1 /*- 2 * Copyright (c) 2011 NetApp, Inc. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD$ 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/sysctl.h> 37 #include <sys/malloc.h> 38 #include <sys/pcpu.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/proc.h> 42 #include <sys/rwlock.h> 43 #include <sys/sched.h> 44 #include <sys/smp.h> 45 #include <sys/systm.h> 46 47 #include <vm/vm.h> 48 #include <vm/vm_object.h> 49 #include <vm/vm_page.h> 50 #include <vm/pmap.h> 51 #include <vm/vm_map.h> 52 #include <vm/vm_extern.h> 53 #include <vm/vm_param.h> 54 55 #include <machine/cpu.h> 56 #include <machine/vm.h> 57 #include <machine/pcb.h> 58 #include <machine/smp.h> 59 #include <x86/psl.h> 60 #include <x86/apicreg.h> 61 #include <machine/vmparam.h> 62 63 #include <machine/vmm.h> 64 #include <machine/vmm_dev.h> 65 66 #include "vmm_ktr.h" 67 #include "vmm_host.h" 68 #include "vmm_mem.h" 69 #include "vmm_util.h" 70 #include "vatpic.h" 71 #include "vatpit.h" 72 #include "vhpet.h" 73 #include "vioapic.h" 74 #include "vlapic.h" 75 #include "vmm_msr.h" 76 #include "vmm_ipi.h" 77 #include "vmm_stat.h" 78 #include "vmm_lapic.h" 79 80 #include "io/ppt.h" 81 #include "io/iommu.h" 82 83 struct vlapic; 84 85 struct vcpu { 86 int flags; 87 enum vcpu_state state; 88 struct mtx mtx; 89 int hostcpu; /* host cpuid this vcpu last ran on */ 90 uint64_t guest_msrs[VMM_MSR_NUM]; 91 struct vlapic *vlapic; 92 int vcpuid; 93 struct savefpu *guestfpu; /* guest fpu state */ 94 uint64_t guest_xcr0; 95 void *stats; 96 struct vm_exit exitinfo; 97 enum x2apic_state x2apic_state; 98 int nmi_pending; 99 int extint_pending; 100 struct vm_exception exception; 101 int exception_pending; 102 }; 103 104 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 105 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 106 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 107 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 108 109 struct mem_seg { 110 vm_paddr_t gpa; 111 size_t len; 112 boolean_t wired; 113 vm_object_t object; 114 }; 115 #define VM_MAX_MEMORY_SEGMENTS 2 116 117 struct vm { 118 void *cookie; /* processor-specific data */ 119 void *iommu; /* iommu-specific data */ 120 struct vhpet *vhpet; /* virtual HPET */ 121 struct vioapic *vioapic; /* virtual ioapic */ 122 struct vatpic *vatpic; /* virtual atpic */ 123 struct vatpit *vatpit; /* virtual atpit */ 124 struct vmspace *vmspace; /* guest's address space */ 125 struct vcpu vcpu[VM_MAXCPU]; 126 int num_mem_segs; 127 struct mem_seg mem_segs[VM_MAX_MEMORY_SEGMENTS]; 128 char name[VM_MAX_NAMELEN]; 129 130 /* 131 * Set of active vcpus. 132 * An active vcpu is one that has been started implicitly (BSP) or 133 * explicitly (AP) by sending it a startup ipi. 134 */ 135 volatile cpuset_t active_cpus; 136 137 struct mtx rendezvous_mtx; 138 cpuset_t rendezvous_req_cpus; 139 cpuset_t rendezvous_done_cpus; 140 void *rendezvous_arg; 141 vm_rendezvous_func_t rendezvous_func; 142 143 int suspend; 144 volatile cpuset_t suspended_cpus; 145 }; 146 147 static int vmm_initialized; 148 149 static struct vmm_ops *ops; 150 #define VMM_INIT(num) (ops != NULL ? (*ops->init)(num) : 0) 151 #define VMM_CLEANUP() (ops != NULL ? (*ops->cleanup)() : 0) 152 #define VMM_RESUME() (ops != NULL ? (*ops->resume)() : 0) 153 154 #define VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL) 155 #define VMRUN(vmi, vcpu, rip, pmap, rptr, sptr) \ 156 (ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, rptr, sptr) : ENXIO) 157 #define VMCLEANUP(vmi) (ops != NULL ? (*ops->vmcleanup)(vmi) : NULL) 158 #define VMSPACE_ALLOC(min, max) \ 159 (ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL) 160 #define VMSPACE_FREE(vmspace) \ 161 (ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO) 162 #define VMGETREG(vmi, vcpu, num, retval) \ 163 (ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO) 164 #define VMSETREG(vmi, vcpu, num, val) \ 165 (ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO) 166 #define VMGETDESC(vmi, vcpu, num, desc) \ 167 (ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO) 168 #define VMSETDESC(vmi, vcpu, num, desc) \ 169 (ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO) 170 #define VMGETCAP(vmi, vcpu, num, retval) \ 171 (ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO) 172 #define VMSETCAP(vmi, vcpu, num, val) \ 173 (ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO) 174 #define VLAPIC_INIT(vmi, vcpu) \ 175 (ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL) 176 #define VLAPIC_CLEANUP(vmi, vlapic) \ 177 (ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL) 178 179 #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS) 180 #define fpu_stop_emulating() clts() 181 182 static MALLOC_DEFINE(M_VM, "vm", "vm"); 183 CTASSERT(VMM_MSR_NUM <= 64); /* msr_mask can keep track of up to 64 msrs */ 184 185 /* statistics */ 186 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 187 188 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL); 189 190 static int vmm_ipinum; 191 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 192 "IPI vector used for vcpu notifications"); 193 194 static void vm_deactivate_cpu(struct vm *vm, int vcpuid); 195 196 static void 197 vcpu_cleanup(struct vm *vm, int i) 198 { 199 struct vcpu *vcpu = &vm->vcpu[i]; 200 201 VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic); 202 vmm_stat_free(vcpu->stats); 203 fpu_save_area_free(vcpu->guestfpu); 204 } 205 206 static void 207 vcpu_init(struct vm *vm, uint32_t vcpu_id) 208 { 209 struct vcpu *vcpu; 210 211 vcpu = &vm->vcpu[vcpu_id]; 212 213 vcpu_lock_init(vcpu); 214 vcpu->hostcpu = NOCPU; 215 vcpu->vcpuid = vcpu_id; 216 vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id); 217 vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED); 218 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 219 vcpu->guestfpu = fpu_save_area_alloc(); 220 fpu_save_area_reset(vcpu->guestfpu); 221 vcpu->stats = vmm_stat_alloc(); 222 } 223 224 struct vm_exit * 225 vm_exitinfo(struct vm *vm, int cpuid) 226 { 227 struct vcpu *vcpu; 228 229 if (cpuid < 0 || cpuid >= VM_MAXCPU) 230 panic("vm_exitinfo: invalid cpuid %d", cpuid); 231 232 vcpu = &vm->vcpu[cpuid]; 233 234 return (&vcpu->exitinfo); 235 } 236 237 static void 238 vmm_resume(void) 239 { 240 VMM_RESUME(); 241 } 242 243 static int 244 vmm_init(void) 245 { 246 int error; 247 248 vmm_host_state_init(); 249 250 vmm_ipinum = vmm_ipi_alloc(); 251 if (vmm_ipinum == 0) 252 vmm_ipinum = IPI_AST; 253 254 error = vmm_mem_init(); 255 if (error) 256 return (error); 257 258 if (vmm_is_intel()) 259 ops = &vmm_ops_intel; 260 else if (vmm_is_amd()) 261 ops = &vmm_ops_amd; 262 else 263 return (ENXIO); 264 265 vmm_msr_init(); 266 vmm_resume_p = vmm_resume; 267 268 return (VMM_INIT(vmm_ipinum)); 269 } 270 271 static int 272 vmm_handler(module_t mod, int what, void *arg) 273 { 274 int error; 275 276 switch (what) { 277 case MOD_LOAD: 278 vmmdev_init(); 279 if (ppt_avail_devices() > 0) 280 iommu_init(); 281 error = vmm_init(); 282 if (error == 0) 283 vmm_initialized = 1; 284 break; 285 case MOD_UNLOAD: 286 error = vmmdev_cleanup(); 287 if (error == 0) { 288 vmm_resume_p = NULL; 289 iommu_cleanup(); 290 if (vmm_ipinum != IPI_AST) 291 vmm_ipi_free(vmm_ipinum); 292 error = VMM_CLEANUP(); 293 /* 294 * Something bad happened - prevent new 295 * VMs from being created 296 */ 297 if (error) 298 vmm_initialized = 0; 299 } 300 break; 301 default: 302 error = 0; 303 break; 304 } 305 return (error); 306 } 307 308 static moduledata_t vmm_kmod = { 309 "vmm", 310 vmm_handler, 311 NULL 312 }; 313 314 /* 315 * vmm initialization has the following dependencies: 316 * 317 * - iommu initialization must happen after the pci passthru driver has had 318 * a chance to attach to any passthru devices (after SI_SUB_CONFIGURE). 319 * 320 * - VT-x initialization requires smp_rendezvous() and therefore must happen 321 * after SMP is fully functional (after SI_SUB_SMP). 322 */ 323 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 324 MODULE_VERSION(vmm, 1); 325 326 int 327 vm_create(const char *name, struct vm **retvm) 328 { 329 int i; 330 struct vm *vm; 331 struct vmspace *vmspace; 332 333 const int BSP = 0; 334 335 /* 336 * If vmm.ko could not be successfully initialized then don't attempt 337 * to create the virtual machine. 338 */ 339 if (!vmm_initialized) 340 return (ENXIO); 341 342 if (name == NULL || strlen(name) >= VM_MAX_NAMELEN) 343 return (EINVAL); 344 345 vmspace = VMSPACE_ALLOC(VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS); 346 if (vmspace == NULL) 347 return (ENOMEM); 348 349 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 350 strcpy(vm->name, name); 351 vm->vmspace = vmspace; 352 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 353 vm->cookie = VMINIT(vm, vmspace_pmap(vmspace)); 354 vm->vioapic = vioapic_init(vm); 355 vm->vhpet = vhpet_init(vm); 356 vm->vatpic = vatpic_init(vm); 357 vm->vatpit = vatpit_init(vm); 358 359 for (i = 0; i < VM_MAXCPU; i++) { 360 vcpu_init(vm, i); 361 guest_msrs_init(vm, i); 362 } 363 364 vm_activate_cpu(vm, BSP); 365 366 *retvm = vm; 367 return (0); 368 } 369 370 static void 371 vm_free_mem_seg(struct vm *vm, struct mem_seg *seg) 372 { 373 374 if (seg->object != NULL) 375 vmm_mem_free(vm->vmspace, seg->gpa, seg->len); 376 377 bzero(seg, sizeof(*seg)); 378 } 379 380 void 381 vm_destroy(struct vm *vm) 382 { 383 int i; 384 385 ppt_unassign_all(vm); 386 387 if (vm->iommu != NULL) 388 iommu_destroy_domain(vm->iommu); 389 390 vatpit_cleanup(vm->vatpit); 391 vhpet_cleanup(vm->vhpet); 392 vatpic_cleanup(vm->vatpic); 393 vioapic_cleanup(vm->vioapic); 394 395 for (i = 0; i < vm->num_mem_segs; i++) 396 vm_free_mem_seg(vm, &vm->mem_segs[i]); 397 398 vm->num_mem_segs = 0; 399 400 for (i = 0; i < VM_MAXCPU; i++) 401 vcpu_cleanup(vm, i); 402 403 VMSPACE_FREE(vm->vmspace); 404 405 VMCLEANUP(vm->cookie); 406 407 free(vm, M_VM); 408 } 409 410 const char * 411 vm_name(struct vm *vm) 412 { 413 return (vm->name); 414 } 415 416 int 417 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 418 { 419 vm_object_t obj; 420 421 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 422 return (ENOMEM); 423 else 424 return (0); 425 } 426 427 int 428 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 429 { 430 431 vmm_mmio_free(vm->vmspace, gpa, len); 432 return (0); 433 } 434 435 boolean_t 436 vm_mem_allocated(struct vm *vm, vm_paddr_t gpa) 437 { 438 int i; 439 vm_paddr_t gpabase, gpalimit; 440 441 for (i = 0; i < vm->num_mem_segs; i++) { 442 gpabase = vm->mem_segs[i].gpa; 443 gpalimit = gpabase + vm->mem_segs[i].len; 444 if (gpa >= gpabase && gpa < gpalimit) 445 return (TRUE); /* 'gpa' is regular memory */ 446 } 447 448 if (ppt_is_mmio(vm, gpa)) 449 return (TRUE); /* 'gpa' is pci passthru mmio */ 450 451 return (FALSE); 452 } 453 454 int 455 vm_malloc(struct vm *vm, vm_paddr_t gpa, size_t len) 456 { 457 int available, allocated; 458 struct mem_seg *seg; 459 vm_object_t object; 460 vm_paddr_t g; 461 462 if ((gpa & PAGE_MASK) || (len & PAGE_MASK) || len == 0) 463 return (EINVAL); 464 465 available = allocated = 0; 466 g = gpa; 467 while (g < gpa + len) { 468 if (vm_mem_allocated(vm, g)) 469 allocated++; 470 else 471 available++; 472 473 g += PAGE_SIZE; 474 } 475 476 /* 477 * If there are some allocated and some available pages in the address 478 * range then it is an error. 