1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include "opt_bhyve_snapshot.h" 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/kernel.h> 39 #include <sys/module.h> 40 #include <sys/sysctl.h> 41 #include <sys/malloc.h> 42 #include <sys/pcpu.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/proc.h> 46 #include <sys/rwlock.h> 47 #include <sys/sched.h> 48 #include <sys/smp.h> 49 #include <sys/vnode.h> 50 51 #include <vm/vm.h> 52 #include <vm/vm_param.h> 53 #include <vm/vm_extern.h> 54 #include <vm/vm_object.h> 55 #include <vm/vm_page.h> 56 #include <vm/pmap.h> 57 #include <vm/vm_map.h> 58 #include <vm/vm_pager.h> 59 #include <vm/vm_kern.h> 60 #include <vm/vnode_pager.h> 61 #include <vm/swap_pager.h> 62 #include <vm/uma.h> 63 64 #include <machine/cpu.h> 65 #include <machine/pcb.h> 66 #include <machine/smp.h> 67 #include <machine/md_var.h> 68 #include <x86/psl.h> 69 #include <x86/apicreg.h> 70 #include <x86/ifunc.h> 71 72 #include <machine/vmm.h> 73 #include <machine/vmm_dev.h> 74 #include <machine/vmm_instruction_emul.h> 75 #include <machine/vmm_snapshot.h> 76 77 #include "vmm_ioport.h" 78 #include "vmm_ktr.h" 79 #include "vmm_host.h" 80 #include "vmm_mem.h" 81 #include "vmm_util.h" 82 #include "vatpic.h" 83 #include "vatpit.h" 84 #include "vhpet.h" 85 #include "vioapic.h" 86 #include "vlapic.h" 87 #include "vpmtmr.h" 88 #include "vrtc.h" 89 #include "vmm_stat.h" 90 #include "vmm_lapic.h" 91 92 #include "io/ppt.h" 93 #include "io/iommu.h" 94 95 struct vlapic; 96 97 /* 98 * Initialization: 99 * (a) allocated when vcpu is created 100 * (i) initialized when vcpu is created and when it is reinitialized 101 * (o) initialized the first time the vcpu is created 102 * (x) initialized before use 103 */ 104 struct vcpu { 105 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 106 enum vcpu_state state; /* (o) vcpu state */ 107 int hostcpu; /* (o) vcpu's host cpu */ 108 int reqidle; /* (i) request vcpu to idle */ 109 struct vlapic *vlapic; /* (i) APIC device model */ 110 enum x2apic_state x2apic_state; /* (i) APIC mode */ 111 uint64_t exitintinfo; /* (i) events pending at VM exit */ 112 int nmi_pending; /* (i) NMI pending */ 113 int extint_pending; /* (i) INTR pending */ 114 int exception_pending; /* (i) exception pending */ 115 int exc_vector; /* (x) exception collateral */ 116 int exc_errcode_valid; 117 uint32_t exc_errcode; 118 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 119 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 120 void *stats; /* (a,i) statistics */ 121 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 122 uint64_t nextrip; /* (x) next instruction to execute */ 123 uint64_t tsc_offset; /* (o) TSC offsetting */ 124 }; 125 126 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx)) 127 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 128 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 129 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 130 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 131 132 struct mem_seg { 133 size_t len; 134 bool sysmem; 135 struct vm_object *object; 136 }; 137 #define VM_MAX_MEMSEGS 3 138 139 struct mem_map { 140 vm_paddr_t gpa; 141 size_t len; 142 vm_ooffset_t segoff; 143 int segid; 144 int prot; 145 int flags; 146 }; 147 #define VM_MAX_MEMMAPS 8 148 149 /* 150 * Initialization: 151 * (o) initialized the first time the VM is created 152 * (i) initialized when VM is created and when it is reinitialized 153 * (x) initialized before use 154 */ 155 struct vm { 156 void *cookie; /* (i) cpu-specific data */ 157 void *iommu; /* (x) iommu-specific data */ 158 struct vhpet *vhpet; /* (i) virtual HPET */ 159 struct