xref: /freebsd/sys/amd64/vmm/vmm.c (revision bd81e07d2761cf1c13063eb49a5c0cb4a6951318)
1 /*-
2  * Copyright (c) 2011 NetApp, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/module.h>
36 #include <sys/sysctl.h>
37 #include <sys/malloc.h>
38 #include <sys/pcpu.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/proc.h>
42 #include <sys/rwlock.h>
43 #include <sys/sched.h>
44 #include <sys/smp.h>
45 #include <sys/systm.h>
46 
47 #include <vm/vm.h>
48 #include <vm/vm_object.h>
49 #include <vm/vm_page.h>
50 #include <vm/pmap.h>
51 #include <vm/vm_map.h>
52 #include <vm/vm_extern.h>
53 #include <vm/vm_param.h>
54 
55 #include <machine/cpu.h>
56 #include <machine/vm.h>
57 #include <machine/pcb.h>
58 #include <machine/smp.h>
59 #include <x86/psl.h>
60 #include <x86/apicreg.h>
61 #include <machine/vmparam.h>
62 
63 #include <machine/vmm.h>
64 #include <machine/vmm_dev.h>
65 #include <machine/vmm_instruction_emul.h>
66 
67 #include "vmm_ioport.h"
68 #include "vmm_ktr.h"
69 #include "vmm_host.h"
70 #include "vmm_mem.h"
71 #include "vmm_util.h"
72 #include "vatpic.h"
73 #include "vatpit.h"
74 #include "vhpet.h"
75 #include "vioapic.h"
76 #include "vlapic.h"
77 #include "vpmtmr.h"
78 #include "vrtc.h"
79 #include "vmm_stat.h"
80 #include "vmm_lapic.h"
81 
82 #include "io/ppt.h"
83 #include "io/iommu.h"
84 
85 struct vlapic;
86 
87 /*
88  * Initialization:
89  * (a) allocated when vcpu is created
90  * (i) initialized when vcpu is created and when it is reinitialized
91  * (o) initialized the first time the vcpu is created
92  * (x) initialized before use
93  */
94 struct vcpu {
95 	struct mtx 	mtx;		/* (o) protects 'state' and 'hostcpu' */
96 	enum vcpu_state	state;		/* (o) vcpu state */
97 	int		hostcpu;	/* (o) vcpu's host cpu */
98 	int		reqidle;	/* (i) request vcpu to idle */
99 	struct vlapic	*vlapic;	/* (i) APIC device model */
100 	enum x2apic_state x2apic_state;	/* (i) APIC mode */
101 	uint64_t	exitintinfo;	/* (i) events pending at VM exit */
102 	int		nmi_pending;	/* (i) NMI pending */
103 	int		extint_pending;	/* (i) INTR pending */
104 	int	exception_pending;	/* (i) exception pending */
105 	int	exc_vector;		/* (x) exception collateral */
106 	int	exc_errcode_valid;
107 	uint32_t exc_errcode;
108 	struct savefpu	*guestfpu;	/* (a,i) guest fpu state */
109 	uint64_t	guest_xcr0;	/* (i) guest %xcr0 register */
110 	void		*stats;		/* (a,i) statistics */
111 	struct vm_exit	exitinfo;	/* (x) exit reason and collateral */
112 	uint64_t	nextrip;	/* (x) next instruction to execute */
113 };
114 
115 #define	vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx))
116 #define	vcpu_lock_init(v)	mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN)
117 #define	vcpu_lock(v)		mtx_lock_spin(&((v)->mtx))
118 #define	vcpu_unlock(v)		mtx_unlock_spin(&((v)->mtx))
119 #define	vcpu_assert_locked(v)	mtx_assert(&((v)->mtx), MA_OWNED)
120 
121 struct mem_seg {
122 	size_t	len;
123 	bool	sysmem;
124 	struct vm_object *object;
125 };
126 #define	VM_MAX_MEMSEGS	2
127 
128 struct mem_map {
129 	vm_paddr_t	gpa;
130 	size_t		len;
131 	vm_ooffset_t	segoff;
132 	int		segid;
133 	int		prot;
134 	int		flags;
135 };
136 #define	VM_MAX_MEMMAPS	4
137 
138 /*
139  * Initialization:
140  * (o) initialized the first time the VM is created
141  * (i) initialized when VM is created and when it is reinitialized
142  * (x) initialized before use
143  */
144 struct vm {
145 	void		*cookie;		/* (i) cpu-specific data */
146 	void		*iommu;			/* (x) iommu-specific data */
147 	struct vhpet	*vhpet;			/* (i) virtual HPET */
148 	struct vioapic	*vioapic;		/* (i) virtual ioapic */
149 	struct vatpic	*vatpic;		/* (i) virtual atpic */
150 	struct vatpit	*vatpit;		/* (i) virtual atpit */
151 	struct vpmtmr	*vpmtmr;		/* (i) virtual ACPI PM timer */
152 	struct vrtc	*vrtc;			/* (o) virtual RTC */
153 	volatile cpuset_t active_cpus;		/* (i) active vcpus */
154 	int		suspend;		/* (i) stop VM execution */
155 	volatile cpuset_t suspended_cpus; 	/* (i) suspended vcpus */
156 	volatile cpuset_t halted_cpus;		/* (x) cpus in a hard halt */
157 	cpuset_t	rendezvous_req_cpus;	/* (x) rendezvous requested */
158 	cpuset_t	rendezvous_done_cpus;	/* (x) rendezvous finished */
159 	void		*rendezvous_arg;	/* (x) rendezvous func/arg */
160 	vm_rendezvous_func_t rendezvous_func;
161 	struct mtx	rendezvous_mtx;		/* (o) rendezvous lock */
162 	struct mem_map	mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */
163 	struct mem_seg	mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */
164 	struct vmspace	*vmspace;		/* (o) guest's address space */
165 	char		name[VM_MAX_NAMELEN];	/* (o) virtual machine name */
166 	struct vcpu	vcpu[VM_MAXCPU];	/* (i) guest vcpus */
167 };
168 
169 static int vmm_initialized;
170 
171 static struct vmm_ops *ops;
172 #define	VMM_INIT(num)	(ops != NULL ? (*ops->init)(num) : 0)
173 #define	VMM_CLEANUP()	(ops != NULL ? (*ops->cleanup)() : 0)
174 #define	VMM_RESUME()	(ops != NULL ? (*ops->resume)() : 0)
175 
176 #define	VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL)
177 #define	VMRUN(vmi, vcpu, rip, pmap, evinfo) \
178 	(ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, evinfo) : ENXIO)
179 #define	VMCLEANUP(vmi)	(ops != NULL ? (*ops->vmcleanup)(vmi) : NULL)
180 #define	VMSPACE_ALLOC(min, max) \
181 	(ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL)
182 #define	VMSPACE_FREE(vmspace) \
183 	(ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO)
184 #define	VMGETREG(vmi, vcpu, num, retval)		\
185 	(ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO)
186 #define	VMSETREG(vmi, vcpu, num, val)		\
187 	(ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO)
188 #define	VMGETDESC(vmi, vcpu, num, desc)		\
189 	(ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO)
190 #define	VMSETDESC(vmi, vcpu, num, desc)		\
191 	(ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO)
192 #define	VMGETCAP(vmi, vcpu, num, retval)	\
193 	(ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO)
194 #define	VMSETCAP(vmi, vcpu, num, val)		\
195 	(ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO)
196 #define	VLAPIC_INIT(vmi, vcpu)			\
197 	(ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL)
198 #define	VLAPIC_CLEANUP(vmi, vlapic)		\
199 	(ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL)
200 
201 #define	fpu_start_emulating()	load_cr0(rcr0() | CR0_TS)
202 #define	fpu_stop_emulating()	clts()
203 
204 static MALLOC_DEFINE(M_VM, "vm", "vm");
205 
206 /* statistics */
207 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime");
208 
209 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL);
210 
211 /*
212  * Halt the guest if all vcpus are executing a HLT instruction with
213  * interrupts disabled.
