1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include "opt_bhyve_snapshot.h" 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/kernel.h> 39 #include <sys/module.h> 40 #include <sys/sysctl.h> 41 #include <sys/malloc.h> 42 #include <sys/pcpu.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/proc.h> 46 #include <sys/rwlock.h> 47 #include <sys/sched.h> 48 #include <sys/smp.h> 49 #include <sys/vnode.h> 50 51 #include <vm/vm.h> 52 #include <vm/vm_object.h> 53 #include <vm/vm_page.h> 54 #include <vm/pmap.h> 55 #include <vm/vm_map.h> 56 #include <vm/vm_extern.h> 57 #include <vm/vm_param.h> 58 #include <vm/vm_pager.h> 59 #include <vm/vm_kern.h> 60 #include <vm/vnode_pager.h> 61 #include <vm/swap_pager.h> 62 #include <vm/uma.h> 63 64 #include <machine/cpu.h> 65 #include <machine/pcb.h> 66 #include <machine/smp.h> 67 #include <machine/md_var.h> 68 #include <x86/psl.h> 69 #include <x86/apicreg.h> 70 71 #include <machine/vmm.h> 72 #include <machine/vmm_dev.h> 73 #include <machine/vmm_instruction_emul.h> 74 #include <machine/vmm_snapshot.h> 75 76 #include "vmm_ioport.h" 77 #include "vmm_ktr.h" 78 #include "vmm_host.h" 79 #include "vmm_mem.h" 80 #include "vmm_util.h" 81 #include "vatpic.h" 82 #include "vatpit.h" 83 #include "vhpet.h" 84 #include "vioapic.h" 85 #include "vlapic.h" 86 #include "vpmtmr.h" 87 #include "vrtc.h" 88 #include "vmm_stat.h" 89 #include "vmm_lapic.h" 90 91 #include "io/ppt.h" 92 #include "io/iommu.h" 93 94 struct vlapic; 95 96 /* 97 * Initialization: 98 * (a) allocated when vcpu is created 99 * (i) initialized when vcpu is created and when it is reinitialized 100 * (o) initialized the first time the vcpu is created 101 * (x) initialized before use 102 */ 103 struct vcpu { 104 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 105 enum vcpu_state state; /* (o) vcpu state */ 106 int hostcpu; /* (o) vcpu's host cpu */ 107 int reqidle; /* (i) request vcpu to idle */ 108 struct vlapic *vlapic; /* (i) APIC device model */ 109 enum x2apic_state x2apic_state; /* (i) APIC mode */ 110 uint64_t exitintinfo; /* (i) events pending at VM exit */ 111 int nmi_pending; /* (i) NMI pending */ 112 int extint_pending; /* (i) INTR pending */ 113 int exception_pending; /* (i) exception pending */ 114 int exc_vector; /* (x) exception collateral */ 115 int exc_errcode_valid; 116 uint32_t exc_errcode; 117 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 118 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 119 void *stats; /* (a,i) statistics */ 120 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 121 uint64_t nextrip; /* (x) next instruction to execute */ 122 uint64_t tsc_offset; /* (o) TSC offsetting */ 123 }; 124 125 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx)) 126 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 127 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 128 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 129 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 130 131 struct mem_seg { 132 size_t len; 133 bool sysmem; 134 struct vm_object *object; 135 }; 136 #define VM_MAX_MEMSEGS 3 137 138 struct mem_map { 139 vm_paddr_t gpa; 140 size_t len; 141 vm_ooffset_t segoff; 142 int segid; 143 int prot; 144 int flags; 145 }; 146 #define VM_MAX_MEMMAPS 8 147 148 /* 149 * Initialization: 150 * (o) initialized the first time the VM is created 151 * (i) initialized when VM is created and when it is reinitialized 152 * (x) initialized before use 153 */ 154 struct vm { 155 void *cookie; /* (i) cpu-specific data */ 156 void *iommu; /* (x) iommu-specific data */ 157 struct vhpet *vhpet; /* (i) virtual HPET */ 158 struct vioapic *vioapic; /* (i) virtual ioapic */ 159 struct vatpic *vatpic; /* (i) virtual atpic */ 160 struct vatpit *vatpit; /* (i) virtual atpit */ 161 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ 162 struct vrtc *vrtc; /* (o) virtual RTC */ 163 volatile cpuset_t active_cpus; /* (i) active vcpus */ 164 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */ 165 int suspend; /* (i) stop VM execution */ 166 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 167 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 168 cpuset_t rendezvous_req_cpus; /* (x) rendezvous requested */ 169 cpuset_t rendezvous_done_cpus; /* (x) rendezvous finished */ 170 void *rendezvous_arg; /* (x) rendezvous func/arg */ 171 vm_rendezvous_func_t rendezvous_func; 172 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 173 struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */ 174 struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */ 175 struct vmspace *vmspace; /* (o) guest's address space */ 176 char name[VM_MAX_NAMELEN]; /* (o) virtual machine name */ 177 struct vcpu vcpu[VM_MAXCPU]; /* (i) guest vcpus */ 178 /* The following describe the vm cpu topology */ 179 uint16_t sockets; /* (o) num of sockets */ 180 uint16_t cores; /* (o) num of cores/socket */ 181 uint16_t threads; /* (o) num of threads/core */ 182 uint16_t maxcpus; /* (o) max pluggable cpus */ 183 }; 184 185 static int vmm_initialized; 186 187 static struct vmm_ops *ops; 188 #define VMM_INIT(num) (ops != NULL ? (*ops->init)(num) : 0) 189 #define VMM_CLEANUP() (ops != NULL ? (*ops->cleanup)() : 0) 190 #define VMM_RESUME() (ops != NULL ? (*ops->resume)() : 0) 191 192 #define VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL) 193 #define VMRUN(vmi, vcpu, rip, pmap, evinfo) \ 194 (ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, evinfo) : ENXIO) 195 #define VMCLEANUP(vmi) (ops != NULL ? (*ops->vmcleanup)(vmi) : NULL) 196 #define VMSPACE_ALLOC(min, max) \ 197 (ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL) 198 #define VMSPACE_FREE(vmspace) \ 199 (ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO) 200 #define VMGETREG(vmi, vcpu, num, retval) \ 201 (ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO) 202 #define VMSETREG(vmi, vcpu, num, val) \ 203 (ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO) 204 #define VMGETDESC(vmi, vcpu, num, desc) \ 205 (ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO) 206 #define VMSETDESC(vmi, vcpu, num, desc) \ 207 (ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO) 208 #define VMGETCAP(vmi, vcpu, num, retval) \ 209 (ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO) 210 #define VMSETCAP(vmi, vcpu, num, val) \ 211 (ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO) 212 #define VLAPIC_INIT(vmi, vcpu) \ 213 (ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL) 214 #define VLAPIC_CLEANUP(vmi, vlapic) \ 215 (ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL) 216 #ifdef BHYVE_SNAPSHOT 217 #define VM_SNAPSHOT_VMI(vmi, meta) \ 218 (ops != NULL ? (*ops->vmsnapshot)(vmi, meta) : ENXIO) 219 #define VM_SNAPSHOT_VMCX(vmi, meta, vcpuid) \ 220 (ops != NULL ? (*ops->vmcx_snapshot)(vmi, meta, vcpuid) : ENXIO) 221 #define VM_RESTORE_TSC(vmi, vcpuid, offset) \ 222 (ops != NULL ? (*ops->vm_restore_tsc)(vmi, vcpuid, offset) : ENXIO) 223 #endif 224 225 #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS) 226 #define fpu_stop_emulating() clts() 227 228 SDT_PROVIDER_DEFINE(vmm); 229 230 static MALLOC_DEFINE(M_VM, "vm", "vm"); 231 232 /* statistics */ 233 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 234 235 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 236 NULL); 237 238 /* 239 * Halt the guest if all vcpus are executing a HLT instruction with 240 * interrupts disabled. 241 */ 242 static int halt_detection_enabled = 1; 243 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 244 &halt_detection_enabled, 0, 245 "Halt VM if all vcpus execute HLT with interrupts disabled"); 246 247 static int vmm_ipinum; 248 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 249 "IPI vector used for vcpu notifications"); 250 251 static int trace_guest_exceptions; 252 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN, 253 &trace_guest_exceptions, 0, 254 "Trap into hypervisor on all guest exceptions and reflect them back"); 255 256 static void vm_free_memmap(struct vm *vm, int ident); 257 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm); 258 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr); 259 260 #ifdef KTR 261 static const char * 262 vcpu_state2str(enum vcpu_state state) 263 { 264 265 switch (state) { 266 case VCPU_IDLE: 267 return ("idle"); 268 case VCPU_FROZEN: 269 return ("frozen"); 270 case VCPU_RUNNING: 271 return ("running"); 272 case VCPU_SLEEPING: 273 return ("sleeping"); 274 default: 275 return ("unknown"); 276 } 277 } 278 #endif 279 280 static void 281 vcpu_cleanup(struct vm *vm, int i, bool destroy) 282 { 283 struct vcpu *vcpu = &vm->vcpu[i]; 284 285 VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic); 286 if (destroy) { 287 vmm_stat_free(vcpu->stats); 288 fpu_save_area_free(vcpu->guestfpu); 289 } 290 } 291 292 static void 293 vcpu_init(struct vm *vm, int vcpu_id, bool create) 294 { 295 struct vcpu *vcpu; 296 297 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus, 298 ("vcpu_init: invalid vcpu %d", vcpu_id)); 299 300 vcpu = &vm->vcpu[vcpu_id]; 301 302 if (create) { 303 KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already " 304 "initialized", vcpu_id)); 305 vcpu_lock_init(vcpu); 306 vcpu->state = VCPU_IDLE; 307 vcpu->hostcpu = NOCPU; 308 vcpu->guestfpu = fpu_save_area_alloc(); 309 vcpu->stats = vmm_stat_alloc(); 310 vcpu->tsc_offset = 0; 311 } 312 313 vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id); 314 vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED); 