1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include "opt_bhyve_snapshot.h" 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/sysctl.h> 37 #include <sys/malloc.h> 38 #include <sys/pcpu.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/proc.h> 42 #include <sys/rwlock.h> 43 #include <sys/sched.h> 44 #include <sys/smp.h> 45 #include <sys/sx.h> 46 #include <sys/vnode.h> 47 48 #include <vm/vm.h> 49 #include <vm/vm_param.h> 50 #include <vm/vm_extern.h> 51 #include <vm/vm_object.h> 52 #include <vm/vm_page.h> 53 #include <vm/pmap.h> 54 #include <vm/vm_map.h> 55 #include <vm/vm_pager.h> 56 #include <vm/vm_kern.h> 57 #include <vm/vnode_pager.h> 58 #include <vm/swap_pager.h> 59 #include <vm/uma.h> 60 61 #include <machine/cpu.h> 62 #include <machine/pcb.h> 63 #include <machine/smp.h> 64 #include <machine/md_var.h> 65 #include <x86/psl.h> 66 #include <x86/apicreg.h> 67 #include <x86/ifunc.h> 68 69 #include <machine/vmm.h> 70 #include <machine/vmm_instruction_emul.h> 71 #include <machine/vmm_snapshot.h> 72 73 #include <dev/vmm/vmm_dev.h> 74 #include <dev/vmm/vmm_ktr.h> 75 76 #include "vmm_ioport.h" 77 #include "vmm_host.h" 78 #include "vmm_mem.h" 79 #include "vmm_util.h" 80 #include "vatpic.h" 81 #include "vatpit.h" 82 #include "vhpet.h" 83 #include "vioapic.h" 84 #include "vlapic.h" 85 #include "vpmtmr.h" 86 #include "vrtc.h" 87 #include "vmm_stat.h" 88 #include "vmm_lapic.h" 89 90 #include "io/ppt.h" 91 #include "io/iommu.h" 92 93 struct vlapic; 94 95 /* 96 * Initialization: 97 * (a) allocated when vcpu is created 98 * (i) initialized when vcpu is created and when it is reinitialized 99 * (o) initialized the first time the vcpu is created 100 * (x) initialized before use 101 */ 102 struct vcpu { 103 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 104 enum vcpu_state state; /* (o) vcpu state */ 105 int vcpuid; /* (o) */ 106 int hostcpu; /* (o) vcpu's host cpu */ 107 int reqidle; /* (i) request vcpu to idle */ 108 struct vm *vm; /* (o) */ 109 void *cookie; /* (i) cpu-specific data */ 110 struct vlapic *vlapic; /* (i) APIC device model */ 111 enum x2apic_state x2apic_state; /* (i) APIC mode */ 112 uint64_t exitintinfo; /* (i) events pending at VM exit */ 113 int nmi_pending; /* (i) NMI pending */ 114 int extint_pending; /* (i) INTR pending */ 115 int exception_pending; /* (i) exception pending */ 116 int exc_vector; /* (x) exception collateral */ 117 int exc_errcode_valid; 118 uint32_t exc_errcode; 119 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 120 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 121 void *stats; /* (a,i) statistics */ 122 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 123 cpuset_t exitinfo_cpuset; /* (x) storage for vmexit handlers */ 124 uint64_t nextrip; /* (x) next instruction to execute */ 125 uint64_t tsc_offset; /* (o) TSC offsetting */ 126 }; 127 128 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 129 #define vcpu_lock_destroy(v) mtx_destroy(&((v)->mtx)) 130 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 131 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 132 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 133 134 struct mem_seg { 135 size_t len; 136 bool sysmem; 137 struct vm_object *object; 138 }; 139 #define VM_MAX_MEMSEGS 4 140 141 struct mem_map { 142 vm_paddr_t gpa; 143 size_t len; 144 vm_ooffset_t segoff; 145 int segid; 146 int prot; 147 int flags; 148 }; 149 #define VM_MAX_MEMMAPS 8 150 151 /* 152 * Initialization: 153 * (o) initialized the first time the VM is created 154 * (i) initialized when VM is created and when it is reinitialized 155 * (x) initialized before use 156 * 157 * Locking: 158 * [m] mem_segs_lock 159 * [r] rendezvous_mtx 160 * [v] reads require one frozen vcpu, writes require freezing all vcpus 161 */ 162 struct vm { 163 void *cookie; /* (i) cpu-specific data */ 164 void *iommu; /* (x) iommu-specific data */ 165 struct vhpet *vhpet; /* (i) virtual HPET */ 166 struct vioapic *vioapic; /* (i) virtual ioapic */ 167 struct vatpic *vatpic; /* (i) virtual atpic */ 168 struct vatpit *vatpit; /* (i) virtual atpit */ 169 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ 170 struct vrtc *vrtc; /* (o) virtual RTC */ 171 volatile cpuset_t active_cpus; /* (i) active vcpus */ 172 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */ 173 cpuset_t startup_cpus; /* (i) [r] waiting for startup */ 174 int suspend; /* (i) stop VM execution */ 175 bool dying; /* (o) is dying */ 176 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 177 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 178 cpuset_t rendezvous_req_cpus; /* (x) [r] rendezvous requested */ 179 cpuset_t rendezvous_done_cpus; /* (x) [r] rendezvous finished */ 180 void *rendezvous_arg; /* (x) [r] rendezvous func/arg */ 181 vm_rendezvous_func_t rendezvous_func; 182 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 183 struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) [m+v] guest address space */ 184 struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) [m+v] guest memory regions */ 185 struct vmspace *vmspace; /* (o) guest's address space */ 186 char name[VM_MAX_NAMELEN+1]; /* (o) virtual machine name */ 187 struct vcpu **vcpu; /* (o) guest vcpus */ 188 /* The following describe the vm cpu topology */ 189 uint16_t sockets; /* (o) num of sockets */ 190 uint16_t cores; /* (o) num of cores/socket */ 191 uint16_t threads; /* (o) num of threads/core */ 192 uint16_t maxcpus; /* (o) max pluggable cpus */ 193 struct sx mem_segs_lock; /* (o) */ 194 struct sx vcpus_init_lock; /* (o) */ 195 }; 196 197 #define VMM_CTR0(vcpu, format) \ 198 VCPU_CTR0((vcpu)->vm, (vcpu)->vcpuid, format) 199 200 #define VMM_CTR1(vcpu, format, p1) \ 201 VCPU_CTR1((vcpu)->vm, (vcpu)->vcpuid, format, p1) 202 203 #define VMM_CTR2(vcpu, format, p1, p2) \ 204 VCPU_CTR2((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2) 205 206 #define VMM_CTR3(vcpu, format, p1, p2, p3) \ 207 VCPU_CTR3((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3) 208 209 #define VMM_CTR4(vcpu, format, p1, p2, p3, p4) \ 210 VCPU_CTR4((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3, p4) 211 212 static int vmm_initialized; 213 214 static void vmmops_panic(void); 215 216 static void 217 vmmops_panic(void) 218 { 219 panic("vmm_ops func called when !vmm_is_intel() && !vmm_is_svm()"); 220 } 221 222 #define DEFINE_VMMOPS_IFUNC(ret_type, opname, args) \ 223 DEFINE_IFUNC(static, ret_type, vmmops_##opname, args) \ 224 { \ 225 if (vmm_is_intel()) \ 226 return (vmm_ops_intel.opname); \ 227 else if (vmm_is_svm()) \ 228 return (vmm_ops_amd.opname); \ 229 else \ 230 return ((ret_type (*)args)vmmops_panic); \ 231 } 232 233 DEFINE_VMMOPS_IFUNC(int, modinit, (int ipinum)) 234 DEFINE_VMMOPS_IFUNC(int, modcleanup, (void)) 235 DEFINE_VMMOPS_IFUNC(void, modsuspend, (void)) 236 DEFINE_VMMOPS_IFUNC(void, modresume, (void)) 237 DEFINE_VMMOPS_IFUNC(void *, init, (struct vm *vm, struct pmap *pmap)) 238 DEFINE_VMMOPS_IFUNC(int, run, (void *vcpui, register_t rip, struct pmap *pmap, 239 struct vm_eventinfo *info)) 240 DEFINE_VMMOPS_IFUNC(void, cleanup, (void *vmi)) 241 DEFINE_VMMOPS_IFUNC(void *, vcpu_init, (void *vmi, struct vcpu *vcpu, 242 int vcpu_id)) 243 DEFINE_VMMOPS_IFUNC(void, vcpu_cleanup, (void *vcpui)) 244 DEFINE_VMMOPS_IFUNC(int, getreg, (void *vcpui, int num, uint64_t *retval)) 245 DEFINE_VMMOPS_IFUNC(int, setreg, (void *vcpui, int num, uint64_t val)) 246 DEFINE_VMMOPS_IFUNC(int, getdesc, (void *vcpui, int num, struct seg_desc *desc)) 247 DEFINE_VMMOPS_IFUNC(int, setdesc, (void *vcpui, int num, struct seg_desc *desc)) 248 DEFINE_VMMOPS_IFUNC(int, getcap, (void *vcpui, int num, int *retval)) 249 DEFINE_VMMOPS_IFUNC(int, setcap, (void *vcpui, int num, int val)) 250 DEFINE_VMMOPS_IFUNC(struct vmspace *, vmspace_alloc, (vm_offset_t min, 251 vm_offset_t max)) 252 DEFINE_VMMOPS_IFUNC(void, vmspace_free, (struct vmspace *vmspace)) 253 DEFINE_VMMOPS_IFUNC(struct vlapic *, vlapic_init, (void *vcpui)) 254 DEFINE_VMMOPS_IFUNC(void, vlapic_cleanup, (struct vlapic *vlapic)) 255 #ifdef BHYVE_SNAPSHOT 256 DEFINE_VMMOPS_IFUNC(int, vcpu_snapshot, (void *vcpui, 257 struct vm_snapshot_meta *meta)) 258 DEFINE_VMMOPS_IFUNC(int, restore_tsc, (void *vcpui, uint64_t now)) 259 #endif 260 261 SDT_PROVIDER_DEFINE(vmm); 262 263 static MALLOC_DEFINE(M_VM, "vm", "vm"); 264 265 /* statistics */ 266 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 267 268 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 269 NULL); 270 271 /* 272 * Halt the guest if all vcpus are executing a HLT instruction with 273 * interrupts disabled. 274 */ 275 static int halt_detection_enabled = 1; 276 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 277 &halt_detection_enabled, 0, 278 "Halt VM if all vcpus execute HLT with interrupts disabled"); 279 280 static int vmm_ipinum; 281 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 282 "IPI vector used for vcpu notifications"); 283 284 static int trace_guest_exceptions; 285 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN, 286 &trace_guest_exceptions, 0, 287 "Trap into hypervisor on all guest exceptions and reflect them back"); 288 289 static int trap_wbinvd; 290 SYSCTL_INT(_hw_vmm, OID_AUTO, trap_wbinvd, CTLFLAG_RDTUN, &trap_wbinvd, 0, 291 "WBINVD triggers a VM-exit"); 292 293 u_int vm_maxcpu; 294 SYSCTL_UINT(_hw_vmm, OID_AUTO, maxcpu, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 295 &vm_maxcpu, 0, "Maximum number of vCPUs"); 296 297 static void vm_free_memmap(struct vm *vm, int ident); 298 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm); 299 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr); 300 301 /* global statistics */ 302 VMM_STAT(VCPU_MIGRATIONS, "vcpu migration across host cpus"); 303 VMM_STAT(VMEXIT_COUNT, "total number of vm exits"); 304 VMM_STAT(VMEXIT_EXTINT, "vm exits due to external interrupt"); 305 VMM_STAT(VMEXIT_HLT, "number of times hlt was intercepted"); 306 VMM_STAT(VMEXIT_CR_ACCESS, "number of times %cr access was intercepted"); 307 VMM_STAT(VMEXIT_RDMSR, "number of times rdmsr was intercepted"); 308 VMM_STAT(VMEXIT_WRMSR, "number of times wrmsr was intercepted"); 309 VMM_STAT(VMEXIT_MTRAP, "number of monitor trap exits"); 310 VMM_STAT(VMEXIT_PAUSE, "number of times pause was intercepted"); 311 VMM_STAT(VMEXIT_INTR_WINDOW, "vm exits due to interrupt window opening"); 312 VMM_STAT(VMEXIT_NMI_WINDOW, "vm exits due to nmi window opening"); 313 VMM_STAT(VMEXIT_INOUT, "number of times in/out was intercepted"); 314 VMM_STAT(VMEXIT_CPUID, "number of times cpuid was intercepted"); 315 VMM_STAT(VMEXIT_NESTED_FAULT, "vm exits due to nested page fault"); 316 VMM_STAT(VMEXIT_INST_EMUL, "vm exits for instruction emulation"); 317 VMM_STAT(VMEXIT_UNKNOWN, "number of vm exits for unknown reason"); 318 VMM_STAT(VMEXIT_ASTPENDING, "number of times astpending at exit"); 319 VMM_STAT(VMEXIT_REQIDLE, "number of times idle requested at exit"); 320 VMM_STAT(VMEXIT_USERSPACE, "number of vm exits handled in userspace"); 321 VMM_STAT(VMEXIT_RENDEZVOUS, "number of times rendezvous pending at exit"); 322 VMM_STAT(VMEXIT_EXCEPTION, "number of vm exits due to exceptions"); 323 324 /* 325 * Upper limit on vm_maxcpu. Limited by use of uint16_t types for CPU 326 * counts as well as range of vpid values for VT-x and by the capacity 327 * of cpuset_t masks. The call to new_unrhdr() in vpid_init() in 328 * vmx.c requires 'vm_maxcpu + 1 <= 0xffff', hence the '- 1' below. 