1 /*- 2 * Copyright (c) 2011 NetApp, Inc. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD$ 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/sysctl.h> 37 #include <sys/malloc.h> 38 #include <sys/pcpu.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/proc.h> 42 #include <sys/rwlock.h> 43 #include <sys/sched.h> 44 #include <sys/smp.h> 45 #include <sys/systm.h> 46 47 #include <vm/vm.h> 48 #include <vm/vm_object.h> 49 #include <vm/vm_page.h> 50 #include <vm/pmap.h> 51 #include <vm/vm_map.h> 52 #include <vm/vm_extern.h> 53 #include <vm/vm_param.h> 54 55 #include <machine/cpu.h> 56 #include <machine/vm.h> 57 #include <machine/pcb.h> 58 #include <machine/smp.h> 59 #include <x86/psl.h> 60 #include <x86/apicreg.h> 61 #include <machine/vmparam.h> 62 63 #include <machine/vmm.h> 64 #include <machine/vmm_dev.h> 65 #include <machine/vmm_instruction_emul.h> 66 67 #include "vmm_ioport.h" 68 #include "vmm_ktr.h" 69 #include "vmm_host.h" 70 #include "vmm_mem.h" 71 #include "vmm_util.h" 72 #include "vatpic.h" 73 #include "vatpit.h" 74 #include "vhpet.h" 75 #include "vioapic.h" 76 #include "vlapic.h" 77 #include "vpmtmr.h" 78 #include "vrtc.h" 79 #include "vmm_stat.h" 80 #include "vmm_lapic.h" 81 82 #include "io/ppt.h" 83 #include "io/iommu.h" 84 85 struct vlapic; 86 87 /* 88 * Initialization: 89 * (a) allocated when vcpu is created 90 * (i) initialized when vcpu is created and when it is reinitialized 91 * (o) initialized the first time the vcpu is created 92 * (x) initialized before use 93 */ 94 struct vcpu { 95 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 96 enum vcpu_state state; /* (o) vcpu state */ 97 int hostcpu; /* (o) vcpu's host cpu */ 98 struct vlapic *vlapic; /* (i) APIC device model */ 99 enum x2apic_state x2apic_state; /* (i) APIC mode */ 100 uint64_t exitintinfo; /* (i) events pending at VM exit */ 101 int nmi_pending; /* (i) NMI pending */ 102 int extint_pending; /* (i) INTR pending */ 103 int exception_pending; /* (i) exception pending */ 104 int exc_vector; /* (x) exception collateral */ 105 int exc_errcode_valid; 106 uint32_t exc_errcode; 107 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 108 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 109 void *stats; /* (a,i) statistics */ 110 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 111 uint64_t nextrip; /* (x) next instruction to execute */ 112 }; 113 114 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx)) 115 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 116 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 117 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 118 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 119 120 struct mem_seg { 121 vm_paddr_t gpa; 122 size_t len; 123 boolean_t wired; 124 vm_object_t object; 125 }; 126 #define VM_MAX_MEMORY_SEGMENTS 2 127 128 /* 129 * Initialization: 130 * (o) initialized the first time the VM is created 131 * (i) initialized when VM is created and when it is reinitialized 132 * (x) initialized before use 133 */ 134 struct vm { 135 void *cookie; /* (i) cpu-specific data */ 136 void *iommu; /* (x) iommu-specific data */ 137 struct vhpet *vhpet; /* (i) virtual HPET */ 138 struct vioapic *vioapic; /* (i) virtual ioapic */ 139 struct vatpic *vatpic; /* (i) virtual atpic */ 140 struct vatpit *vatpit; /* (i) virtual atpit */ 141 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ 142 struct vrtc *vrtc; /* (o) virtual RTC */ 143 volatile cpuset_t active_cpus; /* (i) active vcpus */ 144 int suspend; /* (i) stop VM execution */ 145 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 146 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 147 cpuset_t rendezvous_req_cpus; /* (x) rendezvous requested */ 148 cpuset_t rendezvous_done_cpus; /* (x) rendezvous finished */ 149 void *rendezvous_arg; /* (x) rendezvous func/arg */ 150 vm_rendezvous_func_t rendezvous_func; 151 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 152 int num_mem_segs; /* (o) guest memory segments */ 153 struct mem_seg mem_segs[VM_MAX_MEMORY_SEGMENTS]; 154 struct vmspace *vmspace; /* (o) guest's address space */ 155 char name[VM_MAX_NAMELEN]; /* (o) virtual machine name */ 156 struct vcpu vcpu[VM_MAXCPU]; /* (i) guest vcpus */ 157 }; 158 159 static int vmm_initialized; 160 161 static struct vmm_ops *ops; 162 #define VMM_INIT(num) (ops != NULL ? (*ops->init)(num) : 0) 163 #define VMM_CLEANUP() (ops != NULL ? (*ops->cleanup)() : 0) 164 #define VMM_RESUME() (ops != NULL ? (*ops->resume)() : 0) 165 166 #define VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL) 167 #define VMRUN(vmi, vcpu, rip, pmap, rptr, sptr) \ 168 (ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, rptr, sptr) : ENXIO) 169 #define VMCLEANUP(vmi) (ops != NULL ? (*ops->vmcleanup)(vmi) : NULL) 170 #define VMSPACE_ALLOC(min, max) \ 171 (ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL) 172 #define VMSPACE_FREE(vmspace) \ 173 (ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO) 174 #define VMGETREG(vmi, vcpu, num, retval) \ 175 (ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO) 176 #define VMSETREG(vmi, vcpu, num, val) \ 177 (ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO) 178 #define VMGETDESC(vmi, vcpu, num, desc) \ 179 (ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO) 180 #define VMSETDESC(vmi, vcpu, num, desc) \ 181 (ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO) 182 #define VMGETCAP(vmi, vcpu, num, retval) \ 183 (ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO) 184 #define VMSETCAP(vmi, vcpu, num, val) \ 185 (ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO) 186 #define VLAPIC_INIT(vmi, vcpu) \ 187 (ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL) 188 #define VLAPIC_CLEANUP(vmi, vlapic) \ 189 (ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL) 190 191 #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS) 192 #define fpu_stop_emulating() clts() 193 194 static MALLOC_DEFINE(M_VM, "vm", "vm"); 195 196 /* statistics */ 197 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 198 199 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL); 200 201 /* 202 * Halt the guest if all vcpus are executing a HLT instruction with 203 * interrupts disabled. 204 */ 205 static int halt_detection_enabled = 1; 206 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 207 &halt_detection_enabled, 0, 208 "Halt VM if all vcpus execute HLT with interrupts disabled"); 209 210 static int vmm_ipinum; 211 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 212 "IPI vector used for vcpu notifications"); 213 214 static int trace_guest_exceptions; 215 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN, 216 &trace_guest_exceptions, 0, 217 "Trap into hypervisor on all guest exceptions and reflect them back"); 218 219 static int vmm_force_iommu = 0; 220 TUNABLE_INT("hw.vmm.force_iommu", &vmm_force_iommu); 221 SYSCTL_INT(_hw_vmm, OID_AUTO, force_iommu, CTLFLAG_RDTUN, &vmm_force_iommu, 0, 222 "Force use of I/O MMU even if no passthrough devices were found."); 223 224 static void 225 vcpu_cleanup(struct vm *vm, int i, bool destroy) 226 { 227 struct vcpu *vcpu = &vm->vcpu[i]; 228 229 VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic); 230 if (destroy) { 231 vmm_stat_free(vcpu->stats); 232 fpu_save_area_free(vcpu->guestfpu); 233 } 234 } 235 236 static void 237 vcpu_init(struct vm *vm, int vcpu_id, bool create) 238 { 239 struct vcpu *vcpu; 240 241 KASSERT(vcpu_id >= 0 && vcpu_id < VM_MAXCPU, 242 ("vcpu_init: invalid vcpu %d", vcpu_id)); 243 244 vcpu = &vm->vcpu[vcpu_id]; 245 246 if (create) { 247 KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already " 248 "initialized", vcpu_id)); 249 vcpu_lock_init(vcpu); 250 vcpu->state = VCPU_IDLE; 251 vcpu->hostcpu = NOCPU; 252 vcpu->guestfpu = fpu_save_area_alloc(); 253 vcpu->stats = vmm_stat_alloc(); 254 } 255 256 vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id); 257 vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED); 258 vcpu->exitintinfo = 0; 259 vcpu->nmi_pending = 0; 260 vcpu->extint_pending = 0; 261 vcpu->exception_pending = 0; 262 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 263 fpu_save_area_reset(vcpu->guestfpu); 264 vmm_stat_init(vcpu->stats); 265 } 266 267 int 268 vcpu_trace_exceptions(struct vm *vm, int vcpuid) 269 { 270 271 return (trace_guest_exceptions); 272 } 273 274 struct vm_exit * 275 vm_exitinfo(struct vm *vm, int cpuid) 276 { 277 struct vcpu *vcpu; 278 279 if (cpuid < 0 || cpuid >= VM_MAXCPU) 280 panic("vm_exitinfo: invalid cpuid %d", cpuid); 281 282 vcpu = &vm->vcpu[cpuid]; 283 284 return (&vcpu->exitinfo); 285 } 286 287 static void 288 vmm_resume(void) 289 { 290 VMM_RESUME(); 291 } 292 293 static int 294 vmm_init(void) 295 { 296 int error; 297 298 vmm_host_state_init(); 299 300 vmm_ipinum = lapic_ipi_alloc(&IDTVEC(justreturn)); 301 if (vmm_ipinum < 0) 302 vmm_ipinum = IPI_AST; 303 304 error = vmm_mem_init(); 305 if (error) 306 return (error); 307 308 if (vmm_is_intel()) 309 ops = &vmm_ops_intel; 310 else if (vmm_is_amd()) 311 ops = &vmm_ops_amd; 312 else 313 return (ENXIO); 314 315 vmm_resume_p = vmm_resume; 316 317 return (VMM_INIT(vmm_ipinum)); 318 } 319 320 static int 321 vmm_handler(module_t mod, int what, void *arg) 322 { 323 int error; 324 325 switch (what) { 326 case MOD_LOAD: 327 vmmdev_init(); 328 if (vmm_force_iommu || ppt_avail_devices() > 0) 329 iommu_init(); 330 error = vmm_init(); 331 if (error == 0) 332 vmm_initialized = 1; 333 break; 334 case MOD_UNLOAD: 335 error = vmmdev_cleanup(); 336 if (error == 0) { 337 vmm_resume_p = NULL; 338 iommu_cleanup(); 339 if (vmm_ipinum != IPI_AST) 340 lapic_ipi_free(vmm_ipinum); 341 error = VMM_CLEANUP(); 342 /* 343 * Something bad happened - prevent new 344 * VMs from being created 345 */ 346 if (error) 347 vmm_initialized = 0; 348 } 349 break; 350 default: 351 error = 0; 352 break; 353 } 354 return (error); 355 } 356 357 static moduledata_t vmm_kmod = { 358 "vmm", 359 vmm_handler, 360 NULL 361 }; 362 363 /* 364 * vmm initialization has the following dependencies: 365 * 366 * - iommu initialization must happen after the pci passthru driver has had 367 * a chance to attach to any passthru devices (after SI_SUB_CONFIGURE). 368 * 369 * - VT-x initialization requires smp_rendezvous() and therefore must happen 370 * after SMP is fully functional (after SI_SUB_SMP). 371 */ 372 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 373 MODULE_VERSION(vmm, 1); 374 375 static void 376 vm_init(struct vm *vm, bool create) 377 { 378 int i; 379 380 vm->cookie = VMINIT(vm, vmspace_pmap(vm->vmspace)); 381 vm->iommu = NULL; 382 vm->vioapic = vioapic_init(vm); 383 vm->vhpet = vhpet_init(vm); 384 vm->vatpic = vatpic_init(vm); 385 vm->vatpit = vatpit_init(vm); 386 vm->vpmtmr = vpmtmr_init(vm); 387 if (create) 388 vm->vrtc = vrtc_init(vm); 389 390 CPU_ZERO(&vm->active_cpus); 391 392 vm->suspend = 0; 393 CPU_ZERO(&vm->suspended_cpus); 394 395 for (i = 0; i < VM_MAXCPU; i++) 396 vcpu_init(vm, i, create); 397 } 398 399 int 400 vm_create(const char *name, struct vm **retvm) 401 { 402 struct vm *vm; 403 struct vmspace *vmspace; 404 405 /* 406 * If vmm.ko could not be successfully initialized then don't attempt 407 * to create the virtual machine. 408 */ 409 if (!vmm_initialized) 410 return (ENXIO); 411 412 if (name == NULL || strlen(name) >= VM_MAX_NAMELEN) 413 return (EINVAL); 414 415 vmspace = VMSPACE_ALLOC(0, VM_MAXUSER_ADDRESS); 416 if (vmspace == NULL) 417 return (ENOMEM); 418 419 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 420 strcpy(vm->name, name); 421 vm->num_mem_segs = 0; 422 vm->vmspace = vmspace; 423 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 424 425 vm_init(vm, true); 426 427 *retvm = vm; 428 return (0); 429 } 430 431 static void 432 vm_free_mem_seg(struct vm *vm, struct mem_seg *seg) 433 { 434 435 if (seg->object != NULL) 436 vmm_mem_free(vm->vmspace, seg->gpa, seg->len); 437 438 bzero(seg, sizeof(*seg)); 439 } 440 441 static void 442 vm_cleanup(struct vm *vm, bool destroy) 443 { 444 int i; 445 446 ppt_unassign_all(vm); 447 448 if (vm->iommu != NULL) 449 iommu_destroy_domain(vm->iommu); 450 451 if (destroy) 452 vrtc_cleanup(vm->vrtc); 453 else 454 vrtc_reset(vm->vrtc); 455 vpmtmr_cleanup(vm->vpmtmr); 456 vatpit_cleanup(vm->vatpit); 457 vhpet_cleanup(vm->vhpet); 458 vatpic_cleanup(vm->vatpic); 459 vioapic_cleanup(vm->vioapic); 460 461 for (i = 0; i < VM_MAXCPU; i++) 462 vcpu_cleanup(vm, i, destroy); 463 464 VMCLEANUP(vm->cookie); 465 466 if (destroy) { 467 for (i = 0; i < vm->num_mem_segs; i++) 468 vm_free_mem_seg(vm, &vm->mem_segs[i]); 469 470 vm->num_mem_segs = 0; 471 472 VMSPACE_FREE(vm->vmspace); 473 vm->vmspace = NULL; 474 } 475 } 476 477 void 478 vm_destroy(struct vm *vm) 479 { 480 vm_cleanup(vm, true); 481 free(vm, M_VM); 482 } 483 484 int 485 vm_reinit(struct vm *vm) 486 { 487 int error; 488 489 /* 490 * A virtual machine can be reset only if all vcpus are suspended. 491 */ 492 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 493 vm_cleanup(vm, false); 494 vm_init(vm, false); 495 error = 0; 496 } else { 497 error = EBUSY; 498 } 499 500 return (error); 501 } 502 503 const char * 504 vm_name(struct vm *vm) 505 { 506 return (vm->name); 507 } 508 509 int 510 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 511 { 512 vm_object_t obj; 513 514 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 515 return (ENOMEM); 516 else 517 return (0); 518 } 519 520 int 521 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 522 { 523 524 vmm_mmio_free(vm->vmspace, gpa, len); 525 return (0); 526 } 527 528 boolean_t 529 vm_mem_allocated(struct vm *vm, vm_paddr_t gpa) 530 { 531 int i; 532 vm_paddr_t gpabase, gpalimit; 533 534 for (i = 0; i < vm->num_mem_segs; i++) { 535 gpabase = vm->mem_segs[i].gpa; 536 gpalimit = gpabase + vm->mem_segs[i].len; 537 if (gpa >= gpabase && gpa < gpalimit) 538 return (TRUE); /* 'gpa' is regular memory */ 539 } 540 541 if (ppt_is_mmio(vm, gpa)) 542 return (TRUE); /* 'gpa' is pci passthru mmio */ 543 544 return (FALSE); 545 } 546 547 int 548 vm_malloc(struct vm *vm, vm_paddr_t gpa, size_t len) 549 { 550 int available, allocated; 551 struct mem_seg *seg; 552 vm_object_t object; 553 vm_paddr_t g; 554 555 if ((gpa & PAGE_MASK) || (len & PAGE_MASK) || len == 0) 556 return (EINVAL); 557 558 available = allocated = 0; 559 g = gpa; 560 while (g < gpa + len) { 561 if (vm_mem_allocated(vm, g)) 562 allocated++; 563 else 564 available++; 565 566 g += PAGE_SIZE; 567 } 568 569 /* 570 * If there are some allocated and some available pages in the address 571 * range then it is an error. 572 */ 573 if (allocated && available) 574 return (EINVAL); 575 576 /* 577 * If the entire address range being requested has already been 578 * allocated then there isn't anything more to do. 579 */ 580 if (allocated && available == 0) 581 return (0); 582 583 if (vm->num_mem_segs >= VM_MAX_MEMORY_SEGMENTS) 584 return (E2BIG); 585 586 seg = &vm->mem_segs[vm->num_mem_segs]; 587 588 if ((object = vmm_mem_alloc(vm->vmspace, gpa, len)) == NULL) 589 return (ENOMEM); 590 591 seg->gpa = gpa; 592 seg->len = len; 593 seg->object = object; 594 seg->wired = FALSE; 595 596 vm->num_mem_segs++; 597 598 return (0); 599 } 600 601 static vm_paddr_t 602 vm_maxmem(struct vm *vm) 603 { 604 int i; 605 vm_paddr_t gpa, maxmem; 606 607 maxmem = 0; 608 for (i = 0; i < vm->num_mem_segs; i++) { 609 gpa = vm->mem_segs[i].gpa + vm->mem_segs[i].len; 610 if (gpa > maxmem) 611 maxmem = gpa; 612 } 613 return (maxmem); 614 } 615 616 static void 617 vm_gpa_unwire(struct vm *vm) 618 { 619 int i, rv; 620 struct mem_seg *seg; 621 622 for (i = 0; i < vm->num_mem_segs; i++) { 623 seg = &vm->mem_segs[i]; 624 if (!seg->wired) 625 continue; 626 627 rv = vm_map_unwire(&vm->vmspace->vm_map, 628 seg->gpa, seg->gpa + seg->len, 629 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 630 KASSERT(rv == KERN_SUCCESS, ("vm(%s) memory segment " 631 "%#lx/%ld could not be unwired: %d", 632 vm_name(vm), seg->gpa, seg->len, rv)); 633 634 seg->wired = FALSE; 635 } 636 } 637 638 static int 639 vm_gpa_wire(struct vm *vm) 640 { 641 int i, rv; 642 struct mem_seg *seg; 643 644 for (i = 0; i < vm->num_mem_segs; i++) { 645 seg = &vm->mem_segs[i]; 646 if (seg->wired) 647 continue; 648 649 /* XXX rlimits? */ 650 rv = vm_map_wire(&vm->vmspace->vm_map, 651 seg->gpa, seg->gpa + seg->len, 652 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 653 if (rv != KERN_SUCCESS) 654 break; 655 656 seg->wired = TRUE; 657 } 658 659 if (i < vm->num_mem_segs) { 660 /* 661 * Undo the wiring before returning an error. 