1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include "opt_bhyve_snapshot.h" 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/kernel.h> 39 #include <sys/module.h> 40 #include <sys/sysctl.h> 41 #include <sys/malloc.h> 42 #include <sys/pcpu.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/proc.h> 46 #include <sys/rwlock.h> 47 #include <sys/sched.h> 48 #include <sys/smp.h> 49 #include <sys/vnode.h> 50 51 #include <vm/vm.h> 52 #include <vm/vm_param.h> 53 #include <vm/vm_extern.h> 54 #include <vm/vm_object.h> 55 #include <vm/vm_page.h> 56 #include <vm/pmap.h> 57 #include <vm/vm_map.h> 58 #include <vm/vm_pager.h> 59 #include <vm/vm_kern.h> 60 #include <vm/vnode_pager.h> 61 #include <vm/swap_pager.h> 62 #include <vm/uma.h> 63 64 #include <machine/cpu.h> 65 #include <machine/pcb.h> 66 #include <machine/smp.h> 67 #include <machine/md_var.h> 68 #include <x86/psl.h> 69 #include <x86/apicreg.h> 70 #include <x86/ifunc.h> 71 72 #include <machine/vmm.h> 73 #include <machine/vmm_dev.h> 74 #include <machine/vmm_instruction_emul.h> 75 #include <machine/vmm_snapshot.h> 76 77 #include "vmm_ioport.h" 78 #include "vmm_ktr.h" 79 #include "vmm_host.h" 80 #include "vmm_mem.h" 81 #include "vmm_util.h" 82 #include "vatpic.h" 83 #include "vatpit.h" 84 #include "vhpet.h" 85 #include "vioapic.h" 86 #include "vlapic.h" 87 #include "vpmtmr.h" 88 #include "vrtc.h" 89 #include "vmm_stat.h" 90 #include "vmm_lapic.h" 91 92 #include "io/ppt.h" 93 #include "io/iommu.h" 94 95 struct vlapic; 96 97 /* 98 * Initialization: 99 * (a) allocated when vcpu is created 100 * (i) initialized when vcpu is created and when it is reinitialized 101 * (o) initialized the first time the vcpu is created 102 * (x) initialized before use 103 */ 104 struct vcpu { 105 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 106 enum vcpu_state state; /* (o) vcpu state */ 107 int hostcpu; /* (o) vcpu's host cpu */ 108 int reqidle; /* (i) request vcpu to idle */ 109 struct vlapic *vlapic; /* (i) APIC device model */ 110 enum x2apic_state x2apic_state; /* (i) APIC mode */ 111 uint64_t exitintinfo; /* (i) events pending at VM exit */ 112 int nmi_pending; /* (i) NMI pending */ 113 int extint_pending; /* (i) INTR pending */ 114 int exception_pending; /* (i) exception pending */ 115 int exc_vector; /* (x) exception collateral */ 116 int exc_errcode_valid; 117 uint32_t exc_errcode; 118 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 119 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 120 void *stats; /* (a,i) statistics */ 121 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 122 uint64_t nextrip; /* (x) next instruction to execute */ 123 uint64_t tsc_offset; /* (o) TSC offsetting */ 124 }; 125 126 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx)) 127 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 128 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 129 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 130 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 131 132 struct mem_seg { 133 size_t len; 134 bool sysmem; 135 struct vm_object *object; 136 }; 137 #define VM_MAX_MEMSEGS 4 138 139 struct mem_map { 140 vm_paddr_t gpa; 141 size_t len; 142 vm_ooffset_t segoff; 143 int segid; 144 int prot; 145 int flags; 146 }; 147 #define VM_MAX_MEMMAPS 8 148 149 /* 150 * Initialization: 151 * (o) initialized the first time the VM is created 152 * (i) initialized when VM is created and when it is reinitialized 153 * (x) initialized before use 154 */ 155 struct vm { 156 void *cookie; /* (i) cpu-specific data */ 157 void *iommu; /* (x) iommu-specific data */ 158 struct vhpet *vhpet; /* (i) virtual HPET */ 159 struct vioapic *vioapic; /* (i) virtual ioapic */ 160 struct vatpic *vatpic; /* (i) virtual atpic */ 161 struct vatpit *vatpit; /* (i) virtual atpit */ 162 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ 163 struct vrtc *vrtc; /* (o) virtual RTC */ 164 volatile cpuset_t active_cpus; /* (i) active vcpus */ 165 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */ 166 int suspend; /* (i) stop VM execution */ 167 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 168 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 169 cpuset_t rendezvous_req_cpus; /* (x) rendezvous requested */ 170 cpuset_t rendezvous_done_cpus; /* (x) rendezvous finished */ 171 void *rendezvous_arg; /* (x) rendezvous func/arg */ 172 vm_rendezvous_func_t rendezvous_func; 173 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 174 struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */ 175 struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */ 176 struct vmspace *vmspace; /* (o) guest's address space */ 177 char name[VM_MAX_NAMELEN+1]; /* (o) virtual machine name */ 178 struct vcpu vcpu[VM_MAXCPU]; /* (i) guest vcpus */ 179 /* The following describe the vm cpu topology */ 180 uint16_t sockets; /* (o) num of sockets */ 181 uint16_t cores; /* (o) num of cores/socket */ 182 uint16_t threads; /* (o) num of threads/core */ 183 uint16_t maxcpus; /* (o) max pluggable cpus */ 184 }; 185 186 static int vmm_initialized; 187 188 static void vmmops_panic(void); 189 190 static void 191 vmmops_panic(void) 192 { 193 panic("vmm_ops func called when !vmm_is_intel() && !vmm_is_svm()"); 194 } 195 196 #define DEFINE_VMMOPS_IFUNC(ret_type, opname, args) \ 197 DEFINE_IFUNC(static, ret_type, vmmops_##opname, args) \ 198 { \ 199 if (vmm_is_intel()) \ 200 return (vmm_ops_intel.opname); \ 201 else if (vmm_is_svm()) \ 202 return (vmm_ops_amd.opname); \ 203 else \ 204 return ((ret_type (*)args)vmmops_panic); \ 205 } 206 207 DEFINE_VMMOPS_IFUNC(int, modinit, (int ipinum)) 208 DEFINE_VMMOPS_IFUNC(int, modcleanup, (void)) 209 DEFINE_VMMOPS_IFUNC(void, modresume, (void)) 210 DEFINE_VMMOPS_IFUNC(void *, init, (struct vm *vm, struct pmap *pmap)) 211 DEFINE_VMMOPS_IFUNC(int, run, (void *vmi, int vcpu, register_t rip, 212 struct pmap *pmap, struct vm_eventinfo *info)) 213 DEFINE_VMMOPS_IFUNC(void, cleanup, (void *vmi)) 214 DEFINE_VMMOPS_IFUNC(int, getreg, (void *vmi, int vcpu, int num, 215 uint64_t *retval)) 216 DEFINE_VMMOPS_IFUNC(int, setreg, (void *vmi, int vcpu, int num, 217 uint64_t val)) 218 DEFINE_VMMOPS_IFUNC(int, getdesc, (void *vmi, int vcpu, int num, 219 struct seg_desc *desc)) 220 DEFINE_VMMOPS_IFUNC(int, setdesc, (void *vmi, int vcpu, int num, 221 struct seg_desc *desc)) 222 DEFINE_VMMOPS_IFUNC(int, getcap, (void *vmi, int vcpu, int num, int *retval)) 223 DEFINE_VMMOPS_IFUNC(int, setcap, (void *vmi, int vcpu, int num, int val)) 224 DEFINE_VMMOPS_IFUNC(struct vmspace *, vmspace_alloc, (vm_offset_t min, 225 vm_offset_t max)) 226 DEFINE_VMMOPS_IFUNC(void, vmspace_free, (struct vmspace *vmspace)) 227 DEFINE_VMMOPS_IFUNC(struct vlapic *, vlapic_init, (void *vmi, int vcpu)) 228 DEFINE_VMMOPS_IFUNC(void, vlapic_cleanup, (void *vmi, struct vlapic *vlapic)) 229 #ifdef BHYVE_SNAPSHOT 230 DEFINE_VMMOPS_IFUNC(int, snapshot, (void *vmi, struct vm_snapshot_meta 231 *meta)) 232 DEFINE_VMMOPS_IFUNC(int, vmcx_snapshot, (void *vmi, struct vm_snapshot_meta 233 *meta, int vcpu)) 234 DEFINE_VMMOPS_IFUNC(int, restore_tsc, (void *vmi, int vcpuid, uint64_t now)) 235 #endif 236 237 #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS) 238 #define fpu_stop_emulating() clts() 239 240 SDT_PROVIDER_DEFINE(vmm); 241 242 static MALLOC_DEFINE(M_VM, "vm", "vm"); 243 244 /* statistics */ 245 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 246 247 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 248 NULL); 249 250 /* 251 * Halt the guest if all vcpus are executing a HLT instruction with 252 * interrupts disabled. 253 */ 254 static int halt_detection_enabled = 1; 255 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 256 &halt_detection_enabled, 0, 257 "Halt VM if all vcpus execute HLT with interrupts disabled"); 258 259 static int vmm_ipinum; 260 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 261 "IPI vector used for vcpu notifications"); 262 263 static int trace_guest_exceptions; 264 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN, 265 &trace_guest_exceptions, 0, 266 "Trap into hypervisor on all guest exceptions and reflect them back"); 267 268 static int trap_wbinvd; 269 SYSCTL_INT(_hw_vmm, OID_AUTO, trap_wbinvd, CTLFLAG_RDTUN, &trap_wbinvd, 0, 270 "WBINVD triggers a VM-exit"); 271 272 static void vm_free_memmap(struct vm *vm, int ident); 273 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm); 274 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr); 275 276 #ifdef KTR 277 static const char * 278 vcpu_state2str(enum vcpu_state state) 279 { 280 281 switch (state) { 282 case VCPU_IDLE: 283 return ("idle"); 284 case VCPU_FROZEN: 285 return ("frozen"); 286 case VCPU_RUNNING: 287 return ("running"); 288 case VCPU_SLEEPING: 289 return ("sleeping"); 290 default: 291 return ("unknown"); 292 } 293 } 294 #endif 295 296 static void 297 vcpu_cleanup(struct vm *vm, int i, bool destroy) 298 { 299 struct vcpu *vcpu = &vm->vcpu[i]; 300 301 vmmops_vlapic_cleanup(vm->cookie, vcpu->vlapic); 302 if (destroy) { 303 vmm_stat_free(vcpu->stats); 304 fpu_save_area_free(vcpu->guestfpu); 305 } 306 } 307 308 static void 309 vcpu_init(struct vm *vm, int vcpu_id, bool create) 310 { 311 struct vcpu *vcpu; 312 313 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus, 314 ("vcpu_init: invalid vcpu %d", vcpu_id)); 315 316 vcpu = &vm->vcpu[vcpu_id]; 317 318 if (create) { 319 KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already " 320 "initialized", vcpu_id)); 321 vcpu_lock_init(vcpu); 322 vcpu->state = VCPU_IDLE; 323 vcpu->hostcpu = NOCPU; 324 vcpu->guestfpu = fpu_save_area_alloc(); 325 vcpu->stats = vmm_stat_alloc(); 