479 */ 480 if (allocated && available) 481 return (EINVAL); 482 483 /* 484 * If the entire address range being requested has already been 485 * allocated then there isn't anything more to do. 486 */ 487 if (allocated && available == 0) 488 return (0); 489 490 if (vm->num_mem_segs >= VM_MAX_MEMORY_SEGMENTS) 491 return (E2BIG); 492 493 seg = &vm->mem_segs[vm->num_mem_segs]; 494 495 if ((object = vmm_mem_alloc(vm->vmspace, gpa, len)) == NULL) 496 return (ENOMEM); 497 498 seg->gpa = gpa; 499 seg->len = len; 500 seg->object = object; 501 seg->wired = FALSE; 502 503 vm->num_mem_segs++; 504 505 return (0); 506 } 507 508 static void 509 vm_gpa_unwire(struct vm *vm) 510 { 511 int i, rv; 512 struct mem_seg *seg; 513 514 for (i = 0; i < vm->num_mem_segs; i++) { 515 seg = &vm->mem_segs[i]; 516 if (!seg->wired) 517 continue; 518 519 rv = vm_map_unwire(&vm->vmspace->vm_map, 520 seg->gpa, seg->gpa + seg->len, 521 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 522 KASSERT(rv == KERN_SUCCESS, ("vm(%s) memory segment " 523 "%#lx/%ld could not be unwired: %d", 524 vm_name(vm), seg->gpa, seg->len, rv)); 525 526 seg->wired = FALSE; 527 } 528 } 529 530 static int 531 vm_gpa_wire(struct vm *vm) 532 { 533 int i, rv; 534 struct mem_seg *seg; 535 536 for (i = 0; i < vm->num_mem_segs; i++) { 537 seg = &vm->mem_segs[i]; 538 if (seg->wired) 539 continue; 540 541 /* XXX rlimits? */ 542 rv = vm_map_wire(&vm->vmspace->vm_map, 543 seg->gpa, seg->gpa + seg->len, 544 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 545 if (rv != KERN_SUCCESS) 546 break; 547 548 seg->wired = TRUE; 549 } 550 551 if (i < vm->num_mem_segs) { 552 /* 553 * Undo the wiring before returning an error. 554 */ 555 vm_gpa_unwire(vm); 556 return (EAGAIN); 557 } 558 559 return (0); 560 } 561 562 static void 563 vm_iommu_modify(struct vm *vm, boolean_t map) 564 { 565 int i, sz; 566 vm_paddr_t gpa, hpa; 567 struct mem_seg *seg; 568 void *vp, *cookie, *host_domain; 569 570 sz = PAGE_SIZE; 571 host_domain = iommu_host_domain(); 572 573 for (i = 0; i < vm->num_mem_segs; i++) { 574 seg = &vm->mem_segs[i]; 575 KASSERT(seg->wired, ("vm(%s) memory segment %#lx/%ld not wired", 576 vm_name(vm), seg->gpa, seg->len)); 577 578 gpa = seg->gpa; 579 while (gpa < seg->gpa + seg->len) { 580 vp = vm_gpa_hold(vm, gpa, PAGE_SIZE, VM_PROT_WRITE, 581 &cookie); 582 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", 583 vm_name(vm), gpa)); 584 585 vm_gpa_release(cookie); 586 587 hpa = DMAP_TO_PHYS((uintptr_t)vp); 588 if (map) { 589 iommu_create_mapping(vm->iommu, gpa, hpa, sz); 590 iommu_remove_mapping(host_domain, hpa, sz); 591 } else { 592 iommu_remove_mapping(vm->iommu, gpa, sz); 593 iommu_create_mapping(host_domain, hpa, hpa, sz); 594 } 595 596 gpa += PAGE_SIZE; 597 } 598 } 599 600 /* 601 * Invalidate the cached translations associated with the domain 602 * from which pages were removed. 603 */ 604 if (map) 605 iommu_invalidate_tlb(host_domain); 606 else 607 iommu_invalidate_tlb(vm->iommu); 608 } 609 610 #define vm_iommu_unmap(vm) vm_iommu_modify((vm), FALSE) 611 #define vm_iommu_map(vm) vm_iommu_modify((vm), TRUE) 612 613 int 614 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 615 { 616 int error; 617 618 error = ppt_unassign_device(vm, bus, slot, func); 619 if (error) 620 return (error); 621 622 if (ppt_assigned_devices(vm) == 0) { 623 vm_iommu_unmap(vm); 624 vm_gpa_unwire(vm); 625 } 626 return (0); 627 } 628 629 int 630 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 631 { 632 int error; 633 vm_paddr_t maxaddr; 634 635 /* 636 * Virtual machines with pci passthru devices get special treatment: 637 * - the guest physical memory is wired 638 * - the iommu is programmed to do the 'gpa' to 'hpa' translation 639 * 640 * We need to do this before the first pci passthru device is attached. 641 */ 642 if (ppt_assigned_devices(vm) == 0) { 643 KASSERT(vm->iommu == NULL, 644 ("vm_assign_pptdev: iommu must be NULL")); 645 maxaddr = vmm_mem_maxaddr(); 646 vm->iommu = iommu_create_domain(maxaddr); 647 648 error = vm_gpa_wire(vm); 649 if (error) 650 return (error); 651 652 vm_iommu_map(vm); 653 } 654 655 error = ppt_assign_device(vm, bus, slot, func); 656 return (error); 657 } 658 659 void * 660 vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 661 void **cookie) 662 { 663 int count, pageoff; 664 vm_page_t m; 665 666 pageoff = gpa & PAGE_MASK; 667 if (len > PAGE_SIZE - pageoff) 668 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 669 670 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 671 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 672 673 if (count == 1) { 674 *cookie = m; 675 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 676 } else { 677 *cookie = NULL; 678 return (NULL); 679 } 680 } 681 682 void 683 vm_gpa_release(void *cookie) 684 { 685 vm_page_t m = cookie; 686 687 vm_page_lock(m); 688 vm_page_unhold(m); 689 vm_page_unlock(m); 690 } 691 692 int 693 vm_gpabase2memseg(struct vm *vm, vm_paddr_t gpabase, 694 struct vm_memory_segment *seg) 695 { 696 int i; 697 698 for (i = 0; i < vm->num_mem_segs; i++) { 699 if (gpabase == vm->mem_segs[i].gpa) { 700 seg->gpa = vm->mem_segs[i].gpa; 701 seg->len = vm->mem_segs[i].len; 702 seg->wired = vm->mem_segs[i].wired; 703 return (0); 704 } 705 } 706 return (-1); 707 } 708 709 int 710 vm_get_memobj(struct vm *vm, vm_paddr_t gpa, size_t len, 711 vm_offset_t *offset, struct vm_object **object) 712 { 713 int i; 714 size_t seg_len; 715 vm_paddr_t seg_gpa; 716 vm_object_t seg_obj; 717 718 for (i = 0; i < vm->num_mem_segs; i++) { 719 if ((seg_obj = vm->mem_segs[i].object) == NULL) 720 continue; 721 722 seg_gpa = vm->mem_segs[i].gpa; 723 seg_len = vm->mem_segs[i].len; 