcr0 = rxcr(0);
1135 		load_xcr(0, vmm_get_host_xcr0());
1136 	}
1137 
1138 	/* save guest FPU state */
1139 	fpu_stop_emulating();
1140 	fpusave(vcpu->guestfpu);
1141 	fpu_start_emulating();
1142 }
1143 
1144 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle");
1145 
1146 static int
1147 vcpu_set_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate,
1148     bool from_idle)
1149 {
1150 	struct vcpu *vcpu;
1151 	int error;
1152 
1153 	vcpu = &vm->vcpu[vcpuid];
1154 	vcpu_assert_locked(vcpu);
1155 
1156 	/*
1157 	 * State transitions from the vmmdev_ioctl() must always begin from
1158 	 * the VCPU_IDLE state. This guarantees that there is only a single
1159 	 * ioctl() operating on a vcpu at any point.
1160 	 */
1161 	if (from_idle) {
1162 		while (vcpu->state != VCPU_IDLE) {
1163 			vcpu->reqidle = 1;
1164 			vcpu_notify_event_locked(vcpu, false);
1165 			VCPU_CTR1(vm, vcpuid, "vcpu state change from %s to "
1166 			    "idle requested", vcpu_state2str(vcpu->state));
1167 			msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz);
1168 		}
1169 	} else {
1170 		KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from "
1171 		    "vcpu idle state"));
1172 	}
1173 
1174 	if (vcpu->state == VCPU_RUNNING) {
1175 		KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d "
1176 		    "mismatch for running vcpu", curcpu, vcpu->hostcpu));
1177 	} else {
1178 		KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a "
1179 		    "vcpu that is not running", vcpu->hostcpu));
1180 	}
1181 
1182 	/*
1183 	 * The following state transitions are allowed:
1184 	 * IDLE -> FROZEN -> IDLE
1185 	 * FROZEN -> RUNNING -> FROZEN
1186 	 * FROZEN -> SLEEPING -> FROZEN
1187 	 */
1188 	switch (vcpu->state) {
1189 	case VCPU_IDLE:
1190 	case VCPU_RUNNING:
1191 	case VCPU_SLEEPING:
1192 		error = (newstate != VCPU_FROZEN);
1193 		break;
1194 	case VCPU_FROZEN:
1195 		error = (newstate == VCPU_FROZEN);
1196 		break;
1197 	default:
1198 		error = 1;
1199 		break;
1200 	}
1201 
1202 	if (error)
1203 		return (EBUSY);
1204 
1205 	VCPU_CTR2(vm, vcpuid, "vcpu state changed from %s to %s",
1206 	    vcpu_state2str(vcpu->state), vcpu_state2str(newstate));
1207 
1208 	vcpu->state = newstate;
1209 	if (newstate == VCPU_RUNNING)
1210 		vcpu->hostcpu = curcpu;
1211 	else
1212 		vcpu->hostcpu = NOCPU;
1213 
1214 	if (newstate == VCPU_IDLE)
1215 		wakeup(&vcpu->state);
1216 
1217 	return (0);
1218 }
1219 
1220 static void
1221 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate)
1222 {
1223 	int error;
1224 
1225 	if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0)
1226 		panic("Error %d setting state to %d\n", error, newstate);
1227 }
1228 
1229 static void
1230 vcpu_require_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate)
1231 {
1232 	int error;
1233 
1234 	if ((error = vcpu_set_state_locked(vm, vcpuid, newstate, false)) != 0)
1235 		panic("Error %d setting state to %d", error, newstate);
1236 }
1237 
1238 #define	RENDEZVOUS_CTR0(vm, vcpuid, fmt)				\
1239 	do {								\
1240 		if (vcpuid >= 0)					\
1241 			VCPU_CTR0(vm, vcpuid, fmt);			\
1242 		else							\
1243 			VM_CTR0(vm, fmt);				\
1244 	} while (0)
1245 
1246 static int
1247 vm_handle_rendezvous(struct vm *vm, int vcpuid)
1248 {
1249 	struct thread *td;
1250 	int error;
1251 
1252 	KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus),
1253 	    ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid));
1254 
1255 	error = 0;
1256 	td = curthread;
1257 	mtx_lock(&vm->rendezvous_mtx);
1258 	while (vm->rendezvous_func != NULL) {
1259 		/* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */
1260 		CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus);
1261 
1262 		if (vcpuid != -1 &&
1263 		    CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) &&
1264 		    !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) {
1265 			VCPU_CTR0(vm, vcpuid, "Calling rendezvous func");
1266 			(*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg);
1267 			CPU_SET(vcpuid, &vm->rendezvous_done_cpus);
1268 		}
1269 		if (CPU_CMP(&vm->rendezvous_req_cpus,
1270 		    &vm->rendezvous_done_cpus) == 0) {
1271 			VCPU_CTR0(vm, vcpuid, "Rendezvous completed");
1272 			vm->rendezvous_func = NULL;
1273 			wakeup(&vm->rendezvous_func);
1274 			break;
1275 		}
1276 		RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion");
1277 		mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0,
1278 		    "vmrndv", hz);
1279 		if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) {
1280 			mtx_unlock(&vm->rendezvous_mtx);
1281 			error = thread_check_susp(td, true);
1282 			if (error != 0)
1283 				return (error);
1284 			mtx_lock(&vm->rendezvous_mtx);
1285 		}
1286 	}
1287 	mtx_unlock(&vm->rendezvous_mtx);
1288 	return (0);
1289 }
1290 
1291 /*
1292  * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run.
1293  */
1294 static int
1295 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu)
1296 {
1297 	struct vcpu *vcpu;
1298 	const char *wmesg;
1299 	struct thread *td;
1300 	int error, t, vcpu_halted, vm_halted;
1301 
1302 	KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted"));
1303 
1304 	vcpu = &vm->vcpu[vcpuid];
1305 	vcpu_halted = 0;
1306 	vm_halted = 0;
1307 	error = 0;
1308 	td = curthread;
1309 
1310 	vcpu_lock(vcpu);
1311 	while (1) {
1312 		/*
1313 		 * Do a final check for pending NMI or interrupts before
1314 		 * really putting this thread to sleep. Also check for
1315 		 * software events that would cause this vcpu to wakeup.
1316 		 *
1317 		 * These interrupts/events could have happened after the
1318 		 * vcpu returned from VMRUN() and before it acquired the
1319 		 * vcpu lock above.
