1 /*- 2 * Copyright (c) 2011 NetApp, Inc. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD$ 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/sysctl.h> 37 #include <sys/malloc.h> 38 #include <sys/pcpu.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/proc.h> 42 #include <sys/rwlock.h> 43 #include <sys/sched.h> 44 #include <sys/smp.h> 45 #include <sys/systm.h> 46 47 #include <vm/vm.h> 48 #include <vm/vm_object.h> 49 #include <vm/vm_page.h> 50 #include <vm/pmap.h> 51 #include <vm/vm_map.h> 52 #include <vm/vm_extern.h> 53 #include <vm/vm_param.h> 54 55 #include <machine/cpu.h> 56 #include <machine/vm.h> 57 #include <machine/pcb.h> 58 #include <machine/smp.h> 59 #include <x86/psl.h> 60 #include <x86/apicreg.h> 61 #include <machine/vmparam.h> 62 63 #include <machine/vmm.h> 64 #include <machine/vmm_dev.h> 65 66 #include "vmm_ktr.h" 67 #include "vmm_host.h" 68 #include "vmm_mem.h" 69 #include "vmm_util.h" 70 #include "vhpet.h" 71 #include "vioapic.h" 72 #include "vlapic.h" 73 #include "vmm_msr.h" 74 #include "vmm_ipi.h" 75 #include "vmm_stat.h" 76 #include "vmm_lapic.h" 77 78 #include "io/ppt.h" 79 #include "io/iommu.h" 80 81 struct vlapic; 82 83 struct vcpu { 84 int flags; 85 enum vcpu_state state; 86 struct mtx mtx; 87 int hostcpu; /* host cpuid this vcpu last ran on */ 88 uint64_t guest_msrs[VMM_MSR_NUM]; 89 struct vlapic *vlapic; 90 int vcpuid; 91 struct savefpu *guestfpu; /* guest fpu state */ 92 uint64_t guest_xcr0; 93 void *stats; 94 struct vm_exit exitinfo; 95 enum x2apic_state x2apic_state; 96 int nmi_pending; 97 }; 98 99 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 100 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 101 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 102 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 103 104 struct mem_seg { 105 vm_paddr_t gpa; 106 size_t len; 107 boolean_t wired; 108 vm_object_t object; 109 }; 110 #define VM_MAX_MEMORY_SEGMENTS 2 111 112 struct vm { 113 void *cookie; /* processor-specific data */ 114 void *iommu; /* iommu-specific data */ 115 struct vhpet *vhpet; /* virtual HPET */ 116 struct vioapic *vioapic; /* virtual ioapic */ 117 struct vmspace *vmspace; /* guest's address space */ 118 struct vcpu vcpu[VM_MAXCPU]; 119 int num_mem_segs; 120 struct mem_seg mem_segs[VM_MAX_MEMORY_SEGMENTS]; 121 char name[VM_MAX_NAMELEN]; 122 123 /* 124 * Set of active vcpus. 125 * An active vcpu is one that has been started implicitly (BSP) or 126 * explicitly (AP) by sending it a startup ipi. 127 */ 128 cpuset_t active_cpus; 129 130 struct mtx rendezvous_mtx; 131 cpuset_t rendezvous_req_cpus; 132 cpuset_t rendezvous_done_cpus; 133 void *rendezvous_arg; 134 vm_rendezvous_func_t rendezvous_func; 135 }; 136 137 static int vmm_initialized; 138 139 static struct vmm_ops *ops; 140 #define VMM_INIT(num) (ops != NULL ? (*ops->init)(num) : 0) 141 #define VMM_CLEANUP() (ops != NULL ? (*ops->cleanup)() : 0) 142 #define VMM_RESUME() (ops != NULL ? (*ops->resume)() : 0) 143 144 #define VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL) 145 #define VMRUN(vmi, vcpu, rip, pmap, rptr) \ 146 (ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, rptr) : ENXIO) 147 #define VMCLEANUP(vmi) (ops != NULL ? (*ops->vmcleanup)(vmi) : NULL) 148 #define VMSPACE_ALLOC(min, max) \ 149 (ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL) 150 #define VMSPACE_FREE(vmspace) \ 151 (ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO) 152 #define VMGETREG(vmi, vcpu, num, retval) \ 153 (ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO) 154 #define VMSETREG(vmi, vcpu, num, val) \ 155 (ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO) 156 #define VMGETDESC(vmi, vcpu, num, desc) \ 157 (ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO) 158 #define VMSETDESC(vmi, vcpu, num, desc) \ 159 (ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO) 160 #define VMINJECT(vmi, vcpu, type, vec, ec, ecv) \ 161 (ops != NULL ? (*ops->vminject)(vmi, vcpu, type, vec, ec, ecv) : ENXIO) 162 #define VMGETCAP(vmi, vcpu, num, retval) \ 163 (ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO) 164 #define VMSETCAP(vmi, vcpu, num, val) \ 165 (ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO) 166 #define VLAPIC_INIT(vmi, vcpu) \ 167 (ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL) 168 #define VLAPIC_CLEANUP(vmi, vlapic) \ 169 (ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL) 170 171 #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS) 172 #define fpu_stop_emulating() clts() 173 174 static MALLOC_DEFINE(M_VM, "vm", "vm"); 175 CTASSERT(VMM_MSR_NUM <= 64); /* msr_mask can keep track of up to 64 msrs */ 176 177 /* statistics */ 178 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 