1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/kernel.h> 37 #include <sys/module.h> 38 #include <sys/sysctl.h> 39 #include <sys/malloc.h> 40 #include <sys/pcpu.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/proc.h> 44 #include <sys/rwlock.h> 45 #include <sys/sched.h> 46 #include <sys/smp.h> 47 #include <sys/systm.h> 48 49 #include <vm/vm.h> 50 #include <vm/vm_object.h> 51 #include <vm/vm_page.h> 52 #include <vm/pmap.h> 53 #include <vm/vm_map.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_param.h> 56 57 #include <machine/cpu.h> 58 #include <machine/pcb.h> 59 #include <machine/smp.h> 60 #include <machine/md_var.h> 61 #include <x86/psl.h> 62 #include <x86/apicreg.h> 63 64 #include <machine/vmm.h> 65 #include <machine/vmm_dev.h> 66 #include <machine/vmm_instruction_emul.h> 67 68 #include "vmm_ioport.h" 69 #include "vmm_ktr.h" 70 #include "vmm_host.h" 71 #include "vmm_mem.h" 72 #include "vmm_util.h" 73 #include "vatpic.h" 74 #include "vatpit.h" 75 #include "vhpet.h" 76 #include "vioapic.h" 77 #include "vlapic.h" 78 #include "vpmtmr.h" 79 #include "vrtc.h" 80 #include "vmm_stat.h" 81 #include "vmm_lapic.h" 82 83 #include "io/ppt.h" 84 #include "io/iommu.h" 85 86 struct vlapic; 87 88 /* 89 * Initialization: 90 * (a) allocated when vcpu is created 91 * (i) initialized when vcpu is created and when it is reinitialized 92 * (o) initialized the first time the vcpu is created 93 * (x) initialized before use 94 */ 95 struct vcpu { 96 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 97 enum vcpu_state state; /* (o) vcpu state */ 98 int hostcpu; /* (o) vcpu's host cpu */ 99 int reqidle; /* (i) request vcpu to idle */ 100 struct vlapic *vlapic; /* (i) APIC device model */ 101 enum x2apic_state x2apic_state; /* (i) APIC mode */ 102 uint64_t exitintinfo; /* (i) events pending at VM exit */ 103 int nmi_pending; /* (i) NMI pending */ 104 int extint_pending; /* (i) INTR pending */ 105 int exception_pending; /* (i) exception pending */ 106 int exc_vector; /* (x) exception collateral */ 107 int exc_errcode_valid; 108 uint32_t exc_errcode; 109 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 110 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 111 void *stats; /* (a,i) statistics */ 112 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 113 uint64_t nextrip; /* (x) next instruction to execute */ 114 }; 115 116 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx)) 117 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 118 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 119 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 120 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 121 122 struct mem_seg { 123 size_t len; 124 bool sysmem; 125 struct vm_object *object; 126 }; 127 #define VM_MAX_MEMSEGS 3 128 129 struct mem_map { 130 vm_paddr_t gpa; 131 size_t len; 132 vm_ooffset_t segoff; 133 int segid; 134 int prot; 135 int flags; 136 }; 137 #define VM_MAX_MEMMAPS 4 138 139 /* 140 * Initialization: 141 * (o) initialized the first time the VM is created 142 * (i) initialized when VM is created and when it is reinitialized 143 * (x) initialized before use 144 */ 145 struct vm { 146 void *cookie; /* (i) cpu-specific data */ 147 void *iommu; /* (x) iommu-specific data */ 148 struct vhpet *vhpet; /* (i) virtual HPET */ 149 struct vioapic *vioapic; /* (i) virtual ioapic */ 150 struct vatpic *vatpic; /* (i) virtual atpic */ 151 struct vatpit *vatpit; /* (i) virtual atpit */ 152 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ 153 struct vrtc *vrtc; /* (o) virtual RTC */ 154 volatile cpuset_t active_cpus; /* (i) active vcpus */ 155 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */ 156 int suspend; /* (i) stop VM execution */ 157 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 158 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 159 cpuset_t rendezvous_req_cpus; /* (x) rendezvous requested */ 160 cpuset_t rendezvous_done_cpus; /* (x) rendezvous finished */ 161 void *rendezvous_arg; /* (x) rendezvous func/arg */ 162 vm_rendezvous_func_t rendezvous_func; 163 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 164 struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */ 165 struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */ 166 struct vmspace *vmspace; /* (o) guest's address space */ 167 char name[VM_MAX_NAMELEN]; /* (o) virtual machine name */ 168 struct vcpu vcpu[VM_MAXCPU]; /* (i) guest vcpus */ 169 /* The following describe the vm cpu topology */ 170 uint16_t sockets; /* (o) num of sockets */ 171 uint16_t cores; /* (o) num of cores/socket */ 172 uint16_t threads; /* (o) num of threads/core */ 173 uint16_t maxcpus; /* (o) max pluggable cpus */ 174 }; 175 176 static int vmm_initialized; 177 178 static struct vmm_ops *ops; 179 #define VMM_INIT(num) (ops != NULL ? (*ops->init)(num) : 0) 180 #define VMM_CLEANUP() (ops != NULL ? (*ops->cleanup)() : 0) 181 #define VMM_RESUME() (ops != NULL ? (*ops->resume)() : 0) 182 183 #define VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL) 184 #define VMRUN(vmi, vcpu, rip, pmap, evinfo) \ 185 (ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, evinfo) : ENXIO) 186 #define VMCLEANUP(vmi) (ops != NULL ? (*ops->vmcleanup)(vmi) : NULL) 187 #define VMSPACE_ALLOC(min, max) \ 188 (ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL) 189 #define VMSPACE_FREE(vmspace) \ 190 (ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO) 191 #define VMGETREG(vmi, vcpu, num, retval) \ 192 (ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO) 193 #define VMSETREG(vmi, vcpu, num, val) \ 194 (ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO) 195 #define VMGETDESC(vmi, vcpu, num, desc) \ 196 (ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO) 197 #define VMSETDESC(vmi, vcpu, num, desc) \ 198 (ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO) 199 #define VMGETCAP(vmi, vcpu, num, retval) \ 200 (ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO) 201 #define VMSETCAP(vmi, vcpu, num, val) \ 202 (ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO) 203 #define VLAPIC_INIT(vmi, vcpu) \ 204 (ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL) 205 #define VLAPIC_CLEANUP(vmi, vlapic) \ 206 (ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL) 207 208 #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS) 209 #define fpu_stop_emulating() clts() 210 211 SDT_PROVIDER_DEFINE(vmm); 212 213 static MALLOC_DEFINE(M_VM, "vm", "vm"); 214 215 /* statistics */ 216 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 217 218 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL); 219 220 /* 221 * Halt the guest if all vcpus are executing a HLT instruction with 222 * interrupts disabled. 223 */ 224 static int halt_detection_enabled = 1; 225 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 226 &halt_detection_enabled, 0, 227 "Halt VM if all vcpus execute HLT with interrupts disabled"); 228 229 static int vmm_ipinum; 230 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 231 "IPI vector used for vcpu notifications"); 232 233 static int trace_guest_exceptions; 234 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN, 235 &trace_guest_exceptions, 0, 236 "Trap into hypervisor on all guest exceptions and reflect them back"); 237 238 static void vm_free_memmap(struct vm *vm, int ident); 239 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm); 240 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr); 241 242 #ifdef KTR 243 static const char * 244 vcpu_state2str(enum vcpu_state state) 245 { 246 247 switch (state) { 248 case VCPU_IDLE: 249 return ("idle"); 250 case VCPU_FROZEN: 251 return ("frozen"); 252 case VCPU_RUNNING: 253 return ("running"); 254 case VCPU_SLEEPING: 255 return ("sleeping"); 256 default: 257 return ("unknown"); 258 } 259 } 260 #endif 261 262 static void 263 vcpu_cleanup(struct vm *vm, int i, bool destroy) 264 { 265 struct vcpu *vcpu = &vm->vcpu[i]; 266 267 VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic); 268 if (destroy) { 269 vmm_stat_free(vcpu->stats); 270 fpu_save_area_free(vcpu->guestfpu); 271 } 272 } 273 274 static void 275 vcpu_init(struct vm *vm, int vcpu_id, bool create) 276 { 277 struct vcpu *vcpu; 278 279 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus, 280 ("vcpu_init: invalid vcpu %d", vcpu_id)); 281 282 vcpu = &vm->vcpu[vcpu_id]; 283 284 if (create) { 285 KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already " 286 "initialized", vcpu_id)); 287 vcpu_lock_init(vcpu); 288 vcpu->state = VCPU_IDLE; 289 vcpu->hostcpu = NOCPU; 290 vcpu->guestfpu = fpu_save_area_alloc(); 291 vcpu->stats = vmm_stat_alloc(); 292 } 293 294 vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id); 295 vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED); 296 vcpu->reqidle = 0; 297 vcpu->exitintinfo = 0; 298 vcpu->nmi_pending = 0; 299 vcpu->extint_pending = 0; 300 vcpu->exception_pending = 0; 301 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 302 fpu_save_area_reset(vcpu->guestfpu); 303 vmm_stat_init(vcpu->stats); 304 } 305 306 int 307 vcpu_trace_exceptions(struct vm *vm, int vcpuid) 308 { 309 310 return (trace_guest_exceptions); 311 } 312 313 struct vm_exit * 314 vm_exitinfo(struct vm *vm, int cpuid) 315 { 316 struct vcpu *vcpu; 317 318 if (cpuid < 0 || cpuid >= vm->maxcpus) 319 panic("vm_exitinfo: invalid cpuid %d", cpuid); 320 321 vcpu = &vm->vcpu[cpuid]; 322 323 return (&vcpu->exitinfo); 324 } 325 326 static void 327 vmm_resume(void) 328 { 329 VMM_RESUME(); 330 } 331 332 static int 333 vmm_init(void) 334 { 335 int error; 336 337 vmm_host_state_init(); 338 339 vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) : 340 &IDTVEC(justreturn)); 341 if (vmm_ipinum < 0) 342 vmm_ipinum = IPI_AST; 343 344 error = vmm_mem_init(); 345 if (error) 346 return (error); 347 348 if (vmm_is_intel()) 349 ops = &vmm_ops_intel; 350 else if (vmm_is_amd()) 351 ops = &vmm_ops_amd; 352 else 353 return (ENXIO); 354 355 vmm_resume_p = vmm_resume; 356 357 return (VMM_INIT(vmm_ipinum)); 358 } 359 360 static int 361 vmm_handler(module_t mod, int what, void *arg) 362 { 363 int error; 364 365 switch (what) { 366 case MOD_LOAD: 367 vmmdev_init(); 368 error = vmm_init(); 369 if (error == 0) 370 vmm_initialized = 1; 371 break; 372 case MOD_UNLOAD: 373 error = vmmdev_cleanup(); 374 if (error == 0) { 375 vmm_resume_p = NULL; 376 iommu_cleanup(); 377 if (vmm_ipinum != IPI_AST) 378 lapic_ipi_free(vmm_ipinum); 379 error = VMM_CLEANUP(); 380 /* 381 * Something bad happened - prevent new 382 * VMs from being created 383 */ 384 if (error) 385 vmm_initialized = 0; 386 } 387 break; 388 default: 389 error = 0; 390 break; 391 } 392 return (error); 393 } 394 395 static moduledata_t vmm_kmod = { 396 "vmm", 397 vmm_handler, 398 NULL 399 }; 400 401 /* 402 * vmm initialization has the following dependencies: 403 * 404 * - VT-x initialization requires smp_rendezvous() and therefore must happen 405 * after SMP is fully functional (after SI_SUB_SMP). 406 */ 407 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 408 MODULE_VERSION(vmm, 1); 409 410 static void 411 vm_init(struct vm *vm, bool create) 412 { 413 int i; 414 415 vm->cookie = VMINIT(vm, vmspace_pmap(vm->vmspace)); 416 vm->iommu = NULL; 417 vm->vioapic = vioapic_init(vm); 418 vm->vhpet = vhpet_init(vm); 419 vm->vatpic = vatpic_init(vm); 420 vm->vatpit = vatpit_init(vm); 421 vm->vpmtmr = vpmtmr_init(vm); 422 if (create) 423 vm->vrtc = vrtc_init(vm); 424 425 CPU_ZERO(&vm->active_cpus); 426 CPU_ZERO(&vm->debug_cpus); 427 428 vm->suspend = 0; 429 CPU_ZERO(&vm->suspended_cpus); 430 431 for (i = 0; i < vm->maxcpus; i++) 432 vcpu_init(vm, i, create); 433 } 434 435 /* 436 * The default CPU topology is a single thread per package. 437 */ 438 u_int cores_per_package = 1; 439 u_int threads_per_core = 1; 440 441 int 442 vm_create(const char *name, struct vm **retvm) 443 { 444 struct vm *vm; 445 struct vmspace *vmspace; 446 447 /* 448 * If vmm.ko could not be successfully initialized then don't attempt 449 * to create the virtual machine. 450 */ 451 if (!vmm_initialized) 452 return (ENXIO); 453 454 if (name == NULL || strlen(name) >= VM_MAX_NAMELEN) 455 return (EINVAL); 456 457 vmspace = VMSPACE_ALLOC(0, VM_MAXUSER_ADDRESS); 458 if (vmspace == NULL) 459 return (ENOMEM); 460 461 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 462 strcpy(vm->name, name); 463 vm->vmspace = vmspace; 464 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 465 466 vm->sockets = 1; 467 vm->cores = cores_per_package; /* XXX backwards compatibility */ 468 vm->threads = threads_per_core; /* XXX backwards compatibility */ 469 vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */ 470 471 vm_init(vm, true); 472 473 *retvm = vm; 474 return (0); 475 } 476 477 void 478 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, 479 uint16_t *threads, uint16_t *maxcpus) 480 { 481 *sockets = vm->sockets; 482 *cores = vm->cores; 483 *threads = vm->threads; 484 *maxcpus = vm->maxcpus; 485 } 486 487 uint16_t 488 vm_get_maxcpus(struct vm *vm) 489 { 490 return (vm->maxcpus); 491 } 492 493 int 494 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, 495 uint16_t threads, uint16_t maxcpus) 496 { 497 if (maxcpus != 0) 498 return (EINVAL); /* XXX remove when supported */ 499 if ((sockets * cores * threads) > vm->maxcpus) 500 return (EINVAL); 501 /* XXX need to check sockets * cores * threads == vCPU, how? */ 502 vm->sockets = sockets; 503 vm->cores = cores; 504 vm->threads = threads; 505 vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */ 506 return(0); 507 } 508 509 static void 510 vm_cleanup(struct vm *vm, bool destroy) 511 { 512 struct mem_map *mm; 513 int i; 514 515 ppt_unassign_all(vm); 516 517 if (vm->iommu != NULL) 518 iommu_destroy_domain(vm->iommu); 519 520 if (destroy) 521 vrtc_cleanup(vm->vrtc); 522 else 523 vrtc_reset(vm->vrtc); 524 vpmtmr_cleanup(vm->vpmtmr); 525 vatpit_cleanup(vm->vatpit); 526 vhpet_cleanup(vm->vhpet); 527 vatpic_cleanup(vm->vatpic); 528 vioapic_cleanup(vm->vioapic); 529 530 for (i = 0; i < vm->maxcpus; i++) 531 vcpu_cleanup(vm, i, destroy); 532 533 VMCLEANUP(vm->cookie); 534 535 /* 536 * System memory is removed from the guest address space only when 537 * the VM is destroyed. This is because the mapping remains the same 538 * across VM reset. 539 * 540 * Device memory can be relocated by the guest (e.g. using PCI BARs) 541 * so those mappings are removed on a VM reset. 542 */ 543 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 544 mm = &vm->mem_maps[i]; 545 if (destroy || !sysmem_mapping(vm, mm)) 546 vm_free_memmap(vm, i); 547 } 548 549 if (destroy) { 550 for (i = 0; i < VM_MAX_MEMSEGS; i++) 551 vm_free_memseg(vm, i); 552 553 VMSPACE_FREE(vm->vmspace); 554 vm->vmspace = NULL; 555 } 556 } 557 558 void 559 vm_destroy(struct vm *vm) 560 { 561 vm_cleanup(vm, true); 562 free(vm, M_VM); 563 } 564 565 int 566 vm_reinit(struct vm *vm) 567 { 568 int error; 569 570 /* 571 * A virtual machine can be reset only if all vcpus are suspended. 572 */ 573 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 574 vm_cleanup(vm, false); 575 vm_init(vm, false); 576 error = 0; 577 } else { 578 error = EBUSY; 579 } 580 581 return (error); 582 } 583 584 const char * 585 vm_name(struct vm *vm) 586 { 587 return (vm->name); 588 } 589 590 int 591 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 592 { 593 vm_object_t obj; 594 595 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 596 return (ENOMEM); 597 else 598 return (0); 599 } 600 601 int 602 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 603 { 604 605 vmm_mmio_free(vm->vmspace, gpa, len); 606 return (0); 607 } 608 609 /* 610 * Return 'true' if 'gpa' is allocated in the guest address space. 611 * 612 * This function is called in the context of a running vcpu which acts as 613 * an implicit lock on 'vm->mem_maps[]'. 614 */ 615 bool 616 vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa) 617 { 618 struct mem_map *mm; 619 int i; 620 621 #ifdef INVARIANTS 622 int hostcpu, state; 623 state = vcpu_get_state(vm, vcpuid, &hostcpu); 624 KASSERT(state == VCPU_RUNNING && hostcpu == curcpu, 625 ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu)); 626 #endif 627 628 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 629 mm = &vm->mem_maps[i]; 630 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len) 631 return (true); /* 'gpa' is sysmem or devmem */ 632 } 633 634 if (ppt_is_mmio(vm, gpa)) 635 return (true); /* 'gpa' is pci passthru mmio */ 636 637 return (false); 638 } 639 640 int 641 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem) 642 { 643 struct mem_seg *seg; 644 vm_object_t obj; 645 646 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 647 return (EINVAL); 648 649 if (len == 0 || (len & PAGE_MASK)) 650 return (EINVAL); 651 652 seg = &vm->mem_segs[ident]; 653 if (seg->object != NULL) { 654 if (seg->len == len && seg->sysmem == sysmem) 655 return (EEXIST); 656 else 657 return (EINVAL); 658 } 659 660 obj = vm_object_allocate(OBJT_DEFAULT, len >> PAGE_SHIFT); 661 if (obj == NULL) 662 return (ENOMEM); 663 664 seg->len = len; 665 seg->object = obj; 666 seg->sysmem = sysmem; 667 return (0); 668 } 669 670 int 671 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, 672 vm_object_t *objptr) 673 { 674 struct mem_seg *seg; 675 676 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 677 return (EINVAL); 678 679 seg = &vm->mem_segs[ident]; 680 if (len) 681 *len = seg->len; 682 if (sysmem) 683 *sysmem = seg->sysmem; 684 if (objptr) 685 *objptr = seg->object; 686 return (0); 687 } 688 689 void 690 vm_free_memseg(struct