1320 		 */
1321 		if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle)
1322 			break;
1323 		if (vm_nmi_pending(vm, vcpuid))
1324 			break;
1325 		if (!intr_disabled) {
1326 			if (vm_extint_pending(vm, vcpuid) ||
1327 			    vlapic_pending_intr(vcpu->vlapic, NULL)) {
1328 				break;
1329 			}
1330 		}
1331 
1332 		/* Don't go to sleep if the vcpu thread needs to yield */
1333 		if (vcpu_should_yield(vm, vcpuid))
1334 			break;
1335 
1336 		if (vcpu_debugged(vm, vcpuid))
1337 			break;
1338 
1339 		/*
1340 		 * Some Linux guests implement "halt" by having all vcpus
1341 		 * execute HLT with interrupts disabled. 'halted_cpus' keeps
1342 		 * track of the vcpus that have entered this state. When all
1343 		 * vcpus enter the halted state the virtual machine is halted.
1344 		 */
1345 		if (intr_disabled) {
1346 			wmesg = "vmhalt";
1347 			VCPU_CTR0(vm, vcpuid, "Halted");
1348 			if (!vcpu_halted && halt_detection_enabled) {
1349 				vcpu_halted = 1;
1350 				CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus);
1351 			}
1352 			if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) {
1353 				vm_halted = 1;
1354 				break;
1355 			}
1356 		} else {
1357 			wmesg = "vmidle";
1358 		}
1359 
1360 		t = ticks;
1361 		vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING);
1362 		/*
1363 		 * XXX msleep_spin() cannot be interrupted by signals so
1364 		 * wake up periodically to check pending signals.
1365 		 */
1366 		msleep_spin(vcpu, &vcpu->mtx, wmesg, hz);
1367 		vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN);
1368 		vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t);
1369 		if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) {
1370 			vcpu_unlock(vcpu);
1371 			error = thread_check_susp(td, false);
1372 			if (error != 0)
1373 				return (error);
1374 			vcpu_lock(vcpu);
1375 		}
1376 	}
1377 
1378 	if (vcpu_halted)
1379 		CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus);
1380 
1381 	vcpu_unlock(vcpu);
1382 
1383 	if (vm_halted)
1384 		vm_suspend(vm, VM_SUSPEND_HALT);
1385 
1386 	return (0);
1387 }
1388 
1389 static int
1390 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu)
1391 {
1392 	int rv, ftype;
1393 	struct vm_map *map;
1394 	struct vcpu *vcpu;
1395 	struct vm_exit *vme;
1396 
1397 	vcpu = &vm->vcpu[vcpuid];
1398 	vme = &vcpu->exitinfo;
1399 
1400 	KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
1401 	    __func__, vme->inst_length));
1402 
1403 	ftype = vme->u.paging.fault_type;
1404 	KASSERT(ftype == VM_PROT_READ ||
1405 	    ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE,
1406 	    ("vm_handle_paging: invalid fault_type %d", ftype));
1407 
1408 	if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
1409 		rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace),
1410 		    vme->u.paging.gpa, ftype);
1411 		if (rv == 0) {
1412 			VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx",
1413 			    ftype == VM_PROT_READ ? "accessed" : "dirty",
1414 			    vme->u.paging.gpa);
1415 			goto done;
1416 		}
1417 	}
1418 
1419 	map = &vm->vmspace->vm_map;
1420 	rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL);
1421 
1422 	VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, "
1423 	    "ftype = %d", rv, vme->u.paging.gpa, ftype);
1424 
1425 	if (rv != KERN_SUCCESS)
1426 		return (EFAULT);
1427 done:
1428 	return (0);
1429 }
1430 
1431 static int
1432 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu)
1433 {
1434 	struct vie *vie;
1435 	struct vcpu *vcpu;
1436 	struct vm_exit *vme;
1437 	uint64_t gla, gpa, cs_base;
1438 	struct vm_guest_paging *paging;
1439 	mem_region_read_t mread;
1440 	mem_region_write_t mwrite;
1441 	enum vm_cpu_mode cpu_mode;
1442 	int cs_d, error, fault;
1443 
1444 	vcpu = &vm->vcpu[vcpuid];
1445 	vme = &vcpu->exitinfo;
1446 
1447 	KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
1448 	    __func__, vme->inst_length));
1449 
1450 	gla = vme->u.inst_emul.gla;
1451 	gpa = vme->u.inst_emul.gpa;
1452 	cs_base = vme->u.inst_emul.cs_base;
1453 	cs_d = vme->u.inst_emul.cs_d;
1454 	vie = &vme->u.inst_emul.vie;
1455 	paging = &vme->u.inst_emul.paging;
1456 	cpu_mode = paging->cpu_mode;
1457 
1458 	VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa);
1459 
1460 	/* Fetch, decode and emulate the faulting instruction */
1461 	if (vie->num_valid == 0) {
1462 		error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip +
1463 		    cs_base, VIE_INST_SIZE, vie, &fault);
1464 	} else {
1465 		/*
1466 		 * The instruction bytes have already been copied into 'vie'
1467 		 */
1468 		error = fault = 0;
1469 	}
1470 	if (error || fault)
1471 		return (error);
1472 
1473 	if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) {
1474 		VCPU_CTR1(vm, vcpuid, "Error decoding instruction at %#lx",
1475 		    vme->rip + cs_base);
1476 		*retu = true;	    /* dump instruction bytes in userspace */
1477 		return (0);
1478 	}
1479 
1480 	/*
1481 	 * Update 'nextrip' based on the length of the emulated instruction.
1482 	 */
1483 	vme->inst_length = vie->num_processed;
1484 	vcpu->nextrip += vie->num_processed;
1485 	VCPU_CTR1(vm, vcpuid, "nextrip updated to %#lx after instruction "
1486 	    "decoding", vcpu->nextrip);
1487 
1488 	/* return to userland unless this is an in-kernel emulated device */
1489 	if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) {
1490 		mread = lapic_mmio_read;
1491 		mwrite = lapic_mmio_write;
1492 	} else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) {
1493 		mread = vioapic_mmio_read;
1494 		mwrite = vioapic_mmio_write;
1495 	} else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) {
1496 		mread = vhpet_mmio_read;
1497 		mwrite = vhpet_mmio_write;
1498 	} else {
1499 		*retu = true;
1500 		return (0);
1501 	}
1502 
1503 	error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging,
1504 	    mread, mwrite, retu);
1505 
1506 	return (error);
1507 }
1508 
1509 static int
1510 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu)
1511 {
1512 	int error, i;
1513 	struct vcpu *vcpu;
1514 	struct thread *td;
1515 
1516 	error = 0;
1517 	vcpu = &vm->vcpu[vcpuid];
1518 	td = curthread;
1519 
1520 	CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus);
1521 
1522 	/*
1523 	 * Wait until all 'active_cpus' have suspended themselves.