326 vcpu->tsc_offset = 0; 327 } 328 329 vcpu->vlapic = vmmops_vlapic_init(vm->cookie, vcpu_id); 330 vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED); 331 vcpu->reqidle = 0; 332 vcpu->exitintinfo = 0; 333 vcpu->nmi_pending = 0; 334 vcpu->extint_pending = 0; 335 vcpu->exception_pending = 0; 336 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 337 fpu_save_area_reset(vcpu->guestfpu); 338 vmm_stat_init(vcpu->stats); 339 } 340 341 int 342 vcpu_trace_exceptions(struct vm *vm, int vcpuid) 343 { 344 345 return (trace_guest_exceptions); 346 } 347 348 int 349 vcpu_trap_wbinvd(struct vm *vm, int vcpuid) 350 { 351 return (trap_wbinvd); 352 } 353 354 struct vm_exit * 355 vm_exitinfo(struct vm *vm, int cpuid) 356 { 357 struct vcpu *vcpu; 358 359 if (cpuid < 0 || cpuid >= vm->maxcpus) 360 panic("vm_exitinfo: invalid cpuid %d", cpuid); 361 362 vcpu = &vm->vcpu[cpuid]; 363 364 return (&vcpu->exitinfo); 365 } 366 367 static int 368 vmm_init(void) 369 { 370 int error; 371 372 if (!vmm_is_hw_supported()) 373 return (ENXIO); 374 375 vmm_host_state_init(); 376 377 vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) : 378 &IDTVEC(justreturn)); 379 if (vmm_ipinum < 0) 380 vmm_ipinum = IPI_AST; 381 382 error = vmm_mem_init(); 383 if (error) 384 return (error); 385 386 vmm_resume_p = vmmops_modresume; 387 388 return (vmmops_modinit(vmm_ipinum)); 389 } 390 391 static int 392 vmm_handler(module_t mod, int what, void *arg) 393 { 394 int error; 395 396 switch (what) { 397 case MOD_LOAD: 398 if (vmm_is_hw_supported()) { 399 vmmdev_init(); 400 error = vmm_init(); 401 if (error == 0) 402 vmm_initialized = 1; 403 } else { 404 error = ENXIO; 405 } 406 break; 407 case MOD_UNLOAD: 408 if (vmm_is_hw_supported()) { 409 error = vmmdev_cleanup(); 410 if (error == 0) { 411 vmm_resume_p = NULL; 412 iommu_cleanup(); 413 if (vmm_ipinum != IPI_AST) 414 lapic_ipi_free(vmm_ipinum); 415 error = vmmops_modcleanup(); 416 /* 417 * Something bad happened - prevent new 418 * VMs from being created 419 */ 420 if (error) 421 vmm_initialized = 0; 422 } 423 } else { 424 error = 0; 425 } 426 break; 427 default: 428 error = 0; 429 break; 430 } 431 return (error); 432 } 433 434 static moduledata_t vmm_kmod = { 435 "vmm", 436 vmm_handler, 437 NULL 438 }; 439 440 /* 441 * vmm initialization has the following dependencies: 442 * 443 * - VT-x initialization requires smp_rendezvous() and therefore must happen 444 * after SMP is fully functional (after SI_SUB_SMP). 445 */ 446 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 447 MODULE_VERSION(vmm, 1); 448 449 static void 450 vm_init(struct vm *vm, bool create) 451 { 452 int i; 453 454 vm->cookie = vmmops_init(vm, vmspace_pmap(vm->vmspace)); 455 vm->iommu = NULL; 456 vm->vioapic = vioapic_init(vm); 457 vm->vhpet = vhpet_init(vm); 458 vm->vatpic = vatpic_init(vm); 459 vm->vatpit = vatpit_init(vm); 460 vm->vpmtmr = vpmtmr_init(vm); 461 if (create) 462 vm->vrtc = vrtc_init(vm); 463 464 CPU_ZERO(&vm->active_cpus); 465 CPU_ZERO(&vm->debug_cpus); 466 467 vm->suspend = 0; 468 CPU_ZERO(&vm->suspended_cpus); 469 470 for (i = 0; i < vm->maxcpus; i++) 471 vcpu_init(vm, i, create); 472 } 473 474 /* 475 * The default CPU topology is a single thread per package. 476 */ 477 u_int cores_per_package = 1; 478 u_int threads_per_core = 1; 479 480 int 481 vm_create(const char *name, struct vm **retvm) 482 { 483 struct vm *vm; 484 struct vmspace *vmspace; 485 486 /* 487 * If vmm.ko could not be successfully initialized then don't attempt 488 * to create the virtual machine. 489 */ 490 if (!vmm_initialized) 491 return (ENXIO); 492 493 if (name == NULL || strnlen(name, VM_MAX_NAMELEN + 1) == 494 VM_MAX_NAMELEN + 1) 495 return (EINVAL); 496 497 vmspace = vmmops_vmspace_alloc(0, VM_MAXUSER_ADDRESS_LA48); 498 if (vmspace == NULL) 499 return (ENOMEM); 500 501 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 502 strcpy(vm->name, name); 503 vm->vmspace = vmspace; 504 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 505 506 vm->sockets = 1; 507 vm->cores = cores_per_package; /* XXX backwards compatibility */ 508 vm->threads = threads_per_core; /* XXX backwards compatibility */ 509 vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */ 510 511 vm_init(vm, true); 512 513 *retvm = vm; 514 return (0); 515 } 516 517 void 518 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, 519 uint16_t *threads, uint16_t *maxcpus) 520 { 521 *sockets = vm->sockets; 522 *cores = vm->cores; 523 *threads = vm->threads; 524 *maxcpus = vm->maxcpus; 525 } 526 527 uint16_t 528 vm_get_maxcpus(struct vm *vm) 529 { 530 return (vm->maxcpus); 531 } 532 533 int 534 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, 535 uint16_t threads, uint16_t maxcpus) 536 { 537 if (maxcpus != 0) 538 return (EINVAL); /* XXX remove when supported */ 539 if ((sockets * cores * threads) > vm->maxcpus) 540 return (EINVAL); 541 /* XXX need to check sockets * cores * threads == vCPU, how? */ 542 vm->sockets = sockets; 543 vm->cores = cores; 544 vm->threads = threads; 545 vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */ 546 return(0); 547 } 548 549 static void 550 vm_cleanup(struct vm *vm, bool destroy) 551 { 552 struct mem_map *mm; 553 int i; 554 555 ppt_unassign_all(vm); 556 557 if (vm->iommu != NULL) 558 iommu_destroy_domain(vm->iommu); 559 560 if (destroy) 561 vrtc_cleanup(vm->vrtc); 562 else 563 vrtc_reset(vm->vrtc); 564 vpmtmr_cleanup(vm->vpmtmr); 565 vatpit_cleanup(vm->vatpit); 566 vhpet_cleanup(vm->vhpet); 567 vatpic_cleanup(vm->vatpic); 568 vioapic_cleanup(vm->vioapic); 569 570 for (i = 0; i < vm->maxcpus; i++) 571 vcpu_cleanup(vm, i, destroy); 572 573 vmmops_cleanup(vm->cookie); 574 575 /* 576 * System memory is removed from the guest address space only when 577 * the VM is destroyed. This is because the mapping remains the same 578 * across VM reset. 579 * 580 * Device memory can be relocated by the guest (e.g. using PCI BARs) 581 * so those mappings are removed on a VM reset. 582 */ 583 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 584 mm = &vm->mem_maps[i]; 585 if (destroy || !sysmem_mapping(vm, mm)) 586 vm_free_memmap(vm, i); 587 } 588 589 if (destroy) { 590 for (i = 0; i < VM_MAX_MEMSEGS; i++) 591 vm_free_memseg(vm, i); 592 593 vmmops_vmspace_free(vm->vmspace); 594 vm->vmspace = NULL; 595 } 596 } 597 598 void 599 vm_destroy(struct vm *vm) 600 { 601 vm_cleanup(vm, true); 602 free(vm, M_VM); 603 } 604 605 int 606 vm_reinit(struct vm *vm) 607 { 608 int error; 609 610 /* 611 * A virtual machine can be reset only if all vcpus are suspended. 612 */ 613 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 614 vm_cleanup(vm, false); 615 vm_init(vm, false); 616 error = 0; 617 } else { 618 error = EBUSY; 619 } 620 621 return (error); 622 } 623 624 const char * 625 vm_name(struct vm *vm) 626 { 627 return (vm->name); 628 } 629 630 int 631 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 632 { 633 vm_object_t obj; 634 635 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 636 return (ENOMEM); 637 else 638 return (0); 639 } 640 641 int 642 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 643 { 644 645 vmm_mmio_free(vm->vmspace, gpa, len); 646 return (0); 647 } 648 649 /* 650 * Return 'true' if 'gpa' is allocated in the guest address space. 651 * 652 * This function is called in the context of a running vcpu which acts as 653 * an implicit lock on 'vm->mem_maps[]'. 654 */ 655 bool 656 vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa) 657 { 658 struct mem_map *mm; 659 int i; 660 661 #ifdef INVARIANTS 662 int hostcpu, state; 663 state = vcpu_get_state(vm, vcpuid, &hostcpu); 664 KASSERT(state == VCPU_RUNNING && hostcpu == curcpu, 665 ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu)); 666 #endif 667 668 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 669 mm = &vm->mem_maps[i]; 670 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len) 671 return (true); /* 'gpa' is sysmem or devmem */ 672 } 673 674 if (ppt_is_mmio(vm, gpa)) 675 return (true); /* 'gpa' is pci passthru mmio */ 676 677 return (false); 678 } 679 680 int 681 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem) 682 { 683 struct mem_seg *seg; 684 vm_object_t obj; 685 686 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 687 return (EINVAL); 688 689 if (len == 0 || (len & PAGE_MASK)) 690 return (EINVAL); 691 692 seg = &vm->mem_segs[ident]; 693 if (seg->object != NULL) { 694 if (seg->len == len && seg->sysmem == sysmem) 695 return (EEXIST); 696 else 697 return (EINVAL); 698 } 699 700 obj = vm_object_allocate(OBJT_SWAP, len >> PAGE_SHIFT); 701 if (obj == NULL) 702 return (ENOMEM); 703 704 seg->len = len; 705 seg->object = obj; 706 seg->sysmem = sysmem; 707 return (0); 708 } 709 710 int 711 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, 712 vm_object_t *objptr) 713 { 714 struct mem_seg *seg; 715 716 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 717 return (EINVAL); 718 719 seg = &vm->mem_segs[ident]; 720 if (len) 721 *len = seg->len; 722 if (sysmem) 723 *sysmem = seg->sysmem; 724 if (objptr) 725 *objptr = seg->object; 726 return (0); 727 } 728 729 void 730 vm_free_memseg(struct vm *vm, int ident) 731 { 732 struct mem_seg *seg; 733 734 KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS, 735 ("%s: invalid memseg ident %d", __func__, ident)); 736 737 seg = &vm->mem_segs[ident]; 738 if (seg->object != NULL) { 739 vm_object_deallocate(seg->object); 740 bzero(seg, sizeof(struct mem_seg)); 741 } 742 } 743 744 int 745 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first, 746 size_t len, int prot, int flags) 747 { 748 struct mem_seg *seg; 749 struct mem_map *m, *map; 