vm *vm, int ident) 691 { 692 struct mem_seg *seg; 693 694 KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS, 695 ("%s: invalid memseg ident %d", __func__, ident)); 696 697 seg = &vm->mem_segs[ident]; 698 if (seg->object != NULL) { 699 vm_object_deallocate(seg->object); 700 bzero(seg, sizeof(struct mem_seg)); 701 } 702 } 703 704 int 705 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first, 706 size_t len, int prot, int flags) 707 { 708 struct mem_seg *seg; 709 struct mem_map *m, *map; 710 vm_ooffset_t last; 711 int i, error; 712 713 if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0) 714 return (EINVAL); 715 716 if (flags & ~VM_MEMMAP_F_WIRED) 717 return (EINVAL); 718 719 if (segid < 0 || segid >= VM_MAX_MEMSEGS) 720 return (EINVAL); 721 722 seg = &vm->mem_segs[segid]; 723 if (seg->object == NULL) 724 return (EINVAL); 725 726 last = first + len; 727 if (first < 0 || first >= last || last > seg->len) 728 return (EINVAL); 729 730 if ((gpa | first | last) & PAGE_MASK) 731 return (EINVAL); 732 733 map = NULL; 734 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 735 m = &vm->mem_maps[i]; 736 if (m->len == 0) { 737 map = m; 738 break; 739 } 740 } 741 742 if (map == NULL) 743 return (ENOSPC); 744 745 error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa, 746 len, 0, VMFS_NO_SPACE, prot, prot, 0); 747 if (error != KERN_SUCCESS) 748 return (EFAULT); 749 750 vm_object_reference(seg->object); 751 752 if (flags & VM_MEMMAP_F_WIRED) { 753 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len, 754 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 755 if (error != KERN_SUCCESS) { 756 vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len); 757 return (error == KERN_RESOURCE_SHORTAGE ? ENOMEM : 758 EFAULT); 759 } 760 } 761 762 map->gpa = gpa; 763 map->len = len; 764 map->segoff = first; 765 map->segid = segid; 766 map->prot = prot; 767 map->flags = flags; 768 return (0); 769 } 770 771 int 772 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, 773 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 774 { 775 struct mem_map *mm, *mmnext; 776 int i; 777 778 mmnext = NULL; 779 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 780 mm = &vm->mem_maps[i]; 781 if (mm->len == 0 || mm->gpa < *gpa) 782 continue; 783 if (mmnext == NULL || mm->gpa < mmnext->gpa) 784 mmnext = mm; 785 } 786 787 if (mmnext != NULL) { 788 *gpa = mmnext->gpa; 789 if (segid) 790 *segid = mmnext->segid; 791 if (segoff) 792 *segoff = mmnext->segoff; 793 if (len) 794 *len = mmnext->len; 795 if (prot) 796 *prot = mmnext->prot; 797 if (flags) 798 *flags = mmnext->flags; 799 return (0); 800 } else { 801 return (ENOENT); 802 } 803 } 804 805 static void 806 vm_free_memmap(struct vm *vm, int ident) 807 { 808 struct mem_map *mm; 809 int error; 810 811 mm = &vm->mem_maps[ident]; 812 if (mm->len) { 813 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa, 814 mm->gpa + mm->len); 815 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d", 816 __func__, error)); 817 bzero(mm, sizeof(struct mem_map)); 818 } 819 } 820 821 static __inline bool 822 sysmem_mapping(struct vm *vm, struct mem_map *mm) 823 { 824 825 if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem) 826 return (true); 827 else 828 return (false); 829 } 830 831 vm_paddr_t 832 vmm_sysmem_maxaddr(struct vm *vm) 833 { 834 struct mem_map *mm; 835 vm_paddr_t maxaddr; 836 int i; 837 838 maxaddr = 0; 839 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 840 mm = &vm->mem_maps[i]; 841 if (sysmem_mapping(vm, mm)) { 842 if (maxaddr < mm->gpa + mm->len) 843 maxaddr = mm->gpa + mm->len; 844 } 845 } 846 return (maxaddr); 847 } 848 849 static void 850 vm_iommu_modify(struct vm *vm, bool map) 851 { 852 int i, sz; 853 vm_paddr_t gpa, hpa; 854 struct mem_map *mm; 855 void *vp, *cookie, *host_domain; 856 857 sz = PAGE_SIZE; 858 host_domain = iommu_host_domain(); 859 860 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 861 mm = &vm->mem_maps[i]; 862 if (!sysmem_mapping(vm, mm)) 863 continue; 864 865 if (map) { 866 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0, 867 ("iommu map found invalid memmap %#lx/%#lx/%#x", 868 mm->gpa, mm->len, mm->flags)); 869 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0) 870 continue; 871 mm->flags |= VM_MEMMAP_F_IOMMU; 872 } else { 873 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0) 874 continue; 875 mm->flags &= ~VM_MEMMAP_F_IOMMU; 876 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0, 877 ("iommu unmap found invalid memmap %#lx/%#lx/%#x", 878 mm->gpa, mm->len, mm->flags)); 879 } 880 881 gpa = mm->gpa; 882 while (gpa < mm->gpa + mm->len) { 883 vp = vm_gpa_hold(vm, -1, gpa, PAGE_SIZE, VM_PROT_WRITE, 884 &cookie); 885 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", 886 vm_name(vm), gpa)); 887 888 vm_gpa_release(cookie); 889 890 hpa = DMAP_TO_PHYS((uintptr_t)vp); 891 if (map) { 892 iommu_create_mapping(vm->iommu, gpa, hpa, sz); 893 iommu_remove_mapping(host_domain, hpa, sz); 894 } else { 895 iommu_remove_mapping(vm->iommu, gpa, sz); 896 iommu_create_mapping(host_domain, hpa, hpa, sz); 897 } 898 899 gpa += PAGE_SIZE; 900 } 901 } 902 903 /* 904 * Invalidate the cached translations associated with the domain 905 * from which pages were removed. 906 */ 907 if (map) 908 iommu_invalidate_tlb(host_domain); 909 else 910 iommu_invalidate_tlb(vm->iommu); 911 } 912 913 #define vm_iommu_unmap(vm) vm_iommu_modify((vm), false) 914 #define vm_iommu_map(vm) vm_iommu_modify((vm), true) 915 916 int 917 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 918 { 919 int error; 920 921 error = ppt_unassign_device(vm, bus, slot, func); 922 if (error) 923 return (error); 924 925 if (ppt_assigned_devices(vm) == 0) 926 vm_iommu_unmap(vm); 927 928 return (0); 929 } 930 931 int 932 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 933 { 934 int error; 935 vm_paddr_t maxaddr; 936 937 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */ 938 if (ppt_assigned_devices(vm) == 0) { 939 KASSERT(vm->iommu == NULL, 940 ("vm_assign_pptdev: iommu must be NULL")); 941 maxaddr = vmm_sysmem_maxaddr(vm); 942 vm->iommu = iommu_create_domain(maxaddr); 943 if (vm->iommu == NULL) 944 return (ENXIO); 945 vm_iommu_map(vm); 946 } 947 948 error = ppt_assign_device(vm, bus, slot, func); 949 return (error); 950 } 951 952 void * 953 vm_gpa_hold(struct vm *vm, int vcpuid, vm_paddr_t gpa, size_t len, int reqprot, 954 void **cookie) 955 { 956 int i, count, pageoff; 957 struct mem_map *mm; 958 vm_page_t m; 959 #ifdef INVARIANTS 960 /* 961 * All vcpus are frozen by ioctls that modify the memory map 962 * (e.g. VM_MMAP_MEMSEG). Therefore 'vm->memmap[]' stability is 963 * guaranteed if at least one vcpu is in the VCPU_FROZEN state. 964 */ 965 int state; 966 KASSERT(vcpuid >= -1 && vcpuid < vm->maxcpus, ("%s: invalid vcpuid %d", 967 __func__, vcpuid)); 968 for (i = 0; i < vm->maxcpus; i++) { 969 if (vcpuid != -1 && vcpuid != i) 970 continue; 971 state = vcpu_get_state(vm, i, NULL); 972 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d", 973 __func__, state)); 974 } 975 #endif 976 pageoff = gpa & PAGE_MASK; 977 if (len > PAGE_SIZE - pageoff) 978 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 979 980 count = 0; 981 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 982 mm = &vm->mem_maps[i]; 983 if (sysmem_mapping(vm, mm) && gpa >= mm->gpa && 984 gpa < mm->gpa + mm->len) { 985 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 986 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 987 break; 988 } 989 } 990 991 if (count == 1) { 992 *cookie = m; 993 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 994 } else { 995 *cookie = NULL; 996 return (NULL); 997 } 998 } 999 1000 void 1001 vm_gpa_release(void *cookie) 1002 { 1003 vm_page_t m = cookie; 1004 1005 vm_page_unwire(m, PQ_ACTIVE); 1006 } 1007 1008 int 1009 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval) 1010 { 1011 1012 if (vcpu < 0 || vcpu >= vm->maxcpus) 1013 return (EINVAL); 1014 1015 if (reg >= VM_REG_LAST) 1016 return (EINVAL); 1017 1018 return (VMGETREG(vm->cookie, vcpu, reg, retval)); 1019 } 1020 1021 int 1022 vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val) 1023 { 1024 struct vcpu *vcpu; 1025 int error; 1026 1027 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1028 return (EINVAL); 1029 1030 if (reg >= VM_REG_LAST) 1031 return (EINVAL); 1032 1033 error = VMSETREG(vm->cookie, vcpuid, reg, val); 1034 if (error || reg != VM_REG_GUEST_RIP) 1035 return (error); 1036 1037 /* Set 'nextrip' to match the value of %rip */ 1038 VCPU_CTR1(vm, vcpuid, "Setting nextrip to %#lx", val); 1039 vcpu = &vm->vcpu[vcpuid]; 1040 vcpu->nextrip = val; 1041 return (0); 1042 } 1043 1044 static bool 1045 is_descriptor_table(int reg) 1046 { 1047 1048 switch (reg) { 1049 