1524 	 *
1525 	 * Since a VM may be suspended at any time including when one or
1526 	 * more vcpus are doing a rendezvous we need to call the rendezvous
1527 	 * handler while we are waiting to prevent a deadlock.
1528 	 */
1529 	vcpu_lock(vcpu);
1530 	while (error == 0) {
1531 		if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
1532 			VCPU_CTR0(vm, vcpuid, "All vcpus suspended");
1533 			break;
1534 		}
1535 
1536 		if (vm->rendezvous_func == NULL) {
1537 			VCPU_CTR0(vm, vcpuid, "Sleeping during suspend");
1538 			vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING);
1539 			msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz);
1540 			vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN);
1541 			if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) {
1542 				vcpu_unlock(vcpu);
1543 				error = thread_check_susp(td, false);
1544 				vcpu_lock(vcpu);
1545 			}
1546 		} else {
1547 			VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend");
1548 			vcpu_unlock(vcpu);
1549 			error = vm_handle_rendezvous(vm, vcpuid);
1550 			vcpu_lock(vcpu);
1551 		}
1552 	}
1553 	vcpu_unlock(vcpu);
1554 
1555 	/*
1556 	 * Wakeup the other sleeping vcpus and return to userspace.
1557 	 */
1558 	for (i = 0; i < vm->maxcpus; i++) {
1559 		if (CPU_ISSET(i, &vm->suspended_cpus)) {
1560 			vcpu_notify_event(vm, i, false);
1561 		}
1562 	}
1563 
1564 	*retu = true;
1565 	return (error);
1566 }
1567 
1568 static int
1569 vm_handle_reqidle(struct vm *vm, int vcpuid, bool *retu)
1570 {
1571 	struct vcpu *vcpu = &vm->vcpu[vcpuid];
1572 
1573 	vcpu_lock(vcpu);
1574 	KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle));
1575 	vcpu->reqidle = 0;
1576 	vcpu_unlock(vcpu);
1577 	*retu = true;
1578 	return (0);
1579 }
1580 
1581 int
1582 vm_suspend(struct vm *vm, enum vm_suspend_how how)
1583 {
1584 	int i;
1585 
1586 	if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST)
1587 		return (EINVAL);
1588 
1589 	if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) {
1590 		VM_CTR2(vm, "virtual machine already suspended %d/%d",
1591 		    vm->suspend, how);
1592 		return (EALREADY);
1593 	}
1594 
1595 	VM_CTR1(vm, "virtual machine successfully suspended %d", how);
1596 
1597 	/*
1598 	 * Notify all active vcpus that they are now suspended.
1599 	 */
1600 	for (i = 0; i < vm->maxcpus; i++) {
1601 		if (CPU_ISSET(i, &vm->active_cpus))
1602 			vcpu_notify_event(vm, i, false);
1603 	}
1604 
1605 	return (0);
1606 }
1607 
1608 void
1609 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip)
1610 {
1611 	struct vm_exit *vmexit;
1612 
1613 	KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST,
1614 	    ("vm_exit_suspended: invalid suspend type %d", vm->suspend));
1615 
1616 	vmexit = vm_exitinfo(vm, vcpuid);
1617 	vmexit->rip = rip;
1618 	vmexit->inst_length = 0;
1619 	vmexit->exitcode = VM_EXITCODE_SUSPENDED;
1620 	vmexit->u.suspended.how = vm->suspend;
1621 }
1622 
1623 void
1624 vm_exit_debug(struct vm *vm, int vcpuid, uint64_t rip)
1625 {
1626 	struct vm_exit *vmexit;
1627 
1628 	vmexit = vm_exitinfo(vm, vcpuid);
1629 	vmexit->rip = rip;
1630 	vmexit->inst_length = 0;
1631 	vmexit->exitcode = VM_EXITCODE_DEBUG;
1632 }
1633 
1634 void
1635 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip)
1636 {
1637 	struct vm_exit *vmexit;
1638 
1639 	KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress"));
1640 
1641 	vmexit = vm_exitinfo(vm, vcpuid);
1642 	vmexit->rip = rip;
1643 	vmexit->inst_length = 0;
1644 	vmexit->exitcode = VM_EXITCODE_RENDEZVOUS;
1645 	vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1);
1646 }
1647 
1648 void
1649 vm_exit_reqidle(struct vm *vm, int vcpuid, uint64_t rip)
1650 {
1651 	struct vm_exit *vmexit;
1652 
1653 	vmexit = vm_exitinfo(vm, vcpuid);
1654 	vmexit->rip = rip;
1655 	vmexit->inst_length = 0;
1656 	vmexit->exitcode = VM_EXITCODE_REQIDLE;
1657 	vmm_stat_incr(vm, vcpuid, VMEXIT_REQIDLE, 1);
1658 }
1659 
1660 void
1661 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip)
1662 {
1663 	struct vm_exit *vmexit;
1664 
1665 	vmexit = vm_exitinfo(vm, vcpuid);
1666 	vmexit->rip = rip;
1667 	vmexit->inst_length = 0;
1668 	vmexit->exitcode = VM_EXITCODE_BOGUS;
1669 	vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1);
1670 }
1671 
1672 int
1673 vm_run(struct vm *vm, struct vm_run *vmrun)
1674 {
1675 	struct vm_eventinfo evinfo;
1676 	int error, vcpuid;
1677 	struct vcpu *vcpu;
1678 	struct pcb *pcb;
1679 	uint64_t tscval;
1680 	struct vm_exit *vme;
1681 	bool retu, intr_disabled;
1682 	pmap_t pmap;
1683 
1684 	vcpuid = vmrun->cpuid;
1685 
1686 	if (vcpuid < 0 || vcpuid >= vm->maxcpus)
1687 		return (EINVAL);
1688 
1689 	if (!CPU_ISSET(vcpuid, &vm->active_cpus))
1690 		return (EINVAL);
1691 
1692 	if (CPU_ISSET(vcpuid, &vm->suspended_cpus))
1693 		return (EINVAL);
1694 
1695 	pmap = vmspace_pmap(vm->vmspace);
1696 	vcpu = &vm->vcpu[vcpuid];
1697 	vme = &vcpu->exitinfo;
1698 	evinfo.rptr = &vm->rendezvous_func;
1699 	evinfo.sptr = &vm->suspend;
1700 	evinfo.iptr = &vcpu->reqidle;
1701 restart:
1702 	critical_enter();
1703 
1704 	KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
1705 	    ("vm_run: absurd pm_active"));
1706 
1707 	tscval = rdtsc();
1708 
1709 	pcb = PCPU_GET(curpcb);
1710 	set_pcb_flags(pcb, PCB_FULL_IRET);
1711 
1712 	restore_guest_fpustate(vcpu);