662 */ 663 vm_gpa_unwire(vm); 664 return (EAGAIN); 665 } 666 667 return (0); 668 } 669 670 static void 671 vm_iommu_modify(struct vm *vm, boolean_t map) 672 { 673 int i, sz; 674 vm_paddr_t gpa, hpa; 675 struct mem_seg *seg; 676 void *vp, *cookie, *host_domain; 677 678 sz = PAGE_SIZE; 679 host_domain = iommu_host_domain(); 680 681 for (i = 0; i < vm->num_mem_segs; i++) { 682 seg = &vm->mem_segs[i]; 683 KASSERT(seg->wired, ("vm(%s) memory segment %#lx/%ld not wired", 684 vm_name(vm), seg->gpa, seg->len)); 685 686 gpa = seg->gpa; 687 while (gpa < seg->gpa + seg->len) { 688 vp = vm_gpa_hold(vm, gpa, PAGE_SIZE, VM_PROT_WRITE, 689 &cookie); 690 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", 691 vm_name(vm), gpa)); 692 693 vm_gpa_release(cookie); 694 695 hpa = DMAP_TO_PHYS((uintptr_t)vp); 696 if (map) { 697 iommu_create_mapping(vm->iommu, gpa, hpa, sz); 698 iommu_remove_mapping(host_domain, hpa, sz); 699 } else { 700 iommu_remove_mapping(vm->iommu, gpa, sz); 701 iommu_create_mapping(host_domain, hpa, hpa, sz); 702 } 703 704 gpa += PAGE_SIZE; 705 } 706 } 707 708 /* 709 * Invalidate the cached translations associated with the domain 710 * from which pages were removed. 711 */ 712 if (map) 713 iommu_invalidate_tlb(host_domain); 714 else 715 iommu_invalidate_tlb(vm->iommu); 716 } 717 718 #define vm_iommu_unmap(vm) vm_iommu_modify((vm), FALSE) 719 #define vm_iommu_map(vm) vm_iommu_modify((vm), TRUE) 720 721 int 722 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 723 { 724 int error; 725 726 error = ppt_unassign_device(vm, bus, slot, func); 727 if (error) 728 return (error); 729 730 if (ppt_assigned_devices(vm) == 0) { 731 vm_iommu_unmap(vm); 732 vm_gpa_unwire(vm); 733 } 734 return (0); 735 } 736 737 int 738 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 739 { 740 int error; 741 vm_paddr_t maxaddr; 742 743 /* 744 * Virtual machines with pci passthru devices get special treatment: 745 * - the guest physical memory is wired 746 * - the iommu is programmed to do the 'gpa' to 'hpa' translation 747 * 748 * We need to do this before the first pci passthru device is attached. 749 */ 750 if (ppt_assigned_devices(vm) == 0) { 751 KASSERT(vm->iommu == NULL, 752 ("vm_assign_pptdev: iommu must be NULL")); 753 maxaddr = vm_maxmem(vm); 754 vm->iommu = iommu_create_domain(maxaddr); 755 756 error = vm_gpa_wire(vm); 757 if (error) 758 return (error); 759 760 vm_iommu_map(vm); 761 } 762 763 error = ppt_assign_device(vm, bus, slot, func); 764 return (error); 765 } 766 767 void * 768 vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 769 void **cookie) 770 { 771 int count, pageoff; 772 vm_page_t m; 773 774 pageoff = gpa & PAGE_MASK; 775 if (len > PAGE_SIZE - pageoff) 776 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 777 778 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 779 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 780 781 if (count == 1) { 782 *cookie = m; 783 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 784 } else { 785 *cookie = NULL; 786 return (NULL); 787 } 788 } 789 790 void 791 vm_gpa_release(void *cookie) 792 { 793 vm_page_t m = cookie; 794 795 vm_page_lock(m); 796 vm_page_unhold(m); 797 vm_page_unlock(m); 798 } 799 800 int 801 vm_gpabase2memseg(struct vm *vm, vm_paddr_t gpabase, 802 struct vm_memory_segment *seg) 803 { 804 int i; 805 806 for (i = 0; i < vm->num_mem_segs; i++) { 807 if (gpabase == vm->mem_segs[i].gpa) { 808 seg->gpa = vm->mem_segs[i].gpa; 809 seg->len = vm->mem_segs[i].len; 810 seg->wired = vm->mem_segs[i].wired; 811 return (0); 812 } 813 } 814 return (-1); 815 } 816 817 int 818 vm_get_memobj(struct vm *vm, vm_paddr_t gpa, size_t len, 819 vm_offset_t *offset, struct vm_object **object) 820 { 821 int i; 822 size_t seg_len; 823 vm_paddr_t seg_gpa; 824 vm_object_t seg_obj; 825 826 for (i = 0; i < vm->num_mem_segs; i++) { 827 if ((seg_obj = vm->mem_segs[i].object) == NULL) 828 continue; 829 830 seg_gpa = vm->mem_segs[i].gpa; 831 seg_len = vm->mem_segs[i].len; 832 833 if (gpa >= seg_gpa && gpa < seg_gpa + seg_len) { 834 *offset = gpa - seg_gpa; 835 *object = seg_obj; 836 vm_object_reference(seg_obj); 837 return (0); 838 } 839 } 840 841 return (EINVAL); 842 } 843 844 int 845 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval) 846 { 847 848 if (vcpu < 0 || vcpu >= VM_MAXCPU) 849 return (EINVAL); 850 851 if (reg >= VM_REG_LAST) 852 return (EINVAL); 853 854 return (VMGETREG(vm->cookie, vcpu, reg, retval)); 855 } 856 857 int 858 vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val) 859 { 860 struct vcpu *vcpu; 861 int error; 862 863 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 864 return (EINVAL); 865 866 if (reg >= VM_REG_LAST) 867 return (EINVAL); 868 869 error = VMSETREG(vm->cookie, vcpuid, reg, val); 870 if (error || reg != VM_REG_GUEST_RIP) 871 return (error); 872 873 /* Set 'nextrip' to match the value of %rip */ 874 VCPU_CTR1(vm, vcpuid, "Setting nextrip to %#lx", val); 875 vcpu = &vm->vcpu[vcpuid]; 876 vcpu->nextrip = val; 877 return (0); 878 } 879 880 static boolean_t 881 is_descriptor_table(int reg) 882 { 883 884 switch (reg) { 885 case VM_REG_GUEST_IDTR: 886 case VM_REG_GUEST_GDTR: 887 return (TRUE); 888 default: 889 return (FALSE); 890 } 891 } 892 893 static boolean_t 894 is_segment_register(int reg) 895 { 896 897 switch (reg) { 898 case VM_REG_GUEST_ES: 899 case VM_REG_GUEST_CS: 900 case VM_REG_GUEST_SS: 901 case VM_REG_GUEST_DS: 902 case VM_REG_GUEST_FS: 903 case VM_REG_GUEST_GS: 904 case VM_REG_GUEST_TR: 905 case VM_REG_GUEST_LDTR: 906 return (TRUE); 907 default: 908 return (FALSE); 909 } 910 } 911 912 int 913 vm_get_seg_desc(struct vm *vm, int vcpu, int reg, 914 struct seg_desc *desc) 915 { 916 917 if (vcpu < 0 || vcpu >= VM_MAXCPU) 918 return (EINVAL); 919 920 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 921 return (EINVAL); 922 923 return (VMGETDESC(vm->cookie, vcpu, reg, desc)); 924 } 925 926 int 927 vm_set_seg_desc(struct vm *vm, int vcpu, int reg, 928 struct seg_desc *desc) 929 { 930 if (vcpu < 0 || vcpu >= VM_MAXCPU) 931 return (EINVAL); 932 933 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 934 return (EINVAL); 935 936 return (VMSETDESC(vm->cookie, vcpu, reg, desc)); 937 } 938 939 static void 940 restore_guest_fpustate(struct vcpu *vcpu) 941 { 942 943 /* flush host state to the pcb */ 944 fpuexit(curthread); 945 946 /* restore guest FPU state */ 947 fpu_stop_emulating(); 948 fpurestore(vcpu->guestfpu); 949 950 /* restore guest XCR0 if XSAVE is enabled in the host */ 951 if (rcr4() & CR4_XSAVE) 952 load_xcr(0, vcpu->guest_xcr0); 953 954 /* 955 * The FPU is now "dirty" with the guest's state so turn on emulation 956 * to trap any access to the FPU by the host. 957 */ 958 fpu_start_emulating(); 959 } 960 961 static void 962 save_guest_fpustate(struct vcpu *vcpu) 963 { 964 965 if ((rcr0() & CR0_TS) == 0) 966 panic("fpu emulation not enabled in host!"); 967 968 /* save guest XCR0 and restore host XCR0 */ 969 if (rcr4() & CR4_XSAVE) { 970 vcpu->guest_xcr0 = rxcr(0); 971 load_xcr(0, vmm_get_host_xcr0()); 972 } 973 974 /* save guest FPU state */ 975 fpu_stop_emulating(); 976 fpusave(vcpu->guestfpu); 977 fpu_start_emulating(); 978 } 979 980 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 981 982 static int 983 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate, 984 bool from_idle) 985 { 986 int error; 987 988 vcpu_assert_locked(vcpu); 989 990 /* 991 * State transitions from the vmmdev_ioctl() must always begin from 992 * the VCPU_IDLE state. This guarantees that there is only a single 993 * ioctl() operating on a vcpu at any point. 