214  */
215 static int halt_detection_enabled = 1;
216 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN,
217     &halt_detection_enabled, 0,
218     "Halt VM if all vcpus execute HLT with interrupts disabled");
219 
220 static int vmm_ipinum;
221 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0,
222     "IPI vector used for vcpu notifications");
223 
224 static int trace_guest_exceptions;
225 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN,
226     &trace_guest_exceptions, 0,
227     "Trap into hypervisor on all guest exceptions and reflect them back");
228 
229 static int vmm_force_iommu = 0;
230 TUNABLE_INT("hw.vmm.force_iommu", &vmm_force_iommu);
231 SYSCTL_INT(_hw_vmm, OID_AUTO, force_iommu, CTLFLAG_RDTUN, &vmm_force_iommu, 0,
232     "Force use of I/O MMU even if no passthrough devices were found.");
233 
234 static void vm_free_memmap(struct vm *vm, int ident);
235 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm);
236 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr);
237 
238 #ifdef KTR
239 static const char *
240 vcpu_state2str(enum vcpu_state state)
241 {
242 
243 	switch (state) {
244 	case VCPU_IDLE:
245 		return ("idle");
246 	case VCPU_FROZEN:
247 		return ("frozen");
248 	case VCPU_RUNNING:
249 		return ("running");
250 	case VCPU_SLEEPING:
251 		return ("sleeping");
252 	default:
253 		return ("unknown");
254 	}
255 }
256 #endif
257 
258 static void
259 vcpu_cleanup(struct vm *vm, int i, bool destroy)
260 {
261 	struct vcpu *vcpu = &vm->vcpu[i];
262 
263 	VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic);
264 	if (destroy) {
265 		vmm_stat_free(vcpu->stats);
266 		fpu_save_area_free(vcpu->guestfpu);
267 	}
268 }
269 
270 static void
271 vcpu_init(struct vm *vm, int vcpu_id, bool create)
272 {
273 	struct vcpu *vcpu;
274 
275 	KASSERT(vcpu_id >= 0 && vcpu_id < VM_MAXCPU,
276 	    ("vcpu_init: invalid vcpu %d", vcpu_id));
277 
278 	vcpu = &vm->vcpu[vcpu_id];
279 
280 	if (create) {
281 		KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already "
282 		    "initialized", vcpu_id));
283 		vcpu_lock_init(vcpu);
284 		vcpu->state = VCPU_IDLE;
285 		vcpu->hostcpu = NOCPU;
286 		vcpu->guestfpu = fpu_save_area_alloc();
287 		vcpu->stats = vmm_stat_alloc();
288 	}
289 
290 	vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id);
291 	vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED);
292 	vcpu->reqidle = 0;
293 	vcpu->exitintinfo = 0;
294 	vcpu->nmi_pending = 0;
295 	vcpu->extint_pending = 0;
296 	vcpu->exception_pending = 0;
297 	vcpu->guest_xcr0 = XFEATURE_ENABLED_X87;
298 	fpu_save_area_reset(vcpu->guestfpu);
299 	vmm_stat_init(vcpu->stats);
300 }
301 
302 int
303 vcpu_trace_exceptions(struct vm *vm, int vcpuid)
304 {
305 
306 	return (trace_guest_exceptions);
307 }
308 
309 struct vm_exit *
310 vm_exitinfo(struct vm *vm, int cpuid)
311 {
312 	struct vcpu *vcpu;
313 
314 	if (cpuid < 0 || cpuid >= VM_MAXCPU)
315 		panic("vm_exitinfo: invalid cpuid %d", cpuid);
316 
317 	vcpu = &vm->vcpu[cpuid];
318 
319 	return (&vcpu->exitinfo);
320 }
321 
322 static void
323 vmm_resume(void)
324 {
325 	VMM_RESUME();
326 }
327 
328 static int
329 vmm_init(void)
330 {
331 	int error;
332 
333 	vmm_host_state_init();
334 
335 	vmm_ipinum = lapic_ipi_alloc(&IDTVEC(justreturn));
336 	if (vmm_ipinum < 0)
337 		vmm_ipinum = IPI_AST;
338 
339 	error = vmm_mem_init();
340 	if (error)
341 		return (error);
342 
343 	if (vmm_is_intel())
344 		ops = &vmm_ops_intel;
345 	else if (vmm_is_amd())
346 		ops = &vmm_ops_amd;
347 	else
348 		return (ENXIO);
349 
350 	vmm_resume_p = vmm_resume;
351 
352 	return (VMM_INIT(vmm_ipinum));
353 }
354 
355 static int
356 vmm_handler(module_t mod, int what, void *arg)
357 {
358 	int error;
359 
360 	switch (what) {
361 	case MOD_LOAD:
362 		vmmdev_init();
363 		if (vmm_force_iommu || ppt_avail_devices() > 0)
364 			iommu_init();
365 		error = vmm_init();
366 		if (error == 0)
367 			vmm_initialized = 1;
368 		break;
369 	case MOD_UNLOAD:
370 		error = vmmdev_cleanup();
371 		if (error == 0) {
372 			vmm_resume_p = NULL;
373 			iommu_cleanup();
374 			if (vmm_ipinum != IPI_AST)
375 				lapic_ipi_free(vmm_ipinum);
376 			error = VMM_CLEANUP();
377 			/*
378 			 * Something bad happened - prevent new
379 			 * VMs from being created
380 			 */
381 			if (error)
382 				vmm_initialized = 0;
383 		}
384 		break;
385 	default:
386 		error = 0;
387 		break;
388 	}
389 	return (error);
390 }
391 
392 static moduledata_t vmm_kmod = {
393 	"vmm",
394 	vmm_handler,
395 	NULL
396 };
397 
398 /*
399  * vmm initialization has the following dependencies:
400  *
401  * - iommu initialization must happen after the pci passthru driver has had
402  *   a chance to attach to any passthru devices (after SI_SUB_CONFIGURE).
403  *
404  * - VT-x initialization requires smp_rendezvous() and therefore must happen
405  *   after SMP is fully functional (after SI_SUB_SMP).
406  */
407 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY);
408 MODULE_VERSION(vmm, 1);
409 
410 static void
411 vm_init(struct vm *vm, bool create)
412 {
413 	int i;
414 
415 	vm->cookie = VMINIT(vm, vmspace_pmap(vm->vmspace));
416 	vm->iommu = NULL;
417 	vm->vioapic = vioapic_init(vm);
418 	vm->vhpet = vhpet_init(vm);
419 	vm->vatpic = vatpic_init(vm);
420 	vm->vatpit = vatpit_init(vm);
421 	vm->vpmtmr = vpmtmr_init(vm);
422 	if (create)
423 		vm->vrtc = vrtc_init(vm);
424 
425 	CPU_ZERO(&vm->active_cpus);
426 
427 	vm->suspend = 0;
428 	CPU_ZERO(&vm->suspended_cpus);
429 
430 	for (i = 0; i < VM_MAXCPU; i++)
431 		vcpu_init(vm, i, create);
432 }
433 
434 int
435 vm_create(const char *name, struct vm **retvm)
436 {
437 	struct vm *vm;
438 	struct vmspace *vmspace;
439 
440 	/*
441 	 * If vmm.ko could not be successfully initialized then don't attempt
442 	 * to create the virtual machine.
443 	 */
444 	if (!vmm_initialized)
445 		return (ENXIO);
446 
447 	if (name == NULL || strlen(name) >= VM_MAX_NAMELEN)
448 		return (EINVAL);
449 
450 	vmspace = VMSPACE_ALLOC(0, VM_MAXUSER_ADDRESS);
451 	if (vmspace == NULL)
452 		return (ENOMEM);
453 
454 	vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO);
455 	strcpy(vm->name, name);
456 	vm->vmspace = vmspace;
457 	mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF);
458 
459 	vm_init(vm, true);
460 
461 	*retvm = vm;
462 	return (0);
463 }
464 
465 static void
466 vm_cleanup(struct vm *vm, bool destroy)
467 {
468 	struct mem_map *mm;
469 	int i;
470 
471 	ppt_unassign_all(vm);
472 
473 	if (vm->iommu != NULL)
474 		iommu_destroy_domain(vm->iommu);
475 
476 	if (destroy)
477 		vrtc_cleanup(vm->vrtc);
478 	else
479 		vrtc_reset(vm->vrtc);
480 	vpmtmr_cleanup(vm->vpmtmr);
481 	vatpit_cleanup(vm->vatpit);
482 	vhpet_cleanup(vm->vhpet);
483 	vatpic_cleanup(vm->vatpic);
484 	vioapic_cleanup(vm->vioapic);
485 
486 	for (i = 0; i < VM_MAXCPU; i++)
487 		vcpu_cleanup(vm, i, destroy);
488 
489 	VMCLEANUP(vm->cookie);
490 
491 	/*
492 	 * System memory is removed from the guest address space only when
493 	 * the VM is destroyed. This is because the mapping remains the same
494 	 * across VM reset.
495 	 *
496 	 * Device memory can be relocated by the guest (e.g. using PCI BARs)
497 	 * so those mappings are removed on a VM reset.
498 	 */
499 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
500 		mm = &vm->mem_maps[i];
501 		if (destroy || !sysmem_mapping(vm, mm))
502 			vm_free_memmap(vm, i);
503 	}
504 
505 	if (destroy) {
506 		for (i = 0; i < VM_MAX_MEMSEGS; i++)
507 			vm_free_memseg(vm, i);
508 
509 		VMSPACE_FREE(vm->vmspace);
510 		vm->vmspace = NULL;
511 	}
512 }
513 
514 void
515 vm_destroy(struct vm *vm)
516 {
517 	vm_cleanup(vm, true);
518 	free(vm, M_VM);
519 }
520 
521 int
522 vm_reinit(struct vm *vm)
523 {
524 	int error;
525 
526 	/*
527 	 * A virtual machine can be reset only if all vcpus are suspended.
528 	 */
529 	if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
530 		vm_cleanup(vm, false);
531 		vm_init(vm, false);
532 		error = 0;
533 	} else {
534 		error = EBUSY;
535 	}
536 
537 	return (error);
538 }
539 
540 const char *
541 vm_name(struct vm *vm)
542 {
543 	return (vm->name);
544 }
545 
546 int
547 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
548 {
549 	vm_object_t obj;
550 
551 	if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL)
552 		return (ENOMEM);
553 	else
554 		return (0);
555 }
556 
557 int
558 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len)
559 {
560 
561 	vmm_mmio_free(vm->vmspace, gpa, len);
562 	return (0);
563 }
564 
565 /*
566  * Return 'true' if 'gpa' is allocated in the guest address space.
567  *
568  * This function is called in the context of a running vcpu which acts as
569  * an implicit lock on 'vm->mem_maps[]'.