case VM_REG_GUEST_IDTR: 1050 case VM_REG_GUEST_GDTR: 1051 return (true); 1052 default: 1053 return (false); 1054 } 1055 } 1056 1057 static bool 1058 is_segment_register(int reg) 1059 { 1060 1061 switch (reg) { 1062 case VM_REG_GUEST_ES: 1063 case VM_REG_GUEST_CS: 1064 case VM_REG_GUEST_SS: 1065 case VM_REG_GUEST_DS: 1066 case VM_REG_GUEST_FS: 1067 case VM_REG_GUEST_GS: 1068 case VM_REG_GUEST_TR: 1069 case VM_REG_GUEST_LDTR: 1070 return (true); 1071 default: 1072 return (false); 1073 } 1074 } 1075 1076 int 1077 vm_get_seg_desc(struct vm *vm, int vcpu, int reg, 1078 struct seg_desc *desc) 1079 { 1080 1081 if (vcpu < 0 || vcpu >= vm->maxcpus) 1082 return (EINVAL); 1083 1084 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1085 return (EINVAL); 1086 1087 return (VMGETDESC(vm->cookie, vcpu, reg, desc)); 1088 } 1089 1090 int 1091 vm_set_seg_desc(struct vm *vm, int vcpu, int reg, 1092 struct seg_desc *desc) 1093 { 1094 if (vcpu < 0 || vcpu >= vm->maxcpus) 1095 return (EINVAL); 1096 1097 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1098 return (EINVAL); 1099 1100 return (VMSETDESC(vm->cookie, vcpu, reg, desc)); 1101 } 1102 1103 static void 1104 restore_guest_fpustate(struct vcpu *vcpu) 1105 { 1106 1107 /* flush host state to the pcb */ 1108 fpuexit(curthread); 1109 1110 /* restore guest FPU state */ 1111 fpu_stop_emulating(); 1112 fpurestore(vcpu->guestfpu); 1113 1114 /* restore guest XCR0 if XSAVE is enabled in the host */ 1115 if (rcr4() & CR4_XSAVE) 1116 load_xcr(0, vcpu->guest_xcr0); 1117 1118 /* 1119 * The FPU is now "dirty" with the guest's state so turn on emulation 1120 * to trap any access to the FPU by the host. 1121 */ 1122 fpu_start_emulating(); 1123 } 1124 1125 static void 1126 save_guest_fpustate(struct vcpu *vcpu) 1127 { 1128 1129 if ((rcr0() & CR0_TS) == 0) 1130 panic("fpu emulation not enabled in host!"); 1131 1132 /* save guest XCR0 and restore host XCR0 */ 1133 if (rcr4() & CR4_XSAVE) { 1134 vcpu->guest_xcr0 = rxcr(0); 1135 load_xcr(0, vmm_get_host_xcr0()); 1136 } 1137 1138 /* save guest FPU state */ 1139 fpu_stop_emulating(); 1140 fpusave(vcpu->guestfpu); 1141 fpu_start_emulating(); 1142 } 1143 1144 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 1145 1146 static int 1147 vcpu_set_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate, 1148 bool from_idle) 1149 { 1150 struct vcpu *vcpu; 1151 int error; 1152 1153 vcpu = &vm->vcpu[vcpuid]; 1154 vcpu_assert_locked(vcpu); 1155 1156 /* 1157 * State transitions from the vmmdev_ioctl() must always begin from 1158 * the VCPU_IDLE state. This guarantees that there is only a single 1159 * ioctl() operating on a vcpu at any point. 1160 */ 1161 if (from_idle) { 1162 while (vcpu->state != VCPU_IDLE) { 1163 vcpu->reqidle = 1; 1164 vcpu_notify_event_locked(vcpu, false); 1165 VCPU_CTR1(vm, vcpuid, "vcpu state change from %s to " 1166 "idle requested", vcpu_state2str(vcpu->state)); 1167 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 1168 } 1169 } else { 1170 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 1171 "vcpu idle state")); 1172 } 1173 1174 if (vcpu->state == VCPU_RUNNING) { 1175 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 1176 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 1177 } else { 1178 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 1179 "vcpu that is not running", vcpu->hostcpu)); 1180 } 1181 1182 /* 1183 * The following state transitions are allowed: 1184 * IDLE -> FROZEN -> IDLE 1185 * FROZEN -> RUNNING -> FROZEN 1186 * FROZEN -> SLEEPING -> FROZEN 1187 */ 1188 switch (vcpu->state) { 1189 case VCPU_IDLE: 1190 case VCPU_RUNNING: 1191 case VCPU_SLEEPING: 1192 error = (newstate != VCPU_FROZEN); 1193 break; 1194 case VCPU_FROZEN: 1195 error = (newstate == VCPU_FROZEN); 1196 break; 1197 default: 1198 error = 1; 1199 break; 1200 } 1201 1202 if (error) 1203 return (EBUSY); 1204 1205 VCPU_CTR2(vm, vcpuid, "vcpu state changed from %s to %s", 1206 vcpu_state2str(vcpu->state), vcpu_state2str(newstate)); 1207 1208 vcpu->state = newstate; 1209 if (newstate == VCPU_RUNNING) 1210 vcpu->hostcpu = curcpu; 1211 else 1212 vcpu->hostcpu = NOCPU; 1213 1214 if (newstate == VCPU_IDLE) 1215 wakeup(&vcpu->state); 1216 1217 return (0); 1218 } 1219 1220 static void 1221 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1222 { 1223 int error; 1224 1225 if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0) 1226 panic("Error %d setting state to %d\n", error, newstate); 1227 } 1228 1229 static void 1230 vcpu_require_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1231 { 1232 int error; 1233 1234 if ((error = vcpu_set_state_locked(vm, vcpuid, newstate, false)) != 0) 1235 panic("Error %d setting state to %d", error, newstate); 1236 } 1237 1238 static void 1239 vm_set_rendezvous_func(struct vm *vm, vm_rendezvous_func_t func) 1240 { 1241 1242 KASSERT(mtx_owned(&vm->rendezvous_mtx), ("rendezvous_mtx not locked")); 1243 1244 /* 1245 * Update 'rendezvous_func' and execute a write memory barrier to 1246 * ensure that it is visible across all host cpus. This is not needed 1247 * for correctness but it does ensure that all the vcpus will notice 1248 * that the rendezvous is requested immediately. 1249 */ 1250 vm->rendezvous_func = func; 1251 wmb(); 1252 } 1253 1254 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt) \ 1255 do { \ 1256 if (vcpuid >= 0) \ 1257 VCPU_CTR0(vm, vcpuid, fmt); \ 1258 else \ 1259 VM_CTR0(vm, fmt); \ 1260 } while (0) 1261 1262 static void 1263 vm_handle_rendezvous(struct vm *vm, int vcpuid) 1264 { 1265 1266 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus), 1267 ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid)); 1268 1269 mtx_lock(&vm->rendezvous_mtx); 1270 while (vm->rendezvous_func != NULL) { 1271 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1272 CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus); 1273 1274 if (vcpuid != -1 && 1275 CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1276 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1277 VCPU_CTR0(vm, vcpuid, "Calling rendezvous func"); 1278 (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg); 1279 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1280 } 1281 if (CPU_CMP(&vm->rendezvous_req_cpus, 1282 &vm->rendezvous_done_cpus) == 0) { 1283 VCPU_CTR0(vm, vcpuid, "Rendezvous completed"); 1284 vm_set_rendezvous_func(vm, NULL); 1285 wakeup(&vm->rendezvous_func); 1286 break; 1287 } 1288 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion"); 1289 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1290 "vmrndv", 0); 1291 } 1292 mtx_unlock(&vm->rendezvous_mtx); 1293 } 1294 1295 /* 1296 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1297 */ 1298 static int 1299 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu) 1300 { 1301 struct vcpu *vcpu; 1302 const char *wmesg; 1303 int t, vcpu_halted, vm_halted; 1304 1305 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1306 1307 vcpu = &vm->vcpu[vcpuid]; 1308 vcpu_halted = 0; 1309 vm_halted = 0; 1310 1311 vcpu_lock(vcpu); 1312 while (1) { 1313 /* 1314 * Do a final check for pending NMI or interrupts before 1315 * really putting this thread to sleep. Also check for 1316 * software events that would cause this vcpu to wakeup. 1317 * 1318 * These interrupts/events could have happened after the 1319 * vcpu returned from VMRUN() and before it acquired the 1320 * vcpu lock above. 1321 */ 1322 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle) 1323 break; 1324 if (vm_nmi_pending(vm, vcpuid)) 1325 break; 1326 if (!intr_disabled) { 1327 if (vm_extint_pending(vm, vcpuid) || 1328 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1329 break; 1330 } 1331 } 1332 1333 /* Don't go to sleep if the vcpu thread needs to yield */ 1334 if (vcpu_should_yield(vm, vcpuid)) 1335 break; 1336 1337 if (vcpu_debugged(vm, vcpuid)) 1338 break; 1339 1340 /* 1341 * Some Linux guests implement "halt" by having all vcpus 1342 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1343 * track of the vcpus that have entered this state. When all 1344 * vcpus enter the halted state the virtual machine is halted. 1345 */ 1346 if (intr_disabled) { 1347 wmesg = "vmhalt"; 1348 VCPU_CTR0(vm, vcpuid, "Halted"); 1349 if (!vcpu_halted && halt_detection_enabled) { 1350 vcpu_halted = 1; 1351 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1352 } 1353 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1354 vm_halted = 1; 1355 break; 1356 } 1357 } else { 1358 wmesg = "vmidle"; 1359 } 1360 1361 t = ticks; 1362 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); 1363 /* 1364 * XXX msleep_spin() cannot be interrupted by signals so 1365 * wake up periodically to check pending signals. 