1713 
1714 	vcpu_require_state(vm, vcpuid, VCPU_RUNNING);
1715 	error = VMRUN(vm->cookie, vcpuid, vcpu->nextrip, pmap, &evinfo);
1716 	vcpu_require_state(vm, vcpuid, VCPU_FROZEN);
1717 
1718 	save_guest_fpustate(vcpu);
1719 
1720 	vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval);
1721 
1722 	critical_exit();
1723 
1724 	if (error == 0) {
1725 		retu = false;
1726 		vcpu->nextrip = vme->rip + vme->inst_length;
1727 		switch (vme->exitcode) {
1728 		case VM_EXITCODE_REQIDLE:
1729 			error = vm_handle_reqidle(vm, vcpuid, &retu);
1730 			break;
1731 		case VM_EXITCODE_SUSPENDED:
1732 			error = vm_handle_suspend(vm, vcpuid, &retu);
1733 			break;
1734 		case VM_EXITCODE_IOAPIC_EOI:
1735 			vioapic_process_eoi(vm, vcpuid,
1736 			    vme->u.ioapic_eoi.vector);
1737 			break;
1738 		case VM_EXITCODE_RENDEZVOUS:
1739 			error = vm_handle_rendezvous(vm, vcpuid);
1740 			break;
1741 		case VM_EXITCODE_HLT:
1742 			intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0);
1743 			error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu);
1744 			break;
1745 		case VM_EXITCODE_PAGING:
1746 			error = vm_handle_paging(vm, vcpuid, &retu);
1747 			break;
1748 		case VM_EXITCODE_INST_EMUL:
1749 			error = vm_handle_inst_emul(vm, vcpuid, &retu);
1750 			break;
1751 		case VM_EXITCODE_INOUT:
1752 		case VM_EXITCODE_INOUT_STR:
1753 			error = vm_handle_inout(vm, vcpuid, vme, &retu);
1754 			break;
1755 		case VM_EXITCODE_MONITOR:
1756 		case VM_EXITCODE_MWAIT:
1757 		case VM_EXITCODE_VMINSN:
1758 			vm_inject_ud(vm, vcpuid);
1759 			break;
1760 		default:
1761 			retu = true;	/* handled in userland */
1762 			break;
1763 		}
1764 	}
1765 
1766 	if (error == 0 && retu == false)
1767 		goto restart;
1768 
1769 	VCPU_CTR2(vm, vcpuid, "retu %d/%d", error, vme->exitcode);
1770 
1771 	/* copy the exit information */
1772 	bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit));
1773 	return (error);
1774 }
1775 
1776 int
1777 vm_restart_instruction(void *arg, int vcpuid)
1778 {
1779 	struct vm *vm;
1780 	struct vcpu *vcpu;
1781 	enum vcpu_state state;
1782 	uint64_t rip;
1783 	int error;
1784 
1785 	vm = arg;
1786 	if (vcpuid < 0 || vcpuid >= vm->maxcpus)
1787 		return (EINVAL);
1788 
1789 	vcpu = &vm->vcpu[vcpuid];
1790 	state = vcpu_get_state(vm, vcpuid, NULL);
1791 	if (state == VCPU_RUNNING) {
1792 		/*
1793 		 * When a vcpu is "running" the next instruction is determined
1794 		 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'.
1795 		 * Thus setting 'inst_length' to zero will cause the current
1796 		 * instruction to be restarted.
1797 		 */
1798 		vcpu->exitinfo.inst_length = 0;
1799 		VCPU_CTR1(vm, vcpuid, "restarting instruction at %#lx by "
1800 		    "setting inst_length to zero", vcpu->exitinfo.rip);
1801 	} else if (state == VCPU_FROZEN) {
1802 		/*
1803 		 * When a vcpu is "frozen" it is outside the critical section
1804 		 * around VMRUN() and 'nextrip' points to the next instruction.
1805 		 * Thus instruction restart is achieved by setting 'nextrip'
1806 		 * to the vcpu's %rip.
1807 		 */
1808 		error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip);
1809 		KASSERT(!error, ("%s: error %d getting rip", __func__, error));
1810 		VCPU_CTR2(vm, vcpuid, "restarting instruction by updating "
1811 		    "nextrip from %#lx to %#lx", vcpu->nextrip, rip);
1812 		vcpu->nextrip = rip;
1813 	} else {
1814 		panic("%s: invalid state %d", __func__, state);
1815 	}
1816 	return (0);
1817 }
1818 
1819 int
1820 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info)
1821 {
1822 	struct vcpu *vcpu;
1823 	int type, vector;
1824 
1825 	if (vcpuid < 0 || vcpuid >= vm->maxcpus)
1826 		return (EINVAL);
1827 
1828 	vcpu = &vm->vcpu[vcpuid];
1829 
1830 	if (info & VM_INTINFO_VALID) {
1831 		type = info & VM_INTINFO_TYPE;
1832 		vector = info & 0xff;
1833 		if (type == VM_INTINFO_NMI && vector != IDT_NMI)
1834 			return (EINVAL);
1835 		if (type == VM_INTINFO_HWEXCEPTION && vector >= 32)
1836 			return (EINVAL);
1837 		if (info & VM_INTINFO_RSVD)
1838 			return (EINVAL);
1839 	} else {
1840 		info = 0;
1841 	}
1842 	VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info);
1843 	vcpu->exitintinfo = info;
1844 	return (0);
1845 }
1846 
1847 enum exc_class {
1848 	EXC_BENIGN,
1849 	EXC_CONTRIBUTORY,
1850 	EXC_PAGEFAULT
1851 };
1852 
1853 #define	IDT_VE	20	/* Virtualization Exception (Intel specific) */
1854 
1855 static enum exc_class
1856 exception_class(uint64_t info)
1857 {
1858 	int type, vector;
1859 
1860 	KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info));
1861 	type = info & VM_INTINFO_TYPE;
1862 	vector = info & 0xff;
1863 
1864 	/* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */
1865 	switch (type) {
1866 	case VM_INTINFO_HWINTR:
1867 	case VM_INTINFO_SWINTR:
1868 	case VM_INTINFO_NMI:
1869 		return (EXC_BENIGN);
1870 	default:
1871 		/*
1872 		 * Hardware exception.
1873 		 *
1874 		 * SVM and VT-x use identical type values to represent NMI,
1875 		 * hardware interrupt and software interrupt.
1876 		 *
1877 		 * SVM uses type '3' for all exceptions. VT-x uses type '3'
1878 		 * for exceptions except #BP and #OF. #BP and #OF use a type
1879 		 * value of '5' or '6'. Therefore we don't check for explicit
1880 		 * values of 'type' to classify 'intinfo' into a hardware
1881 		 * exception.