570  */
571 bool
572 vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa)
573 {
574 	struct mem_map *mm;
575 	int i;
576 
577 #ifdef INVARIANTS
578 	int hostcpu, state;
579 	state = vcpu_get_state(vm, vcpuid, &hostcpu);
580 	KASSERT(state == VCPU_RUNNING && hostcpu == curcpu,
581 	    ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu));
582 #endif
583 
584 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
585 		mm = &vm->mem_maps[i];
586 		if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len)
587 			return (true);		/* 'gpa' is sysmem or devmem */
588 	}
589 
590 	if (ppt_is_mmio(vm, gpa))
591 		return (true);			/* 'gpa' is pci passthru mmio */
592 
593 	return (false);
594 }
595 
596 int
597 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem)
598 {
599 	struct mem_seg *seg;
600 	vm_object_t obj;
601 
602 	if (ident < 0 || ident >= VM_MAX_MEMSEGS)
603 		return (EINVAL);
604 
605 	if (len == 0 || (len & PAGE_MASK))
606 		return (EINVAL);
607 
608 	seg = &vm->mem_segs[ident];
609 	if (seg->object != NULL) {
610 		if (seg->len == len && seg->sysmem == sysmem)
611 			return (EEXIST);
612 		else
613 			return (EINVAL);
614 	}
615 
616 	obj = vm_object_allocate(OBJT_DEFAULT, len >> PAGE_SHIFT);
617 	if (obj == NULL)
618 		return (ENOMEM);
619 
620 	seg->len = len;
621 	seg->object = obj;
622 	seg->sysmem = sysmem;
623 	return (0);
624 }
625 
626 int
627 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem,
628     vm_object_t *objptr)
629 {
630 	struct mem_seg *seg;
631 
632 	if (ident < 0 || ident >= VM_MAX_MEMSEGS)
633 		return (EINVAL);
634 
635 	seg = &vm->mem_segs[ident];
636 	if (len)
637 		*len = seg->len;
638 	if (sysmem)
639 		*sysmem = seg->sysmem;
640 	if (objptr)
641 		*objptr = seg->object;
642 	return (0);
643 }
644 
645 void
646 vm_free_memseg(struct vm *vm, int ident)
647 {
648 	struct mem_seg *seg;
649 
650 	KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS,
651 	    ("%s: invalid memseg ident %d", __func__, ident));
652 
653 	seg = &vm->mem_segs[ident];
654 	if (seg->object != NULL) {
655 		vm_object_deallocate(seg->object);
656 		bzero(seg, sizeof(struct mem_seg));
657 	}
658 }
659 
660 int
661 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first,
662     size_t len, int prot, int flags)
663 {
664 	struct mem_seg *seg;
665 	struct mem_map *m, *map;
666 	vm_ooffset_t last;
667 	int i, error;
668 
669 	if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0)
670 		return (EINVAL);
671 
672 	if (flags & ~VM_MEMMAP_F_WIRED)
673 		return (EINVAL);
674 
675 	if (segid < 0 || segid >= VM_MAX_MEMSEGS)
676 		return (EINVAL);
677 
678 	seg = &vm->mem_segs[segid];
679 	if (seg->object == NULL)
680 		return (EINVAL);
681 
682 	last = first + len;
683 	if (first < 0 || first >= last || last > seg->len)
684 		return (EINVAL);
685 
686 	if ((gpa | first | last) & PAGE_MASK)
687 		return (EINVAL);
688 
689 	map = NULL;
690 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
691 		m = &vm->mem_maps[i];
692 		if (m->len == 0) {
693 			map = m;
694 			break;
695 		}
696 	}
697 
698 	if (map == NULL)
699 		return (ENOSPC);
700 
701 	error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa,
702 	    len, 0, VMFS_NO_SPACE, prot, prot, 0);
703 	if (error != KERN_SUCCESS)
704 		return (EFAULT);
705 
706 	vm_object_reference(seg->object);
707 
708 	if (flags & VM_MEMMAP_F_WIRED) {
709 		error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len,
710 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
711 		if (error != KERN_SUCCESS) {
712 			vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len);
713 			return (EFAULT);
714 		}
715 	}
716 
717 	map->gpa = gpa;
718 	map->len = len;
719 	map->segoff = first;
720 	map->segid = segid;
721 	map->prot = prot;
722 	map->flags = flags;
723 	return (0);
724 }
725 
726 int
727 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid,
728     vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
729 {
730 	struct mem_map *mm, *mmnext;
731 	int i;
732 
733 	mmnext = NULL;
734 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
735 		mm = &vm->mem_maps[i];
736 		if (mm->len == 0 || mm->gpa < *gpa)
737 			continue;
738 		if (mmnext == NULL || mm->gpa < mmnext->gpa)
739 			mmnext = mm;
740 	}
741 
742 	if (mmnext != NULL) {
743 		*gpa = mmnext->gpa;
744 		if (segid)
745 			*segid = mmnext->segid;
746 		if (segoff)
747 			*segoff = mmnext->segoff;
748 		if (len)
749 			*len = mmnext->len;
750 		if (prot)
751 			*prot = mmnext->prot;
752 		if (flags)
753 			*flags = mmnext->flags;
754 		return (0);
755 	} else {
756 		return (ENOENT);
757 	}
758 }
759 
760 static void
761 vm_free_memmap(struct vm *vm, int ident)
762 {
763 	struct mem_map *mm;
764 	int error;
765 
766 	mm = &vm->mem_maps[ident];
767 	if (mm->len) {
768 		error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa,
769 		    mm->gpa + mm->len);
770 		KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d",
771 		    __func__, error));
772 		bzero(mm, sizeof(struct mem_map));
773 	}
774 }
775 
776 static __inline bool
777 sysmem_mapping(struct vm *vm, struct mem_map *mm)
778 {
779 
780 	if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem)
781 		return (true);
782 	else
783 		return (false);
784 }
785 
786 static vm_paddr_t
787 sysmem_maxaddr(struct vm *vm)
788 {
789 	struct mem_map *mm;
790 	vm_paddr_t maxaddr;
791 	int i;
792 
793 	maxaddr = 0;
794 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
795 		mm = &vm->mem_maps[i];
796 		if (sysmem_mapping(vm, mm)) {
797 			if (maxaddr < mm->gpa + mm->len)
798 				maxaddr = mm->gpa + mm->len;
799 		}
800 	}
801 	return (maxaddr);
802 }
803 
804 static void
805 vm_iommu_modify(struct vm *vm, boolean_t map)
806 {
807 	int i, sz;
808 	vm_paddr_t gpa, hpa;
809 	struct mem_map *mm;
810 	void *vp, *cookie, *host_domain;
811 
812 	sz = PAGE_SIZE;
813 	host_domain = iommu_host_domain();
814 
815 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
816 		mm = &vm->mem_maps[i];
817 		if (!sysmem_mapping(vm, mm))
818 			continue;
819 
820 		if (map) {
821 			KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0,
822 			    ("iommu map found invalid memmap %#lx/%#lx/%#x",
823 			    mm->gpa, mm->len, mm->flags));
824 			if ((mm->flags & VM_MEMMAP_F_WIRED) == 0)
825 				continue;
826 			mm->flags |= VM_MEMMAP_F_IOMMU;
827 		} else {
828 			if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0)
829 				continue;
830 			mm->flags &= ~VM_MEMMAP_F_IOMMU;
831 			KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0,
832 			    ("iommu unmap found invalid memmap %#lx/%#lx/%#x",
833 			    mm->gpa, mm->len, mm->flags));
834 		}
835 
836 		gpa = mm->gpa;
837 		while (gpa < mm->gpa + mm->len) {
838 			vp = vm_gpa_hold(vm, -1, gpa, PAGE_SIZE, VM_PROT_WRITE,
839 					 &cookie);
840 			KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx",
841 			    vm_name(vm), gpa));
842 
843 			vm_gpa_release(cookie);
844 
845 			hpa = DMAP_TO_PHYS((uintptr_t)vp);
846 			if (map) {
847 				iommu_create_mapping(vm->iommu, gpa, hpa, sz);
848 				iommu_remove_mapping(host_domain, hpa, sz);
849 			} else {
850 				iommu_remove_mapping(vm->iommu, gpa, sz);
851 				iommu_create_mapping(host_domain, hpa, hpa, sz);
852 			}
853 
854 			gpa += PAGE_SIZE;
855 		}
856 	}
857 
858 	/*
859 	 * Invalidate the cached translations associated with the domain
860 	 * from which pages were removed.
861 	 */
862 	if (map)
863 		iommu_invalidate_tlb(host_domain);
864 	else
865 		iommu_invalidate_tlb(vm->iommu);
866 }
867 
868 #define	vm_iommu_unmap(vm)	vm_iommu_modify((vm), FALSE)
869 #define	vm_iommu_map(vm)	vm_iommu_modify((vm), TRUE)
870 
871 int
872 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func)
873 {
874 	int error;
875 
876 	error = ppt_unassign_device(vm, bus, slot, func);
877 	if (error)
878 		return (error);
879 
880 	if (ppt_assigned_devices(vm) == 0)
881 		vm_iommu_unmap(vm);
882 
883 	return (0);
884 }
885 
886 int
887 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func)
888 {
889 	int error;
890 	vm_paddr_t maxaddr;
891 
892 	/* Set up the IOMMU to do the 'gpa' to 'hpa' translation */
893 	if (ppt_assigned_devices(vm) == 0) {
894 		KASSERT(vm->iommu == NULL,
895 		    ("vm_assign_pptdev: iommu must be NULL"));
896 		maxaddr = sysmem_maxaddr(vm);
897 		vm->iommu = iommu_create_domain(maxaddr);
898 		vm_iommu_map(vm);
899 	}
900 
901 	error = ppt_assign_device(vm, bus, slot, func);
902 	return (error);
903 }
904 
905 void *
906 vm_gpa_hold(struct vm *vm, int vcpuid, vm_paddr_t gpa, size_t len, int reqprot,
907 	    void **cookie)
908 {
909 	int i, count, pageoff;
910 	struct mem_map *mm;
911 	vm_page_t m;
912 #ifdef INVARIANTS
913 	/*
914 	 * All vcpus are frozen by ioctls that modify the memory map
915 	 * (e.g. VM_MMAP_MEMSEG). Therefore 'vm->memmap[]' stability is
916 	 * guaranteed if at least one vcpu is in the VCPU_FROZEN state.
