1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include "opt_bhyve_snapshot.h" 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/kernel.h> 39 #include <sys/module.h> 40 #include <sys/sysctl.h> 41 #include <sys/malloc.h> 42 #include <sys/pcpu.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/proc.h> 46 #include <sys/rwlock.h> 47 #include <sys/sched.h> 48 #include <sys/smp.h> 49 #include <sys/sx.h> 50 #include <sys/vnode.h> 51 52 #include <vm/vm.h> 53 #include <vm/vm_param.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_object.h> 56 #include <vm/vm_page.h> 57 #include <vm/pmap.h> 58 #include <vm/vm_map.h> 59 #include <vm/vm_pager.h> 60 #include <vm/vm_kern.h> 61 #include <vm/vnode_pager.h> 62 #include <vm/swap_pager.h> 63 #include <vm/uma.h> 64 65 #include <machine/cpu.h> 66 #include <machine/pcb.h> 67 #include <machine/smp.h> 68 #include <machine/md_var.h> 69 #include <x86/psl.h> 70 #include <x86/apicreg.h> 71 #include <x86/ifunc.h> 72 73 #include <machine/vmm.h> 74 #include <machine/vmm_dev.h> 75 #include <machine/vmm_instruction_emul.h> 76 #include <machine/vmm_snapshot.h> 77 78 #include "vmm_ioport.h" 79 #include "vmm_ktr.h" 80 #include "vmm_host.h" 81 #include "vmm_mem.h" 82 #include "vmm_util.h" 83 #include "vatpic.h" 84 #include "vatpit.h" 85 #include "vhpet.h" 86 #include "vioapic.h" 87 #include "vlapic.h" 88 #include "vpmtmr.h" 89 #include "vrtc.h" 90 #include "vmm_stat.h" 91 #include "vmm_lapic.h" 92 93 #include "io/ppt.h" 94 #include "io/iommu.h" 95 96 struct vlapic; 97 98 /* 99 * Initialization: 100 * (a) allocated when vcpu is created 101 * (i) initialized when vcpu is created and when it is reinitialized 102 * (o) initialized the first time the vcpu is created 103 * (x) initialized before use 104 */ 105 struct vcpu { 106 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 107 enum vcpu_state state; /* (o) vcpu state */ 108 int vcpuid; /* (o) */ 109 int hostcpu; /* (o) vcpu's host cpu */ 110 int reqidle; /* (i) request vcpu to idle */ 111 struct vm *vm; /* (o) */ 112 void *cookie; /* (i) cpu-specific data */ 113 struct vlapic *vlapic; /* (i) APIC device model */ 114 enum x2apic_state x2apic_state; /* (i) APIC mode */ 115 uint64_t exitintinfo; /* (i) events pending at VM exit */ 116 int nmi_pending; /* (i) NMI pending */ 117 int extint_pending; /* (i) INTR pending */ 118 int exception_pending; /* (i) exception pending */ 119 int exc_vector; /* (x) exception collateral */ 120 int exc_errcode_valid; 121 uint32_t exc_errcode; 122 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 123 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 124 void *stats; /* (a,i) statistics */ 125 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 126 cpuset_t exitinfo_cpuset; /* (x) storage for vmexit handlers */ 127 uint64_t nextrip; /* (x) next instruction to execute */ 128 uint64_t tsc_offset; /* (o) TSC offsetting */ 129 }; 130 131 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 132 #define vcpu_lock_destroy(v) mtx_destroy(&((v)->mtx)) 133 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 134 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 135 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 136 137 struct mem_seg { 138 size_t len; 139 bool sysmem; 140 struct vm_object *object; 141 }; 142 #define VM_MAX_MEMSEGS 4 143 144 struct mem_map { 145 vm_paddr_t gpa; 146 size_t len; 147 vm_ooffset_t segoff; 148 int segid; 149 int prot; 150 int flags; 151 }; 152 #define VM_MAX_MEMMAPS 8 153 154 /* 155 * Initialization: 156 * (o) initialized the first time the VM is created 157 * (i) initialized when VM is created and when it is reinitialized 158 * (x) initialized before use 159 * 160 * Locking: 161 * [m] mem_segs_lock 162 * [r] rendezvous_mtx 163 * [v] reads require one frozen vcpu, writes require freezing all vcpus 164 */ 165 struct vm { 166 void *cookie; /* (i) cpu-specific data */ 167 void *iommu; /* (x) iommu-specific data */ 168 struct vhpet *vhpet; /* (i) virtual HPET */ 169 struct vioapic *vioapic; /* (i) virtual ioapic */ 170 struct vatpic *vatpic; /* (i) virtual atpic */ 171 struct vatpit *vatpit; /* (i) virtual atpit */ 172 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ 173 struct vrtc *vrtc; /* (o) virtual RTC */ 174 volatile cpuset_t active_cpus; /* (i) active vcpus */ 175 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */ 176 cpuset_t startup_cpus; /* (i) [r] waiting for startup */ 177 int suspend; /* (i) stop VM execution */ 178 bool dying; /* (o) is dying */ 179 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 180 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 181 cpuset_t rendezvous_req_cpus; /* (x) [r] rendezvous requested */ 182 cpuset_t rendezvous_done_cpus; /* (x) [r] rendezvous finished */ 183 void *rendezvous_arg; /* (x) [r] rendezvous func/arg */ 184 vm_rendezvous_func_t rendezvous_func; 185 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 186 struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) [m+v] guest address space */ 187 struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) [m+v] guest memory regions */ 188 struct vmspace *vmspace; /* (o) guest's address space */ 189 char name[VM_MAX_NAMELEN+1]; /* (o) virtual machine name */ 190 struct vcpu **vcpu; /* (o) guest vcpus */ 191 /* The following describe the vm cpu topology */ 192 uint16_t sockets; /* (o) num of sockets */ 193 uint16_t cores; /* (o) num of cores/socket */ 194 uint16_t threads; /* (o) num of threads/core */ 195 uint16_t maxcpus; /* (o) max pluggable cpus */ 196 struct sx mem_segs_lock; /* (o) */ 197 struct sx vcpus_init_lock; /* (o) */ 198 }; 199 200 #define VMM_CTR0(vcpu, format) \ 201 VCPU_CTR0((vcpu)->vm, (vcpu)->vcpuid, format) 202 203 #define VMM_CTR1(vcpu, format, p1) \ 204 VCPU_CTR1((vcpu)->vm, (vcpu)->vcpuid, format, p1) 205 206 #define VMM_CTR2(vcpu, format, p1, p2) \ 207 VCPU_CTR2((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2) 208 209 #define VMM_CTR3(vcpu, format, p1, p2, p3) \ 210 VCPU_CTR3((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3) 211 212 #define VMM_CTR4(vcpu, format, p1, p2, p3, p4) \ 213 VCPU_CTR4((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3, p4) 214 215 static int vmm_initialized; 216 217 static void vmmops_panic(void); 218 219 static void 220 vmmops_panic(void) 221 { 222 panic("vmm_ops func called when !vmm_is_intel() && !vmm_is_svm()"); 223 } 224 225 #define DEFINE_VMMOPS_IFUNC(ret_type, opname, args) \ 226 DEFINE_IFUNC(static, ret_type, vmmops_##opname, args) \ 227 { \ 228 if (vmm_is_intel()) \ 229 return (vmm_ops_intel.opname); \ 230 else if (vmm_is_svm()) \ 231 return (vmm_ops_amd.opname); \ 232 else \ 233 return ((ret_type (*)args)vmmops_panic); \ 234 } 235 236 DEFINE_VMMOPS_IFUNC(int, modinit, (int ipinum)) 237 DEFINE_VMMOPS_IFUNC(int, modcleanup, (void)) 238 DEFINE_VMMOPS_IFUNC(void, modresume, (void)) 239 DEFINE_VMMOPS_IFUNC(void *, init, (struct vm *vm, struct pmap *pmap)) 240 DEFINE_VMMOPS_IFUNC(int, run, (void *vcpui, register_t rip, struct pmap *pmap, 241 struct vm_eventinfo *info)) 242 DEFINE_VMMOPS_IFUNC(void, cleanup, (void *vmi)) 243 DEFINE_VMMOPS_IFUNC(void *, vcpu_init, (void *vmi, struct vcpu *vcpu, 244 int vcpu_id)) 245 DEFINE_VMMOPS_IFUNC(void, vcpu_cleanup, (void *vcpui)) 246 DEFINE_VMMOPS_IFUNC(int, getreg, (void *vcpui, int num, uint64_t *retval)) 247 DEFINE_VMMOPS_IFUNC(int, setreg, (void *vcpui, int num, uint64_t val)) 248 DEFINE_VMMOPS_IFUNC(int, getdesc, (void *vcpui, int num, struct seg_desc *desc)) 249 DEFINE_VMMOPS_IFUNC(int, setdesc, (void *vcpui, int num, struct seg_desc *desc)) 250 DEFINE_VMMOPS_IFUNC(int, getcap, (void *vcpui, int num, int *retval)) 251 DEFINE_VMMOPS_IFUNC(int, setcap, (void *vcpui, int num, int val)) 252 DEFINE_VMMOPS_IFUNC(struct vmspace *, vmspace_alloc, (vm_offset_t min, 253 vm_offset_t max)) 254 DEFINE_VMMOPS_IFUNC(void, vmspace_free, (struct vmspace *vmspace)) 255 DEFINE_VMMOPS_IFUNC(struct vlapic *, vlapic_init, (void *vcpui)) 256 DEFINE_VMMOPS_IFUNC(void, vlapic_cleanup, (struct vlapic *vlapic)) 257 #ifdef BHYVE_SNAPSHOT 258 DEFINE_VMMOPS_IFUNC(int, vcpu_snapshot, (void *vcpui, 259 struct vm_snapshot_meta *meta)) 260 DEFINE_VMMOPS_IFUNC(int, restore_tsc, (void *vcpui, uint64_t now)) 261 #endif 262 263 #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS) 264 #define fpu_stop_emulating() clts() 265 266 SDT_PROVIDER_DEFINE(vmm); 267 268 static MALLOC_DEFINE(M_VM, "vm", "vm"); 269 270 /* statistics */ 271 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 272 273 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 274 NULL); 275 276 /* 277 * Halt the guest if all vcpus are executing a HLT instruction with 278 * interrupts disabled. 279 */ 280 static int halt_detection_enabled = 1; 281 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 282 &halt_detection_enabled, 0, 283 "Halt VM if all vcpus execute HLT with interrupts disabled"); 284 285 static int vmm_ipinum; 286 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 287 "IPI vector used for vcpu notifications"); 288 289 static int trace_guest_exceptions; 290 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN, 291 &trace_guest_exceptions, 0, 292 "Trap into hypervisor on all guest exceptions and reflect them back"); 293 294 static int trap_wbinvd; 295 SYSCTL_INT(_hw_vmm, OID_AUTO, trap_wbinvd, CTLFLAG_RDTUN, &trap_wbinvd, 0, 296 "WBINVD triggers a VM-exit"); 297 298 u_int vm_maxcpu; 299 SYSCTL_UINT(_hw_vmm, OID_AUTO, maxcpu, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 300 &vm_maxcpu, 0, "Maximum number of vCPUs"); 301 302 static void vm_free_memmap(struct vm *vm, int ident); 303 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm); 304 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr); 305 306 /* 307 * Upper limit on vm_maxcpu. Limited by use of uint16_t types for CPU 308 * counts as well as range of vpid values for VT-x and by the capacity 309 * of cpuset_t masks. The call to new_unrhdr() in vpid_init() in 310 * vmx.c requires 'vm_maxcpu + 1 <= 0xffff', hence the '- 1' below. 