vioapic *vioapic; /* (i) virtual ioapic */ 160 struct vatpic *vatpic; /* (i) virtual atpic */ 161 struct vatpit *vatpit; /* (i) virtual atpit */ 162 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ 163 struct vrtc *vrtc; /* (o) virtual RTC */ 164 volatile cpuset_t active_cpus; /* (i) active vcpus */ 165 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */ 166 int suspend; /* (i) stop VM execution */ 167 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 168 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 169 cpuset_t rendezvous_req_cpus; /* (x) rendezvous requested */ 170 cpuset_t rendezvous_done_cpus; /* (x) rendezvous finished */ 171 void *rendezvous_arg; /* (x) rendezvous func/arg */ 172 vm_rendezvous_func_t rendezvous_func; 173 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 174 struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */ 175 struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */ 176 struct vmspace *vmspace; /* (o) guest's address space */ 177 char name[VM_MAX_NAMELEN+1]; /* (o) virtual machine name */ 178 struct vcpu vcpu[VM_MAXCPU]; /* (i) guest vcpus */ 179 /* The following describe the vm cpu topology */ 180 uint16_t sockets; /* (o) num of sockets */ 181 uint16_t cores; /* (o) num of cores/socket */ 182 uint16_t threads; /* (o) num of threads/core */ 183 uint16_t maxcpus; /* (o) max pluggable cpus */ 184 }; 185 186 static int vmm_initialized; 187 188 static void vmmops_panic(void); 189 190 static void 191 vmmops_panic(void) 192 { 193 panic("vmm_ops func called when !vmm_is_intel() && !vmm_is_svm()"); 194 } 195 196 #define DEFINE_VMMOPS_IFUNC(ret_type, opname, args) \ 197 DEFINE_IFUNC(static, ret_type, vmmops_##opname, args) \ 198 { \ 199 if (vmm_is_intel()) \ 200 return (vmm_ops_intel.opname); \ 201 else if (vmm_is_svm()) \ 202 return (vmm_ops_amd.opname); \ 203 else \ 204 return ((ret_type (*)args)vmmops_panic); \ 205 } 206 207 DEFINE_VMMOPS_IFUNC(int, modinit, (int ipinum)) 208 DEFINE_VMMOPS_IFUNC(int, modcleanup, (void)) 209 DEFINE_VMMOPS_IFUNC(void, modresume, (void)) 210 DEFINE_VMMOPS_IFUNC(void *, init, (struct vm *vm, struct pmap *pmap)) 211 DEFINE_VMMOPS_IFUNC(int, run, (void *vmi, int vcpu, register_t rip, 212 struct pmap *pmap, struct vm_eventinfo *info)) 213 DEFINE_VMMOPS_IFUNC(void, cleanup, (void *vmi)) 214 DEFINE_VMMOPS_IFUNC(int, getreg, (void *vmi, int vcpu, int num, 215 uint64_t *retval)) 216 DEFINE_VMMOPS_IFUNC(int, setreg, (void *vmi, int vcpu, int num, 217 uint64_t val)) 218 DEFINE_VMMOPS_IFUNC(int, getdesc, (void *vmi, int vcpu, int num, 219 struct seg_desc *desc)) 220 DEFINE_VMMOPS_IFUNC(int, setdesc, (void *vmi, int vcpu, int num, 221 struct seg_desc *desc)) 222 DEFINE_VMMOPS_IFUNC(int, getcap, (void *vmi, int vcpu, int num, int *retval)) 223 DEFINE_VMMOPS_IFUNC(int, setcap, (void *vmi, int vcpu, int num, int val)) 224 DEFINE_VMMOPS_IFUNC(struct vmspace *, vmspace_alloc, (vm_offset_t min, 225 vm_offset_t max)) 226 DEFINE_VMMOPS_IFUNC(void, vmspace_free, (struct vmspace *vmspace)) 227 DEFINE_VMMOPS_IFUNC(struct vlapic *, vlapic_init, (void *vmi, int vcpu)) 228 DEFINE_VMMOPS_IFUNC(void, vlapic_cleanup, (void *vmi, struct vlapic *vlapic)) 229 #ifdef BHYVE_SNAPSHOT 230 DEFINE_VMMOPS_IFUNC(int, snapshot, (void *vmi, struct vm_snapshot_meta 231 *meta)) 232 DEFINE_VMMOPS_IFUNC(int, vmcx_snapshot, (void *vmi, struct vm_snapshot_meta 233 *meta, int vcpu)) 234 DEFINE_VMMOPS_IFUNC(int, restore_tsc, (void *vmi, int vcpuid, uint64_t now)) 235 #endif 236 237 #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS) 238 #define fpu_stop_emulating() clts() 239 240 SDT_PROVIDER_DEFINE(vmm); 241 242 static MALLOC_DEFINE(M_VM, "vm", "vm"); 243 244 /* statistics */ 245 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 246 247 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 248 NULL); 249 250 /* 251 * Halt the guest if all vcpus are executing a HLT instruction with 252 * interrupts disabled. 