917 	 */
918 	int state;
919 	KASSERT(vcpuid >= -1 || vcpuid < VM_MAXCPU, ("%s: invalid vcpuid %d",
920 	    __func__, vcpuid));
921 	for (i = 0; i < VM_MAXCPU; i++) {
922 		if (vcpuid != -1 && vcpuid != i)
923 			continue;
924 		state = vcpu_get_state(vm, i, NULL);
925 		KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d",
926 		    __func__, state));
927 	}
928 #endif
929 	pageoff = gpa & PAGE_MASK;
930 	if (len > PAGE_SIZE - pageoff)
931 		panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len);
932 
933 	count = 0;
934 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
935 		mm = &vm->mem_maps[i];
936 		if (sysmem_mapping(vm, mm) && gpa >= mm->gpa &&
937 		    gpa < mm->gpa + mm->len) {
938 			count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map,
939 			    trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1);
940 			break;
941 		}
942 	}
943 
944 	if (count == 1) {
945 		*cookie = m;
946 		return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff));
947 	} else {
948 		*cookie = NULL;
949 		return (NULL);
950 	}
951 }
952 
953 void
954 vm_gpa_release(void *cookie)
955 {
956 	vm_page_t m = cookie;
957 
958 	vm_page_lock(m);
959 	vm_page_unhold(m);
960 	vm_page_unlock(m);
961 }
962 
963 int
964 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval)
965 {
966 
967 	if (vcpu < 0 || vcpu >= VM_MAXCPU)
968 		return (EINVAL);
969 
970 	if (reg >= VM_REG_LAST)
971 		return (EINVAL);
972 
973 	return (VMGETREG(vm->cookie, vcpu, reg, retval));
974 }
975 
976 int
977 vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val)
978 {
979 	struct vcpu *vcpu;
980 	int error;
981 
982 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
983 		return (EINVAL);
984 
985 	if (reg >= VM_REG_LAST)
986 		return (EINVAL);
987 
988 	error = VMSETREG(vm->cookie, vcpuid, reg, val);
989 	if (error || reg != VM_REG_GUEST_RIP)
990 		return (error);
991 
992 	/* Set 'nextrip' to match the value of %rip */
993 	VCPU_CTR1(vm, vcpuid, "Setting nextrip to %#lx", val);
994 	vcpu = &vm->vcpu[vcpuid];
995 	vcpu->nextrip = val;
996 	return (0);
997 }
998 
999 static boolean_t
1000 is_descriptor_table(int reg)
1001 {
1002 
1003 	switch (reg) {
1004 	case VM_REG_GUEST_IDTR:
1005 	case VM_REG_GUEST_GDTR:
1006 		return (TRUE);
1007 	default:
1008 		return (FALSE);
1009 	}
1010 }
1011 
1012 static boolean_t
1013 is_segment_register(int reg)
1014 {
1015 
1016 	switch (reg) {
1017 	case VM_REG_GUEST_ES:
1018 	case VM_REG_GUEST_CS:
1019 	case VM_REG_GUEST_SS:
1020 	case VM_REG_GUEST_DS:
1021 	case VM_REG_GUEST_FS:
1022 	case VM_REG_GUEST_GS:
1023 	case VM_REG_GUEST_TR:
1024 	case VM_REG_GUEST_LDTR:
1025 		return (TRUE);
1026 	default:
1027 		return (FALSE);
1028 	}
1029 }
1030 
1031 int
1032 vm_get_seg_desc(struct vm *vm, int vcpu, int reg,
1033 		struct seg_desc *desc)
1034 {
1035 
1036 	if (vcpu < 0 || vcpu >= VM_MAXCPU)
1037 		return (EINVAL);
1038 
1039 	if (!is_segment_register(reg) && !is_descriptor_table(reg))
1040 		return (EINVAL);
1041 
1042 	return (VMGETDESC(vm->cookie, vcpu, reg, desc));
1043 }
1044 
1045 int
1046 vm_set_seg_desc(struct vm *vm, int vcpu, int reg,
1047 		struct seg_desc *desc)
1048 {
1049 	if (vcpu < 0 || vcpu >= VM_MAXCPU)
1050 		return (EINVAL);
1051 
1052 	if (!is_segment_register(reg) && !is_descriptor_table(reg))
1053 		return (EINVAL);
1054 
1055 	return (VMSETDESC(vm->cookie, vcpu, reg, desc));
1056 }
1057 
1058 static void
1059 restore_guest_fpustate(struct vcpu *vcpu)
1060 {
1061 
1062 	/* flush host state to the pcb */
1063 	fpuexit(curthread);
1064 
1065 	/* restore guest FPU state */
1066 	fpu_stop_emulating();
1067 	fpurestore(vcpu->guestfpu);
1068 
1069 	/* restore guest XCR0 if XSAVE is enabled in the host */
1070 	if (rcr4() & CR4_XSAVE)
1071 		load_xcr(0, vcpu->guest_xcr0);
1072 
1073 	/*
1074 	 * The FPU is now "dirty" with the guest's state so turn on emulation
1075 	 * to trap any access to the FPU by the host.
1076 	 */
1077 	fpu_start_emulating();
1078 }
1079 
1080 static void
1081 save_guest_fpustate(struct vcpu *vcpu)
1082 {
1083 
1084 	if ((rcr0() & CR0_TS) == 0)
1085 		panic("fpu emulation not enabled in host!");
1086 
1087 	/* save guest XCR0 and restore host XCR0 */
1088 	if (rcr4() & CR4_XSAVE) {
1089 		vcpu->guest_xcr0 = rxcr(0);
1090 		load_xcr(0, vmm_get_host_xcr0());
1091 	}
1092 
1093 	/* save guest FPU state */
1094 	fpu_stop_emulating();
1095 	fpusave(vcpu->guestfpu);
1096 	fpu_start_emulating();
1097 }
1098 
1099 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle");
1100 
1101 static int
1102 vcpu_set_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate,
1103     bool from_idle)
1104 {
1105 	struct vcpu *vcpu;
1106 	int error;
1107 
1108 	vcpu = &vm->vcpu[vcpuid];
1109 	vcpu_assert_locked(vcpu);
1110 
1111 	/*
1112 	 * State transitions from the vmmdev_ioctl() must always begin from
1113 	 * the VCPU_IDLE state. This guarantees that there is only a single
1114 	 * ioctl() operating on a vcpu at any point.
1115 	 */
1116 	if (from_idle) {
1117 		while (vcpu->state != VCPU_IDLE) {
1118 			vcpu->reqidle = 1;
1119 			vcpu_notify_event_locked(vcpu, false);
1120 			VCPU_CTR1(vm, vcpuid, "vcpu state change from %s to "
1121 			    "idle requested", vcpu_state2str(vcpu->state));
1122 			msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz);
1123 		}
1124 	} else {
1125 		KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from "
1126 		    "vcpu idle state"));
1127 	}
1128 
1129 	if (vcpu->state == VCPU_RUNNING) {
1130 		KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d "
1131 		    "mismatch for running vcpu", curcpu, vcpu->hostcpu));
1132 	} else {
1133 		KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a "
1134 		    "vcpu that is not running", vcpu->hostcpu));
1135 	}
1136 
1137 	/*
1138 	 * The following state transitions are allowed:
1139 	 * IDLE -> FROZEN -> IDLE
1140 	 * FROZEN -> RUNNING -> FROZEN
1141 	 * FROZEN -> SLEEPING -> FROZEN
1142 	 */
1143 	switch (vcpu->state) {
1144 	case VCPU_IDLE:
1145 	case VCPU_RUNNING:
1146 	case VCPU_SLEEPING:
1147 		error = (newstate != VCPU_FROZEN);
1148 		break;
1149 	case VCPU_FROZEN:
1150 		error = (newstate == VCPU_FROZEN);
1151 		break;
1152 	default:
1153 		error = 1;
1154 		break;
1155 	}
1156 
1157 	if (error)
1158 		return (EBUSY);
1159 
1160 	VCPU_CTR2(vm, vcpuid, "vcpu state changed from %s to %s",
1161 	    vcpu_state2str(vcpu->state), vcpu_state2str(newstate));
1162 
1163 	vcpu->state = newstate;
1164 	if (newstate == VCPU_RUNNING)
1165 		vcpu->hostcpu = curcpu;
1166 	else
1167 		vcpu->hostcpu = NOCPU;
1168 
1169 	if (newstate == VCPU_IDLE)
1170 		wakeup(&vcpu->state);
1171 
1172 	return (0);
1173 }
1174 
1175 static void
1176 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate)
1177 {
1178 	int error;
1179 
1180 	if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0)
1181 		panic("Error %d setting state to %d\n", error, newstate);
1182 }
1183 
1184 static void
1185 vcpu_require_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate)
1186 {
1187 	int error;
1188 
1189 	if ((error = vcpu_set_state_locked(vm, vcpuid, newstate, false)) != 0)
1190 		panic("Error %d setting state to %d", error, newstate);
1191 }
1192 
1193 static void
1194 vm_set_rendezvous_func(struct vm *vm, vm_rendezvous_func_t func)
1195 {
1196 
1197 	KASSERT(mtx_owned(&vm->rendezvous_mtx), ("rendezvous_mtx not locked"));
1198 
1199 	/*
1200 	 * Update 'rendezvous_func' and execute a write memory barrier to
1201 	 * ensure that it is visible across all host cpus. This is not needed
1202 	 * for correctness but it does ensure that all the vcpus will notice
1203 	 * that the rendezvous is requested immediately.
1204 	 */
1205 	vm->rendezvous_func = func;
1206 	wmb();
1207 }
1208 
1209 #define	RENDEZVOUS_CTR0(vm, vcpuid, fmt)				\
1210 	do {								\
1211 		if (vcpuid >= 0)					\
1212 			VCPU_CTR0(vm, vcpuid, fmt);			\
1213 		else							\
1214 			VM_CTR0(vm, fmt);				\
1215 	} while (0)
1216 
1217 static void
1218 vm_handle_rendezvous(struct vm *vm, int vcpuid)
1219 {
1220 
1221 	KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU),
1222 	    ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid));
1223 
1224 	mtx_lock(&vm->rendezvous_mtx);
1225 	while (vm->rendezvous_func != NULL) {
1226 		/* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */
1227 		CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus);
1228 
1229 		if (vcpuid != -1 &&
1230 		    CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) &&
1231 		    !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) {
1232 			VCPU_CTR0(vm, vcpuid, "Calling rendezvous func");
1233 			(*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg);
1234 			CPU_SET(vcpuid, &vm->rendezvous_done_cpus);
1235 		}
1236 		if (CPU_CMP(&vm->rendezvous_req_cpus,
1237 		    &vm->rendezvous_done_cpus) == 0) {
1238 			VCPU_CTR0(vm, vcpuid, "Rendezvous completed");
1239 			vm_set_rendezvous_func(vm, NULL);
1240 			wakeup(&vm->rendezvous_func);
1241 			break;
1242 		}
1243 		RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion");
1244 		mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0,
1245 		    "vmrndv", 0);
1246 	}
1247 	mtx_unlock(&vm->rendezvous_mtx);
1248 }
1249 
1250 /*
1251  * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run.
1252  */
1253 static int
1254 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu)
1255 {
1256 	struct vcpu *vcpu;
1257 	const char *wmesg;
1258 	int t, vcpu_halted, vm_halted;
1259 
1260 	KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted"));
1261 
1262 	vcpu = &vm->vcpu[vcpuid];
1263 	vcpu_halted = 0;
1264 	vm_halted = 0;
1265 
1266 	vcpu_lock(vcpu);
1267 	while (1) {
1268 		/*
1269 		 * Do a final check for pending NMI or interrupts before
1270 		 * really putting this thread to sleep. Also check for
1271 		 * software events that would cause this vcpu to wakeup.
1272 		 *
1273 		 * These interrupts/events could have happened after the
1274 		 * vcpu returned from VMRUN() and before it acquired the
1275 		 * vcpu lock above.
1276 		 */
1277 		if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle)
1278 			break;
1279 		if (vm_nmi_pending(vm, vcpuid))
1280 			break;
1281 		if (!intr_disabled) {
1282 			if (vm_extint_pending(vm, vcpuid) ||
1283 			    vlapic_pending_intr(vcpu->vlapic, NULL)) {
1284 				break;
1285 			}
1286 		}
1287 
1288 		/* Don't go to sleep if the vcpu thread needs to yield */
1289 		if (vcpu_should_yield(vm, vcpuid))
1290 			break;
1291 
1292 		/*
1293 		 * Some Linux guests implement "halt" by having all vcpus
1294 		 * execute HLT with interrupts disabled. 'halted_cpus' keeps
1295 		 * track of the vcpus that have entered this state. When all
1296 		 * vcpus enter the halted state the virtual machine is halted.