750 vm_ooffset_t last; 751 int i, error; 752 753 if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0) 754 return (EINVAL); 755 756 if (flags & ~VM_MEMMAP_F_WIRED) 757 return (EINVAL); 758 759 if (segid < 0 || segid >= VM_MAX_MEMSEGS) 760 return (EINVAL); 761 762 seg = &vm->mem_segs[segid]; 763 if (seg->object == NULL) 764 return (EINVAL); 765 766 last = first + len; 767 if (first < 0 || first >= last || last > seg->len) 768 return (EINVAL); 769 770 if ((gpa | first | last) & PAGE_MASK) 771 return (EINVAL); 772 773 map = NULL; 774 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 775 m = &vm->mem_maps[i]; 776 if (m->len == 0) { 777 map = m; 778 break; 779 } 780 } 781 782 if (map == NULL) 783 return (ENOSPC); 784 785 error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa, 786 len, 0, VMFS_NO_SPACE, prot, prot, 0); 787 if (error != KERN_SUCCESS) 788 return (EFAULT); 789 790 vm_object_reference(seg->object); 791 792 if (flags & VM_MEMMAP_F_WIRED) { 793 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len, 794 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 795 if (error != KERN_SUCCESS) { 796 vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len); 797 return (error == KERN_RESOURCE_SHORTAGE ? ENOMEM : 798 EFAULT); 799 } 800 } 801 802 map->gpa = gpa; 803 map->len = len; 804 map->segoff = first; 805 map->segid = segid; 806 map->prot = prot; 807 map->flags = flags; 808 return (0); 809 } 810 811 int 812 vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len) 813 { 814 struct mem_map *m; 815 int i; 816 817 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 818 m = &vm->mem_maps[i]; 819 if (m->gpa == gpa && m->len == len && 820 (m->flags & VM_MEMMAP_F_IOMMU) == 0) { 821 vm_free_memmap(vm, i); 822 return (0); 823 } 824 } 825 826 return (EINVAL); 827 } 828 829 int 830 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, 831 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 832 { 833 struct mem_map *mm, *mmnext; 834 int i; 835 836 mmnext = NULL; 837 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 838 mm = &vm->mem_maps[i]; 839 if (mm->len == 0 || mm->gpa < *gpa) 840 continue; 841 if (mmnext == NULL || mm->gpa < mmnext->gpa) 842 mmnext = mm; 843 } 844 845 if (mmnext != NULL) { 846 *gpa = mmnext->gpa; 847 if (segid) 848 *segid = mmnext->segid; 849 if (segoff) 850 *segoff = mmnext->segoff; 851 if (len) 852 *len = mmnext->len; 853 if (prot) 854 *prot = mmnext->prot; 855 if (flags) 856 *flags = mmnext->flags; 857 return (0); 858 } else { 859 return (ENOENT); 860 } 861 } 862 863 static void 864 vm_free_memmap(struct vm *vm, int ident) 865 { 866 struct mem_map *mm; 867 int error __diagused; 868 869 mm = &vm->mem_maps[ident]; 870 if (mm->len) { 871 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa, 872 mm->gpa + mm->len); 873 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d", 874 __func__, error)); 875 bzero(mm, sizeof(struct mem_map)); 876 } 877 } 878 879 static __inline bool 880 sysmem_mapping(struct vm *vm, struct mem_map *mm) 881 { 882 883 if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem) 884 return (true); 885 else 886 return (false); 887 } 888 889 vm_paddr_t 890 vmm_sysmem_maxaddr(struct vm *vm) 891 { 892 struct mem_map *mm; 893 vm_paddr_t maxaddr; 894 int i; 895 896 maxaddr = 0; 897 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 898 mm = &vm->mem_maps[i]; 899 if (sysmem_mapping(vm, mm)) { 900 if (maxaddr < mm->gpa + mm->len) 901 maxaddr = mm->gpa + mm->len; 902 } 903 } 904 return (maxaddr); 905 } 906 907 static void 908 vm_iommu_modify(struct vm *vm, bool map) 909 { 910 int i, sz; 911 vm_paddr_t gpa, hpa; 912 struct mem_map *mm; 913 void *vp, *cookie, *host_domain; 914 915 sz = PAGE_SIZE; 916 host_domain = iommu_host_domain(); 917 918 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 919 mm = &vm->mem_maps[i]; 920 if (!sysmem_mapping(vm, mm)) 921 continue; 922 923 if (map) { 924 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0, 925 ("iommu map found invalid memmap %#lx/%#lx/%#x", 926 mm->gpa, mm->len, mm->flags)); 927 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0) 928 continue; 929 mm->flags |= VM_MEMMAP_F_IOMMU; 930 } else { 931 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0) 932 continue; 933 mm->flags &= ~VM_MEMMAP_F_IOMMU; 934 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0, 935 ("iommu unmap found invalid memmap %#lx/%#lx/%#x", 936 mm->gpa, mm->len, mm->flags)); 937 } 938 939 gpa = mm->gpa; 940 while (gpa < mm->gpa + mm->len) { 941 vp = vm_gpa_hold(vm, -1, gpa, PAGE_SIZE, VM_PROT_WRITE, 942 &cookie); 943 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", 944 vm_name(vm), gpa)); 945 946 vm_gpa_release(cookie); 947 948 hpa = DMAP_TO_PHYS((uintptr_t)vp); 949 if (map) { 950 iommu_create_mapping(vm->iommu, gpa, hpa, sz); 951 } else { 952 iommu_remove_mapping(vm->iommu, gpa, sz); 953 } 954 955 gpa += PAGE_SIZE; 956 } 957 } 958 959 /* 960 * Invalidate the cached translations associated with the domain 961 * from which pages were removed. 962 */ 963 if (map) 964 iommu_invalidate_tlb(host_domain); 965 else 966 iommu_invalidate_tlb(vm->iommu); 967 } 968 969 #define vm_iommu_unmap(vm) vm_iommu_modify((vm), false) 970 #define vm_iommu_map(vm) vm_iommu_modify((vm), true) 971 972 int 973 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 974 { 975 int error; 976 977 error = ppt_unassign_device(vm, bus, slot, func); 978 if (error) 979 return (error); 980 981 if (ppt_assigned_devices(vm) == 0) 982 vm_iommu_unmap(vm); 983 984 return (0); 985 } 986 987 int 988 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 989 { 990 int error; 991 vm_paddr_t maxaddr; 992 993 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */ 994 if (ppt_assigned_devices(vm) == 0) { 995 KASSERT(vm->iommu == NULL, 996 ("vm_assign_pptdev: iommu must be NULL")); 997 maxaddr = vmm_sysmem_maxaddr(vm); 998 vm->iommu = iommu_create_domain(maxaddr); 999 if (vm->iommu == NULL) 1000 return (ENXIO); 1001 vm_iommu_map(vm); 1002 } 1003 1004 error = ppt_assign_device(vm, bus, slot, func); 1005 return (error); 1006 } 1007 1008 void * 1009 vm_gpa_hold(struct vm *vm, int vcpuid, vm_paddr_t gpa, size_t len, int reqprot, 1010 void **cookie) 1011 { 1012 int i, count, pageoff; 1013 struct mem_map *mm; 1014 vm_page_t m; 1015 #ifdef INVARIANTS 1016 /* 1017 * All vcpus are frozen by ioctls that modify the memory map 1018 * (e.g. VM_MMAP_MEMSEG). Therefore 'vm->memmap[]' stability is 1019 * guaranteed if at least one vcpu is in the VCPU_FROZEN state. 1020 */ 1021 int state; 1022 KASSERT(vcpuid >= -1 && vcpuid < vm->maxcpus, ("%s: invalid vcpuid %d", 1023 __func__, vcpuid)); 1024 for (i = 0; i < vm->maxcpus; i++) { 1025 if (vcpuid != -1 && vcpuid != i) 1026 continue; 1027 state = vcpu_get_state(vm, i, NULL); 1028 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d", 1029 __func__, state)); 1030 } 1031 #endif 1032 pageoff = gpa & PAGE_MASK; 1033 if (len > PAGE_SIZE - pageoff) 1034 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 1035 1036 count = 0; 1037 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1038 mm = &vm->mem_maps[i]; 1039 if (gpa >= mm->gpa && gpa < mm->gpa + mm->len) { 1040 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 1041 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 1042 break; 1043 } 1044 } 1045 1046 if (count == 1) { 1047 *cookie = m; 1048 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 1049 } else { 1050 *cookie = NULL; 1051 return (NULL); 1052 } 1053 } 1054 1055 void 1056 vm_gpa_release(void *cookie) 1057 { 1058 vm_page_t m = cookie; 1059 1060 vm_page_unwire(m, PQ_ACTIVE); 1061 } 1062 1063 int 1064 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval) 1065 { 1066 1067 if (vcpu < 0 || vcpu >= vm->maxcpus) 1068 return (EINVAL); 1069 1070 if (reg >= VM_REG_LAST) 1071 return (EINVAL); 1072 1073 return (vmmops_getreg(vm->cookie, vcpu, reg, retval)); 1074 } 1075 1076 int 1077 vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val) 1078 { 1079 struct vcpu *vcpu; 1080 int error; 1081 1082 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1083 return (EINVAL); 1084 1085 if (reg >= VM_REG_LAST) 1086 return (EINVAL); 1087 1088 error = vmmops_setreg(vm->cookie, vcpuid, reg, val); 1089 if (error || reg != VM_REG_GUEST_RIP) 1090 return (error); 1091 1092 /* Set 'nextrip' to match the value of %rip */ 1093 VCPU_CTR1(vm, vcpuid, "Setting nextrip to %#lx", val); 1094 vcpu = &vm->vcpu[vcpuid]; 1095 vcpu->nextrip = val; 1096 return (0); 1097 } 1098 1099 static bool 1100 is_descriptor_table(int reg) 1101 { 1102 1103 switch (reg) { 1104 case VM_REG_GUEST_IDTR: 1105 case VM_REG_GUEST_GDTR: 1106 return (true); 1107 default: 1108 return (false); 1109 } 1110 } 1111 1112 static bool 1113 is_segment_register(int reg) 1114 { 1115 1116 switch (reg) { 1117 case VM_REG_GUEST_ES: 1118 case VM_REG_GUEST_CS: 1119 case VM_REG_GUEST_SS: 1120 case VM_REG_GUEST_DS: 1121 case VM_REG_GUEST_FS: 1122 case VM_REG_GUEST_GS: 1123 case VM_REG_GUEST_TR: 1124 case VM_REG_GUEST_LDTR: 1125 return (true); 1126 default: 1127 return (false); 1128 } 1129 } 1130 1131 int 1132 vm_get_seg_desc(struct vm *vm, int vcpu, int reg, 1133 struct seg_desc *desc) 1134 { 1135 1136 if (vcpu < 0 || vcpu >= vm->maxcpus) 1137 return (EINVAL); 1138 1139 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1140 return (EINVAL); 1141 1142 return (vmmops_getdesc(vm->cookie, vcpu, reg, desc)); 1143 } 1144 1145 int 1146 vm_set_seg_desc(struct vm *vm, int vcpu, int reg, 1147 struct seg_desc *desc) 1148 { 1149 if (vcpu < 0 || vcpu >= vm->maxcpus) 1150 return (EINVAL); 1151 1152 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1153 