315 vcpu->reqidle = 0; 316 vcpu->exitintinfo = 0; 317 vcpu->nmi_pending = 0; 318 vcpu->extint_pending = 0; 319 vcpu->exception_pending = 0; 320 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 321 fpu_save_area_reset(vcpu->guestfpu); 322 vmm_stat_init(vcpu->stats); 323 } 324 325 int 326 vcpu_trace_exceptions(struct vm *vm, int vcpuid) 327 { 328 329 return (trace_guest_exceptions); 330 } 331 332 struct vm_exit * 333 vm_exitinfo(struct vm *vm, int cpuid) 334 { 335 struct vcpu *vcpu; 336 337 if (cpuid < 0 || cpuid >= vm->maxcpus) 338 panic("vm_exitinfo: invalid cpuid %d", cpuid); 339 340 vcpu = &vm->vcpu[cpuid]; 341 342 return (&vcpu->exitinfo); 343 } 344 345 static void 346 vmm_resume(void) 347 { 348 VMM_RESUME(); 349 } 350 351 static int 352 vmm_init(void) 353 { 354 int error; 355 356 vmm_host_state_init(); 357 358 vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) : 359 &IDTVEC(justreturn)); 360 if (vmm_ipinum < 0) 361 vmm_ipinum = IPI_AST; 362 363 error = vmm_mem_init(); 364 if (error) 365 return (error); 366 367 if (vmm_is_intel()) 368 ops = &vmm_ops_intel; 369 else if (vmm_is_svm()) 370 ops = &vmm_ops_amd; 371 else 372 return (ENXIO); 373 374 vmm_resume_p = vmm_resume; 375 376 return (VMM_INIT(vmm_ipinum)); 377 } 378 379 static int 380 vmm_handler(module_t mod, int what, void *arg) 381 { 382 int error; 383 384 switch (what) { 385 case MOD_LOAD: 386 vmmdev_init(); 387 error = vmm_init(); 388 if (error == 0) 389 vmm_initialized = 1; 390 break; 391 case MOD_UNLOAD: 392 error = vmmdev_cleanup(); 393 if (error == 0) { 394 vmm_resume_p = NULL; 395 iommu_cleanup(); 396 if (vmm_ipinum != IPI_AST) 397 lapic_ipi_free(vmm_ipinum); 398 error = VMM_CLEANUP(); 399 /* 400 * Something bad happened - prevent new 401 * VMs from being created 402 */ 403 if (error) 404 vmm_initialized = 0; 405 } 406 break; 407 default: 408 error = 0; 409 break; 410 } 411 return (error); 412 } 413 414 static moduledata_t vmm_kmod = { 415 "vmm", 416 vmm_handler, 417 NULL 418 }; 419 420 /* 421 * vmm initialization has the following dependencies: 422 * 423 * - VT-x initialization requires smp_rendezvous() and therefore must happen 424 * after SMP is fully functional (after SI_SUB_SMP). 425 */ 426 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 427 MODULE_VERSION(vmm, 1); 428 429 static void 430 vm_init(struct vm *vm, bool create) 431 { 432 int i; 433 434 vm->cookie = VMINIT(vm, vmspace_pmap(vm->vmspace)); 435 vm->iommu = NULL; 436 vm->vioapic = vioapic_init(vm); 437 vm->vhpet = vhpet_init(vm); 438 vm->vatpic = vatpic_init(vm); 439 vm->vatpit = vatpit_init(vm); 440 vm->vpmtmr = vpmtmr_init(vm); 441 if (create) 442 vm->vrtc = vrtc_init(vm); 443 444 CPU_ZERO(&vm->active_cpus); 445 CPU_ZERO(&vm->debug_cpus); 446 447 vm->suspend = 0; 448 CPU_ZERO(&vm->suspended_cpus); 449 450 for (i = 0; i < vm->maxcpus; i++) 451 vcpu_init(vm, i, create); 452 } 453 454 /* 455 * The default CPU topology is a single thread per package. 456 */ 457 u_int cores_per_package = 1; 458 u_int threads_per_core = 1; 459 460 int 461 vm_create(const char *name, struct vm **retvm) 462 { 463 struct vm *vm; 464 struct vmspace *vmspace; 465 466 /* 467 * If vmm.ko could not be successfully initialized then don't attempt 468 * to create the virtual machine. 469 */ 470 if (!vmm_initialized) 471 return (ENXIO); 472 473 if (name == NULL || strlen(name) >= VM_MAX_NAMELEN) 474 return (EINVAL); 475 476 vmspace = VMSPACE_ALLOC(0, VM_MAXUSER_ADDRESS); 477 if (vmspace == NULL) 478 return (ENOMEM); 479 480 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 481 strcpy(vm->name, name); 482 vm->vmspace = vmspace; 483 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 484 485 vm->sockets = 1; 486 vm->cores = cores_per_package; /* XXX backwards compatibility */ 487 vm->threads = threads_per_core; /* XXX backwards compatibility */ 488 vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */ 489 490 vm_init(vm, true); 491 492 *retvm = vm; 493 return (0); 494 } 495 496 void 497 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, 498 uint16_t *threads, uint16_t *maxcpus) 499 { 500 *sockets = vm->sockets; 501 *cores = vm->cores; 502 *threads = vm->threads; 503 *maxcpus = vm->maxcpus; 504 } 505 506 uint16_t 507 vm_get_maxcpus(struct vm *vm) 508 { 509 return (vm->maxcpus); 510 } 511 512 int 513 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, 514 uint16_t threads, uint16_t maxcpus) 515 { 516 if (maxcpus != 0) 517 return (EINVAL); /* XXX remove when supported */ 518 if ((sockets * cores * threads) > vm->maxcpus) 519 return (EINVAL); 520 /* XXX need to check sockets * cores * threads == vCPU, how? */ 521 vm->sockets = sockets; 522 vm->cores = cores; 523 vm->threads = threads; 524 vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */ 525 return(0); 526 } 527 528 static void 529 vm_cleanup(struct vm *vm, bool destroy) 530 { 531 struct mem_map *mm; 532 int i; 533 534 ppt_unassign_all(vm); 535 536 if (vm->iommu != NULL) 537 iommu_destroy_domain(vm->iommu); 538 539 if (destroy) 540 vrtc_cleanup(vm->vrtc); 541 else 542 vrtc_reset(vm->vrtc); 543 vpmtmr_cleanup(vm->vpmtmr); 544 vatpit_cleanup(vm->vatpit); 545 vhpet_cleanup(vm->vhpet); 546 vatpic_cleanup(vm->vatpic); 547 vioapic_cleanup(vm->vioapic); 548 549 for (i = 0; i < vm->maxcpus; i++) 550 vcpu_cleanup(vm, i, destroy); 551 552 VMCLEANUP(vm->cookie); 553 554 /* 555 * System memory is removed from the guest address space only when 556 * the VM is destroyed. This is because the mapping remains the same 557 * across VM reset. 558 * 559 * Device memory can be relocated by the guest (e.g. using PCI BARs) 560 * so those mappings are removed on a VM reset. 561 */ 562 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 563 mm = &vm->mem_maps[i]; 564 if (destroy || !sysmem_mapping(vm, mm)) 565 vm_free_memmap(vm, i); 566 } 567 568 if (destroy) { 569 for (i = 0; i < VM_MAX_MEMSEGS; i++) 570 vm_free_memseg(vm, i); 571 572 VMSPACE_FREE(vm->vmspace); 573 vm->vmspace = NULL; 574 } 575 } 576 577 void 578 vm_destroy(struct vm *vm) 579 { 580 vm_cleanup(vm, true); 581 free(vm, M_VM); 582 } 583 584 int 585 vm_reinit(struct vm *vm) 586 { 587 int error; 588 589 /* 590 * A virtual machine can be reset only if all vcpus are suspended. 591 */ 592 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 593 vm_cleanup(vm, false); 594 vm_init(vm, false); 595 error = 0; 596 } else { 597 error = EBUSY; 598 } 599 600 return (error); 601 } 602 603 const char * 604 vm_name(struct vm *vm) 605 { 606 return (vm->name); 607 } 608 609 int 610 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 611 { 612 vm_object_t obj; 613 614 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 615 return (ENOMEM); 616 else 617 return (0); 618 } 619 620 int 621 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 622 { 623 624 vmm_mmio_free(vm->vmspace, gpa, len); 625 return (0); 626 } 627 628 /* 629 * Return 'true' if 'gpa' is allocated in the guest address space. 630 * 631 * This function is called in the context of a running vcpu which acts as 632 * an implicit lock on 'vm->mem_maps[]'. 633 */ 634 bool 635 vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa) 636 { 637 struct mem_map *mm; 638 int i; 639 640 #ifdef INVARIANTS 641 int hostcpu, state; 642 state = vcpu_get_state(vm, vcpuid, &hostcpu); 643 KASSERT(state == VCPU_RUNNING && hostcpu == curcpu, 644 ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu)); 645 #endif 646 647 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 648 mm = &vm->mem_maps[i]; 649 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len) 650 return (true); /* 'gpa' is sysmem or devmem */ 651 } 652 653 if (ppt_is_mmio(vm, gpa)) 654 return (true); /* 'gpa' is pci passthru mmio */ 655 656 return (false); 657 } 658 659 int 660 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem) 661 { 662 struct mem_seg *seg; 663 vm_object_t obj; 664 665 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 666 return (EINVAL); 667 668 if (len == 0 || (len & PAGE_MASK)) 669 return (EINVAL); 670 671 seg = &vm->mem_segs[ident]; 672 if (seg->object != NULL) { 673 if (seg->len == len && seg->sysmem == sysmem) 674 return (EEXIST); 675 else 676 return (EINVAL); 677 } 678 679 obj = vm_object_allocate(OBJT_DEFAULT, len >> PAGE_SHIFT); 680 if (obj == NULL) 681 return (ENOMEM); 682 683 seg->len = len; 684 seg->object = obj; 685 seg->sysmem = sysmem; 686 return (0); 687 } 688 689 int 690 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, 691 vm_object_t *objptr) 692 { 693 struct mem_seg *seg; 694 695 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 696 return (EINVAL); 697 698 seg = &vm->mem_segs[ident]; 699 if (len) 700 *len = seg->len; 701 if (sysmem) 702 *sysmem = seg->sysmem; 703 if (objptr) 704 *objptr = seg->object; 705 return (0); 706 } 707 708 void 709 vm_free_memseg(struct vm *vm, int ident) 710 { 711 struct mem_seg *seg; 712 713 KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS, 714 ("%s: invalid memseg ident %d", __func__, ident)); 715 716 seg = &vm->mem_segs[ident]; 717 if (seg->object != NULL) { 718 vm_object_deallocate(seg->object); 719 bzero(seg, sizeof(struct mem_seg)); 720 } 721 } 722 723 int 724 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first, 725 size_t len, int prot, int flags) 726 { 727 struct mem_seg *seg; 728 struct mem_map *m, *map; 729 vm_ooffset_t last; 730 int i, error; 731 732 if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0) 733 return (EINVAL); 734 735 if (flags & ~VM_MEMMAP_F_WIRED) 736 return (EINVAL); 737 738 if (segid < 0 || segid >= VM_MAX_MEMSEGS) 739 return (EINVAL); 740 741 seg = &vm->mem_segs[segid]; 742 if (seg->object == NULL) 743 return (EINVAL); 744 745 last = first + len; 746 if (first < 0 || first >= last || last > seg->len) 747 return (EINVAL); 748 749 if ((gpa | first | last) & PAGE_MASK) 750 return (EINVAL); 751 752 map = NULL; 753 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 754 m = &vm->mem_maps[i]; 755 if (m->len == 0) { 756 map = m; 757 break; 758 } 759 } 760 761 if (map == NULL) 762 return (ENOSPC); 763 764 error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa, 765 len, 0, VMFS_NO_SPACE, prot, prot, 0); 766 if (error != KERN_SUCCESS) 767 return (EFAULT); 768 769 vm_object_reference(seg->object); 770 771 if (flags & VM_MEMMAP_F_WIRED) { 772 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len, 773 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 774 if (error != KERN_SUCCESS) { 775 vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len); 776 return (error == KERN_RESOURCE_SHORTAGE ? ENOMEM : 777 EFAULT); 778 } 779 } 780 781 map->gpa = gpa; 782 map->len = len; 783 map->segoff = first; 784 map->segid = segid; 785 map->prot = prot; 786 map->flags = flags; 787 return (0); 788 } 789 790 int 791 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, 792 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 793 { 794 struct mem_map *mm, *mmnext; 795 int i; 796 797 mmnext = NULL; 798 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 799 mm = &vm->mem_maps[i]; 800 if (mm->len == 0 || mm->gpa < *gpa) 801 continue; 802 if (mmnext == NULL || mm->gpa < mmnext->gpa) 803 mmnext = mm; 804 } 805 806 if (mmnext != NULL) { 807 *gpa = mmnext->gpa; 808 if (segid) 809 *segid = mmnext->segid; 810 if (segoff) 811 *segoff = mmnext->segoff; 812 if (len) 813 *len = mmnext->len; 814 if (prot) 815 *prot = mmnext->prot; 816 if (flags) 817 *flags = mmnext->flags; 818 return (0); 819 } else { 820 return (ENOENT); 821 } 822 } 823 824 static void 825 vm_free_memmap(struct vm *vm, int ident) 826 { 827 struct mem_map *mm; 828 int error; 829 830 mm = &vm->mem_maps[ident]; 831 if (mm->len) { 832 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa, 833 mm->gpa + mm->len); 834 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d", 835 __func__, error)); 836 bzero(mm, sizeof(struct mem_map)); 837 } 838 } 839 840 static __inline bool 841 sysmem_mapping(struct vm *vm, struct mem_map *mm) 842 { 843 844 if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem) 845 return (true); 846 else 847 return (false); 848 } 849 850 vm_paddr_t 851 vmm_sysmem_maxaddr(struct vm *vm) 852 { 853 struct mem_map *mm; 854 vm_paddr_t maxaddr; 855 int i; 856 857 maxaddr = 0; 858 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 859 mm = &vm->mem_maps[i]; 860 if (sysmem_mapping(vm, mm)) { 861 if (maxaddr < mm->gpa + mm->len) 862 maxaddr = mm->gpa + mm->len; 863 } 864 } 865 return (maxaddr); 866 } 867 868 static void 869 vm_iommu_modify(struct vm *vm, bool map) 870 { 871 int i, sz; 872 vm_paddr_t gpa, hpa; 873 struct mem_map *mm; 874 void *vp, *cookie, *host_domain; 875 876 sz = PAGE_SIZE; 877 host_domain = iommu_host_domain(); 878 879 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 880 mm = &vm->mem_maps[i]; 881 if (!sysmem_mapping(vm, mm)) 882 continue; 883 884 if (map) { 885 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0, 886 ("iommu map found invalid memmap %#lx/%#lx/%#x", 887 mm->gpa, mm->len, mm->flags)); 888 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0) 889 continue; 890 mm->flags |= VM_MEMMAP_F_IOMMU; 891 } else { 892 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0) 893 continue; 894 mm->flags &= ~VM_MEMMAP_F_IOMMU; 895 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0, 896 ("iommu unmap found invalid memmap %#lx/%#lx/%#x", 897 mm->gpa, mm->len, mm->flags)); 898 } 899 900 gpa = mm->gpa; 901 while (gpa < mm->gpa + mm->len) { 902 vp = vm_gpa_hold(vm, -1, gpa, PAGE_SIZE, VM_PROT_WRITE, 903 &cookie); 904 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", 905 vm_name(vm), gpa)); 906 907 vm_gpa_release(cookie); 908 909 hpa = DMAP_TO_PHYS((uintptr_t)vp); 910 if (map) { 911 iommu_create_mapping(vm->iommu, gpa, hpa, sz); 912 iommu_remove_mapping(host_domain, hpa, sz); 913 } else { 914 iommu_remove_mapping(vm->iommu, gpa, sz); 915 iommu_create_mapping(host_domain, hpa, hpa, sz); 916 } 917 918 gpa += PAGE_SIZE; 919 } 920 } 921 922 /* 923 * Invalidate the cached translations associated with the domain 924 * from which pages were removed. 925 */ 926 if (map) 927 iommu_invalidate_tlb(host_domain); 928 else 929 iommu_invalidate_tlb(vm->iommu); 930 } 931 932 #define vm_iommu_unmap(vm) vm_iommu_modify((vm), false) 933 #define vm_iommu_map(vm) vm_iommu_modify((vm), true) 934 935 int 936 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 937 { 938 int error; 939 940 error = ppt_unassign_device(vm, bus, slot, func); 941 if (error) 942 return (error); 943 944 if (ppt_assigned_devices(vm) == 0) 945 vm_iommu_unmap(vm); 946 947 return (0); 948 } 949 950 int 951 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 952 { 953 int error; 954 vm_paddr_t maxaddr; 955 956 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */ 957 if (ppt_assigned_devices(vm) == 0) { 958 KASSERT(vm->iommu == NULL, 959 ("vm_assign_pptdev: iommu must be NULL")); 960 maxaddr = vmm_sysmem_maxaddr(vm); 961 vm->iommu = iommu_create_domain(maxaddr); 962 if (vm->iommu == NULL) 963 return (ENXIO); 964 vm_iommu_map(vm); 965 } 966 967 error = ppt_assign_device(vm, bus, slot, func); 968 return (error); 969 } 970 971 void * 972 vm_gpa_hold(struct vm *vm, int vcpuid, vm_paddr_t gpa, size_t len, int reqprot, 973 void **cookie) 974 { 975 int i, count, pageoff; 976 struct mem_map *mm; 977 vm_page_t m; 978 #ifdef INVARIANTS 979 /* 980 * All vcpus are frozen by ioctls that modify the memory map 981 * (e.g. VM_MMAP_MEMSEG). Therefore 'vm->memmap[]' stability is 982 * guaranteed if at least one vcpu is in the VCPU_FROZEN state. 983 */ 984 int state; 985 KASSERT(vcpuid >= -1 && vcpuid < vm->maxcpus, ("%s: invalid vcpuid %d", 986 __func__, vcpuid)); 987 for (i = 0; i < vm->maxcpus; i++) { 988 if (vcpuid != -1 && vcpuid != i) 989 continue; 990 state = vcpu_get_state(vm, i, NULL); 991 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d", 992 __func__, state)); 993 } 994 #endif 995 pageoff = gpa & PAGE_MASK; 996 if (len > PAGE_SIZE - pageoff) 997 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 998 999 count = 0; 1000 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1001 mm = &vm->mem_maps[i]; 1002 if (gpa >= mm->gpa && gpa < mm->gpa + mm->len) { 1003 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 1004 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 1005 break; 1006 } 1007 } 1008 1009 if (count == 1) { 1010 *cookie = m; 1011 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 1012 } else { 1013 *cookie = NULL; 1014 return (NULL); 1015 } 1016 } 1017 1018 void 1019 vm_gpa_release(void *cookie) 1020 { 1021 vm_page_t m = cookie; 1022 1023 vm_page_unwire(m, PQ_ACTIVE); 1024 } 1025 1026 int 1027 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval) 1028 { 1029 1030 if (vcpu < 0 || vcpu >= vm->maxcpus) 1031 return (EINVAL); 1032 1033 if (reg >= VM_REG_LAST) 1034 return (EINVAL); 1035 1036 return (VMGETREG(vm->cookie, vcpu, reg, retval)); 1037 } 1038 1039 int 1040 vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val) 1041 { 1042 struct vcpu *vcpu; 1043 int error; 1044 1045 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1046 return (EINVAL); 1047 1048 if (reg >= VM_REG_LAST) 1049 return (EINVAL); 1050 1051 error = VMSETREG(vm->cookie, vcpuid, reg, val); 1052 if (error || reg != VM_REG_GUEST_RIP) 1053 return (error); 1054 1055 /* Set 'nextrip' to match the value of %rip */ 1056 VCPU_CTR1(vm, vcpuid, "Setting nextrip to %#lx", val); 1057 vcpu = &vm->vcpu[vcpuid]; 1058 vcpu->nextrip = val; 1059 return (0); 1060 } 1061 1062 static bool 1063 is_descriptor_table(int reg) 1064 { 1065 1066 switch (reg) { 1067 case VM_REG_GUEST_IDTR: 1068 case VM_REG_GUEST_GDTR: 1069 return (true); 1070 default: 1071 return (false); 1072 } 1073 } 1074 1075 static bool 1076 is_segment_register(int reg) 1077 { 1078 1079 switch (reg) { 1080 case VM_REG_GUEST_ES: 1081 case VM_REG_GUEST_CS: 1082 case VM_REG_GUEST_SS: 1083 case VM_REG_GUEST_DS: 1084 case VM_REG_GUEST_FS: 1085 case VM_REG_GUEST_GS: 1086 case VM_REG_GUEST_TR: 1087 case VM_REG_GUEST_LDTR: 1088 return (true); 1089 default: 1090 return (false); 1091 } 1092 } 1093 1094 int 1095 vm_get_seg_desc(struct vm *vm, int vcpu, int reg, 1096 struct seg_desc *desc) 1097 { 1098 1099 if (vcpu < 0 || vcpu >= vm->maxcpus) 1100 return (EINVAL); 1101 1102 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1103 return (EINVAL); 1104 1105 return (VMGETDESC(vm->cookie, vcpu, reg, desc)); 1106 } 1107 1108 int 1109 vm_set_seg_desc(struct vm *vm, int vcpu, int reg, 1110 struct seg_desc *desc) 1111 { 1112 if (vcpu < 0 || vcpu >= vm->maxcpus) 1113 return (EINVAL); 1114 1115 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1116 return (EINVAL); 1117 1118 return (VMSETDESC(vm->cookie, vcpu, reg, desc)); 1119 } 1120 1121 static void 1122 restore_guest_fpustate(struct vcpu *vcpu) 1123 { 1124 1125 /* flush host state to the pcb */ 1126 fpuexit(curthread); 1127 1128 /* restore guest FPU state */ 1129 fpu_stop_emulating(); 1130 fpurestore(vcpu->guestfpu); 1131 1132 /* restore guest XCR0 if XSAVE is enabled in the host */ 1133 if (rcr4() & CR4_XSAVE) 1134 load_xcr(0, vcpu->guest_xcr0); 1135 1136 /* 1137 * The FPU is now "dirty" with the guest's state so turn on emulation 1138 * to trap any access to the FPU by the host. 1139 */ 1140 fpu_start_emulating(); 1141 } 1142 1143 static void 1144 save_guest_fpustate(struct vcpu *vcpu) 1145 { 1146 1147 if ((rcr0() & CR0_TS) == 0) 1148 panic("fpu emulation not enabled in host!"); 1149 1150 /* save guest XCR0 and restore host XCR0 */ 1151 if (rcr4() & CR4_XSAVE) { 1152 vcpu->guest_xcr0 = rxcr(0); 1153 load_xcr(0, vmm_get_host_xcr0()); 1154 } 1155 1156 /* save guest FPU state */ 1157 fpu_stop_emulating(); 1158 fpusave(vcpu->guestfpu); 1159 fpu_start_emulating(); 1160 } 1161 1162 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 1163 1164 static int 1165 vcpu_set_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate, 1166 bool from_idle) 1167 { 1168 struct vcpu *vcpu; 1169 int error; 1170 1171 vcpu = &vm->vcpu[vcpuid]; 1172 vcpu_assert_locked(vcpu); 1173 1174 /* 1175 * State transitions from the vmmdev_ioctl() must always begin from 1176 * the VCPU_IDLE state. This guarantees that there is only a single 1177 * ioctl() operating on a vcpu at any point. 