1297 		 */
1298 		if (intr_disabled) {
1299 			wmesg = "vmhalt";
1300 			VCPU_CTR0(vm, vcpuid, "Halted");
1301 			if (!vcpu_halted && halt_detection_enabled) {
1302 				vcpu_halted = 1;
1303 				CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus);
1304 			}
1305 			if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) {
1306 				vm_halted = 1;
1307 				break;
1308 			}
1309 		} else {
1310 			wmesg = "vmidle";
1311 		}
1312 
1313 		t = ticks;
1314 		vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING);
1315 		/*
1316 		 * XXX msleep_spin() cannot be interrupted by signals so
1317 		 * wake up periodically to check pending signals.
1318 		 */
1319 		msleep_spin(vcpu, &vcpu->mtx, wmesg, hz);
1320 		vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN);
1321 		vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t);
1322 	}
1323 
1324 	if (vcpu_halted)
1325 		CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus);
1326 
1327 	vcpu_unlock(vcpu);
1328 
1329 	if (vm_halted)
1330 		vm_suspend(vm, VM_SUSPEND_HALT);
1331 
1332 	return (0);
1333 }
1334 
1335 static int
1336 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu)
1337 {
1338 	int rv, ftype;
1339 	struct vm_map *map;
1340 	struct vcpu *vcpu;
1341 	struct vm_exit *vme;
1342 
1343 	vcpu = &vm->vcpu[vcpuid];
1344 	vme = &vcpu->exitinfo;
1345 
1346 	KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
1347 	    __func__, vme->inst_length));
1348 
1349 	ftype = vme->u.paging.fault_type;
1350 	KASSERT(ftype == VM_PROT_READ ||
1351 	    ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE,
1352 	    ("vm_handle_paging: invalid fault_type %d", ftype));
1353 
1354 	if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
1355 		rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace),
1356 		    vme->u.paging.gpa, ftype);
1357 		if (rv == 0) {
1358 			VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx",
1359 			    ftype == VM_PROT_READ ? "accessed" : "dirty",
1360 			    vme->u.paging.gpa);
1361 			goto done;
1362 		}
1363 	}
1364 
1365 	map = &vm->vmspace->vm_map;
1366 	rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL);
1367 
1368 	VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, "
1369 	    "ftype = %d", rv, vme->u.paging.gpa, ftype);
1370 
1371 	if (rv != KERN_SUCCESS)
1372 		return (EFAULT);
1373 done:
1374 	return (0);
1375 }
1376 
1377 static int
1378 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu)
1379 {
1380 	struct vie *vie;
1381 	struct vcpu *vcpu;
1382 	struct vm_exit *vme;
1383 	uint64_t gla, gpa, cs_base;
1384 	struct vm_guest_paging *paging;
1385 	mem_region_read_t mread;
1386 	mem_region_write_t mwrite;
1387 	enum vm_cpu_mode cpu_mode;
1388 	int cs_d, error, fault;
1389 
1390 	vcpu = &vm->vcpu[vcpuid];
1391 	vme = &vcpu->exitinfo;
1392 
1393 	KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
1394 	    __func__, vme->inst_length));
1395 
1396 	gla = vme->u.inst_emul.gla;
1397 	gpa = vme->u.inst_emul.gpa;
1398 	cs_base = vme->u.inst_emul.cs_base;
1399 	cs_d = vme->u.inst_emul.cs_d;
1400 	vie = &vme->u.inst_emul.vie;
1401 	paging = &vme->u.inst_emul.paging;
1402 	cpu_mode = paging->cpu_mode;
1403 
1404 	VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa);
1405 
1406 	/* Fetch, decode and emulate the faulting instruction */
1407 	if (vie->num_valid == 0) {
1408 		error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip +
1409 		    cs_base, VIE_INST_SIZE, vie, &fault);
1410 	} else {
1411 		/*
1412 		 * The instruction bytes have already been copied into 'vie'
1413 		 */
1414 		error = fault = 0;
1415 	}
1416 	if (error || fault)
1417 		return (error);
1418 
1419 	if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) {
1420 		VCPU_CTR1(vm, vcpuid, "Error decoding instruction at %#lx",
1421 		    vme->rip + cs_base);
1422 		*retu = true;	    /* dump instruction bytes in userspace */
1423 		return (0);
1424 	}
1425 
1426 	/*
1427 	 * Update 'nextrip' based on the length of the emulated instruction.
1428 	 */
1429 	vme->inst_length = vie->num_processed;
1430 	vcpu->nextrip += vie->num_processed;
1431 	VCPU_CTR1(vm, vcpuid, "nextrip updated to %#lx after instruction "
1432 	    "decoding", vcpu->nextrip);
1433 
1434 	/* return to userland unless this is an in-kernel emulated device */
1435 	if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) {
1436 		mread = lapic_mmio_read;
1437 		mwrite = lapic_mmio_write;
1438 	} else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) {
1439 		mread = vioapic_mmio_read;
1440 		mwrite = vioapic_mmio_write;
1441 	} else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) {
1442 		mread = vhpet_mmio_read;
1443 		mwrite = vhpet_mmio_write;
1444 	} else {
1445 		*retu = true;
1446 		return (0);
1447 	}
1448 
1449 	error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging,
1450 	    mread, mwrite, retu);
1451 
1452 	return (error);
1453 }
1454 
1455 static int
1456 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu)
1457 {
1458 	int i, done;
1459 	struct vcpu *vcpu;
1460 
1461 	done = 0;
1462 	vcpu = &vm->vcpu[vcpuid];
1463 
1464 	CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus);
1465 
1466 	/*
1467 	 * Wait until all 'active_cpus' have suspended themselves.
1468 	 *
1469 	 * Since a VM may be suspended at any time including when one or
1470 	 * more vcpus are doing a rendezvous we need to call the rendezvous
1471 	 * handler while we are waiting to prevent a deadlock.
1472 	 */
1473 	vcpu_lock(vcpu);
1474 	while (1) {
1475 		if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
1476 			VCPU_CTR0(vm, vcpuid, "All vcpus suspended");
1477 			break;
1478 		}
1479 
1480 		if (vm->rendezvous_func == NULL) {
1481 			VCPU_CTR0(vm, vcpuid, "Sleeping during suspend");
1482 			vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING);
1483 			msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz);
1484 			vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN);
1485 		} else {
1486 			VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend");
1487 			vcpu_unlock(vcpu);
1488 			vm_handle_rendezvous(vm, vcpuid);
1489 			vcpu_lock(vcpu);
1490 		}
1491 	}
1492 	vcpu_unlock(vcpu);
1493 
1494 	/*
1495 	 * Wakeup the other sleeping vcpus and return to userspace.
1496 	 */
1497 	for (i = 0; i < VM_MAXCPU; i++) {
1498 		if (CPU_ISSET(i, &vm->suspended_cpus)) {
1499 			vcpu_notify_event(vm, i, false);
1500 		}
1501 	}
1502 
1503 	*retu = true;
1504 	return (0);
1505 }
1506 
1507 static int
1508 vm_handle_reqidle(struct vm *vm, int vcpuid, bool *retu)
1509 {
1510 	struct vcpu *vcpu = &vm->vcpu[vcpuid];
1511 
1512 	vcpu_lock(vcpu);
1513 	KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle));
1514 	vcpu->reqidle = 0;
1515 	vcpu_unlock(vcpu);
1516 	*retu = true;
1517 	return (0);
1518 }
1519 
1520 int
1521 vm_suspend(struct vm *vm, enum vm_suspend_how how)
1522 {
1523 	int i;
1524 
1525 	if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST)
1526 		return (EINVAL);
1527 
1528 	if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) {
1529 		VM_CTR2(vm, "virtual machine already suspended %d/%d",
1530 		    vm->suspend, how);
1531 		return (EALREADY);
1532 	}
1533 
1534 	VM_CTR1(vm, "virtual machine successfully suspended %d", how);
1535 
1536 	/*
1537 	 * Notify all active vcpus that they are now suspended.