311 */ 312 #define VM_MAXCPU MIN(0xffff - 1, CPU_SETSIZE) 313 314 #ifdef KTR 315 static const char * 316 vcpu_state2str(enum vcpu_state state) 317 { 318 319 switch (state) { 320 case VCPU_IDLE: 321 return ("idle"); 322 case VCPU_FROZEN: 323 return ("frozen"); 324 case VCPU_RUNNING: 325 return ("running"); 326 case VCPU_SLEEPING: 327 return ("sleeping"); 328 default: 329 return ("unknown"); 330 } 331 } 332 #endif 333 334 static void 335 vcpu_cleanup(struct vcpu *vcpu, bool destroy) 336 { 337 vmmops_vlapic_cleanup(vcpu->vlapic); 338 vmmops_vcpu_cleanup(vcpu->cookie); 339 vcpu->cookie = NULL; 340 if (destroy) { 341 vmm_stat_free(vcpu->stats); 342 fpu_save_area_free(vcpu->guestfpu); 343 vcpu_lock_destroy(vcpu); 344 free(vcpu, M_VM); 345 } 346 } 347 348 static struct vcpu * 349 vcpu_alloc(struct vm *vm, int vcpu_id) 350 { 351 struct vcpu *vcpu; 352 353 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus, 354 ("vcpu_init: invalid vcpu %d", vcpu_id)); 355 356 vcpu = malloc(sizeof(*vcpu), M_VM, M_WAITOK | M_ZERO); 357 vcpu_lock_init(vcpu); 358 vcpu->state = VCPU_IDLE; 359 vcpu->hostcpu = NOCPU; 360 vcpu->vcpuid = vcpu_id; 361 vcpu->vm = vm; 362 vcpu->guestfpu = fpu_save_area_alloc(); 363 vcpu->stats = vmm_stat_alloc(); 364 vcpu->tsc_offset = 0; 365 return (vcpu); 366 } 367 368 static void 369 vcpu_init(struct vcpu *vcpu) 370 { 371 vcpu->cookie = vmmops_vcpu_init(vcpu->vm->cookie, vcpu, vcpu->vcpuid); 372 vcpu->vlapic = vmmops_vlapic_init(vcpu->cookie); 373 vm_set_x2apic_state(vcpu, X2APIC_DISABLED); 374 vcpu->reqidle = 0; 375 vcpu->exitintinfo = 0; 376 vcpu->nmi_pending = 0; 377 vcpu->extint_pending = 0; 378 vcpu->exception_pending = 0; 379 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 380 fpu_save_area_reset(vcpu->guestfpu); 381 vmm_stat_init(vcpu->stats); 382 } 383 384 int 385 vcpu_trace_exceptions(struct vcpu *vcpu) 386 { 387 388 return (trace_guest_exceptions); 389 } 390 391 int 392 vcpu_trap_wbinvd(struct vcpu *vcpu) 393 { 394 return (trap_wbinvd); 395 } 396 397 struct vm_exit * 398 vm_exitinfo(struct vcpu *vcpu) 399 { 400 return (&vcpu->exitinfo); 401 } 402 403 cpuset_t * 404 vm_exitinfo_cpuset(struct vcpu *vcpu) 405 { 406 return (&vcpu->exitinfo_cpuset); 407 } 408 409 static int 410 vmm_init(void) 411 { 412 int error; 413 414 if (!vmm_is_hw_supported()) 415 return (ENXIO); 416 417 vm_maxcpu = mp_ncpus; 418 TUNABLE_INT_FETCH("hw.vmm.maxcpu", &vm_maxcpu); 419 420 if (vm_maxcpu > VM_MAXCPU) { 421 printf("vmm: vm_maxcpu clamped to %u\n", VM_MAXCPU); 422 vm_maxcpu = VM_MAXCPU; 423 } 424 if (vm_maxcpu == 0) 425 vm_maxcpu = 1; 426 427 vmm_host_state_init(); 428 429 vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) : 430 &IDTVEC(justreturn)); 431 if (vmm_ipinum < 0) 432 vmm_ipinum = IPI_AST; 433 434 error = vmm_mem_init(); 435 if (error) 436 return (error); 437 438 vmm_resume_p = vmmops_modresume; 439 440 return (vmmops_modinit(vmm_ipinum)); 441 } 442 443 static int 444 vmm_handler(module_t mod, int what, void *arg) 445 { 446 int error; 447 448 switch (what) { 449 case MOD_LOAD: 450 if (vmm_is_hw_supported()) { 451 vmmdev_init(); 452 error = vmm_init(); 453 if (error == 0) 454 vmm_initialized = 1; 455 } else { 456 error = ENXIO; 457 } 458 break; 459 case MOD_UNLOAD: 460 if (vmm_is_hw_supported()) { 461 error = vmmdev_cleanup(); 462 if (error == 0) { 463 vmm_resume_p = NULL; 464 iommu_cleanup(); 465 if (vmm_ipinum != IPI_AST) 466 lapic_ipi_free(vmm_ipinum); 467 error = vmmops_modcleanup(); 468 /* 469 * Something bad happened - prevent new 470 * VMs from being created 471 */ 472 if (error) 473 vmm_initialized = 0; 474 } 475 } else { 476 error = 0; 477 } 478 break; 479 default: 480 error = 0; 481 break; 482 } 483 return (error); 484 } 485 486 static moduledata_t vmm_kmod = { 487 "vmm", 488 vmm_handler, 489 NULL 490 }; 491 492 /* 493 * vmm initialization has the following dependencies: 494 * 495 * - VT-x initialization requires smp_rendezvous() and therefore must happen 496 * after SMP is fully functional (after SI_SUB_SMP). 497 */ 498 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 499 MODULE_VERSION(vmm, 1); 500 501 static void 502 vm_init(struct vm *vm, bool create) 503 { 504 vm->cookie = vmmops_init(vm, vmspace_pmap(vm->vmspace)); 505 vm->iommu = NULL; 506 vm->vioapic = vioapic_init(vm); 507 vm->vhpet = vhpet_init(vm); 508 vm->vatpic = vatpic_init(vm); 509 vm->vatpit = vatpit_init(vm); 510 vm->vpmtmr = vpmtmr_init(vm); 511 if (create) 512 vm->vrtc = vrtc_init(vm); 513 514 CPU_ZERO(&vm->active_cpus); 515 CPU_ZERO(&vm->debug_cpus); 516 CPU_ZERO(&vm->startup_cpus); 517 518 vm->suspend = 0; 519 CPU_ZERO(&vm->suspended_cpus); 520 521 if (!create) { 522 for (int i = 0; i < vm->maxcpus; i++) { 523 if (vm->vcpu[i] != NULL) 524 vcpu_init(vm->vcpu[i]); 525 } 526 } 527 } 528 529 void 530 vm_disable_vcpu_creation(struct vm *vm) 531 { 532 sx_xlock(&vm->vcpus_init_lock); 533 vm->dying = true; 534 sx_xunlock(&vm->vcpus_init_lock); 535 } 536 537 struct vcpu * 538 vm_alloc_vcpu(struct vm *vm, int vcpuid) 539 { 540 struct vcpu *vcpu; 541 542 if (vcpuid < 0 || vcpuid >= vm_get_maxcpus(vm)) 543 return (NULL); 544 545 vcpu = atomic_load_ptr(&vm->vcpu[vcpuid]); 546 if (__predict_true(vcpu != NULL)) 547 return (vcpu); 548 549 sx_xlock(&vm->vcpus_init_lock); 550 vcpu = vm->vcpu[vcpuid]; 551 if (vcpu == NULL && !vm->dying) { 552 vcpu = vcpu_alloc(vm, vcpuid); 553 vcpu_init(vcpu); 554 555 /* 556 * Ensure vCPU is fully created before updating pointer 557 * to permit unlocked reads above. 558 */ 559 atomic_store_rel_ptr((uintptr_t *)&vm->vcpu[vcpuid], 560 (uintptr_t)vcpu); 561 } 562 sx_xunlock(&vm->vcpus_init_lock); 563 return (vcpu); 564 } 565 566 void 567 vm_slock_vcpus(struct vm *vm) 568 { 569 sx_slock(&vm->vcpus_init_lock); 570 } 571 572 void 573 vm_unlock_vcpus(struct vm *vm) 574 { 575 sx_unlock(&vm->vcpus_init_lock); 576 } 577 578 /* 579 * The default CPU topology is a single thread per package. 580 */ 581 u_int cores_per_package = 1; 582 u_int threads_per_core = 1; 583 584 int 585 vm_create(const char *name, struct vm **retvm) 586 { 587 struct vm *vm; 588 struct vmspace *vmspace; 589 590 /* 591 * If vmm.ko could not be successfully initialized then don't attempt 592 * to create the virtual machine. 593 */ 594 if (!vmm_initialized) 595 return (ENXIO); 596 597 if (name == NULL || strnlen(name, VM_MAX_NAMELEN + 1) == 598 VM_MAX_NAMELEN + 1) 599 return (EINVAL); 600 601 vmspace = vmmops_vmspace_alloc(0, VM_MAXUSER_ADDRESS_LA48); 602 if (vmspace == NULL) 603 return (ENOMEM); 604 605 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 606 strcpy(vm->name, name); 607 vm->vmspace = vmspace; 608 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 609 sx_init(&vm->mem_segs_lock, "vm mem_segs"); 610 sx_init(&vm->vcpus_init_lock, "vm vcpus"); 611 vm->vcpu = malloc(sizeof(*vm->vcpu) * vm_maxcpu, M_VM, M_WAITOK | 612 M_ZERO); 613 614 vm->sockets = 1; 615 vm->cores = cores_per_package; /* XXX backwards compatibility */ 616 vm->threads = threads_per_core; /* XXX backwards compatibility */ 617 vm->maxcpus = vm_maxcpu; 618 619 vm_init(vm, true); 620 621 *retvm = vm; 622 return (0); 623 } 624 625 void 626 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, 627 uint16_t *threads, uint16_t *maxcpus) 628 { 629 *sockets = vm->sockets; 630 *cores = vm->cores; 631 *threads = vm->threads; 632 *maxcpus = vm->maxcpus; 633 } 634 635 uint16_t 636 vm_get_maxcpus(struct vm *vm) 637 { 638 return (vm->maxcpus); 639 } 640 641 int 642 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, 643 uint16_t threads, uint16_t maxcpus __unused) 644 { 645 /* Ignore maxcpus. */ 646 if ((sockets * cores * threads) > vm->maxcpus) 647 return (EINVAL); 648 vm->sockets = sockets; 649 vm->cores = cores; 650 vm->threads = threads; 651 return(0); 652 } 653 654 static void 655 vm_cleanup(struct vm *vm, bool destroy) 656 { 657 struct mem_map *mm; 658 int i; 659 660 if (destroy) 661 vm_xlock_memsegs(vm); 662 663 ppt_unassign_all(vm); 664 665 if (vm->iommu != NULL) 666 iommu_destroy_domain(vm->iommu); 667 668 if (destroy) 669 vrtc_cleanup(vm->vrtc); 670 else 671 vrtc_reset(vm->vrtc); 672 vpmtmr_cleanup(vm->vpmtmr); 673 vatpit_cleanup(vm->vatpit); 674 vhpet_cleanup(vm->vhpet); 675 vatpic_cleanup(vm->vatpic); 676 vioapic_cleanup(vm->vioapic); 677 678 for (i = 0; i < vm->maxcpus; i++) { 679 if (vm->vcpu[i] != NULL) 680 vcpu_cleanup(vm->vcpu[i], destroy); 681 } 682 683 vmmops_cleanup(vm->cookie); 684 685 /* 686 * System memory is removed from the guest address space only when 687 * the VM is destroyed. This is because the mapping remains the same 688 * across VM reset. 689 * 690 * Device memory can be relocated by the guest (e.g. using PCI BARs) 691 * so those mappings are removed on a VM reset. 692 */ 693 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 694 mm = &vm->mem_maps[i]; 695 if (destroy || !sysmem_mapping(vm, mm)) 696 vm_free_memmap(vm, i); 697 } 698 699 if (destroy) { 700 for (i = 0; i < VM_MAX_MEMSEGS; i++) 701 vm_free_memseg(vm, i); 702 vm_unlock_memsegs(vm); 703 704 vmmops_vmspace_free(vm->vmspace); 705 vm->vmspace = NULL; 706 707 free(vm->vcpu, M_VM); 708 sx_destroy(&vm->vcpus_init_lock); 709 sx_destroy(&vm->mem_segs_lock); 710 mtx_destroy(&vm->rendezvous_mtx); 711 } 712 } 713 714 void 715 vm_destroy(struct vm *vm) 716 { 717 vm_cleanup(vm, true); 718 free(vm, M_VM); 719 } 720 721 int 722 vm_reinit(struct vm *vm) 723 { 724 int error; 725 726 /* 727 * A virtual machine can be reset only if all vcpus are suspended. 