329 */ 330 #define VM_MAXCPU MIN(0xffff - 1, CPU_SETSIZE) 331 332 #ifdef KTR 333 static const char * 334 vcpu_state2str(enum vcpu_state state) 335 { 336 337 switch (state) { 338 case VCPU_IDLE: 339 return ("idle"); 340 case VCPU_FROZEN: 341 return ("frozen"); 342 case VCPU_RUNNING: 343 return ("running"); 344 case VCPU_SLEEPING: 345 return ("sleeping"); 346 default: 347 return ("unknown"); 348 } 349 } 350 #endif 351 352 static void 353 vcpu_cleanup(struct vcpu *vcpu, bool destroy) 354 { 355 vmmops_vlapic_cleanup(vcpu->vlapic); 356 vmmops_vcpu_cleanup(vcpu->cookie); 357 vcpu->cookie = NULL; 358 if (destroy) { 359 vmm_stat_free(vcpu->stats); 360 fpu_save_area_free(vcpu->guestfpu); 361 vcpu_lock_destroy(vcpu); 362 free(vcpu, M_VM); 363 } 364 } 365 366 static struct vcpu * 367 vcpu_alloc(struct vm *vm, int vcpu_id) 368 { 369 struct vcpu *vcpu; 370 371 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus, 372 ("vcpu_init: invalid vcpu %d", vcpu_id)); 373 374 vcpu = malloc(sizeof(*vcpu), M_VM, M_WAITOK | M_ZERO); 375 vcpu_lock_init(vcpu); 376 vcpu->state = VCPU_IDLE; 377 vcpu->hostcpu = NOCPU; 378 vcpu->vcpuid = vcpu_id; 379 vcpu->vm = vm; 380 vcpu->guestfpu = fpu_save_area_alloc(); 381 vcpu->stats = vmm_stat_alloc(); 382 vcpu->tsc_offset = 0; 383 return (vcpu); 384 } 385 386 static void 387 vcpu_init(struct vcpu *vcpu) 388 { 389 vcpu->cookie = vmmops_vcpu_init(vcpu->vm->cookie, vcpu, vcpu->vcpuid); 390 vcpu->vlapic = vmmops_vlapic_init(vcpu->cookie); 391 vm_set_x2apic_state(vcpu, X2APIC_DISABLED); 392 vcpu->reqidle = 0; 393 vcpu->exitintinfo = 0; 394 vcpu->nmi_pending = 0; 395 vcpu->extint_pending = 0; 396 vcpu->exception_pending = 0; 397 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 398 fpu_save_area_reset(vcpu->guestfpu); 399 vmm_stat_init(vcpu->stats); 400 } 401 402 int 403 vcpu_trace_exceptions(struct vcpu *vcpu) 404 { 405 406 return (trace_guest_exceptions); 407 } 408 409 int 410 vcpu_trap_wbinvd(struct vcpu *vcpu) 411 { 412 return (trap_wbinvd); 413 } 414 415 struct vm_exit * 416 vm_exitinfo(struct vcpu *vcpu) 417 { 418 return (&vcpu->exitinfo); 419 } 420 421 cpuset_t * 422 vm_exitinfo_cpuset(struct vcpu *vcpu) 423 { 424 return (&vcpu->exitinfo_cpuset); 425 } 426 427 static int 428 vmm_init(void) 429 { 430 int error; 431 432 if (!vmm_is_hw_supported()) 433 return (ENXIO); 434 435 vm_maxcpu = mp_ncpus; 436 TUNABLE_INT_FETCH("hw.vmm.maxcpu", &vm_maxcpu); 437 438 if (vm_maxcpu > VM_MAXCPU) { 439 printf("vmm: vm_maxcpu clamped to %u\n", VM_MAXCPU); 440 vm_maxcpu = VM_MAXCPU; 441 } 442 if (vm_maxcpu == 0) 443 vm_maxcpu = 1; 444 445 vmm_host_state_init(); 446 447 vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) : 448 &IDTVEC(justreturn)); 449 if (vmm_ipinum < 0) 450 vmm_ipinum = IPI_AST; 451 452 error = vmm_mem_init(); 453 if (error) 454 return (error); 455 456 vmm_suspend_p = vmmops_modsuspend; 457 vmm_resume_p = vmmops_modresume; 458 459 return (vmmops_modinit(vmm_ipinum)); 460 } 461 462 static int 463 vmm_handler(module_t mod, int what, void *arg) 464 { 465 int error; 466 467 switch (what) { 468 case MOD_LOAD: 469 if (vmm_is_hw_supported()) { 470 error = vmmdev_init(); 471 if (error != 0) 472 break; 473 error = vmm_init(); 474 if (error == 0) 475 vmm_initialized = 1; 476 } else { 477 error = ENXIO; 478 } 479 break; 480 case MOD_UNLOAD: 481 if (vmm_is_hw_supported()) { 482 error = vmmdev_cleanup(); 483 if (error == 0) { 484 vmm_suspend_p = NULL; 485 vmm_resume_p = NULL; 486 iommu_cleanup(); 487 if (vmm_ipinum != IPI_AST) 488 lapic_ipi_free(vmm_ipinum); 489 error = vmmops_modcleanup(); 490 /* 491 * Something bad happened - prevent new 492 * VMs from being created 493 */ 494 if (error) 495 vmm_initialized = 0; 496 } 497 } else { 498 error = 0; 499 } 500 break; 501 default: 502 error = 0; 503 break; 504 } 505 return (error); 506 } 507 508 static moduledata_t vmm_kmod = { 509 "vmm", 510 vmm_handler, 511 NULL 512 }; 513 514 /* 515 * vmm initialization has the following dependencies: 516 * 517 * - VT-x initialization requires smp_rendezvous() and therefore must happen 518 * after SMP is fully functional (after SI_SUB_SMP). 519 * - vmm device initialization requires an initialized devfs. 520 */ 521 DECLARE_MODULE(vmm, vmm_kmod, MAX(SI_SUB_SMP, SI_SUB_DEVFS) + 1, SI_ORDER_ANY); 522 MODULE_VERSION(vmm, 1); 523 524 static void 525 vm_init(struct vm *vm, bool create) 526 { 527 vm->cookie = vmmops_init(vm, vmspace_pmap(vm->vmspace)); 528 vm->iommu = NULL; 529 vm->vioapic = vioapic_init(vm); 530 vm->vhpet = vhpet_init(vm); 531 vm->vatpic = vatpic_init(vm); 532 vm->vatpit = vatpit_init(vm); 533 vm->vpmtmr = vpmtmr_init(vm); 534 if (create) 535 vm->vrtc = vrtc_init(vm); 536 537 CPU_ZERO(&vm->active_cpus); 538 CPU_ZERO(&vm->debug_cpus); 539 CPU_ZERO(&vm->startup_cpus); 540 541 vm->suspend = 0; 542 CPU_ZERO(&vm->suspended_cpus); 543 544 if (!create) { 545 for (int i = 0; i < vm->maxcpus; i++) { 546 if (vm->vcpu[i] != NULL) 547 vcpu_init(vm->vcpu[i]); 548 } 549 } 550 } 551 552 void 553 vm_disable_vcpu_creation(struct vm *vm) 554 { 555 sx_xlock(&vm->vcpus_init_lock); 556 vm->dying = true; 557 sx_xunlock(&vm->vcpus_init_lock); 558 } 559 560 struct vcpu * 561 vm_alloc_vcpu(struct vm *vm, int vcpuid) 562 { 563 struct vcpu *vcpu; 564 565 if (vcpuid < 0 || vcpuid >= vm_get_maxcpus(vm)) 566 return (NULL); 567 568 vcpu = (struct vcpu *) 569 atomic_load_acq_ptr((uintptr_t *)&vm->vcpu[vcpuid]); 570 if (__predict_true(vcpu != NULL)) 571 return (vcpu); 572 573 sx_xlock(&vm->vcpus_init_lock); 574 vcpu = vm->vcpu[vcpuid]; 575 if (vcpu == NULL && !vm->dying) { 576 vcpu = vcpu_alloc(vm, vcpuid); 577 vcpu_init(vcpu); 578 579 /* 580 * Ensure vCPU is fully created before updating pointer 581 * to permit unlocked reads above. 582 */ 583 atomic_store_rel_ptr((uintptr_t *)&vm->vcpu[vcpuid], 584 (uintptr_t)vcpu); 585 } 586 sx_xunlock(&vm->vcpus_init_lock); 587 return (vcpu); 588 } 589 590 void 591 vm_slock_vcpus(struct vm *vm) 592 { 593 sx_slock(&vm->vcpus_init_lock); 594 } 595 596 void 597 vm_unlock_vcpus(struct vm *vm) 598 { 599 sx_unlock(&vm->vcpus_init_lock); 600 } 601 602 /* 603 * The default CPU topology is a single thread per package. 604 */ 605 u_int cores_per_package = 1; 606 u_int threads_per_core = 1; 607 608 int 609 vm_create(const char *name, struct vm **retvm) 610 { 611 struct vm *vm; 612 struct vmspace *vmspace; 613 614 /* 615 * If vmm.ko could not be successfully initialized then don't attempt 616 * to create the virtual machine. 617 */ 618 if (!vmm_initialized) 619 return (ENXIO); 620 621 if (name == NULL || strnlen(name, VM_MAX_NAMELEN + 1) == 622 VM_MAX_NAMELEN + 1) 623 return (EINVAL); 624 625 vmspace = vmmops_vmspace_alloc(0, VM_MAXUSER_ADDRESS_LA48); 626 if (vmspace == NULL) 627 return (ENOMEM); 628 629 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 630 strcpy(vm->name, name); 631 vm->vmspace = vmspace; 632 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 633 sx_init(&vm->mem_segs_lock, "vm mem_segs"); 634 sx_init(&vm->vcpus_init_lock, "vm vcpus"); 635 vm->vcpu = malloc(sizeof(*vm->vcpu) * vm_maxcpu, M_VM, M_WAITOK | 636 M_ZERO); 637 638 vm->sockets = 1; 639 vm->cores = cores_per_package; /* XXX backwards compatibility */ 640 vm->threads = threads_per_core; /* XXX backwards compatibility */ 641 vm->maxcpus = vm_maxcpu; 642 643 vm_init(vm, true); 644 645 *retvm = vm; 646 return (0); 647 } 648 649 void 650 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, 651 uint16_t *threads, uint16_t *maxcpus) 652 { 653 *sockets = vm->sockets; 654 *cores = vm->cores; 655 *threads = vm->threads; 656 *maxcpus = vm->maxcpus; 657 } 658 659 uint16_t 660 vm_get_maxcpus(struct vm *vm) 661 { 662 return (vm->maxcpus); 663 } 664 665 int 666 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, 667 uint16_t threads, uint16_t maxcpus __unused) 668 { 669 /* Ignore maxcpus. */ 670 if ((sockets * cores * threads) > vm->maxcpus) 671 return (EINVAL); 672 vm->sockets = sockets; 673 vm->cores = cores; 674 vm->threads = threads; 675 return(0); 676 } 677 678 static void 679 vm_cleanup(struct vm *vm, bool destroy) 680 { 681 struct mem_map *mm; 682 int i; 683 684 if (destroy) 685 vm_xlock_memsegs(vm); 686 687 ppt_unassign_all(vm); 688 689 if (vm->iommu != NULL) 690 iommu_destroy_domain(vm->iommu); 691 692 if (destroy) 693 vrtc_cleanup(vm->vrtc); 694 else 695 vrtc_reset(vm->vrtc); 696 vpmtmr_cleanup(vm->vpmtmr); 697 vatpit_cleanup(vm->vatpit); 698 vhpet_cleanup(vm->vhpet); 699 vatpic_cleanup(vm->vatpic); 700 vioapic_cleanup(vm->vioapic); 701 702 for (i = 0; i < vm->maxcpus; i++) { 703 if (vm->vcpu[i] != NULL) 704 vcpu_cleanup(vm->vcpu[i], destroy); 705 } 706 707 vmmops_cleanup(vm->cookie); 708 709 /* 710 * System memory is removed from the guest address space only when 711 * the VM is destroyed. This is because the mapping remains the same 712 * across VM reset. 