1882 		 */
1883 		break;
1884 	}
1885 
1886 	switch (vector) {
1887 	case IDT_PF:
1888 	case IDT_VE:
1889 		return (EXC_PAGEFAULT);
1890 	case IDT_DE:
1891 	case IDT_TS:
1892 	case IDT_NP:
1893 	case IDT_SS:
1894 	case IDT_GP:
1895 		return (EXC_CONTRIBUTORY);
1896 	default:
1897 		return (EXC_BENIGN);
1898 	}
1899 }
1900 
1901 static int
1902 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2,
1903     uint64_t *retinfo)
1904 {
1905 	enum exc_class exc1, exc2;
1906 	int type1, vector1;
1907 
1908 	KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1));
1909 	KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2));
1910 
1911 	/*
1912 	 * If an exception occurs while attempting to call the double-fault
1913 	 * handler the processor enters shutdown mode (aka triple fault).
1914 	 */
1915 	type1 = info1 & VM_INTINFO_TYPE;
1916 	vector1 = info1 & 0xff;
1917 	if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) {
1918 		VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)",
1919 		    info1, info2);
1920 		vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT);
1921 		*retinfo = 0;
1922 		return (0);
1923 	}
1924 
1925 	/*
1926 	 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3
1927 	 */
1928 	exc1 = exception_class(info1);
1929 	exc2 = exception_class(info2);
1930 	if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) ||
1931 	    (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) {
1932 		/* Convert nested fault into a double fault. */
1933 		*retinfo = IDT_DF;
1934 		*retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
1935 		*retinfo |= VM_INTINFO_DEL_ERRCODE;
1936 	} else {
1937 		/* Handle exceptions serially */
1938 		*retinfo = info2;
1939 	}
1940 	return (1);
1941 }
1942 
1943 static uint64_t
1944 vcpu_exception_intinfo(struct vcpu *vcpu)
1945 {
1946 	uint64_t info = 0;
1947 
1948 	if (vcpu->exception_pending) {
1949 		info = vcpu->exc_vector & 0xff;
1950 		info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
1951 		if (vcpu->exc_errcode_valid) {
1952 			info |= VM_INTINFO_DEL_ERRCODE;
1953 			info |= (uint64_t)vcpu->exc_errcode << 32;
1954 		}
1955 	}
1956 	return (info);
1957 }
1958 
1959 int
1960 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo)
1961 {
1962 	struct vcpu *vcpu;
1963 	uint64_t info1, info2;
1964 	int valid;
1965 
1966 	KASSERT(vcpuid >= 0 &&
1967 	    vcpuid < vm->maxcpus, ("invalid vcpu %d", vcpuid));
1968 
1969 	vcpu = &vm->vcpu[vcpuid];
1970 
1971 	info1 = vcpu->exitintinfo;
1972 	vcpu->exitintinfo = 0;
1973 
1974 	info2 = 0;
1975 	if (vcpu->exception_pending) {
1976 		info2 = vcpu_exception_intinfo(vcpu);
1977 		vcpu->exception_pending = 0;
1978 		VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx",
1979 		    vcpu->exc_vector, info2);
1980 	}
1981 
1982 	if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) {
1983 		valid = nested_fault(vm, vcpuid, info1, info2, retinfo);
1984 	} else if (info1 & VM_INTINFO_VALID) {
1985 		*retinfo = info1;
1986 		valid = 1;
1987 	} else if (info2 & VM_INTINFO_VALID) {
1988 		*retinfo = info2;
1989 		valid = 1;
1990 	} else {
1991 		valid = 0;
1992 	}
1993 
1994 	if (valid) {
1995 		VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), "
1996 		    "retinfo(%#lx)", __func__, info1, info2, *retinfo);
1997 	}
1998 
1999 	return (valid);
2000 }
2001 
2002 int
2003 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2)
2004 {
2005 	struct vcpu *vcpu;
2006 
2007 	if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2008 		return (EINVAL);
2009 
2010 	vcpu = &vm->vcpu[vcpuid];
2011 	*info1 = vcpu->exitintinfo;
2012 	*info2 = vcpu_exception_intinfo(vcpu);
2013 	return (0);
2014 }
2015 
2016 int
2017 vm_inject_exception(struct vm *vm, int vcpuid, int vector, int errcode_valid,
2018     uint32_t errcode, int restart_instruction)
2019 {
2020 	struct vcpu *vcpu;
2021 	uint64_t regval;
2022 	int error;
2023 
2024 	if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2025 		return (EINVAL);
2026 
2027 	if (vector < 0 || vector >= 32)
2028 		return (EINVAL);
2029 
2030 	/*
2031 	 * A double fault exception should never be injected directly into
2032 	 * the guest. It is a derived exception that results from specific
2033 	 * combinations of nested faults.
2034 	 */
2035 	if (vector == IDT_DF)
2036 		return (EINVAL);
2037 
2038 	vcpu = &vm->vcpu[vcpuid];
2039 
2040 	if (vcpu->exception_pending) {
2041 		VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to "
2042 		    "pending exception %d", vector, vcpu->exc_vector);
2043 		return (EBUSY);
2044 	}
2045 
2046 	if (errcode_valid) {
2047 		/*
2048 		 * Exceptions don't deliver an error code in real mode.
2049 		 */
2050 		error = vm_get_register(vm, vcpuid, VM_REG_GUEST_CR0, &regval);
2051 		KASSERT(!error, ("%s: error %d getting CR0", __func__, error));
2052 		if (!(regval & CR0_PE))
2053 			errcode_valid = 0;
2054 	}
2055 
2056 	/*
2057 	 * From section 26.6.1 "Interruptibility State" in Intel SDM:
2058 	 *
2059 	 * Event blocking by "STI" or "MOV SS" is cleared after guest executes
2060 	 * one instruction or incurs an exception.