728 */ 729 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 730 vm_cleanup(vm, false); 731 vm_init(vm, false); 732 error = 0; 733 } else { 734 error = EBUSY; 735 } 736 737 return (error); 738 } 739 740 const char * 741 vm_name(struct vm *vm) 742 { 743 return (vm->name); 744 } 745 746 void 747 vm_slock_memsegs(struct vm *vm) 748 { 749 sx_slock(&vm->mem_segs_lock); 750 } 751 752 void 753 vm_xlock_memsegs(struct vm *vm) 754 { 755 sx_xlock(&vm->mem_segs_lock); 756 } 757 758 void 759 vm_unlock_memsegs(struct vm *vm) 760 { 761 sx_unlock(&vm->mem_segs_lock); 762 } 763 764 int 765 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 766 { 767 vm_object_t obj; 768 769 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 770 return (ENOMEM); 771 else 772 return (0); 773 } 774 775 int 776 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 777 { 778 779 vmm_mmio_free(vm->vmspace, gpa, len); 780 return (0); 781 } 782 783 /* 784 * Return 'true' if 'gpa' is allocated in the guest address space. 785 * 786 * This function is called in the context of a running vcpu which acts as 787 * an implicit lock on 'vm->mem_maps[]'. 788 */ 789 bool 790 vm_mem_allocated(struct vcpu *vcpu, vm_paddr_t gpa) 791 { 792 struct vm *vm = vcpu->vm; 793 struct mem_map *mm; 794 int i; 795 796 #ifdef INVARIANTS 797 int hostcpu, state; 798 state = vcpu_get_state(vcpu, &hostcpu); 799 KASSERT(state == VCPU_RUNNING && hostcpu == curcpu, 800 ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu)); 801 #endif 802 803 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 804 mm = &vm->mem_maps[i]; 805 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len) 806 return (true); /* 'gpa' is sysmem or devmem */ 807 } 808 809 if (ppt_is_mmio(vm, gpa)) 810 return (true); /* 'gpa' is pci passthru mmio */ 811 812 return (false); 813 } 814 815 int 816 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem) 817 { 818 struct mem_seg *seg; 819 vm_object_t obj; 820 821 sx_assert(&vm->mem_segs_lock, SX_XLOCKED); 822 823 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 824 return (EINVAL); 825 826 if (len == 0 || (len & PAGE_MASK)) 827 return (EINVAL); 828 829 seg = &vm->mem_segs[ident]; 830 if (seg->object != NULL) { 831 if (seg->len == len && seg->sysmem == sysmem) 832 return (EEXIST); 833 else 834 return (EINVAL); 835 } 836 837 obj = vm_object_allocate(OBJT_SWAP, len >> PAGE_SHIFT); 838 if (obj == NULL) 839 return (ENOMEM); 840 841 seg->len = len; 842 seg->object = obj; 843 seg->sysmem = sysmem; 844 return (0); 845 } 846 847 int 848 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, 849 vm_object_t *objptr) 850 { 851 struct mem_seg *seg; 852 853 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 854 855 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 856 return (EINVAL); 857 858 seg = &vm->mem_segs[ident]; 859 if (len) 860 *len = seg->len; 861 if (sysmem) 862 *sysmem = seg->sysmem; 863 if (objptr) 864 *objptr = seg->object; 865 return (0); 866 } 867 868 void 869 vm_free_memseg(struct vm *vm, int ident) 870 { 871 struct mem_seg *seg; 872 873 KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS, 874 ("%s: invalid memseg ident %d", __func__, ident)); 875 876 seg = &vm->mem_segs[ident]; 877 if (seg->object != NULL) { 878 vm_object_deallocate(seg->object); 879 bzero(seg, sizeof(struct mem_seg)); 880 } 881 } 882 883 int 884 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first, 885 size_t len, int prot, int flags) 886 { 887 struct mem_seg *seg; 888 struct mem_map *m, *map; 889 vm_ooffset_t last; 890 int i, error; 891 892 if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0) 893 return (EINVAL); 894 895 if (flags & ~VM_MEMMAP_F_WIRED) 896 return (EINVAL); 897 898 if (segid < 0 || segid >= VM_MAX_MEMSEGS) 899 return (EINVAL); 900 901 seg = &vm->mem_segs[segid]; 902 if (seg->object == NULL) 903 return (EINVAL); 904 905 last = first + len; 906 if (first < 0 || first >= last || last > seg->len) 907 return (EINVAL); 908 909 if ((gpa | first | last) & PAGE_MASK) 910 return (EINVAL); 911 912 map = NULL; 913 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 914 m = &vm->mem_maps[i]; 915 if (m->len == 0) { 916 map = m; 917 break; 918 } 919 } 920 921 if (map == NULL) 922 return (ENOSPC); 923 924 error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa, 925 len, 0, VMFS_NO_SPACE, prot, prot, 0); 926 if (error != KERN_SUCCESS) 927 return (EFAULT); 928 929 vm_object_reference(seg->object); 930 931 if (flags & VM_MEMMAP_F_WIRED) { 932 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len, 933 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 934 if (error != KERN_SUCCESS) { 935 vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len); 936 return (error == KERN_RESOURCE_SHORTAGE ? ENOMEM : 937 EFAULT); 938 } 939 } 940 941 map->gpa = gpa; 942 map->len = len; 943 map->segoff = first; 944 map->segid = segid; 945 map->prot = prot; 946 map->flags = flags; 947 return (0); 948 } 949 950 int 951 vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len) 952 { 953 struct mem_map *m; 954 int i; 955 956 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 957 m = &vm->mem_maps[i]; 958 if (m->gpa == gpa && m->len == len && 959 (m->flags & VM_MEMMAP_F_IOMMU) == 0) { 960 vm_free_memmap(vm, i); 961 return (0); 962 } 963 } 964 965 return (EINVAL); 966 } 967 968 int 969 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, 970 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 971 { 972 struct mem_map *mm, *mmnext; 973 int i; 974 975 mmnext = NULL; 976 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 977 mm = &vm->mem_maps[i]; 978 if (mm->len == 0 || mm->gpa < *gpa) 979 continue; 980 if (mmnext == NULL || mm->gpa < mmnext->gpa) 981 mmnext = mm; 982 } 983 984 if (mmnext != NULL) { 985 *gpa = mmnext->gpa; 986 if (segid) 987 *segid = mmnext->segid; 988 if (segoff) 989 *segoff = mmnext->segoff; 990 if (len) 991 *len = mmnext->len; 992 if (prot) 993 *prot = mmnext->prot; 994 if (flags) 995 *flags = mmnext->flags; 996 return (0); 997 } else { 998 return (ENOENT); 999 } 1000 } 1001 1002 static void 1003 vm_free_memmap(struct vm *vm, int ident) 1004 { 1005 struct mem_map *mm; 1006 int error __diagused; 1007 1008 mm = &vm->mem_maps[ident]; 1009 if (mm->len) { 1010 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa, 1011 mm->gpa + mm->len); 1012 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d", 1013 __func__, error)); 1014 bzero(mm, sizeof(struct mem_map)); 1015 } 1016 } 1017 1018 static __inline bool 1019 sysmem_mapping(struct vm *vm, struct mem_map *mm) 1020 { 1021 1022 if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem) 1023 return (true); 1024 else 1025 return (false); 1026 } 1027 1028 vm_paddr_t 1029 vmm_sysmem_maxaddr(struct vm *vm) 1030 { 1031 struct mem_map *mm; 1032 vm_paddr_t maxaddr; 1033 int i; 1034 1035 maxaddr = 0; 1036 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1037 mm = &vm->mem_maps[i]; 1038 if (sysmem_mapping(vm, mm)) { 1039 if (maxaddr < mm->gpa + mm->len) 1040 maxaddr = mm->gpa + mm->len; 1041 } 1042 } 1043 return (maxaddr); 1044 } 1045 1046 static void 1047 vm_iommu_modify(struct vm *vm, bool map) 1048 { 1049 int i, sz; 1050 vm_paddr_t gpa, hpa; 1051 struct mem_map *mm; 1052 void *vp, *cookie, *host_domain; 1053 1054 sz = PAGE_SIZE; 1055 host_domain = iommu_host_domain(); 1056 1057 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1058 mm = &vm->mem_maps[i]; 1059 if (!sysmem_mapping(vm, mm)) 1060 continue; 1061 1062 if (map) { 1063 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0, 1064 ("iommu map found invalid memmap %#lx/%#lx/%#x", 1065 mm->gpa, mm->len, mm->flags)); 1066 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0) 1067 continue; 1068 mm->flags |= VM_MEMMAP_F_IOMMU; 1069 } else { 1070 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0) 1071 continue; 1072 mm->flags &= ~VM_MEMMAP_F_IOMMU; 1073 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0, 1074 ("iommu unmap found invalid memmap %#lx/%#lx/%#x", 1075 mm->gpa, mm->len, mm->flags)); 1076 } 1077 1078 gpa = mm->gpa; 1079 while (gpa < mm->gpa + mm->len) { 1080 vp = vm_gpa_hold_global(vm, gpa, PAGE_SIZE, 1081 VM_PROT_WRITE, &cookie); 1082 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", 1083 vm_name(vm), gpa)); 1084 1085 vm_gpa_release(cookie); 1086 1087 hpa = DMAP_TO_PHYS((uintptr_t)vp); 1088 if (map) { 1089 iommu_create_mapping(vm->iommu, gpa, hpa, sz); 1090 } else { 1091 iommu_remove_mapping(vm->iommu, gpa, sz); 1092 } 1093 1094 gpa += PAGE_SIZE; 1095 } 1096 } 1097 1098 /* 1099 * Invalidate the cached translations associated with the domain 1100 * from which pages were removed. 