713 * 714 * Device memory can be relocated by the guest (e.g. using PCI BARs) 715 * so those mappings are removed on a VM reset. 716 */ 717 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 718 mm = &vm->mem_maps[i]; 719 if (destroy || !sysmem_mapping(vm, mm)) 720 vm_free_memmap(vm, i); 721 } 722 723 if (destroy) { 724 for (i = 0; i < VM_MAX_MEMSEGS; i++) 725 vm_free_memseg(vm, i); 726 vm_unlock_memsegs(vm); 727 728 vmmops_vmspace_free(vm->vmspace); 729 vm->vmspace = NULL; 730 731 free(vm->vcpu, M_VM); 732 sx_destroy(&vm->vcpus_init_lock); 733 sx_destroy(&vm->mem_segs_lock); 734 mtx_destroy(&vm->rendezvous_mtx); 735 } 736 } 737 738 void 739 vm_destroy(struct vm *vm) 740 { 741 vm_cleanup(vm, true); 742 free(vm, M_VM); 743 } 744 745 int 746 vm_reinit(struct vm *vm) 747 { 748 int error; 749 750 /* 751 * A virtual machine can be reset only if all vcpus are suspended. 752 */ 753 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 754 vm_cleanup(vm, false); 755 vm_init(vm, false); 756 error = 0; 757 } else { 758 error = EBUSY; 759 } 760 761 return (error); 762 } 763 764 const char * 765 vm_name(struct vm *vm) 766 { 767 return (vm->name); 768 } 769 770 void 771 vm_slock_memsegs(struct vm *vm) 772 { 773 sx_slock(&vm->mem_segs_lock); 774 } 775 776 void 777 vm_xlock_memsegs(struct vm *vm) 778 { 779 sx_xlock(&vm->mem_segs_lock); 780 } 781 782 void 783 vm_unlock_memsegs(struct vm *vm) 784 { 785 sx_unlock(&vm->mem_segs_lock); 786 } 787 788 int 789 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 790 { 791 vm_object_t obj; 792 793 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 794 return (ENOMEM); 795 else 796 return (0); 797 } 798 799 int 800 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 801 { 802 803 vmm_mmio_free(vm->vmspace, gpa, len); 804 return (0); 805 } 806 807 /* 808 * Return 'true' if 'gpa' is allocated in the guest address space. 809 * 810 * This function is called in the context of a running vcpu which acts as 811 * an implicit lock on 'vm->mem_maps[]'. 812 */ 813 bool 814 vm_mem_allocated(struct vcpu *vcpu, vm_paddr_t gpa) 815 { 816 struct vm *vm = vcpu->vm; 817 struct mem_map *mm; 818 int i; 819 820 #ifdef INVARIANTS 821 int hostcpu, state; 822 state = vcpu_get_state(vcpu, &hostcpu); 823 KASSERT(state == VCPU_RUNNING && hostcpu == curcpu, 824 ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu)); 825 #endif 826 827 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 828 mm = &vm->mem_maps[i]; 829 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len) 830 return (true); /* 'gpa' is sysmem or devmem */ 831 } 832 833 if (ppt_is_mmio(vm, gpa)) 834 return (true); /* 'gpa' is pci passthru mmio */ 835 836 return (false); 837 } 838 839 int 840 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem) 841 { 842 struct mem_seg *seg; 843 vm_object_t obj; 844 845 sx_assert(&vm->mem_segs_lock, SX_XLOCKED); 846 847 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 848 return (EINVAL); 849 850 if (len == 0 || (len & PAGE_MASK)) 851 return (EINVAL); 852 853 seg = &vm->mem_segs[ident]; 854 if (seg->object != NULL) { 855 if (seg->len == len && seg->sysmem == sysmem) 856 return (EEXIST); 857 else 858 return (EINVAL); 859 } 860 861 obj = vm_object_allocate(OBJT_SWAP, len >> PAGE_SHIFT); 862 if (obj == NULL) 863 return (ENOMEM); 864 865 seg->len = len; 866 seg->object = obj; 867 seg->sysmem = sysmem; 868 return (0); 869 } 870 871 int 872 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, 873 vm_object_t *objptr) 874 { 875 struct mem_seg *seg; 876 877 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 878 879 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 880 return (EINVAL); 881 882 seg = &vm->mem_segs[ident]; 883 if (len) 884 *len = seg->len; 885 if (sysmem) 886 *sysmem = seg->sysmem; 887 if (objptr) 888 *objptr = seg->object; 889 return (0); 890 } 891 892 void 893 vm_free_memseg(struct vm *vm, int ident) 894 { 895 struct mem_seg *seg; 896 897 KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS, 898 ("%s: invalid memseg ident %d", __func__, ident)); 899 900 seg = &vm->mem_segs[ident]; 901 if (seg->object != NULL) { 902 vm_object_deallocate(seg->object); 903 bzero(seg, sizeof(struct mem_seg)); 904 } 905 } 906 907 int 908 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first, 909 size_t len, int prot, int flags) 910 { 911 struct mem_seg *seg; 912 struct mem_map *m, *map; 913 vm_ooffset_t last; 914 int i, error; 915 916 if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0) 917 return (EINVAL); 918 919 if (flags & ~VM_MEMMAP_F_WIRED) 920 return (EINVAL); 921 922 if (segid < 0 || segid >= VM_MAX_MEMSEGS) 923 return (EINVAL); 924 925 seg = &vm->mem_segs[segid]; 926 if (seg->object == NULL) 927 return (EINVAL); 928 929 last = first + len; 930 if (first < 0 || first >= last || last > seg->len) 931 return (EINVAL); 932 933 if ((gpa | first | last) & PAGE_MASK) 934 return (EINVAL); 935 936 map = NULL; 937 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 938 m = &vm->mem_maps[i]; 939 if (m->len == 0) { 940 map = m; 941 break; 942 } 943 } 944 945 if (map == NULL) 946 return (ENOSPC); 947 948 error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa, 949 len, 0, VMFS_NO_SPACE, prot, prot, 0); 950 if (error != KERN_SUCCESS) 951 return (EFAULT); 952 953 vm_object_reference(seg->object); 954 955 if (flags & VM_MEMMAP_F_WIRED) { 956 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len, 957 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 958 if (error != KERN_SUCCESS) { 959 vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len); 960 return (error == KERN_RESOURCE_SHORTAGE ? ENOMEM : 961 EFAULT); 962 } 963 } 964 965 map->gpa = gpa; 966 map->len = len; 967 map->segoff = first; 968 map->segid = segid; 969 map->prot = prot; 970 map->flags = flags; 971 return (0); 972 } 973 974 int 975 vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len) 976 { 977 struct mem_map *m; 978 int i; 979 980 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 981 m = &vm->mem_maps[i]; 982 if (m->gpa == gpa && m->len == len && 983 (m->flags & VM_MEMMAP_F_IOMMU) == 0) { 984 vm_free_memmap(vm, i); 985 return (0); 986 } 987 } 988 989 return (EINVAL); 990 } 991 992 int 993 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, 994 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 995 { 996 struct mem_map *mm, *mmnext; 997 int i; 998 999 mmnext = NULL; 1000 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1001 mm = &vm->mem_maps[i]; 1002 if (mm->len == 0 || mm->gpa < *gpa) 1003 continue; 1004 if (mmnext == NULL || mm->gpa < mmnext->gpa) 1005 mmnext = mm; 1006 } 1007 1008 if (mmnext != NULL) { 1009 *gpa = mmnext->gpa; 1010 if (segid) 1011 *segid = mmnext->segid; 1012 if (segoff) 1013 *segoff = mmnext->segoff; 1014 if (len) 1015 *len = mmnext->len; 1016 if (prot) 1017 *prot = mmnext->prot; 1018 if (flags) 1019 *flags = mmnext->flags; 1020 return (0); 1021 } else { 1022 return (ENOENT); 1023 } 1024 } 1025 1026 static void 1027 vm_free_memmap(struct vm *vm, int ident) 1028 { 1029 struct mem_map *mm; 1030 int error __diagused; 1031 1032 mm = &vm->mem_maps[ident]; 1033 if (mm->len) { 1034 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa, 1035 mm->gpa + mm->len); 1036 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d", 1037 __func__, error)); 1038 bzero(mm, sizeof(struct mem_map)); 1039 } 1040 } 1041 1042 static __inline bool 1043 sysmem_mapping(struct vm *vm, struct mem_map *mm) 1044 { 1045 1046 if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem) 1047 return (true); 1048 else 1049 return (false); 1050 } 1051 1052 vm_paddr_t 1053 vmm_sysmem_maxaddr(struct vm *vm) 1054 { 1055 struct mem_map *mm; 1056 vm_paddr_t maxaddr; 1057 int i; 1058 1059 maxaddr = 0; 1060 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1061 mm = &vm->mem_maps[i]; 1062 if (sysmem_mapping(vm, mm)) { 1063 if (maxaddr < mm->gpa + mm->len) 1064 maxaddr = mm->gpa + mm->len; 1065 } 1066 } 1067 return (maxaddr); 1068 } 1069 1070 static void 1071 vm_iommu_map(struct vm *vm) 1072 { 1073 vm_paddr_t gpa, hpa; 1074 struct mem_map *mm; 1075 int i; 1076 1077 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 1078 1079 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1080 mm = &vm->mem_maps[i]; 1081 if (!sysmem_mapping(vm, mm)) 1082 continue; 1083 1084 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0, 1085 ("iommu map found invalid memmap %#lx/%#lx/%#x", 1086 mm->gpa, mm->len, mm->flags)); 1087 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0) 1088 continue; 1089 mm->flags |= VM_MEMMAP_F_IOMMU; 1090 1091 for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) { 1092 hpa = pmap_extract(vmspace_pmap(vm->vmspace), gpa); 1093 1094 /* 1095 * All mappings in the vmm vmspace must be 1096 * present since they are managed by vmm in this way. 1097 * Because we are in pass-through mode, the 1098 * mappings must also be wired. This implies 1099 * that all pages must be mapped and wired, 1100 * allowing to use pmap_extract() and avoiding the 1101 * need to use vm_gpa_hold_global(). 1102 * 1103 * This could change if/when we start 1104 * supporting page faults on IOMMU maps. 1105 */ 1106 KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(hpa)), 1107 ("vm_iommu_map: vm %p gpa %jx hpa %jx not wired", 1108 vm, (uintmax_t)gpa, (uintmax_t)hpa)); 1109 1110 iommu_create_mapping(vm->iommu, gpa, hpa, PAGE_SIZE); 1111 } 1112 } 1113 1114 iommu_invalidate_tlb(iommu_host_domain()); 1115 } 1116 1117 static void 1118 vm_iommu_unmap(struct vm *vm) 1119 { 1120 vm_paddr_t gpa; 1121 struct mem_map *mm; 1122 int i; 1123 1124 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 1125 1126 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1127 mm = &vm->mem_maps[i]; 1128 if (!sysmem_mapping(vm, mm)) 1129 continue; 1130 1131 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0) 1132 continue; 1133 mm->flags &= ~VM_MEMMAP_F_IOMMU; 1134 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0, 1135 ("iommu unmap found invalid memmap %#lx/%#lx/%#x", 1136 mm->gpa, mm->len, mm->flags)); 1137 1138 for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) { 1139 KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(pmap_extract( 1140 vmspace_pmap(vm->vmspace), gpa))), 1141 ("vm_iommu_unmap: vm %p gpa %jx not wired", 1142 vm, (uintmax_t)gpa)); 1143 iommu_remove_mapping(vm->iommu, gpa, PAGE_SIZE); 1144 } 1145 } 1146 1147 /* 1148 * Invalidate the cached translations associated with the domain 1149 * from which pages were removed. 