1178 */ 1179 if (from_idle) { 1180 while (vcpu->state != VCPU_IDLE) { 1181 vcpu->reqidle = 1; 1182 vcpu_notify_event_locked(vcpu, false); 1183 VCPU_CTR1(vm, vcpuid, "vcpu state change from %s to " 1184 "idle requested", vcpu_state2str(vcpu->state)); 1185 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 1186 } 1187 } else { 1188 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 1189 "vcpu idle state")); 1190 } 1191 1192 if (vcpu->state == VCPU_RUNNING) { 1193 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 1194 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 1195 } else { 1196 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 1197 "vcpu that is not running", vcpu->hostcpu)); 1198 } 1199 1200 /* 1201 * The following state transitions are allowed: 1202 * IDLE -> FROZEN -> IDLE 1203 * FROZEN -> RUNNING -> FROZEN 1204 * FROZEN -> SLEEPING -> FROZEN 1205 */ 1206 switch (vcpu->state) { 1207 case VCPU_IDLE: 1208 case VCPU_RUNNING: 1209 case VCPU_SLEEPING: 1210 error = (newstate != VCPU_FROZEN); 1211 break; 1212 case VCPU_FROZEN: 1213 error = (newstate == VCPU_FROZEN); 1214 break; 1215 default: 1216 error = 1; 1217 break; 1218 } 1219 1220 if (error) 1221 return (EBUSY); 1222 1223 VCPU_CTR2(vm, vcpuid, "vcpu state changed from %s to %s", 1224 vcpu_state2str(vcpu->state), vcpu_state2str(newstate)); 1225 1226 vcpu->state = newstate; 1227 if (newstate == VCPU_RUNNING) 1228 vcpu->hostcpu = curcpu; 1229 else 1230 vcpu->hostcpu = NOCPU; 1231 1232 if (newstate == VCPU_IDLE) 1233 wakeup(&vcpu->state); 1234 1235 return (0); 1236 } 1237 1238 static void 1239 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1240 { 1241 int error; 1242 1243 if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0) 1244 panic("Error %d setting state to %d\n", error, newstate); 1245 } 1246 1247 static void 1248 vcpu_require_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1249 { 1250 int error; 1251 1252 if ((error = vcpu_set_state_locked(vm, vcpuid, newstate, false)) != 0) 1253 panic("Error %d setting state to %d", error, newstate); 1254 } 1255 1256 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt) \ 1257 do { \ 1258 if (vcpuid >= 0) \ 1259 VCPU_CTR0(vm, vcpuid, fmt); \ 1260 else \ 1261 VM_CTR0(vm, fmt); \ 1262 } while (0) 1263 1264 static int 1265 vm_handle_rendezvous(struct vm *vm, int vcpuid) 1266 { 1267 struct thread *td; 1268 int error; 1269 1270 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus), 1271 ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid)); 1272 1273 error = 0; 1274 td = curthread; 1275 mtx_lock(&vm->rendezvous_mtx); 1276 while (vm->rendezvous_func != NULL) { 1277 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1278 CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus); 1279 1280 if (vcpuid != -1 && 1281 CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1282 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1283 VCPU_CTR0(vm, vcpuid, "Calling rendezvous func"); 1284 (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg); 1285 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1286 } 1287 if (CPU_CMP(&vm->rendezvous_req_cpus, 1288 &vm->rendezvous_done_cpus) == 0) { 1289 VCPU_CTR0(vm, vcpuid, "Rendezvous completed"); 1290 vm->rendezvous_func = NULL; 1291 wakeup(&vm->rendezvous_func); 1292 break; 1293 } 1294 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion"); 1295 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1296 "vmrndv", hz); 1297 if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) { 1298 mtx_unlock(&vm->rendezvous_mtx); 1299 error = thread_check_susp(td, true); 1300 if (error != 0) 1301 return (error); 1302 mtx_lock(&vm->rendezvous_mtx); 1303 } 1304 } 1305 mtx_unlock(&vm->rendezvous_mtx); 1306 return (0); 1307 } 1308 1309 /* 1310 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1311 */ 1312 static int 1313 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu) 1314 { 1315 struct vcpu *vcpu; 1316 const char *wmesg; 1317 struct thread *td; 1318 int error, t, vcpu_halted, vm_halted; 1319 1320 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1321 1322 vcpu = &vm->vcpu[vcpuid]; 1323 vcpu_halted = 0; 1324 vm_halted = 0; 1325 error = 0; 1326 td = curthread; 1327 1328 vcpu_lock(vcpu); 1329 while (1) { 1330 /* 1331 * Do a final check for pending NMI or interrupts before 1332 * really putting this thread to sleep. Also check for 1333 * software events that would cause this vcpu to wakeup. 1334 * 1335 * These interrupts/events could have happened after the 1336 * vcpu returned from VMRUN() and before it acquired the 1337 * vcpu lock above. 1338 */ 1339 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle) 1340 break; 1341 if (vm_nmi_pending(vm, vcpuid)) 1342 break; 1343 if (!intr_disabled) { 1344 if (vm_extint_pending(vm, vcpuid) || 1345 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1346 break; 1347 } 1348 } 1349 1350 /* Don't go to sleep if the vcpu thread needs to yield */ 1351 if (vcpu_should_yield(vm, vcpuid)) 1352 break; 1353 1354 if (vcpu_debugged(vm, vcpuid)) 1355 break; 1356 1357 /* 1358 * Some Linux guests implement "halt" by having all vcpus 1359 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1360 * track of the vcpus that have entered this state. When all 1361 * vcpus enter the halted state the virtual machine is halted. 1362 */ 1363 if (intr_disabled) { 1364 wmesg = "vmhalt"; 1365 VCPU_CTR0(vm, vcpuid, "Halted"); 1366 if (!vcpu_halted && halt_detection_enabled) { 1367 vcpu_halted = 1; 1368 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1369 } 1370 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1371 vm_halted = 1; 1372 break; 1373 } 1374 } else { 1375 wmesg = "vmidle"; 1376 } 1377 1378 t = ticks; 1379 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); 1380 /* 1381 * XXX msleep_spin() cannot be interrupted by signals so 1382 * wake up periodically to check pending signals. 1383 */ 1384 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1385 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); 1386 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t); 1387 if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) { 1388 vcpu_unlock(vcpu); 1389 error = thread_check_susp(td, false); 1390 if (error != 0) 1391 return (error); 1392 vcpu_lock(vcpu); 1393 } 1394 } 1395 1396 if (vcpu_halted) 1397 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1398 1399 vcpu_unlock(vcpu); 1400 1401 if (vm_halted) 1402 vm_suspend(vm, VM_SUSPEND_HALT); 1403 1404 return (0); 1405 } 1406 1407 static int 1408 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu) 1409 { 1410 int rv, ftype; 1411 struct vm_map *map; 1412 struct vcpu *vcpu; 1413 struct vm_exit *vme; 1414 1415 vcpu = &vm->vcpu[vcpuid]; 1416 vme = &vcpu->exitinfo; 1417 1418 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1419 __func__, vme->inst_length)); 1420 1421 ftype = vme->u.paging.fault_type; 1422 KASSERT(ftype == VM_PROT_READ || 1423 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1424 ("vm_handle_paging: invalid fault_type %d", ftype)); 1425 1426 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1427 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1428 vme->u.paging.gpa, ftype); 1429 if (rv == 0) { 1430 VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx", 1431 ftype == VM_PROT_READ ? "accessed" : "dirty", 1432 vme->u.paging.gpa); 1433 goto done; 1434 } 1435 } 1436 1437 map = &vm->vmspace->vm_map; 1438 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL); 1439 1440 VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, " 1441 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1442 1443 if (rv != KERN_SUCCESS) 1444 return (EFAULT); 1445 done: 1446 return (0); 1447 } 1448 1449 static int 1450 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu) 1451 { 1452 struct vie *vie; 1453 struct vcpu *vcpu; 1454 struct vm_exit *vme; 1455 uint64_t gla, gpa, cs_base; 1456 struct vm_guest_paging *paging; 1457 mem_region_read_t mread; 1458 mem_region_write_t mwrite; 1459 enum vm_cpu_mode cpu_mode; 1460 int cs_d, error, fault; 1461 1462 vcpu = &vm->vcpu[vcpuid]; 1463 vme = &vcpu->exitinfo; 1464 1465 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1466 __func__, vme->inst_length)); 1467 1468 gla = vme->u.inst_emul.gla; 1469 gpa = vme->u.inst_emul.gpa; 1470 cs_base = vme->u.inst_emul.cs_base; 1471 cs_d = vme->u.inst_emul.cs_d; 1472 vie = &vme->u.inst_emul.vie; 1473 paging = &vme->u.inst_emul.paging; 1474 cpu_mode = paging->cpu_mode; 1475 1476 VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa); 1477 1478 /* Fetch, decode and emulate the faulting instruction */ 1479 if (vie->num_valid == 0) { 1480 error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip + 1481 cs_base, VIE_INST_SIZE, vie, &fault); 1482 } else { 1483 /* 1484 * The instruction bytes have already been copied into 'vie' 1485 */ 1486 error = fault = 0; 1487 } 1488 if (error || fault) 1489 return (error); 1490 1491 if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) { 1492 VCPU_CTR1(vm, vcpuid, "Error decoding instruction at %#lx", 1493 vme->rip + cs_base); 1494 *retu = true; /* dump instruction bytes in userspace */ 1495 return (0); 1496 } 1497 1498 /* 1499 * Update 'nextrip' based on the length of the emulated instruction. 