2061 	 */
2062 	error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0);
2063 	KASSERT(error == 0, ("%s: error %d clearing interrupt shadow",
2064 	    __func__, error));
2065 
2066 	if (restart_instruction)
2067 		vm_restart_instruction(vm, vcpuid);
2068 
2069 	vcpu->exception_pending = 1;
2070 	vcpu->exc_vector = vector;
2071 	vcpu->exc_errcode = errcode;
2072 	vcpu->exc_errcode_valid = errcode_valid;
2073 	VCPU_CTR1(vm, vcpuid, "Exception %d pending", vector);
2074 	return (0);
2075 }
2076 
2077 void
2078 vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid,
2079     int errcode)
2080 {
2081 	struct vm *vm;
2082 	int error, restart_instruction;
2083 
2084 	vm = vmarg;
2085 	restart_instruction = 1;
2086 
2087 	error = vm_inject_exception(vm, vcpuid, vector, errcode_valid,
2088 	    errcode, restart_instruction);
2089 	KASSERT(error == 0, ("vm_inject_exception error %d", error));
2090 }
2091 
2092 void
2093 vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2)
2094 {
2095 	struct vm *vm;
2096 	int error;
2097 
2098 	vm = vmarg;
2099 	VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx",
2100 	    error_code, cr2);
2101 
2102 	error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2);
2103 	KASSERT(error == 0, ("vm_set_register(cr2) error %d", error));
2104 
2105 	vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code);
2106 }
2107 
2108 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu");
2109 
2110 int
2111 vm_inject_nmi(struct vm *vm, int vcpuid)
2112 {
2113 	struct vcpu *vcpu;
2114 
2115 	if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2116 		return (EINVAL);
2117 
2118 	vcpu = &vm->vcpu[vcpuid];
2119 
2120 	vcpu->nmi_pending = 1;
2121 	vcpu_notify_event(vm, vcpuid, false);
2122 	return (0);
2123 }
2124 
2125 int
2126 vm_nmi_pending(struct vm *vm, int vcpuid)
2127 {
2128 	struct vcpu *vcpu;
2129 
2130 	if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2131 		panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
2132 
2133 	vcpu = &vm->vcpu[vcpuid];
2134 
2135 	return (vcpu->nmi_pending);
2136 }
2137 
2138 void
2139 vm_nmi_clear(struct vm *vm, int vcpuid)
2140 {
2141 	struct vcpu *vcpu;
2142 
2143 	if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2144 		panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
2145 
2146 	vcpu = &vm->vcpu[vcpuid];
2147 
2148 	if (vcpu->nmi_pending == 0)
2149 		panic("vm_nmi_clear: inconsistent nmi_pending state");
2150 
2151 	vcpu->nmi_pending = 0;
2152 	vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1);
2153 }
2154 
2155 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu");
2156 
2157 int
2158 vm_inject_extint(struct vm *vm, int vcpuid)
2159 {
2160 	struct vcpu *vcpu;
2161 
2162 	if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2163 		return (EINVAL);
2164 
2165 	vcpu = &vm->vcpu[vcpuid];
2166 
2167 	vcpu->extint_pending = 1;
2168 	vcpu_notify_event(vm, vcpuid, false);
2169 	return (0);
2170 }
2171 
2172 int
2173 vm_extint_pending(struct vm *vm, int vcpuid)
2174 {
2175 	struct vcpu *vcpu;
2176 
2177 	if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2178 		panic("vm_extint_pending: invalid vcpuid %d", vcpuid);
2179 
2180 	vcpu = &vm->vcpu[vcpuid];
2181 
2182 	return (vcpu->extint_pending);
2183 }
2184 
2185 void
2186 vm_extint_clear(struct vm *vm, int vcpuid)
2187 {
2188 	struct vcpu *vcpu;
2189 
2190 	if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2191 		panic("vm_extint_pending: invalid vcpuid %d", vcpuid);
2192 
2193 	vcpu = &vm->vcpu[vcpuid];
2194 
2195 	if (vcpu->extint_pending == 0)
2196 		panic("vm_extint_clear: inconsistent extint_pending state");
2197 
2198 	vcpu->extint_pending = 0;
2199 	vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1);
2200 }
2201 
2202 int
2203 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval)
2204 {
2205 	if (vcpu < 0 || vcpu >= vm->maxcpus)
2206 		return (EINVAL);
2207 
2208 	if (type < 0 || type >= VM_CAP_MAX)
2209 		return (EINVAL);
2210 
2211 	return (VMGETCAP(vm->cookie, vcpu, type, retval));
2212 }
2213 
2214 int
2215 vm_set_capability(struct vm *vm, int vcpu, int type, int val)
2216 {
2217 	if (vcpu < 0 || vcpu >= vm->maxcpus)
2218 		return (EINVAL);
2219 
2220 	if (type < 0 || type >= VM_CAP_MAX)
2221 		return (EINVAL);
2222 
2223 	return (VMSETCAP(vm->cookie, vcpu, type, val));
2224 }
2225 
2226 struct vlapic *
2227 vm_lapic(struct vm *vm, int cpu)
2228 {
2229 	return (vm->vcpu[cpu].vlapic);
2230 }
2231 
2232 struct vioapic *
2233 vm_ioapic(struct vm *vm)
2234 {
2235 
2236 	return (vm->vioapic);
2237 }
2238 
2239 struct vhpet *
2240 vm_hpet(struct vm *vm)
2241 {
2242 
2243 	return (vm->vhpet);
2244 }
2245 
2246 bool
2247 vmm_is_pptdev(int bus, int slot, int func)
2248 {
2249 	int b, f, i, n, s;
2250 	char *val, *cp, *cp2;
2251 	bool found;
2252 
2253 	/*
2254 	 * XXX
2255 	 * The length of an environment variable is limited to 128 bytes which
2256 	 * puts an upper limit on the number of passthru devices that may be
2257 	 * specified using a single environment variable.
2258 	 *
2259 	 * Work around this by scanning multiple environment variable
2260 	 * names instead of a single one - yuck!