return (EINVAL); 1154 1155 return (vmmops_setdesc(vm->cookie, vcpu, reg, desc)); 1156 } 1157 1158 static void 1159 restore_guest_fpustate(struct vcpu *vcpu) 1160 { 1161 1162 /* flush host state to the pcb */ 1163 fpuexit(curthread); 1164 1165 /* restore guest FPU state */ 1166 fpu_stop_emulating(); 1167 fpurestore(vcpu->guestfpu); 1168 1169 /* restore guest XCR0 if XSAVE is enabled in the host */ 1170 if (rcr4() & CR4_XSAVE) 1171 load_xcr(0, vcpu->guest_xcr0); 1172 1173 /* 1174 * The FPU is now "dirty" with the guest's state so turn on emulation 1175 * to trap any access to the FPU by the host. 1176 */ 1177 fpu_start_emulating(); 1178 } 1179 1180 static void 1181 save_guest_fpustate(struct vcpu *vcpu) 1182 { 1183 1184 if ((rcr0() & CR0_TS) == 0) 1185 panic("fpu emulation not enabled in host!"); 1186 1187 /* save guest XCR0 and restore host XCR0 */ 1188 if (rcr4() & CR4_XSAVE) { 1189 vcpu->guest_xcr0 = rxcr(0); 1190 load_xcr(0, vmm_get_host_xcr0()); 1191 } 1192 1193 /* save guest FPU state */ 1194 fpu_stop_emulating(); 1195 fpusave(vcpu->guestfpu); 1196 fpu_start_emulating(); 1197 } 1198 1199 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 1200 1201 static int 1202 vcpu_set_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate, 1203 bool from_idle) 1204 { 1205 struct vcpu *vcpu; 1206 int error; 1207 1208 vcpu = &vm->vcpu[vcpuid]; 1209 vcpu_assert_locked(vcpu); 1210 1211 /* 1212 * State transitions from the vmmdev_ioctl() must always begin from 1213 * the VCPU_IDLE state. This guarantees that there is only a single 1214 * ioctl() operating on a vcpu at any point. 1215 */ 1216 if (from_idle) { 1217 while (vcpu->state != VCPU_IDLE) { 1218 vcpu->reqidle = 1; 1219 vcpu_notify_event_locked(vcpu, false); 1220 VCPU_CTR1(vm, vcpuid, "vcpu state change from %s to " 1221 "idle requested", vcpu_state2str(vcpu->state)); 1222 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 1223 } 1224 } else { 1225 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 1226 "vcpu idle state")); 1227 } 1228 1229 if (vcpu->state == VCPU_RUNNING) { 1230 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 1231 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 1232 } else { 1233 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 1234 "vcpu that is not running", vcpu->hostcpu)); 1235 } 1236 1237 /* 1238 * The following state transitions are allowed: 1239 * IDLE -> FROZEN -> IDLE 1240 * FROZEN -> RUNNING -> FROZEN 1241 * FROZEN -> SLEEPING -> FROZEN 1242 */ 1243 switch (vcpu->state) { 1244 case VCPU_IDLE: 1245 case VCPU_RUNNING: 1246 case VCPU_SLEEPING: 1247 error = (newstate != VCPU_FROZEN); 1248 break; 1249 case VCPU_FROZEN: 1250 error = (newstate == VCPU_FROZEN); 1251 break; 1252 default: 1253 error = 1; 1254 break; 1255 } 1256 1257 if (error) 1258 return (EBUSY); 1259 1260 VCPU_CTR2(vm, vcpuid, "vcpu state changed from %s to %s", 1261 vcpu_state2str(vcpu->state), vcpu_state2str(newstate)); 1262 1263 vcpu->state = newstate; 1264 if (newstate == VCPU_RUNNING) 1265 vcpu->hostcpu = curcpu; 1266 else 1267 vcpu->hostcpu = NOCPU; 1268 1269 if (newstate == VCPU_IDLE) 1270 wakeup(&vcpu->state); 1271 1272 return (0); 1273 } 1274 1275 static void 1276 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1277 { 1278 int error; 1279 1280 if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0) 1281 panic("Error %d setting state to %d\n", error, newstate); 1282 } 1283 1284 static void 1285 vcpu_require_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1286 { 1287 int error; 1288 1289 if ((error = vcpu_set_state_locked(vm, vcpuid, newstate, false)) != 0) 1290 panic("Error %d setting state to %d", error, newstate); 1291 } 1292 1293 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt) \ 1294 do { \ 1295 if (vcpuid >= 0) \ 1296 VCPU_CTR0(vm, vcpuid, fmt); \ 1297 else \ 1298 VM_CTR0(vm, fmt); \ 1299 } while (0) 1300 1301 static int 1302 vm_handle_rendezvous(struct vm *vm, int vcpuid) 1303 { 1304 struct thread *td; 1305 int error; 1306 1307 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus), 1308 ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid)); 1309 1310 error = 0; 1311 td = curthread; 1312 mtx_lock(&vm->rendezvous_mtx); 1313 while (vm->rendezvous_func != NULL) { 1314 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1315 CPU_AND(&vm->rendezvous_req_cpus, &vm->rendezvous_req_cpus, &vm->active_cpus); 1316 1317 if (vcpuid != -1 && 1318 CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1319 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1320 VCPU_CTR0(vm, vcpuid, "Calling rendezvous func"); 1321 (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg); 1322 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1323 } 1324 if (CPU_CMP(&vm->rendezvous_req_cpus, 1325 &vm->rendezvous_done_cpus) == 0) { 1326 VCPU_CTR0(vm, vcpuid, "Rendezvous completed"); 1327 vm->rendezvous_func = NULL; 1328 wakeup(&vm->rendezvous_func); 1329 break; 1330 } 1331 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion"); 1332 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1333 "vmrndv", hz); 1334 if (td_ast_pending(td, TDA_SUSPEND)) { 1335 mtx_unlock(&vm->rendezvous_mtx); 1336 error = thread_check_susp(td, true); 1337 if (error != 0) 1338 return (error); 1339 mtx_lock(&vm->rendezvous_mtx); 1340 } 1341 } 1342 mtx_unlock(&vm->rendezvous_mtx); 1343 return (0); 1344 } 1345 1346 /* 1347 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1348 */ 1349 static int 1350 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu) 1351 { 1352 struct vcpu *vcpu; 1353 const char *wmesg; 1354 struct thread *td; 1355 int error, t, vcpu_halted, vm_halted; 1356 1357 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1358 1359 vcpu = &vm->vcpu[vcpuid]; 1360 vcpu_halted = 0; 1361 vm_halted = 0; 1362 error = 0; 1363 td = curthread; 1364 1365 vcpu_lock(vcpu); 1366 while (1) { 1367 /* 1368 * Do a final check for pending NMI or interrupts before 1369 * really putting this thread to sleep. Also check for 1370 * software events that would cause this vcpu to wakeup. 1371 * 1372 * These interrupts/events could have happened after the 1373 * vcpu returned from vmmops_run() and before it acquired the 1374 * vcpu lock above. 1375 */ 1376 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle) 1377 break; 1378 if (vm_nmi_pending(vm, vcpuid)) 1379 break; 1380 if (!intr_disabled) { 1381 if (vm_extint_pending(vm, vcpuid) || 1382 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1383 break; 1384 } 1385 } 1386 1387 /* Don't go to sleep if the vcpu thread needs to yield */ 1388 if (vcpu_should_yield(vm, vcpuid)) 1389 break; 1390 1391 if (vcpu_debugged(vm, vcpuid)) 1392 break; 1393 1394 /* 1395 * Some Linux guests implement "halt" by having all vcpus 1396 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1397 * track of the vcpus that have entered this state. When all 1398 * vcpus enter the halted state the virtual machine is halted. 1399 */ 1400 if (intr_disabled) { 1401 wmesg = "vmhalt"; 1402 VCPU_CTR0(vm, vcpuid, "Halted"); 1403 if (!vcpu_halted && halt_detection_enabled) { 1404 vcpu_halted = 1; 1405 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1406 } 1407 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1408 vm_halted = 1; 1409 break; 1410 } 1411 } else { 1412 wmesg = "vmidle"; 1413 } 1414 1415 t = ticks; 1416 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); 1417 /* 1418 * XXX msleep_spin() cannot be interrupted by signals so 1419 * wake up periodically to check pending signals. 1420 */ 1421 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1422 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); 1423 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t); 1424 if (td_ast_pending(td, TDA_SUSPEND)) { 1425 vcpu_unlock(vcpu); 1426 error = thread_check_susp(td, false); 1427 if (error != 0) { 1428 if (vcpu_halted) { 1429 CPU_CLR_ATOMIC(vcpuid, 1430 &vm->halted_cpus); 1431 } 1432 return (error); 1433 } 1434 vcpu_lock(vcpu); 1435 } 1436 } 1437 1438 if (vcpu_halted) 1439 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1440 1441 vcpu_unlock(vcpu); 1442 1443 if (vm_halted) 1444 vm_suspend(vm, VM_SUSPEND_HALT); 1445 1446 return (0); 1447 } 1448 1449 static int 1450 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu) 1451 { 1452 int rv, ftype; 1453 struct vm_map *map; 1454 struct vcpu *vcpu; 1455 struct vm_exit *vme; 1456 1457 vcpu = &vm->vcpu[vcpuid]; 1458 vme = &vcpu->exitinfo; 1459 1460 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1461 __func__, vme->inst_length)); 1462 1463 ftype = vme->u.paging.fault_type; 1464 KASSERT(ftype == VM_PROT_READ || 1465 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1466 ("vm_handle_paging: invalid fault_type %d", ftype)); 1467 1468 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1469 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1470 vme->u.paging.gpa, ftype); 1471 if (rv == 0) { 1472 VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx", 1473 ftype == VM_PROT_READ ? "accessed" : "dirty", 1474 vme->u.paging.gpa); 1475 goto done; 1476 } 1477 } 1478 1479 map = &vm->vmspace->vm_map; 1480 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL); 1481 1482 VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, " 1483 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1484 1485 if (rv != KERN_SUCCESS) 1486 return (EFAULT); 1487 done: 1488 return (0); 1489 } 1490 1491 static int 1492 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu) 1493 { 1494 struct vie *vie; 1495 struct vcpu *vcpu; 1496 struct vm_exit *vme; 1497 uint64_t gla, gpa, cs_base; 1498 struct vm_guest_paging *paging; 1499 mem_region_read_t mread; 1500 mem_region_write_t mwrite; 1501 enum vm_cpu_mode cpu_mode; 1502 int cs_d, error, fault; 1503 1504 vcpu = &vm->vcpu[vcpuid]; 1505 vme = &vcpu->exitinfo; 1506 1507 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1508 __func__, vme->inst_length)); 1509 1510 gla = vme->u.inst_emul.gla; 1511 gpa = vme->u.inst_emul.gpa; 1512 cs_base = vme->u.inst_emul.cs_base; 1513 cs_d = vme->u.inst_emul.cs_d; 1514 vie = &vme->u.inst_emul.vie; 1515 paging = &vme->u.inst_emul.paging; 1516 cpu_mode = paging->cpu_mode; 1517 1518 VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa); 1519 1520 /* Fetch, decode and emulate the faulting instruction */ 1521 if (vie->num_valid == 0) { 1522 error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip + 1523 cs_base, VIE_INST_SIZE, vie, &fault); 1524 } else { 1525 /* 1526 * The instruction bytes have already been copied into 'vie' 1527 */ 1528 error = fault = 0; 1529 } 1530 if (error || fault) 1531 return (error); 1532 1533 if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) { 1534 VCPU_CTR1(vm, vcpuid, "Error decoding instruction at %#lx", 1535 vme->rip + cs_base); 1536 *retu = true; /* dump instruction bytes in userspace */ 1537 return (0); 1538 } 1539 1540 /* 1541 * Update 'nextrip' based on the length of the emulated instruction. 