1500 */ 1501 vme->inst_length = vie->num_processed; 1502 vcpu->nextrip += vie->num_processed; 1503 VCPU_CTR1(vm, vcpuid, "nextrip updated to %#lx after instruction " 1504 "decoding", vcpu->nextrip); 1505 1506 /* return to userland unless this is an in-kernel emulated device */ 1507 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1508 mread = lapic_mmio_read; 1509 mwrite = lapic_mmio_write; 1510 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1511 mread = vioapic_mmio_read; 1512 mwrite = vioapic_mmio_write; 1513 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1514 mread = vhpet_mmio_read; 1515 mwrite = vhpet_mmio_write; 1516 } else { 1517 *retu = true; 1518 return (0); 1519 } 1520 1521 error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging, 1522 mread, mwrite, retu); 1523 1524 return (error); 1525 } 1526 1527 static int 1528 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu) 1529 { 1530 int error, i; 1531 struct vcpu *vcpu; 1532 struct thread *td; 1533 1534 error = 0; 1535 vcpu = &vm->vcpu[vcpuid]; 1536 td = curthread; 1537 1538 CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus); 1539 1540 /* 1541 * Wait until all 'active_cpus' have suspended themselves. 1542 * 1543 * Since a VM may be suspended at any time including when one or 1544 * more vcpus are doing a rendezvous we need to call the rendezvous 1545 * handler while we are waiting to prevent a deadlock. 1546 */ 1547 vcpu_lock(vcpu); 1548 while (error == 0) { 1549 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1550 VCPU_CTR0(vm, vcpuid, "All vcpus suspended"); 1551 break; 1552 } 1553 1554 if (vm->rendezvous_func == NULL) { 1555 VCPU_CTR0(vm, vcpuid, "Sleeping during suspend"); 1556 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); 1557 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1558 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); 1559 if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) { 1560 vcpu_unlock(vcpu); 1561 error = thread_check_susp(td, false); 1562 vcpu_lock(vcpu); 1563 } 1564 } else { 1565 VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend"); 1566 vcpu_unlock(vcpu); 1567 error = vm_handle_rendezvous(vm, vcpuid); 1568 vcpu_lock(vcpu); 1569 } 1570 } 1571 vcpu_unlock(vcpu); 1572 1573 /* 1574 * Wakeup the other sleeping vcpus and return to userspace. 1575 */ 1576 for (i = 0; i < vm->maxcpus; i++) { 1577 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1578 vcpu_notify_event(vm, i, false); 1579 } 1580 } 1581 1582 *retu = true; 1583 return (error); 1584 } 1585 1586 static int 1587 vm_handle_reqidle(struct vm *vm, int vcpuid, bool *retu) 1588 { 1589 struct vcpu *vcpu = &vm->vcpu[vcpuid]; 1590 1591 vcpu_lock(vcpu); 1592 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle)); 1593 vcpu->reqidle = 0; 1594 vcpu_unlock(vcpu); 1595 *retu = true; 1596 return (0); 1597 } 1598 1599 int 1600 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1601 { 1602 int i; 1603 1604 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1605 return (EINVAL); 1606 1607 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1608 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1609 vm->suspend, how); 1610 return (EALREADY); 1611 } 1612 1613 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1614 1615 /* 1616 * Notify all active vcpus that they are now suspended. 1617 */ 1618 for (i = 0; i < vm->maxcpus; i++) { 1619 if (CPU_ISSET(i, &vm->active_cpus)) 1620 vcpu_notify_event(vm, i, false); 1621 } 1622 1623 return (0); 1624 } 1625 1626 void 1627 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip) 1628 { 1629 struct vm_exit *vmexit; 1630 1631 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1632 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1633 1634 vmexit = vm_exitinfo(vm, vcpuid); 1635 vmexit->rip = rip; 1636 vmexit->inst_length = 0; 1637 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1638 vmexit->u.suspended.how = vm->suspend; 1639 } 1640 1641 void 1642 vm_exit_debug(struct vm *vm, int vcpuid, uint64_t rip) 1643 { 1644 struct vm_exit *vmexit; 1645 1646 vmexit = vm_exitinfo(vm, vcpuid); 1647 vmexit->rip = rip; 1648 vmexit->inst_length = 0; 1649 vmexit->exitcode = VM_EXITCODE_DEBUG; 1650 } 1651 1652 void 1653 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip) 1654 { 1655 struct vm_exit *vmexit; 1656 1657 KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress")); 1658 1659 vmexit = vm_exitinfo(vm, vcpuid); 1660 vmexit->rip = rip; 1661 vmexit->inst_length = 0; 1662 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1663 vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1); 1664 } 1665 1666 void 1667 vm_exit_reqidle(struct vm *vm, int vcpuid, uint64_t rip) 1668 { 1669 struct vm_exit *vmexit; 1670 1671 vmexit = vm_exitinfo(vm, vcpuid); 1672 vmexit->rip = rip; 1673 vmexit->inst_length = 0; 1674 vmexit->exitcode = VM_EXITCODE_REQIDLE; 1675 vmm_stat_incr(vm, vcpuid, VMEXIT_REQIDLE, 1); 1676 } 1677 1678 void 1679 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip) 1680 { 1681 struct vm_exit *vmexit; 1682 1683 vmexit = vm_exitinfo(vm, vcpuid); 1684 vmexit->rip = rip; 1685 vmexit->inst_length = 0; 1686 vmexit->exitcode = VM_EXITCODE_BOGUS; 1687 vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1); 1688 } 1689 1690 int 1691 vm_run(struct vm *vm, struct vm_run *vmrun) 1692 { 1693 struct vm_eventinfo evinfo; 1694 int error, vcpuid; 1695 struct vcpu *vcpu; 1696 struct pcb *pcb; 1697 uint64_t tscval; 1698 struct vm_exit *vme; 1699 bool retu, intr_disabled; 1700 pmap_t pmap; 1701 1702 vcpuid = vmrun->cpuid; 1703 1704 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1705 return (EINVAL); 1706 1707 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1708 return (EINVAL); 1709 1710 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1711 return (EINVAL); 1712 1713 pmap = vmspace_pmap(vm->vmspace); 1714 vcpu = &vm->vcpu[vcpuid]; 1715 vme = &vcpu->exitinfo; 1716 evinfo.rptr = &vm->rendezvous_func; 1717 evinfo.sptr = &vm->suspend; 1718 evinfo.iptr = &vcpu->reqidle; 1719 restart: 1720 critical_enter(); 1721 1722 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1723 ("vm_run: absurd pm_active")); 1724 1725 tscval = rdtsc(); 1726 1727 pcb = PCPU_GET(curpcb); 1728 set_pcb_flags(pcb, PCB_FULL_IRET); 1729 1730 restore_guest_fpustate(vcpu); 1731 1732 vcpu_require_state(vm, vcpuid, VCPU_RUNNING); 1733 error = VMRUN(vm->cookie, vcpuid, vcpu->nextrip, pmap, &evinfo); 1734 vcpu_require_state(vm, vcpuid, VCPU_FROZEN); 1735 1736 save_guest_fpustate(vcpu); 1737 1738 vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1739 1740 critical_exit(); 1741 1742 if (error == 0) { 1743 retu = false; 1744 vcpu->nextrip = vme->rip + vme->inst_length; 1745 switch (vme->exitcode) { 1746 case VM_EXITCODE_REQIDLE: 1747 error = vm_handle_reqidle(vm, vcpuid, &retu); 1748 break; 1749 case VM_EXITCODE_SUSPENDED: 1750 error = vm_handle_suspend(vm, vcpuid, &retu); 1751 break; 1752 case VM_EXITCODE_IOAPIC_EOI: 1753 vioapic_process_eoi(vm, vcpuid, 1754 vme->u.ioapic_eoi.vector); 1755 break; 1756 case VM_EXITCODE_RENDEZVOUS: 1757 error = vm_handle_rendezvous(vm, vcpuid); 1758 break; 1759 case VM_EXITCODE_HLT: 1760 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1761 error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu); 1762 break; 1763 case VM_EXITCODE_PAGING: 1764 error = vm_handle_paging(vm, vcpuid, &retu); 1765 break; 1766 case VM_EXITCODE_INST_EMUL: 1767 error = vm_handle_inst_emul(vm, vcpuid, &retu); 1768 break; 1769 case VM_EXITCODE_INOUT: 1770 case VM_EXITCODE_INOUT_STR: 1771 error = vm_handle_inout(vm, vcpuid, vme, &retu); 1772 break; 1773 case VM_EXITCODE_MONITOR: 1774 case VM_EXITCODE_MWAIT: 1775 case VM_EXITCODE_VMINSN: 1776 vm_inject_ud(vm, vcpuid); 1777 break; 1778 default: 1779 retu = true; /* handled in userland */ 1780 break; 1781 } 1782 } 1783 1784 if (error == 0 && retu == false) 1785 goto restart; 1786 1787 VCPU_CTR2(vm, vcpuid, "retu %d/%d", error, vme->exitcode); 1788 1789 /* copy the exit information */ 1790 bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit)); 1791 return (error); 1792 } 1793 1794 int 1795 vm_restart_instruction(void *arg, int vcpuid) 1796 { 1797 struct vm *vm; 1798 struct vcpu *vcpu; 1799 enum vcpu_state state; 1800 uint64_t rip; 1801 int error; 1802 1803 vm = arg; 1804 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1805 return (EINVAL); 1806 1807 vcpu = &vm->vcpu[vcpuid]; 1808 state = vcpu_get_state(vm, vcpuid, NULL); 1809 if (state == VCPU_RUNNING) { 1810 /* 1811 * When a vcpu is "running" the next instruction is determined 1812 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'. 