1538 	 */
1539 	for (i = 0; i < VM_MAXCPU; i++) {
1540 		if (CPU_ISSET(i, &vm->active_cpus))
1541 			vcpu_notify_event(vm, i, false);
1542 	}
1543 
1544 	return (0);
1545 }
1546 
1547 void
1548 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip)
1549 {
1550 	struct vm_exit *vmexit;
1551 
1552 	KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST,
1553 	    ("vm_exit_suspended: invalid suspend type %d", vm->suspend));
1554 
1555 	vmexit = vm_exitinfo(vm, vcpuid);
1556 	vmexit->rip = rip;
1557 	vmexit->inst_length = 0;
1558 	vmexit->exitcode = VM_EXITCODE_SUSPENDED;
1559 	vmexit->u.suspended.how = vm->suspend;
1560 }
1561 
1562 void
1563 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip)
1564 {
1565 	struct vm_exit *vmexit;
1566 
1567 	KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress"));
1568 
1569 	vmexit = vm_exitinfo(vm, vcpuid);
1570 	vmexit->rip = rip;
1571 	vmexit->inst_length = 0;
1572 	vmexit->exitcode = VM_EXITCODE_RENDEZVOUS;
1573 	vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1);
1574 }
1575 
1576 void
1577 vm_exit_reqidle(struct vm *vm, int vcpuid, uint64_t rip)
1578 {
1579 	struct vm_exit *vmexit;
1580 
1581 	vmexit = vm_exitinfo(vm, vcpuid);
1582 	vmexit->rip = rip;
1583 	vmexit->inst_length = 0;
1584 	vmexit->exitcode = VM_EXITCODE_REQIDLE;
1585 	vmm_stat_incr(vm, vcpuid, VMEXIT_REQIDLE, 1);
1586 }
1587 
1588 void
1589 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip)
1590 {
1591 	struct vm_exit *vmexit;
1592 
1593 	vmexit = vm_exitinfo(vm, vcpuid);
1594 	vmexit->rip = rip;
1595 	vmexit->inst_length = 0;
1596 	vmexit->exitcode = VM_EXITCODE_BOGUS;
1597 	vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1);
1598 }
1599 
1600 int
1601 vm_run(struct vm *vm, struct vm_run *vmrun)
1602 {
1603 	struct vm_eventinfo evinfo;
1604 	int error, vcpuid;
1605 	struct vcpu *vcpu;
1606 	struct pcb *pcb;
1607 	uint64_t tscval;
1608 	struct vm_exit *vme;
1609 	bool retu, intr_disabled;
1610 	pmap_t pmap;
1611 
1612 	vcpuid = vmrun->cpuid;
1613 
1614 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1615 		return (EINVAL);
1616 
1617 	if (!CPU_ISSET(vcpuid, &vm->active_cpus))
1618 		return (EINVAL);
1619 
1620 	if (CPU_ISSET(vcpuid, &vm->suspended_cpus))
1621 		return (EINVAL);
1622 
1623 	pmap = vmspace_pmap(vm->vmspace);
1624 	vcpu = &vm->vcpu[vcpuid];
1625 	vme = &vcpu->exitinfo;
1626 	evinfo.rptr = &vm->rendezvous_func;
1627 	evinfo.sptr = &vm->suspend;
1628 	evinfo.iptr = &vcpu->reqidle;
1629 restart:
1630 	critical_enter();
1631 
1632 	KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
1633 	    ("vm_run: absurd pm_active"));
1634 
1635 	tscval = rdtsc();
1636 
1637 	pcb = PCPU_GET(curpcb);
1638 	set_pcb_flags(pcb, PCB_FULL_IRET);
1639 
1640 	restore_guest_fpustate(vcpu);
1641 
1642 	vcpu_require_state(vm, vcpuid, VCPU_RUNNING);
1643 	error = VMRUN(vm->cookie, vcpuid, vcpu->nextrip, pmap, &evinfo);
1644 	vcpu_require_state(vm, vcpuid, VCPU_FROZEN);
1645 
1646 	save_guest_fpustate(vcpu);
1647 
1648 	vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval);
1649 
1650 	critical_exit();
1651 
1652 	if (error == 0) {
1653 		retu = false;
1654 		vcpu->nextrip = vme->rip + vme->inst_length;
1655 		switch (vme->exitcode) {
1656 		case VM_EXITCODE_REQIDLE:
1657 			error = vm_handle_reqidle(vm, vcpuid, &retu);
1658 			break;
1659 		case VM_EXITCODE_SUSPENDED:
1660 			error = vm_handle_suspend(vm, vcpuid, &retu);
1661 			break;
1662 		case VM_EXITCODE_IOAPIC_EOI:
1663 			vioapic_process_eoi(vm, vcpuid,
1664 			    vme->u.ioapic_eoi.vector);
1665 			break;
1666 		case VM_EXITCODE_RENDEZVOUS:
1667 			vm_handle_rendezvous(vm, vcpuid);
1668 			error = 0;
1669 			break;
1670 		case VM_EXITCODE_HLT:
1671 			intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0);
1672 			error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu);
1673 			break;
1674 		case VM_EXITCODE_PAGING:
1675 			error = vm_handle_paging(vm, vcpuid, &retu);
1676 			break;
1677 		case VM_EXITCODE_INST_EMUL:
1678 			error = vm_handle_inst_emul(vm, vcpuid, &retu);
1679 			break;
1680 		case VM_EXITCODE_INOUT:
1681 		case VM_EXITCODE_INOUT_STR:
1682 			error = vm_handle_inout(vm, vcpuid, vme, &retu);
1683 			break;
1684 		case VM_EXITCODE_MONITOR:
1685 		case VM_EXITCODE_MWAIT:
1686 			vm_inject_ud(vm, vcpuid);
1687 			break;
1688 		default:
1689 			retu = true;	/* handled in userland */
1690 			break;
1691 		}
1692 	}
1693 
1694 	if (error == 0 && retu == false)
1695 		goto restart;
1696 
1697 	VCPU_CTR2(vm, vcpuid, "retu %d/%d", error, vme->exitcode);
1698 
1699 	/* copy the exit information */
1700 	bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit));
1701 	return (error);
1702 }
1703 
1704 int
1705 vm_restart_instruction(void *arg, int vcpuid)
1706 {
1707 	struct vm *vm;
1708 	struct vcpu *vcpu;
1709 	enum vcpu_state state;
1710 	uint64_t rip;
1711 	int error;
1712 
1713 	vm = arg;
1714 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1715 		return (EINVAL);
1716 
1717 	vcpu = &vm->vcpu[vcpuid];
1718 	state = vcpu_get_state(vm, vcpuid, NULL);
1719 	if (state == VCPU_RUNNING) {
1720 		/*
1721 		 * When a vcpu is "running" the next instruction is determined
1722 		 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'.
1723 		 * Thus setting 'inst_length' to zero will cause the current
1724 		 * instruction to be restarted.
1725 		 */
1726 		vcpu->exitinfo.inst_length = 0;
1727 		VCPU_CTR1(vm, vcpuid, "restarting instruction at %#lx by "
1728 		    "setting inst_length to zero", vcpu->exitinfo.rip);
1729 	} else if (state == VCPU_FROZEN) {
1730 		/*
1731 		 * When a vcpu is "frozen" it is outside the critical section
1732 		 * around VMRUN() and 'nextrip' points to the next instruction.
1733 		 * Thus instruction restart is achieved by setting 'nextrip'
1734 		 * to the vcpu's %rip.
1735 		 */
1736 		error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip);
1737 		KASSERT(!error, ("%s: error %d getting rip", __func__, error));
1738 		VCPU_CTR2(vm, vcpuid, "restarting instruction by updating "
1739 		    "nextrip from %#lx to %#lx", vcpu->nextrip, rip);
1740 		vcpu->nextrip = rip;
1741 	} else {
1742 		panic("%s: invalid state %d", __func__, state);
1743 	}
1744 	return (0);
1745 }
1746 
1747 int
1748 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info)
1749 {
1750 	struct vcpu *vcpu;
1751 	int type, vector;
1752 
1753 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1754 		return (EINVAL);
1755 
1756 	vcpu = &vm->vcpu[vcpuid];
1757 
1758 	if (info & VM_INTINFO_VALID) {
1759 		type = info & VM_INTINFO_TYPE;
1760 		vector = info & 0xff;
1761 		if (type == VM_INTINFO_NMI && vector != IDT_NMI)
1762 			return (EINVAL);
1763 		if (type == VM_INTINFO_HWEXCEPTION && vector >= 32)
1764 			return (EINVAL);
1765 		if (info & VM_INTINFO_RSVD)
1766 			return (EINVAL);
1767 	} else {
1768 		info = 0;
1769 	}
1770 	VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info);
1771 	vcpu->exitintinfo = info;
1772 	return (0);
1773 }
1774 
1775 enum exc_class {
1776 	EXC_BENIGN,
1777 	EXC_CONTRIBUTORY,
1778 	EXC_PAGEFAULT
1779 };
1780 
1781 #define	IDT_VE	20	/* Virtualization Exception (Intel specific) */
1782 
1783 static enum exc_class
1784 exception_class(uint64_t info)
1785 {
1786 	int type, vector;
1787 
1788 	KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info));
1789 	type = info & VM_INTINFO_TYPE;
1790 	vector = info & 0xff;
1791 
1792 	/* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */
1793 	switch (type) {
1794 	case VM_INTINFO_HWINTR:
1795 	case VM_INTINFO_SWINTR:
1796 	case VM_INTINFO_NMI:
1797 		return (EXC_BENIGN);
1798 	default:
1799 		/*
1800 		 * Hardware exception.
1801 		 *
1802 		 * SVM and VT-x use identical type values to represent NMI,
1803 		 * hardware interrupt and software interrupt.
1804 		 *
1805 		 * SVM uses type '3' for all exceptions. VT-x uses type '3'
1806 		 * for exceptions except #BP and #OF. #BP and #OF use a type
1807 		 * value of '5' or '6'. Therefore we don't check for explicit
1808 		 * values of 'type' to classify 'intinfo' into a hardware
1809 		 * exception.
1810 		 */
1811 		break;
1812 	}
1813 
1814 	switch (vector) {
1815 	case IDT_PF:
1816 	case IDT_VE:
1817 		return (EXC_PAGEFAULT);
1818 	case IDT_DE:
1819 	case IDT_TS:
1820 	case IDT_NP:
1821 	case IDT_SS:
1822 	case IDT_GP:
1823 		return (EXC_CONTRIBUTORY);
1824 	default:
1825 		return (EXC_BENIGN);
1826 	}
1827 }
1828 
1829 static int
1830 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2,
1831     uint64_t *retinfo)
1832 {
1833 	enum exc_class exc1, exc2;
1834 	int type1, vector1;
1835 
1836 	KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1));
1837 	KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2));
1838 
1839 	/*
1840 	 * If an exception occurs while attempting to call the double-fault
1841 	 * handler the processor enters shutdown mode (aka triple fault).
1842 	 */
1843 	type1 = info1 & VM_INTINFO_TYPE;
1844 	vector1 = info1 & 0xff;
1845 	if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) {
1846 		VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)",
1847 		    info1, info2);
1848 		vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT);
1849 		*retinfo = 0;
1850 		return (0);
1851 	}
1852 
1853 	/*
1854 	 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3
1855 	 */
1856 	exc1 = exception_class(info1);
1857 	exc2 = exception_class(info2);
1858 	if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) ||
1859 	    (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) {
1860 		/* Convert nested fault into a double fault. */
1861 		*retinfo = IDT_DF;
1862 		*retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
1863 		*retinfo |= VM_INTINFO_DEL_ERRCODE;
1864 	} else {
1865 		/* Handle exceptions serially */
1866 		*retinfo = info2;
1867 	}
1868 	return (1);
1869 }
1870 
1871 static uint64_t
1872 vcpu_exception_intinfo(struct vcpu *vcpu)
1873 {
1874 	uint64_t info = 0;
1875 
1876 	if (vcpu->exception_pending) {
1877 		info = vcpu->exc_vector & 0xff;
1878 		info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
1879 		if (vcpu->exc_errcode_valid) {
1880 			info |= VM_INTINFO_DEL_ERRCODE;
1881 			info |= (uint64_t)vcpu->exc_errcode << 32;
1882 		}
1883 	}
1884 	return (info);
1885 }
1886 
1887 int
1888 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo)
1889 {
1890 	struct vcpu *vcpu;
1891 	uint64_t info1, info2;
1892 	int valid;
1893 
1894 	KASSERT(vcpuid >= 0 && vcpuid < VM_MAXCPU, ("invalid vcpu %d", vcpuid));
1895 
1896 	vcpu = &vm->vcpu[vcpuid];
1897 
1898 	info1 = vcpu->exitintinfo;
1899 	vcpu->exitintinfo = 0;
1900 
1901 	info2 = 0;
1902 	if (vcpu->exception_pending) {
1903 		info2 = vcpu_exception_intinfo(vcpu);
1904 		vcpu->exception_pending = 0;
1905 		VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx",
1906 		    vcpu->exc_vector, info2);
1907 	}
1908 
1909 	if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) {
1910 		valid = nested_fault(vm, vcpuid, info1, info2, retinfo);
1911 	} else if (info1 & VM_INTINFO_VALID) {
1912 		*retinfo = info1;
1913 		valid = 1;
1914 	} else if (info2 & VM_INTINFO_VALID) {
1915 		*retinfo = info2;
1916 		valid = 1;
1917 	} else {
1918 		valid = 0;
1919 	}
1920 
1921 	if (valid) {
1922 		VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), "
1923 		    "retinfo(%#lx)", __func__, info1, info2, *retinfo);
1924 	}
1925 
1926 	return (valid);
1927 }
1928 
1929 int
1930 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2)
1931 {
1932 	struct vcpu *vcpu;
1933 
1934 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1935 		return (EINVAL);
1936 
1937 	vcpu = &vm->vcpu[vcpuid];
1938 	*info1 = vcpu->exitintinfo;
1939 	*info2 = vcpu_exception_intinfo(vcpu);
1940 	return (0);
1941 }
1942 
1943 int
1944 vm_inject_exception(struct vm *vm, int vcpuid, int vector, int errcode_valid,
1945     uint32_t errcode, int restart_instruction)
1946 {
1947 	struct vcpu *vcpu;
1948 	uint64_t regval;
1949 	int error;
1950 
1951 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1952 		return (EINVAL);
1953 
1954 	if (vector < 0 || vector >= 32)
1955 		return (EINVAL);
1956 
1957 	/*
1958 	 * A double fault exception should never be injected directly into
1959 	 * the guest. It is a derived exception that results from specific
1960 	 * combinations of nested faults.