994 */ 995 if (from_idle) { 996 while (vcpu->state != VCPU_IDLE) 997 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 998 } else { 999 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 1000 "vcpu idle state")); 1001 } 1002 1003 if (vcpu->state == VCPU_RUNNING) { 1004 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 1005 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 1006 } else { 1007 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 1008 "vcpu that is not running", vcpu->hostcpu)); 1009 } 1010 1011 /* 1012 * The following state transitions are allowed: 1013 * IDLE -> FROZEN -> IDLE 1014 * FROZEN -> RUNNING -> FROZEN 1015 * FROZEN -> SLEEPING -> FROZEN 1016 */ 1017 switch (vcpu->state) { 1018 case VCPU_IDLE: 1019 case VCPU_RUNNING: 1020 case VCPU_SLEEPING: 1021 error = (newstate != VCPU_FROZEN); 1022 break; 1023 case VCPU_FROZEN: 1024 error = (newstate == VCPU_FROZEN); 1025 break; 1026 default: 1027 error = 1; 1028 break; 1029 } 1030 1031 if (error) 1032 return (EBUSY); 1033 1034 vcpu->state = newstate; 1035 if (newstate == VCPU_RUNNING) 1036 vcpu->hostcpu = curcpu; 1037 else 1038 vcpu->hostcpu = NOCPU; 1039 1040 if (newstate == VCPU_IDLE) 1041 wakeup(&vcpu->state); 1042 1043 return (0); 1044 } 1045 1046 static void 1047 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1048 { 1049 int error; 1050 1051 if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0) 1052 panic("Error %d setting state to %d\n", error, newstate); 1053 } 1054 1055 static void 1056 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate) 1057 { 1058 int error; 1059 1060 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0) 1061 panic("Error %d setting state to %d", error, newstate); 1062 } 1063 1064 static void 1065 vm_set_rendezvous_func(struct vm *vm, vm_rendezvous_func_t func) 1066 { 1067 1068 KASSERT(mtx_owned(&vm->rendezvous_mtx), ("rendezvous_mtx not locked")); 1069 1070 /* 1071 * Update 'rendezvous_func' and execute a write memory barrier to 1072 * ensure that it is visible across all host cpus. This is not needed 1073 * for correctness but it does ensure that all the vcpus will notice 1074 * that the rendezvous is requested immediately. 1075 */ 1076 vm->rendezvous_func = func; 1077 wmb(); 1078 } 1079 1080 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt) \ 1081 do { \ 1082 if (vcpuid >= 0) \ 1083 VCPU_CTR0(vm, vcpuid, fmt); \ 1084 else \ 1085 VM_CTR0(vm, fmt); \ 1086 } while (0) 1087 1088 static void 1089 vm_handle_rendezvous(struct vm *vm, int vcpuid) 1090 { 1091 1092 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU), 1093 ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid)); 1094 1095 mtx_lock(&vm->rendezvous_mtx); 1096 while (vm->rendezvous_func != NULL) { 1097 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1098 CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus); 1099 1100 if (vcpuid != -1 && 1101 CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1102 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1103 VCPU_CTR0(vm, vcpuid, "Calling rendezvous func"); 1104 (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg); 1105 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1106 } 1107 if (CPU_CMP(&vm->rendezvous_req_cpus, 1108 &vm->rendezvous_done_cpus) == 0) { 1109 VCPU_CTR0(vm, vcpuid, "Rendezvous completed"); 1110 vm_set_rendezvous_func(vm, NULL); 1111 wakeup(&vm->rendezvous_func); 1112 break; 1113 } 1114 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion"); 1115 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1116 "vmrndv", 0); 1117 } 1118 mtx_unlock(&vm->rendezvous_mtx); 1119 } 1120 1121 /* 1122 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1123 */ 1124 static int 1125 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu) 1126 { 1127 struct vcpu *vcpu; 1128 const char *wmesg; 1129 int t, vcpu_halted, vm_halted; 1130 1131 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1132 1133 vcpu = &vm->vcpu[vcpuid]; 1134 vcpu_halted = 0; 1135 vm_halted = 0; 1136 1137 vcpu_lock(vcpu); 1138 while (1) { 1139 /* 1140 * Do a final check for pending NMI or interrupts before 1141 * really putting this thread to sleep. Also check for 1142 * software events that would cause this vcpu to wakeup. 1143 * 1144 * These interrupts/events could have happened after the 1145 * vcpu returned from VMRUN() and before it acquired the 1146 * vcpu lock above. 1147 */ 1148 if (vm->rendezvous_func != NULL || vm->suspend) 1149 break; 1150 if (vm_nmi_pending(vm, vcpuid)) 1151 break; 1152 if (!intr_disabled) { 1153 if (vm_extint_pending(vm, vcpuid) || 1154 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1155 break; 1156 } 1157 } 1158 1159 /* Don't go to sleep if the vcpu thread needs to yield */ 1160 if (vcpu_should_yield(vm, vcpuid)) 1161 break; 1162 1163 /* 1164 * Some Linux guests implement "halt" by having all vcpus 1165 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1166 * track of the vcpus that have entered this state. When all 1167 * vcpus enter the halted state the virtual machine is halted. 1168 */ 1169 if (intr_disabled) { 1170 wmesg = "vmhalt"; 1171 VCPU_CTR0(vm, vcpuid, "Halted"); 1172 if (!vcpu_halted && halt_detection_enabled) { 1173 vcpu_halted = 1; 1174 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1175 } 1176 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1177 vm_halted = 1; 1178 break; 1179 } 1180 } else { 1181 wmesg = "vmidle"; 1182 } 1183 1184 t = ticks; 1185 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1186 /* 1187 * XXX msleep_spin() cannot be interrupted by signals so 1188 * wake up periodically to check pending signals. 1189 */ 1190 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1191 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1192 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t); 1193 } 1194 1195 if (vcpu_halted) 1196 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1197 1198 vcpu_unlock(vcpu); 1199 1200 if (vm_halted) 1201 vm_suspend(vm, VM_SUSPEND_HALT); 1202 1203 return (0); 1204 } 1205 1206 static int 1207 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu) 1208 { 1209 int rv, ftype; 1210 struct vm_map *map; 1211 struct vcpu *vcpu; 1212 struct vm_exit *vme; 1213 1214 vcpu = &vm->vcpu[vcpuid]; 1215 vme = &vcpu->exitinfo; 1216 1217 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1218 __func__, vme->inst_length)); 1219 1220 ftype = vme->u.paging.fault_type; 1221 KASSERT(ftype == VM_PROT_READ || 1222 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1223 ("vm_handle_paging: invalid fault_type %d", ftype)); 1224 1225 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1226 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1227 vme->u.paging.gpa, ftype); 1228 if (rv == 0) { 1229 VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx", 1230 ftype == VM_PROT_READ ? "accessed" : "dirty", 1231 vme->u.paging.gpa); 1232 goto done; 1233 } 1234 } 1235 1236 map = &vm->vmspace->vm_map; 1237 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL); 1238 1239 VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, " 1240 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1241 1242 if (rv != KERN_SUCCESS) 1243 return (EFAULT); 1244 done: 1245 return (0); 1246 } 1247 1248 static int 1249 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu) 1250 { 1251 struct vie *vie; 1252 struct vcpu *vcpu; 1253 struct vm_exit *vme; 1254 uint64_t gla, gpa, cs_base; 1255 struct vm_guest_paging *paging; 1256 mem_region_read_t mread; 1257 mem_region_write_t mwrite; 1258 enum vm_cpu_mode cpu_mode; 1259 int cs_d, error, length; 1260 1261 vcpu = &vm->vcpu[vcpuid]; 1262 vme = &vcpu->exitinfo; 1263 1264 gla = vme->u.inst_emul.gla; 1265 gpa = vme->u.inst_emul.gpa; 1266 cs_base = vme->u.inst_emul.cs_base; 1267 cs_d = vme->u.inst_emul.cs_d; 1268 vie = &vme->u.inst_emul.vie; 1269 paging = &vme->u.inst_emul.paging; 1270 cpu_mode = paging->cpu_mode; 1271 1272 VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa); 1273 1274 /* Fetch, decode and emulate the faulting instruction */ 1275 if (vie->num_valid == 0) { 1276 /* 1277 * If the instruction length is not known then assume a 1278 * maximum size instruction. 