2261 	 */
2262 	const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL };
2263 
2264 	/* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */
2265 	found = false;
2266 	for (i = 0; names[i] != NULL && !found; i++) {
2267 		cp = val = kern_getenv(names[i]);
2268 		while (cp != NULL && *cp != '\0') {
2269 			if ((cp2 = strchr(cp, ' ')) != NULL)
2270 				*cp2 = '\0';
2271 
2272 			n = sscanf(cp, "%d/%d/%d", &b, &s, &f);
2273 			if (n == 3 && bus == b && slot == s && func == f) {
2274 				found = true;
2275 				break;
2276 			}
2277 
2278 			if (cp2 != NULL)
2279 				*cp2++ = ' ';
2280 
2281 			cp = cp2;
2282 		}
2283 		freeenv(val);
2284 	}
2285 	return (found);
2286 }
2287 
2288 void *
2289 vm_iommu_domain(struct vm *vm)
2290 {
2291 
2292 	return (vm->iommu);
2293 }
2294 
2295 int
2296 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate,
2297     bool from_idle)
2298 {
2299 	int error;
2300 	struct vcpu *vcpu;
2301 
2302 	if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2303 		panic("vm_set_run_state: invalid vcpuid %d", vcpuid);
2304 
2305 	vcpu = &vm->vcpu[vcpuid];
2306 
2307 	vcpu_lock(vcpu);
2308 	error = vcpu_set_state_locked(vm, vcpuid, newstate, from_idle);
2309 	vcpu_unlock(vcpu);
2310 
2311 	return (error);
2312 }
2313 
2314 enum vcpu_state
2315 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu)
2316 {
2317 	struct vcpu *vcpu;
2318 	enum vcpu_state state;
2319 
2320 	if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2321 		panic("vm_get_run_state: invalid vcpuid %d", vcpuid);
2322 
2323 	vcpu = &vm->vcpu[vcpuid];
2324 
2325 	vcpu_lock(vcpu);
2326 	state = vcpu->state;
2327 	if (hostcpu != NULL)
2328 		*hostcpu = vcpu->hostcpu;
2329 	vcpu_unlock(vcpu);
2330 
2331 	return (state);
2332 }
2333 
2334 int
2335 vm_activate_cpu(struct vm *vm, int vcpuid)
2336 {
2337 
2338 	if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2339 		return (EINVAL);
2340 
2341 	if (CPU_ISSET(vcpuid, &vm->active_cpus))
2342 		return (EBUSY);
2343 
2344 	VCPU_CTR0(vm, vcpuid, "activated");
2345 	CPU_SET_ATOMIC(vcpuid, &vm->active_cpus);
2346 	return (0);
2347 }
2348 
2349 int
2350 vm_suspend_cpu(struct vm *vm, int vcpuid)
2351 {
2352 	int i;
2353 
2354 	if (vcpuid < -1 || vcpuid >= vm->maxcpus)
2355 		return (EINVAL);
2356 
2357 	if (vcpuid == -1) {
2358 		vm->debug_cpus = vm->active_cpus;
2359 		for (i = 0; i < vm->maxcpus; i++) {
2360 			if (CPU_ISSET(i, &vm->active_cpus))
2361 				vcpu_notify_event(vm, i, false);
2362 		}
2363 	} else {
2364 		if (!CPU_ISSET(vcpuid, &vm->active_cpus))
2365 			return (EINVAL);
2366 
2367 		CPU_SET_ATOMIC(vcpuid, &vm->debug_cpus);
2368 		vcpu_notify_event(vm, vcpuid, false);
2369 	}
2370 	return (0);
2371 }
2372 
2373 int
2374 vm_resume_cpu(struct vm *vm, int vcpuid)
2375 {
2376 
2377 	if (vcpuid < -1 || vcpuid >= vm->maxcpus)
2378 		return (EINVAL);
2379 
2380 	if (vcpuid == -1) {
2381 		CPU_ZERO(&vm->debug_cpus);
2382 	} else {
2383 		if (!CPU_ISSET(vcpuid, &vm->debug_cpus))
2384 			return (EINVAL);
2385 
2386 		CPU_CLR_ATOMIC(vcpuid, &vm->debug_cpus);
2387 	}
2388 	return (0);
2389 }
2390 
2391 int
2392 vcpu_debugged(struct vm *vm, int vcpuid)
2393 {
2394 
2395 	return (CPU_ISSET(vcpuid, &vm->debug_cpus));
2396 }
2397 
2398 cpuset_t
2399 vm_active_cpus(struct vm *vm)
2400 {
2401 
2402 	return (vm->active_cpus);
2403 }
2404 
2405 cpuset_t
2406 vm_debug_cpus(struct vm *vm)
2407 {
2408 
2409 	return (vm->debug_cpus);
2410 }
2411 
2412 cpuset_t
2413 vm_suspended_cpus(struct vm *vm)
2414 {
2415 
2416 	return (vm->suspended_cpus);
2417 }
2418 
2419 void *
2420 vcpu_stats(struct vm *vm, int vcpuid)
2421 {
2422 
2423 	return (vm->vcpu[vcpuid].stats);
2424 }
2425 
2426 int
2427 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state)
2428 {
2429 	if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2430 		return (EINVAL);
2431 
2432 	*state = vm->vcpu[vcpuid].x2apic_state;
2433 
2434 	return (0);
2435 }
2436 
2437 int
2438 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state)
2439 {
2440 	if (vcpuid < 0 || vcpuid >= vm->maxcpus)
2441 		return (EINVAL);
2442 
2443 	if (state >= X2APIC_STATE_LAST)
2444 		return (EINVAL);
2445 
2446 	vm->vcpu[vcpuid].x2apic_state = state;
2447 
2448 	vlapic_set_x2apic_state(vm, vcpuid, state);
2449 
2450 	return (0);
2451 }
2452 
2453 /*
2454  * This function is called to ensure that a vcpu "sees" a pending event
2455  * as soon as possible:
2456  * - If the vcpu thread is sleeping then it is woken up.
2457  * - If the vcpu is running on a different host_cpu then an IPI will be directed
2458  *   to the host_cpu to cause the vcpu to trap into the hypervisor.
2459  */
2460 static void
2461 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr)
2462 {
2463 	int hostcpu;
2464 
2465 	hostcpu = vcpu->hostcpu;
2466 	if (vcpu->state == VCPU_RUNNING) {
2467 		KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu"));
2468 		if (hostcpu != curcpu) {
2469 			if (lapic_intr) {
2470 				vlapic_post_intr(vcpu->vlapic, hostcpu,
2471 				    vmm_ipinum);
2472 			} else {
2473 				ipi_cpu(hostcpu, vmm_ipinum);
2474 			}
2475 		} else {
2476 			/*
2477 			 * If the 'vcpu' is running on 'curcpu' then it must
2478 			 * be sending a notification to itself (e.g. SELF_IPI).
2479 			 * The pending event will be picked up when the vcpu
2480 			 * transitions back to guest context.
2481 			 */
2482 		}
2483 	} else {
2484 		KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent "
2485 		    "with hostcpu %d", vcpu->state, hostcpu));
2486 		if (vcpu->state == VCPU_SLEEPING)
2487 			wakeup_one(vcpu);
2488 	}
2489 }
2490 
2491 void
2492 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr)
2493 {
2494 	struct vcpu *vcpu = &vm->vcpu[vcpuid];
2495 
2496 	vcpu_lock(vcpu);
2497 	vcpu_notify_event_locked(vcpu, lapic_intr);
2498 	vcpu_unlock(vcpu);
2499 }
2500 
2501 struct vmspace *
2502 vm_get_vmspace(struct vm *vm)
2503 {
2504 
2505 	return (vm->vmspace);
2506 }
2507 
2508 int
2509 vm_apicid2vcpuid(struct vm *vm, int apicid)
2510 {
2511 	/*
2512 	 * XXX apic id is assumed to be numerically identical to vcpu id
2513 	 */
2514 	return (apicid);
2515 }
2516 
2517 int
2518 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest,
2519     vm_rendezvous_func_t func, void *arg)
2520 {
2521 	int error, i;
2522 
2523 	/*
2524 	 * Enforce that this function is called without any locks
2525 	 */
2526 	WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous");
2527 	KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus),
2528 	    ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid));
2529 
2530 restart:
2531 	mtx_lock(&vm->rendezvous_mtx);
2532 	if (vm->rendezvous_func != NULL) {
2533 		/*
2534 		 * If a rendezvous is already in progress then we need to
2535 		 * call the rendezvous handler in case this 'vcpuid' is one
2536 		 * of the targets of the rendezvous.