1101 */ 1102 if (map) 1103 iommu_invalidate_tlb(host_domain); 1104 else 1105 iommu_invalidate_tlb(vm->iommu); 1106 } 1107 1108 #define vm_iommu_unmap(vm) vm_iommu_modify((vm), false) 1109 #define vm_iommu_map(vm) vm_iommu_modify((vm), true) 1110 1111 int 1112 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 1113 { 1114 int error; 1115 1116 error = ppt_unassign_device(vm, bus, slot, func); 1117 if (error) 1118 return (error); 1119 1120 if (ppt_assigned_devices(vm) == 0) 1121 vm_iommu_unmap(vm); 1122 1123 return (0); 1124 } 1125 1126 int 1127 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 1128 { 1129 int error; 1130 vm_paddr_t maxaddr; 1131 1132 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */ 1133 if (ppt_assigned_devices(vm) == 0) { 1134 KASSERT(vm->iommu == NULL, 1135 ("vm_assign_pptdev: iommu must be NULL")); 1136 maxaddr = vmm_sysmem_maxaddr(vm); 1137 vm->iommu = iommu_create_domain(maxaddr); 1138 if (vm->iommu == NULL) 1139 return (ENXIO); 1140 vm_iommu_map(vm); 1141 } 1142 1143 error = ppt_assign_device(vm, bus, slot, func); 1144 return (error); 1145 } 1146 1147 static void * 1148 _vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 1149 void **cookie) 1150 { 1151 int i, count, pageoff; 1152 struct mem_map *mm; 1153 vm_page_t m; 1154 1155 pageoff = gpa & PAGE_MASK; 1156 if (len > PAGE_SIZE - pageoff) 1157 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 1158 1159 count = 0; 1160 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1161 mm = &vm->mem_maps[i]; 1162 if (gpa >= mm->gpa && gpa < mm->gpa + mm->len) { 1163 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 1164 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 1165 break; 1166 } 1167 } 1168 1169 if (count == 1) { 1170 *cookie = m; 1171 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 1172 } else { 1173 *cookie = NULL; 1174 return (NULL); 1175 } 1176 } 1177 1178 void * 1179 vm_gpa_hold(struct vcpu *vcpu, vm_paddr_t gpa, size_t len, int reqprot, 1180 void **cookie) 1181 { 1182 #ifdef INVARIANTS 1183 /* 1184 * The current vcpu should be frozen to ensure 'vm_memmap[]' 1185 * stability. 1186 */ 1187 int state = vcpu_get_state(vcpu, NULL); 1188 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d", 1189 __func__, state)); 1190 #endif 1191 return (_vm_gpa_hold(vcpu->vm, gpa, len, reqprot, cookie)); 1192 } 1193 1194 void * 1195 vm_gpa_hold_global(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 1196 void **cookie) 1197 { 1198 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 1199 return (_vm_gpa_hold(vm, gpa, len, reqprot, cookie)); 1200 } 1201 1202 void 1203 vm_gpa_release(void *cookie) 1204 { 1205 vm_page_t m = cookie; 1206 1207 vm_page_unwire(m, PQ_ACTIVE); 1208 } 1209 1210 int 1211 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval) 1212 { 1213 1214 if (reg >= VM_REG_LAST) 1215 return (EINVAL); 1216 1217 return (vmmops_getreg(vcpu->cookie, reg, retval)); 1218 } 1219 1220 int 1221 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val) 1222 { 1223 int error; 1224 1225 if (reg >= VM_REG_LAST) 1226 return (EINVAL); 1227 1228 error = vmmops_setreg(vcpu->cookie, reg, val); 1229 if (error || reg != VM_REG_GUEST_RIP) 1230 return (error); 1231 1232 /* Set 'nextrip' to match the value of %rip */ 1233 VMM_CTR1(vcpu, "Setting nextrip to %#lx", val); 1234 vcpu->nextrip = val; 1235 return (0); 1236 } 1237 1238 static bool 1239 is_descriptor_table(int reg) 1240 { 1241 1242 switch (reg) { 1243 case VM_REG_GUEST_IDTR: 1244 case VM_REG_GUEST_GDTR: 1245 return (true); 1246 default: 1247 return (false); 1248 } 1249 } 1250 1251 static bool 1252 is_segment_register(int reg) 1253 { 1254 1255 switch (reg) { 1256 case VM_REG_GUEST_ES: 1257 case VM_REG_GUEST_CS: 1258 case VM_REG_GUEST_SS: 1259 case VM_REG_GUEST_DS: 1260 case VM_REG_GUEST_FS: 1261 case VM_REG_GUEST_GS: 1262 case VM_REG_GUEST_TR: 1263 case VM_REG_GUEST_LDTR: 1264 return (true); 1265 default: 1266 return (false); 1267 } 1268 } 1269 1270 int 1271 vm_get_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc) 1272 { 1273 1274 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1275 return (EINVAL); 1276 1277 return (vmmops_getdesc(vcpu->cookie, reg, desc)); 1278 } 1279 1280 int 1281 vm_set_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc) 1282 { 1283 1284 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1285 return (EINVAL); 1286 1287 return (vmmops_setdesc(vcpu->cookie, reg, desc)); 1288 } 1289 1290 static void 1291 restore_guest_fpustate(struct vcpu *vcpu) 1292 { 1293 1294 /* flush host state to the pcb */ 1295 fpuexit(curthread); 1296 1297 /* restore guest FPU state */ 1298 fpu_stop_emulating(); 1299 fpurestore(vcpu->guestfpu); 1300 1301 /* restore guest XCR0 if XSAVE is enabled in the host */ 1302 if (rcr4() & CR4_XSAVE) 1303 load_xcr(0, vcpu->guest_xcr0); 1304 1305 /* 1306 * The FPU is now "dirty" with the guest's state so turn on emulation 1307 * to trap any access to the FPU by the host. 1308 */ 1309 fpu_start_emulating(); 1310 } 1311 1312 static void 1313 save_guest_fpustate(struct vcpu *vcpu) 1314 { 1315 1316 if ((rcr0() & CR0_TS) == 0) 1317 panic("fpu emulation not enabled in host!"); 1318 1319 /* save guest XCR0 and restore host XCR0 */ 1320 if (rcr4() & CR4_XSAVE) { 1321 vcpu->guest_xcr0 = rxcr(0); 1322 load_xcr(0, vmm_get_host_xcr0()); 1323 } 1324 1325 /* save guest FPU state */ 1326 fpu_stop_emulating(); 1327 fpusave(vcpu->guestfpu); 1328 fpu_start_emulating(); 1329 } 1330 1331 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 1332 1333 static int 1334 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate, 1335 bool from_idle) 1336 { 1337 int error; 1338 1339 vcpu_assert_locked(vcpu); 1340 1341 /* 1342 * State transitions from the vmmdev_ioctl() must always begin from 1343 * the VCPU_IDLE state. This guarantees that there is only a single 1344 * ioctl() operating on a vcpu at any point. 1345 */ 1346 if (from_idle) { 1347 while (vcpu->state != VCPU_IDLE) { 1348 vcpu->reqidle = 1; 1349 vcpu_notify_event_locked(vcpu, false); 1350 VMM_CTR1(vcpu, "vcpu state change from %s to " 1351 "idle requested", vcpu_state2str(vcpu->state)); 1352 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 1353 } 1354 } else { 1355 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 1356 "vcpu idle state")); 1357 } 1358 1359 if (vcpu->state == VCPU_RUNNING) { 1360 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 1361 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 1362 } else { 1363 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 1364 "vcpu that is not running", vcpu->hostcpu)); 1365 } 1366 1367 /* 1368 * The following state transitions are allowed: 1369 * IDLE -> FROZEN -> IDLE 1370 * FROZEN -> RUNNING -> FROZEN 1371 * FROZEN -> SLEEPING -> FROZEN 1372 */ 1373 switch (vcpu->state) { 1374 case VCPU_IDLE: 1375 case VCPU_RUNNING: 1376 case VCPU_SLEEPING: 1377 error = (newstate != VCPU_FROZEN); 1378 break; 1379 case VCPU_FROZEN: 1380 error = (newstate == VCPU_FROZEN); 1381 break; 1382 default: 1383 error = 1; 1384 break; 1385 } 1386 1387 if (error) 1388 return (EBUSY); 1389 1390 VMM_CTR2(vcpu, "vcpu state changed from %s to %s", 1391 vcpu_state2str(vcpu->state), vcpu_state2str(newstate)); 1392 1393 vcpu->state = newstate; 1394 if (newstate == VCPU_RUNNING) 1395 vcpu->hostcpu = curcpu; 1396 else 1397 vcpu->hostcpu = NOCPU; 1398 1399 if (newstate == VCPU_IDLE) 1400 wakeup(&vcpu->state); 1401 1402 return (0); 1403 } 1404 1405 static void 1406 vcpu_require_state(struct vcpu *vcpu, enum vcpu_state newstate) 1407 { 1408 int error; 1409 1410 if ((error = vcpu_set_state(vcpu, newstate, false)) != 0) 1411 panic("Error %d setting state to %d\n", error, newstate); 1412 } 1413 1414 static void 1415 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate) 1416 { 1417 int error; 1418 1419 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0) 1420 panic("Error %d setting state to %d", error, newstate); 1421 } 1422 1423 static int 1424 vm_handle_rendezvous(struct vcpu *vcpu) 1425 { 1426 struct vm *vm = vcpu->vm; 1427 struct thread *td; 1428 int error, vcpuid; 1429 1430 error = 0; 1431 vcpuid = vcpu->vcpuid; 1432 td = curthread; 1433 mtx_lock(&vm->rendezvous_mtx); 1434 while (vm->rendezvous_func != NULL) { 1435 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1436 CPU_AND(&vm->rendezvous_req_cpus, &vm->rendezvous_req_cpus, &vm->active_cpus); 1437 1438 if (CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1439 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1440 VMM_CTR0(vcpu, "Calling rendezvous func"); 1441 (*vm->rendezvous_func)(vcpu, vm->rendezvous_arg); 1442 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1443 } 1444 if (CPU_CMP(&vm->rendezvous_req_cpus, 1445 &vm->rendezvous_done_cpus) == 0) { 1446 VMM_CTR0(vcpu, "Rendezvous completed"); 1447 CPU_ZERO(&vm->rendezvous_req_cpus); 1448 vm->rendezvous_func = NULL; 1449 wakeup(&vm->rendezvous_func); 1450 break; 1451 } 1452 VMM_CTR0(vcpu, "Wait for rendezvous completion"); 1453 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1454 "vmrndv", hz); 1455 if (td_ast_pending(td, TDA_SUSPEND)) { 1456 mtx_unlock(&vm->rendezvous_mtx); 1457 error = thread_check_susp(td, true); 1458 if (error != 0) 1459 return (error); 1460 mtx_lock(&vm->rendezvous_mtx); 1461 } 1462 } 1463 mtx_unlock(&vm->rendezvous_mtx); 1464 return (0); 1465 } 1466 1467 /* 1468 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1469 */ 1470 static int 1471 vm_handle_hlt(struct vcpu *vcpu, bool intr_disabled, bool *retu) 1472 { 1473 struct vm *vm = vcpu->vm; 1474 const char *wmesg; 1475 struct thread *td; 1476 int error, t, vcpuid, vcpu_halted, vm_halted; 1477 1478 vcpuid = vcpu->vcpuid; 1479 vcpu_halted = 0; 1480 vm_halted = 0; 1481 error = 0; 1482 td = curthread; 1483 1484 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1485 1486 vcpu_lock(vcpu); 1487 while (1) { 1488 /* 1489 * Do a final check for pending NMI or interrupts before 1490 * really putting this thread to sleep. Also check for 1491 * software events that would cause this vcpu to wakeup. 1492 * 1493 * These interrupts/events could have happened after the 1494 * vcpu returned from vmmops_run() and before it acquired the 1495 * vcpu lock above. 