179 180 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL); 181 182 static int vmm_ipinum; 183 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 184 "IPI vector used for vcpu notifications"); 185 186 static void vm_deactivate_cpu(struct vm *vm, int vcpuid); 187 188 static void 189 vcpu_cleanup(struct vm *vm, int i) 190 { 191 struct vcpu *vcpu = &vm->vcpu[i]; 192 193 VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic); 194 vmm_stat_free(vcpu->stats); 195 fpu_save_area_free(vcpu->guestfpu); 196 } 197 198 static void 199 vcpu_init(struct vm *vm, uint32_t vcpu_id) 200 { 201 struct vcpu *vcpu; 202 203 vcpu = &vm->vcpu[vcpu_id]; 204 205 vcpu_lock_init(vcpu); 206 vcpu->hostcpu = NOCPU; 207 vcpu->vcpuid = vcpu_id; 208 vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id); 209 vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED); 210 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 211 vcpu->guestfpu = fpu_save_area_alloc(); 212 fpu_save_area_reset(vcpu->guestfpu); 213 vcpu->stats = vmm_stat_alloc(); 214 } 215 216 struct vm_exit * 217 vm_exitinfo(struct vm *vm, int cpuid) 218 { 219 struct vcpu *vcpu; 220 221 if (cpuid < 0 || cpuid >= VM_MAXCPU) 222 panic("vm_exitinfo: invalid cpuid %d", cpuid); 223 224 vcpu = &vm->vcpu[cpuid]; 225 226 return (&vcpu->exitinfo); 227 } 228 229 static void 230 vmm_resume(void) 231 { 232 VMM_RESUME(); 233 } 234 235 static int 236 vmm_init(void) 237 { 238 int error; 239 240 vmm_host_state_init(); 241 242 vmm_ipinum = vmm_ipi_alloc(); 243 if (vmm_ipinum == 0) 244 vmm_ipinum = IPI_AST; 245 246 error = vmm_mem_init(); 247 if (error) 248 return (error); 249 250 if (vmm_is_intel()) 251 ops = &vmm_ops_intel; 252 else if (vmm_is_amd()) 253 ops = &vmm_ops_amd; 254 else 255 return (ENXIO); 256 257 vmm_msr_init(); 258 vmm_resume_p = vmm_resume; 259 260 return (VMM_INIT(vmm_ipinum)); 261 } 262 263 static int 264 vmm_handler(module_t mod, int what, void *arg) 265 { 266 int error; 267 268 switch (what) { 269 case MOD_LOAD: 270 vmmdev_init(); 271 if (ppt_avail_devices() > 0) 272 iommu_init(); 273 error = vmm_init(); 274 if (error == 0) 275 vmm_initialized = 1; 276 break; 277 case MOD_UNLOAD: 278 error = vmmdev_cleanup(); 279 if (error == 0) { 280 vmm_resume_p = NULL; 281 iommu_cleanup(); 282 if (vmm_ipinum != IPI_AST) 283 vmm_ipi_free(vmm_ipinum); 284 error = VMM_CLEANUP(); 285 /* 286 * Something bad happened - prevent new 287 * VMs from being created 288 */ 289 if (error) 290 vmm_initialized = 0; 291 } 292 break; 293 default: 294 error = 0; 295 break; 296 } 297 return (error); 298 } 299 300 static moduledata_t vmm_kmod = { 301 "vmm", 302 vmm_handler, 303 NULL 304 }; 305 306 /* 307 * vmm initialization has the following dependencies: 308 * 309 * - iommu initialization must happen after the pci passthru driver has had 310 * a chance to attach to any passthru devices (after SI_SUB_CONFIGURE). 311 * 312 * - VT-x initialization requires smp_rendezvous() and therefore must happen 313 * after SMP is fully functional (after SI_SUB_SMP). 314 */ 315 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 316 MODULE_VERSION(vmm, 1); 317 318 int 319 vm_create(const char *name, struct vm **retvm) 320 { 321 int i; 322 struct vm *vm; 323 struct vmspace *vmspace; 324 325 const int BSP = 0; 326 327 /* 328 * If vmm.ko could not be successfully initialized then don't attempt 329 * to create the virtual machine. 330 */ 331 if (!vmm_initialized) 332 return (ENXIO); 333 334 if (name == NULL || strlen(name) >= VM_MAX_NAMELEN) 335 return (EINVAL); 336 337 vmspace = VMSPACE_ALLOC(VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS); 338 if (vmspace == NULL) 339 return (ENOMEM); 340 341 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 342 strcpy(vm->name, name); 343 vm->vmspace = vmspace; 344 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 345 vm->cookie = VMINIT(vm, vmspace_pmap(vmspace)); 346 vm->vioapic = vioapic_init(vm); 347 vm->vhpet = vhpet_init(vm); 348 349 for (i = 0; i < VM_MAXCPU; i++) { 350 vcpu_init(vm, i); 351 guest_msrs_init(vm, i); 352 } 353 354 vm_activate_cpu(vm, BSP); 355 356 *retvm = vm; 357 return (0); 358 } 359 360 static void 361 vm_free_mem_seg(struct vm *vm, struct mem_seg *seg) 362 { 363 364 if (seg->object != NULL) 365 vmm_mem_free(vm->vmspace, seg->gpa, seg->len); 366 367 bzero(seg, sizeof(*seg)); 368 } 369 370 void 371 vm_destroy(struct vm *vm) 372 { 373 int i; 374 375 ppt_unassign_all(vm); 376 377 if (vm->iommu != NULL) 378 iommu_destroy_domain(vm->iommu); 379 380 vhpet_cleanup(vm->vhpet); 381 vioapic_cleanup(vm->vioapic); 382 383 for (i = 0; i < vm->num_mem_segs; i++) 384 vm_free_mem_seg(vm, &vm->mem_segs[i]); 385 386 vm->num_mem_segs = 