1542 */ 1543 vme->inst_length = vie->num_processed; 1544 vcpu->nextrip += vie->num_processed; 1545 VCPU_CTR1(vm, vcpuid, "nextrip updated to %#lx after instruction " 1546 "decoding", vcpu->nextrip); 1547 1548 /* return to userland unless this is an in-kernel emulated device */ 1549 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1550 mread = lapic_mmio_read; 1551 mwrite = lapic_mmio_write; 1552 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1553 mread = vioapic_mmio_read; 1554 mwrite = vioapic_mmio_write; 1555 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1556 mread = vhpet_mmio_read; 1557 mwrite = vhpet_mmio_write; 1558 } else { 1559 *retu = true; 1560 return (0); 1561 } 1562 1563 error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging, 1564 mread, mwrite, retu); 1565 1566 return (error); 1567 } 1568 1569 static int 1570 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu) 1571 { 1572 int error, i; 1573 struct vcpu *vcpu; 1574 struct thread *td; 1575 1576 error = 0; 1577 vcpu = &vm->vcpu[vcpuid]; 1578 td = curthread; 1579 1580 CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus); 1581 1582 /* 1583 * Wait until all 'active_cpus' have suspended themselves. 1584 * 1585 * Since a VM may be suspended at any time including when one or 1586 * more vcpus are doing a rendezvous we need to call the rendezvous 1587 * handler while we are waiting to prevent a deadlock. 1588 */ 1589 vcpu_lock(vcpu); 1590 while (error == 0) { 1591 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1592 VCPU_CTR0(vm, vcpuid, "All vcpus suspended"); 1593 break; 1594 } 1595 1596 if (vm->rendezvous_func == NULL) { 1597 VCPU_CTR0(vm, vcpuid, "Sleeping during suspend"); 1598 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); 1599 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1600 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); 1601 if (td_ast_pending(td, TDA_SUSPEND)) { 1602 vcpu_unlock(vcpu); 1603 error = thread_check_susp(td, false); 1604 vcpu_lock(vcpu); 1605 } 1606 } else { 1607 VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend"); 1608 vcpu_unlock(vcpu); 1609 error = vm_handle_rendezvous(vm, vcpuid); 1610 vcpu_lock(vcpu); 1611 } 1612 } 1613 vcpu_unlock(vcpu); 1614 1615 /* 1616 * Wakeup the other sleeping vcpus and return to userspace. 1617 */ 1618 for (i = 0; i < vm->maxcpus; i++) { 1619 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1620 vcpu_notify_event(vm, i, false); 1621 } 1622 } 1623 1624 *retu = true; 1625 return (error); 1626 } 1627 1628 static int 1629 vm_handle_reqidle(struct vm *vm, int vcpuid, bool *retu) 1630 { 1631 struct vcpu *vcpu = &vm->vcpu[vcpuid]; 1632 1633 vcpu_lock(vcpu); 1634 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle)); 1635 vcpu->reqidle = 0; 1636 vcpu_unlock(vcpu); 1637 *retu = true; 1638 return (0); 1639 } 1640 1641 int 1642 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1643 { 1644 int i; 1645 1646 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1647 return (EINVAL); 1648 1649 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1650 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1651 vm->suspend, how); 1652 return (EALREADY); 1653 } 1654 1655 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1656 1657 /* 1658 * Notify all active vcpus that they are now suspended. 1659 */ 1660 for (i = 0; i < vm->maxcpus; i++) { 1661 if (CPU_ISSET(i, &vm->active_cpus)) 1662 vcpu_notify_event(vm, i, false); 1663 } 1664 1665 return (0); 1666 } 1667 1668 void 1669 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip) 1670 { 1671 struct vm_exit *vmexit; 1672 1673 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1674 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1675 1676 vmexit = vm_exitinfo(vm, vcpuid); 1677 vmexit->rip = rip; 1678 vmexit->inst_length = 0; 1679 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1680 vmexit->u.suspended.how = vm->suspend; 1681 } 1682 1683 void 1684 vm_exit_debug(struct vm *vm, int vcpuid, uint64_t rip) 1685 { 1686 struct vm_exit *vmexit; 1687 1688 vmexit = vm_exitinfo(vm, vcpuid); 1689 vmexit->rip = rip; 1690 vmexit->inst_length = 0; 1691 vmexit->exitcode = VM_EXITCODE_DEBUG; 1692 } 1693 1694 void 1695 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip) 1696 { 1697 struct vm_exit *vmexit; 1698 1699 KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress")); 1700 1701 vmexit = vm_exitinfo(vm, vcpuid); 1702 vmexit->rip = rip; 1703 vmexit->inst_length = 0; 1704 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1705 vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1); 1706 } 1707 1708 void 1709 vm_exit_reqidle(struct vm *vm, int vcpuid, uint64_t rip) 1710 { 1711 struct vm_exit *vmexit; 1712 1713 vmexit = vm_exitinfo(vm, vcpuid); 1714 vmexit->rip = rip; 1715 vmexit->inst_length = 0; 1716 vmexit->exitcode = VM_EXITCODE_REQIDLE; 1717 vmm_stat_incr(vm, vcpuid, VMEXIT_REQIDLE, 1); 1718 } 1719 1720 void 1721 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip) 1722 { 1723 struct vm_exit *vmexit; 1724 1725 vmexit = vm_exitinfo(vm, vcpuid); 1726 vmexit->rip = rip; 1727 vmexit->inst_length = 0; 1728 vmexit->exitcode = VM_EXITCODE_BOGUS; 1729 vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1); 1730 } 1731 1732 int 1733 vm_run(struct vm *vm, struct vm_run *vmrun) 1734 { 1735 struct vm_eventinfo evinfo; 1736 int error, vcpuid; 1737 struct vcpu *vcpu; 1738 struct pcb *pcb; 1739 uint64_t tscval; 1740 struct vm_exit *vme; 1741 bool retu, intr_disabled; 1742 pmap_t pmap; 1743 1744 vcpuid = vmrun->cpuid; 1745 1746 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1747 return (EINVAL); 1748 1749 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1750 return (EINVAL); 1751 1752 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1753 return (EINVAL); 1754 1755 pmap = vmspace_pmap(vm->vmspace); 1756 vcpu = &vm->vcpu[vcpuid]; 1757 vme = &vcpu->exitinfo; 1758 evinfo.rptr = &vm->rendezvous_func; 1759 evinfo.sptr = &vm->suspend; 1760 evinfo.iptr = &vcpu->reqidle; 1761 restart: 1762 critical_enter(); 1763 1764 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1765 ("vm_run: absurd pm_active")); 1766 1767 tscval = rdtsc(); 1768 1769 pcb = PCPU_GET(curpcb); 1770 set_pcb_flags(pcb, PCB_FULL_IRET); 1771 1772 restore_guest_fpustate(vcpu); 1773 1774 vcpu_require_state(vm, vcpuid, VCPU_RUNNING); 1775 error = vmmops_run(vm->cookie, vcpuid, vcpu->nextrip, pmap, &evinfo); 1776 vcpu_require_state(vm, vcpuid, VCPU_FROZEN); 1777 1778 save_guest_fpustate(vcpu); 1779 1780 vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1781 1782 critical_exit(); 1783 1784 if (error == 0) { 1785 retu = false; 1786 vcpu->nextrip = vme->rip + vme->inst_length; 1787 switch (vme->exitcode) { 1788 case VM_EXITCODE_REQIDLE: 1789 error = vm_handle_reqidle(vm, vcpuid, &retu); 1790 break; 1791 case VM_EXITCODE_SUSPENDED: 1792 error = vm_handle_suspend(vm, vcpuid, &retu); 1793 break; 1794 case VM_EXITCODE_IOAPIC_EOI: 1795 vioapic_process_eoi(vm, vcpuid, 1796 vme->u.ioapic_eoi.vector); 1797 break; 1798 case VM_EXITCODE_RENDEZVOUS: 1799 error = vm_handle_rendezvous(vm, vcpuid); 1800 break; 1801 case VM_EXITCODE_HLT: 1802 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1803 error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu); 1804 break; 1805 case VM_EXITCODE_PAGING: 1806 error = vm_handle_paging(vm, vcpuid, &retu); 1807 break; 1808 case VM_EXITCODE_INST_EMUL: 1809 error = vm_handle_inst_emul(vm, vcpuid, &retu); 1810 break; 1811 case VM_EXITCODE_INOUT: 1812 case VM_EXITCODE_INOUT_STR: 1813 error = vm_handle_inout(vm, vcpuid, vme, &retu); 1814 break; 1815 case VM_EXITCODE_MONITOR: 1816 case VM_EXITCODE_MWAIT: 1817 case VM_EXITCODE_VMINSN: 1818 vm_inject_ud(vm, vcpuid); 1819 break; 1820 default: 1821 retu = true; /* handled in userland */ 1822 break; 1823 } 1824 } 1825 1826 /* 1827 * VM_EXITCODE_INST_EMUL could access the apic which could transform the 1828 * exit code into VM_EXITCODE_IPI. 1829 */ 1830 if (error == 0 && vme->exitcode == VM_EXITCODE_IPI) { 1831 retu = false; 1832 error = vm_handle_ipi(vm, vcpuid, vme, &retu); 1833 } 1834 1835 if (error == 0 && retu == false) 1836 goto restart; 1837 1838 vmm_stat_incr(vm, vcpuid, VMEXIT_USERSPACE, 1); 1839 VCPU_CTR2(vm, vcpuid, "retu %d/%d", error, vme->exitcode); 1840 1841 /* copy the exit information */ 1842 bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit)); 1843 return (error); 1844 } 1845 1846 int 1847 vm_restart_instruction(void *arg, int vcpuid) 1848 { 1849 struct vm *vm; 1850 struct vcpu *vcpu; 1851 enum vcpu_state state; 1852 uint64_t rip; 1853 int error __diagused; 1854 1855 vm = arg; 1856 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1857 return (EINVAL); 1858 1859 vcpu = &vm->vcpu[vcpuid]; 1860 state = vcpu_get_state(vm, vcpuid, NULL); 1861 if (state == VCPU_RUNNING) { 1862 /* 1863 * When a vcpu is "running" the next instruction is determined 1864 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'. 