1496 */ 1497 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle) 1498 break; 1499 if (vm_nmi_pending(vcpu)) 1500 break; 1501 if (!intr_disabled) { 1502 if (vm_extint_pending(vcpu) || 1503 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1504 break; 1505 } 1506 } 1507 1508 /* Don't go to sleep if the vcpu thread needs to yield */ 1509 if (vcpu_should_yield(vcpu)) 1510 break; 1511 1512 if (vcpu_debugged(vcpu)) 1513 break; 1514 1515 /* 1516 * Some Linux guests implement "halt" by having all vcpus 1517 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1518 * track of the vcpus that have entered this state. When all 1519 * vcpus enter the halted state the virtual machine is halted. 1520 */ 1521 if (intr_disabled) { 1522 wmesg = "vmhalt"; 1523 VMM_CTR0(vcpu, "Halted"); 1524 if (!vcpu_halted && halt_detection_enabled) { 1525 vcpu_halted = 1; 1526 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1527 } 1528 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1529 vm_halted = 1; 1530 break; 1531 } 1532 } else { 1533 wmesg = "vmidle"; 1534 } 1535 1536 t = ticks; 1537 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1538 /* 1539 * XXX msleep_spin() cannot be interrupted by signals so 1540 * wake up periodically to check pending signals. 1541 */ 1542 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1543 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1544 vmm_stat_incr(vcpu, VCPU_IDLE_TICKS, ticks - t); 1545 if (td_ast_pending(td, TDA_SUSPEND)) { 1546 vcpu_unlock(vcpu); 1547 error = thread_check_susp(td, false); 1548 if (error != 0) { 1549 if (vcpu_halted) { 1550 CPU_CLR_ATOMIC(vcpuid, 1551 &vm->halted_cpus); 1552 } 1553 return (error); 1554 } 1555 vcpu_lock(vcpu); 1556 } 1557 } 1558 1559 if (vcpu_halted) 1560 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1561 1562 vcpu_unlock(vcpu); 1563 1564 if (vm_halted) 1565 vm_suspend(vm, VM_SUSPEND_HALT); 1566 1567 return (0); 1568 } 1569 1570 static int 1571 vm_handle_paging(struct vcpu *vcpu, bool *retu) 1572 { 1573 struct vm *vm = vcpu->vm; 1574 int rv, ftype; 1575 struct vm_map *map; 1576 struct vm_exit *vme; 1577 1578 vme = &vcpu->exitinfo; 1579 1580 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1581 __func__, vme->inst_length)); 1582 1583 ftype = vme->u.paging.fault_type; 1584 KASSERT(ftype == VM_PROT_READ || 1585 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1586 ("vm_handle_paging: invalid fault_type %d", ftype)); 1587 1588 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1589 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1590 vme->u.paging.gpa, ftype); 1591 if (rv == 0) { 1592 VMM_CTR2(vcpu, "%s bit emulation for gpa %#lx", 1593 ftype == VM_PROT_READ ? "accessed" : "dirty", 1594 vme->u.paging.gpa); 1595 goto done; 1596 } 1597 } 1598 1599 map = &vm->vmspace->vm_map; 1600 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL); 1601 1602 VMM_CTR3(vcpu, "vm_handle_paging rv = %d, gpa = %#lx, " 1603 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1604 1605 if (rv != KERN_SUCCESS) 1606 return (EFAULT); 1607 done: 1608 return (0); 1609 } 1610 1611 static int 1612 vm_handle_inst_emul(struct vcpu *vcpu, bool *retu) 1613 { 1614 struct vie *vie; 1615 struct vm_exit *vme; 1616 uint64_t gla, gpa, cs_base; 1617 struct vm_guest_paging *paging; 1618 mem_region_read_t mread; 1619 mem_region_write_t mwrite; 1620 enum vm_cpu_mode cpu_mode; 1621 int cs_d, error, fault; 1622 1623 vme = &vcpu->exitinfo; 1624 1625 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1626 __func__, vme->inst_length)); 1627 1628 gla = vme->u.inst_emul.gla; 1629 gpa = vme->u.inst_emul.gpa; 1630 cs_base = vme->u.inst_emul.cs_base; 1631 cs_d = vme->u.inst_emul.cs_d; 1632 vie = &vme->u.inst_emul.vie; 1633 paging = &vme->u.inst_emul.paging; 1634 cpu_mode = paging->cpu_mode; 1635 1636 VMM_CTR1(vcpu, "inst_emul fault accessing gpa %#lx", gpa); 1637 1638 /* Fetch, decode and emulate the faulting instruction */ 1639 if (vie->num_valid == 0) { 1640 error = vmm_fetch_instruction(vcpu, paging, vme->rip + cs_base, 1641 VIE_INST_SIZE, vie, &fault); 1642 } else { 1643 /* 1644 * The instruction bytes have already been copied into 'vie' 1645 */ 1646 error = fault = 0; 1647 } 1648 if (error || fault) 1649 return (error); 1650 1651 if (vmm_decode_instruction(vcpu, gla, cpu_mode, cs_d, vie) != 0) { 1652 VMM_CTR1(vcpu, "Error decoding instruction at %#lx", 1653 vme->rip + cs_base); 1654 *retu = true; /* dump instruction bytes in userspace */ 1655 return (0); 1656 } 1657 1658 /* 1659 * Update 'nextrip' based on the length of the emulated instruction. 1660 */ 1661 vme->inst_length = vie->num_processed; 1662 vcpu->nextrip += vie->num_processed; 1663 VMM_CTR1(vcpu, "nextrip updated to %#lx after instruction decoding", 1664 vcpu->nextrip); 1665 1666 /* return to userland unless this is an in-kernel emulated device */ 1667 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1668 mread = lapic_mmio_read; 1669 mwrite = lapic_mmio_write; 1670 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1671 mread = vioapic_mmio_read; 1672 mwrite = vioapic_mmio_write; 1673 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1674 mread = vhpet_mmio_read; 1675 mwrite = vhpet_mmio_write; 1676 } else { 1677 *retu = true; 1678 return (0); 1679 } 1680 1681 error = vmm_emulate_instruction(vcpu, gpa, vie, paging, mread, mwrite, 1682 retu); 1683 1684 return (error); 1685 } 1686 1687 static int 1688 vm_handle_suspend(struct vcpu *vcpu, bool *retu) 1689 { 1690 struct vm *vm = vcpu->vm; 1691 int error, i; 1692 struct thread *td; 1693 1694 error = 0; 1695 td = curthread; 1696 1697 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->suspended_cpus); 1698 1699 /* 1700 * Wait until all 'active_cpus' have suspended themselves. 1701 * 1702 * Since a VM may be suspended at any time including when one or 1703 * more vcpus are doing a rendezvous we need to call the rendezvous 1704 * handler while we are waiting to prevent a deadlock. 1705 */ 1706 vcpu_lock(vcpu); 1707 while (error == 0) { 1708 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1709 VMM_CTR0(vcpu, "All vcpus suspended"); 1710 break; 1711 } 1712 1713 if (vm->rendezvous_func == NULL) { 1714 VMM_CTR0(vcpu, "Sleeping during suspend"); 1715 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1716 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1717 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1718 if (td_ast_pending(td, TDA_SUSPEND)) { 1719 vcpu_unlock(vcpu); 1720 error = thread_check_susp(td, false); 1721 vcpu_lock(vcpu); 1722 } 1723 } else { 1724 VMM_CTR0(vcpu, "Rendezvous during suspend"); 1725 vcpu_unlock(vcpu); 1726 error = vm_handle_rendezvous(vcpu); 1727 vcpu_lock(vcpu); 1728 } 1729 } 1730 vcpu_unlock(vcpu); 1731 1732 /* 1733 * Wakeup the other sleeping vcpus and return to userspace. 1734 */ 1735 for (i = 0; i < vm->maxcpus; i++) { 1736 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1737 vcpu_notify_event(vm_vcpu(vm, i), false); 1738 } 1739 } 1740 1741 *retu = true; 1742 return (error); 1743 } 1744 1745 static int 1746 vm_handle_reqidle(struct vcpu *vcpu, bool *retu) 1747 { 1748 vcpu_lock(vcpu); 1749 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle)); 1750 vcpu->reqidle = 0; 1751 vcpu_unlock(vcpu); 1752 *retu = true; 1753 return (0); 1754 } 1755 1756 int 1757 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1758 { 1759 int i; 1760 1761 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1762 return (EINVAL); 1763 1764 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1765 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1766 vm->suspend, how); 1767 return (EALREADY); 1768 } 1769 1770 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1771 1772 /* 1773 * Notify all active vcpus that they are now suspended. 1774 */ 1775 for (i = 0; i < vm->maxcpus; i++) { 1776 if (CPU_ISSET(i, &vm->active_cpus)) 1777 vcpu_notify_event(vm_vcpu(vm, i), false); 1778 } 1779 1780 return (0); 1781 } 1782 1783 void 1784 vm_exit_suspended(struct vcpu *vcpu, uint64_t rip) 1785 { 1786 struct vm *vm = vcpu->vm; 1787 struct vm_exit *vmexit; 1788 1789 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1790 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1791 1792 vmexit = vm_exitinfo(vcpu); 1793 vmexit->rip = rip; 1794 vmexit->inst_length = 0; 1795 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1796 vmexit->u.suspended.how = vm->suspend; 1797 } 1798 1799 void 1800 vm_exit_debug(struct vcpu *vcpu, uint64_t rip) 1801 { 1802 struct vm_exit *vmexit; 1803 1804 vmexit = vm_exitinfo(vcpu); 1805 vmexit->rip = rip; 1806 vmexit->inst_length = 0; 1807 vmexit->exitcode = VM_EXITCODE_DEBUG; 1808 } 1809 1810 void 1811 vm_exit_rendezvous(struct vcpu *vcpu, uint64_t rip) 1812 { 1813 struct vm_exit *vmexit; 1814 1815 vmexit = vm_exitinfo(vcpu); 1816 vmexit->rip = rip; 1817 vmexit->inst_length = 0; 1818 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1819 vmm_stat_incr(vcpu, VMEXIT_RENDEZVOUS, 1); 1820 } 1821 1822 void 1823 vm_exit_reqidle(struct vcpu *vcpu, uint64_t rip) 1824 { 1825 struct vm_exit *vmexit; 1826 1827 vmexit = vm_exitinfo(vcpu); 1828 vmexit->rip = rip; 1829 vmexit->inst_length = 0; 1830 vmexit->exitcode = VM_EXITCODE_REQIDLE; 1831 vmm_stat_incr(vcpu, VMEXIT_REQIDLE, 1); 1832 } 1833 1834 void 1835 vm_exit_astpending(struct vcpu *vcpu, uint64_t rip) 1836 { 1837 struct vm_exit *vmexit; 1838 1839 vmexit = vm_exitinfo(vcpu); 1840 vmexit->rip = rip; 1841 vmexit->inst_length = 0; 1842 vmexit->exitcode = VM_EXITCODE_BOGUS; 1843 vmm_stat_incr(vcpu, VMEXIT_ASTPENDING, 1); 1844 } 1845 1846 int 1847 vm_run(struct vcpu *vcpu) 1848 { 1849 struct vm *vm = vcpu->vm; 1850 struct vm_eventinfo evinfo; 1851 int error, vcpuid; 