0; 387 388 for (i = 0; i < VM_MAXCPU; i++) 389 vcpu_cleanup(vm, i); 390 391 VMSPACE_FREE(vm->vmspace); 392 393 VMCLEANUP(vm->cookie); 394 395 free(vm, M_VM); 396 } 397 398 const char * 399 vm_name(struct vm *vm) 400 { 401 return (vm->name); 402 } 403 404 int 405 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 406 { 407 vm_object_t obj; 408 409 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 410 return (ENOMEM); 411 else 412 return (0); 413 } 414 415 int 416 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 417 { 418 419 vmm_mmio_free(vm->vmspace, gpa, len); 420 return (0); 421 } 422 423 boolean_t 424 vm_mem_allocated(struct vm *vm, vm_paddr_t gpa) 425 { 426 int i; 427 vm_paddr_t gpabase, gpalimit; 428 429 for (i = 0; i < vm->num_mem_segs; i++) { 430 gpabase = vm->mem_segs[i].gpa; 431 gpalimit = gpabase + vm->mem_segs[i].len; 432 if (gpa >= gpabase && gpa < gpalimit) 433 return (TRUE); /* 'gpa' is regular memory */ 434 } 435 436 if (ppt_is_mmio(vm, gpa)) 437 return (TRUE); /* 'gpa' is pci passthru mmio */ 438 439 return (FALSE); 440 } 441 442 int 443 vm_malloc(struct vm *vm, vm_paddr_t gpa, size_t len) 444 { 445 int available, allocated; 446 struct mem_seg *seg; 447 vm_object_t object; 448 vm_paddr_t g; 449 450 if ((gpa & PAGE_MASK) || (len & PAGE_MASK) || len == 0) 451 return (EINVAL); 452 453 available = allocated = 0; 454 g = gpa; 455 while (g < gpa + len) { 456 if (vm_mem_allocated(vm, g)) 457 allocated++; 458 else 459 available++; 460 461 g += PAGE_SIZE; 462 } 463 464 /* 465 * If there are some allocated and some available pages in the address 466 * range then it is an error. 467 */ 468 if (allocated && available) 469 return (EINVAL); 470 471 /* 472 * If the entire address range being requested has already been 473 * allocated then there isn't anything more to do. 474 */ 475 if (allocated && available == 0) 476 return (0); 477 478 if (vm->num_mem_segs >= VM_MAX_MEMORY_SEGMENTS) 479 return (E2BIG); 480 481 seg = &vm->mem_segs[vm->num_mem_segs]; 482 483 if ((object = vmm_mem_alloc(vm->vmspace, gpa, len)) == NULL) 484 return (ENOMEM); 485 486 seg->gpa = gpa; 487 seg->len = len; 488 seg->object = object; 489 seg->wired = FALSE; 490 491 vm->num_mem_segs++; 492 493 return (0); 494 } 495 496 static void 497 vm_gpa_unwire(struct vm *vm) 498 { 499 int i, rv; 500 struct mem_seg *seg; 501 502 for (i = 0; i < vm->num_mem_segs; i++) { 503 seg = &vm->mem_segs[i]; 504 if (!seg->wired) 505 continue; 506 507 rv = vm_map_unwire(&vm->vmspace->vm_map, 508 seg->gpa, seg->gpa + seg->len, 509 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 510 KASSERT(rv == KERN_SUCCESS, ("vm(%s) memory segment " 511 "%#lx/%ld could not be unwired: %d", 512 vm_name(vm), seg->gpa, seg->len, rv)); 513 514 seg->wired = FALSE; 515 } 516 } 517 518 static int 519 vm_gpa_wire(struct vm *vm) 520 { 521 int i, rv; 522 struct mem_seg *seg; 523 524 for (i = 0; i < vm->num_mem_segs; i++) { 525 seg = &vm->mem_segs[i]; 526 if (seg->wired) 527 continue; 528 529 /* XXX rlimits? */ 530 rv = vm_map_wire(&vm->vmspace->vm_map, 531 seg->gpa, seg->gpa + seg->len, 532 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 533 if (rv != KERN_SUCCESS) 534 break; 535 536 seg->wired = TRUE; 537 } 538 539 if (i < vm->num_mem_segs) { 540 /* 541 * Undo the wiring before returning an error. 542 */ 543 vm_gpa_unwire(vm); 544 return (EAGAIN); 545 } 546 547 return (0); 548 } 549 550 static void 551 vm_iommu_modify(struct vm *vm, boolean_t map) 552 { 553 int i, sz; 554 vm_paddr_t gpa, hpa; 555 struct mem_seg *seg; 556 void *vp, *cookie, *host_domain; 557 558 sz = PAGE_SIZE; 559 host_domain = iommu_host_domain(); 560 561 for (i = 0; i < vm->num_mem_segs; i++) { 562 seg = &vm->mem_segs[i]; 563 KASSERT(seg->wired, ("vm(%s) memory segment %#lx/%ld not wired", 564 vm_name(vm), seg->gpa, seg->len)); 565 566 gpa = seg->gpa; 567 while (gpa < seg->gpa + seg->len) { 568 vp = vm_gpa_hold(vm, gpa, PAGE_SIZE, VM_PROT_WRITE, 569 &cookie); 570 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", 571 vm_name(vm), gpa)); 572 573 vm_gpa_release(cookie); 574 575 hpa = DMAP_TO_PHYS((uintptr_t)vp); 576 if (map) { 577 iommu_create_mapping(vm->iommu, gpa, hpa, sz); 578 iommu_remove_mapping(host_domain, hpa, sz); 579 } else { 580 iommu_remove_mapping(vm->iommu, gpa, sz); 581 iommu_create_mapping(host_domain, hpa, hpa, sz); 582 } 583 584 gpa += PAGE_SIZE; 585 } 586 } 587 588 /* 589 * Invalidate the cached translations associated with the domain 590 * from which pages were removed. 