1865 * Thus setting 'inst_length' to zero will cause the current 1866 * instruction to be restarted. 1867 */ 1868 vcpu->exitinfo.inst_length = 0; 1869 VCPU_CTR1(vm, vcpuid, "restarting instruction at %#lx by " 1870 "setting inst_length to zero", vcpu->exitinfo.rip); 1871 } else if (state == VCPU_FROZEN) { 1872 /* 1873 * When a vcpu is "frozen" it is outside the critical section 1874 * around vmmops_run() and 'nextrip' points to the next 1875 * instruction. Thus instruction restart is achieved by setting 1876 * 'nextrip' to the vcpu's %rip. 1877 */ 1878 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip); 1879 KASSERT(!error, ("%s: error %d getting rip", __func__, error)); 1880 VCPU_CTR2(vm, vcpuid, "restarting instruction by updating " 1881 "nextrip from %#lx to %#lx", vcpu->nextrip, rip); 1882 vcpu->nextrip = rip; 1883 } else { 1884 panic("%s: invalid state %d", __func__, state); 1885 } 1886 return (0); 1887 } 1888 1889 int 1890 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info) 1891 { 1892 struct vcpu *vcpu; 1893 int type, vector; 1894 1895 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1896 return (EINVAL); 1897 1898 vcpu = &vm->vcpu[vcpuid]; 1899 1900 if (info & VM_INTINFO_VALID) { 1901 type = info & VM_INTINFO_TYPE; 1902 vector = info & 0xff; 1903 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 1904 return (EINVAL); 1905 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 1906 return (EINVAL); 1907 if (info & VM_INTINFO_RSVD) 1908 return (EINVAL); 1909 } else { 1910 info = 0; 1911 } 1912 VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info); 1913 vcpu->exitintinfo = info; 1914 return (0); 1915 } 1916 1917 enum exc_class { 1918 EXC_BENIGN, 1919 EXC_CONTRIBUTORY, 1920 EXC_PAGEFAULT 1921 }; 1922 1923 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 1924 1925 static enum exc_class 1926 exception_class(uint64_t info) 1927 { 1928 int type, vector; 1929 1930 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 1931 type = info & VM_INTINFO_TYPE; 1932 vector = info & 0xff; 1933 1934 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 1935 switch (type) { 1936 case VM_INTINFO_HWINTR: 1937 case VM_INTINFO_SWINTR: 1938 case VM_INTINFO_NMI: 1939 return (EXC_BENIGN); 1940 default: 1941 /* 1942 * Hardware exception. 1943 * 1944 * SVM and VT-x use identical type values to represent NMI, 1945 * hardware interrupt and software interrupt. 1946 * 1947 * SVM uses type '3' for all exceptions. VT-x uses type '3' 1948 * for exceptions except #BP and #OF. #BP and #OF use a type 1949 * value of '5' or '6'. Therefore we don't check for explicit 1950 * values of 'type' to classify 'intinfo' into a hardware 1951 * exception. 1952 */ 1953 break; 1954 } 1955 1956 switch (vector) { 1957 case IDT_PF: 1958 case IDT_VE: 1959 return (EXC_PAGEFAULT); 1960 case IDT_DE: 1961 case IDT_TS: 1962 case IDT_NP: 1963 case IDT_SS: 1964 case IDT_GP: 1965 return (EXC_CONTRIBUTORY); 1966 default: 1967 return (EXC_BENIGN); 1968 } 1969 } 1970 1971 static int 1972 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2, 1973 uint64_t *retinfo) 1974 { 1975 enum exc_class exc1, exc2; 1976 int type1, vector1; 1977 1978 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 1979 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 1980 1981 /* 1982 * If an exception occurs while attempting to call the double-fault 1983 * handler the processor enters shutdown mode (aka triple fault). 1984 */ 1985 type1 = info1 & VM_INTINFO_TYPE; 1986 vector1 = info1 & 0xff; 1987 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 1988 VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)", 1989 info1, info2); 1990 vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT); 1991 *retinfo = 0; 1992 return (0); 1993 } 1994 1995 /* 1996 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 1997 */ 1998 exc1 = exception_class(info1); 1999 exc2 = exception_class(info2); 2000 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 2001 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 2002 /* Convert nested fault into a double fault. */ 2003 *retinfo = IDT_DF; 2004 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 2005 *retinfo |= VM_INTINFO_DEL_ERRCODE; 2006 } else { 2007 /* Handle exceptions serially */ 2008 *retinfo = info2; 2009 } 2010 return (1); 2011 } 2012 2013 static uint64_t 2014 vcpu_exception_intinfo(struct vcpu *vcpu) 2015 { 2016 uint64_t info = 0; 2017 2018 if (vcpu->exception_pending) { 2019 info = vcpu->exc_vector & 0xff; 2020 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 2021 if (vcpu->exc_errcode_valid) { 2022 info |= VM_INTINFO_DEL_ERRCODE; 2023 info |= (uint64_t)vcpu->exc_errcode << 32; 2024 } 2025 } 2026 return (info); 2027 } 2028 2029 int 2030 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo) 2031 { 2032 struct vcpu *vcpu; 2033 uint64_t info1, info2; 2034 int valid; 2035 2036 KASSERT(vcpuid >= 0 && 2037 vcpuid < vm->maxcpus, ("invalid vcpu %d", vcpuid)); 2038 2039 vcpu = &vm->vcpu[vcpuid]; 2040 2041 info1 = vcpu->exitintinfo; 2042 vcpu->exitintinfo = 0; 2043 2044 info2 = 0; 2045 if (vcpu->exception_pending) { 2046 info2 = vcpu_exception_intinfo(vcpu); 2047 vcpu->exception_pending = 0; 2048 VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx", 2049 vcpu->exc_vector, info2); 2050 } 2051 2052 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 2053 valid = nested_fault(vm, vcpuid, info1, info2, retinfo); 2054 } else if (info1 & VM_INTINFO_VALID) { 2055 *retinfo = info1; 2056 valid = 1; 2057 } else if (info2 & VM_INTINFO_VALID) { 2058 *retinfo = info2; 2059 valid = 1; 2060 } else { 2061 valid = 0; 2062 } 2063 2064 if (valid) { 2065 VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), " 2066 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 2067 } 2068 2069 return (valid); 2070 } 2071 2072 int 2073 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2) 2074 { 2075 struct vcpu *vcpu; 2076 2077 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2078 return (EINVAL); 2079 2080 vcpu = &vm->vcpu[vcpuid]; 2081 *info1 = vcpu->exitintinfo; 2082 *info2 = vcpu_exception_intinfo(vcpu); 2083 return (0); 2084 } 2085 2086 int 2087 vm_inject_exception(struct vm *vm, int vcpuid, int vector, int errcode_valid, 2088 uint32_t errcode, int restart_instruction) 2089 { 2090 struct vcpu *vcpu; 2091 uint64_t regval; 2092 int error __diagused; 2093 2094 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2095 return (EINVAL); 2096 2097 if (vector < 0 || vector >= 32) 2098 return (EINVAL); 2099 2100 /* 2101 * A double fault exception should never be injected directly into 2102 * the guest. It is a derived exception that results from specific 2103 * combinations of nested faults. 2104 */ 2105 if (vector == IDT_DF) 2106 return (EINVAL); 2107 2108 vcpu = &vm->vcpu[vcpuid]; 2109 2110 if (vcpu->exception_pending) { 2111 VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to " 2112 "pending exception %d", vector, vcpu->exc_vector); 2113 return (EBUSY); 2114 } 2115 2116 if (errcode_valid) { 2117 /* 2118 * Exceptions don't deliver an error code in real mode. 2119 */ 2120 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_CR0, ®val); 2121 KASSERT(!error, ("%s: error %d getting CR0", __func__, error)); 2122 if (!(regval & CR0_PE)) 2123 errcode_valid = 0; 2124 } 2125 2126 /* 2127 * From section 26.6.1 "Interruptibility State" in Intel SDM: 2128 * 2129 * Event blocking by "STI" or "MOV SS" is cleared after guest executes 2130 * one instruction or incurs an exception. 2131 */ 2132 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0); 2133 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", 2134 __func__, error)); 2135 2136 if (restart_instruction) 2137 vm_restart_instruction(vm, vcpuid); 2138 2139 vcpu->exception_pending = 1; 2140 vcpu->exc_vector = vector; 2141 vcpu->exc_errcode = errcode; 2142 vcpu->exc_errcode_valid = errcode_valid; 2143 VCPU_CTR1(vm, vcpuid, "Exception %d pending", vector); 2144 return (0); 2145 } 2146 2147 void 2148 vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid, 2149 int errcode) 2150 { 2151 struct vm *vm; 2152 int error __diagused, restart_instruction; 2153 2154 vm = vmarg; 2155 restart_instruction = 1; 2156 2157 error = vm_inject_exception(vm, vcpuid, vector, errcode_valid, 2158 errcode, restart_instruction); 2159 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 2160 } 2161 2162 void 2163 vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2) 2164 { 2165 struct vm *vm; 2166 int error __diagused; 2167 2168 vm = vmarg; 2169 VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx", 2170 error_code, cr2); 2171 2172 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2); 2173 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 2174 2175 vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code); 2176 } 2177 2178 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 2179 2180 int 2181 vm_inject_nmi(struct vm *vm, int vcpuid) 2182 { 2183 struct vcpu *vcpu; 2184 2185 