1279 */ 1280 length = vme->inst_length ? vme->inst_length : VIE_INST_SIZE; 1281 error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip + 1282 cs_base, length, vie); 1283 } else { 1284 /* 1285 * The instruction bytes have already been copied into 'vie' 1286 */ 1287 error = 0; 1288 } 1289 if (error == 1) 1290 return (0); /* Resume guest to handle page fault */ 1291 else if (error == -1) 1292 return (EFAULT); 1293 else if (error != 0) 1294 panic("%s: vmm_fetch_instruction error %d", __func__, error); 1295 1296 if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) { 1297 VCPU_CTR1(vm, vcpuid, "Error decoding instruction at %#lx", 1298 vme->rip + cs_base); 1299 *retu = true; /* dump instruction bytes in userspace */ 1300 return (0); 1301 } 1302 1303 /* 1304 * If the instruction length was not specified then update it now 1305 * along with 'nextrip'. 1306 */ 1307 if (vme->inst_length == 0) { 1308 vme->inst_length = vie->num_processed; 1309 vcpu->nextrip += vie->num_processed; 1310 } 1311 1312 /* return to userland unless this is an in-kernel emulated device */ 1313 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1314 mread = lapic_mmio_read; 1315 mwrite = lapic_mmio_write; 1316 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1317 mread = vioapic_mmio_read; 1318 mwrite = vioapic_mmio_write; 1319 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1320 mread = vhpet_mmio_read; 1321 mwrite = vhpet_mmio_write; 1322 } else { 1323 *retu = true; 1324 return (0); 1325 } 1326 1327 error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging, 1328 mread, mwrite, retu); 1329 1330 return (error); 1331 } 1332 1333 static int 1334 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu) 1335 { 1336 int i, done; 1337 struct vcpu *vcpu; 1338 1339 done = 0; 1340 vcpu = &vm->vcpu[vcpuid]; 1341 1342 CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus); 1343 1344 /* 1345 * Wait until all 'active_cpus' have suspended themselves. 1346 * 1347 * Since a VM may be suspended at any time including when one or 1348 * more vcpus are doing a rendezvous we need to call the rendezvous 1349 * handler while we are waiting to prevent a deadlock. 1350 */ 1351 vcpu_lock(vcpu); 1352 while (1) { 1353 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1354 VCPU_CTR0(vm, vcpuid, "All vcpus suspended"); 1355 break; 1356 } 1357 1358 if (vm->rendezvous_func == NULL) { 1359 VCPU_CTR0(vm, vcpuid, "Sleeping during suspend"); 1360 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1361 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1362 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1363 } else { 1364 VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend"); 1365 vcpu_unlock(vcpu); 1366 vm_handle_rendezvous(vm, vcpuid); 1367 vcpu_lock(vcpu); 1368 } 1369 } 1370 vcpu_unlock(vcpu); 1371 1372 /* 1373 * Wakeup the other sleeping vcpus and return to userspace. 1374 */ 1375 for (i = 0; i < VM_MAXCPU; i++) { 1376 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1377 vcpu_notify_event(vm, i, false); 1378 } 1379 } 1380 1381 *retu = true; 1382 return (0); 1383 } 1384 1385 int 1386 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1387 { 1388 int i; 1389 1390 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1391 return (EINVAL); 1392 1393 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1394 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1395 vm->suspend, how); 1396 return (EALREADY); 1397 } 1398 1399 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1400 1401 /* 1402 * Notify all active vcpus that they are now suspended. 1403 */ 1404 for (i = 0; i < VM_MAXCPU; i++) { 1405 if (CPU_ISSET(i, &vm->active_cpus)) 1406 vcpu_notify_event(vm, i, false); 1407 } 1408 1409 return (0); 1410 } 1411 1412 void 1413 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip) 1414 { 1415 struct vm_exit *vmexit; 1416 1417 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1418 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1419 1420 vmexit = vm_exitinfo(vm, vcpuid); 1421 vmexit->rip = rip; 1422 vmexit->inst_length = 0; 1423 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1424 vmexit->u.suspended.how = vm->suspend; 1425 } 1426 1427 void 1428 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip) 1429 { 1430 struct vm_exit *vmexit; 1431 1432 KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress")); 1433 1434 vmexit = vm_exitinfo(vm, vcpuid); 1435 vmexit->rip = rip; 1436 vmexit->inst_length = 0; 1437 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1438 vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1); 1439 } 1440 1441 void 1442 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip) 1443 { 1444 struct vm_exit *vmexit; 1445 1446 vmexit = vm_exitinfo(vm, vcpuid); 1447 vmexit->rip = rip; 1448 vmexit->inst_length = 0; 1449 vmexit->exitcode = VM_EXITCODE_BOGUS; 1450 vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1); 1451 } 1452 1453 int 1454 vm_run(struct vm *vm, struct vm_run *vmrun) 1455 { 1456 int error, vcpuid; 1457 struct vcpu *vcpu; 1458 struct pcb *pcb; 1459 uint64_t tscval; 1460 struct vm_exit *vme; 1461 bool retu, intr_disabled; 1462 pmap_t pmap; 1463 void *rptr, *sptr; 1464 1465 vcpuid = vmrun->cpuid; 1466 1467 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1468 return (EINVAL); 1469 1470 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1471 return (EINVAL); 1472 1473 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1474 return (EINVAL); 1475 1476 rptr = &vm->rendezvous_func; 1477 sptr = &vm->suspend; 1478 pmap = vmspace_pmap(vm->vmspace); 1479 vcpu = &vm->vcpu[vcpuid]; 1480 vme = &vcpu->exitinfo; 1481 restart: 1482 critical_enter(); 1483 1484 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1485 ("vm_run: absurd pm_active")); 1486 1487 tscval = rdtsc(); 1488 1489 pcb = PCPU_GET(curpcb); 1490 set_pcb_flags(pcb, PCB_FULL_IRET); 1491 1492 restore_guest_fpustate(vcpu); 1493 1494 vcpu_require_state(vm, vcpuid, VCPU_RUNNING); 1495 error = VMRUN(vm->cookie, vcpuid, vcpu->nextrip, pmap, rptr, sptr); 1496 vcpu_require_state(vm, vcpuid, VCPU_FROZEN); 1497 1498 save_guest_fpustate(vcpu); 1499 1500 vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1501 1502 critical_exit(); 1503 1504 if (error == 0) { 1505 retu = false; 1506 vcpu->nextrip = vme->rip + vme->inst_length; 1507 switch (vme->exitcode) { 1508 case VM_EXITCODE_SUSPENDED: 1509 error = vm_handle_suspend(vm, vcpuid, &retu); 1510 break; 1511 case VM_EXITCODE_IOAPIC_EOI: 1512 vioapic_process_eoi(vm, vcpuid, 1513 vme->u.ioapic_eoi.vector); 1514 break; 1515 case VM_EXITCODE_RENDEZVOUS: 1516 vm_handle_rendezvous(vm, vcpuid); 