1813 * Thus setting 'inst_length' to zero will cause the current 1814 * instruction to be restarted. 1815 */ 1816 vcpu->exitinfo.inst_length = 0; 1817 VCPU_CTR1(vm, vcpuid, "restarting instruction at %#lx by " 1818 "setting inst_length to zero", vcpu->exitinfo.rip); 1819 } else if (state == VCPU_FROZEN) { 1820 /* 1821 * When a vcpu is "frozen" it is outside the critical section 1822 * around VMRUN() and 'nextrip' points to the next instruction. 1823 * Thus instruction restart is achieved by setting 'nextrip' 1824 * to the vcpu's %rip. 1825 */ 1826 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip); 1827 KASSERT(!error, ("%s: error %d getting rip", __func__, error)); 1828 VCPU_CTR2(vm, vcpuid, "restarting instruction by updating " 1829 "nextrip from %#lx to %#lx", vcpu->nextrip, rip); 1830 vcpu->nextrip = rip; 1831 } else { 1832 panic("%s: invalid state %d", __func__, state); 1833 } 1834 return (0); 1835 } 1836 1837 int 1838 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info) 1839 { 1840 struct vcpu *vcpu; 1841 int type, vector; 1842 1843 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1844 return (EINVAL); 1845 1846 vcpu = &vm->vcpu[vcpuid]; 1847 1848 if (info & VM_INTINFO_VALID) { 1849 type = info & VM_INTINFO_TYPE; 1850 vector = info & 0xff; 1851 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 1852 return (EINVAL); 1853 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 1854 return (EINVAL); 1855 if (info & VM_INTINFO_RSVD) 1856 return (EINVAL); 1857 } else { 1858 info = 0; 1859 } 1860 VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info); 1861 vcpu->exitintinfo = info; 1862 return (0); 1863 } 1864 1865 enum exc_class { 1866 EXC_BENIGN, 1867 EXC_CONTRIBUTORY, 1868 EXC_PAGEFAULT 1869 }; 1870 1871 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 1872 1873 static enum exc_class 1874 exception_class(uint64_t info) 1875 { 1876 int type, vector; 1877 1878 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 1879 type = info & VM_INTINFO_TYPE; 1880 vector = info & 0xff; 1881 1882 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 1883 switch (type) { 1884 case VM_INTINFO_HWINTR: 1885 case VM_INTINFO_SWINTR: 1886 case VM_INTINFO_NMI: 1887 return (EXC_BENIGN); 1888 default: 1889 /* 1890 * Hardware exception. 1891 * 1892 * SVM and VT-x use identical type values to represent NMI, 1893 * hardware interrupt and software interrupt. 1894 * 1895 * SVM uses type '3' for all exceptions. VT-x uses type '3' 1896 * for exceptions except #BP and #OF. #BP and #OF use a type 1897 * value of '5' or '6'. Therefore we don't check for explicit 1898 * values of 'type' to classify 'intinfo' into a hardware 1899 * exception. 1900 */ 1901 break; 1902 } 1903 1904 switch (vector) { 1905 case IDT_PF: 1906 case IDT_VE: 1907 return (EXC_PAGEFAULT); 1908 case IDT_DE: 1909 case IDT_TS: 1910 case IDT_NP: 1911 case IDT_SS: 1912 case IDT_GP: 1913 return (EXC_CONTRIBUTORY); 1914 default: 1915 return (EXC_BENIGN); 1916 } 1917 } 1918 1919 static int 1920 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2, 1921 uint64_t *retinfo) 1922 { 1923 enum exc_class exc1, exc2; 1924 int type1, vector1; 1925 1926 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 1927 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 1928 1929 /* 1930 * If an exception occurs while attempting to call the double-fault 1931 * handler the processor enters shutdown mode (aka triple fault). 1932 */ 1933 type1 = info1 & VM_INTINFO_TYPE; 1934 vector1 = info1 & 0xff; 1935 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 1936 VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)", 1937 info1, info2); 1938 vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT); 1939 *retinfo = 0; 1940 return (0); 1941 } 1942 1943 /* 1944 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 1945 */ 1946 exc1 = exception_class(info1); 1947 exc2 = exception_class(info2); 1948 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 1949 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 1950 /* Convert nested fault into a double fault. */ 1951 *retinfo = IDT_DF; 1952 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1953 *retinfo |= VM_INTINFO_DEL_ERRCODE; 1954 } else { 1955 /* Handle exceptions serially */ 1956 *retinfo = info2; 1957 } 1958 return (1); 1959 } 1960 1961 static uint64_t 1962 vcpu_exception_intinfo(struct vcpu *vcpu) 1963 { 1964 uint64_t info = 0; 1965 1966 if (vcpu->exception_pending) { 1967 info = vcpu->exc_vector & 0xff; 1968 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1969 if (vcpu->exc_errcode_valid) { 1970 info |= VM_INTINFO_DEL_ERRCODE; 1971 info |= (uint64_t)vcpu->exc_errcode << 32; 1972 } 1973 } 1974 return (info); 1975 } 1976 1977 int 1978 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo) 1979 { 1980 struct vcpu *vcpu; 1981 uint64_t info1, info2; 1982 int valid; 1983 1984 KASSERT(vcpuid >= 0 && 1985 vcpuid < vm->maxcpus, ("invalid vcpu %d", vcpuid)); 1986 1987 vcpu = &vm->vcpu[vcpuid]; 1988 1989 info1 = vcpu->exitintinfo; 1990 vcpu->exitintinfo = 0; 1991 1992 info2 = 0; 1993 if (vcpu->exception_pending) { 1994 info2 = vcpu_exception_intinfo(vcpu); 1995 vcpu->exception_pending = 0; 1996 VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx", 1997 vcpu->exc_vector, info2); 1998 } 1999 2000 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 2001 valid = nested_fault(vm, vcpuid, info1, info2, retinfo); 2002 } else if (info1 & VM_INTINFO_VALID) { 2003 *retinfo = info1; 2004 valid = 1; 2005 } else if (info2 & VM_INTINFO_VALID) { 2006 *retinfo = info2; 2007 valid = 1; 2008 } else { 2009 valid = 0; 2010 } 2011 2012 if (valid) { 2013 VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), " 2014 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 2015 } 2016 2017 return (valid); 2018 } 2019 2020 int 2021 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2) 2022 { 2023 struct vcpu *vcpu; 2024 2025 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2026 return (EINVAL); 2027 2028 vcpu = &vm->vcpu[vcpuid]; 2029 *info1 = vcpu->exitintinfo; 2030 *info2 = vcpu_exception_intinfo(vcpu); 2031 return (0); 2032 } 2033 2034 int 2035 vm_inject_exception(struct vm *vm, int vcpuid, int vector, int errcode_valid, 2036 uint32_t errcode, int restart_instruction) 2037 { 2038 struct vcpu *vcpu; 2039 uint64_t regval; 2040 int error; 2041 2042 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2043 return (EINVAL); 2044 2045 if (vector < 0 || vector >= 32) 2046 return (EINVAL); 2047 2048 /* 2049 * A double fault exception should never be injected directly into 2050 * the guest. It is a derived exception that results from specific 2051 * combinations of nested faults. 2052 */ 2053 if (vector == IDT_DF) 2054 return (EINVAL); 2055 2056 vcpu = &vm->vcpu[vcpuid]; 2057 2058 if (vcpu->exception_pending) { 2059 VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to " 2060 "pending exception %d", vector, vcpu->exc_vector); 2061 return (EBUSY); 2062 } 2063 2064 if (errcode_valid) { 2065 /* 2066 * Exceptions don't deliver an error code in real mode. 2067 */ 2068 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_CR0, ®val); 2069 KASSERT(!error, ("%s: error %d getting CR0", __func__, error)); 2070 if (!(regval & CR0_PE)) 2071 errcode_valid = 0; 2072 } 2073 2074 /* 2075 * From section 26.6.1 "Interruptibility State" in Intel SDM: 2076 * 2077 * Event blocking by "STI" or "MOV SS" is cleared after guest executes 2078 * one instruction or incurs an exception. 2079 */ 2080 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0); 2081 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", 2082 __func__, error)); 2083 2084 if (restart_instruction) 2085 vm_restart_instruction(vm, vcpuid); 2086 2087 vcpu->exception_pending = 1; 2088 vcpu->exc_vector = vector; 2089 vcpu->exc_errcode = errcode; 2090 vcpu->exc_errcode_valid = errcode_valid; 2091 VCPU_CTR1(vm, vcpuid, "Exception %d pending", vector); 2092 return (0); 2093 } 2094 2095 void 2096 vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid, 2097 int errcode) 2098 { 2099 struct vm *vm; 2100 int error, restart_instruction; 2101 2102 vm = vmarg; 2103 restart_instruction = 1; 2104 2105 error = vm_inject_exception(vm, vcpuid, vector, errcode_valid, 2106 errcode, restart_instruction); 2107 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 2108 } 2109 2110 void 2111 vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2) 2112 { 2113 struct vm *vm; 2114 int error; 2115 2116 vm = vmarg; 2117 VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx", 2118 error_code, cr2); 2119 2120 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2); 2121 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 2122 2123 vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code); 2124 } 2125 2126 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 2127 2128 int 2129 vm_inject_nmi(struct vm *vm, int vcpuid) 2130 { 2131 struct vcpu *vcpu; 2132 2133 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2134 return (EINVAL); 2135 2136 vcpu = &vm->vcpu[vcpuid]; 2137 2138 vcpu->nmi_pending = 1; 2139 vcpu_notify_event(vm, vcpuid, false); 2140 return (0); 2141 } 2142 2143 int 2144 vm_nmi_pending(struct vm *vm, int vcpuid) 2145 { 2146 struct vcpu *vcpu; 2147 2148 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2149 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 2150 2151 vcpu = &vm->vcpu[vcpuid]; 2152 2153 return (vcpu->nmi_pending); 2154 } 2155 2156 void 2157 vm_nmi_clear(struct vm *vm, int vcpuid) 2158 { 2159 struct vcpu *vcpu; 2160 2161 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2162 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 2163 2164 vcpu = &vm->vcpu[vcpuid]; 2165 2166 if (vcpu->nmi_pending == 0) 2167 panic("vm_nmi_clear: inconsistent nmi_pending state"); 2168 2169 vcpu->nmi_pending = 0; 2170 vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1); 2171 } 2172 2173 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 2174 2175 int 2176 vm_inject_extint(struct vm *vm, int vcpuid) 2177 { 2178 struct vcpu *vcpu; 2179 2180 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2181 return (EINVAL); 2182 2183 vcpu = &vm->vcpu[vcpuid]; 2184 2185 vcpu->extint_pending = 1; 2186 vcpu_notify_event(vm, vcpuid, false); 2187 return (0); 2188 } 2189 2190 int 2191 vm_extint_pending(struct vm *vm, int vcpuid) 2192 { 2193 struct vcpu *vcpu; 2194 2195 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2196 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 2197 2198 vcpu = &vm->vcpu[vcpuid]; 2199 2200 return (vcpu->extint_pending); 2201 } 2202 2203 void 2204 vm_extint_clear(struct vm *vm, int vcpuid) 2205 { 2206 struct vcpu *vcpu; 2207 2208 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2209 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 2210 2211 vcpu = &vm->vcpu[vcpuid]; 2212 2213 if (vcpu->extint_pending == 0) 2214 panic("vm_extint_clear: inconsistent extint_pending state"); 2215 2216 vcpu->extint_pending = 0; 2217 vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1); 2218 } 2219 2220 int 2221 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval) 2222 { 2223 if (vcpu < 0 || vcpu >= vm->maxcpus) 2224 return (EINVAL); 2225 2226 if (type < 0 || type >= VM_CAP_MAX) 2227 return (EINVAL); 2228 2229 return (VMGETCAP(vm->cookie, vcpu, type, retval)); 2230 } 2231 2232 int 2233 vm_set_capability(struct vm *vm, int vcpu, int type, int val) 2234 { 2235 if (vcpu < 0 || vcpu >= vm->maxcpus) 2236 return (EINVAL); 2237 2238 if (type < 0 || type >= VM_CAP_MAX) 2239 return (EINVAL); 2240 2241 return (VMSETCAP(vm->cookie, vcpu, type, val)); 2242 } 2243 2244 struct vlapic * 2245 vm_lapic(struct vm *vm, int cpu) 2246 { 2247 return (vm->vcpu[cpu].vlapic); 2248 } 2249 2250 struct vioapic * 2251 vm_ioapic(struct vm *vm) 2252 { 2253 2254 return (vm->vioapic); 2255 } 2256 2257 struct vhpet * 2258 vm_hpet(struct vm *vm) 2259 { 2260 2261 return (vm->vhpet); 2262 } 2263 2264 bool 2265 vmm_is_pptdev(int bus, int slot, int func) 2266 { 2267 int b, f, i, n, s; 2268 char *val, *cp, *cp2; 2269 bool found; 2270 2271 /* 2272 * XXX 2273 * The length of an environment variable is limited to 128 bytes which 2274 * puts an upper limit on the number of passthru devices that may be 2275 * specified using a single environment variable. 2276 * 2277 * Work around this by scanning multiple environment variable 2278 * names instead of a single one - yuck! 2279 */ 2280 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 2281 2282 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 2283 found = false; 2284 for (i = 0; names[i] != NULL && !found; i++) { 2285 cp = val = kern_getenv(names[i]); 2286 while (cp != NULL && *cp != '\0') { 2287 if ((cp2 = strchr(cp, ' ')) != NULL) 2288 *cp2 = '\0'; 2289 2290 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 2291 if (n == 3 && bus == b && slot == s && func == f) { 2292 found = true; 2293 break; 2294 } 2295 2296 if (cp2 != NULL) 2297 *cp2++ = ' '; 2298 2299 cp = cp2; 2300 } 2301 freeenv(val); 2302 } 2303 return (found); 2304 } 2305 2306 void * 2307 vm_iommu_domain(struct vm *vm) 2308 { 2309 2310 return (vm->iommu); 2311 } 2312 2313 int 2314 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate, 2315 bool from_idle) 2316 { 2317 int error; 2318 struct vcpu *vcpu; 2319 2320 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2321 panic("vm_set_run_state: invalid vcpuid %d", vcpuid); 2322 2323 vcpu = &vm->vcpu[vcpuid]; 2324 2325 vcpu_lock(vcpu); 2326 error = vcpu_set_state_locked(vm, vcpuid, newstate, from_idle); 2327 vcpu_unlock(vcpu); 2328 2329 return (error); 2330 } 2331 2332 enum vcpu_state 2333 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu) 2334 { 2335 struct vcpu *vcpu; 2336 enum vcpu_state state; 2337 2338 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2339 panic("vm_get_run_state: invalid vcpuid %d", vcpuid); 2340 2341 vcpu = &vm->vcpu[vcpuid]; 2342 2343 vcpu_lock(vcpu); 2344 state = vcpu->state; 2345 if (hostcpu != NULL) 2346 *hostcpu = vcpu->hostcpu; 2347 vcpu_unlock(vcpu); 2348 2349 return (state); 2350 } 2351 2352 int 2353 vm_activate_cpu(struct vm *vm, int vcpuid) 2354 { 2355 2356 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2357 return (EINVAL); 2358 2359 if (CPU_ISSET(vcpuid, &vm->active_cpus)) 2360 return (EBUSY); 2361 2362 VCPU_CTR0(vm, vcpuid, "activated"); 2363 CPU_SET_ATOMIC(vcpuid, &vm->active_cpus); 2364 return (0); 2365 } 2366 2367 int 2368 vm_suspend_cpu(struct vm *vm, int vcpuid) 2369 { 2370 int i; 2371 2372 if (vcpuid < -1 || vcpuid >= vm->maxcpus) 2373 return (EINVAL); 2374 2375 if (vcpuid == -1) { 2376 vm->debug_cpus = vm->active_cpus; 2377 for (i = 0; i < vm->maxcpus; i++) { 2378 if (CPU_ISSET(i, &vm->active_cpus)) 2379 vcpu_notify_event(vm, i, false); 2380 } 2381 } else { 2382 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 2383 return (EINVAL); 2384 2385 CPU_SET_ATOMIC(vcpuid, &vm->debug_cpus); 2386 vcpu_notify_event(vm, vcpuid, false); 2387 } 2388 return (0); 2389 } 2390 2391 int 2392 vm_resume_cpu(struct vm *vm, int vcpuid) 2393 { 2394 2395 if (vcpuid < -1 || vcpuid >= vm->maxcpus) 2396 return (EINVAL); 2397 2398 if (vcpuid == -1) { 2399 CPU_ZERO(&vm->debug_cpus); 2400 } else { 2401 if (!CPU_ISSET(vcpuid, &vm->debug_cpus)) 2402 return (EINVAL); 2403 2404 CPU_CLR_ATOMIC(vcpuid, &vm->debug_cpus); 2405 } 2406 return (0); 2407 } 2408 2409 int 2410 vcpu_debugged(struct vm *vm, int vcpuid) 2411 { 2412 2413 return (CPU_ISSET(vcpuid, &vm->debug_cpus)); 2414 } 2415 2416 cpuset_t 2417 vm_active_cpus(struct vm *vm) 2418 { 2419 2420 return (vm->active_cpus); 2421 } 2422 2423 cpuset_t 2424 vm_debug_cpus(struct vm *vm) 2425 { 2426 2427 return (vm->debug_cpus); 2428 } 2429 2430 cpuset_t 2431 vm_suspended_cpus(struct vm *vm) 2432 { 2433 2434 return (vm->suspended_cpus); 2435 } 2436 2437 void * 2438 vcpu_stats(struct vm *vm, int vcpuid) 2439 { 2440 2441 return (vm->vcpu[vcpuid].stats); 2442 } 2443 2444 int 2445 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state) 2446 { 2447 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2448 return (EINVAL); 2449 2450 *state = vm->vcpu[vcpuid].x2apic_state; 2451 2452 return (0); 2453 } 2454 2455 int 2456 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state) 2457 { 2458 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2459 return (EINVAL); 2460 2461 if (state >= X2APIC_STATE_LAST) 2462 return (EINVAL); 2463 2464 vm->vcpu[vcpuid].x2apic_state = state; 2465 2466 vlapic_set_x2apic_state(vm, vcpuid, state); 2467 2468 return (0); 2469 } 2470 2471 /* 2472 * This function is called to ensure that a vcpu "sees" a pending event 2473 * as soon as possible: 2474 * - If the vcpu thread is sleeping then it is woken up. 2475 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2476 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2477 */ 2478 static void 2479 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr) 2480 { 2481 int hostcpu; 2482 2483 hostcpu = vcpu->hostcpu; 2484 if (vcpu->state == VCPU_RUNNING) { 2485 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2486 if (hostcpu != curcpu) { 2487 if (lapic_intr) { 2488 vlapic_post_intr(vcpu->vlapic, hostcpu, 2489 vmm_ipinum); 2490 } else { 2491 ipi_cpu(hostcpu, vmm_ipinum); 2492 } 2493 } else { 2494 /* 2495 * If the 'vcpu' is running on 'curcpu' then it must 2496 * be sending a notification to itself (e.g. SELF_IPI). 2497 * The pending event will be picked up when the vcpu 2498 * transitions back to guest context. 2499 */ 2500 } 2501 } else { 2502 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2503 "with hostcpu %d", vcpu->state, hostcpu)); 2504 if (vcpu->state == VCPU_SLEEPING) 2505 wakeup_one(vcpu); 2506 } 2507 } 2508 2509 void 2510 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr) 2511 { 2512 struct vcpu *vcpu = &vm->vcpu[vcpuid]; 2513 2514 vcpu_lock(vcpu); 2515 vcpu_notify_event_locked(vcpu, lapic_intr); 2516 vcpu_unlock(vcpu); 2517 } 2518 2519 struct vmspace * 2520 vm_get_vmspace(struct vm *vm) 2521 { 2522 2523 return (vm->vmspace); 2524 } 2525 2526 int 2527 vm_apicid2vcpuid(struct vm *vm, int apicid) 2528 { 2529 /* 2530 * XXX apic id is assumed to be numerically identical to vcpu id 2531 */ 2532 return (apicid); 2533 } 2534 2535 int 2536 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest, 2537 vm_rendezvous_func_t func, void *arg) 2538 { 2539 int error, i; 2540 2541 /* 2542 * Enforce that this function is called without any locks 2543 */ 2544 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2545 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus), 2546 ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid)); 2547 2548 restart: 2549 mtx_lock(&vm->rendezvous_mtx); 2550 if (vm->rendezvous_func != NULL) { 2551 /* 2552 * If a rendezvous is already in progress then we need to 2553 * call the rendezvous handler in case this 'vcpuid' is one 2554 * of the targets of the rendezvous. 