1852 struct pcb *pcb; 1853 uint64_t tscval; 1854 struct vm_exit *vme; 1855 bool retu, intr_disabled; 1856 pmap_t pmap; 1857 1858 vcpuid = vcpu->vcpuid; 1859 1860 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1861 return (EINVAL); 1862 1863 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1864 return (EINVAL); 1865 1866 pmap = vmspace_pmap(vm->vmspace); 1867 vme = &vcpu->exitinfo; 1868 evinfo.rptr = &vm->rendezvous_req_cpus; 1869 evinfo.sptr = &vm->suspend; 1870 evinfo.iptr = &vcpu->reqidle; 1871 restart: 1872 critical_enter(); 1873 1874 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1875 ("vm_run: absurd pm_active")); 1876 1877 tscval = rdtsc(); 1878 1879 pcb = PCPU_GET(curpcb); 1880 set_pcb_flags(pcb, PCB_FULL_IRET); 1881 1882 restore_guest_fpustate(vcpu); 1883 1884 vcpu_require_state(vcpu, VCPU_RUNNING); 1885 error = vmmops_run(vcpu->cookie, vcpu->nextrip, pmap, &evinfo); 1886 vcpu_require_state(vcpu, VCPU_FROZEN); 1887 1888 save_guest_fpustate(vcpu); 1889 1890 vmm_stat_incr(vcpu, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1891 1892 critical_exit(); 1893 1894 if (error == 0) { 1895 retu = false; 1896 vcpu->nextrip = vme->rip + vme->inst_length; 1897 switch (vme->exitcode) { 1898 case VM_EXITCODE_REQIDLE: 1899 error = vm_handle_reqidle(vcpu, &retu); 1900 break; 1901 case VM_EXITCODE_SUSPENDED: 1902 error = vm_handle_suspend(vcpu, &retu); 1903 break; 1904 case VM_EXITCODE_IOAPIC_EOI: 1905 vioapic_process_eoi(vm, vme->u.ioapic_eoi.vector); 1906 break; 1907 case VM_EXITCODE_RENDEZVOUS: 1908 error = vm_handle_rendezvous(vcpu); 1909 break; 1910 case VM_EXITCODE_HLT: 1911 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1912 error = vm_handle_hlt(vcpu, intr_disabled, &retu); 1913 break; 1914 case VM_EXITCODE_PAGING: 1915 error = vm_handle_paging(vcpu, &retu); 1916 break; 1917 case VM_EXITCODE_INST_EMUL: 1918 error = vm_handle_inst_emul(vcpu, &retu); 1919 break; 1920 case VM_EXITCODE_INOUT: 1921 case VM_EXITCODE_INOUT_STR: 1922 error = vm_handle_inout(vcpu, vme, &retu); 1923 break; 1924 case VM_EXITCODE_MONITOR: 1925 case VM_EXITCODE_MWAIT: 1926 case VM_EXITCODE_VMINSN: 1927 vm_inject_ud(vcpu); 1928 break; 1929 default: 1930 retu = true; /* handled in userland */ 1931 break; 1932 } 1933 } 1934 1935 /* 1936 * VM_EXITCODE_INST_EMUL could access the apic which could transform the 1937 * exit code into VM_EXITCODE_IPI. 1938 */ 1939 if (error == 0 && vme->exitcode == VM_EXITCODE_IPI) 1940 error = vm_handle_ipi(vcpu, vme, &retu); 1941 1942 if (error == 0 && retu == false) 1943 goto restart; 1944 1945 vmm_stat_incr(vcpu, VMEXIT_USERSPACE, 1); 1946 VMM_CTR2(vcpu, "retu %d/%d", error, vme->exitcode); 1947 1948 return (error); 1949 } 1950 1951 int 1952 vm_restart_instruction(struct vcpu *vcpu) 1953 { 1954 enum vcpu_state state; 1955 uint64_t rip; 1956 int error __diagused; 1957 1958 state = vcpu_get_state(vcpu, NULL); 1959 if (state == VCPU_RUNNING) { 1960 /* 1961 * When a vcpu is "running" the next instruction is determined 1962 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'. 1963 * Thus setting 'inst_length' to zero will cause the current 1964 * instruction to be restarted. 1965 */ 1966 vcpu->exitinfo.inst_length = 0; 1967 VMM_CTR1(vcpu, "restarting instruction at %#lx by " 1968 "setting inst_length to zero", vcpu->exitinfo.rip); 1969 } else if (state == VCPU_FROZEN) { 1970 /* 1971 * When a vcpu is "frozen" it is outside the critical section 1972 * around vmmops_run() and 'nextrip' points to the next 1973 * instruction. Thus instruction restart is achieved by setting 1974 * 'nextrip' to the vcpu's %rip. 1975 */ 1976 error = vm_get_register(vcpu, VM_REG_GUEST_RIP, &rip); 1977 KASSERT(!error, ("%s: error %d getting rip", __func__, error)); 1978 VMM_CTR2(vcpu, "restarting instruction by updating " 1979 "nextrip from %#lx to %#lx", vcpu->nextrip, rip); 1980 vcpu->nextrip = rip; 1981 } else { 1982 panic("%s: invalid state %d", __func__, state); 1983 } 1984 return (0); 1985 } 1986 1987 int 1988 vm_exit_intinfo(struct vcpu *vcpu, uint64_t info) 1989 { 1990 int type, vector; 1991 1992 if (info & VM_INTINFO_VALID) { 1993 type = info & VM_INTINFO_TYPE; 1994 vector = info & 0xff; 1995 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 1996 return (EINVAL); 1997 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 1998 return (EINVAL); 1999 if (info & VM_INTINFO_RSVD) 2000 return (EINVAL); 2001 } else { 2002 info = 0; 2003 } 2004 VMM_CTR2(vcpu, "%s: info1(%#lx)", __func__, info); 2005 vcpu->exitintinfo = info; 2006 return (0); 2007 } 2008 2009 enum exc_class { 2010 EXC_BENIGN, 2011 EXC_CONTRIBUTORY, 2012 EXC_PAGEFAULT 2013 }; 2014 2015 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 2016 2017 static enum exc_class 2018 exception_class(uint64_t info) 2019 { 2020 int type, vector; 2021 2022 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 2023 type = info & VM_INTINFO_TYPE; 2024 vector = info & 0xff; 2025 2026 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 2027 switch (type) { 2028 case VM_INTINFO_HWINTR: 2029 case VM_INTINFO_SWINTR: 2030 case VM_INTINFO_NMI: 2031 return (EXC_BENIGN); 2032 default: 2033 /* 2034 * Hardware exception. 2035 * 2036 * SVM and VT-x use identical type values to represent NMI, 2037 * hardware interrupt and software interrupt. 2038 * 2039 * SVM uses type '3' for all exceptions. VT-x uses type '3' 2040 * for exceptions except #BP and #OF. #BP and #OF use a type 2041 * value of '5' or '6'. Therefore we don't check for explicit 2042 * values of 'type' to classify 'intinfo' into a hardware 2043 * exception. 2044 */ 2045 break; 2046 } 2047 2048 switch (vector) { 2049 case IDT_PF: 2050 case IDT_VE: 2051 return (EXC_PAGEFAULT); 2052 case IDT_DE: 2053 case IDT_TS: 2054 case IDT_NP: 2055 case IDT_SS: 2056 case IDT_GP: 2057 return (EXC_CONTRIBUTORY); 2058 default: 2059 return (EXC_BENIGN); 2060 } 2061 } 2062 2063 static int 2064 nested_fault(struct vcpu *vcpu, uint64_t info1, uint64_t info2, 2065 uint64_t *retinfo) 2066 { 2067 enum exc_class exc1, exc2; 2068 int type1, vector1; 2069 2070 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 2071 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 2072 2073 /* 2074 * If an exception occurs while attempting to call the double-fault 2075 * handler the processor enters shutdown mode (aka triple fault). 2076 */ 2077 type1 = info1 & VM_INTINFO_TYPE; 2078 vector1 = info1 & 0xff; 2079 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 2080 VMM_CTR2(vcpu, "triple fault: info1(%#lx), info2(%#lx)", 2081 info1, info2); 2082 vm_suspend(vcpu->vm, VM_SUSPEND_TRIPLEFAULT); 2083 *retinfo = 0; 2084 return (0); 2085 } 2086 2087 /* 2088 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 2089 */ 2090 exc1 = exception_class(info1); 2091 exc2 = exception_class(info2); 2092 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 2093 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 2094 /* Convert nested fault into a double fault. */ 2095 *retinfo = IDT_DF; 2096 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 2097 *retinfo |= VM_INTINFO_DEL_ERRCODE; 2098 } else { 2099 /* Handle exceptions serially */ 2100 *retinfo = info2; 2101 } 2102 return (1); 2103 } 2104 2105 static uint64_t 2106 vcpu_exception_intinfo(struct vcpu *vcpu) 2107 { 2108 uint64_t info = 0; 2109 2110 if (vcpu->exception_pending) { 2111 info = vcpu->exc_vector & 0xff; 2112 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 2113 if (vcpu->exc_errcode_valid) { 2114 info |= VM_INTINFO_DEL_ERRCODE; 2115 info |= (uint64_t)vcpu->exc_errcode << 32; 2116 } 2117 } 2118 return (info); 2119 } 2120 2121 int 2122 vm_entry_intinfo(struct vcpu *vcpu, uint64_t *retinfo) 2123 { 2124 uint64_t info1, info2; 2125 int valid; 2126 2127 info1 = vcpu->exitintinfo; 2128 vcpu->exitintinfo = 0; 2129 2130 info2 = 0; 2131 if (vcpu->exception_pending) { 2132 info2 = vcpu_exception_intinfo(vcpu); 2133 vcpu->exception_pending = 0; 2134 VMM_CTR2(vcpu, "Exception %d delivered: %#lx", 2135 vcpu->exc_vector, info2); 2136 } 2137 2138 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 2139 valid = nested_fault(vcpu, info1, info2, retinfo); 2140 } else if (info1 & VM_INTINFO_VALID) { 2141 *retinfo = info1; 2142 valid = 1; 2143 } else if (info2 & VM_INTINFO_VALID) { 2144 *retinfo = info2; 2145 valid = 1; 2146 } else { 2147 valid = 0; 2148 } 2149 2150 if (valid) { 2151 VMM_CTR4(vcpu, "%s: info1(%#lx), info2(%#lx), " 2152 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 2153 } 2154 2155 return (valid); 2156 } 2157 2158 int 2159 vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2) 2160 { 2161 *info1 = vcpu->exitintinfo; 2162 *info2 = vcpu_exception_intinfo(vcpu); 2163 return (0); 2164 } 2165 2166 int 2167 vm_inject_exception(struct vcpu *vcpu, int vector, int errcode_valid, 2168 uint32_t errcode, int restart_instruction) 2169 { 2170 uint64_t regval; 2171 int error __diagused; 2172 2173 if (vector < 0 || vector >= 32) 2174 return (EINVAL); 2175 2176 /* 2177 * A double fault exception should never be injected directly into 2178 * the guest. It is a derived exception that results from specific 2179 * combinations of nested faults. 2180 */ 2181 if (vector == IDT_DF) 2182 return (EINVAL); 2183 2184 if (vcpu->exception_pending) { 2185 VMM_CTR2(vcpu, "Unable to inject exception %d due to " 2186 "pending exception %d", vector, vcpu->exc_vector); 2187 return (EBUSY); 2188 } 2189 2190 if (errcode_valid) { 2191 /* 2192 * Exceptions don't deliver an error code in real mode. 2193 */ 2194 error = vm_get_register(vcpu, VM_REG_GUEST_CR0, ®val); 2195 KASSERT(!error, ("%s: error %d getting CR0", __func__, error)); 2196 if (!