1150 */ 1151 iommu_invalidate_tlb(vm->iommu); 1152 } 1153 1154 int 1155 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 1156 { 1157 int error; 1158 1159 error = ppt_unassign_device(vm, bus, slot, func); 1160 if (error) 1161 return (error); 1162 1163 if (ppt_assigned_devices(vm) == 0) 1164 vm_iommu_unmap(vm); 1165 1166 return (0); 1167 } 1168 1169 int 1170 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 1171 { 1172 int error; 1173 vm_paddr_t maxaddr; 1174 1175 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */ 1176 if (ppt_assigned_devices(vm) == 0) { 1177 KASSERT(vm->iommu == NULL, 1178 ("vm_assign_pptdev: iommu must be NULL")); 1179 maxaddr = vmm_sysmem_maxaddr(vm); 1180 vm->iommu = iommu_create_domain(maxaddr); 1181 if (vm->iommu == NULL) 1182 return (ENXIO); 1183 vm_iommu_map(vm); 1184 } 1185 1186 error = ppt_assign_device(vm, bus, slot, func); 1187 return (error); 1188 } 1189 1190 static void * 1191 _vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 1192 void **cookie) 1193 { 1194 int i, count, pageoff; 1195 struct mem_map *mm; 1196 vm_page_t m; 1197 1198 pageoff = gpa & PAGE_MASK; 1199 if (len > PAGE_SIZE - pageoff) 1200 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 1201 1202 count = 0; 1203 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1204 mm = &vm->mem_maps[i]; 1205 if (gpa >= mm->gpa && gpa < mm->gpa + mm->len) { 1206 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 1207 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 1208 break; 1209 } 1210 } 1211 1212 if (count == 1) { 1213 *cookie = m; 1214 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 1215 } else { 1216 *cookie = NULL; 1217 return (NULL); 1218 } 1219 } 1220 1221 void * 1222 vm_gpa_hold(struct vcpu *vcpu, vm_paddr_t gpa, size_t len, int reqprot, 1223 void **cookie) 1224 { 1225 #ifdef INVARIANTS 1226 /* 1227 * The current vcpu should be frozen to ensure 'vm_memmap[]' 1228 * stability. 1229 */ 1230 int state = vcpu_get_state(vcpu, NULL); 1231 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d", 1232 __func__, state)); 1233 #endif 1234 return (_vm_gpa_hold(vcpu->vm, gpa, len, reqprot, cookie)); 1235 } 1236 1237 void * 1238 vm_gpa_hold_global(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 1239 void **cookie) 1240 { 1241 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 1242 return (_vm_gpa_hold(vm, gpa, len, reqprot, cookie)); 1243 } 1244 1245 void 1246 vm_gpa_release(void *cookie) 1247 { 1248 vm_page_t m = cookie; 1249 1250 vm_page_unwire(m, PQ_ACTIVE); 1251 } 1252 1253 int 1254 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval) 1255 { 1256 1257 if (reg >= VM_REG_LAST) 1258 return (EINVAL); 1259 1260 return (vmmops_getreg(vcpu->cookie, reg, retval)); 1261 } 1262 1263 int 1264 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val) 1265 { 1266 int error; 1267 1268 if (reg >= VM_REG_LAST) 1269 return (EINVAL); 1270 1271 error = vmmops_setreg(vcpu->cookie, reg, val); 1272 if (error || reg != VM_REG_GUEST_RIP) 1273 return (error); 1274 1275 /* Set 'nextrip' to match the value of %rip */ 1276 VMM_CTR1(vcpu, "Setting nextrip to %#lx", val); 1277 vcpu->nextrip = val; 1278 return (0); 1279 } 1280 1281 static bool 1282 is_descriptor_table(int reg) 1283 { 1284 1285 switch (reg) { 1286 case VM_REG_GUEST_IDTR: 1287 case VM_REG_GUEST_GDTR: 1288 return (true); 1289 default: 1290 return (false); 1291 } 1292 } 1293 1294 static bool 1295 is_segment_register(int reg) 1296 { 1297 1298 switch (reg) { 1299 case VM_REG_GUEST_ES: 1300 case VM_REG_GUEST_CS: 1301 case VM_REG_GUEST_SS: 1302 case VM_REG_GUEST_DS: 1303 case VM_REG_GUEST_FS: 1304 case VM_REG_GUEST_GS: 1305 case VM_REG_GUEST_TR: 1306 case VM_REG_GUEST_LDTR: 1307 return (true); 1308 default: 1309 return (false); 1310 } 1311 } 1312 1313 int 1314 vm_get_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc) 1315 { 1316 1317 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1318 return (EINVAL); 1319 1320 return (vmmops_getdesc(vcpu->cookie, reg, desc)); 1321 } 1322 1323 int 1324 vm_set_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc) 1325 { 1326 1327 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1328 return (EINVAL); 1329 1330 return (vmmops_setdesc(vcpu->cookie, reg, desc)); 1331 } 1332 1333 static void 1334 restore_guest_fpustate(struct vcpu *vcpu) 1335 { 1336 1337 /* flush host state to the pcb */ 1338 fpuexit(curthread); 1339 1340 /* restore guest FPU state */ 1341 fpu_enable(); 1342 fpurestore(vcpu->guestfpu); 1343 1344 /* restore guest XCR0 if XSAVE is enabled in the host */ 1345 if (rcr4() & CR4_XSAVE) 1346 load_xcr(0, vcpu->guest_xcr0); 1347 1348 /* 1349 * The FPU is now "dirty" with the guest's state so disable 1350 * the FPU to trap any access by the host. 1351 */ 1352 fpu_disable(); 1353 } 1354 1355 static void 1356 save_guest_fpustate(struct vcpu *vcpu) 1357 { 1358 1359 if ((rcr0() & CR0_TS) == 0) 1360 panic("fpu emulation not enabled in host!"); 1361 1362 /* save guest XCR0 and restore host XCR0 */ 1363 if (rcr4() & CR4_XSAVE) { 1364 vcpu->guest_xcr0 = rxcr(0); 1365 load_xcr(0, vmm_get_host_xcr0()); 1366 } 1367 1368 /* save guest FPU state */ 1369 fpu_enable(); 1370 fpusave(vcpu->guestfpu); 1371 fpu_disable(); 1372 } 1373 1374 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 1375 1376 static int 1377 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate, 1378 bool from_idle) 1379 { 1380 int error; 1381 1382 vcpu_assert_locked(vcpu); 1383 1384 /* 1385 * State transitions from the vmmdev_ioctl() must always begin from 1386 * the VCPU_IDLE state. This guarantees that there is only a single 1387 * ioctl() operating on a vcpu at any point. 1388 */ 1389 if (from_idle) { 1390 while (vcpu->state != VCPU_IDLE) { 1391 vcpu->reqidle = 1; 1392 vcpu_notify_event_locked(vcpu, false); 1393 VMM_CTR1(vcpu, "vcpu state change from %s to " 1394 "idle requested", vcpu_state2str(vcpu->state)); 1395 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 1396 } 1397 } else { 1398 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 1399 "vcpu idle state")); 1400 } 1401 1402 if (vcpu->state == VCPU_RUNNING) { 1403 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 1404 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 1405 } else { 1406 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 1407 "vcpu that is not running", vcpu->hostcpu)); 1408 } 1409 1410 /* 1411 * The following state transitions are allowed: 1412 * IDLE -> FROZEN -> IDLE 1413 * FROZEN -> RUNNING -> FROZEN 1414 * FROZEN -> SLEEPING -> FROZEN 1415 */ 1416 switch (vcpu->state) { 1417 case VCPU_IDLE: 1418 case VCPU_RUNNING: 1419 case VCPU_SLEEPING: 1420 error = (newstate != VCPU_FROZEN); 1421 break; 1422 case VCPU_FROZEN: 1423 error = (newstate == VCPU_FROZEN); 1424 break; 1425 default: 1426 error = 1; 1427 break; 1428 } 1429 1430 if (error) 1431 return (EBUSY); 1432 1433 VMM_CTR2(vcpu, "vcpu state changed from %s to %s", 1434 vcpu_state2str(vcpu->state), vcpu_state2str(newstate)); 1435 1436 vcpu->state = newstate; 1437 if (newstate == VCPU_RUNNING) 1438 vcpu->hostcpu = curcpu; 1439 else 1440 vcpu->hostcpu = NOCPU; 1441 1442 if (newstate == VCPU_IDLE) 1443 wakeup(&vcpu->state); 1444 1445 return (0); 1446 } 1447 1448 static void 1449 vcpu_require_state(struct vcpu *vcpu, enum vcpu_state newstate) 1450 { 1451 int error; 1452 1453 if ((error = vcpu_set_state(vcpu, newstate, false)) != 0) 1454 panic("Error %d setting state to %d\n", error, newstate); 1455 } 1456 1457 static void 1458 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate) 1459 { 1460 int error; 1461 1462 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0) 1463 panic("Error %d setting state to %d", error, newstate); 1464 } 1465 1466 static int 1467 vm_handle_rendezvous(struct vcpu *vcpu) 1468 { 1469 struct vm *vm = vcpu->vm; 1470 struct thread *td; 1471 int error, vcpuid; 1472 1473 error = 0; 1474 vcpuid = vcpu->vcpuid; 1475 td = curthread; 1476 mtx_lock(&vm->rendezvous_mtx); 1477 while (vm->rendezvous_func != NULL) { 1478 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1479 CPU_AND(&vm->rendezvous_req_cpus, &vm->rendezvous_req_cpus, &vm->active_cpus); 1480 1481 if (CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1482 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1483 VMM_CTR0(vcpu, "Calling rendezvous func"); 1484 (*vm->rendezvous_func)(vcpu, vm->rendezvous_arg); 1485 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1486 } 1487 if (CPU_CMP(&vm->rendezvous_req_cpus, 1488 &vm->rendezvous_done_cpus) == 0) { 1489 VMM_CTR0(vcpu, "Rendezvous completed"); 1490 CPU_ZERO(&vm->rendezvous_req_cpus); 1491 vm->rendezvous_func = NULL; 1492 wakeup(&vm->rendezvous_func); 1493 break; 1494 } 1495 VMM_CTR0(vcpu, "Wait for rendezvous completion"); 1496 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1497 "vmrndv", hz); 1498 if (td_ast_pending(td, TDA_SUSPEND)) { 1499 mtx_unlock(&vm->rendezvous_mtx); 1500 error = thread_check_susp(td, true); 1501 if (error != 0) 1502 return (error); 1503 mtx_lock(&vm->rendezvous_mtx); 1504 } 1505 } 1506 mtx_unlock(&vm->rendezvous_mtx); 1507 return (0); 1508 } 1509 1510 /* 1511 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1512 */ 1513 static int 1514 vm_handle_hlt(struct vcpu *vcpu, bool intr_disabled, bool *retu) 1515 { 1516 struct vm *vm = vcpu->vm; 1517 const char *wmesg; 1518 struct thread *td; 1519 int error, t, vcpuid, vcpu_halted, vm_halted; 1520 1521 vcpuid = vcpu->vcpuid; 1522 vcpu_halted = 0; 1523 vm_halted = 0; 1524 error = 0; 1525 td = curthread; 1526 1527 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1528 1529 vcpu_lock(vcpu); 1530 while (1) { 1531 /* 1532 * Do a final check for pending NMI or interrupts before 1533 * really putting this thread to sleep. Also check for 1534 * software events that would cause this vcpu to wakeup. 