724 725 if (gpa >= seg_gpa && gpa < seg_gpa + seg_len) { 726 *offset = gpa - seg_gpa; 727 *object = seg_obj; 728 vm_object_reference(seg_obj); 729 return (0); 730 } 731 } 732 733 return (EINVAL); 734 } 735 736 int 737 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval) 738 { 739 740 if (vcpu < 0 || vcpu >= VM_MAXCPU) 741 return (EINVAL); 742 743 if (reg >= VM_REG_LAST) 744 return (EINVAL); 745 746 return (VMGETREG(vm->cookie, vcpu, reg, retval)); 747 } 748 749 int 750 vm_set_register(struct vm *vm, int vcpu, int reg, uint64_t val) 751 { 752 753 if (vcpu < 0 || vcpu >= VM_MAXCPU) 754 return (EINVAL); 755 756 if (reg >= VM_REG_LAST) 757 return (EINVAL); 758 759 return (VMSETREG(vm->cookie, vcpu, reg, val)); 760 } 761 762 static boolean_t 763 is_descriptor_table(int reg) 764 { 765 766 switch (reg) { 767 case VM_REG_GUEST_IDTR: 768 case VM_REG_GUEST_GDTR: 769 return (TRUE); 770 default: 771 return (FALSE); 772 } 773 } 774 775 static boolean_t 776 is_segment_register(int reg) 777 { 778 779 switch (reg) { 780 case VM_REG_GUEST_ES: 781 case VM_REG_GUEST_CS: 782 case VM_REG_GUEST_SS: 783 case VM_REG_GUEST_DS: 784 case VM_REG_GUEST_FS: 785 case VM_REG_GUEST_GS: 786 case VM_REG_GUEST_TR: 787 case VM_REG_GUEST_LDTR: 788 return (TRUE); 789 default: 790 return (FALSE); 791 } 792 } 793 794 int 795 vm_get_seg_desc(struct vm *vm, int vcpu, int reg, 796 struct seg_desc *desc) 797 { 798 799 if (vcpu < 0 || vcpu >= VM_MAXCPU) 800 return (EINVAL); 801 802 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 803 return (EINVAL); 804 805 return (VMGETDESC(vm->cookie, vcpu, reg, desc)); 806 } 807 808 int 809 vm_set_seg_desc(struct vm *vm, int vcpu, int reg, 810 struct seg_desc *desc) 811 { 812 if (vcpu < 0 || vcpu >= VM_MAXCPU) 813 return (EINVAL); 814 815 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 816 return (EINVAL); 817 818 return (VMSETDESC(vm->cookie, vcpu, reg, desc)); 819 } 820 821 static void 822 restore_guest_fpustate(struct vcpu *vcpu) 823 { 824 825 /* flush host state to the pcb */ 826 fpuexit(curthread); 827 828 /* restore guest FPU state */ 829 fpu_stop_emulating(); 830 fpurestore(vcpu->guestfpu); 831 832 /* restore guest XCR0 if XSAVE is enabled in the host */ 833 if (rcr4() & CR4_XSAVE) 834 load_xcr(0, vcpu->guest_xcr0); 835 836 /* 837 * The FPU is now "dirty" with the guest's state so turn on emulation 838 * to trap any access to the FPU by the host. 839 */ 840 fpu_start_emulating(); 841 } 842 843 static void 844 save_guest_fpustate(struct vcpu *vcpu) 845 { 846 847 if ((rcr0() & CR0_TS) == 0) 848 panic("fpu emulation not enabled in host!"); 849 850 /* save guest XCR0 and restore host XCR0 */ 851 if (rcr4() & CR4_XSAVE) { 852 vcpu->guest_xcr0 = rxcr(0); 853 load_xcr(0, vmm_get_host_xcr0()); 854 } 855 856 /* save guest FPU state */ 857 fpu_stop_emulating(); 858 fpusave(vcpu->guestfpu); 859 fpu_start_emulating(); 860 } 861 862 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 863 864 static int 865 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate, 866 bool from_idle) 867 { 868 int error; 869 870 vcpu_assert_locked(vcpu); 871 872 /* 873 * State transitions from the vmmdev_ioctl() must always begin from 874 * the VCPU_IDLE state. This guarantees that there is only a single 875 * ioctl() operating on a vcpu at any point. 876 */ 877 if (from_idle) { 878 while (vcpu->state != VCPU_IDLE) 879 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 880 } else { 881 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 882 "vcpu idle state")); 883 } 884 885 if (vcpu->state == VCPU_RUNNING) { 886 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 887 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 888 } else { 889 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 890 "vcpu that is not running", vcpu->hostcpu)); 891 } 892 893 /* 894 * The following state transitions are allowed: 895 * IDLE -> FROZEN -> IDLE 896 * FROZEN -> RUNNING -> FROZEN 897 * FROZEN -> SLEEPING -> FROZEN 898 */ 899 switch (vcpu->state) { 900 case VCPU_IDLE: 901 case VCPU_RUNNING: 902 case VCPU_SLEEPING: 903 error = (newstate != VCPU_FROZEN); 904 break; 905 case VCPU_FROZEN: 906 error = (newstate == VCPU_FROZEN); 907 break; 908 default: 909 error = 1; 910 break; 911 } 912 913 if (error) 914 return (EBUSY); 915 916 vcpu->state = newstate; 917 if (newstate == VCPU_RUNNING) 918 vcpu->hostcpu = curcpu; 919 else 920 vcpu->hostcpu = NOCPU; 921 922 if (newstate == VCPU_IDLE) 923 wakeup(&vcpu->state); 924 925 return (0); 926 } 927 928 static void 929 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate) 930 { 931 int error; 932 933 if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0) 934 panic("Error %d setting state to %d\n", error, newstate); 935 } 936 937 static void 938 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate) 939 { 940 int error; 941 942 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0) 943 panic("Error %d setting state to %d", error, newstate); 944 } 945 946 static void 947 vm_set_rendezvous_func(struct vm *vm, vm_rendezvous_func_t func) 948 { 949 950 KASSERT(mtx_owned(&vm->rendezvous_mtx), ("rendezvous_mtx not locked")); 951 952 /* 953 * Update 'rendezvous_func' and execute a write memory barrier to 954 * ensure that it is visible across all host cpus. This is not needed 955 * for correctness but it does ensure that all the vcpus will notice 956 * that the rendezvous is requested immediately. 