(regval & CR0_PE)) 2197 errcode_valid = 0; 2198 } 2199 2200 /* 2201 * From section 26.6.1 "Interruptibility State" in Intel SDM: 2202 * 2203 * Event blocking by "STI" or "MOV SS" is cleared after guest executes 2204 * one instruction or incurs an exception. 2205 */ 2206 error = vm_set_register(vcpu, VM_REG_GUEST_INTR_SHADOW, 0); 2207 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", 2208 __func__, error)); 2209 2210 if (restart_instruction) 2211 vm_restart_instruction(vcpu); 2212 2213 vcpu->exception_pending = 1; 2214 vcpu->exc_vector = vector; 2215 vcpu->exc_errcode = errcode; 2216 vcpu->exc_errcode_valid = errcode_valid; 2217 VMM_CTR1(vcpu, "Exception %d pending", vector); 2218 return (0); 2219 } 2220 2221 void 2222 vm_inject_fault(struct vcpu *vcpu, int vector, int errcode_valid, int errcode) 2223 { 2224 int error __diagused, restart_instruction; 2225 2226 restart_instruction = 1; 2227 2228 error = vm_inject_exception(vcpu, vector, errcode_valid, 2229 errcode, restart_instruction); 2230 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 2231 } 2232 2233 void 2234 vm_inject_pf(struct vcpu *vcpu, int error_code, uint64_t cr2) 2235 { 2236 int error __diagused; 2237 2238 VMM_CTR2(vcpu, "Injecting page fault: error_code %#x, cr2 %#lx", 2239 error_code, cr2); 2240 2241 error = vm_set_register(vcpu, VM_REG_GUEST_CR2, cr2); 2242 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 2243 2244 vm_inject_fault(vcpu, IDT_PF, 1, error_code); 2245 } 2246 2247 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 2248 2249 int 2250 vm_inject_nmi(struct vcpu *vcpu) 2251 { 2252 2253 vcpu->nmi_pending = 1; 2254 vcpu_notify_event(vcpu, false); 2255 return (0); 2256 } 2257 2258 int 2259 vm_nmi_pending(struct vcpu *vcpu) 2260 { 2261 return (vcpu->nmi_pending); 2262 } 2263 2264 void 2265 vm_nmi_clear(struct vcpu *vcpu) 2266 { 2267 if (vcpu->nmi_pending == 0) 2268 panic("vm_nmi_clear: inconsistent nmi_pending state"); 2269 2270 vcpu->nmi_pending = 0; 2271 vmm_stat_incr(vcpu, VCPU_NMI_COUNT, 1); 2272 } 2273 2274 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 2275 2276 int 2277 vm_inject_extint(struct vcpu *vcpu) 2278 { 2279 2280 vcpu->extint_pending = 1; 2281 vcpu_notify_event(vcpu, false); 2282 return (0); 2283 } 2284 2285 int 2286 vm_extint_pending(struct vcpu *vcpu) 2287 { 2288 return (vcpu->extint_pending); 2289 } 2290 2291 void 2292 vm_extint_clear(struct vcpu *vcpu) 2293 { 2294 if (vcpu->extint_pending == 0) 2295 panic("vm_extint_clear: inconsistent extint_pending state"); 2296 2297 vcpu->extint_pending = 0; 2298 vmm_stat_incr(vcpu, VCPU_EXTINT_COUNT, 1); 2299 } 2300 2301 int 2302 vm_get_capability(struct vcpu *vcpu, int type, int *retval) 2303 { 2304 if (type < 0 || type >= VM_CAP_MAX) 2305 return (EINVAL); 2306 2307 return (vmmops_getcap(vcpu->cookie, type, retval)); 2308 } 2309 2310 int 2311 vm_set_capability(struct vcpu *vcpu, int type, int val) 2312 { 2313 if (type < 0 || type >= VM_CAP_MAX) 2314 return (EINVAL); 2315 2316 return (vmmops_setcap(vcpu->cookie, type, val)); 2317 } 2318 2319 struct vm * 2320 vcpu_vm(struct vcpu *vcpu) 2321 { 2322 return (vcpu->vm); 2323 } 2324 2325 int 2326 vcpu_vcpuid(struct vcpu *vcpu) 2327 { 2328 return (vcpu->vcpuid); 2329 } 2330 2331 struct vcpu * 2332 vm_vcpu(struct vm *vm, int vcpuid) 2333 { 2334 return (vm->vcpu[vcpuid]); 2335 } 2336 2337 struct vlapic * 2338 vm_lapic(struct vcpu *vcpu) 2339 { 2340 return (vcpu->vlapic); 2341 } 2342 2343 struct vioapic * 2344 vm_ioapic(struct vm *vm) 2345 { 2346 2347 return (vm->vioapic); 2348 } 2349 2350 struct vhpet * 2351 vm_hpet(struct vm *vm) 2352 { 2353 2354 return (vm->vhpet); 2355 } 2356 2357 bool 2358 vmm_is_pptdev(int bus, int slot, int func) 2359 { 2360 int b, f, i, n, s; 2361 char *val, *cp, *cp2; 2362 bool found; 2363 2364 /* 2365 * XXX 2366 * The length of an environment variable is limited to 128 bytes which 2367 * puts an upper limit on the number of passthru devices that may be 2368 * specified using a single environment variable. 2369 * 2370 * Work around this by scanning multiple environment variable 2371 * names instead of a single one - yuck! 2372 */ 2373 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 2374 2375 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 2376 found = false; 2377 for (i = 0; names[i] != NULL && !found; i++) { 2378 cp = val = kern_getenv(names[i]); 2379 while (cp != NULL && *cp != '\0') { 2380 if ((cp2 = strchr(cp, ' ')) != NULL) 2381 *cp2 = '\0'; 2382 2383 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 2384 if (n == 3 && bus == b && slot == s && func == f) { 2385 found = true; 2386 break; 2387 } 2388 2389 if (cp2 != NULL) 2390 *cp2++ = ' '; 2391 2392 cp = cp2; 2393 } 2394 freeenv(val); 2395 } 2396 return (found); 2397 } 2398 2399 void * 2400 vm_iommu_domain(struct vm *vm) 2401 { 2402 2403 return (vm->iommu); 2404 } 2405 2406 int 2407 vcpu_set_state(struct vcpu *vcpu, enum vcpu_state newstate, bool from_idle) 2408 { 2409 int error; 2410 2411 vcpu_lock(vcpu); 2412 error = vcpu_set_state_locked(vcpu, newstate, from_idle); 2413 vcpu_unlock(vcpu); 2414 2415 return (error); 2416 } 2417 2418 enum vcpu_state 2419 vcpu_get_state(struct vcpu *vcpu, int *hostcpu) 2420 { 2421 enum vcpu_state state; 2422 2423 vcpu_lock(vcpu); 2424 state = vcpu->state; 2425 if (hostcpu != NULL) 2426 *hostcpu = vcpu->hostcpu; 2427 vcpu_unlock(vcpu); 2428 2429 return (state); 2430 } 2431 2432 int 2433 vm_activate_cpu(struct vcpu *vcpu) 2434 { 2435 struct vm *vm = vcpu->vm; 2436 2437 if (CPU_ISSET(vcpu->vcpuid, &vm->active_cpus)) 2438 return (EBUSY); 2439 2440 VMM_CTR0(vcpu, "activated"); 2441 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->active_cpus); 2442 return (0); 2443 } 2444 2445 int 2446 vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu) 2447 { 2448 if (vcpu == NULL) { 2449 vm->debug_cpus = vm->active_cpus; 2450 for (int i = 0; i < vm->maxcpus; i++) { 2451 if (CPU_ISSET(i, &vm->active_cpus)) 2452 vcpu_notify_event(vm_vcpu(vm, i), false); 2453 } 2454 } else { 2455 if (!CPU_ISSET(vcpu->vcpuid, &vm->active_cpus)) 2456 return (EINVAL); 2457 2458 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->debug_cpus); 2459 vcpu_notify_event(vcpu, false); 2460 } 2461 return (0); 2462 } 2463 2464 int 2465 vm_resume_cpu(struct vm *vm, struct vcpu *vcpu) 2466 { 2467 2468 if (vcpu == NULL) { 2469 CPU_ZERO(&vm->debug_cpus); 2470 } else { 2471 if (!CPU_ISSET(vcpu->vcpuid, &vm->debug_cpus)) 2472 return (EINVAL); 2473 2474 CPU_CLR_ATOMIC(vcpu->vcpuid, &vm->debug_cpus); 2475 } 2476 return (0); 2477 } 2478 2479 int 2480 vcpu_debugged(struct vcpu *vcpu) 2481 { 2482 2483 return (CPU_ISSET(vcpu->vcpuid, &vcpu->vm->debug_cpus)); 2484 } 2485 2486 cpuset_t 2487 vm_active_cpus(struct vm *vm) 2488 { 2489 2490 return (vm->active_cpus); 2491 } 2492 2493 cpuset_t 2494 vm_debug_cpus(struct vm *vm) 2495 { 2496 2497 return (vm->debug_cpus); 2498 } 2499 2500 cpuset_t 2501 vm_suspended_cpus(struct vm *vm) 2502 { 2503 2504 return (vm->suspended_cpus); 2505 } 2506 2507 /* 2508 * Returns the subset of vCPUs in tostart that are awaiting startup. 2509 * These vCPUs are also marked as no longer awaiting startup. 2510 */ 2511 cpuset_t 2512 vm_start_cpus(struct vm *vm, const cpuset_t *tostart) 2513 { 2514 cpuset_t set; 2515 2516 mtx_lock(&vm->rendezvous_mtx); 2517 CPU_AND(&set, &vm->startup_cpus, tostart); 2518 CPU_ANDNOT(&vm->startup_cpus, &vm->startup_cpus, &set); 2519 mtx_unlock(&vm->rendezvous_mtx); 2520 return (set); 2521 } 2522 2523 void 2524 vm_await_start(struct vm *vm, const cpuset_t *waiting) 2525 { 2526 mtx_lock(&vm->rendezvous_mtx); 2527 CPU_OR(&vm->startup_cpus, &vm->startup_cpus, waiting); 2528 mtx_unlock(&vm->rendezvous_mtx); 2529 } 2530 2531 void * 2532 vcpu_stats(struct vcpu *vcpu) 2533 { 2534 2535 return (vcpu->stats); 2536 } 2537 2538 int 2539 vm_get_x2apic_state(struct vcpu *vcpu, enum x2apic_state *state) 2540 { 2541 *state = vcpu->x2apic_state; 2542 2543 return (0); 2544 } 2545 2546 int 2547 vm_set_x2apic_state(struct vcpu *vcpu, enum x2apic_state state) 2548 { 2549 if (state >= X2APIC_STATE_LAST) 2550 return (EINVAL); 2551 2552 vcpu->x2apic_state = state; 2553 2554 vlapic_set_x2apic_state(vcpu, state); 2555 2556 return (0); 2557 } 2558 2559 /* 2560 * This function is called to ensure that a vcpu "sees" a pending event 2561 * as soon as possible: 2562 * - If the vcpu thread is sleeping then it is woken up. 2563 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2564 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2565 */ 2566 static void 2567 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr) 2568 { 2569 int hostcpu; 2570 2571 hostcpu = vcpu->hostcpu; 2572 if (vcpu->state == VCPU_RUNNING) { 2573 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2574 if (hostcpu != curcpu) { 2575 if (lapic_intr) { 2576 vlapic_post_intr(vcpu->vlapic, hostcpu, 2577 vmm_ipinum); 2578 } else { 2579 ipi_cpu(hostcpu, vmm_ipinum); 2580 } 2581 } else { 2582 /* 2583 * If the 'vcpu' is running on 'curcpu' then it must 2584 * be sending a notification to itself (e.g. SELF_IPI). 2585 * The pending event will be picked up when the vcpu 2586 * transitions back to guest context. 