1535 * 1536 * These interrupts/events could have happened after the 1537 * vcpu returned from vmmops_run() and before it acquired the 1538 * vcpu lock above. 1539 */ 1540 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle) 1541 break; 1542 if (vm_nmi_pending(vcpu)) 1543 break; 1544 if (!intr_disabled) { 1545 if (vm_extint_pending(vcpu) || 1546 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1547 break; 1548 } 1549 } 1550 1551 /* Don't go to sleep if the vcpu thread needs to yield */ 1552 if (vcpu_should_yield(vcpu)) 1553 break; 1554 1555 if (vcpu_debugged(vcpu)) 1556 break; 1557 1558 /* 1559 * Some Linux guests implement "halt" by having all vcpus 1560 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1561 * track of the vcpus that have entered this state. When all 1562 * vcpus enter the halted state the virtual machine is halted. 1563 */ 1564 if (intr_disabled) { 1565 wmesg = "vmhalt"; 1566 VMM_CTR0(vcpu, "Halted"); 1567 if (!vcpu_halted && halt_detection_enabled) { 1568 vcpu_halted = 1; 1569 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1570 } 1571 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1572 vm_halted = 1; 1573 break; 1574 } 1575 } else { 1576 wmesg = "vmidle"; 1577 } 1578 1579 t = ticks; 1580 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1581 /* 1582 * XXX msleep_spin() cannot be interrupted by signals so 1583 * wake up periodically to check pending signals. 1584 */ 1585 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1586 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1587 vmm_stat_incr(vcpu, VCPU_IDLE_TICKS, ticks - t); 1588 if (td_ast_pending(td, TDA_SUSPEND)) { 1589 vcpu_unlock(vcpu); 1590 error = thread_check_susp(td, false); 1591 if (error != 0) { 1592 if (vcpu_halted) { 1593 CPU_CLR_ATOMIC(vcpuid, 1594 &vm->halted_cpus); 1595 } 1596 return (error); 1597 } 1598 vcpu_lock(vcpu); 1599 } 1600 } 1601 1602 if (vcpu_halted) 1603 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1604 1605 vcpu_unlock(vcpu); 1606 1607 if (vm_halted) 1608 vm_suspend(vm, VM_SUSPEND_HALT); 1609 1610 return (0); 1611 } 1612 1613 static int 1614 vm_handle_paging(struct vcpu *vcpu, bool *retu) 1615 { 1616 struct vm *vm = vcpu->vm; 1617 int rv, ftype; 1618 struct vm_map *map; 1619 struct vm_exit *vme; 1620 1621 vme = &vcpu->exitinfo; 1622 1623 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1624 __func__, vme->inst_length)); 1625 1626 ftype = vme->u.paging.fault_type; 1627 KASSERT(ftype == VM_PROT_READ || 1628 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1629 ("vm_handle_paging: invalid fault_type %d", ftype)); 1630 1631 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1632 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1633 vme->u.paging.gpa, ftype); 1634 if (rv == 0) { 1635 VMM_CTR2(vcpu, "%s bit emulation for gpa %#lx", 1636 ftype == VM_PROT_READ ? "accessed" : "dirty", 1637 vme->u.paging.gpa); 1638 goto done; 1639 } 1640 } 1641 1642 map = &vm->vmspace->vm_map; 1643 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL); 1644 1645 VMM_CTR3(vcpu, "vm_handle_paging rv = %d, gpa = %#lx, " 1646 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1647 1648 if (rv != KERN_SUCCESS) 1649 return (EFAULT); 1650 done: 1651 return (0); 1652 } 1653 1654 static int 1655 vm_handle_inst_emul(struct vcpu *vcpu, bool *retu) 1656 { 1657 struct vie *vie; 1658 struct vm_exit *vme; 1659 uint64_t gla, gpa, cs_base; 1660 struct vm_guest_paging *paging; 1661 mem_region_read_t mread; 1662 mem_region_write_t mwrite; 1663 enum vm_cpu_mode cpu_mode; 1664 int cs_d, error, fault; 1665 1666 vme = &vcpu->exitinfo; 1667 1668 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1669 __func__, vme->inst_length)); 1670 1671 gla = vme->u.inst_emul.gla; 1672 gpa = vme->u.inst_emul.gpa; 1673 cs_base = vme->u.inst_emul.cs_base; 1674 cs_d = vme->u.inst_emul.cs_d; 1675 vie = &vme->u.inst_emul.vie; 1676 paging = &vme->u.inst_emul.paging; 1677 cpu_mode = paging->cpu_mode; 1678 1679 VMM_CTR1(vcpu, "inst_emul fault accessing gpa %#lx", gpa); 1680 1681 /* Fetch, decode and emulate the faulting instruction */ 1682 if (vie->num_valid == 0) { 1683 error = vmm_fetch_instruction(vcpu, paging, vme->rip + cs_base, 1684 VIE_INST_SIZE, vie, &fault); 1685 } else { 1686 /* 1687 * The instruction bytes have already been copied into 'vie' 1688 */ 1689 error = fault = 0; 1690 } 1691 if (error || fault) 1692 return (error); 1693 1694 if (vmm_decode_instruction(vcpu, gla, cpu_mode, cs_d, vie) != 0) { 1695 VMM_CTR1(vcpu, "Error decoding instruction at %#lx", 1696 vme->rip + cs_base); 1697 *retu = true; /* dump instruction bytes in userspace */ 1698 return (0); 1699 } 1700 1701 /* 1702 * Update 'nextrip' based on the length of the emulated instruction. 1703 */ 1704 vme->inst_length = vie->num_processed; 1705 vcpu->nextrip += vie->num_processed; 1706 VMM_CTR1(vcpu, "nextrip updated to %#lx after instruction decoding", 1707 vcpu->nextrip); 1708 1709 /* return to userland unless this is an in-kernel emulated device */ 1710 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1711 mread = lapic_mmio_read; 1712 mwrite = lapic_mmio_write; 1713 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1714 mread = vioapic_mmio_read; 1715 mwrite = vioapic_mmio_write; 1716 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1717 mread = vhpet_mmio_read; 1718 mwrite = vhpet_mmio_write; 1719 } else { 1720 *retu = true; 1721 return (0); 1722 } 1723 1724 error = vmm_emulate_instruction(vcpu, gpa, vie, paging, mread, mwrite, 1725 retu); 1726 1727 return (error); 1728 } 1729 1730 static int 1731 vm_handle_suspend(struct vcpu *vcpu, bool *retu) 1732 { 1733 struct vm *vm = vcpu->vm; 1734 int error, i; 1735 struct thread *td; 1736 1737 error = 0; 1738 td = curthread; 1739 1740 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->suspended_cpus); 1741 1742 /* 1743 * Wait until all 'active_cpus' have suspended themselves. 1744 * 1745 * Since a VM may be suspended at any time including when one or 1746 * more vcpus are doing a rendezvous we need to call the rendezvous 1747 * handler while we are waiting to prevent a deadlock. 1748 */ 1749 vcpu_lock(vcpu); 1750 while (error == 0) { 1751 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1752 VMM_CTR0(vcpu, "All vcpus suspended"); 1753 break; 1754 } 1755 1756 if (vm->rendezvous_func == NULL) { 1757 VMM_CTR0(vcpu, "Sleeping during suspend"); 1758 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1759 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1760 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1761 if (td_ast_pending(td, TDA_SUSPEND)) { 1762 vcpu_unlock(vcpu); 1763 error = thread_check_susp(td, false); 1764 vcpu_lock(vcpu); 1765 } 1766 } else { 1767 VMM_CTR0(vcpu, "Rendezvous during suspend"); 1768 vcpu_unlock(vcpu); 1769 error = vm_handle_rendezvous(vcpu); 1770 vcpu_lock(vcpu); 1771 } 1772 } 1773 vcpu_unlock(vcpu); 1774 1775 /* 1776 * Wakeup the other sleeping vcpus and return to userspace. 1777 */ 1778 for (i = 0; i < vm->maxcpus; i++) { 1779 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1780 vcpu_notify_event(vm_vcpu(vm, i), false); 1781 } 1782 } 1783 1784 *retu = true; 1785 return (error); 1786 } 1787 1788 static int 1789 vm_handle_reqidle(struct vcpu *vcpu, bool *retu) 1790 { 1791 vcpu_lock(vcpu); 1792 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle)); 1793 vcpu->reqidle = 0; 1794 vcpu_unlock(vcpu); 1795 *retu = true; 1796 return (0); 1797 } 1798 1799 static int 1800 vm_handle_db(struct vcpu *vcpu, struct vm_exit *vme, bool *retu) 1801 { 1802 int error, fault; 1803 uint64_t rsp; 1804 uint64_t rflags; 1805 struct vm_copyinfo copyinfo[2]; 1806 1807 *retu = true; 1808 if (!vme->u.dbg.pushf_intercept || vme->u.dbg.tf_shadow_val != 0) { 1809 return (0); 1810 } 1811 1812 vm_get_register(vcpu, VM_REG_GUEST_RSP, &rsp); 1813 error = vm_copy_setup(vcpu, &vme->u.dbg.paging, rsp, sizeof(uint64_t), 1814 VM_PROT_RW, copyinfo, nitems(copyinfo), &fault); 1815 if (error != 0 || fault != 0) { 1816 *retu = false; 1817 return (EINVAL); 1818 } 1819 1820 /* Read pushed rflags value from top of stack. */ 1821 vm_copyin(copyinfo, &rflags, sizeof(uint64_t)); 1822 1823 /* Clear TF bit. */ 1824 rflags &= ~(PSL_T); 1825 1826 /* Write updated value back to memory. */ 1827 vm_copyout(&rflags, copyinfo, sizeof(uint64_t)); 1828 vm_copy_teardown(copyinfo, nitems(copyinfo)); 1829 1830 return (0); 1831 } 1832 1833 int 1834 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1835 { 1836 int i; 1837 1838 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1839 return (EINVAL); 1840 1841 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1842 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1843 vm->suspend, how); 1844 return (EALREADY); 1845 } 1846 1847 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1848 1849 /* 1850 * Notify all active vcpus that they are now suspended. 