957 */ 958 vm->rendezvous_func = func; 959 wmb(); 960 } 961 962 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt) \ 963 do { \ 964 if (vcpuid >= 0) \ 965 VCPU_CTR0(vm, vcpuid, fmt); \ 966 else \ 967 VM_CTR0(vm, fmt); \ 968 } while (0) 969 970 static void 971 vm_handle_rendezvous(struct vm *vm, int vcpuid) 972 { 973 974 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU), 975 ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid)); 976 977 mtx_lock(&vm->rendezvous_mtx); 978 while (vm->rendezvous_func != NULL) { 979 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 980 CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus); 981 982 if (vcpuid != -1 && 983 CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 984 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 985 VCPU_CTR0(vm, vcpuid, "Calling rendezvous func"); 986 (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg); 987 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 988 } 989 if (CPU_CMP(&vm->rendezvous_req_cpus, 990 &vm->rendezvous_done_cpus) == 0) { 991 VCPU_CTR0(vm, vcpuid, "Rendezvous completed"); 992 vm_set_rendezvous_func(vm, NULL); 993 wakeup(&vm->rendezvous_func); 994 break; 995 } 996 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion"); 997 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 998 "vmrndv", 0); 999 } 1000 mtx_unlock(&vm->rendezvous_mtx); 1001 } 1002 1003 /* 1004 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1005 */ 1006 static int 1007 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu) 1008 { 1009 struct vm_exit *vmexit; 1010 struct vcpu *vcpu; 1011 int t, timo, spindown; 1012 1013 vcpu = &vm->vcpu[vcpuid]; 1014 spindown = 0; 1015 1016 vcpu_lock(vcpu); 1017 1018 /* 1019 * Do a final check for pending NMI or interrupts before 1020 * really putting this thread to sleep. 1021 * 1022 * These interrupts could have happened any time after we 1023 * returned from VMRUN() and before we grabbed the vcpu lock. 1024 */ 1025 if (vm->rendezvous_func == NULL && 1026 !vm_nmi_pending(vm, vcpuid) && 1027 (intr_disabled || !vlapic_pending_intr(vcpu->vlapic, NULL))) { 1028 t = ticks; 1029 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1030 if (vlapic_enabled(vcpu->vlapic)) { 1031 /* 1032 * XXX msleep_spin() is not interruptible so use the 1033 * 'timo' to put an upper bound on the sleep time. 1034 */ 1035 timo = hz; 1036 msleep_spin(vcpu, &vcpu->mtx, "vmidle", timo); 1037 } else { 1038 /* 1039 * Spindown the vcpu if the APIC is disabled and it 1040 * had entered the halted state, but never spin 1041 * down the BSP. 1042 */ 1043 if (vcpuid != 0) 1044 spindown = 1; 1045 } 1046 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1047 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t); 1048 } 1049 vcpu_unlock(vcpu); 1050 1051 /* 1052 * Since 'vm_deactivate_cpu()' grabs a sleep mutex we must call it 1053 * outside the confines of the vcpu spinlock. 1054 */ 1055 if (spindown) { 1056 *retu = true; 1057 vmexit = vm_exitinfo(vm, vcpuid); 1058 vmexit->exitcode = VM_EXITCODE_SPINDOWN_CPU; 1059 vm_deactivate_cpu(vm, vcpuid); 1060 VCPU_CTR0(vm, vcpuid, "spinning down cpu"); 1061 } 1062 1063 return (0); 1064 } 1065 1066 static int 1067 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu) 1068 { 1069 int rv, ftype; 1070 struct vm_map *map; 1071 struct vcpu *vcpu; 1072 struct vm_exit *vme; 1073 1074 vcpu = &vm->vcpu[vcpuid]; 1075 vme = &vcpu->exitinfo; 1076 1077 ftype = vme->u.paging.fault_type; 1078 KASSERT(ftype == VM_PROT_READ || 1079 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1080 ("vm_handle_paging: invalid fault_type %d", ftype)); 1081 1082 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1083 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1084 vme->u.paging.gpa, ftype); 1085 if (rv == 0) 1086 goto done; 1087 } 1088 1089 map = &vm->vmspace->vm_map; 1090 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL); 1091 1092 VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, " 1093 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1094 1095 if (rv != KERN_SUCCESS) 1096 return (EFAULT); 1097 done: 1098 /* restart execution at the faulting instruction */ 1099 vme->inst_length = 0; 1100 1101 return (0); 1102 } 1103 1104 static int 1105 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu) 1106 { 1107 struct vie *vie; 1108 struct vcpu *vcpu; 1109 struct vm_exit *vme; 1110 int error, inst_length; 1111 uint64_t rip, gla, gpa, cr3; 1112 enum vie_cpu_mode cpu_mode; 1113 enum vie_paging_mode paging_mode; 1114 mem_region_read_t mread; 1115 mem_region_write_t mwrite; 1116 1117 vcpu = &vm->vcpu[vcpuid]; 1118 vme = &vcpu->exitinfo; 1119 1120 rip = vme->rip; 1121 inst_length = vme->inst_length; 1122 1123 gla = vme->u.inst_emul.gla; 1124 gpa = vme->u.inst_emul.gpa; 1125 cr3 = vme->u.inst_emul.cr3; 1126 cpu_mode = vme->u.inst_emul.cpu_mode; 1127 paging_mode = vme->u.inst_emul.paging_mode; 1128 vie = &vme->u.inst_emul.vie; 1129 1130 vie_init(vie); 1131 1132 /* Fetch, decode and emulate the faulting instruction */ 1133 if (vmm_fetch_instruction(vm, vcpuid, rip, inst_length, cr3, 1134 paging_mode, vie) != 0) 1135 return (EFAULT); 1136 1137 if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, vie) != 0) 1138 return (EFAULT); 1139 1140 /* return to userland unless this is an in-kernel emulated device */ 1141 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1142 mread = lapic_mmio_read; 1143 mwrite = lapic_mmio_write; 1144 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1145 mread = vioapic_mmio_read; 1146 mwrite = vioapic_mmio_write; 1147 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1148 mread = vhpet_mmio_read; 1149 mwrite = vhpet_mmio_write; 1150 } else { 1151 *retu = true; 1152 return (0); 1153 } 1154 1155 error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, mread, mwrite, 1156 retu); 1157 1158 return (error); 1159 } 1160 1161 static int 1162 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu) 1163 { 1164 int i, done; 1165 struct vcpu *vcpu; 1166 1167 done = 0; 1168 vcpu = &vm->vcpu[vcpuid]; 1169 1170 CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus); 1171 1172 /* 1173 * Wait until all 'active_cpus' have suspended themselves. 