591 */ 592 if (map) 593 iommu_invalidate_tlb(host_domain); 594 else 595 iommu_invalidate_tlb(vm->iommu); 596 } 597 598 #define vm_iommu_unmap(vm) vm_iommu_modify((vm), FALSE) 599 #define vm_iommu_map(vm) vm_iommu_modify((vm), TRUE) 600 601 int 602 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 603 { 604 int error; 605 606 error = ppt_unassign_device(vm, bus, slot, func); 607 if (error) 608 return (error); 609 610 if (ppt_assigned_devices(vm) == 0) { 611 vm_iommu_unmap(vm); 612 vm_gpa_unwire(vm); 613 } 614 return (0); 615 } 616 617 int 618 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 619 { 620 int error; 621 vm_paddr_t maxaddr; 622 623 /* 624 * Virtual machines with pci passthru devices get special treatment: 625 * - the guest physical memory is wired 626 * - the iommu is programmed to do the 'gpa' to 'hpa' translation 627 * 628 * We need to do this before the first pci passthru device is attached. 629 */ 630 if (ppt_assigned_devices(vm) == 0) { 631 KASSERT(vm->iommu == NULL, 632 ("vm_assign_pptdev: iommu must be NULL")); 633 maxaddr = vmm_mem_maxaddr(); 634 vm->iommu = iommu_create_domain(maxaddr); 635 636 error = vm_gpa_wire(vm); 637 if (error) 638 return (error); 639 640 vm_iommu_map(vm); 641 } 642 643 error = ppt_assign_device(vm, bus, slot, func); 644 return (error); 645 } 646 647 void * 648 vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 649 void **cookie) 650 { 651 int count, pageoff; 652 vm_page_t m; 653 654 pageoff = gpa & PAGE_MASK; 655 if (len > PAGE_SIZE - pageoff) 656 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 657 658 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 659 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 660 661 if (count == 1) { 662 *cookie = m; 663 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 664 } else { 665 *cookie = NULL; 666 return (NULL); 667 } 668 } 669 670 void 671 vm_gpa_release(void *cookie) 672 { 673 vm_page_t m = cookie; 674 675 vm_page_lock(m); 676 vm_page_unhold(m); 677 vm_page_unlock(m); 678 } 679 680 int 681 vm_gpabase2memseg(struct vm *vm, vm_paddr_t gpabase, 682 struct vm_memory_segment *seg) 683 { 684 int i; 685 686 for (i = 0; i < vm->num_mem_segs; i++) { 687 if (gpabase == vm->mem_segs[i].gpa) { 688 seg->gpa = vm->mem_segs[i].gpa; 689 seg->len = vm->mem_segs[i].len; 690 seg->wired = vm->mem_segs[i].wired; 691 return (0); 692 } 693 } 694 return (-1); 695 } 696 697 int 698 vm_get_memobj(struct vm *vm, vm_paddr_t gpa, size_t len, 699 vm_offset_t *offset, struct vm_object **object) 700 { 701 int i; 702 size_t seg_len; 703 vm_paddr_t seg_gpa; 704 vm_object_t seg_obj; 705 706 for (i = 0; i < vm->num_mem_segs; i++) { 707 if ((seg_obj = vm->mem_segs[i].object) == NULL) 708 continue; 709 710 seg_gpa = vm->mem_segs[i].gpa; 711 seg_len = vm->mem_segs[i].len; 712 713 if (gpa >= seg_gpa && gpa < seg_gpa + seg_len) { 714 *offset = gpa - seg_gpa; 715 *object = seg_obj; 716 vm_object_reference(seg_obj); 717 return (0); 718 } 719 } 720 721 return (EINVAL); 722 } 723 724 int 725 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval) 726 { 727 728 if (vcpu < 0 || vcpu >= VM_MAXCPU) 729 return (EINVAL); 730 731 if (reg >= VM_REG_LAST) 732 return (EINVAL); 733 734 return (VMGETREG(vm->cookie, vcpu, reg, retval)); 735 } 736 737 int 738 vm_set_register(struct vm *vm, int vcpu, int reg, uint64_t val) 739 { 740 741 if (vcpu < 0 || vcpu >= VM_MAXCPU) 742 return (EINVAL); 743 744 if (reg >= VM_REG_LAST) 745 return (EINVAL); 746 747 return (VMSETREG(vm->cookie, vcpu, reg, val)); 748 } 749 750 static boolean_t 751 is_descriptor_table(int reg) 752 { 753 754 switch (reg) { 755 case VM_REG_GUEST_IDTR: 756 case VM_REG_GUEST_GDTR: 757 return (TRUE); 758 default: 759 return (FALSE); 760 } 761 } 762 763 static boolean_t 764 is_segment_register(int reg) 765 { 766 767 switch (reg) { 768 case VM_REG_GUEST_ES: 769 case VM_REG_GUEST_CS: 770 case VM_REG_GUEST_SS: 771 case VM_REG_GUEST_DS: 772 case VM_REG_GUEST_FS: 773 case VM_REG_GUEST_GS: 774 case VM_REG_GUEST_TR: 775 case VM_REG_GUEST_LDTR: 776 return (TRUE); 777 default: 778 return (FALSE); 779 } 780 } 781 782 int 783 vm_get_seg_desc(struct vm *vm, int vcpu, int reg, 784 struct seg_desc *desc) 785 { 786 787 if (vcpu < 0 || vcpu >= VM_MAXCPU) 788 return (EINVAL); 789 790 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 791 return (EINVAL); 792 793 return (VMGETDESC(vm->cookie, vcpu, reg, desc)); 794 } 795 796 int 797 vm_set_seg_desc(struct vm *vm, int vcpu, int reg, 798 struct seg_desc *desc) 799 { 800 if (vcpu < 0 || vcpu >= VM_MAXCPU) 801 return (EINVAL); 802 803 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 804 return (EINVAL); 805 806 return (VMSETDESC(vm->cookie, vcpu, reg, desc)); 807 } 808 809 static void 810 restore_guest_fpustate(struct vcpu *vcpu) 811 { 812 813 /* flush host state to the pcb */ 814 fpuexit(curthread); 815 816 /* restore guest FPU state */ 817 fpu_stop_emulating(); 