1851 */ 1852 for (i = 0; i < vm->maxcpus; i++) { 1853 if (CPU_ISSET(i, &vm->active_cpus)) 1854 vcpu_notify_event(vm_vcpu(vm, i), false); 1855 } 1856 1857 return (0); 1858 } 1859 1860 void 1861 vm_exit_suspended(struct vcpu *vcpu, uint64_t rip) 1862 { 1863 struct vm *vm = vcpu->vm; 1864 struct vm_exit *vmexit; 1865 1866 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1867 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1868 1869 vmexit = vm_exitinfo(vcpu); 1870 vmexit->rip = rip; 1871 vmexit->inst_length = 0; 1872 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1873 vmexit->u.suspended.how = vm->suspend; 1874 } 1875 1876 void 1877 vm_exit_debug(struct vcpu *vcpu, uint64_t rip) 1878 { 1879 struct vm_exit *vmexit; 1880 1881 vmexit = vm_exitinfo(vcpu); 1882 vmexit->rip = rip; 1883 vmexit->inst_length = 0; 1884 vmexit->exitcode = VM_EXITCODE_DEBUG; 1885 } 1886 1887 void 1888 vm_exit_rendezvous(struct vcpu *vcpu, uint64_t rip) 1889 { 1890 struct vm_exit *vmexit; 1891 1892 vmexit = vm_exitinfo(vcpu); 1893 vmexit->rip = rip; 1894 vmexit->inst_length = 0; 1895 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1896 vmm_stat_incr(vcpu, VMEXIT_RENDEZVOUS, 1); 1897 } 1898 1899 void 1900 vm_exit_reqidle(struct vcpu *vcpu, uint64_t rip) 1901 { 1902 struct vm_exit *vmexit; 1903 1904 vmexit = vm_exitinfo(vcpu); 1905 vmexit->rip = rip; 1906 vmexit->inst_length = 0; 1907 vmexit->exitcode = VM_EXITCODE_REQIDLE; 1908 vmm_stat_incr(vcpu, VMEXIT_REQIDLE, 1); 1909 } 1910 1911 void 1912 vm_exit_astpending(struct vcpu *vcpu, uint64_t rip) 1913 { 1914 struct vm_exit *vmexit; 1915 1916 vmexit = vm_exitinfo(vcpu); 1917 vmexit->rip = rip; 1918 vmexit->inst_length = 0; 1919 vmexit->exitcode = VM_EXITCODE_BOGUS; 1920 vmm_stat_incr(vcpu, VMEXIT_ASTPENDING, 1); 1921 } 1922 1923 int 1924 vm_run(struct vcpu *vcpu) 1925 { 1926 struct vm *vm = vcpu->vm; 1927 struct vm_eventinfo evinfo; 1928 int error, vcpuid; 1929 struct pcb *pcb; 1930 uint64_t tscval; 1931 struct vm_exit *vme; 1932 bool retu, intr_disabled; 1933 pmap_t pmap; 1934 1935 vcpuid = vcpu->vcpuid; 1936 1937 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1938 return (EINVAL); 1939 1940 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1941 return (EINVAL); 1942 1943 pmap = vmspace_pmap(vm->vmspace); 1944 vme = &vcpu->exitinfo; 1945 evinfo.rptr = &vm->rendezvous_req_cpus; 1946 evinfo.sptr = &vm->suspend; 1947 evinfo.iptr = &vcpu->reqidle; 1948 restart: 1949 critical_enter(); 1950 1951 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1952 ("vm_run: absurd pm_active")); 1953 1954 tscval = rdtsc(); 1955 1956 pcb = PCPU_GET(curpcb); 1957 set_pcb_flags(pcb, PCB_FULL_IRET); 1958 1959 restore_guest_fpustate(vcpu); 1960 1961 vcpu_require_state(vcpu, VCPU_RUNNING); 1962 error = vmmops_run(vcpu->cookie, vcpu->nextrip, pmap, &evinfo); 1963 vcpu_require_state(vcpu, VCPU_FROZEN); 1964 1965 save_guest_fpustate(vcpu); 1966 1967 vmm_stat_incr(vcpu, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1968 1969 critical_exit(); 1970 1971 if (error == 0) { 1972 retu = false; 1973 vcpu->nextrip = vme->rip + vme->inst_length; 1974 switch (vme->exitcode) { 1975 case VM_EXITCODE_REQIDLE: 1976 error = vm_handle_reqidle(vcpu, &retu); 1977 break; 1978 case VM_EXITCODE_SUSPENDED: 1979 error = vm_handle_suspend(vcpu, &retu); 1980 break; 1981 case VM_EXITCODE_IOAPIC_EOI: 1982 vioapic_process_eoi(vm, vme->u.ioapic_eoi.vector); 1983 break; 1984 case VM_EXITCODE_RENDEZVOUS: 1985 error = vm_handle_rendezvous(vcpu); 1986 break; 1987 case VM_EXITCODE_HLT: 1988 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1989 error = vm_handle_hlt(vcpu, intr_disabled, &retu); 1990 break; 1991 case VM_EXITCODE_PAGING: 1992 error = vm_handle_paging(vcpu, &retu); 1993 break; 1994 case VM_EXITCODE_INST_EMUL: 1995 error = vm_handle_inst_emul(vcpu, &retu); 1996 break; 1997 case VM_EXITCODE_INOUT: 1998 case VM_EXITCODE_INOUT_STR: 1999 error = vm_handle_inout(vcpu, vme, &retu); 2000 break; 2001 case VM_EXITCODE_DB: 2002 error = vm_handle_db(vcpu, vme, &retu); 2003 break; 2004 case VM_EXITCODE_MONITOR: 2005 case VM_EXITCODE_MWAIT: 2006 case VM_EXITCODE_VMINSN: 2007 vm_inject_ud(vcpu); 2008 break; 2009 default: 2010 retu = true; /* handled in userland */ 2011 break; 2012 } 2013 } 2014 2015 /* 2016 * VM_EXITCODE_INST_EMUL could access the apic which could transform the 2017 * exit code into VM_EXITCODE_IPI. 2018 */ 2019 if (error == 0 && vme->exitcode == VM_EXITCODE_IPI) 2020 error = vm_handle_ipi(vcpu, vme, &retu); 2021 2022 if (error == 0 && retu == false) 2023 goto restart; 2024 2025 vmm_stat_incr(vcpu, VMEXIT_USERSPACE, 1); 2026 VMM_CTR2(vcpu, "retu %d/%d", error, vme->exitcode); 2027 2028 return (error); 2029 } 2030 2031 int 2032 vm_restart_instruction(struct vcpu *vcpu) 2033 { 2034 enum vcpu_state state; 2035 uint64_t rip; 2036 int error __diagused; 2037 2038 state = vcpu_get_state(vcpu, NULL); 2039 if (state == VCPU_RUNNING) { 2040 /* 2041 * When a vcpu is "running" the next instruction is determined 2042 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'. 2043 * Thus setting 'inst_length' to zero will cause the current 2044 * instruction to be restarted. 2045 */ 2046 vcpu->exitinfo.inst_length = 0; 2047 VMM_CTR1(vcpu, "restarting instruction at %#lx by " 2048 "setting inst_length to zero", vcpu->exitinfo.rip); 2049 } else if (state == VCPU_FROZEN) { 2050 /* 2051 * When a vcpu is "frozen" it is outside the critical section 2052 * around vmmops_run() and 'nextrip' points to the next 2053 * instruction. Thus instruction restart is achieved by setting 2054 * 'nextrip' to the vcpu's %rip. 2055 */ 2056 error = vm_get_register(vcpu, VM_REG_GUEST_RIP, &rip); 2057 KASSERT(!error, ("%s: error %d getting rip", __func__, error)); 2058 VMM_CTR2(vcpu, "restarting instruction by updating " 2059 "nextrip from %#lx to %#lx", vcpu->nextrip, rip); 2060 vcpu->nextrip = rip; 2061 } else { 2062 panic("%s: invalid state %d", __func__, state); 2063 } 2064 return (0); 2065 } 2066 2067 int 2068 vm_exit_intinfo(struct vcpu *vcpu, uint64_t info) 2069 { 2070 int type, vector; 2071 2072 if (info & VM_INTINFO_VALID) { 2073 type = info & VM_INTINFO_TYPE; 2074 vector = info & 0xff; 2075 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 2076 return (EINVAL); 2077 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 2078 return (EINVAL); 2079 if (info & VM_INTINFO_RSVD) 2080 return (EINVAL); 2081 } else { 2082 info = 0; 2083 } 2084 VMM_CTR2(vcpu, "%s: info1(%#lx)", __func__, info); 2085 vcpu->exitintinfo = info; 2086 return (0); 2087 } 2088 2089 enum exc_class { 2090 EXC_BENIGN, 2091 EXC_CONTRIBUTORY, 2092 EXC_PAGEFAULT 2093 }; 2094 2095 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 2096 2097 static enum exc_class 2098 exception_class(uint64_t info) 2099 { 2100 int type, vector; 2101 2102 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 2103 type = info & VM_INTINFO_TYPE; 2104 vector = info & 0xff; 2105 2106 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 2107 switch (type) { 2108 case VM_INTINFO_HWINTR: 2109 case VM_INTINFO_SWINTR: 2110 case VM_INTINFO_NMI: 2111 return (EXC_BENIGN); 2112 default: 2113 /* 2114 * Hardware exception. 2115 * 2116 * SVM and VT-x use identical type values to represent NMI, 2117 * hardware interrupt and software interrupt. 2118 * 2119 * SVM uses type '3' for all exceptions. VT-x uses type '3' 2120 * for exceptions except #BP and #OF. #BP and #OF use a type 2121 * value of '5' or '6'. Therefore we don't check for explicit 2122 * values of 'type' to classify 'intinfo' into a hardware 2123 * exception. 2124 */ 2125 break; 2126 } 2127 2128 switch (vector) { 2129 case IDT_PF: 2130 case IDT_VE: 2131 return (EXC_PAGEFAULT); 2132 case IDT_DE: 2133 case IDT_TS: 2134 case IDT_NP: 2135 case IDT_SS: 2136 case IDT_GP: 2137 return (EXC_CONTRIBUTORY); 2138 default: 2139 return (EXC_BENIGN); 2140 } 2141 } 2142 2143 static int 2144 nested_fault(struct vcpu *vcpu, uint64_t info1, uint64_t info2, 2145 uint64_t *retinfo) 2146 { 2147 enum exc_class exc1, exc2; 2148 int type1, vector1; 2149 2150 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 2151 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 2152 2153 /* 2154 * If an exception occurs while attempting to call the double-fault 2155 * handler the processor enters shutdown mode (aka triple fault). 2156 */ 2157 type1 = info1 & VM_INTINFO_TYPE; 2158 vector1 = info1 & 0xff; 2159 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 2160 VMM_CTR2(vcpu, "triple fault: info1(%#lx), info2(%#lx)", 2161 info1, info2); 2162 vm_suspend(vcpu->vm, VM_SUSPEND_TRIPLEFAULT); 2163 *retinfo = 0; 2164 return (0); 2165 } 2166 2167 /* 2168 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 2169 */ 2170 exc1 = exception_class(info1); 2171 exc2 = exception_class(info2); 2172 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 2173 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 2174 /* Convert nested fault into a double fault. */ 2175 *retinfo = IDT_DF; 2176 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 2177 *retinfo |= VM_INTINFO_DEL_ERRCODE; 2178 } else { 2179 /* Handle exceptions serially */ 2180 *retinfo = info2; 2181 } 2182 return (1); 2183 } 2184 2185 static uint64_t 2186 vcpu_exception_intinfo(struct vcpu *vcpu) 2187 { 2188 uint64_t info = 0; 2189 2190 if (vcpu->exception_pending) { 2191 info = vcpu->exc_vector & 0xff; 2192 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 2193 if (vcpu->exc_errcode_valid) { 2194 info |= VM_INTINFO_DEL_ERRCODE; 2195 info |= (uint64_t)vcpu->exc_errcode << 32; 2196 } 2197 } 2198 return (info); 2199 } 2200 2201 int 2202 vm_entry_intinfo(struct vcpu *vcpu, uint64_t *retinfo) 2203 { 2204 uint64_t info1, info2; 2205 int valid; 2206 2207 info1 = vcpu->exitintinfo; 2208 vcpu->exitintinfo = 0; 2209 2210 info2 = 0; 2211 if (vcpu->exception_pending) { 2212 info2 = vcpu_exception_intinfo(vcpu); 2213 vcpu->exception_pending = 0; 2214 VMM_CTR2(vcpu, "Exception %d delivered: %#lx", 2215 vcpu->exc_vector, info2); 2216 } 2217 2218 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 2219 valid = nested_fault(vcpu, info1, info2, retinfo); 2220 } else if (info1 & VM_INTINFO_VALID) { 2221 *retinfo = info1; 2222 valid = 1; 2223 } else if (info2 & VM_INTINFO_VALID) { 2224 *retinfo = info2; 2225 valid = 1; 2226 } else { 2227 valid = 0; 2228 } 2229 2230 if (valid) { 2231 VMM_CTR4(vcpu, "%s: info1(%#lx), info2(%#lx), " 2232 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 2233 } 2234 2235 return (valid); 2236 } 2237 2238 int 2239 vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2) 2240 { 2241 *info1 = vcpu->exitintinfo; 2242 *info2 = vcpu_exception_intinfo(vcpu); 2243 return (0); 2244 } 2245 2246 int 2247 vm_inject_exception(struct vcpu *vcpu, int vector, int errcode_valid, 2248 uint32_t errcode, int restart_instruction) 2249 { 2250 uint64_t regval; 2251 int error __diagused; 2252 2253 if (vector < 0 || vector >= 32) 2254 return (EINVAL); 2255 2256 /* 2257 * A double fault exception should never be injected directly into 2258 * the guest. It is a derived exception that results from specific 2259 * combinations of nested faults. 