1517 error = 0; 1518 break; 1519 case VM_EXITCODE_HLT: 1520 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1521 error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu); 1522 break; 1523 case VM_EXITCODE_PAGING: 1524 error = vm_handle_paging(vm, vcpuid, &retu); 1525 break; 1526 case VM_EXITCODE_INST_EMUL: 1527 error = vm_handle_inst_emul(vm, vcpuid, &retu); 1528 break; 1529 case VM_EXITCODE_INOUT: 1530 case VM_EXITCODE_INOUT_STR: 1531 error = vm_handle_inout(vm, vcpuid, vme, &retu); 1532 break; 1533 case VM_EXITCODE_MONITOR: 1534 case VM_EXITCODE_MWAIT: 1535 vm_inject_ud(vm, vcpuid); 1536 break; 1537 default: 1538 retu = true; /* handled in userland */ 1539 break; 1540 } 1541 } 1542 1543 if (error == 0 && retu == false) 1544 goto restart; 1545 1546 /* copy the exit information */ 1547 bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit)); 1548 return (error); 1549 } 1550 1551 int 1552 vm_restart_instruction(void *arg, int vcpuid) 1553 { 1554 struct vm *vm; 1555 struct vcpu *vcpu; 1556 enum vcpu_state state; 1557 uint64_t rip; 1558 int error; 1559 1560 vm = arg; 1561 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1562 return (EINVAL); 1563 1564 vcpu = &vm->vcpu[vcpuid]; 1565 state = vcpu_get_state(vm, vcpuid, NULL); 1566 if (state == VCPU_RUNNING) { 1567 /* 1568 * When a vcpu is "running" the next instruction is determined 1569 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'. 1570 * Thus setting 'inst_length' to zero will cause the current 1571 * instruction to be restarted. 1572 */ 1573 vcpu->exitinfo.inst_length = 0; 1574 VCPU_CTR1(vm, vcpuid, "restarting instruction at %#lx by " 1575 "setting inst_length to zero", vcpu->exitinfo.rip); 1576 } else if (state == VCPU_FROZEN) { 1577 /* 1578 * When a vcpu is "frozen" it is outside the critical section 1579 * around VMRUN() and 'nextrip' points to the next instruction. 1580 * Thus instruction restart is achieved by setting 'nextrip' 1581 * to the vcpu's %rip. 1582 */ 1583 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip); 1584 KASSERT(!error, ("%s: error %d getting rip", __func__, error)); 1585 VCPU_CTR2(vm, vcpuid, "restarting instruction by updating " 1586 "nextrip from %#lx to %#lx", vcpu->nextrip, rip); 1587 vcpu->nextrip = rip; 1588 } else { 1589 panic("%s: invalid state %d", __func__, state); 1590 } 1591 return (0); 1592 } 1593 1594 int 1595 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info) 1596 { 1597 struct vcpu *vcpu; 1598 int type, vector; 1599 1600 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1601 return (EINVAL); 1602 1603 vcpu = &vm->vcpu[vcpuid]; 1604 1605 if (info & VM_INTINFO_VALID) { 1606 type = info & VM_INTINFO_TYPE; 1607 vector = info & 0xff; 1608 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 1609 return (EINVAL); 1610 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 1611 return (EINVAL); 1612 if (info & VM_INTINFO_RSVD) 1613 return (EINVAL); 1614 } else { 1615 info = 0; 1616 } 1617 VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info); 1618 vcpu->exitintinfo = info; 1619 return (0); 1620 } 1621 1622 enum exc_class { 1623 EXC_BENIGN, 1624 EXC_CONTRIBUTORY, 1625 EXC_PAGEFAULT 1626 }; 1627 1628 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 1629 1630 static enum exc_class 1631 exception_class(uint64_t info) 1632 { 1633 int type, vector; 1634 1635 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 1636 type = info & VM_INTINFO_TYPE; 1637 vector = info & 0xff; 1638 1639 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 1640 switch (type) { 1641 case VM_INTINFO_HWINTR: 1642 case VM_INTINFO_SWINTR: 1643 case VM_INTINFO_NMI: 1644 return (EXC_BENIGN); 1645 default: 1646 /* 1647 * Hardware exception. 1648 * 1649 * SVM and VT-x use identical type values to represent NMI, 1650 * hardware interrupt and software interrupt. 1651 * 1652 * SVM uses type '3' for all exceptions. VT-x uses type '3' 1653 * for exceptions except #BP and #OF. #BP and #OF use a type 1654 * value of '5' or '6'. Therefore we don't check for explicit 1655 * values of 'type' to classify 'intinfo' into a hardware 1656 * exception. 1657 */ 1658 break; 1659 } 1660 1661 switch (vector) { 1662 case IDT_PF: 1663 case IDT_VE: 1664 return (EXC_PAGEFAULT); 1665 case IDT_DE: 1666 case IDT_TS: 1667 case IDT_NP: 1668 case IDT_SS: 1669 case IDT_GP: 1670 return (EXC_CONTRIBUTORY); 1671 default: 1672 return (EXC_BENIGN); 1673 } 1674 } 1675 1676 static int 1677 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2, 1678 uint64_t *retinfo) 1679 { 1680 enum exc_class exc1, exc2; 1681 int type1, vector1; 1682 1683 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 1684 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 1685 1686 /* 1687 * If an exception occurs while attempting to call the double-fault 1688 * handler the processor enters shutdown mode (aka triple fault). 1689 */ 1690 type1 = info1 & VM_INTINFO_TYPE; 1691 vector1 = info1 & 0xff; 1692 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 1693 VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)", 1694 info1, info2); 1695 vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT); 1696 *retinfo = 0; 1697 return (0); 1698 } 1699 1700 /* 1701 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 1702 */ 1703 exc1 = exception_class(info1); 1704 exc2 = exception_class(info2); 1705 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 1706 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 1707 /* Convert nested fault into a double fault. */ 1708 *retinfo = IDT_DF; 1709 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1710 *retinfo |= VM_INTINFO_DEL_ERRCODE; 1711 } else { 1712 /* Handle exceptions serially */ 1713 *retinfo = info2; 1714 } 1715 return (1); 1716 } 1717 1718 static uint64_t 1719 vcpu_exception_intinfo(struct vcpu *vcpu) 1720 { 1721 uint64_t info = 0; 1722 1723 if (vcpu->exception_pending) { 1724 info = vcpu->exc_vector & 0xff; 1725 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1726 if (vcpu->exc_errcode_valid) { 1727 info |= VM_INTINFO_DEL_ERRCODE; 1728 info |= (uint64_t)vcpu->exc_errcode << 32; 1729 } 1730 } 1731 return (info); 1732 } 1733 1734 int 1735 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo) 1736 { 1737 struct vcpu *vcpu; 1738 uint64_t info1, info2; 1739 int valid; 1740 1741 KASSERT(vcpuid >= 0 && vcpuid < VM_MAXCPU, ("invalid vcpu %d", vcpuid)); 1742 1743 vcpu = &vm->vcpu[vcpuid]; 1744 1745 info1 = vcpu->exitintinfo; 1746 vcpu->exitintinfo = 0; 1747 1748 info2 = 0; 1749 if (vcpu->exception_pending) { 1750 info2 = vcpu_exception_intinfo(vcpu); 1751 vcpu->exception_pending = 0; 1752 VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx", 1753 vcpu->exc_vector, info2); 1754 } 1755 1756 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 1757 valid = nested_fault(vm, vcpuid, info1, info2, retinfo); 1758 } else if (info1 & VM_INTINFO_VALID) { 1759 *retinfo = info1; 1760 valid = 1; 1761 } else if (info2 & VM_INTINFO_VALID) { 1762 *retinfo = info2; 1763 valid = 1; 1764 } else { 1765 valid = 0; 1766 } 1767 1768 if (valid) { 1769 VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), " 1770 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 1771 } 1772 1773 return (valid); 1774 } 1775 1776 int 1777 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2) 1778 { 1779 struct vcpu *vcpu; 1780 1781 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1782 return (EINVAL); 1783 1784 vcpu = &vm->vcpu[vcpuid]; 1785 *info1 = vcpu->exitintinfo; 1786 *info2 = vcpu_exception_intinfo(vcpu); 1787 return (0); 1788 } 1789 1790 int 1791 vm_inject_exception(struct vm *vm, int vcpuid, int vector, int errcode_valid, 1792 uint32_t errcode, int restart_instruction) 1793 { 1794 struct vcpu *vcpu; 1795 int error; 1796 1797 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1798 return (EINVAL); 1799 1800 if (vector < 0 || vector >= 32) 1801 return (EINVAL); 1802 1803 /* 1804 * A double fault exception should never be injected directly into 1805 * the guest. It is a derived exception that results from specific 1806 * combinations of nested faults. 