1366 */ 1367 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1368 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); 1369 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t); 1370 } 1371 1372 if (vcpu_halted) 1373 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1374 1375 vcpu_unlock(vcpu); 1376 1377 if (vm_halted) 1378 vm_suspend(vm, VM_SUSPEND_HALT); 1379 1380 return (0); 1381 } 1382 1383 static int 1384 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu) 1385 { 1386 int rv, ftype; 1387 struct vm_map *map; 1388 struct vcpu *vcpu; 1389 struct vm_exit *vme; 1390 1391 vcpu = &vm->vcpu[vcpuid]; 1392 vme = &vcpu->exitinfo; 1393 1394 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1395 __func__, vme->inst_length)); 1396 1397 ftype = vme->u.paging.fault_type; 1398 KASSERT(ftype == VM_PROT_READ || 1399 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1400 ("vm_handle_paging: invalid fault_type %d", ftype)); 1401 1402 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1403 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1404 vme->u.paging.gpa, ftype); 1405 if (rv == 0) { 1406 VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx", 1407 ftype == VM_PROT_READ ? "accessed" : "dirty", 1408 vme->u.paging.gpa); 1409 goto done; 1410 } 1411 } 1412 1413 map = &vm->vmspace->vm_map; 1414 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL); 1415 1416 VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, " 1417 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1418 1419 if (rv != KERN_SUCCESS) 1420 return (EFAULT); 1421 done: 1422 return (0); 1423 } 1424 1425 static int 1426 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu) 1427 { 1428 struct vie *vie; 1429 struct vcpu *vcpu; 1430 struct vm_exit *vme; 1431 uint64_t gla, gpa, cs_base; 1432 struct vm_guest_paging *paging; 1433 mem_region_read_t mread; 1434 mem_region_write_t mwrite; 1435 enum vm_cpu_mode cpu_mode; 1436 int cs_d, error, fault; 1437 1438 vcpu = &vm->vcpu[vcpuid]; 1439 vme = &vcpu->exitinfo; 1440 1441 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1442 __func__, vme->inst_length)); 1443 1444 gla = vme->u.inst_emul.gla; 1445 gpa = vme->u.inst_emul.gpa; 1446 cs_base = vme->u.inst_emul.cs_base; 1447 cs_d = vme->u.inst_emul.cs_d; 1448 vie = &vme->u.inst_emul.vie; 1449 paging = &vme->u.inst_emul.paging; 1450 cpu_mode = paging->cpu_mode; 1451 1452 VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa); 1453 1454 /* Fetch, decode and emulate the faulting instruction */ 1455 if (vie->num_valid == 0) { 1456 error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip + 1457 cs_base, VIE_INST_SIZE, vie, &fault); 1458 } else { 1459 /* 1460 * The instruction bytes have already been copied into 'vie' 1461 */ 1462 error = fault = 0; 1463 } 1464 if (error || fault) 1465 return (error); 1466 1467 if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) { 1468 VCPU_CTR1(vm, vcpuid, "Error decoding instruction at %#lx", 1469 vme->rip + cs_base); 1470 *retu = true; /* dump instruction bytes in userspace */ 1471 return (0); 1472 } 1473 1474 /* 1475 * Update 'nextrip' based on the length of the emulated instruction. 1476 */ 1477 vme->inst_length = vie->num_processed; 1478 vcpu->nextrip += vie->num_processed; 1479 VCPU_CTR1(vm, vcpuid, "nextrip updated to %#lx after instruction " 1480 "decoding", vcpu->nextrip); 1481 1482 /* return to userland unless this is an in-kernel emulated device */ 1483 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1484 mread = lapic_mmio_read; 1485 mwrite = lapic_mmio_write; 1486 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1487 mread = vioapic_mmio_read; 1488 mwrite = vioapic_mmio_write; 1489 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1490 mread = vhpet_mmio_read; 1491 mwrite = vhpet_mmio_write; 1492 } else { 1493 *retu = true; 1494 return (0); 1495 } 1496 1497 error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging, 1498 mread, mwrite, retu); 1499 1500 return (error); 1501 } 1502 1503 static int 1504 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu) 1505 { 1506 int i, done; 1507 struct vcpu *vcpu; 1508 1509 done = 0; 1510 vcpu = &vm->vcpu[vcpuid]; 1511 1512 CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus); 1513 1514 /* 1515 * Wait until all 'active_cpus' have suspended themselves. 1516 * 1517 * Since a VM may be suspended at any time including when one or 1518 * more vcpus are doing a rendezvous we need to call the rendezvous 1519 * handler while we are waiting to prevent a deadlock. 1520 */ 1521 vcpu_lock(vcpu); 1522 while (1) { 1523 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1524 VCPU_CTR0(vm, vcpuid, "All vcpus suspended"); 1525 break; 1526 } 1527 1528 if (vm->rendezvous_func == NULL) { 1529 VCPU_CTR0(vm, vcpuid, "Sleeping during suspend"); 1530 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); 1531 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1532 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); 1533 } else { 1534 VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend"); 1535 vcpu_unlock(vcpu); 1536 vm_handle_rendezvous(vm, vcpuid); 1537 vcpu_lock(vcpu); 1538 } 1539 } 1540 vcpu_unlock(vcpu); 1541 1542 /* 1543 * Wakeup the other sleeping vcpus and return to userspace. 1544 */ 1545 for (i = 0; i < vm->maxcpus; i++) { 1546 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1547 vcpu_notify_event(vm, i, false); 1548 } 1549 } 1550 1551 *retu = true; 1552 return (0); 1553 } 1554 1555 static int 1556 vm_handle_reqidle(struct vm *vm, int vcpuid, bool *retu) 1557 { 1558 struct vcpu *vcpu = &vm->vcpu[vcpuid]; 1559 1560 vcpu_lock(vcpu); 1561 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle)); 1562 vcpu->reqidle = 0; 1563 vcpu_unlock(vcpu); 1564 *retu = true; 1565 return (0); 1566 } 1567 1568 int 1569 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1570 { 1571 int i; 1572 1573 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1574 return (EINVAL); 1575 1576 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1577 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1578 vm->suspend, how); 1579 return (EALREADY); 1580 } 1581 1582 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1583 1584 /* 1585 * Notify all active vcpus that they are now suspended. 1586 */ 1587 for (i = 0; i < vm->maxcpus; i++) { 1588 if (CPU_ISSET(i, &vm->active_cpus)) 1589 vcpu_notify_event(vm, i, false); 1590 } 1591 1592 return (0); 1593 } 1594 1595 void 1596 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip) 1597 { 1598 struct vm_exit *vmexit; 1599 1600 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1601 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1602 1603 vmexit = vm_exitinfo(vm, vcpuid); 1604 vmexit->rip = rip; 1605 vmexit->inst_length = 0; 1606 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1607 vmexit->u.suspended.how = vm->suspend; 1608 } 1609 1610 void 1611 vm_exit_debug(struct vm *vm, int vcpuid, uint64_t rip) 1612 { 1613 struct vm_exit *vmexit; 1614 1615 vmexit = vm_exitinfo(vm, vcpuid); 1616 vmexit->rip = rip; 1617 vmexit->inst_length = 0; 1618 vmexit->exitcode = VM_EXITCODE_DEBUG; 1619 } 1620 1621 void 1622 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip) 1623 { 1624 struct vm_exit *vmexit; 1625 1626 KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress")); 1627 1628 vmexit = vm_exitinfo(vm, vcpuid); 1629 vmexit->rip = rip; 1630 vmexit->inst_length = 0; 1631 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1632 vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1); 1633 } 1634 1635 void 1636 vm_exit_reqidle(struct vm *vm, int vcpuid, uint64_t rip) 1637 { 1638 struct vm_exit *vmexit; 1639 1640 vmexit = vm_exitinfo(vm, vcpuid); 1641 vmexit->rip = rip; 1642 vmexit->inst_length = 0; 1643 vmexit->exitcode = VM_EXITCODE_REQIDLE; 1644 vmm_stat_incr(vm, vcpuid, VMEXIT_REQIDLE, 1); 1645 } 1646 1647 void 1648 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip) 1649 { 1650 struct vm_exit *vmexit; 1651 1652 vmexit = vm_exitinfo(vm, vcpuid); 1653 vmexit->rip = rip; 1654 vmexit->inst_length = 0; 1655 vmexit->exitcode = VM_EXITCODE_BOGUS; 1656 vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1); 1657 } 1658 1659 int 1660 vm_run(struct vm *vm, struct vm_run *vmrun) 1661 { 1662 struct vm_eventinfo evinfo; 1663 int error, vcpuid; 1664 struct vcpu *vcpu; 1665 struct pcb *pcb; 1666 uint64_t tscval; 1667 struct vm_exit *vme; 1668 bool retu, intr_disabled; 1669 pmap_t pmap; 1670 1671 vcpuid = vmrun->cpuid; 1672 1673 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1674 return (EINVAL); 1675 1676 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1677 return (EINVAL); 1678 1679 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1680 return (EINVAL); 1681 1682 pmap = vmspace_pmap(vm->vmspace); 1683 vcpu = &vm->vcpu[vcpuid]; 1684 vme = &vcpu->exitinfo; 1685 evinfo.rptr = &vm->rendezvous_func; 1686 evinfo.sptr = &vm->suspend; 1687 evinfo.iptr = &vcpu->reqidle; 1688 restart: 1689 critical_enter(); 1690 1691 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1692 ("vm_run: absurd pm_active")); 1693 1694 tscval = rdtsc(); 1695 1696 pcb = PCPU_GET(curpcb); 1697 set_pcb_flags(pcb, PCB_FULL_IRET); 1698 1699 restore_guest_fpustate(vcpu); 1700 1701 vcpu_require_state(vm, vcpuid, VCPU_RUNNING); 1702 error = VMRUN(vm->cookie, vcpuid, vcpu->nextrip, pmap, &evinfo); 1703 vcpu_require_state(vm, vcpuid, VCPU_FROZEN); 1704 1705 save_guest_fpustate(vcpu); 1706 1707 vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1708 1709 critical_exit(); 1710 1711 if (error == 0) { 1712 retu = false; 1713 vcpu->nextrip = vme->rip + vme->inst_length; 1714 switch (vme->exitcode) { 1715 case VM_EXITCODE_REQIDLE: 1716 error = vm_handle_reqidle(vm, vcpuid, &retu); 1717 break; 1718 case VM_EXITCODE_SUSPENDED: 1719 error = vm_handle_suspend(vm, vcpuid, &retu); 1720 break; 1721 case VM_EXITCODE_IOAPIC_EOI: 1722 vioapic_process_eoi(vm, vcpuid, 1723 vme->u.ioapic_eoi.vector); 1724 break; 1725 case VM_EXITCODE_RENDEZVOUS: 1726 vm_handle_rendezvous(vm, vcpuid); 1727 error = 0; 1728 break; 1729 case VM_EXITCODE_HLT: 1730 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1731 error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu); 1732 break; 1733 case VM_EXITCODE_PAGING: 1734 error = vm_handle_paging(vm, vcpuid, &retu); 1735 break; 1736 case VM_EXITCODE_INST_EMUL: 1737 error = vm_handle_inst_emul(vm, vcpuid, &retu); 1738 break; 1739 case VM_EXITCODE_INOUT: 1740 case VM_EXITCODE_INOUT_STR: 1741 error = vm_handle_inout(vm, vcpuid, vme, &retu); 1742 break; 1743 case VM_EXITCODE_MONITOR: 1744 case VM_EXITCODE_MWAIT: 1745 case VM_EXITCODE_VMINSN: 1746 vm_inject_ud(vm, vcpuid); 1747 break; 1748 default: 1749 retu = true; /* handled in userland */ 1750 break; 1751 } 1752 } 1753 1754 if (error == 0 && retu == false) 1755 goto restart; 1756 1757 VCPU_CTR2(vm, vcpuid, "retu %d/%d", error, vme->exitcode); 1758 1759 /* copy the exit information */ 1760 bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit)); 1761 return (error); 1762 } 1763 1764 int 1765 vm_restart_instruction(void *arg, int vcpuid) 1766 { 1767 struct vm *vm; 1768 struct vcpu *vcpu; 1769 enum vcpu_state state; 1770 uint64_t rip; 1771 int error; 1772 1773 vm = arg; 1774 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1775 return (EINVAL); 1776 1777 vcpu = &vm->vcpu[vcpuid]; 1778 state = vcpu_get_state(vm, vcpuid, NULL); 1779 if (state == VCPU_RUNNING) { 1780 /* 1781 * When a vcpu is "running" the next instruction is determined 1782 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'. 1783 * Thus setting 'inst_length' to zero will cause the current 1784 * instruction to be restarted. 1785 */ 1786 vcpu->exitinfo.inst_length = 0; 1787 VCPU_CTR1(vm, vcpuid, "restarting instruction at %#lx by " 1788 "setting inst_length to zero", vcpu->exitinfo.rip); 1789 } else if (state == VCPU_FROZEN) { 1790 /* 1791 * When a vcpu is "frozen" it is outside the critical section 1792 * around VMRUN() and 'nextrip' points to the next instruction. 1793 * Thus instruction restart is achieved by setting 'nextrip' 1794 * to the vcpu's %rip. 1795 */ 1796 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip); 1797 KASSERT(!error, ("%s: error %d getting rip", __func__, error)); 1798 VCPU_CTR2(vm, vcpuid, "restarting instruction by updating " 1799 "nextrip from %#lx to %#lx", vcpu->nextrip, rip); 1800 vcpu->nextrip = rip; 1801 } else { 1802 panic("%s: invalid state %d", __func__, state); 1803 } 1804 return (0); 1805 } 1806 1807 int 1808 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info) 1809 { 1810 struct vcpu *vcpu; 1811 int type, vector; 1812 1813 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1814 return (EINVAL); 1815 1816 vcpu = &vm->vcpu[vcpuid]; 1817 1818 if (info & VM_INTINFO_VALID) { 1819 type = info & VM_INTINFO_TYPE; 1820 vector = info & 0xff; 1821 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 1822 return (EINVAL); 1823 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 1824 return (EINVAL); 1825 if (info & VM_INTINFO_RSVD) 1826 return (EINVAL); 1827 } else { 1828 info = 0; 1829 } 1830 VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info); 1831 vcpu->exitintinfo = info; 1832 return (0); 1833 } 1834 1835 enum exc_class { 1836 EXC_BENIGN, 1837 EXC_CONTRIBUTORY, 1838 EXC_PAGEFAULT 1839 }; 1840 1841 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 1842 1843 static enum exc_class 1844 exception_class(uint64_t info) 1845 { 1846 int type, vector; 1847 1848 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 1849 type = info & VM_INTINFO_TYPE; 1850 vector = info & 0xff; 1851 1852 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 1853 switch (type) { 1854 case VM_INTINFO_HWINTR: 1855 case VM_INTINFO_SWINTR: 1856 case VM_INTINFO_NMI: 1857 return (EXC_BENIGN); 1858 default: 1859 /* 1860 * Hardware exception. 1861 * 1862 * SVM and VT-x use identical type values to represent NMI, 1863 * hardware interrupt and software interrupt. 1864 * 1865 * SVM uses type '3' for all exceptions. VT-x uses type '3' 1866 * for exceptions except #BP and #OF. #BP and #OF use a type 1867 * value of '5' or '6'. Therefore we don't check for explicit 1868 * values of 'type' to classify 'intinfo' into a hardware 1869 * exception. 1870 */ 1871 break; 1872 } 1873 1874 switch (vector) { 1875 case IDT_PF: 1876 case IDT_VE: 1877 return (EXC_PAGEFAULT); 1878 case IDT_DE: 1879 case IDT_TS: 1880 case IDT_NP: 1881 case IDT_SS: 1882 case IDT_GP: 1883 return (EXC_CONTRIBUTORY); 1884 default: 1885 return (EXC_BENIGN); 1886 } 1887 } 1888 1889 static int 1890 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2, 1891 uint64_t *retinfo) 1892 { 1893 enum exc_class exc1, exc2; 1894 int type1, vector1; 1895 1896 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 1897 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 1898 1899 /* 1900 * If an exception occurs while attempting to call the double-fault 1901 * handler the processor enters shutdown mode (aka triple fault). 1902 */ 1903 type1 = info1 & VM_INTINFO_TYPE; 1904 vector1 = info1 & 0xff; 1905 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 1906 VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)", 1907 info1, info2); 1908 vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT); 1909 *retinfo = 0; 1910 return (0); 1911 } 1912 1913 /* 1914 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 1915 */ 1916 exc1 = exception_class(info1); 1917 exc2 = exception_class(info2); 1918 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 1919 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 1920 /* Convert nested fault into a double fault. */ 1921 *retinfo = IDT_DF; 1922 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1923 *retinfo |= VM_INTINFO_DEL_ERRCODE; 1924 } else { 1925 /* Handle exceptions serially */ 1926 *retinfo = info2; 1927 } 1928 return (1); 1929 } 1930 1931 static uint64_t 1932 vcpu_exception_intinfo(struct vcpu *vcpu) 1933 { 1934 uint64_t info = 0; 1935 1936 if (vcpu->exception_pending) { 1937 info = vcpu->exc_vector & 0xff; 1938 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1939 if (vcpu->exc_errcode_valid) { 1940 info |= VM_INTINFO_DEL_ERRCODE; 1941 info |= (uint64_t)vcpu->exc_errcode << 32; 1942 } 1943 } 1944 return (info); 1945 } 1946 1947 int 1948 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo) 1949 { 1950 struct vcpu *vcpu; 1951 uint64_t info1, info2; 1952 int valid; 1953 1954 KASSERT(vcpuid >= 0 && 1955 vcpuid < vm->maxcpus, ("invalid vcpu %d", vcpuid)); 1956 1957 vcpu = &vm->vcpu[vcpuid]; 1958 1959 info1 = vcpu->exitintinfo; 1960 vcpu->exitintinfo = 0; 1961 1962 info2 = 0; 1963 if (vcpu->exception_pending) { 1964 info2 = vcpu_exception_intinfo(vcpu); 1965 vcpu->exception_pending = 0; 1966 VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx", 1967 vcpu->exc_vector, info2); 1968 } 1969 1970 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 1971 valid = nested_fault(vm, vcpuid, info1, info2, retinfo); 1972 } else if (info1 & VM_INTINFO_VALID) { 1973 *retinfo = info1; 1974 valid = 1; 1975 } else if (info2 & VM_INTINFO_VALID) { 1976 *retinfo = info2; 1977 valid = 1; 1978 } else { 1979 valid = 0; 1980 } 1981 1982 if (valid) { 1983 VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), " 1984 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 1985 } 1986 1987 return (valid); 1988 } 1989 1990 int 1991 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2) 1992 { 1993 struct vcpu *vcpu; 1994 1995 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1996 return (EINVAL); 1997 1998 vcpu = &vm->vcpu[vcpuid]; 1999 *info1 = vcpu->exitintinfo; 2000 *info2 = vcpu_exception_intinfo(vcpu); 2001 return (0); 2002 } 2003 2004 int 2005 vm_inject_exception(struct vm *vm, int vcpuid, int vector, int errcode_valid, 2006 uint32_t errcode, int restart_instruction) 2007 { 2008 struct vcpu *vcpu; 2009 uint64_t regval; 2010 int error; 2011 2012 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2013 return (EINVAL); 2014 2015 if (vector < 0 || vector >= 32) 2016 return (EINVAL); 2017 2018 /* 2019 * A double fault exception should never be injected directly into 2020 * the guest. It is a derived exception that results from specific 2021 * combinations of nested faults. 