1174 * 1175 * Since a VM may be suspended at any time including when one or 1176 * more vcpus are doing a rendezvous we need to call the rendezvous 1177 * handler while we are waiting to prevent a deadlock. 1178 */ 1179 vcpu_lock(vcpu); 1180 while (1) { 1181 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1182 VCPU_CTR0(vm, vcpuid, "All vcpus suspended"); 1183 break; 1184 } 1185 1186 if (vm->rendezvous_func == NULL) { 1187 VCPU_CTR0(vm, vcpuid, "Sleeping during suspend"); 1188 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1189 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1190 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1191 } else { 1192 VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend"); 1193 vcpu_unlock(vcpu); 1194 vm_handle_rendezvous(vm, vcpuid); 1195 vcpu_lock(vcpu); 1196 } 1197 } 1198 vcpu_unlock(vcpu); 1199 1200 /* 1201 * Wakeup the other sleeping vcpus and return to userspace. 1202 */ 1203 for (i = 0; i < VM_MAXCPU; i++) { 1204 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1205 vcpu_notify_event(vm, i, false); 1206 } 1207 } 1208 1209 *retu = true; 1210 return (0); 1211 } 1212 1213 int 1214 vm_suspend(struct vm *vm) 1215 { 1216 1217 if (atomic_cmpset_int(&vm->suspend, 0, 1)) { 1218 VM_CTR0(vm, "virtual machine suspended"); 1219 return (0); 1220 } else { 1221 VM_CTR0(vm, "virtual machine already suspended"); 1222 return (EALREADY); 1223 } 1224 } 1225 1226 int 1227 vm_run(struct vm *vm, struct vm_run *vmrun) 1228 { 1229 int error, vcpuid; 1230 struct vcpu *vcpu; 1231 struct pcb *pcb; 1232 uint64_t tscval, rip; 1233 struct vm_exit *vme; 1234 bool retu, intr_disabled; 1235 pmap_t pmap; 1236 void *rptr, *sptr; 1237 1238 vcpuid = vmrun->cpuid; 1239 1240 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1241 return (EINVAL); 1242 1243 rptr = &vm->rendezvous_func; 1244 sptr = &vm->suspend; 1245 pmap = vmspace_pmap(vm->vmspace); 1246 vcpu = &vm->vcpu[vcpuid]; 1247 vme = &vcpu->exitinfo; 1248 rip = vmrun->rip; 1249 restart: 1250 critical_enter(); 1251 1252 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1253 ("vm_run: absurd pm_active")); 1254 1255 tscval = rdtsc(); 1256 1257 pcb = PCPU_GET(curpcb); 1258 set_pcb_flags(pcb, PCB_FULL_IRET); 1259 1260 restore_guest_msrs(vm, vcpuid); 1261 restore_guest_fpustate(vcpu); 1262 1263 vcpu_require_state(vm, vcpuid, VCPU_RUNNING); 1264 error = VMRUN(vm->cookie, vcpuid, rip, pmap, rptr, sptr); 1265 vcpu_require_state(vm, vcpuid, VCPU_FROZEN); 1266 1267 save_guest_fpustate(vcpu); 1268 restore_host_msrs(vm, vcpuid); 1269 1270 vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1271 1272 critical_exit(); 1273 1274 if (error == 0) { 1275 retu = false; 1276 switch (vme->exitcode) { 1277 case VM_EXITCODE_SUSPENDED: 1278 error = vm_handle_suspend(vm, vcpuid, &retu); 1279 break; 1280 case VM_EXITCODE_IOAPIC_EOI: 1281 vioapic_process_eoi(vm, vcpuid, 1282 vme->u.ioapic_eoi.vector); 1283 break; 1284 case VM_EXITCODE_RENDEZVOUS: 1285 vm_handle_rendezvous(vm, vcpuid); 1286 error = 0; 1287 break; 1288 case VM_EXITCODE_HLT: 1289 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1290 error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu); 1291 break; 1292 case VM_EXITCODE_PAGING: 1293 error = vm_handle_paging(vm, vcpuid, &retu); 1294 break; 1295 case VM_EXITCODE_INST_EMUL: 1296 error = vm_handle_inst_emul(vm, vcpuid, &retu); 1297 break; 1298 default: 1299 retu = true; /* handled in userland */ 1300 break; 1301 } 1302 } 1303 1304 if (error == 0 && retu == false) { 1305 rip = vme->rip + vme->inst_length; 1306 goto restart; 1307 } 1308 1309 /* copy the exit information */ 1310 bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit)); 1311 return (error); 1312 } 1313 1314 int 1315 vm_inject_exception(struct vm *vm, int vcpuid, struct vm_exception *exception) 1316 { 1317 struct vcpu *vcpu; 1318 1319 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1320 return (EINVAL); 1321 1322 if (exception->vector < 0 || exception->vector >= 32) 1323 return (EINVAL); 1324 1325 vcpu = &vm->vcpu[vcpuid]; 1326 1327 if (vcpu->exception_pending) { 1328 VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to " 1329 "pending exception %d", exception->vector, 1330 vcpu->exception.vector); 1331 return (EBUSY); 1332 } 1333 1334 vcpu->exception_pending = 1; 1335 vcpu->exception = *exception; 1336 VCPU_CTR1(vm, vcpuid, "Exception %d pending", exception->vector); 1337 return (0); 1338 } 1339 1340 int 1341 vm_exception_pending(struct vm *vm, int vcpuid, struct vm_exception *exception) 1342 { 1343 struct vcpu *vcpu; 1344 int pending; 1345 1346 KASSERT(vcpuid >= 0 && vcpuid < VM_MAXCPU, ("invalid vcpu %d", vcpuid)); 1347 1348 vcpu = &vm->vcpu[vcpuid]; 1349 pending = vcpu->exception_pending; 1350 if (pending) { 1351 vcpu->exception_pending = 0; 1352 *exception = vcpu->exception; 1353 VCPU_CTR1(vm, vcpuid, "Exception %d delivered", 1354 exception->vector); 1355 } 1356 return (pending); 1357 } 1358 1359 static void 1360 vm_inject_fault(struct vm *vm, int vcpuid, struct vm_exception *exception) 1361 { 1362 struct vm_exit *vmexit; 1363 int error; 1364 1365 error = vm_inject_exception(vm, vcpuid, exception); 1366 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 1367 1368 /* 1369 * A fault-like exception allows the instruction to be restarted 1370 * after the exception handler returns. 