2260 */ 2261 if (vector == IDT_DF) 2262 return (EINVAL); 2263 2264 if (vcpu->exception_pending) { 2265 VMM_CTR2(vcpu, "Unable to inject exception %d due to " 2266 "pending exception %d", vector, vcpu->exc_vector); 2267 return (EBUSY); 2268 } 2269 2270 if (errcode_valid) { 2271 /* 2272 * Exceptions don't deliver an error code in real mode. 2273 */ 2274 error = vm_get_register(vcpu, VM_REG_GUEST_CR0, ®val); 2275 KASSERT(!error, ("%s: error %d getting CR0", __func__, error)); 2276 if (!(regval & CR0_PE)) 2277 errcode_valid = 0; 2278 } 2279 2280 /* 2281 * From section 26.6.1 "Interruptibility State" in Intel SDM: 2282 * 2283 * Event blocking by "STI" or "MOV SS" is cleared after guest executes 2284 * one instruction or incurs an exception. 2285 */ 2286 error = vm_set_register(vcpu, VM_REG_GUEST_INTR_SHADOW, 0); 2287 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", 2288 __func__, error)); 2289 2290 if (restart_instruction) 2291 vm_restart_instruction(vcpu); 2292 2293 vcpu->exception_pending = 1; 2294 vcpu->exc_vector = vector; 2295 vcpu->exc_errcode = errcode; 2296 vcpu->exc_errcode_valid = errcode_valid; 2297 VMM_CTR1(vcpu, "Exception %d pending", vector); 2298 return (0); 2299 } 2300 2301 void 2302 vm_inject_fault(struct vcpu *vcpu, int vector, int errcode_valid, int errcode) 2303 { 2304 int error __diagused, restart_instruction; 2305 2306 restart_instruction = 1; 2307 2308 error = vm_inject_exception(vcpu, vector, errcode_valid, 2309 errcode, restart_instruction); 2310 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 2311 } 2312 2313 void 2314 vm_inject_pf(struct vcpu *vcpu, int error_code, uint64_t cr2) 2315 { 2316 int error __diagused; 2317 2318 VMM_CTR2(vcpu, "Injecting page fault: error_code %#x, cr2 %#lx", 2319 error_code, cr2); 2320 2321 error = vm_set_register(vcpu, VM_REG_GUEST_CR2, cr2); 2322 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 2323 2324 vm_inject_fault(vcpu, IDT_PF, 1, error_code); 2325 } 2326 2327 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 2328 2329 int 2330 vm_inject_nmi(struct vcpu *vcpu) 2331 { 2332 2333 vcpu->nmi_pending = 1; 2334 vcpu_notify_event(vcpu, false); 2335 return (0); 2336 } 2337 2338 int 2339 vm_nmi_pending(struct vcpu *vcpu) 2340 { 2341 return (vcpu->nmi_pending); 2342 } 2343 2344 void 2345 vm_nmi_clear(struct vcpu *vcpu) 2346 { 2347 if (vcpu->nmi_pending == 0) 2348 panic("vm_nmi_clear: inconsistent nmi_pending state"); 2349 2350 vcpu->nmi_pending = 0; 2351 vmm_stat_incr(vcpu, VCPU_NMI_COUNT, 1); 2352 } 2353 2354 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 2355 2356 int 2357 vm_inject_extint(struct vcpu *vcpu) 2358 { 2359 2360 vcpu->extint_pending = 1; 2361 vcpu_notify_event(vcpu, false); 2362 return (0); 2363 } 2364 2365 int 2366 vm_extint_pending(struct vcpu *vcpu) 2367 { 2368 return (vcpu->extint_pending); 2369 } 2370 2371 void 2372 vm_extint_clear(struct vcpu *vcpu) 2373 { 2374 if (vcpu->extint_pending == 0) 2375 panic("vm_extint_clear: inconsistent extint_pending state"); 2376 2377 vcpu->extint_pending = 0; 2378 vmm_stat_incr(vcpu, VCPU_EXTINT_COUNT, 1); 2379 } 2380 2381 int 2382 vm_get_capability(struct vcpu *vcpu, int type, int *retval) 2383 { 2384 if (type < 0 || type >= VM_CAP_MAX) 2385 return (EINVAL); 2386 2387 return (vmmops_getcap(vcpu->cookie, type, retval)); 2388 } 2389 2390 int 2391 vm_set_capability(struct vcpu *vcpu, int type, int val) 2392 { 2393 if (type < 0 || type >= VM_CAP_MAX) 2394 return (EINVAL); 2395 2396 return (vmmops_setcap(vcpu->cookie, type, val)); 2397 } 2398 2399 struct vm * 2400 vcpu_vm(struct vcpu *vcpu) 2401 { 2402 return (vcpu->vm); 2403 } 2404 2405 int 2406 vcpu_vcpuid(struct vcpu *vcpu) 2407 { 2408 return (vcpu->vcpuid); 2409 } 2410 2411 struct vcpu * 2412 vm_vcpu(struct vm *vm, int vcpuid) 2413 { 2414 return (vm->vcpu[vcpuid]); 2415 } 2416 2417 struct vlapic * 2418 vm_lapic(struct vcpu *vcpu) 2419 { 2420 return (vcpu->vlapic); 2421 } 2422 2423 struct vioapic * 2424 vm_ioapic(struct vm *vm) 2425 { 2426 2427 return (vm->vioapic); 2428 } 2429 2430 struct vhpet * 2431 vm_hpet(struct vm *vm) 2432 { 2433 2434 return (vm->vhpet); 2435 } 2436 2437 bool 2438 vmm_is_pptdev(int bus, int slot, int func) 2439 { 2440 int b, f, i, n, s; 2441 char *val, *cp, *cp2; 2442 bool found; 2443 2444 /* 2445 * XXX 2446 * The length of an environment variable is limited to 128 bytes which 2447 * puts an upper limit on the number of passthru devices that may be 2448 * specified using a single environment variable. 2449 * 2450 * Work around this by scanning multiple environment variable 2451 * names instead of a single one - yuck! 2452 */ 2453 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 2454 2455 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 2456 found = false; 2457 for (i = 0; names[i] != NULL && !found; i++) { 2458 cp = val = kern_getenv(names[i]); 2459 while (cp != NULL && *cp != '\0') { 2460 if ((cp2 = strchr(cp, ' ')) != NULL) 2461 *cp2 = '\0'; 2462 2463 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 2464 if (n == 3 && bus == b && slot == s && func == f) { 2465 found = true; 2466 break; 2467 } 2468 2469 if (cp2 != NULL) 2470 *cp2++ = ' '; 2471 2472 cp = cp2; 2473 } 2474 freeenv(val); 2475 } 2476 return (found); 2477 } 2478 2479 void * 2480 vm_iommu_domain(struct vm *vm) 2481 { 2482 2483 return (vm->iommu); 2484 } 2485 2486 int 2487 vcpu_set_state(struct vcpu *vcpu, enum vcpu_state newstate, bool from_idle) 2488 { 2489 int error; 2490 2491 vcpu_lock(vcpu); 2492 error = vcpu_set_state_locked(vcpu, newstate, from_idle); 2493 vcpu_unlock(vcpu); 2494 2495 return (error); 2496 } 2497 2498 enum vcpu_state 2499 vcpu_get_state(struct vcpu *vcpu, int *hostcpu) 2500 { 2501 enum vcpu_state state; 2502 2503 vcpu_lock(vcpu); 2504 state = vcpu->state; 2505 if (hostcpu != NULL) 2506 *hostcpu = vcpu->hostcpu; 2507 vcpu_unlock(vcpu); 2508 2509 return (state); 2510 } 2511 2512 int 2513 vm_activate_cpu(struct vcpu *vcpu) 2514 { 2515 struct vm *vm = vcpu->vm; 2516 2517 if (CPU_ISSET(vcpu->vcpuid, &vm->active_cpus)) 2518 return (EBUSY); 2519 2520 VMM_CTR0(vcpu, "activated"); 2521 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->active_cpus); 2522 return (0); 2523 } 2524 2525 int 2526 vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu) 2527 { 2528 if (vcpu == NULL) { 2529 vm->debug_cpus = vm->active_cpus; 2530 for (int i = 0; i < vm->maxcpus; i++) { 2531 if (CPU_ISSET(i, &vm->active_cpus)) 2532 vcpu_notify_event(vm_vcpu(vm, i), false); 2533 } 2534 } else { 2535 if (!CPU_ISSET(vcpu->vcpuid, &vm->active_cpus)) 2536 return (EINVAL); 2537 2538 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->debug_cpus); 2539 vcpu_notify_event(vcpu, false); 2540 } 2541 return (0); 2542 } 2543 2544 int 2545 vm_resume_cpu(struct vm *vm, struct vcpu *vcpu) 2546 { 2547 2548 if (vcpu == NULL) { 2549 CPU_ZERO(&vm->debug_cpus); 2550 } else { 2551 if (!CPU_ISSET(vcpu->vcpuid, &vm->debug_cpus)) 2552 return (EINVAL); 2553 2554 CPU_CLR_ATOMIC(vcpu->vcpuid, &vm->debug_cpus); 2555 } 2556 return (0); 2557 } 2558 2559 int 2560 vcpu_debugged(struct vcpu *vcpu) 2561 { 2562 2563 return (CPU_ISSET(vcpu->vcpuid, &vcpu->vm->debug_cpus)); 2564 } 2565 2566 cpuset_t 2567 vm_active_cpus(struct vm *vm) 2568 { 2569 2570 return (vm->active_cpus); 2571 } 2572 2573 cpuset_t 2574 vm_debug_cpus(struct vm *vm) 2575 { 2576 2577 return (vm->debug_cpus); 2578 } 2579 2580 cpuset_t 2581 vm_suspended_cpus(struct vm *vm) 2582 { 2583 2584 return (vm->suspended_cpus); 2585 } 2586 2587 /* 2588 * Returns the subset of vCPUs in tostart that are awaiting startup. 2589 * These vCPUs are also marked as no longer awaiting startup. 2590 */ 2591 cpuset_t 2592 vm_start_cpus(struct vm *vm, const cpuset_t *tostart) 2593 { 2594 cpuset_t set; 2595 2596 mtx_lock(&vm->rendezvous_mtx); 2597 CPU_AND(&set, &vm->startup_cpus, tostart); 2598 CPU_ANDNOT(&vm->startup_cpus, &vm->startup_cpus, &set); 2599 mtx_unlock(&vm->rendezvous_mtx); 2600 return (set); 2601 } 2602 2603 void 2604 vm_await_start(struct vm *vm, const cpuset_t *waiting) 2605 { 2606 mtx_lock(&vm->rendezvous_mtx); 2607 CPU_OR(&vm->startup_cpus, &vm->startup_cpus, waiting); 2608 mtx_unlock(&vm->rendezvous_mtx); 2609 } 2610 2611 void * 2612 vcpu_stats(struct vcpu *vcpu) 2613 { 2614 2615 return (vcpu->stats); 2616 } 2617 2618 int 2619 vm_get_x2apic_state(struct vcpu *vcpu, enum x2apic_state *state) 2620 { 2621 *state = vcpu->x2apic_state; 2622 2623 return (0); 2624 } 2625 2626 int 2627 vm_set_x2apic_state(struct vcpu *vcpu, enum x2apic_state state) 2628 { 2629 if (state >= X2APIC_STATE_LAST) 2630 return (EINVAL); 2631 2632 vcpu->x2apic_state = state; 2633 2634 vlapic_set_x2apic_state(vcpu, state); 2635 2636 return (0); 2637 } 2638 2639 /* 2640 * This function is called to ensure that a vcpu "sees" a pending event 2641 * as soon as possible: 2642 * - If the vcpu thread is sleeping then it is woken up. 2643 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2644 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2645 */ 2646 static void 2647 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr) 2648 { 2649 int hostcpu; 2650 2651 hostcpu = vcpu->hostcpu; 2652 if (vcpu->state == VCPU_RUNNING) { 2653 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2654 if (hostcpu != curcpu) { 2655 if (lapic_intr) { 2656 vlapic_post_intr(vcpu->vlapic, hostcpu, 2657 vmm_ipinum); 2658 } else { 2659 ipi_cpu(hostcpu, vmm_ipinum); 2660 } 2661 } else { 2662 /* 2663 * If the 'vcpu' is running on 'curcpu' then it must 2664 * be sending a notification to itself (e.g. SELF_IPI). 2665 * The pending event will be picked up when the vcpu 2666 * transitions back to guest context. 