2587 */ 2588 } 2589 } else { 2590 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2591 "with hostcpu %d", vcpu->state, hostcpu)); 2592 if (vcpu->state == VCPU_SLEEPING) 2593 wakeup_one(vcpu); 2594 } 2595 } 2596 2597 void 2598 vcpu_notify_event(struct vcpu *vcpu, bool lapic_intr) 2599 { 2600 vcpu_lock(vcpu); 2601 vcpu_notify_event_locked(vcpu, lapic_intr); 2602 vcpu_unlock(vcpu); 2603 } 2604 2605 struct vmspace * 2606 vm_get_vmspace(struct vm *vm) 2607 { 2608 2609 return (vm->vmspace); 2610 } 2611 2612 int 2613 vm_apicid2vcpuid(struct vm *vm, int apicid) 2614 { 2615 /* 2616 * XXX apic id is assumed to be numerically identical to vcpu id 2617 */ 2618 return (apicid); 2619 } 2620 2621 int 2622 vm_smp_rendezvous(struct vcpu *vcpu, cpuset_t dest, 2623 vm_rendezvous_func_t func, void *arg) 2624 { 2625 struct vm *vm = vcpu->vm; 2626 int error, i; 2627 2628 /* 2629 * Enforce that this function is called without any locks 2630 */ 2631 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2632 2633 restart: 2634 mtx_lock(&vm->rendezvous_mtx); 2635 if (vm->rendezvous_func != NULL) { 2636 /* 2637 * If a rendezvous is already in progress then we need to 2638 * call the rendezvous handler in case this 'vcpu' is one 2639 * of the targets of the rendezvous. 2640 */ 2641 VMM_CTR0(vcpu, "Rendezvous already in progress"); 2642 mtx_unlock(&vm->rendezvous_mtx); 2643 error = vm_handle_rendezvous(vcpu); 2644 if (error != 0) 2645 return (error); 2646 goto restart; 2647 } 2648 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2649 "rendezvous is still in progress")); 2650 2651 VMM_CTR0(vcpu, "Initiating rendezvous"); 2652 vm->rendezvous_req_cpus = dest; 2653 CPU_ZERO(&vm->rendezvous_done_cpus); 2654 vm->rendezvous_arg = arg; 2655 vm->rendezvous_func = func; 2656 mtx_unlock(&vm->rendezvous_mtx); 2657 2658 /* 2659 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2660 * vcpus so they handle the rendezvous as soon as possible. 2661 */ 2662 for (i = 0; i < vm->maxcpus; i++) { 2663 if (CPU_ISSET(i, &dest)) 2664 vcpu_notify_event(vm_vcpu(vm, i), false); 2665 } 2666 2667 return (vm_handle_rendezvous(vcpu)); 2668 } 2669 2670 struct vatpic * 2671 vm_atpic(struct vm *vm) 2672 { 2673 return (vm->vatpic); 2674 } 2675 2676 struct vatpit * 2677 vm_atpit(struct vm *vm) 2678 { 2679 return (vm->vatpit); 2680 } 2681 2682 struct vpmtmr * 2683 vm_pmtmr(struct vm *vm) 2684 { 2685 2686 return (vm->vpmtmr); 2687 } 2688 2689 struct vrtc * 2690 vm_rtc(struct vm *vm) 2691 { 2692 2693 return (vm->vrtc); 2694 } 2695 2696 enum vm_reg_name 2697 vm_segment_name(int seg) 2698 { 2699 static enum vm_reg_name seg_names[] = { 2700 VM_REG_GUEST_ES, 2701 VM_REG_GUEST_CS, 2702 VM_REG_GUEST_SS, 2703 VM_REG_GUEST_DS, 2704 VM_REG_GUEST_FS, 2705 VM_REG_GUEST_GS 2706 }; 2707 2708 KASSERT(seg >= 0 && seg < nitems(seg_names), 2709 ("%s: invalid segment encoding %d", __func__, seg)); 2710 return (seg_names[seg]); 2711 } 2712 2713 void 2714 vm_copy_teardown(struct vm_copyinfo *copyinfo, int num_copyinfo) 2715 { 2716 int idx; 2717 2718 for (idx = 0; idx < num_copyinfo; idx++) { 2719 if (copyinfo[idx].cookie != NULL) 2720 vm_gpa_release(copyinfo[idx].cookie); 2721 } 2722 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2723 } 2724 2725 int 2726 vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging, 2727 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2728 int num_copyinfo, int *fault) 2729 { 2730 int error, idx, nused; 2731 size_t n, off, remaining; 2732 void *hva, *cookie; 2733 uint64_t gpa; 2734 2735 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2736 2737 nused = 0; 2738 remaining = len; 2739 while (remaining > 0) { 2740 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo")); 2741 error = vm_gla2gpa(vcpu, paging, gla, prot, &gpa, fault); 2742 if (error || *fault) 2743 return (error); 2744 off = gpa & PAGE_MASK; 2745 n = min(remaining, PAGE_SIZE - off); 2746 copyinfo[nused].gpa = gpa; 2747 copyinfo[nused].len = n; 2748 remaining -= n; 2749 gla += n; 2750 nused++; 2751 } 2752 2753 for (idx = 0; idx < nused; idx++) { 2754 hva = vm_gpa_hold(vcpu, copyinfo[idx].gpa, 2755 copyinfo[idx].len, prot, &cookie); 2756 if (hva == NULL) 2757 break; 2758 copyinfo[idx].hva = hva; 2759 copyinfo[idx].cookie = cookie; 2760 } 2761 2762 if (idx != nused) { 2763 vm_copy_teardown(copyinfo, num_copyinfo); 2764 return (EFAULT); 2765 } else { 2766 *fault = 0; 2767 return (0); 2768 } 2769 } 2770 2771 void 2772 vm_copyin(struct vm_copyinfo *copyinfo, void *kaddr, size_t len) 2773 { 2774 char *dst; 2775 int idx; 2776 2777 dst = kaddr; 2778 idx = 0; 2779 while (len > 0) { 2780 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2781 len -= copyinfo[idx].len; 2782 dst += copyinfo[idx].len; 2783 idx++; 2784 } 2785 } 2786 2787 void 2788 vm_copyout(const void *kaddr, struct vm_copyinfo *copyinfo, size_t len) 2789 { 2790 const char *src; 2791 int idx; 2792 2793 src = kaddr; 2794 idx = 0; 2795 while (len > 0) { 2796 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2797 len -= copyinfo[idx].len; 2798 src += copyinfo[idx].len; 2799 idx++; 2800 } 2801 } 2802 2803 /* 2804 * Return the amount of in-use and wired memory for the VM. Since 2805 * these are global stats, only return the values with for vCPU 0 2806 */ 2807 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2808 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2809 2810 static void 2811 vm_get_rescnt(struct vcpu *vcpu, struct vmm_stat_type *stat) 2812 { 2813 2814 if (vcpu->vcpuid == 0) { 2815 vmm_stat_set(vcpu, VMM_MEM_RESIDENT, PAGE_SIZE * 2816 vmspace_resident_count(vcpu->vm->vmspace)); 2817 } 2818 } 2819 2820 static void 2821 vm_get_wiredcnt(struct vcpu *vcpu, struct vmm_stat_type *stat) 2822 { 2823 2824 if (vcpu->vcpuid == 0) { 2825 vmm_stat_set(vcpu, VMM_MEM_WIRED, PAGE_SIZE * 2826 pmap_wired_count(vmspace_pmap(vcpu->vm->vmspace))); 2827 } 2828 } 2829 2830 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2831 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2832 2833 #ifdef BHYVE_SNAPSHOT 2834 static int 2835 vm_snapshot_vcpus(struct vm *vm, struct vm_snapshot_meta *meta) 2836 { 2837 uint64_t tsc, now; 2838 int ret; 2839 struct vcpu *vcpu; 2840 uint16_t i, maxcpus; 2841 2842 now = rdtsc(); 2843 maxcpus = vm_get_maxcpus(vm); 2844 for (i = 0; i < maxcpus; i++) { 2845 vcpu = vm->vcpu[i]; 2846 if (vcpu == NULL) 2847 continue; 2848 2849 SNAPSHOT_VAR_OR_LEAVE(vcpu->x2apic_state, meta, ret, done); 2850 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitintinfo, meta, ret, done); 2851 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_vector, meta, ret, done); 2852 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode_valid, meta, ret, done); 2853 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode, meta, ret, done); 2854 SNAPSHOT_VAR_OR_LEAVE(vcpu->guest_xcr0, meta, ret, done); 2855 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitinfo, meta, ret, done); 2856 SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, ret, done); 2857 2858 /* 2859 * Save the absolute TSC value by adding now to tsc_offset. 2860 * 2861 * It will be turned turned back into an actual offset when the 2862 * TSC restore function is called 2863 */ 2864 tsc = now + vcpu->tsc_offset; 2865 SNAPSHOT_VAR_OR_LEAVE(tsc, meta, ret, done); 2866 if (meta->op == VM_SNAPSHOT_RESTORE) 2867 vcpu->tsc_offset = tsc; 2868 } 2869 2870 done: 2871 return (ret); 2872 } 2873 2874 static int 2875 vm_snapshot_vm(struct vm *vm, struct vm_snapshot_meta *meta) 2876 { 2877 int ret; 2878 2879 ret = vm_snapshot_vcpus(vm, meta); 2880 if (ret != 0) 2881 goto done; 2882 2883 SNAPSHOT_VAR_OR_LEAVE(vm->startup_cpus, meta, ret, done); 2884 done: 2885 return (ret); 2886 } 2887 2888 static int 2889 vm_snapshot_vcpu(struct vm *vm, struct vm_snapshot_meta *meta) 2890 { 2891 int error; 2892 struct vcpu *vcpu; 2893 uint16_t i, maxcpus; 2894 2895 error = 0; 2896 2897 maxcpus = vm_get_maxcpus(vm); 2898 for (i = 0; i < maxcpus; i++) { 2899 vcpu = vm->vcpu[i]; 2900 if (vcpu == NULL) 2901 continue; 2902 2903 error = vmmops_vcpu_snapshot(vcpu->cookie, meta); 2904 if (error != 0) { 2905 printf("%s: failed to snapshot vmcs/vmcb data for " 2906 "vCPU: %d; error: %d\n", __func__, i, error); 2907 goto done; 2908 } 2909 } 2910 2911 done: 2912 return (error); 2913 } 2914 2915 /* 2916 * Save kernel-side structures to user-space for snapshotting. 2917 */ 2918 int 2919 vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta) 2920 { 2921 int ret = 0; 2922 2923 switch (meta->dev_req) { 2924 case STRUCT_VMCX: 2925 ret = vm_snapshot_vcpu(vm, meta); 2926 break; 2927 case STRUCT_VM: 2928 ret = vm_snapshot_vm(vm, meta); 2929 break; 2930 case STRUCT_VIOAPIC: 2931 ret = vioapic_snapshot(vm_ioapic(vm), meta); 2932 break; 2933 case STRUCT_VLAPIC: 2934 ret = vlapic_snapshot(vm, meta); 2935 break; 2936 case STRUCT_VHPET: 2937 ret = vhpet_snapshot(vm_hpet(vm), meta); 2938 break; 2939 case STRUCT_VATPIC: 2940 ret = vatpic_snapshot(vm_atpic(vm), meta); 2941 break; 2942 case STRUCT_VATPIT: 2943 ret = vatpit_snapshot(vm_atpit(vm), meta); 2944 break; 2945 case STRUCT_VPMTMR: 2946 ret = vpmtmr_snapshot(vm_pmtmr(vm), meta); 2947 break; 2948 case STRUCT_VRTC: 2949 ret = vrtc_snapshot(vm_rtc(vm), meta); 2950 break; 2951 default: 2952 printf("%s: failed to find the requested type %#x\n", 2953 __func__, meta->dev_req); 2954 ret = (EINVAL); 2955 } 2956 return (ret); 2957 } 2958 2959 void 2960 vm_set_tsc_offset(struct vcpu *vcpu, uint64_t offset) 2961 { 2962 vcpu->tsc_offset = offset; 2963 } 2964 2965 int 2966 vm_restore_time(struct vm *vm) 2967 { 2968 int error; 2969 uint64_t now; 2970 struct vcpu *vcpu; 2971 uint16_t i, maxcpus; 2972 2973 now = rdtsc(); 2974 2975 error = vhpet_restore_time(vm_hpet(vm)); 2976 if (error) 2977 return (error); 2978 2979 maxcpus = vm_get_maxcpus(vm); 2980 for (i = 0; i < maxcpus; i++) { 2981 vcpu = vm->vcpu[i]; 2982 if (vcpu == NULL) 2983 continue; 2984 2985 error = vmmops_restore_tsc(vcpu->cookie, 2986 vcpu->tsc_offset - now); 2987 if (error) 2988 return (error); 2989 } 2990 2991 return (0); 2992 } 2993 #endif 2994