818 fpurestore(vcpu->guestfpu); 819 820 /* restore guest XCR0 if XSAVE is enabled in the host */ 821 if (rcr4() & CR4_XSAVE) 822 load_xcr(0, vcpu->guest_xcr0); 823 824 /* 825 * The FPU is now "dirty" with the guest's state so turn on emulation 826 * to trap any access to the FPU by the host. 827 */ 828 fpu_start_emulating(); 829 } 830 831 static void 832 save_guest_fpustate(struct vcpu *vcpu) 833 { 834 835 if ((rcr0() & CR0_TS) == 0) 836 panic("fpu emulation not enabled in host!"); 837 838 /* save guest XCR0 and restore host XCR0 */ 839 if (rcr4() & CR4_XSAVE) { 840 vcpu->guest_xcr0 = rxcr(0); 841 load_xcr(0, vmm_get_host_xcr0()); 842 } 843 844 /* save guest FPU state */ 845 fpu_stop_emulating(); 846 fpusave(vcpu->guestfpu); 847 fpu_start_emulating(); 848 } 849 850 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 851 852 static int 853 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate, 854 bool from_idle) 855 { 856 int error; 857 858 vcpu_assert_locked(vcpu); 859 860 /* 861 * State transitions from the vmmdev_ioctl() must always begin from 862 * the VCPU_IDLE state. This guarantees that there is only a single 863 * ioctl() operating on a vcpu at any point. 864 */ 865 if (from_idle) { 866 while (vcpu->state != VCPU_IDLE) 867 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 868 } else { 869 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 870 "vcpu idle state")); 871 } 872 873 /* 874 * The following state transitions are allowed: 875 * IDLE -> FROZEN -> IDLE 876 * FROZEN -> RUNNING -> FROZEN 877 * FROZEN -> SLEEPING -> FROZEN 878 */ 879 switch (vcpu->state) { 880 case VCPU_IDLE: 881 case VCPU_RUNNING: 882 case VCPU_SLEEPING: 883 error = (newstate != VCPU_FROZEN); 884 break; 885 case VCPU_FROZEN: 886 error = (newstate == VCPU_FROZEN); 887 break; 888 default: 889 error = 1; 890 break; 891 } 892 893 if (error) 894 return (EBUSY); 895 896 vcpu->state = newstate; 897 if (newstate == VCPU_IDLE) 898 wakeup(&vcpu->state); 899 900 return (0); 901 } 902 903 static void 904 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate) 905 { 906 int error; 907 908 if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0) 909 panic("Error %d setting state to %d\n", error, newstate); 910 } 911 912 static void 913 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate) 914 { 915 int error; 916 917 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0) 918 panic("Error %d setting state to %d", error, newstate); 919 } 920 921 static void 922 vm_set_rendezvous_func(struct vm *vm, vm_rendezvous_func_t func) 923 { 924 925 KASSERT(mtx_owned(&vm->rendezvous_mtx), ("rendezvous_mtx not locked")); 926 927 /* 928 * Update 'rendezvous_func' and execute a write memory barrier to 929 * ensure that it is visible across all host cpus. This is not needed 930 * for correctness but it does ensure that all the vcpus will notice 931 * that the rendezvous is requested immediately. 932 */ 933 vm->rendezvous_func = func; 934 wmb(); 935 } 936 937 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt) \ 938 do { \ 939 if (vcpuid >= 0) \ 940 VCPU_CTR0(vm, vcpuid, fmt); \ 941 else \ 942 VM_CTR0(vm, fmt); \ 943 } while (0) 944 945 static void 946 vm_handle_rendezvous(struct vm *vm, int vcpuid) 947 { 948 949 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU), 950 ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid)); 951 952 mtx_lock(&vm->rendezvous_mtx); 953 while (vm->rendezvous_func != NULL) { 954 if (vcpuid != -1 && 955 CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus)) { 956 VCPU_CTR0(vm, vcpuid, "Calling rendezvous func"); 957 (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg); 958 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 959 } 960 if (CPU_CMP(&vm->rendezvous_req_cpus, 961 &vm->rendezvous_done_cpus) == 0) { 962 VCPU_CTR0(vm, vcpuid, "Rendezvous completed"); 963 vm_set_rendezvous_func(vm, NULL); 964 wakeup(&vm->rendezvous_func); 965 break; 966 } 967 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion"); 968 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 969 "vmrndv", 0); 970 } 971 mtx_unlock(&vm->rendezvous_mtx); 972 } 973 974 /* 975 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 976 */ 977 static int 978 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu) 979 { 980 struct vm_exit *vmexit; 981 struct vcpu *vcpu; 982 int t, timo; 983 984 vcpu = &vm->vcpu[vcpuid]; 985 986 vcpu_lock(vcpu); 987 988 /* 989 * Do a final check for pending NMI or interrupts before 990 * really putting this thread to sleep. 