1961 	 */
1962 	if (vector == IDT_DF)
1963 		return (EINVAL);
1964 
1965 	vcpu = &vm->vcpu[vcpuid];
1966 
1967 	if (vcpu->exception_pending) {
1968 		VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to "
1969 		    "pending exception %d", vector, vcpu->exc_vector);
1970 		return (EBUSY);
1971 	}
1972 
1973 	if (errcode_valid) {
1974 		/*
1975 		 * Exceptions don't deliver an error code in real mode.
1976 		 */
1977 		error = vm_get_register(vm, vcpuid, VM_REG_GUEST_CR0, &regval);
1978 		KASSERT(!error, ("%s: error %d getting CR0", __func__, error));
1979 		if (!(regval & CR0_PE))
1980 			errcode_valid = 0;
1981 	}
1982 
1983 	/*
1984 	 * From section 26.6.1 "Interruptibility State" in Intel SDM:
1985 	 *
1986 	 * Event blocking by "STI" or "MOV SS" is cleared after guest executes
1987 	 * one instruction or incurs an exception.
1988 	 */
1989 	error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0);
1990 	KASSERT(error == 0, ("%s: error %d clearing interrupt shadow",
1991 	    __func__, error));
1992 
1993 	if (restart_instruction)
1994 		vm_restart_instruction(vm, vcpuid);
1995 
1996 	vcpu->exception_pending = 1;
1997 	vcpu->exc_vector = vector;
1998 	vcpu->exc_errcode = errcode;
1999 	vcpu->exc_errcode_valid = errcode_valid;
2000 	VCPU_CTR1(vm, vcpuid, "Exception %d pending", vector);
2001 	return (0);
2002 }
2003 
2004 void
2005 vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid,
2006     int errcode)
2007 {
2008 	struct vm *vm;
2009 	int error, restart_instruction;
2010 
2011 	vm = vmarg;
2012 	restart_instruction = 1;
2013 
2014 	error = vm_inject_exception(vm, vcpuid, vector, errcode_valid,
2015 	    errcode, restart_instruction);
2016 	KASSERT(error == 0, ("vm_inject_exception error %d", error));
2017 }
2018 
2019 void
2020 vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2)
2021 {
2022 	struct vm *vm;
2023 	int error;
2024 
2025 	vm = vmarg;
2026 	VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx",
2027 	    error_code, cr2);
2028 
2029 	error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2);
2030 	KASSERT(error == 0, ("vm_set_register(cr2) error %d", error));
2031 
2032 	vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code);
2033 }
2034 
2035 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu");
2036 
2037 int
2038 vm_inject_nmi(struct vm *vm, int vcpuid)
2039 {
2040 	struct vcpu *vcpu;
2041 
2042 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2043 		return (EINVAL);
2044 
2045 	vcpu = &vm->vcpu[vcpuid];
2046 
2047 	vcpu->nmi_pending = 1;
2048 	vcpu_notify_event(vm, vcpuid, false);
2049 	return (0);
2050 }
2051 
2052 int
2053 vm_nmi_pending(struct vm *vm, int vcpuid)
2054 {
2055 	struct vcpu *vcpu;
2056 
2057 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2058 		panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
2059 
2060 	vcpu = &vm->vcpu[vcpuid];
2061 
2062 	return (vcpu->nmi_pending);
2063 }
2064 
2065 void
2066 vm_nmi_clear(struct vm *vm, int vcpuid)
2067 {
2068 	struct vcpu *vcpu;
2069 
2070 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2071 		panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
2072 
2073 	vcpu = &vm->vcpu[vcpuid];
2074 
2075 	if (vcpu->nmi_pending == 0)
2076 		panic("vm_nmi_clear: inconsistent nmi_pending state");
2077 
2078 	vcpu->nmi_pending = 0;
2079 	vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1);
2080 }
2081 
2082 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu");
2083 
2084 int
2085 vm_inject_extint(struct vm *vm, int vcpuid)
2086 {
2087 	struct vcpu *vcpu;
2088 
2089 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2090 		return (EINVAL);
2091 
2092 	vcpu = &vm->vcpu[vcpuid];
2093 
2094 	vcpu->extint_pending = 1;
2095 	vcpu_notify_event(vm, vcpuid, false);
2096 	return (0);
2097 }
2098 
2099 int
2100 vm_extint_pending(struct vm *vm, int vcpuid)
2101 {
2102 	struct vcpu *vcpu;
2103 
2104 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2105 		panic("vm_extint_pending: invalid vcpuid %d", vcpuid);
2106 
2107 	vcpu = &vm->vcpu[vcpuid];
2108 
2109 	return (vcpu->extint_pending);
2110 }
2111 
2112 void
2113 vm_extint_clear(struct vm *vm, int vcpuid)
2114 {
2115 	struct vcpu *vcpu;
2116 
2117 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2118 		panic("vm_extint_pending: invalid vcpuid %d", vcpuid);
2119 
2120 	vcpu = &vm->vcpu[vcpuid];
2121 
2122 	if (vcpu->extint_pending == 0)
2123 		panic("vm_extint_clear: inconsistent extint_pending state");
2124 
2125 	vcpu->extint_pending = 0;
2126 	vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1);
2127 }
2128 
2129 int
2130 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval)
2131 {
2132 	if (vcpu < 0 || vcpu >= VM_MAXCPU)
2133 		return (EINVAL);
2134 
2135 	if (type < 0 || type >= VM_CAP_MAX)
2136 		return (EINVAL);
2137 
2138 	return (VMGETCAP(vm->cookie, vcpu, type, retval));
2139 }
2140 
2141 int
2142 vm_set_capability(struct vm *vm, int vcpu, int type, int val)
2143 {
2144 	if (vcpu < 0 || vcpu >= VM_MAXCPU)
2145 		return (EINVAL);
2146 
2147 	if (type < 0 || type >= VM_CAP_MAX)
2148 		return (EINVAL);
2149 
2150 	return (VMSETCAP(vm->cookie, vcpu, type, val));
2151 }
2152 
2153 struct vlapic *
2154 vm_lapic(struct vm *vm, int cpu)
2155 {
2156 	return (vm->vcpu[cpu].vlapic);
2157 }
2158 
2159 struct vioapic *
2160 vm_ioapic(struct vm *vm)
2161 {
2162 
2163 	return (vm->vioapic);
2164 }
2165 
2166 struct vhpet *
2167 vm_hpet(struct vm *vm)
2168 {
2169 
2170 	return (vm->vhpet);
2171 }
2172 
2173 boolean_t
2174 vmm_is_pptdev(int bus, int slot, int func)
2175 {
2176 	int found, i, n;
2177 	int b, s, f;
2178 	char *val, *cp, *cp2;
2179 
2180 	/*
2181 	 * XXX
2182 	 * The length of an environment variable is limited to 128 bytes which
2183 	 * puts an upper limit on the number of passthru devices that may be
2184 	 * specified using a single environment variable.
2185 	 *
2186 	 * Work around this by scanning multiple environment variable
2187 	 * names instead of a single one - yuck!