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2186 return (EINVAL); 2187 2188 vcpu = &vm->vcpu[vcpuid]; 2189 2190 vcpu->nmi_pending = 1; 2191 vcpu_notify_event(vm, vcpuid, false); 2192 return (0); 2193 } 2194 2195 int 2196 vm_nmi_pending(struct vm *vm, int vcpuid) 2197 { 2198 struct vcpu *vcpu; 2199 2200 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2201 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 2202 2203 vcpu = &vm->vcpu[vcpuid]; 2204 2205 return (vcpu->nmi_pending); 2206 } 2207 2208 void 2209 vm_nmi_clear(struct vm *vm, int vcpuid) 2210 { 2211 struct vcpu *vcpu; 2212 2213 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2214 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 2215 2216 vcpu = &vm->vcpu[vcpuid]; 2217 2218 if (vcpu->nmi_pending == 0) 2219 panic("vm_nmi_clear: inconsistent nmi_pending state"); 2220 2221 vcpu->nmi_pending = 0; 2222 vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1); 2223 } 2224 2225 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 2226 2227 int 2228 vm_inject_extint(struct vm *vm, int vcpuid) 2229 { 2230 struct vcpu *vcpu; 2231 2232 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2233 return (EINVAL); 2234 2235 vcpu = &vm->vcpu[vcpuid]; 2236 2237 vcpu->extint_pending = 1; 2238 vcpu_notify_event(vm, vcpuid, false); 2239 return (0); 2240 } 2241 2242 int 2243 vm_extint_pending(struct vm *vm, int vcpuid) 2244 { 2245 struct vcpu *vcpu; 2246 2247 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2248 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 2249 2250 vcpu = &vm->vcpu[vcpuid]; 2251 2252 return (vcpu->extint_pending); 2253 } 2254 2255 void 2256 vm_extint_clear(struct vm *vm, int vcpuid) 2257 { 2258 struct vcpu *vcpu; 2259 2260 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2261 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 2262 2263 vcpu = &vm->vcpu[vcpuid]; 2264 2265 if (vcpu->extint_pending == 0) 2266 panic("vm_extint_clear: inconsistent extint_pending state"); 2267 2268 vcpu->extint_pending = 0; 2269 vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1); 2270 } 2271 2272 int 2273 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval) 2274 { 2275 if (vcpu < 0 || vcpu >= vm->maxcpus) 2276 return (EINVAL); 2277 2278 if (type < 0 || type >= VM_CAP_MAX) 2279 return (EINVAL); 2280 2281 return (vmmops_getcap(vm->cookie, vcpu, type, retval)); 2282 } 2283 2284 int 2285 vm_set_capability(struct vm *vm, int vcpu, int type, int val) 2286 { 2287 if (vcpu < 0 || vcpu >= vm->maxcpus) 2288 return (EINVAL); 2289 2290 if (type < 0 || type >= VM_CAP_MAX) 2291 return (EINVAL); 2292 2293 return (vmmops_setcap(vm->cookie, vcpu, type, val)); 2294 } 2295 2296 struct vlapic * 2297 vm_lapic(struct vm *vm, int cpu) 2298 { 2299 return (vm->vcpu[cpu].vlapic); 2300 } 2301 2302 struct vioapic * 2303 vm_ioapic(struct vm *vm) 2304 { 2305 2306 return (vm->vioapic); 2307 } 2308 2309 struct vhpet * 2310 vm_hpet(struct vm *vm) 2311 { 2312 2313 return (vm->vhpet); 2314 } 2315 2316 bool 2317 vmm_is_pptdev(int bus, int slot, int func) 2318 { 2319 int b, f, i, n, s; 2320 char *val, *cp, *cp2; 2321 bool found; 2322 2323 /* 2324 * XXX 2325 * The length of an environment variable is limited to 128 bytes which 2326 * puts an upper limit on the number of passthru devices that may be 2327 * specified using a single environment variable. 2328 * 2329 * Work around this by scanning multiple environment variable 2330 * names instead of a single one - yuck! 2331 */ 2332 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 2333 2334 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 2335 found = false; 2336 for (i = 0; names[i] != NULL && !found; i++) { 2337 cp = val = kern_getenv(names[i]); 2338 while (cp != NULL && *cp != '\0') { 2339 if ((cp2 = strchr(cp, ' ')) != NULL) 2340 *cp2 = '\0'; 2341 2342 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 2343 if (n == 3 && bus == b && slot == s && func == f) { 2344 found = true; 2345 break; 2346 } 2347 2348 if (cp2 != NULL) 2349 *cp2++ = ' '; 2350 2351 cp = cp2; 2352 } 2353 freeenv(val); 2354 } 2355 return (found); 2356 } 2357 2358 void * 2359 vm_iommu_domain(struct vm *vm) 2360 { 2361 2362 return (vm->iommu); 2363 } 2364 2365 int 2366 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate, 2367 bool from_idle) 2368 { 2369 int error; 2370 struct vcpu *vcpu; 2371 2372 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2373 panic("vm_set_run_state: invalid vcpuid %d", vcpuid); 2374 2375 vcpu = &vm->vcpu[vcpuid]; 2376 2377 vcpu_lock(vcpu); 2378 error = vcpu_set_state_locked(vm, vcpuid, newstate, from_idle); 2379 vcpu_unlock(vcpu); 2380 2381 return (error); 2382 } 2383 2384 enum vcpu_state 2385 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu) 2386 { 2387 struct vcpu *vcpu; 2388 enum vcpu_state state; 2389 2390 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2391 panic("vm_get_run_state: invalid vcpuid %d", vcpuid); 2392 2393 vcpu = &vm->vcpu[vcpuid]; 2394 2395 vcpu_lock(vcpu); 2396 state = vcpu->state; 2397 if (hostcpu != NULL) 2398 *hostcpu = vcpu->hostcpu; 2399 vcpu_unlock(vcpu); 2400 2401 return (state); 2402 } 2403 2404 int 2405 vm_activate_cpu(struct vm *vm, int vcpuid) 2406 { 2407 2408 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2409 return (EINVAL); 2410 2411 if (CPU_ISSET(vcpuid, &vm->active_cpus)) 2412 return (EBUSY); 2413 2414 VCPU_CTR0(vm, vcpuid, "activated"); 2415 CPU_SET_ATOMIC(vcpuid, &vm->active_cpus); 2416 return (0); 2417 } 2418 2419 int 2420 vm_suspend_cpu(struct vm *vm, int vcpuid) 2421 { 2422 int i; 2423 2424 if (vcpuid < -1 || vcpuid >= vm->maxcpus) 2425 return (EINVAL); 2426 2427 if (vcpuid == -1) { 2428 vm->debug_cpus = vm->active_cpus; 2429 for (i = 0; i < vm->maxcpus; i++) { 2430 if (CPU_ISSET(i, &vm->active_cpus)) 2431 vcpu_notify_event(vm, i, false); 2432 } 2433 } else { 2434 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 2435 return (EINVAL); 2436 2437 CPU_SET_ATOMIC(vcpuid, &vm->debug_cpus); 2438 vcpu_notify_event(vm, vcpuid, false); 2439 } 2440 return (0); 2441 } 2442 2443 int 2444 vm_resume_cpu(struct vm *vm, int vcpuid) 2445 { 2446 2447 if (vcpuid < -1 || vcpuid >= vm->maxcpus) 2448 return (EINVAL); 2449 2450 if (vcpuid == -1) { 2451 CPU_ZERO(&vm->debug_cpus); 2452 } else { 2453 if (!CPU_ISSET(vcpuid, &vm->debug_cpus)) 2454 return (EINVAL); 2455 2456 CPU_CLR_ATOMIC(vcpuid, &vm->debug_cpus); 2457 } 2458 return (0); 2459 } 2460 2461 int 2462 vcpu_debugged(struct vm *vm, int vcpuid) 2463 { 2464 2465 return (CPU_ISSET(vcpuid, &vm->debug_cpus)); 2466 } 2467 2468 cpuset_t 2469 vm_active_cpus(struct vm *vm) 2470 { 2471 2472 return (vm->active_cpus); 2473 } 2474 2475 cpuset_t 2476 vm_debug_cpus(struct vm *vm) 2477 { 2478 2479 return (vm->debug_cpus); 2480 } 2481 2482 cpuset_t 2483 vm_suspended_cpus(struct vm *vm) 2484 { 2485 2486 return (vm->suspended_cpus); 2487 } 2488 2489 void * 2490 vcpu_stats(struct vm *vm, int vcpuid) 2491 { 2492 2493 return (vm->vcpu[vcpuid].stats); 2494 } 2495 2496 int 2497 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state) 2498 { 2499 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2500 return (EINVAL); 2501 2502 *state = vm->vcpu[vcpuid].x2apic_state; 2503 2504 return (0); 2505 } 2506 2507 int 2508 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state) 2509 { 2510 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2511 return (EINVAL); 2512 2513 if (state >= X2APIC_STATE_LAST) 2514 return (EINVAL); 2515 2516 vm->vcpu[vcpuid].x2apic_state = state; 2517 2518 vlapic_set_x2apic_state(vm, vcpuid, state); 2519 2520 return (0); 2521 } 2522 2523 /* 2524 * This function is called to ensure that a vcpu "sees" a pending event 2525 * as soon as possible: 2526 * - If the vcpu thread is sleeping then it is woken up. 2527 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2528 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2529 */ 2530 static void 2531 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr) 2532 { 2533 int hostcpu; 2534 2535 hostcpu = vcpu->hostcpu; 2536 if (vcpu->state == VCPU_RUNNING) { 2537 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2538 if (hostcpu != curcpu) { 2539 if (lapic_intr) { 2540 vlapic_post_intr(vcpu->vlapic, hostcpu, 2541 vmm_ipinum); 2542 } else { 2543 ipi_cpu(hostcpu, vmm_ipinum); 2544 } 2545 } else { 2546 /* 2547 * If the 'vcpu' is running on 'curcpu' then it must 2548 * be sending a notification to itself (e.g. SELF_IPI). 2549 * The pending event will be picked up when the vcpu 2550 * transitions back to guest context. 2551 */ 2552 } 2553 } else { 2554 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2555 "with hostcpu %d", vcpu->state, hostcpu)); 2556 if (vcpu->state == VCPU_SLEEPING) 2557 wakeup_one(vcpu); 2558 } 2559 } 2560 2561 void 2562 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr) 2563 { 2564 struct vcpu *vcpu = &vm->vcpu[vcpuid]; 2565 2566 vcpu_lock(vcpu); 2567 vcpu_notify_event_locked(vcpu, lapic_intr); 2568 vcpu_unlock(vcpu); 2569 } 2570 2571 struct vmspace * 2572 vm_get_vmspace(struct vm *vm) 2573 { 2574 2575 return (vm->vmspace); 2576 } 2577 2578 int 2579 vm_apicid2vcpuid(struct vm *vm, int apicid) 2580 { 2581 /* 2582 * XXX apic id is assumed to be numerically identical to vcpu id 2583 */ 2584 return (apicid); 2585 } 2586 2587 int 2588 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest, 2589 vm_rendezvous_func_t func, void *arg) 2590 { 2591 int error, i; 2592 2593 /* 2594 * Enforce that this function is called without any locks 2595 */ 2596 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2597 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus), 2598 ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid)); 2599 2600 restart: 2601 mtx_lock(&vm->rendezvous_mtx); 2602 if (vm->rendezvous_func != NULL) { 2603 /* 2604 * If a rendezvous is already in progress then we need to 2605 * call the rendezvous handler in case this 'vcpuid' is one 2606 * of the targets of the rendezvous. 