1371 * 1372 * By setting the inst_length to 0 we ensure that the instruction 1373 * pointer remains at the faulting instruction. 1374 */ 1375 vmexit = vm_exitinfo(vm, vcpuid); 1376 vmexit->inst_length = 0; 1377 } 1378 1379 void 1380 vm_inject_gp(struct vm *vm, int vcpuid) 1381 { 1382 struct vm_exception gpf = { 1383 .vector = IDT_GP, 1384 .error_code_valid = 1, 1385 .error_code = 0 1386 }; 1387 1388 vm_inject_fault(vm, vcpuid, &gpf); 1389 } 1390 1391 void 1392 vm_inject_ud(struct vm *vm, int vcpuid) 1393 { 1394 struct vm_exception udf = { 1395 .vector = IDT_UD, 1396 .error_code_valid = 0 1397 }; 1398 1399 vm_inject_fault(vm, vcpuid, &udf); 1400 } 1401 1402 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 1403 1404 int 1405 vm_inject_nmi(struct vm *vm, int vcpuid) 1406 { 1407 struct vcpu *vcpu; 1408 1409 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1410 return (EINVAL); 1411 1412 vcpu = &vm->vcpu[vcpuid]; 1413 1414 vcpu->nmi_pending = 1; 1415 vcpu_notify_event(vm, vcpuid, false); 1416 return (0); 1417 } 1418 1419 int 1420 vm_nmi_pending(struct vm *vm, int vcpuid) 1421 { 1422 struct vcpu *vcpu; 1423 1424 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1425 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 1426 1427 vcpu = &vm->vcpu[vcpuid]; 1428 1429 return (vcpu->nmi_pending); 1430 } 1431 1432 void 1433 vm_nmi_clear(struct vm *vm, int vcpuid) 1434 { 1435 struct vcpu *vcpu; 1436 1437 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1438 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 1439 1440 vcpu = &vm->vcpu[vcpuid]; 1441 1442 if (vcpu->nmi_pending == 0) 1443 panic("vm_nmi_clear: inconsistent nmi_pending state"); 1444 1445 vcpu->nmi_pending = 0; 1446 vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1); 1447 } 1448 1449 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 1450 1451 int 1452 vm_inject_extint(struct vm *vm, int vcpuid) 1453 { 1454 struct vcpu *vcpu; 1455 1456 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1457 return (EINVAL); 1458 1459 vcpu = &vm->vcpu[vcpuid]; 1460 1461 vcpu->extint_pending = 1; 1462 vcpu_notify_event(vm, vcpuid, false); 1463 return (0); 1464 } 1465 1466 int 1467 vm_extint_pending(struct vm *vm, int vcpuid) 1468 { 1469 struct vcpu *vcpu; 1470 1471 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1472 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 1473 1474 vcpu = &vm->vcpu[vcpuid]; 1475 1476 return (vcpu->extint_pending); 1477 } 1478 1479 void 1480 vm_extint_clear(struct vm *vm, int vcpuid) 1481 { 1482 struct vcpu *vcpu; 1483 1484 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1485 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 1486 1487 vcpu = &vm->vcpu[vcpuid]; 1488 1489 if (vcpu->extint_pending == 0) 1490 panic("vm_extint_clear: inconsistent extint_pending state"); 1491 1492 vcpu->extint_pending = 0; 1493 vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1); 1494 } 1495 1496 int 1497 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval) 1498 { 1499 if (vcpu < 0 || vcpu >= VM_MAXCPU) 1500 return (EINVAL); 1501 1502 if (type < 0 || type >= VM_CAP_MAX) 1503 return (EINVAL); 1504 1505 return (VMGETCAP(vm->cookie, vcpu, type, retval)); 1506 } 1507 1508 int 1509 vm_set_capability(struct vm *vm, int vcpu, int type, int val) 1510 { 1511 if (vcpu < 0 || vcpu >= VM_MAXCPU) 1512 return (EINVAL); 1513 1514 if (type < 0 || type >= VM_CAP_MAX) 1515 return (EINVAL); 1516 1517 return (VMSETCAP(vm->cookie, vcpu, type, val)); 1518 } 1519 1520 uint64_t * 1521 vm_guest_msrs(struct vm *vm, int cpu) 1522 { 1523 return (vm->vcpu[cpu].guest_msrs); 1524 } 1525 1526 struct vlapic * 1527 vm_lapic(struct vm *vm, int cpu) 1528 { 1529 return (vm->vcpu[cpu].vlapic); 1530 } 1531 1532 struct vioapic * 1533 vm_ioapic(struct vm *vm) 1534 { 1535 1536 return (vm->vioapic); 1537 } 1538 1539 struct vhpet * 1540 vm_hpet(struct vm *vm) 1541 { 1542 1543 return (vm->vhpet); 1544 } 1545 1546 boolean_t 1547 vmm_is_pptdev(int bus, int slot, int func) 1548 { 1549 int found, i, n; 1550 int b, s, f; 1551 char *val, *cp, *cp2; 1552 1553 /* 1554 * XXX 1555 * The length of an environment variable is limited to 128 bytes which 1556 * puts an upper limit on the number of passthru devices that may be 1557 * specified using a single environment variable. 1558 * 1559 * Work around this by scanning multiple environment variable 1560 * names instead of a single one - yuck! 1561 */ 1562 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 1563 1564 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 1565 found = 0; 1566 for (i = 0; names[i] != NULL && !found; i++) { 1567 cp = val = getenv(names[i]); 1568 while (cp != NULL && *cp != '\0') { 1569 if ((cp2 = strchr(cp, ' ')) != NULL) 1570 *cp2 = '\0'; 1571 1572 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 1573 if (n == 3 && bus == b && slot == s && func == f) { 1574 found = 1; 1575 break; 1576 } 1577 1578 if (cp2 != NULL) 1579 *cp2++ = ' '; 1580 1581 cp = cp2; 1582 } 1583 freeenv(val); 1584 } 1585 return (found); 1586 } 1587 1588 void * 1589 vm_iommu_domain(struct vm *vm) 1590 { 1591 1592 return (vm->iommu); 1593 } 1594 1595 int 1596 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate, 1597 bool from_idle) 1598 { 1599 int error; 1600 struct vcpu *vcpu; 1601 1602 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1603 panic("vm_set_run_state: invalid vcpuid %d", vcpuid); 1604 1605 vcpu = &vm->vcpu[vcpuid]; 1606 1607 vcpu_lock(vcpu); 1608 error = vcpu_set_state_locked(vcpu, newstate, from_idle); 1609 vcpu_unlock(vcpu); 1610 1611 return (error); 1612 } 1613 1614 enum vcpu_state 1615 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu) 1616 { 1617 struct vcpu *vcpu; 1618 