2022 */ 2023 if (vector == IDT_DF) 2024 return (EINVAL); 2025 2026 vcpu = &vm->vcpu[vcpuid]; 2027 2028 if (vcpu->exception_pending) { 2029 VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to " 2030 "pending exception %d", vector, vcpu->exc_vector); 2031 return (EBUSY); 2032 } 2033 2034 if (errcode_valid) { 2035 /* 2036 * Exceptions don't deliver an error code in real mode. 2037 */ 2038 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_CR0, ®val); 2039 KASSERT(!error, ("%s: error %d getting CR0", __func__, error)); 2040 if (!(regval & CR0_PE)) 2041 errcode_valid = 0; 2042 } 2043 2044 /* 2045 * From section 26.6.1 "Interruptibility State" in Intel SDM: 2046 * 2047 * Event blocking by "STI" or "MOV SS" is cleared after guest executes 2048 * one instruction or incurs an exception. 2049 */ 2050 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0); 2051 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", 2052 __func__, error)); 2053 2054 if (restart_instruction) 2055 vm_restart_instruction(vm, vcpuid); 2056 2057 vcpu->exception_pending = 1; 2058 vcpu->exc_vector = vector; 2059 vcpu->exc_errcode = errcode; 2060 vcpu->exc_errcode_valid = errcode_valid; 2061 VCPU_CTR1(vm, vcpuid, "Exception %d pending", vector); 2062 return (0); 2063 } 2064 2065 void 2066 vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid, 2067 int errcode) 2068 { 2069 struct vm *vm; 2070 int error, restart_instruction; 2071 2072 vm = vmarg; 2073 restart_instruction = 1; 2074 2075 error = vm_inject_exception(vm, vcpuid, vector, errcode_valid, 2076 errcode, restart_instruction); 2077 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 2078 } 2079 2080 void 2081 vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2) 2082 { 2083 struct vm *vm; 2084 int error; 2085 2086 vm = vmarg; 2087 VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx", 2088 error_code, cr2); 2089 2090 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2); 2091 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 2092 2093 vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code); 2094 } 2095 2096 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 2097 2098 int 2099 vm_inject_nmi(struct vm *vm, int vcpuid) 2100 { 2101 struct vcpu *vcpu; 2102 2103 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2104 return (EINVAL); 2105 2106 vcpu = &vm->vcpu[vcpuid]; 2107 2108 vcpu->nmi_pending = 1; 2109 vcpu_notify_event(vm, vcpuid, false); 2110 return (0); 2111 } 2112 2113 int 2114 vm_nmi_pending(struct vm *vm, int vcpuid) 2115 { 2116 struct vcpu *vcpu; 2117 2118 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2119 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 2120 2121 vcpu = &vm->vcpu[vcpuid]; 2122 2123 return (vcpu->nmi_pending); 2124 } 2125 2126 void 2127 vm_nmi_clear(struct vm *vm, int vcpuid) 2128 { 2129 struct vcpu *vcpu; 2130 2131 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2132 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 2133 2134 vcpu = &vm->vcpu[vcpuid]; 2135 2136 if (vcpu->nmi_pending == 0) 2137 panic("vm_nmi_clear: inconsistent nmi_pending state"); 2138 2139 vcpu->nmi_pending = 0; 2140 vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1); 2141 } 2142 2143 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 2144 2145 int 2146 vm_inject_extint(struct vm *vm, int vcpuid) 2147 { 2148 struct vcpu *vcpu; 2149 2150 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2151 return (EINVAL); 2152 2153 vcpu = &vm->vcpu[vcpuid]; 2154 2155 vcpu->extint_pending = 1; 2156 vcpu_notify_event(vm, vcpuid, false); 2157 return (0); 2158 } 2159 2160 int 2161 vm_extint_pending(struct vm *vm, int vcpuid) 2162 { 2163 struct vcpu *vcpu; 2164 2165 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2166 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 2167 2168 vcpu = &vm->vcpu[vcpuid]; 2169 2170 return (vcpu->extint_pending); 2171 } 2172 2173 void 2174 vm_extint_clear(struct vm *vm, int vcpuid) 2175 { 2176 struct vcpu *vcpu; 2177 2178 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2179 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 2180 2181 vcpu = &vm->vcpu[vcpuid]; 2182 2183 if (vcpu->extint_pending == 0) 2184 panic("vm_extint_clear: inconsistent extint_pending state"); 2185 2186 vcpu->extint_pending = 0; 2187 vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1); 2188 } 2189 2190 int 2191 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval) 2192 { 2193 if (vcpu < 0 || vcpu >= vm->maxcpus) 2194 return (EINVAL); 2195 2196 if (type < 0 || type >= VM_CAP_MAX) 2197 return (EINVAL); 2198 2199 return (VMGETCAP(vm->cookie, vcpu, type, retval)); 2200 } 2201 2202 int 2203 vm_set_capability(struct vm *vm, int vcpu, int type, int val) 2204 { 2205 if (vcpu < 0 || vcpu >= vm->maxcpus) 2206 return (EINVAL); 2207 2208 if (type < 0 || type >= VM_CAP_MAX) 2209 return (EINVAL); 2210 2211 return (VMSETCAP(vm->cookie, vcpu, type, val)); 2212 } 2213 2214 struct vlapic * 2215 vm_lapic(struct vm *vm, int cpu) 2216 { 2217 return (vm->vcpu[cpu].vlapic); 2218 } 2219 2220 struct vioapic * 2221 vm_ioapic(struct vm *vm) 2222 { 2223 2224 return (vm->vioapic); 2225 } 2226 2227 struct vhpet * 2228 vm_hpet(struct vm *vm) 2229 { 2230 2231 return (vm->vhpet); 2232 } 2233 2234 bool 2235 vmm_is_pptdev(int bus, int slot, int func) 2236 { 2237 int b, f, i, n, s; 2238 char *val, *cp, *cp2; 2239 bool found; 2240 2241 /* 2242 * XXX 2243 * The length of an environment variable is limited to 128 bytes which 2244 * puts an upper limit on the number of passthru devices that may be 2245 * specified using a single environment variable. 2246 * 2247 * Work around this by scanning multiple environment variable 2248 * names instead of a single one - yuck! 2249 */ 2250 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 2251 2252 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 2253 found = false; 2254 for (i = 0; names[i] != NULL && !found; i++) { 2255 cp = val = kern_getenv(names[i]); 2256 while (cp != NULL && *cp != '\0') { 2257 if ((cp2 = strchr(cp, ' ')) != NULL) 2258 *cp2 = '\0'; 2259 2260 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 2261 if (n == 3 && bus == b && slot == s && func == f) { 2262 found = true; 2263 break; 2264 } 2265 2266 if (cp2 != NULL) 2267 *cp2++ = ' '; 2268 2269 cp = cp2; 2270 } 2271 freeenv(val); 2272 } 2273 return (found); 2274 } 2275 2276 void * 2277 vm_iommu_domain(struct vm *vm) 2278 { 2279 2280 return (vm->iommu); 2281 } 2282 2283 int 2284 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate, 2285 bool from_idle) 2286 { 2287 int error; 2288 struct vcpu *vcpu; 2289 2290 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2291 panic("vm_set_run_state: invalid vcpuid %d", vcpuid); 2292 2293 vcpu = &vm->vcpu[vcpuid]; 2294 2295 vcpu_lock(vcpu); 2296 error = vcpu_set_state_locked(vm, vcpuid, newstate, from_idle); 2297 vcpu_unlock(vcpu); 2298 2299 return (error); 2300 } 2301 2302 enum vcpu_state 2303 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu) 2304 { 2305 struct vcpu *vcpu; 2306 enum vcpu_state state; 2307 2308 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2309 panic("vm_get_run_state: invalid vcpuid %d", vcpuid); 2310 2311 vcpu = &vm->vcpu[vcpuid]; 2312 2313 vcpu_lock(vcpu); 2314 state = vcpu->state; 2315 if (hostcpu != NULL) 2316 *hostcpu = vcpu->hostcpu; 2317 vcpu_unlock(vcpu); 2318 2319 return (state); 2320 } 2321 2322 int 2323 vm_activate_cpu(struct vm *vm, int vcpuid) 2324 { 2325 2326 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2327 return (EINVAL); 2328 2329 if (CPU_ISSET(vcpuid, &vm->active_cpus)) 2330 return (EBUSY); 2331 2332 VCPU_CTR0(vm, vcpuid, "activated"); 2333 CPU_SET_ATOMIC(vcpuid, &vm->active_cpus); 2334 return (0); 2335 } 2336 2337 int 2338 vm_suspend_cpu(struct vm *vm, int vcpuid) 2339 { 2340 int i; 2341 2342 if (vcpuid < -1 || vcpuid >= vm->maxcpus) 2343 return (EINVAL); 2344 2345 if (vcpuid == -1) { 2346 vm->debug_cpus = vm->active_cpus; 2347 for (i = 0; i < vm->maxcpus; i++) { 2348 if (CPU_ISSET(i, &vm->active_cpus)) 2349 vcpu_notify_event(vm, i, false); 2350 } 2351 } else { 2352 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 2353 return (EINVAL); 2354 2355 