2188 	 */
2189 	const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL };
2190 
2191 	/* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */
2192 	found = 0;
2193 	for (i = 0; names[i] != NULL && !found; i++) {
2194 		cp = val = kern_getenv(names[i]);
2195 		while (cp != NULL && *cp != '\0') {
2196 			if ((cp2 = strchr(cp, ' ')) != NULL)
2197 				*cp2 = '\0';
2198 
2199 			n = sscanf(cp, "%d/%d/%d", &b, &s, &f);
2200 			if (n == 3 && bus == b && slot == s && func == f) {
2201 				found = 1;
2202 				break;
2203 			}
2204 
2205 			if (cp2 != NULL)
2206 				*cp2++ = ' ';
2207 
2208 			cp = cp2;
2209 		}
2210 		freeenv(val);
2211 	}
2212 	return (found);
2213 }
2214 
2215 void *
2216 vm_iommu_domain(struct vm *vm)
2217 {
2218 
2219 	return (vm->iommu);
2220 }
2221 
2222 int
2223 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate,
2224     bool from_idle)
2225 {
2226 	int error;
2227 	struct vcpu *vcpu;
2228 
2229 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2230 		panic("vm_set_run_state: invalid vcpuid %d", vcpuid);
2231 
2232 	vcpu = &vm->vcpu[vcpuid];
2233 
2234 	vcpu_lock(vcpu);
2235 	error = vcpu_set_state_locked(vm, vcpuid, newstate, from_idle);
2236 	vcpu_unlock(vcpu);
2237 
2238 	return (error);
2239 }
2240 
2241 enum vcpu_state
2242 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu)
2243 {
2244 	struct vcpu *vcpu;
2245 	enum vcpu_state state;
2246 
2247 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2248 		panic("vm_get_run_state: invalid vcpuid %d", vcpuid);
2249 
2250 	vcpu = &vm->vcpu[vcpuid];
2251 
2252 	vcpu_lock(vcpu);
2253 	state = vcpu->state;
2254 	if (hostcpu != NULL)
2255 		*hostcpu = vcpu->hostcpu;
2256 	vcpu_unlock(vcpu);
2257 
2258 	return (state);
2259 }
2260 
2261 int
2262 vm_activate_cpu(struct vm *vm, int vcpuid)
2263 {
2264 
2265 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2266 		return (EINVAL);
2267 
2268 	if (CPU_ISSET(vcpuid, &vm->active_cpus))
2269 		return (EBUSY);
2270 
2271 	VCPU_CTR0(vm, vcpuid, "activated");
2272 	CPU_SET_ATOMIC(vcpuid, &vm->active_cpus);
2273 	return (0);
2274 }
2275 
2276 cpuset_t
2277 vm_active_cpus(struct vm *vm)
2278 {
2279 
2280 	return (vm->active_cpus);
2281 }
2282 
2283 cpuset_t
2284 vm_suspended_cpus(struct vm *vm)
2285 {
2286 
2287 	return (vm->suspended_cpus);
2288 }
2289 
2290 void *
2291 vcpu_stats(struct vm *vm, int vcpuid)
2292 {
2293 
2294 	return (vm->vcpu[vcpuid].stats);
2295 }
2296 
2297 int
2298 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state)
2299 {
2300 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2301 		return (EINVAL);
2302 
2303 	*state = vm->vcpu[vcpuid].x2apic_state;
2304 
2305 	return (0);
2306 }
2307 
2308 int
2309 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state)
2310 {
2311 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2312 		return (EINVAL);
2313 
2314 	if (state >= X2APIC_STATE_LAST)
2315 		return (EINVAL);
2316 
2317 	vm->vcpu[vcpuid].x2apic_state = state;
2318 
2319 	vlapic_set_x2apic_state(vm, vcpuid, state);
2320 
2321 	return (0);
2322 }
2323 
2324 /*
2325  * This function is called to ensure that a vcpu "sees" a pending event
2326  * as soon as possible:
2327  * - If the vcpu thread is sleeping then it is woken up.
2328  * - If the vcpu is running on a different host_cpu then an IPI will be directed
2329  *   to the host_cpu to cause the vcpu to trap into the hypervisor.
2330  */
2331 static void
2332 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr)
2333 {
2334 	int hostcpu;
2335 
2336 	hostcpu = vcpu->hostcpu;
2337 	if (vcpu->state == VCPU_RUNNING) {
2338 		KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu"));
2339 		if (hostcpu != curcpu) {
2340 			if (lapic_intr) {
2341 				vlapic_post_intr(vcpu->vlapic, hostcpu,
2342 				    vmm_ipinum);
2343 			} else {
2344 				ipi_cpu(hostcpu, vmm_ipinum);
2345 			}
2346 		} else {
2347 			/*
2348 			 * If the 'vcpu' is running on 'curcpu' then it must
2349 			 * be sending a notification to itself (e.g. SELF_IPI).
2350 			 * The pending event will be picked up when the vcpu
2351 			 * transitions back to guest context.
2352 			 */
2353 		}
2354 	} else {
2355 		KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent "
2356 		    "with hostcpu %d", vcpu->state, hostcpu));
2357 		if (vcpu->state == VCPU_SLEEPING)
2358 			wakeup_one(vcpu);
2359 	}
2360 }
2361 
2362 void
2363 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr)
2364 {
2365 	struct vcpu *vcpu = &vm->vcpu[vcpuid];
2366 
2367 	vcpu_lock(vcpu);
2368 	vcpu_notify_event_locked(vcpu, lapic_intr);
2369 	vcpu_unlock(vcpu);
2370 }
2371 
2372 struct vmspace *
2373 vm_get_vmspace(struct vm *vm)
2374 {
2375 
2376 	return (vm->vmspace);
2377 }
2378 
2379 int
2380 vm_apicid2vcpuid(struct vm *vm, int apicid)
2381 {
2382 	/*
2383 	 * XXX apic id is assumed to be numerically identical to vcpu id
2384 	 */
2385 	return (apicid);
2386 }
2387 
2388 void
2389 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest,
2390     vm_rendezvous_func_t func, void *arg)
2391 {
2392 	int i;
2393 
2394 	/*
2395 	 * Enforce that this function is called without any locks
2396 	 */
2397 	WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous");
2398 	KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU),
2399 	    ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid));
2400 
2401 restart:
2402 	mtx_lock(&vm->rendezvous_mtx);
2403 	if (vm->rendezvous_func != NULL) {
2404 		/*
2405 		 * If a rendezvous is already in progress then we need to
2406 		 * call the rendezvous handler in case this 'vcpuid' is one
2407 		 * of the targets of the rendezvous.
2408 		 */
2409 		RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress");
2410 		mtx_unlock(&vm->rendezvous_mtx);
2411 		vm_handle_rendezvous(vm, vcpuid);
2412 		goto restart;
2413 	}
2414 	KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous "
2415 	    "rendezvous is still in progress"));
2416 
2417 	RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous");
2418 	vm->rendezvous_req_cpus = dest;
2419 	CPU_ZERO(&vm->rendezvous_done_cpus);
2420 	vm->rendezvous_arg = arg;
2421 	vm_set_rendezvous_func(vm, func);
2422 	mtx_unlock(&vm->rendezvous_mtx);
2423 
2424 	/*
2425 	 * Wake up any sleeping vcpus and trigger a VM-exit in any running
2426 	 * vcpus so they handle the rendezvous as soon as possible.
2427 	 */
2428 	for (i = 0; i < VM_MAXCPU; i++) {
2429 		if (CPU_ISSET(i, &dest))
2430 			vcpu_notify_event(vm, i, false);
2431 	}
2432 
2433 	vm_handle_rendezvous(vm, vcpuid);
2434 }
2435 
2436 struct vatpic *
2437 vm_atpic(struct vm *vm)
2438 {
2439 	return (vm->vatpic);
2440 }
2441 
2442 struct vatpit *
2443 vm_atpit(struct vm *vm)
2444 {
2445 	return (vm->vatpit);
2446 }
2447 
2448 struct vpmtmr *
2449 vm_pmtmr(struct vm *vm)
2450 {
2451 
2452 	return (vm->vpmtmr);
2453 }
2454 
2455 struct vrtc *
2456 vm_rtc(struct vm *vm)
2457 {
2458 
2459 	return (vm->vrtc);
2460 }
2461 
2462 enum vm_reg_name
2463 vm_segment_name(int seg)
2464 {
2465 	static enum vm_reg_name seg_names[] = {
2466 		VM_REG_GUEST_ES,
2467 		VM_REG_GUEST_CS,
2468 		VM_REG_GUEST_SS,
2469 		VM_REG_GUEST_DS,
2470 		VM_REG_GUEST_FS,
2471 		VM_REG_GUEST_GS
2472 	};
2473 
2474 	KASSERT(seg >= 0 && seg < nitems(seg_names),
2475 	    ("%s: invalid segment encoding %d", __func__, seg));
2476 	return (seg_names[seg]);
2477 }
2478 
2479 void
2480 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo,
2481     int num_copyinfo)
2482 {
2483 	int idx;
2484 
2485 	for (idx = 0; idx < num_copyinfo; idx++) {
2486 		if (copyinfo[idx].cookie != NULL)
2487 			vm_gpa_release(copyinfo[idx].cookie);
2488 	}
2489 	bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo));
2490 }
2491 
2492 int
2493 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging,
2494     uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo,
2495     int num_copyinfo, int *fault)
2496 {
2497 	int error, idx, nused;
2498 	size_t n, off, remaining;
2499 	void *hva, *cookie;
2500 	uint64_t gpa;
2501 
2502 	bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo);
2503 
2504 	nused = 0;
2505 	remaining = len;
2506 	while (remaining > 0) {
2507 		KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo"));
2508 		error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa, fault);
2509 		if (error || *fault)
2510 			return (error);
2511 		off = gpa & PAGE_MASK;
2512 		n = min(remaining, PAGE_SIZE - off);
2513 		copyinfo[nused].gpa = gpa;
2514 		copyinfo[nused].len = n;
2515 		remaining -= n;
2516 		gla += n;
2517 		nused++;
2518 	}
2519 
2520 	for (idx = 0; idx < nused; idx++) {
2521 		hva = vm_gpa_hold(vm, vcpuid, copyinfo[idx].gpa,
2522 		    copyinfo[idx].len, prot, &cookie);
2523 		if (hva == NULL)
2524 			break;
2525 		copyinfo[idx].hva = hva;
2526 		copyinfo[idx].cookie = cookie;
2527 	}
2528 
2529 	if (idx != nused) {
2530 		vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo);
2531 		return (EFAULT);
2532 	} else {
2533 		*fault = 0;
2534 		return (0);
2535 	}
2536 }
2537 
2538 void
2539 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr,
2540     size_t len)
2541 {
2542 	char *dst;
2543 	int idx;
2544 
2545 	dst = kaddr;
2546 	idx = 0;
2547 	while (len > 0) {
2548 		bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len);
2549 		len -= copyinfo[idx].len;
2550 		dst += copyinfo[idx].len;
2551 		idx++;
2552 	}
2553 }
2554 
2555 void
2556 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr,
2557     struct vm_copyinfo *copyinfo, size_t len)
2558 {
2559 	const char *src;
2560 	int idx;
2561 
2562 	src = kaddr;
2563 	idx = 0;
2564 	while (len > 0) {
2565 		bcopy(src, copyinfo[idx].hva, copyinfo[idx].len);
2566 		len -= copyinfo[idx].len;
2567 		src += copyinfo[idx].len;
2568 		idx++;
2569 	}
2570 }
2571 
2572 /*
2573  * Return the amount of in-use and wired memory for the VM. Since
2574  * these are global stats, only return the values with for vCPU 0
2575  */
2576 VMM_STAT_DECLARE(VMM_MEM_RESIDENT);
2577 VMM_STAT_DECLARE(VMM_MEM_WIRED);
2578 
2579 static void
2580 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat)
2581 {
2582 
2583 	if (vcpu == 0) {
2584 		vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT,
2585 	       	    PAGE_SIZE * vmspace_resident_count(vm->vmspace));
2586 	}
2587 }
2588 
2589 static void
2590 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat)
2591 {
2592 
2593 	if (vcpu == 0) {
2594 		vmm_stat_set(vm, vcpu, VMM_MEM_WIRED,
2595 	      	    PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace)));
2596 	}
2597 }
2598 
2599 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt);
2600 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt);
2601