2607 */ 2608 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress"); 2609 mtx_unlock(&vm->rendezvous_mtx); 2610 error = vm_handle_rendezvous(vm, vcpuid); 2611 if (error != 0) 2612 return (error); 2613 goto restart; 2614 } 2615 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2616 "rendezvous is still in progress")); 2617 2618 RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous"); 2619 vm->rendezvous_req_cpus = dest; 2620 CPU_ZERO(&vm->rendezvous_done_cpus); 2621 vm->rendezvous_arg = arg; 2622 vm->rendezvous_func = func; 2623 mtx_unlock(&vm->rendezvous_mtx); 2624 2625 /* 2626 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2627 * vcpus so they handle the rendezvous as soon as possible. 2628 */ 2629 for (i = 0; i < vm->maxcpus; i++) { 2630 if (CPU_ISSET(i, &dest)) 2631 vcpu_notify_event(vm, i, false); 2632 } 2633 2634 return (vm_handle_rendezvous(vm, vcpuid)); 2635 } 2636 2637 struct vatpic * 2638 vm_atpic(struct vm *vm) 2639 { 2640 return (vm->vatpic); 2641 } 2642 2643 struct vatpit * 2644 vm_atpit(struct vm *vm) 2645 { 2646 return (vm->vatpit); 2647 } 2648 2649 struct vpmtmr * 2650 vm_pmtmr(struct vm *vm) 2651 { 2652 2653 return (vm->vpmtmr); 2654 } 2655 2656 struct vrtc * 2657 vm_rtc(struct vm *vm) 2658 { 2659 2660 return (vm->vrtc); 2661 } 2662 2663 enum vm_reg_name 2664 vm_segment_name(int seg) 2665 { 2666 static enum vm_reg_name seg_names[] = { 2667 VM_REG_GUEST_ES, 2668 VM_REG_GUEST_CS, 2669 VM_REG_GUEST_SS, 2670 VM_REG_GUEST_DS, 2671 VM_REG_GUEST_FS, 2672 VM_REG_GUEST_GS 2673 }; 2674 2675 KASSERT(seg >= 0 && seg < nitems(seg_names), 2676 ("%s: invalid segment encoding %d", __func__, seg)); 2677 return (seg_names[seg]); 2678 } 2679 2680 void 2681 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, 2682 int num_copyinfo) 2683 { 2684 int idx; 2685 2686 for (idx = 0; idx < num_copyinfo; idx++) { 2687 if (copyinfo[idx].cookie != NULL) 2688 vm_gpa_release(copyinfo[idx].cookie); 2689 } 2690 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2691 } 2692 2693 int 2694 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging, 2695 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2696 int num_copyinfo, int *fault) 2697 { 2698 int error, idx, nused; 2699 size_t n, off, remaining; 2700 void *hva, *cookie; 2701 uint64_t gpa; 2702 2703 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2704 2705 nused = 0; 2706 remaining = len; 2707 while (remaining > 0) { 2708 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo")); 2709 error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa, fault); 2710 if (error || *fault) 2711 return (error); 2712 off = gpa & PAGE_MASK; 2713 n = min(remaining, PAGE_SIZE - off); 2714 copyinfo[nused].gpa = gpa; 2715 copyinfo[nused].len = n; 2716 remaining -= n; 2717 gla += n; 2718 nused++; 2719 } 2720 2721 for (idx = 0; idx < nused; idx++) { 2722 hva = vm_gpa_hold(vm, vcpuid, copyinfo[idx].gpa, 2723 copyinfo[idx].len, prot, &cookie); 2724 if (hva == NULL) 2725 break; 2726 copyinfo[idx].hva = hva; 2727 copyinfo[idx].cookie = cookie; 2728 } 2729 2730 if (idx != nused) { 2731 vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo); 2732 return (EFAULT); 2733 } else { 2734 *fault = 0; 2735 return (0); 2736 } 2737 } 2738 2739 void 2740 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr, 2741 size_t len) 2742 { 2743 char *dst; 2744 int idx; 2745 2746 dst = kaddr; 2747 idx = 0; 2748 while (len > 0) { 2749 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2750 len -= copyinfo[idx].len; 2751 dst += copyinfo[idx].len; 2752 idx++; 2753 } 2754 } 2755 2756 void 2757 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr, 2758 struct vm_copyinfo *copyinfo, size_t len) 2759 { 2760 const char *src; 2761 int idx; 2762 2763 src = kaddr; 2764 idx = 0; 2765 while (len > 0) { 2766 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2767 len -= copyinfo[idx].len; 2768 src += copyinfo[idx].len; 2769 idx++; 2770 } 2771 } 2772 2773 /* 2774 * Return the amount of in-use and wired memory for the VM. Since 2775 * these are global stats, only return the values with for vCPU 0 2776 */ 2777 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2778 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2779 2780 static void 2781 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2782 { 2783 2784 if (vcpu == 0) { 2785 vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT, 2786 PAGE_SIZE * vmspace_resident_count(vm->vmspace)); 2787 } 2788 } 2789 2790 static void 2791 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2792 { 2793 2794 if (vcpu == 0) { 2795 vmm_stat_set(vm, vcpu, VMM_MEM_WIRED, 2796 PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace))); 2797 } 2798 } 2799 2800 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2801 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2802 2803 #ifdef BHYVE_SNAPSHOT 2804 static int 2805 vm_snapshot_vcpus(struct vm *vm, struct vm_snapshot_meta *meta) 2806 { 2807 int ret; 2808 int i; 2809 struct vcpu *vcpu; 2810 2811 for (i = 0; i < VM_MAXCPU; i++) { 2812 vcpu = &vm->vcpu[i]; 2813 2814 SNAPSHOT_VAR_OR_LEAVE(vcpu->x2apic_state, meta, ret, done); 2815 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitintinfo, meta, ret, done); 2816 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_vector, meta, ret, done); 2817 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode_valid, meta, ret, done); 2818 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode, meta, ret, done); 2819 SNAPSHOT_VAR_OR_LEAVE(vcpu->guest_xcr0, meta, ret, done); 2820 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitinfo, meta, ret, done); 2821 SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, ret, done); 2822 /* XXX we're cheating here, since the value of tsc_offset as 2823 * saved here is actually the value of the guest's TSC value. 2824 * 2825 * It will be turned turned back into an actual offset when the 2826 * TSC restore function is called 2827 */ 2828 SNAPSHOT_VAR_OR_LEAVE(vcpu->tsc_offset, meta, ret, done); 2829 } 2830 2831 done: 2832 return (ret); 2833 } 2834 2835 static int 2836 vm_snapshot_vm(struct vm *vm, struct vm_snapshot_meta *meta) 2837 { 2838 int ret; 2839 int i; 2840 uint64_t now; 2841 2842 ret = 0; 2843 now = rdtsc(); 2844 2845 if (meta->op == VM_SNAPSHOT_SAVE) { 2846 /* XXX make tsc_offset take the value TSC proper as seen by the 2847 * guest 2848 */ 2849 for (i = 0; i < VM_MAXCPU; i++) 2850 vm->vcpu[i].tsc_offset += now; 2851 } 2852 2853 ret = vm_snapshot_vcpus(vm, meta); 2854 if (ret != 0) { 2855 printf("%s: failed to copy vm data to user buffer", __func__); 2856 goto done; 2857 } 2858 2859 if (meta->op == VM_SNAPSHOT_SAVE) { 2860 /* XXX turn tsc_offset back into an offset; actual value is only 2861 * required for restore; using it otherwise would be wrong 2862 */ 2863 for (i = 0; i < VM_MAXCPU; i++) 2864 vm->vcpu[i].tsc_offset -= now; 2865 } 2866 2867 done: 2868 return (ret); 2869 } 2870 2871 static int 2872 vm_snapshot_vmcx(struct vm *vm, struct vm_snapshot_meta *meta) 2873 { 2874 int i, error; 2875 2876 error = 0; 2877 2878 for (i = 0; i < VM_MAXCPU; i++) { 2879 error = vmmops_vmcx_snapshot(vm->cookie, meta, i); 2880 if (error != 0) { 2881 printf("%s: failed to snapshot vmcs/vmcb data for " 2882 "vCPU: %d; error: %d\n", __func__, i, error); 2883 goto done; 2884 } 2885 } 2886 2887 done: 2888 return (error); 2889 } 2890 2891 /* 2892 * Save kernel-side structures to user-space for snapshotting. 2893 */ 2894 int 2895 vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta) 2896 { 2897 int ret = 0; 2898 2899 switch (meta->dev_req) { 2900 case STRUCT_VMX: 2901 ret = vmmops_snapshot(vm->cookie, meta); 2902 break; 2903 case STRUCT_VMCX: 2904 ret = vm_snapshot_vmcx(vm, meta); 2905 break; 2906 case STRUCT_VM: 2907 ret = vm_snapshot_vm(vm, meta); 2908 break; 2909 case STRUCT_VIOAPIC: 2910 ret = vioapic_snapshot(vm_ioapic(vm), meta); 2911 break; 2912 case STRUCT_VLAPIC: 2913 ret = vlapic_snapshot(vm, meta); 2914 break; 2915 case STRUCT_VHPET: 2916 ret = vhpet_snapshot(vm_hpet(vm), meta); 2917 break; 2918 case STRUCT_VATPIC: 2919 ret = vatpic_snapshot(vm_atpic(vm), meta); 2920 break; 2921 case STRUCT_VATPIT: 2922 ret = vatpit_snapshot(vm_atpit(vm), meta); 2923 break; 2924 case STRUCT_VPMTMR: 2925 ret = vpmtmr_snapshot(vm_pmtmr(vm), meta); 2926 break; 2927 case STRUCT_VRTC: 2928 ret = vrtc_snapshot(vm_rtc(vm), meta); 2929 break; 2930 default: 2931 printf("%s: failed to find the requested type %#x\n", 2932 __func__, meta->dev_req); 2933 ret = (EINVAL); 2934 } 2935 return (ret); 2936 } 2937 2938 int 2939 vm_set_tsc_offset(struct vm *vm, int vcpuid, uint64_t offset) 2940 { 2941 struct vcpu *vcpu; 2942 2943 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2944 return (EINVAL); 2945 2946 vcpu = &vm->vcpu[vcpuid]; 2947 vcpu->tsc_offset = offset; 2948 2949 return (0); 2950 } 2951 2952 int 2953 vm_restore_time(struct vm *vm) 2954 { 2955 int error, i; 2956 uint64_t now; 2957 struct vcpu *vcpu; 2958 2959 now = rdtsc(); 2960 2961 error = vhpet_restore_time(vm_hpet(vm)); 2962 if (error) 2963 return (error); 2964 2965 for (i = 0; i < nitems(vm->vcpu); i++) { 2966 vcpu = &vm->vcpu[i]; 2967 2968 error = vmmops_restore_tsc(vm->cookie, i, vcpu->tsc_offset - 2969 now); 2970 if (error) 2971 return (error); 2972 } 2973 2974 return (0); 2975 } 2976 #endif 2977