2537 		 */
2538 		RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress");
2539 		mtx_unlock(&vm->rendezvous_mtx);
2540 		error = vm_handle_rendezvous(vm, vcpuid);
2541 		if (error != 0)
2542 			return (error);
2543 		goto restart;
2544 	}
2545 	KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous "
2546 	    "rendezvous is still in progress"));
2547 
2548 	RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous");
2549 	vm->rendezvous_req_cpus = dest;
2550 	CPU_ZERO(&vm->rendezvous_done_cpus);
2551 	vm->rendezvous_arg = arg;
2552 	vm->rendezvous_func = func;
2553 	mtx_unlock(&vm->rendezvous_mtx);
2554 
2555 	/*
2556 	 * Wake up any sleeping vcpus and trigger a VM-exit in any running
2557 	 * vcpus so they handle the rendezvous as soon as possible.
2558 	 */
2559 	for (i = 0; i < vm->maxcpus; i++) {
2560 		if (CPU_ISSET(i, &dest))
2561 			vcpu_notify_event(vm, i, false);
2562 	}
2563 
2564 	return (vm_handle_rendezvous(vm, vcpuid));
2565 }
2566 
2567 struct vatpic *
2568 vm_atpic(struct vm *vm)
2569 {
2570 	return (vm->vatpic);
2571 }
2572 
2573 struct vatpit *
2574 vm_atpit(struct vm *vm)
2575 {
2576 	return (vm->vatpit);
2577 }
2578 
2579 struct vpmtmr *
2580 vm_pmtmr(struct vm *vm)
2581 {
2582 
2583 	return (vm->vpmtmr);
2584 }
2585 
2586 struct vrtc *
2587 vm_rtc(struct vm *vm)
2588 {
2589 
2590 	return (vm->vrtc);
2591 }
2592 
2593 enum vm_reg_name
2594 vm_segment_name(int seg)
2595 {
2596 	static enum vm_reg_name seg_names[] = {
2597 		VM_REG_GUEST_ES,
2598 		VM_REG_GUEST_CS,
2599 		VM_REG_GUEST_SS,
2600 		VM_REG_GUEST_DS,
2601 		VM_REG_GUEST_FS,
2602 		VM_REG_GUEST_GS
2603 	};
2604 
2605 	KASSERT(seg >= 0 && seg < nitems(seg_names),
2606 	    ("%s: invalid segment encoding %d", __func__, seg));
2607 	return (seg_names[seg]);
2608 }
2609 
2610 void
2611 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo,
2612     int num_copyinfo)
2613 {
2614 	int idx;
2615 
2616 	for (idx = 0; idx < num_copyinfo; idx++) {
2617 		if (copyinfo[idx].cookie != NULL)
2618 			vm_gpa_release(copyinfo[idx].cookie);
2619 	}
2620 	bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo));
2621 }
2622 
2623 int
2624 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging,
2625     uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo,
2626     int num_copyinfo, int *fault)
2627 {
2628 	int error, idx, nused;
2629 	size_t n, off, remaining;
2630 	void *hva, *cookie;
2631 	uint64_t gpa;
2632 
2633 	bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo);
2634 
2635 	nused = 0;
2636 	remaining = len;
2637 	while (remaining > 0) {
2638 		KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo"));
2639 		error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa, fault);
2640 		if (error || *fault)
2641 			return (error);
2642 		off = gpa & PAGE_MASK;
2643 		n = min(remaining, PAGE_SIZE - off);
2644 		copyinfo[nused].gpa = gpa;
2645 		copyinfo[nused].len = n;
2646 		remaining -= n;
2647 		gla += n;
2648 		nused++;
2649 	}
2650 
2651 	for (idx = 0; idx < nused; idx++) {
2652 		hva = vm_gpa_hold(vm, vcpuid, copyinfo[idx].gpa,
2653 		    copyinfo[idx].len, prot, &cookie);
2654 		if (hva == NULL)
2655 			break;
2656 		copyinfo[idx].hva = hva;
2657 		copyinfo[idx].cookie = cookie;
2658 	}
2659 
2660 	if (idx != nused) {
2661 		vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo);
2662 		return (EFAULT);
2663 	} else {
2664 		*fault = 0;
2665 		return (0);
2666 	}
2667 }
2668 
2669 void
2670 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr,
2671     size_t len)
2672 {
2673 	char *dst;
2674 	int idx;
2675 
2676 	dst = kaddr;
2677 	idx = 0;
2678 	while (len > 0) {
2679 		bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len);
2680 		len -= copyinfo[idx].len;
2681 		dst += copyinfo[idx].len;
2682 		idx++;
2683 	}
2684 }
2685 
2686 void
2687 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr,
2688     struct vm_copyinfo *copyinfo, size_t len)
2689 {
2690 	const char *src;
2691 	int idx;
2692 
2693 	src = kaddr;
2694 	idx = 0;
2695 	while (len > 0) {
2696 		bcopy(src, copyinfo[idx].hva, copyinfo[idx].len);
2697 		len -= copyinfo[idx].len;
2698 		src += copyinfo[idx].len;
2699 		idx++;
2700 	}
2701 }
2702 
2703 /*
2704  * Return the amount of in-use and wired memory for the VM. Since
2705  * these are global stats, only return the values with for vCPU 0
2706  */
2707 VMM_STAT_DECLARE(VMM_MEM_RESIDENT);
2708 VMM_STAT_DECLARE(VMM_MEM_WIRED);
2709 
2710 static void
2711 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat)
2712 {
2713 
2714 	if (vcpu == 0) {
2715 		vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT,
2716 	       	    PAGE_SIZE * vmspace_resident_count(vm->vmspace));
2717 	}
2718 }
2719 
2720 static void
2721 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat)
2722 {
2723 
2724 	if (vcpu == 0) {
2725 		vmm_stat_set(vm, vcpu, VMM_MEM_WIRED,
2726 	      	    PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace)));
2727 	}
2728 }
2729 
2730 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt);
2731 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt);
2732