991 * 992 * These interrupts could have happened any time after we 993 * returned from VMRUN() and before we grabbed the vcpu lock. 994 */ 995 if (!vm_nmi_pending(vm, vcpuid) && 996 (intr_disabled || !vlapic_pending_intr(vcpu->vlapic, NULL))) { 997 t = ticks; 998 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 999 if (vlapic_enabled(vcpu->vlapic)) { 1000 /* 1001 * XXX msleep_spin() is not interruptible so use the 1002 * 'timo' to put an upper bound on the sleep time. 1003 */ 1004 timo = hz; 1005 msleep_spin(vcpu, &vcpu->mtx, "vmidle", timo); 1006 } else { 1007 /* 1008 * Spindown the vcpu if the apic is disabled and it 1009 * had entered the halted state. 1010 */ 1011 *retu = true; 1012 vmexit = vm_exitinfo(vm, vcpuid); 1013 vmexit->exitcode = VM_EXITCODE_SPINDOWN_CPU; 1014 vm_deactivate_cpu(vm, vcpuid); 1015 VCPU_CTR0(vm, vcpuid, "spinning down cpu"); 1016 } 1017 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1018 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t); 1019 } 1020 vcpu_unlock(vcpu); 1021 1022 return (0); 1023 } 1024 1025 static int 1026 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu) 1027 { 1028 int rv, ftype; 1029 struct vm_map *map; 1030 struct vcpu *vcpu; 1031 struct vm_exit *vme; 1032 1033 vcpu = &vm->vcpu[vcpuid]; 1034 vme = &vcpu->exitinfo; 1035 1036 ftype = vme->u.paging.fault_type; 1037 KASSERT(ftype == VM_PROT_READ || 1038 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1039 ("vm_handle_paging: invalid fault_type %d", ftype)); 1040 1041 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1042 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1043 vme->u.paging.gpa, ftype); 1044 if (rv == 0) 1045 goto done; 1046 } 1047 1048 map = &vm->vmspace->vm_map; 1049 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL); 1050 1051 VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, " 1052 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1053 1054 if (rv != KERN_SUCCESS) 1055 return (EFAULT); 1056 done: 1057 /* restart execution at the faulting instruction */ 1058 vme->inst_length = 0; 1059 1060 return (0); 1061 } 1062 1063 static int 1064 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu) 1065 { 1066 struct vie *vie; 1067 struct vcpu *vcpu; 1068 struct vm_exit *vme; 1069 int error, inst_length; 1070 uint64_t rip, gla, gpa, cr3; 1071 enum vie_cpu_mode cpu_mode; 1072 enum vie_paging_mode paging_mode; 1073 mem_region_read_t mread; 1074 mem_region_write_t mwrite; 1075 1076 vcpu = &vm->vcpu[vcpuid]; 1077 vme = &vcpu->exitinfo; 1078 1079 rip = vme->rip; 1080 inst_length = vme->inst_length; 1081 1082 gla = vme->u.inst_emul.gla; 1083 gpa = vme->u.inst_emul.gpa; 1084 cr3 = vme->u.inst_emul.cr3; 1085 cpu_mode = vme->u.inst_emul.cpu_mode; 1086 paging_mode = vme->u.inst_emul.paging_mode; 1087 vie = &vme->u.inst_emul.vie; 1088 1089 vie_init(vie); 1090 1091 /* Fetch, decode and emulate the faulting instruction */ 1092 if (vmm_fetch_instruction(vm, vcpuid, rip, inst_length, cr3, 1093 paging_mode, vie) != 0) 1094 return (EFAULT); 1095 1096 if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, vie) != 0) 1097 return (EFAULT); 1098 1099 /* return to userland unless this is an in-kernel emulated device */ 1100 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1101 mread = lapic_mmio_read; 1102 mwrite = lapic_mmio_write; 1103 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1104 mread = vioapic_mmio_read; 1105 mwrite = vioapic_mmio_write; 1106 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1107 mread = vhpet_mmio_read; 1108 mwrite = vhpet_mmio_write; 1109 } else { 1110 *retu = true; 1111 return (0); 1112 } 1113 1114 error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, mread, mwrite, 1115 retu); 1116 1117 return (error); 1118 } 1119 1120 int 1121 vm_run(struct vm *vm, struct vm_run *vmrun) 1122 { 1123 int error, vcpuid; 1124 struct vcpu *vcpu; 1125 struct pcb *pcb; 1126 uint64_t tscval, rip; 1127 struct vm_exit *vme; 1128 bool retu, intr_disabled; 1129 pmap_t pmap; 1130 1131 vcpuid = vmrun->cpuid; 1132 1133 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1134 return (EINVAL); 1135 1136 pmap = vmspace_pmap(vm->vmspace); 1137 vcpu = &vm->vcpu[vcpuid]; 1138 vme = &vcpu->exitinfo; 1139 rip = vmrun->rip; 1140 restart: 1141 critical_enter(); 1142 1143 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1144 ("vm_run: absurd pm_active")); 1145 1146 tscval = rdtsc(); 1147 1148 pcb = PCPU_GET(curpcb); 1149 set_pcb_flags(pcb, PCB_FULL_IRET); 1150 1151 restore_guest_msrs(vm, vcpuid); 1152 restore_guest_fpustate(vcpu); 1153 1154 vcpu_require_state(vm, vcpuid, VCPU_RUNNING); 1155 vcpu->hostcpu = curcpu; 1156 error = VMRUN(vm->cookie, vcpuid, rip, pmap, &vm->rendezvous_func); 1157 vcpu->hostcpu = NOCPU; 1158 vcpu_require_state(vm, vcpuid, VCPU_FROZEN); 1159 1160 save_guest_fpustate(vcpu); 1161 restore_host_msrs(vm, vcpuid); 1162 1163 vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1164 1165 critical_exit(); 1166 1167 if (error == 0) { 1168 retu = false; 1169 switch (vme->exitcode) { 1170 case VM_EXITCODE_IOAPIC_EOI: 1171 vioapic_process_eoi(vm, vcpuid, 1172 vme->u.ioapic_eoi.vector); 1173 break; 1174 case VM_EXITCODE_RENDEZVOUS: 1175 vm_handle_rendezvous(vm, vcpuid); 1176 error = 0; 1177 break; 1178 case VM_EXITCODE_HLT: 1179 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1180 error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu); 1181 break; 1182 case VM_EXITCODE_PAGING: 1183 error = vm_handle_paging(vm, vcpuid, &retu); 1184 break; 1185 case VM_EXITCODE_INST_EMUL: 1186 error = vm_handle_inst_emul(vm, vcpuid, &retu); 1187 break; 1188 default: 1189 retu = true; /* handled in userland */ 1190 break; 1191 } 1192 } 1193 1194 if (error == 0 && retu == false) { 1195 rip = vme->rip + vme->inst_length; 1196 goto restart; 1197 } 1198 1199 /* copy the exit information */ 1200 bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit)); 1201 return (error); 1202 } 1203 1204 int 1205 vm_inject_event(struct vm *vm, int vcpuid, int type, 1206 int vector, uint32_t code, int code_valid) 1207 { 1208 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1209 return (EINVAL); 1210 1211 if ((type > VM_EVENT_NONE && type < VM_EVENT_MAX) == 0) 1212 return (EINVAL); 1213 1214 if (vector < 0 || vector > 255) 1215 return (EINVAL); 1216 1217 return (VMINJECT(vm->cookie, vcpuid, type, vector, code, code_valid)); 1218 } 1219 1220 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 1221 1222 int 1223 vm_inject_nmi(struct vm *vm, int vcpuid) 1224 { 1225 struct vcpu *vcpu; 1226 1227 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1228 return (EINVAL); 1229 1230 vcpu = &vm->vcpu[vcpuid]; 1231 1232 vcpu->nmi_pending = 1; 1233 vcpu_notify_event(vm, vcpuid, false); 1234 return (0); 1235 } 1236 1237 int 1238 vm_nmi_pending(struct vm *vm, int vcpuid) 1239 { 1240 struct vcpu *vcpu; 1241 1242 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1243 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 1244 1245 vcpu = &vm->vcpu[vcpuid]; 1246 1247 return (vcpu->nmi_pending); 1248 } 1249 1250 void 1251 vm_nmi_clear(struct vm *vm, int vcpuid) 1252 { 1253 struct vcpu *vcpu; 1254 1255 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1256 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 1257 1258 vcpu = &vm->vcpu[vcpuid]; 1259 1260 if (vcpu->nmi_pending == 0) 1261 panic("vm_nmi_clear: inconsistent nmi_pending state"); 1262 1263 vcpu->nmi_pending = 0; 1264 vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1); 1265 } 1266 1267 int 1268 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval) 1269 { 1270 if (vcpu < 0 || vcpu >= VM_MAXCPU) 1271 return (EINVAL); 1272 1273 if (type < 0 || type >= VM_CAP_MAX) 1274 return (EINVAL); 1275 1276 return (VMGETCAP(vm->cookie, vcpu, type, retval)); 1277 } 1278 1279 int 1280 vm_set_capability(struct vm *vm, int vcpu, int type, int val) 1281 { 1282 if (vcpu < 0 || vcpu >= VM_MAXCPU) 1283 return (EINVAL); 1284 1285 if (type < 0 || type >= VM_CAP_MAX) 1286 return (EINVAL); 1287 1288 return (VMSETCAP(vm->cookie, vcpu, type, val)); 1289 } 1290 1291 uint64_t * 1292 vm_guest_msrs(struct vm *vm, int cpu) 1293 { 1294 return (vm->vcpu[cpu].guest_msrs); 1295 } 1296 1297 struct vlapic * 1298 vm_lapic(struct vm *vm, int cpu) 1299 { 1300 return (vm->vcpu[cpu].vlapic); 1301 } 1302 1303 struct vioapic * 1304 vm_ioapic(struct vm *vm) 1305 { 1306 1307 return (vm->vioapic); 1308 } 1309 1310 struct vhpet * 1311 vm_hpet(struct vm *vm) 1312 { 1313 1314 return (vm->vhpet); 1315 } 1316 1317 boolean_t 1318 vmm_is_pptdev(int bus, int slot, int func) 1319 { 1320 int found, i, n; 1321 int b, s, f; 1322 char *val, *cp, *cp2; 1323 1324 /* 1325 * XXX 1326 * The length of an environment variable is limited to 128 bytes which 1327 * puts an upper limit on the number of passthru devices that may be 1328 * specified using a single environment variable. 1329 * 1330 * Work around this by scanning multiple environment variable 1331 * names instead of a single one - yuck! 1332 */ 1333 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 1334 1335 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 1336 found = 0; 1337 for (i = 0; names[i] != NULL && !found; i++) { 1338 cp = val = getenv(names[i]); 1339 while (cp != NULL && *cp != '\0') { 1340 if ((cp2 = strchr(cp, ' ')) != NULL) 1341 *cp2 = '\0'; 1342 1343 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 1344 if (n == 3 && bus == b && slot == s && func == f) { 1345 found = 1; 1346 break; 1347 } 1348 1349 if (cp2 != NULL) 1350 *cp2++ = ' '; 1351 1352 cp = cp2; 1353 } 1354 freeenv(val); 1355 } 1356 return (found); 1357 } 1358 1359 void * 1360 vm_iommu_domain(struct vm *vm) 1361 { 1362 1363 return (vm->iommu); 1364 } 1365 1366 int 1367 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate, 1368 bool from_idle) 1369 { 1370 int error; 1371 struct vcpu *vcpu; 1372 1373 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1374 panic("vm_set_run_state: invalid vcpuid %d", vcpuid); 1375 1376 vcpu = &vm->vcpu[vcpuid]; 1377 1378 vcpu_lock(vcpu); 1379 error = vcpu_set_state_locked(vcpu, newstate, from_idle); 1380 vcpu_unlock(vcpu); 1381 1382 return (error); 1383 } 1384 1385 enum vcpu_state 1386 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu) 1387 { 1388 struct vcpu *vcpu; 1389 enum vcpu_state state; 1390 1391 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1392 panic("vm_get_run_state: invalid vcpuid %d", vcpuid); 1393 1394 vcpu = &vm->vcpu[vcpuid]; 1395 1396 vcpu_lock(vcpu); 1397 state = vcpu->state; 1398 if (hostcpu != NULL) 1399 *hostcpu = vcpu->hostcpu; 1400 vcpu_unlock(vcpu); 1401 1402 return (state); 1403 } 1404 1405 void 1406 vm_activate_cpu(struct vm *vm, int vcpuid) 1407 { 1408 1409 if (vcpuid >= 0 && vcpuid < VM_MAXCPU) 1410 CPU_SET(vcpuid, &vm->active_cpus); 1411 } 1412 1413 static void 1414 vm_deactivate_cpu(struct vm *vm, int vcpuid) 1415 { 1416 1417 if (vcpuid >= 0 && vcpuid < VM_MAXCPU) 1418 CPU_CLR(vcpuid, &vm->active_cpus); 1419 } 1420 1421 cpuset_t 1422 vm_active_cpus(struct vm *vm) 1423 { 1424 1425 return (vm->active_cpus); 1426 } 1427 1428 void * 1429 vcpu_stats(struct vm *vm, int vcpuid) 1430 { 1431 1432 return (vm->vcpu[vcpuid].stats); 1433 } 1434 1435 int 1436 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state) 1437 { 1438 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1439 return (EINVAL); 1440 1441 *state = vm->vcpu[vcpuid].x2apic_state; 1442 1443 return (0); 1444 } 1445 1446 int 1447 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state) 1448 { 1449 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1450 return (EINVAL); 1451 1452 if (state >= X2APIC_STATE_LAST) 1453 return (EINVAL); 1454 1455 vm->vcpu[vcpuid].x2apic_state = state; 1456 1457 vlapic_set_x2apic_state(vm, vcpuid, state); 1458 1459 return (0); 1460 } 1461 1462 /* 1463 * This function is called to ensure that a vcpu "sees" a pending event 1464 * as soon as possible: 1465 * - If the vcpu thread is sleeping then it is woken up. 1466 * - If the vcpu is running on a different host_cpu then an IPI will be directed 1467 * to the host_cpu to cause the vcpu to trap into the hypervisor. 1468 */ 1469 void 1470 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr) 1471 { 1472 int hostcpu; 1473 struct vcpu *vcpu; 1474 1475 vcpu = &vm->vcpu[vcpuid]; 1476 1477 vcpu_lock(vcpu); 1478 hostcpu = vcpu->hostcpu; 1479 if (hostcpu == NOCPU) { 1480 if (vcpu->state == VCPU_SLEEPING) 1481 wakeup_one(vcpu); 1482 } else { 1483 if (vcpu->state != VCPU_RUNNING) 1484 panic("invalid vcpu state %d", vcpu->state); 1485 if (hostcpu != curcpu) { 1486 if (lapic_intr) 1487 vlapic_post_intr(vcpu->vlapic, hostcpu, 1488 vmm_ipinum); 1489 else 1490 ipi_cpu(hostcpu, vmm_ipinum); 1491 } 1492 } 1493 vcpu_unlock(vcpu); 1494 } 1495 1496 struct vmspace * 1497 vm_get_vmspace(struct vm *vm) 1498 { 1499 1500 return (vm->vmspace); 1501 } 1502 1503 int 1504 vm_apicid2vcpuid(struct vm *vm, int apicid) 1505 { 1506 /* 1507 * XXX apic id is assumed to be numerically identical to vcpu id 1508 */ 1509 return (apicid); 1510 } 1511 1512 void 1513 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest, 1514 vm_rendezvous_func_t func, void *arg) 1515 { 1516 /* 1517 * Enforce that this function is called without any locks 1518 */ 1519 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 1520 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU), 1521 ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid)); 1522 1523 restart: 1524 mtx_lock(&vm->rendezvous_mtx); 1525 if (vm->rendezvous_func != NULL) { 1526 /* 1527 * If a rendezvous is already in progress then we need to 1528 * call the rendezvous handler in case this 'vcpuid' is one 1529 * of the targets of the rendezvous. 1530 */ 1531 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress"); 1532 mtx_unlock(&vm->rendezvous_mtx); 1533 vm_handle_rendezvous(vm, vcpuid); 1534 goto restart; 1535 } 1536 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 1537 "rendezvous is still in progress")); 1538 1539 RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous"); 1540 vm->rendezvous_req_cpus = dest; 1541 CPU_ZERO(&vm->rendezvous_done_cpus); 1542 vm->rendezvous_arg = arg; 1543 vm_set_rendezvous_func(vm, func); 1544 mtx_unlock(&vm->rendezvous_mtx); 1545 1546 vm_handle_rendezvous(vm, vcpuid); 1547 } 1548