CPU_SET_ATOMIC(vcpuid, &vm->debug_cpus); 2356 vcpu_notify_event(vm, vcpuid, false); 2357 } 2358 return (0); 2359 } 2360 2361 int 2362 vm_resume_cpu(struct vm *vm, int vcpuid) 2363 { 2364 2365 if (vcpuid < -1 || vcpuid >= vm->maxcpus) 2366 return (EINVAL); 2367 2368 if (vcpuid == -1) { 2369 CPU_ZERO(&vm->debug_cpus); 2370 } else { 2371 if (!CPU_ISSET(vcpuid, &vm->debug_cpus)) 2372 return (EINVAL); 2373 2374 CPU_CLR_ATOMIC(vcpuid, &vm->debug_cpus); 2375 } 2376 return (0); 2377 } 2378 2379 int 2380 vcpu_debugged(struct vm *vm, int vcpuid) 2381 { 2382 2383 return (CPU_ISSET(vcpuid, &vm->debug_cpus)); 2384 } 2385 2386 cpuset_t 2387 vm_active_cpus(struct vm *vm) 2388 { 2389 2390 return (vm->active_cpus); 2391 } 2392 2393 cpuset_t 2394 vm_debug_cpus(struct vm *vm) 2395 { 2396 2397 return (vm->debug_cpus); 2398 } 2399 2400 cpuset_t 2401 vm_suspended_cpus(struct vm *vm) 2402 { 2403 2404 return (vm->suspended_cpus); 2405 } 2406 2407 void * 2408 vcpu_stats(struct vm *vm, int vcpuid) 2409 { 2410 2411 return (vm->vcpu[vcpuid].stats); 2412 } 2413 2414 int 2415 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state) 2416 { 2417 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2418 return (EINVAL); 2419 2420 *state = vm->vcpu[vcpuid].x2apic_state; 2421 2422 return (0); 2423 } 2424 2425 int 2426 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state) 2427 { 2428 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2429 return (EINVAL); 2430 2431 if (state >= X2APIC_STATE_LAST) 2432 return (EINVAL); 2433 2434 vm->vcpu[vcpuid].x2apic_state = state; 2435 2436 vlapic_set_x2apic_state(vm, vcpuid, state); 2437 2438 return (0); 2439 } 2440 2441 /* 2442 * This function is called to ensure that a vcpu "sees" a pending event 2443 * as soon as possible: 2444 * - If the vcpu thread is sleeping then it is woken up. 2445 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2446 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2447 */ 2448 static void 2449 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr) 2450 { 2451 int hostcpu; 2452 2453 hostcpu = vcpu->hostcpu; 2454 if (vcpu->state == VCPU_RUNNING) { 2455 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2456 if (hostcpu != curcpu) { 2457 if (lapic_intr) { 2458 vlapic_post_intr(vcpu->vlapic, hostcpu, 2459 vmm_ipinum); 2460 } else { 2461 ipi_cpu(hostcpu, vmm_ipinum); 2462 } 2463 } else { 2464 /* 2465 * If the 'vcpu' is running on 'curcpu' then it must 2466 * be sending a notification to itself (e.g. SELF_IPI). 2467 * The pending event will be picked up when the vcpu 2468 * transitions back to guest context. 2469 */ 2470 } 2471 } else { 2472 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2473 "with hostcpu %d", vcpu->state, hostcpu)); 2474 if (vcpu->state == VCPU_SLEEPING) 2475 wakeup_one(vcpu); 2476 } 2477 } 2478 2479 void 2480 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr) 2481 { 2482 struct vcpu *vcpu = &vm->vcpu[vcpuid]; 2483 2484 vcpu_lock(vcpu); 2485 vcpu_notify_event_locked(vcpu, lapic_intr); 2486 vcpu_unlock(vcpu); 2487 } 2488 2489 struct vmspace * 2490 vm_get_vmspace(struct vm *vm) 2491 { 2492 2493 return (vm->vmspace); 2494 } 2495 2496 int 2497 vm_apicid2vcpuid(struct vm *vm, int apicid) 2498 { 2499 /* 2500 * XXX apic id is assumed to be numerically identical to vcpu id 2501 */ 2502 return (apicid); 2503 } 2504 2505 void 2506 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest, 2507 vm_rendezvous_func_t func, void *arg) 2508 { 2509 int i; 2510 2511 /* 2512 * Enforce that this function is called without any locks 2513 */ 2514 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2515 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus), 2516 ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid)); 2517 2518 restart: 2519 mtx_lock(&vm->rendezvous_mtx); 2520 if (vm->rendezvous_func != NULL) { 2521 /* 2522 * If a rendezvous is already in progress then we need to 2523 * call the rendezvous handler in case this 'vcpuid' is one 2524 * of the targets of the rendezvous. 2525 */ 2526 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress"); 2527 mtx_unlock(&vm->rendezvous_mtx); 2528 vm_handle_rendezvous(vm, vcpuid); 2529 goto restart; 2530 } 2531 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2532 "rendezvous is still in progress")); 2533 2534 RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous"); 2535 vm->rendezvous_req_cpus = dest; 2536 CPU_ZERO(&vm->rendezvous_done_cpus); 2537 vm->rendezvous_arg = arg; 2538 vm_set_rendezvous_func(vm, func); 2539 mtx_unlock(&vm->rendezvous_mtx); 2540 2541 /* 2542 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2543 * vcpus so they handle the rendezvous as soon as possible. 2544 */ 2545 for (i = 0; i < vm->maxcpus; i++) { 2546 if (CPU_ISSET(i, &dest)) 2547 vcpu_notify_event(vm, i, false); 2548 } 2549 2550 vm_handle_rendezvous(vm, vcpuid); 2551 } 2552 2553 struct vatpic * 2554 vm_atpic(struct vm *vm) 2555 { 2556 return (vm->vatpic); 2557 } 2558 2559 struct vatpit * 2560 vm_atpit(struct vm *vm) 2561 { 2562 return (vm->vatpit); 2563 } 2564 2565 struct vpmtmr * 2566 vm_pmtmr(struct vm *vm) 2567 { 2568 2569 return (vm->vpmtmr); 2570 } 2571 2572 struct vrtc * 2573 vm_rtc(struct vm *vm) 2574 { 2575 2576 return (vm->vrtc); 2577 } 2578 2579 enum vm_reg_name 2580 vm_segment_name(int seg) 2581 { 2582 static enum vm_reg_name seg_names[] = { 2583 VM_REG_GUEST_ES, 2584 VM_REG_GUEST_CS, 2585 VM_REG_GUEST_SS, 2586 VM_REG_GUEST_DS, 2587 VM_REG_GUEST_FS, 2588 VM_REG_GUEST_GS 2589 }; 2590 2591 KASSERT(seg >= 0 && seg < nitems(seg_names), 2592 ("%s: invalid segment encoding %d", __func__, seg)); 2593 return (seg_names[seg]); 2594 } 2595 2596 void 2597 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, 2598 int num_copyinfo) 2599 { 2600 int idx; 2601 2602 for (idx = 0; idx < num_copyinfo; idx++) { 2603 if (copyinfo[idx].cookie != NULL) 2604 vm_gpa_release(copyinfo[idx].cookie); 2605 } 2606 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2607 } 2608 2609 int 2610 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging, 2611 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2612 int num_copyinfo, int *fault) 2613 { 2614 int error, idx, nused; 2615 size_t n, off, remaining; 2616 void *hva, *cookie; 2617 uint64_t gpa; 2618 2619 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2620 2621 nused = 0; 2622 remaining = len; 2623 while (remaining > 0) { 2624 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo")); 2625 error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa, fault); 2626 if (error || *fault) 2627 return (error); 2628 off = gpa & PAGE_MASK; 2629 n = min(remaining, PAGE_SIZE - off); 2630 copyinfo[nused].gpa = gpa; 2631 copyinfo[nused].len = n; 2632 remaining -= n; 2633 gla += n; 2634 nused++; 2635 } 2636 2637 for (idx = 0; idx < nused; idx++) { 2638 hva = vm_gpa_hold(vm, vcpuid, copyinfo[idx].gpa, 2639 copyinfo[idx].len, prot, &cookie); 2640 if (hva == NULL) 2641 break; 2642 copyinfo[idx].hva = hva; 2643 copyinfo[idx].cookie = cookie; 2644 } 2645 2646 if (idx != nused) { 2647 vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo); 2648 return (EFAULT); 2649 } else { 2650 *fault = 0; 2651 return (0); 2652 } 2653 } 2654 2655 void 2656 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr, 2657 size_t len) 2658 { 2659 char *dst; 2660 int idx; 2661 2662 dst = kaddr; 2663 idx = 0; 2664 while (len > 0) { 2665 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2666 len -= copyinfo[idx].len; 2667 dst += copyinfo[idx].len; 2668 idx++; 2669 } 2670 } 2671 2672 void 2673 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr, 2674 struct vm_copyinfo *copyinfo, size_t len) 2675 { 2676 const char *src; 2677 int idx; 2678 2679 src = kaddr; 2680 idx = 0; 2681 while (len > 0) { 2682 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2683 len -= copyinfo[idx].len; 2684 src += copyinfo[idx].len; 2685 idx++; 2686 } 2687 } 2688 2689 /* 2690 * Return the amount of in-use and wired memory for the VM. Since 2691 * these are global stats, only return the values with for vCPU 0 2692 */ 2693 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2694 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2695 2696 static void 2697 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2698 { 2699 2700 if (vcpu == 0) { 2701 vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT, 2702 PAGE_SIZE * vmspace_resident_count(vm->vmspace)); 2703 } 2704 } 2705 2706 static void 2707 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2708 { 2709 2710 if (vcpu == 0) { 2711 vmm_stat_set(vm, vcpu, VMM_MEM_WIRED, 2712 PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace))); 2713 } 2714 } 2715 2716 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2717 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2718