enum vcpu_state state; 1619 1620 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1621 panic("vm_get_run_state: invalid vcpuid %d", vcpuid); 1622 1623 vcpu = &vm->vcpu[vcpuid]; 1624 1625 vcpu_lock(vcpu); 1626 state = vcpu->state; 1627 if (hostcpu != NULL) 1628 *hostcpu = vcpu->hostcpu; 1629 vcpu_unlock(vcpu); 1630 1631 return (state); 1632 } 1633 1634 void 1635 vm_activate_cpu(struct vm *vm, int vcpuid) 1636 { 1637 1638 KASSERT(vcpuid >= 0 && vcpuid < VM_MAXCPU, 1639 ("vm_activate_cpu: invalid vcpuid %d", vcpuid)); 1640 KASSERT(!CPU_ISSET(vcpuid, &vm->active_cpus), 1641 ("vm_activate_cpu: vcpuid %d is already active", vcpuid)); 1642 1643 VCPU_CTR0(vm, vcpuid, "activated"); 1644 CPU_SET_ATOMIC(vcpuid, &vm->active_cpus); 1645 } 1646 1647 static void 1648 vm_deactivate_cpu(struct vm *vm, int vcpuid) 1649 { 1650 1651 KASSERT(vcpuid >= 0 && vcpuid < VM_MAXCPU, 1652 ("vm_deactivate_cpu: invalid vcpuid %d", vcpuid)); 1653 KASSERT(CPU_ISSET(vcpuid, &vm->active_cpus), 1654 ("vm_deactivate_cpu: vcpuid %d is not active", vcpuid)); 1655 1656 VCPU_CTR0(vm, vcpuid, "deactivated"); 1657 CPU_CLR_ATOMIC(vcpuid, &vm->active_cpus); 1658 1659 /* 1660 * If a vcpu rendezvous is in progress then it could be blocked 1661 * on 'vcpuid' - unblock it before disappearing forever. 1662 */ 1663 mtx_lock(&vm->rendezvous_mtx); 1664 if (vm->rendezvous_func != NULL) { 1665 VCPU_CTR0(vm, vcpuid, "unblock rendezvous after deactivation"); 1666 wakeup(&vm->rendezvous_func); 1667 } 1668 mtx_unlock(&vm->rendezvous_mtx); 1669 } 1670 1671 cpuset_t 1672 vm_active_cpus(struct vm *vm) 1673 { 1674 1675 return (vm->active_cpus); 1676 } 1677 1678 void * 1679 vcpu_stats(struct vm *vm, int vcpuid) 1680 { 1681 1682 return (vm->vcpu[vcpuid].stats); 1683 } 1684 1685 int 1686 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state) 1687 { 1688 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1689 return (EINVAL); 1690 1691 *state = vm->vcpu[vcpuid].x2apic_state; 1692 1693 return (0); 1694 } 1695 1696 int 1697 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state) 1698 { 1699 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1700 return (EINVAL); 1701 1702 if (state >= X2APIC_STATE_LAST) 1703 return (EINVAL); 1704 1705 vm->vcpu[vcpuid].x2apic_state = state; 1706 1707 vlapic_set_x2apic_state(vm, vcpuid, state); 1708 1709 return (0); 1710 } 1711 1712 /* 1713 * This function is called to ensure that a vcpu "sees" a pending event 1714 * as soon as possible: 1715 * - If the vcpu thread is sleeping then it is woken up. 1716 * - If the vcpu is running on a different host_cpu then an IPI will be directed 1717 * to the host_cpu to cause the vcpu to trap into the hypervisor. 1718 */ 1719 void 1720 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr) 1721 { 1722 int hostcpu; 1723 struct vcpu *vcpu; 1724 1725 vcpu = &vm->vcpu[vcpuid]; 1726 1727 vcpu_lock(vcpu); 1728 hostcpu = vcpu->hostcpu; 1729 if (vcpu->state == VCPU_RUNNING) { 1730 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 1731 if (hostcpu != curcpu) { 1732 if (lapic_intr) { 1733 vlapic_post_intr(vcpu->vlapic, hostcpu, 1734 vmm_ipinum); 1735 } else { 1736 ipi_cpu(hostcpu, vmm_ipinum); 1737 } 1738 } else { 1739 /* 1740 * If the 'vcpu' is running on 'curcpu' then it must 1741 * be sending a notification to itself (e.g. SELF_IPI). 1742 * The pending event will be picked up when the vcpu 1743 * transitions back to guest context. 1744 */ 1745 } 1746 } else { 1747 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 1748 "with hostcpu %d", vcpu->state, hostcpu)); 1749 if (vcpu->state == VCPU_SLEEPING) 1750 wakeup_one(vcpu); 1751 } 1752 vcpu_unlock(vcpu); 1753 } 1754 1755 struct vmspace * 1756 vm_get_vmspace(struct vm *vm) 1757 { 1758 1759 return (vm->vmspace); 1760 } 1761 1762 int 1763 vm_apicid2vcpuid(struct vm *vm, int apicid) 1764 { 1765 /* 1766 * XXX apic id is assumed to be numerically identical to vcpu id 1767 */ 1768 return (apicid); 1769 } 1770 1771 void 1772 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest, 1773 vm_rendezvous_func_t func, void *arg) 1774 { 1775 int i; 1776 1777 /* 1778 * Enforce that this function is called without any locks 1779 */ 1780 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 1781 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU), 1782 ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid)); 1783 1784 restart: 1785 mtx_lock(&vm->rendezvous_mtx); 1786 if (vm->rendezvous_func != NULL) { 1787 /* 1788 * If a rendezvous is already in progress then we need to 1789 * call the rendezvous handler in case this 'vcpuid' is one 1790 * of the targets of the rendezvous. 1791 */ 1792 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress"); 1793 mtx_unlock(&vm->rendezvous_mtx); 1794 vm_handle_rendezvous(vm, vcpuid); 1795 goto restart; 1796 } 1797 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 1798 "rendezvous is still in progress")); 1799 1800 RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous"); 1801 vm->rendezvous_req_cpus = dest; 1802 CPU_ZERO(&vm->rendezvous_done_cpus); 1803 vm->rendezvous_arg = arg; 1804 vm_set_rendezvous_func(vm, func); 1805 mtx_unlock(&vm->rendezvous_mtx); 1806 1807 /* 1808 * Wake up any sleeping vcpus and trigger a VM-exit in any running 1809 * vcpus so they handle the rendezvous as soon as possible. 1810 */ 1811 for (i = 0; i < VM_MAXCPU; i++) { 1812 if (CPU_ISSET(i, &dest)) 1813 vcpu_notify_event(vm, i, false); 1814 } 1815 1816 vm_handle_rendezvous(vm, vcpuid); 1817 } 1818 1819 struct vatpic * 1820 vm_atpic(struct vm *vm) 1821 { 1822 return (vm->vatpic); 1823 } 1824 1825 struct vatpit * 1826 vm_atpit(struct vm *vm) 1827 { 1828 return (vm->vatpit); 1829 } 1830