2667 */ 2668 } 2669 } else { 2670 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2671 "with hostcpu %d", vcpu->state, hostcpu)); 2672 if (vcpu->state == VCPU_SLEEPING) 2673 wakeup_one(vcpu); 2674 } 2675 } 2676 2677 void 2678 vcpu_notify_event(struct vcpu *vcpu, bool lapic_intr) 2679 { 2680 vcpu_lock(vcpu); 2681 vcpu_notify_event_locked(vcpu, lapic_intr); 2682 vcpu_unlock(vcpu); 2683 } 2684 2685 struct vmspace * 2686 vm_get_vmspace(struct vm *vm) 2687 { 2688 2689 return (vm->vmspace); 2690 } 2691 2692 int 2693 vm_apicid2vcpuid(struct vm *vm, int apicid) 2694 { 2695 /* 2696 * XXX apic id is assumed to be numerically identical to vcpu id 2697 */ 2698 return (apicid); 2699 } 2700 2701 int 2702 vm_smp_rendezvous(struct vcpu *vcpu, cpuset_t dest, 2703 vm_rendezvous_func_t func, void *arg) 2704 { 2705 struct vm *vm = vcpu->vm; 2706 int error, i; 2707 2708 /* 2709 * Enforce that this function is called without any locks 2710 */ 2711 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2712 2713 restart: 2714 mtx_lock(&vm->rendezvous_mtx); 2715 if (vm->rendezvous_func != NULL) { 2716 /* 2717 * If a rendezvous is already in progress then we need to 2718 * call the rendezvous handler in case this 'vcpu' is one 2719 * of the targets of the rendezvous. 2720 */ 2721 VMM_CTR0(vcpu, "Rendezvous already in progress"); 2722 mtx_unlock(&vm->rendezvous_mtx); 2723 error = vm_handle_rendezvous(vcpu); 2724 if (error != 0) 2725 return (error); 2726 goto restart; 2727 } 2728 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2729 "rendezvous is still in progress")); 2730 2731 VMM_CTR0(vcpu, "Initiating rendezvous"); 2732 vm->rendezvous_req_cpus = dest; 2733 CPU_ZERO(&vm->rendezvous_done_cpus); 2734 vm->rendezvous_arg = arg; 2735 vm->rendezvous_func = func; 2736 mtx_unlock(&vm->rendezvous_mtx); 2737 2738 /* 2739 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2740 * vcpus so they handle the rendezvous as soon as possible. 2741 */ 2742 for (i = 0; i < vm->maxcpus; i++) { 2743 if (CPU_ISSET(i, &dest)) 2744 vcpu_notify_event(vm_vcpu(vm, i), false); 2745 } 2746 2747 return (vm_handle_rendezvous(vcpu)); 2748 } 2749 2750 struct vatpic * 2751 vm_atpic(struct vm *vm) 2752 { 2753 return (vm->vatpic); 2754 } 2755 2756 struct vatpit * 2757 vm_atpit(struct vm *vm) 2758 { 2759 return (vm->vatpit); 2760 } 2761 2762 struct vpmtmr * 2763 vm_pmtmr(struct vm *vm) 2764 { 2765 2766 return (vm->vpmtmr); 2767 } 2768 2769 struct vrtc * 2770 vm_rtc(struct vm *vm) 2771 { 2772 2773 return (vm->vrtc); 2774 } 2775 2776 enum vm_reg_name 2777 vm_segment_name(int seg) 2778 { 2779 static enum vm_reg_name seg_names[] = { 2780 VM_REG_GUEST_ES, 2781 VM_REG_GUEST_CS, 2782 VM_REG_GUEST_SS, 2783 VM_REG_GUEST_DS, 2784 VM_REG_GUEST_FS, 2785 VM_REG_GUEST_GS 2786 }; 2787 2788 KASSERT(seg >= 0 && seg < nitems(seg_names), 2789 ("%s: invalid segment encoding %d", __func__, seg)); 2790 return (seg_names[seg]); 2791 } 2792 2793 void 2794 vm_copy_teardown(struct vm_copyinfo *copyinfo, int num_copyinfo) 2795 { 2796 int idx; 2797 2798 for (idx = 0; idx < num_copyinfo; idx++) { 2799 if (copyinfo[idx].cookie != NULL) 2800 vm_gpa_release(copyinfo[idx].cookie); 2801 } 2802 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2803 } 2804 2805 int 2806 vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging, 2807 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2808 int num_copyinfo, int *fault) 2809 { 2810 int error, idx, nused; 2811 size_t n, off, remaining; 2812 void *hva, *cookie; 2813 uint64_t gpa; 2814 2815 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2816 2817 nused = 0; 2818 remaining = len; 2819 while (remaining > 0) { 2820 if (nused >= num_copyinfo) 2821 return (EFAULT); 2822 error = vm_gla2gpa(vcpu, paging, gla, prot, &gpa, fault); 2823 if (error || *fault) 2824 return (error); 2825 off = gpa & PAGE_MASK; 2826 n = min(remaining, PAGE_SIZE - off); 2827 copyinfo[nused].gpa = gpa; 2828 copyinfo[nused].len = n; 2829 remaining -= n; 2830 gla += n; 2831 nused++; 2832 } 2833 2834 for (idx = 0; idx < nused; idx++) { 2835 hva = vm_gpa_hold(vcpu, copyinfo[idx].gpa, 2836 copyinfo[idx].len, prot, &cookie); 2837 if (hva == NULL) 2838 break; 2839 copyinfo[idx].hva = hva; 2840 copyinfo[idx].cookie = cookie; 2841 } 2842 2843 if (idx != nused) { 2844 vm_copy_teardown(copyinfo, num_copyinfo); 2845 return (EFAULT); 2846 } else { 2847 *fault = 0; 2848 return (0); 2849 } 2850 } 2851 2852 void 2853 vm_copyin(struct vm_copyinfo *copyinfo, void *kaddr, size_t len) 2854 { 2855 char *dst; 2856 int idx; 2857 2858 dst = kaddr; 2859 idx = 0; 2860 while (len > 0) { 2861 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2862 len -= copyinfo[idx].len; 2863 dst += copyinfo[idx].len; 2864 idx++; 2865 } 2866 } 2867 2868 void 2869 vm_copyout(const void *kaddr, struct vm_copyinfo *copyinfo, size_t len) 2870 { 2871 const char *src; 2872 int idx; 2873 2874 src = kaddr; 2875 idx = 0; 2876 while (len > 0) { 2877 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2878 len -= copyinfo[idx].len; 2879 src += copyinfo[idx].len; 2880 idx++; 2881 } 2882 } 2883 2884 /* 2885 * Return the amount of in-use and wired memory for the VM. Since 2886 * these are global stats, only return the values with for vCPU 0 2887 */ 2888 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2889 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2890 2891 static void 2892 vm_get_rescnt(struct vcpu *vcpu, struct vmm_stat_type *stat) 2893 { 2894 2895 if (vcpu->vcpuid == 0) { 2896 vmm_stat_set(vcpu, VMM_MEM_RESIDENT, PAGE_SIZE * 2897 vmspace_resident_count(vcpu->vm->vmspace)); 2898 } 2899 } 2900 2901 static void 2902 vm_get_wiredcnt(struct vcpu *vcpu, struct vmm_stat_type *stat) 2903 { 2904 2905 if (vcpu->vcpuid == 0) { 2906 vmm_stat_set(vcpu, VMM_MEM_WIRED, PAGE_SIZE * 2907 pmap_wired_count(vmspace_pmap(vcpu->vm->vmspace))); 2908 } 2909 } 2910 2911 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2912 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2913 2914 #ifdef BHYVE_SNAPSHOT 2915 static int 2916 vm_snapshot_vcpus(struct vm *vm, struct vm_snapshot_meta *meta) 2917 { 2918 uint64_t tsc, now; 2919 int ret; 2920 struct vcpu *vcpu; 2921 uint16_t i, maxcpus; 2922 2923 now = rdtsc(); 2924 maxcpus = vm_get_maxcpus(vm); 2925 for (i = 0; i < maxcpus; i++) { 2926 vcpu = vm->vcpu[i]; 2927 if (vcpu == NULL) 2928 continue; 2929 2930 SNAPSHOT_VAR_OR_LEAVE(vcpu->x2apic_state, meta, ret, done); 2931 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitintinfo, meta, ret, done); 2932 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_vector, meta, ret, done); 2933 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode_valid, meta, ret, done); 2934 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode, meta, ret, done); 2935 SNAPSHOT_VAR_OR_LEAVE(vcpu->guest_xcr0, meta, ret, done); 2936 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitinfo, meta, ret, done); 2937 SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, ret, done); 2938 2939 /* 2940 * Save the absolute TSC value by adding now to tsc_offset. 2941 * 2942 * It will be turned turned back into an actual offset when the 2943 * TSC restore function is called 2944 */ 2945 tsc = now + vcpu->tsc_offset; 2946 SNAPSHOT_VAR_OR_LEAVE(tsc, meta, ret, done); 2947 if (meta->op == VM_SNAPSHOT_RESTORE) 2948 vcpu->tsc_offset = tsc; 2949 } 2950 2951 done: 2952 return (ret); 2953 } 2954 2955 static int 2956 vm_snapshot_vm(struct vm *vm, struct vm_snapshot_meta *meta) 2957 { 2958 int ret; 2959 2960 ret = vm_snapshot_vcpus(vm, meta); 2961 if (ret != 0) 2962 goto done; 2963 2964 SNAPSHOT_VAR_OR_LEAVE(vm->startup_cpus, meta, ret, done); 2965 done: 2966 return (ret); 2967 } 2968 2969 static int 2970 vm_snapshot_vcpu(struct vm *vm, struct vm_snapshot_meta *meta) 2971 { 2972 int error; 2973 struct vcpu *vcpu; 2974 uint16_t i, maxcpus; 2975 2976 error = 0; 2977 2978 maxcpus = vm_get_maxcpus(vm); 2979 for (i = 0; i < maxcpus; i++) { 2980 vcpu = vm->vcpu[i]; 2981 if (vcpu == NULL) 2982 continue; 2983 2984 error = vmmops_vcpu_snapshot(vcpu->cookie, meta); 2985 if (error != 0) { 2986 printf("%s: failed to snapshot vmcs/vmcb data for " 2987 "vCPU: %d; error: %d\n", __func__, i, error); 2988 goto done; 2989 } 2990 } 2991 2992 done: 2993 return (error); 2994 } 2995 2996 /* 2997 * Save kernel-side structures to user-space for snapshotting. 2998 */ 2999 int 3000 vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta) 3001 { 3002 int ret = 0; 3003 3004 switch (meta->dev_req) { 3005 case STRUCT_VMCX: 3006 ret = vm_snapshot_vcpu(vm, meta); 3007 break; 3008 case STRUCT_VM: 3009 ret = vm_snapshot_vm(vm, meta); 3010 break; 3011 case STRUCT_VIOAPIC: 3012 ret = vioapic_snapshot(vm_ioapic(vm), meta); 3013 break; 3014 case STRUCT_VLAPIC: 3015 ret = vlapic_snapshot(vm, meta); 3016 break; 3017 case STRUCT_VHPET: 3018 ret = vhpet_snapshot(vm_hpet(vm), meta); 3019 break; 3020 case STRUCT_VATPIC: 3021 ret = vatpic_snapshot(vm_atpic(vm), meta); 3022 break; 3023 case STRUCT_VATPIT: 3024 ret = vatpit_snapshot(vm_atpit(vm), meta); 3025 break; 3026 case STRUCT_VPMTMR: 3027 ret = vpmtmr_snapshot(vm_pmtmr(vm), meta); 3028 break; 3029 case STRUCT_VRTC: 3030 ret = vrtc_snapshot(vm_rtc(vm), meta); 3031 break; 3032 default: 3033 printf("%s: failed to find the requested type %#x\n", 3034 __func__, meta->dev_req); 3035 ret = (EINVAL); 3036 } 3037 return (ret); 3038 } 3039 3040 void 3041 vm_set_tsc_offset(struct vcpu *vcpu, uint64_t offset) 3042 { 3043 vcpu->tsc_offset = offset; 3044 } 3045 3046 int 3047 vm_restore_time(struct vm *vm) 3048 { 3049 int error; 3050 uint64_t now; 3051 struct vcpu *vcpu; 3052 uint16_t i, maxcpus; 3053 3054 now = rdtsc(); 3055 3056 error = vhpet_restore_time(vm_hpet(vm)); 3057 if (error) 3058 return (error); 3059 3060 maxcpus = vm_get_maxcpus(vm); 3061 for (i = 0; i < maxcpus; i++) { 3062 vcpu = vm->vcpu[i]; 3063 if (vcpu == NULL) 3064 continue; 3065 3066 error = vmmops_restore_tsc(vcpu->cookie, 3067 vcpu->tsc_offset - now); 3068 if (error) 3069 return (error); 3070 } 3071 3072 return (0); 3073 } 3074 #endif 3075