2555 */ 2556 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress"); 2557 mtx_unlock(&vm->rendezvous_mtx); 2558 error = vm_handle_rendezvous(vm, vcpuid); 2559 if (error != 0) 2560 return (error); 2561 goto restart; 2562 } 2563 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2564 "rendezvous is still in progress")); 2565 2566 RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous"); 2567 vm->rendezvous_req_cpus = dest; 2568 CPU_ZERO(&vm->rendezvous_done_cpus); 2569 vm->rendezvous_arg = arg; 2570 vm->rendezvous_func = func; 2571 mtx_unlock(&vm->rendezvous_mtx); 2572 2573 /* 2574 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2575 * vcpus so they handle the rendezvous as soon as possible. 2576 */ 2577 for (i = 0; i < vm->maxcpus; i++) { 2578 if (CPU_ISSET(i, &dest)) 2579 vcpu_notify_event(vm, i, false); 2580 } 2581 2582 return (vm_handle_rendezvous(vm, vcpuid)); 2583 } 2584 2585 struct vatpic * 2586 vm_atpic(struct vm *vm) 2587 { 2588 return (vm->vatpic); 2589 } 2590 2591 struct vatpit * 2592 vm_atpit(struct vm *vm) 2593 { 2594 return (vm->vatpit); 2595 } 2596 2597 struct vpmtmr * 2598 vm_pmtmr(struct vm *vm) 2599 { 2600 2601 return (vm->vpmtmr); 2602 } 2603 2604 struct vrtc * 2605 vm_rtc(struct vm *vm) 2606 { 2607 2608 return (vm->vrtc); 2609 } 2610 2611 enum vm_reg_name 2612 vm_segment_name(int seg) 2613 { 2614 static enum vm_reg_name seg_names[] = { 2615 VM_REG_GUEST_ES, 2616 VM_REG_GUEST_CS, 2617 VM_REG_GUEST_SS, 2618 VM_REG_GUEST_DS, 2619 VM_REG_GUEST_FS, 2620 VM_REG_GUEST_GS 2621 }; 2622 2623 KASSERT(seg >= 0 && seg < nitems(seg_names), 2624 ("%s: invalid segment encoding %d", __func__, seg)); 2625 return (seg_names[seg]); 2626 } 2627 2628 void 2629 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, 2630 int num_copyinfo) 2631 { 2632 int idx; 2633 2634 for (idx = 0; idx < num_copyinfo; idx++) { 2635 if (copyinfo[idx].cookie != NULL) 2636 vm_gpa_release(copyinfo[idx].cookie); 2637 } 2638 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2639 } 2640 2641 int 2642 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging, 2643 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2644 int num_copyinfo, int *fault) 2645 { 2646 int error, idx, nused; 2647 size_t n, off, remaining; 2648 void *hva, *cookie; 2649 uint64_t gpa; 2650 2651 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2652 2653 nused = 0; 2654 remaining = len; 2655 while (remaining > 0) { 2656 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo")); 2657 error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa, fault); 2658 if (error || *fault) 2659 return (error); 2660 off = gpa & PAGE_MASK; 2661 n = min(remaining, PAGE_SIZE - off); 2662 copyinfo[nused].gpa = gpa; 2663 copyinfo[nused].len = n; 2664 remaining -= n; 2665 gla += n; 2666 nused++; 2667 } 2668 2669 for (idx = 0; idx < nused; idx++) { 2670 hva = vm_gpa_hold(vm, vcpuid, copyinfo[idx].gpa, 2671 copyinfo[idx].len, prot, &cookie); 2672 if (hva == NULL) 2673 break; 2674 copyinfo[idx].hva = hva; 2675 copyinfo[idx].cookie = cookie; 2676 } 2677 2678 if (idx != nused) { 2679 vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo); 2680 return (EFAULT); 2681 } else { 2682 *fault = 0; 2683 return (0); 2684 } 2685 } 2686 2687 void 2688 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr, 2689 size_t len) 2690 { 2691 char *dst; 2692 int idx; 2693 2694 dst = kaddr; 2695 idx = 0; 2696 while (len > 0) { 2697 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2698 len -= copyinfo[idx].len; 2699 dst += copyinfo[idx].len; 2700 idx++; 2701 } 2702 } 2703 2704 void 2705 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr, 2706 struct vm_copyinfo *copyinfo, size_t len) 2707 { 2708 const char *src; 2709 int idx; 2710 2711 src = kaddr; 2712 idx = 0; 2713 while (len > 0) { 2714 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2715 len -= copyinfo[idx].len; 2716 src += copyinfo[idx].len; 2717 idx++; 2718 } 2719 } 2720 2721 /* 2722 * Return the amount of in-use and wired memory for the VM. Since 2723 * these are global stats, only return the values with for vCPU 0 2724 */ 2725 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2726 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2727 2728 static void 2729 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2730 { 2731 2732 if (vcpu == 0) { 2733 vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT, 2734 PAGE_SIZE * vmspace_resident_count(vm->vmspace)); 2735 } 2736 } 2737 2738 static void 2739 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2740 { 2741 2742 if (vcpu == 0) { 2743 vmm_stat_set(vm, vcpu, VMM_MEM_WIRED, 2744 PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace))); 2745 } 2746 } 2747 2748 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2749 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2750 2751 #ifdef BHYVE_SNAPSHOT 2752 static int 2753 vm_snapshot_vcpus(struct vm *vm, struct vm_snapshot_meta *meta) 2754 { 2755 int ret; 2756 int i; 2757 struct vcpu *vcpu; 2758 2759 for (i = 0; i < VM_MAXCPU; i++) { 2760 vcpu = &vm->vcpu[i]; 2761 2762 SNAPSHOT_VAR_OR_LEAVE(vcpu->x2apic_state, meta, ret, done); 2763 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitintinfo, meta, ret, done); 2764 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_vector, meta, ret, done); 2765 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode_valid, meta, ret, done); 2766 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode, meta, ret, done); 2767 SNAPSHOT_VAR_OR_LEAVE(vcpu->guest_xcr0, meta, ret, done); 2768 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitinfo, meta, ret, done); 2769 SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, ret, done); 2770 /* XXX we're cheating here, since the value of tsc_offset as 2771 * saved here is actually the value of the guest's TSC value. 2772 * 2773 * It will be turned turned back into an actual offset when the 2774 * TSC restore function is called 2775 */ 2776 SNAPSHOT_VAR_OR_LEAVE(vcpu->tsc_offset, meta, ret, done); 2777 } 2778 2779 done: 2780 return (ret); 2781 } 2782 2783 static int 2784 vm_snapshot_vm(struct vm *vm, struct vm_snapshot_meta *meta) 2785 { 2786 int ret; 2787 int i; 2788 uint64_t now; 2789 2790 ret = 0; 2791 now = rdtsc(); 2792 2793 if (meta->op == VM_SNAPSHOT_SAVE) { 2794 /* XXX make tsc_offset take the value TSC proper as seen by the 2795 * guest 2796 */ 2797 for (i = 0; i < VM_MAXCPU; i++) 2798 vm->vcpu[i].tsc_offset += now; 2799 } 2800 2801 ret = vm_snapshot_vcpus(vm, meta); 2802 if (ret != 0) { 2803 printf("%s: failed to copy vm data to user buffer", __func__); 2804 goto done; 2805 } 2806 2807 if (meta->op == VM_SNAPSHOT_SAVE) { 2808 /* XXX turn tsc_offset back into an offset; actual value is only 2809 * required for restore; using it otherwise would be wrong 2810 */ 2811 for (i = 0; i < VM_MAXCPU; i++) 2812 vm->vcpu[i].tsc_offset -= now; 2813 } 2814 2815 done: 2816 return (ret); 2817 } 2818 2819 static int 2820 vm_snapshot_vmcx(struct vm *vm, struct vm_snapshot_meta *meta) 2821 { 2822 int i, error; 2823 2824 error = 0; 2825 2826 for (i = 0; i < VM_MAXCPU; i++) { 2827 error = VM_SNAPSHOT_VMCX(vm->cookie, meta, i); 2828 if (error != 0) { 2829 printf("%s: failed to snapshot vmcs/vmcb data for " 2830 "vCPU: %d; error: %d\n", __func__, i, error); 2831 goto done; 2832 } 2833 } 2834 2835 done: 2836 return (error); 2837 } 2838 2839 /* 2840 * Save kernel-side structures to user-space for snapshotting. 2841 */ 2842 int 2843 vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta) 2844 { 2845 int ret = 0; 2846 2847 switch (meta->dev_req) { 2848 case STRUCT_VMX: 2849 ret = VM_SNAPSHOT_VMI(vm->cookie, meta); 2850 break; 2851 case STRUCT_VMCX: 2852 ret = vm_snapshot_vmcx(vm, meta); 2853 break; 2854 case STRUCT_VM: 2855 ret = vm_snapshot_vm(vm, meta); 2856 break; 2857 case STRUCT_VIOAPIC: 2858 ret = vioapic_snapshot(vm_ioapic(vm), meta); 2859 break; 2860 case STRUCT_VLAPIC: 2861 ret = vlapic_snapshot(vm, meta); 2862 break; 2863 case STRUCT_VHPET: 2864 ret = vhpet_snapshot(vm_hpet(vm), meta); 2865 break; 2866 case STRUCT_VATPIC: 2867 ret = vatpic_snapshot(vm_atpic(vm), meta); 2868 break; 2869 case STRUCT_VATPIT: 2870 ret = vatpit_snapshot(vm_atpit(vm), meta); 2871 break; 2872 case STRUCT_VPMTMR: 2873 ret = vpmtmr_snapshot(vm_pmtmr(vm), meta); 2874 break; 2875 case STRUCT_VRTC: 2876 ret = vrtc_snapshot(vm_rtc(vm), meta); 2877 break; 2878 default: 2879 printf("%s: failed to find the requested type %#x\n", 2880 __func__, meta->dev_req); 2881 ret = (EINVAL); 2882 } 2883 return (ret); 2884 } 2885 2886 int 2887 vm_set_tsc_offset(struct vm *vm, int vcpuid, uint64_t offset) 2888 { 2889 struct vcpu *vcpu; 2890 2891 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2892 return (EINVAL); 2893 2894 vcpu = &vm->vcpu[vcpuid]; 2895 vcpu->tsc_offset = offset; 2896 2897 return (0); 2898 } 2899 2900 int 2901 vm_restore_time(struct vm *vm) 2902 { 2903 int error, i; 2904 uint64_t now; 2905 struct vcpu *vcpu; 2906 2907 now = rdtsc(); 2908 2909 error = vhpet_restore_time(vm_hpet(vm)); 2910 if (error) 2911 return (error); 2912 2913 for (i = 0; i < nitems(vm->vcpu); i++) { 2914 vcpu = &vm->vcpu[i]; 2915 2916 error = VM_RESTORE_TSC(vm->cookie, i, vcpu->tsc_offset - now); 2917 if (error) 2918 return (error); 2919 } 2920 2921 return (0); 2922 } 2923 #endif 2924