1807 */ 1808 if (vector == IDT_DF) 1809 return (EINVAL); 1810 1811 vcpu = &vm->vcpu[vcpuid]; 1812 1813 if (vcpu->exception_pending) { 1814 VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to " 1815 "pending exception %d", vector, vcpu->exc_vector); 1816 return (EBUSY); 1817 } 1818 1819 /* 1820 * From section 26.6.1 "Interruptibility State" in Intel SDM: 1821 * 1822 * Event blocking by "STI" or "MOV SS" is cleared after guest executes 1823 * one instruction or incurs an exception. 1824 */ 1825 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0); 1826 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", 1827 __func__, error)); 1828 1829 if (restart_instruction) 1830 vm_restart_instruction(vm, vcpuid); 1831 1832 vcpu->exception_pending = 1; 1833 vcpu->exc_vector = vector; 1834 vcpu->exc_errcode = errcode; 1835 vcpu->exc_errcode_valid = errcode_valid; 1836 VCPU_CTR1(vm, vcpuid, "Exception %d pending", vector); 1837 return (0); 1838 } 1839 1840 void 1841 vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid, 1842 int errcode) 1843 { 1844 struct vm *vm; 1845 int error, restart_instruction; 1846 1847 vm = vmarg; 1848 restart_instruction = 1; 1849 1850 error = vm_inject_exception(vm, vcpuid, vector, errcode_valid, 1851 errcode, restart_instruction); 1852 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 1853 } 1854 1855 void 1856 vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2) 1857 { 1858 struct vm *vm; 1859 int error; 1860 1861 vm = vmarg; 1862 VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx", 1863 error_code, cr2); 1864 1865 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2); 1866 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 1867 1868 vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code); 1869 } 1870 1871 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 1872 1873 int 1874 vm_inject_nmi(struct vm *vm, int vcpuid) 1875 { 1876 struct vcpu *vcpu; 1877 1878 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1879 return (EINVAL); 1880 1881 vcpu = &vm->vcpu[vcpuid]; 1882 1883 vcpu->nmi_pending = 1; 1884 vcpu_notify_event(vm, vcpuid, false); 1885 return (0); 1886 } 1887 1888 int 1889 vm_nmi_pending(struct vm *vm, int vcpuid) 1890 { 1891 struct vcpu *vcpu; 1892 1893 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1894 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 1895 1896 vcpu = &vm->vcpu[vcpuid]; 1897 1898 return (vcpu->nmi_pending); 1899 } 1900 1901 void 1902 vm_nmi_clear(struct vm *vm, int vcpuid) 1903 { 1904 struct vcpu *vcpu; 1905 1906 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1907 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 1908 1909 vcpu = &vm->vcpu[vcpuid]; 1910 1911 if (vcpu->nmi_pending == 0) 1912 panic("vm_nmi_clear: inconsistent nmi_pending state"); 1913 1914 vcpu->nmi_pending = 0; 1915 vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1); 1916 } 1917 1918 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 1919 1920 int 1921 vm_inject_extint(struct vm *vm, int vcpuid) 1922 { 1923 struct vcpu *vcpu; 1924 1925 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1926 return (EINVAL); 1927 1928 vcpu = &vm->vcpu[vcpuid]; 1929 1930 vcpu->extint_pending = 1; 1931 vcpu_notify_event(vm, vcpuid, false); 1932 return (0); 1933 } 1934 1935 int 1936 vm_extint_pending(struct vm *vm, int vcpuid) 1937 { 1938 struct vcpu *vcpu; 1939 1940 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1941 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 1942 1943 vcpu = &vm->vcpu[vcpuid]; 1944 1945 return (vcpu->extint_pending); 1946 } 1947 1948 void 1949 vm_extint_clear(struct vm *vm, int vcpuid) 1950 { 1951 struct vcpu *vcpu; 1952 1953 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1954 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 1955 1956 vcpu = &vm->vcpu[vcpuid]; 1957 1958 if (vcpu->extint_pending == 0) 1959 panic("vm_extint_clear: inconsistent extint_pending state"); 1960 1961 vcpu->extint_pending = 0; 1962 vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1); 1963 } 1964 1965 int 1966 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval) 1967 { 1968 if (vcpu < 0 || vcpu >= VM_MAXCPU) 1969 return (EINVAL); 1970 1971 if (type < 0 || type >= VM_CAP_MAX) 1972 return (EINVAL); 1973 1974 return (VMGETCAP(vm->cookie, vcpu, type, retval)); 1975 } 1976 1977 int 1978 vm_set_capability(struct vm *vm, int vcpu, int type, int val) 1979 { 1980 if (vcpu < 0 || vcpu >= VM_MAXCPU) 1981 return (EINVAL); 1982 1983 if (type < 0 || type >= VM_CAP_MAX) 1984 return (EINVAL); 1985 1986 return (VMSETCAP(vm->cookie, vcpu, type, val)); 1987 } 1988 1989 struct vlapic * 1990 vm_lapic(struct vm *vm, int cpu) 1991 { 1992 return (vm->vcpu[cpu].vlapic); 1993 } 1994 1995 struct vioapic * 1996 vm_ioapic(struct vm *vm) 1997 { 1998 1999 return (vm->vioapic); 2000 } 2001 2002 struct vhpet * 2003 vm_hpet(struct vm *vm) 2004 { 2005 2006 return (vm->vhpet); 2007 } 2008 2009 boolean_t 2010 vmm_is_pptdev(int bus, int slot, int func) 2011 { 2012 int found, i, n; 2013 int b, s, f; 2014 char *val, *cp, *cp2; 2015 2016 /* 2017 * XXX 2018 * The length of an environment variable is limited to 128 bytes which 2019 * puts an upper limit on the number of passthru devices that may be 2020 * specified using a single environment variable. 2021 * 2022 * Work around this by scanning multiple environment variable 2023 * names instead of a single one - yuck! 2024 */ 2025 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 2026 2027 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 2028 found = 0; 2029 for (i = 0; names[i] != NULL && !found; i++) { 2030 cp = val = kern_getenv(names[i]); 2031 while (cp != NULL && *cp != '\0') { 2032 if ((cp2 = strchr(cp, ' ')) != NULL) 2033 *cp2 = '\0'; 2034 2035 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 2036 if (n == 3 && bus == b && slot == s && func == f) { 2037 found = 1; 2038 break; 2039 } 2040 2041 if (cp2 != NULL) 2042 *cp2++ = ' '; 2043 2044 cp = cp2; 2045 } 2046 freeenv(val); 2047 } 2048 return (found); 2049 } 2050 2051 void * 2052 vm_iommu_domain(struct vm *vm) 2053 { 2054 2055 return (vm->iommu); 2056 } 2057 2058 int 2059 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate, 2060 bool from_idle) 2061 { 2062 int error; 2063 struct vcpu *vcpu; 2064 2065 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2066 panic("vm_set_run_state: invalid vcpuid %d", vcpuid); 2067 2068 vcpu = &vm->vcpu[vcpuid]; 2069 2070 vcpu_lock(vcpu); 2071 error = vcpu_set_state_locked(vcpu, newstate, from_idle); 2072 vcpu_unlock(vcpu); 2073 2074 return (error); 2075 } 2076 2077 enum vcpu_state 2078 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu) 2079 { 2080 struct vcpu *vcpu; 2081 enum vcpu_state state; 2082 2083 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2084 panic("vm_get_run_state: invalid vcpuid %d", vcpuid); 2085 2086 vcpu = &vm->vcpu[vcpuid]; 2087 2088 vcpu_lock(vcpu); 2089 state = vcpu->state; 2090 if (hostcpu != NULL) 2091 *hostcpu = vcpu->hostcpu; 2092 vcpu_unlock(vcpu); 2093 2094 return (state); 2095 } 2096 2097 int 2098 vm_activate_cpu(struct vm *vm, int vcpuid) 2099 { 2100 2101 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2102 return (EINVAL); 2103 2104 if (CPU_ISSET(vcpuid, &vm->active_cpus)) 2105 return (EBUSY); 2106 2107 VCPU_CTR0(vm, vcpuid, "activated"); 2108 CPU_SET_ATOMIC(vcpuid, &vm->active_cpus); 2109 return (0); 2110 } 2111 2112 cpuset_t 2113 vm_active_cpus(struct vm *vm) 2114 { 2115 2116 return (vm->active_cpus); 2117 } 2118 2119 cpuset_t 2120 vm_suspended_cpus(struct vm *vm) 2121 { 2122 2123 return (vm->suspended_cpus); 2124 } 2125 2126 void * 2127 vcpu_stats(struct vm *vm, int vcpuid) 2128 { 2129 2130 return (vm->vcpu[vcpuid].stats); 2131 } 2132 2133 int 2134 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state) 2135 { 2136 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2137 return (EINVAL); 2138 2139 *state = vm->vcpu[vcpuid].x2apic_state; 2140 2141 return (0); 2142 } 2143 2144 int 2145 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state) 2146 { 2147 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2148 return (EINVAL); 2149 2150 if (state >= X2APIC_STATE_LAST) 2151 return (EINVAL); 2152 2153 vm->vcpu[vcpuid].x2apic_state = state; 2154 2155 vlapic_set_x2apic_state(vm, vcpuid, state); 2156 2157 return (0); 2158 } 2159 2160 /* 2161 * This function is called to ensure that a vcpu "sees" a pending event 2162 * as soon as possible: 2163 * - If the vcpu thread is sleeping then it is woken up. 2164 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2165 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2166 */ 2167 void 2168 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr) 2169 { 2170 int hostcpu; 2171 struct vcpu *vcpu; 2172 2173 vcpu = &vm->vcpu[vcpuid]; 2174 2175 vcpu_lock(vcpu); 2176 hostcpu = vcpu->hostcpu; 2177 if (vcpu->state == VCPU_RUNNING) { 2178 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2179 if (hostcpu != curcpu) { 2180 if (lapic_intr) { 2181 vlapic_post_intr(vcpu->vlapic, hostcpu, 2182 vmm_ipinum); 2183 } else { 2184 ipi_cpu(hostcpu, vmm_ipinum); 2185 } 2186 } else { 2187 /* 2188 * If the 'vcpu' is running on 'curcpu' then it must 2189 * be sending a notification to itself (e.g. SELF_IPI). 2190 * The pending event will be picked up when the vcpu 2191 * transitions back to guest context. 2192 */ 2193 } 2194 } else { 2195 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2196 "with hostcpu %d", vcpu->state, hostcpu)); 2197 if (vcpu->state == VCPU_SLEEPING) 2198 wakeup_one(vcpu); 2199 } 2200 vcpu_unlock(vcpu); 2201 } 2202 2203 struct vmspace * 2204 vm_get_vmspace(struct vm *vm) 2205 { 2206 2207 return (vm->vmspace); 2208 } 2209 2210 int 2211 vm_apicid2vcpuid(struct vm *vm, int apicid) 2212 { 2213 /* 2214 * XXX apic id is assumed to be numerically identical to vcpu id 2215 */ 2216 return (apicid); 2217 } 2218 2219 void 2220 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest, 2221 vm_rendezvous_func_t func, void *arg) 2222 { 2223 int i; 2224 2225 /* 2226 * Enforce that this function is called without any locks 2227 */ 2228 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2229 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU), 2230 ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid)); 2231 2232 restart: 2233 mtx_lock(&vm->rendezvous_mtx); 2234 if (vm->rendezvous_func != NULL) { 2235 /* 2236 * If a rendezvous is already in progress then we need to 2237 * call the rendezvous handler in case this 'vcpuid' is one 2238 * of the targets of the rendezvous. 2239 */ 2240 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress"); 2241 mtx_unlock(&vm->rendezvous_mtx); 2242 vm_handle_rendezvous(vm, vcpuid); 2243 goto restart; 2244 } 2245 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2246 "rendezvous is still in progress")); 2247 2248 RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous"); 2249 vm->rendezvous_req_cpus = dest; 2250 CPU_ZERO(&vm->rendezvous_done_cpus); 2251 vm->rendezvous_arg = arg; 2252 vm_set_rendezvous_func(vm, func); 2253 mtx_unlock(&vm->rendezvous_mtx); 2254 2255 /* 2256 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2257 * vcpus so they handle the rendezvous as soon as possible. 2258 */ 2259 for (i = 0; i < VM_MAXCPU; i++) { 2260 if (CPU_ISSET(i, &dest)) 2261 vcpu_notify_event(vm, i, false); 2262 } 2263 2264 vm_handle_rendezvous(vm, vcpuid); 2265 } 2266 2267 struct vatpic * 2268 vm_atpic(struct vm *vm) 2269 { 2270 return (vm->vatpic); 2271 } 2272 2273 struct vatpit * 2274 vm_atpit(struct vm *vm) 2275 { 2276 return (vm->vatpit); 2277 } 2278 2279 struct vpmtmr * 2280 vm_pmtmr(struct vm *vm) 2281 { 2282 2283 return (vm->vpmtmr); 2284 } 2285 2286 struct vrtc * 2287 vm_rtc(struct vm *vm) 2288 { 2289 2290 return (vm->vrtc); 2291 } 2292 2293 enum vm_reg_name 2294 vm_segment_name(int seg) 2295 { 2296 static enum vm_reg_name seg_names[] = { 2297 VM_REG_GUEST_ES, 2298 VM_REG_GUEST_CS, 2299 VM_REG_GUEST_SS, 2300 VM_REG_GUEST_DS, 2301 VM_REG_GUEST_FS, 2302 VM_REG_GUEST_GS 2303 }; 2304 2305 KASSERT(seg >= 0 && seg < nitems(seg_names), 2306 ("%s: invalid segment encoding %d", __func__, seg)); 2307 return (seg_names[seg]); 2308 } 2309 2310 void 2311 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, 2312 int num_copyinfo) 2313 { 2314 int idx; 2315 2316 for (idx = 0; idx < num_copyinfo; idx++) { 2317 if (copyinfo[idx].cookie != NULL) 2318 vm_gpa_release(copyinfo[idx].cookie); 2319 } 2320 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2321 } 2322 2323 int 2324 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging, 2325 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2326 int num_copyinfo) 2327 { 2328 int error, idx, nused; 2329 size_t n, off, remaining; 2330 void *hva, *cookie; 2331 uint64_t gpa; 2332 2333 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2334 2335 nused = 0; 2336 remaining = len; 2337 while (remaining > 0) { 2338 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo")); 2339 error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa); 2340 if (error) 2341 return (error); 2342 off = gpa & PAGE_MASK; 2343 n = min(remaining, PAGE_SIZE - off); 2344 copyinfo[nused].gpa = gpa; 2345 copyinfo[nused].len = n; 2346 remaining -= n; 2347 gla += n; 2348 nused++; 2349 } 2350 2351 for (idx = 0; idx < nused; idx++) { 2352 hva = vm_gpa_hold(vm, copyinfo[idx].gpa, copyinfo[idx].len, 2353 prot, &cookie); 2354 if (hva == NULL) 2355 break; 2356 copyinfo[idx].hva = hva; 2357 copyinfo[idx].cookie = cookie; 2358 } 2359 2360 if (idx != nused) { 2361 vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo); 2362 return (-1); 2363 } else { 2364 return (0); 2365 } 2366 } 2367 2368 void 2369 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr, 2370 size_t len) 2371 { 2372 char *dst; 2373 int idx; 2374 2375 dst = kaddr; 2376 idx = 0; 2377 while (len > 0) { 2378 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2379 len -= copyinfo[idx].len; 2380 dst += copyinfo[idx].len; 2381 idx++; 2382 } 2383 } 2384 2385 void 2386 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr, 2387 struct vm_copyinfo *copyinfo, size_t len) 2388 { 2389 const char *src; 2390 int idx; 2391 2392 src = kaddr; 2393 idx = 0; 2394 while (len > 0) { 2395 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2396 len -= copyinfo[idx].len; 2397 src += copyinfo[idx].len; 2398 idx++; 2399 } 2400 } 2401 2402 /* 2403 * Return the amount of in-use and wired memory for the VM. Since 2404 * these are global stats, only return the values with for vCPU 0 2405 */ 2406 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2407 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2408 2409 static void 2410 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2411 { 2412 2413 if (vcpu == 0) { 2414 vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT, 2415 PAGE_SIZE * vmspace_resident_count(vm->vmspace)); 2416 } 2417 } 2418 2419 static void 2420 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2421 { 2422 2423 if (vcpu == 0) { 2424 vmm_stat_set(vm, vcpu, VMM_MEM_WIRED, 2425 PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace))); 2426 } 2427 } 2428 2429 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2430 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2431