253 */ 254 static int halt_detection_enabled = 1; 255 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 256 &halt_detection_enabled, 0, 257 "Halt VM if all vcpus execute HLT with interrupts disabled"); 258 259 static int vmm_ipinum; 260 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 261 "IPI vector used for vcpu notifications"); 262 263 static int trace_guest_exceptions; 264 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN, 265 &trace_guest_exceptions, 0, 266 "Trap into hypervisor on all guest exceptions and reflect them back"); 267 268 static void vm_free_memmap(struct vm *vm, int ident); 269 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm); 270 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr); 271 272 #ifdef KTR 273 static const char * 274 vcpu_state2str(enum vcpu_state state) 275 { 276 277 switch (state) { 278 case VCPU_IDLE: 279 return ("idle"); 280 case VCPU_FROZEN: 281 return ("frozen"); 282 case VCPU_RUNNING: 283 return ("running"); 284 case VCPU_SLEEPING: 285 return ("sleeping"); 286 default: 287 return ("unknown"); 288 } 289 } 290 #endif 291 292 static void 293 vcpu_cleanup(struct vm *vm, int i, bool destroy) 294 { 295 struct vcpu *vcpu = &vm->vcpu[i]; 296 297 vmmops_vlapic_cleanup(vm->cookie, vcpu->vlapic); 298 if (destroy) { 299 vmm_stat_free(vcpu->stats); 300 fpu_save_area_free(vcpu->guestfpu); 301 } 302 } 303 304 static void 305 vcpu_init(struct vm *vm, int vcpu_id, bool create) 306 { 307 struct vcpu *vcpu; 308 309 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus, 310 ("vcpu_init: invalid vcpu %d", vcpu_id)); 311 312 vcpu = &vm->vcpu[vcpu_id]; 313 314 if (create) { 315 KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already " 316 "initialized", vcpu_id)); 317 vcpu_lock_init(vcpu); 318 vcpu->state = VCPU_IDLE; 319 vcpu->hostcpu = NOCPU; 320 vcpu->guestfpu = fpu_save_area_alloc(); 321 vcpu->stats = vmm_stat_alloc(); 322 vcpu->tsc_offset = 0; 323 } 324 325 vcpu->vlapic = vmmops_vlapic_init(vm->cookie, vcpu_id); 326 vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED); 327 vcpu->reqidle = 0; 328 vcpu->exitintinfo = 0; 329 vcpu->nmi_pending = 0; 330 vcpu->extint_pending = 0; 331 vcpu->exception_pending = 0; 332 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 333 fpu_save_area_reset(vcpu->guestfpu); 334 vmm_stat_init(vcpu->stats); 335 } 336 337 int 338 vcpu_trace_exceptions(struct vm *vm, int vcpuid) 339 { 340 341 return (trace_guest_exceptions); 342 } 343 344 struct vm_exit * 345 vm_exitinfo(struct vm *vm, int cpuid) 346 { 347 struct vcpu *vcpu; 348 349 if (cpuid < 0 || cpuid >= vm->maxcpus) 350 panic("vm_exitinfo: invalid cpuid %d", cpuid); 351 352 vcpu = &vm->vcpu[cpuid]; 353 354 return (&vcpu->exitinfo); 355 } 356 357 static int 358 vmm_init(void) 359 { 360 int error; 361 362 if (!vmm_is_hw_supported()) 363 return (ENXIO); 364 365 vmm_host_state_init(); 366 367 vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) : 368 &IDTVEC(justreturn)); 369 if (vmm_ipinum < 0) 370 vmm_ipinum = IPI_AST; 371 372 error = vmm_mem_init(); 373 if (error) 374 return (error); 375 376 vmm_resume_p = vmmops_modresume; 377 378 return (vmmops_modinit(vmm_ipinum)); 379 } 380 381 static int 382 vmm_handler(module_t mod, int what, void *arg) 383 { 384 int error; 385 386 switch (what) { 387 case MOD_LOAD: 388 if (vmm_is_hw_supported()) { 389 vmmdev_init(); 390 error = vmm_init(); 391 if (error == 0) 392 vmm_initialized = 1; 393 } else { 394 error = ENXIO; 395 } 396 break; 397 case MOD_UNLOAD: 398 if (vmm_is_hw_supported()) { 399 error = vmmdev_cleanup(); 400 if (error == 0) { 401 vmm_resume_p = NULL; 402 iommu_cleanup(); 403 if (vmm_ipinum != IPI_AST) 404 lapic_ipi_free(vmm_ipinum); 405 error = vmmops_modcleanup(); 406 /* 407 * Something bad happened - prevent new 408 * VMs from being created 409 */ 410 if (error) 411 vmm_initialized = 0; 412 } 413 } else { 414 error = 0; 415 } 416 break; 417 default: 418 error = 0; 419 break; 420 } 421 return (error); 422 } 423 424 static moduledata_t vmm_kmod = { 425 "vmm", 426 vmm_handler, 427 NULL 428 }; 429 430 /* 431 * vmm initialization has the following dependencies: 432 * 433 * - VT-x initialization requires smp_rendezvous() and therefore must happen 434 * after SMP is fully functional (after SI_SUB_SMP). 435 */ 436 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 437 MODULE_VERSION(vmm, 1); 438 439 static void 440 vm_init(struct vm *vm, bool create) 441 { 442 int i; 443 444 vm->cookie = vmmops_init(vm, vmspace_pmap(vm->vmspace)); 445 vm->iommu = NULL; 446 vm->vioapic = vioapic_init(vm); 447 vm->vhpet = vhpet_init(vm); 448 vm->vatpic = vatpic_init(vm); 449 vm->vatpit = vatpit_init(vm); 450 vm->vpmtmr = vpmtmr_init(vm); 451 if (create) 452 vm->vrtc = vrtc_init(vm); 453 454 CPU_ZERO(&vm->active_cpus); 455 CPU_ZERO(&vm->debug_cpus); 456 457 vm->suspend = 0; 458 CPU_ZERO(&vm->suspended_cpus); 459 460 for (i = 0; i < vm->maxcpus; i++) 461 vcpu_init(vm, i, create); 462 } 463 464 /* 465 * The default CPU topology is a single thread per package. 466 */ 467 u_int cores_per_package = 1; 468 u_int threads_per_core = 1; 469 470 int 471 vm_create(const char *name, struct vm **retvm) 472 { 473 struct vm *vm; 474 struct vmspace *vmspace; 475 476 /* 477 * If vmm.ko could not be successfully initialized then don't attempt 478 * to create the virtual machine. 479 */ 480 if (!vmm_initialized) 481 return (ENXIO); 482 483 if (name == NULL || strnlen(name, VM_MAX_NAMELEN + 1) == 484 VM_MAX_NAMELEN + 1) 485 return (EINVAL); 486 487 vmspace = vmmops_vmspace_alloc(0, VM_MAXUSER_ADDRESS_LA48); 488 if (vmspace == NULL) 489 return (ENOMEM); 490 491 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 492 strcpy(vm->name, name); 493 vm->vmspace = vmspace; 494 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 495 496 vm->sockets = 1; 497 vm->cores = cores_per_package; /* XXX backwards compatibility */ 498 vm->threads = threads_per_core; /* XXX backwards compatibility */ 499 vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */ 500 501 vm_init(vm, true); 502 503 *retvm = vm; 504 return (0); 505 } 506 507 void 508 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, 509 uint16_t *threads, uint16_t *maxcpus) 510 { 511 *sockets = vm->sockets; 512 *cores = vm->cores; 513 *threads = vm->threads; 514 *maxcpus = vm->maxcpus; 515 } 516 517 uint16_t 518 vm_get_maxcpus(struct vm *vm) 519 { 520 return (vm->maxcpus); 521 } 522 523 int 524 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, 525 uint16_t threads, uint16_t maxcpus) 526 { 527 if (maxcpus != 0) 528 return (EINVAL); /* XXX remove when supported */ 529 if ((sockets * cores * threads) > vm->maxcpus) 530 return (EINVAL); 531 /* XXX need to check sockets * cores * threads == vCPU, how? */ 532 vm->sockets = sockets; 533 vm->cores = cores; 534 vm->threads = threads; 535 vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */ 536 return(0); 537 } 538 539 static void 540 vm_cleanup(struct vm *vm, bool destroy) 541 { 542 struct mem_map *mm; 543 int i; 544 545 ppt_unassign_all(vm); 546 547 if (vm->iommu != NULL) 548 iommu_destroy_domain(vm->iommu); 549 550 if (destroy) 551 vrtc_cleanup(vm->vrtc); 552 else 553 vrtc_reset(vm->vrtc); 554 vpmtmr_cleanup(vm->vpmtmr); 555 vatpit_cleanup(vm->vatpit); 556 vhpet_cleanup(vm->vhpet); 557 vatpic_cleanup(vm->vatpic); 558 vioapic_cleanup(vm->vioapic); 559 560 for (i = 0; i < vm->maxcpus; i++) 561 vcpu_cleanup(vm, i, destroy); 562 563 vmmops_cleanup(vm->cookie); 564 565 /* 566 * System memory is removed from the guest address space only when 567 * the VM is destroyed. This is because the mapping remains the same 568 * across VM reset. 569 * 570 * Device memory can be relocated by the guest (e.g. using PCI BARs) 571 * so those mappings are removed on a VM reset. 572 */ 573 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 574 mm = &vm->mem_maps[i]; 575 if (destroy || !sysmem_mapping(vm, mm)) 576 vm_free_memmap(vm, i); 577 } 578 579 if (destroy) { 580 for (i = 0; i < VM_MAX_MEMSEGS; i++) 581 vm_free_memseg(vm, i); 582 583 vmmops_vmspace_free(vm->vmspace); 584 vm->vmspace = NULL; 585 } 586 } 587 588 void 589 vm_destroy(struct vm *vm) 590 { 591 vm_cleanup(vm, true); 592 free(vm, M_VM); 593 } 594 595 int 596 vm_reinit(struct vm *vm) 597 { 598 int error; 599 600 /* 601 * A virtual machine can be reset only if all vcpus are suspended. 602 */ 603 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 604 vm_cleanup(vm, false); 605 vm_init(vm, false); 606 error = 0; 607 } else { 608 error = EBUSY; 609 } 610 611 return (error); 612 } 613 614 const char * 615 vm_name(struct vm *vm) 616 { 617 return (vm->name); 618 } 619 620 int 621 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 622 { 623 vm_object_t obj; 624 625 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 626 return (ENOMEM); 627 else 628 return (0); 629 } 630 631 int 632 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 633 { 634 635 vmm_mmio_free(vm->vmspace, gpa, len); 636 return (0); 637 } 638 639 /* 640 * Return 'true' if 'gpa' is allocated in the guest address space. 641 * 642 * This function is called in the context of a running vcpu which acts as 643 * an implicit lock on 'vm->mem_maps[]'. 644 */ 645 bool 646 vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa) 647 { 648 struct mem_map *mm; 649 int i; 650 651 #ifdef INVARIANTS 652 int hostcpu, state; 653 state = vcpu_get_state(vm, vcpuid, &hostcpu); 654 KASSERT(state == VCPU_RUNNING && hostcpu == curcpu, 655 ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu)); 656 #endif 657 658 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 659 mm = &vm->mem_maps[i]; 660 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len) 661 return (true); /* 'gpa' is sysmem or devmem */ 662 } 663 664 if (ppt_is_mmio(vm, gpa)) 665 return (true); /* 'gpa' is pci passthru mmio */ 666 667 return (false); 668 } 669 670 int 671 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem) 672 { 673 struct mem_seg *seg; 674 vm_object_t obj; 675 676 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 677 return (EINVAL); 678 679 if (len == 0 || (len & PAGE_MASK)) 680 return (EINVAL); 681 682 seg = &vm->mem_segs[ident]; 683 if (seg->object != NULL) { 684 if (seg->len == len && seg->sysmem == sysmem) 685 return (EEXIST); 686 else 687 return (EINVAL); 688 } 689 690 obj = vm_object_allocate(OBJT_DEFAULT, len >> PAGE_SHIFT); 691 if (obj == NULL) 692 return (ENOMEM); 693 694 seg->len = len; 695 seg->object = obj; 696 seg->sysmem = sysmem; 697 return (0); 698 } 699 700 int 701 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, 702 vm_object_t *objptr) 703 { 704 struct mem_seg *seg; 705 706 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 707 return (EINVAL); 708 709 seg = &vm->mem_segs[ident]; 710 if (len) 711 *len = seg->len; 712 if (sysmem) 713 *sysmem = seg->sysmem; 714 if (objptr) 715 *objptr = seg->object; 716 return (0); 717 } 718 719 void 720 vm_free_memseg(struct vm *vm, int ident) 721 { 722 struct mem_seg *seg; 723 724 KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS, 725 ("%s: invalid memseg ident %d", __func__, ident)); 726 727 seg = &vm->mem_segs[ident]; 728 if (seg->object != NULL) { 729 vm_object_deallocate(seg->object); 730 bzero(seg, sizeof(struct mem_seg)); 731 } 732 } 733 734 int 735 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first, 736 size_t len, int prot, int flags) 737 { 738 struct mem_seg *seg; 739 struct mem_map *m, *map; 740 vm_ooffset_t last; 741 int i, error; 742 743 if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0) 744 return (EINVAL); 745 746 if (flags & ~VM_MEMMAP_F_WIRED) 747 return (EINVAL); 748 749 if (segid < 0 || segid >= VM_MAX_MEMSEGS) 750 return (EINVAL); 751 752 seg = &vm->mem_segs[segid]; 753 if (seg->object == NULL) 754 return (EINVAL); 755 756 last = first + len; 757 if (first < 0 || first >= last || last > seg->len) 758 return (EINVAL); 759 760 if ((gpa | first | last) & PAGE_MASK) 761 return (EINVAL); 762 763 map = NULL; 764 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 765 m = &vm->mem_maps[i]; 766 if (m->len == 0) { 767 map = m; 768 break; 769 } 770 } 771 772 if (map == NULL) 773 return (ENOSPC); 774 775 error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa, 776 len, 0, VMFS_NO_SPACE, prot, prot, 0); 777 if (error != KERN_SUCCESS) 778 return (EFAULT); 779 780 vm_object_reference(seg->object); 781 782 if (flags & VM_MEMMAP_F_WIRED) { 783 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len, 784 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 785 if (error != KERN_SUCCESS) { 786 vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len); 787 return (error == KERN_RESOURCE_SHORTAGE ? ENOMEM : 788 EFAULT); 789 } 790 } 791 792 map->gpa = gpa; 793 map->len = len; 794 map->segoff = first; 795 map->segid = segid; 796 map->prot = prot; 797 map->flags = flags; 798 return (0); 799 } 800 801 int 802 vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len) 803 { 804 struct mem_map *m; 805 int i; 806 807 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 808 m = &vm->mem_maps[i]; 809 if (m->gpa == gpa && m->len == len && 810 (m->flags & VM_MEMMAP_F_IOMMU) == 0) { 811 vm_free_memmap(vm, i); 812 return (0); 813 } 814 } 815 816 return (EINVAL); 817 } 818 819 int 820 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, 821 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 822 { 823 struct mem_map *mm, *mmnext; 824 int i; 825 826 mmnext = NULL; 827 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 828 mm = &vm->mem_maps[i]; 829 if (mm->len == 0 || mm->gpa < *gpa) 830 continue; 831 if (mmnext == NULL || mm->gpa < mmnext->gpa) 832 mmnext = mm; 833 } 834 835 if (mmnext != NULL) { 836 *gpa = mmnext->gpa; 837 if (segid) 838 *segid = mmnext->segid; 839 if (segoff) 840 *segoff = mmnext->segoff; 841 if (len) 842 *len = mmnext->len; 843 if (prot) 844 *prot = mmnext->prot; 845 if (flags) 846 *flags = mmnext->flags; 847 return (0); 848 } else { 849 return (ENOENT); 850 } 851 } 852 853 static void 854 vm_free_memmap(struct vm *vm, int ident) 855 { 856 struct mem_map *mm; 857 int error; 858 859 mm = &vm->mem_maps[ident]; 860 if (mm->len) { 861 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa, 862 mm->gpa + mm->len); 863 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d", 864 __func__, error)); 865 bzero(mm, sizeof(struct mem_map)); 866 } 867 } 868 869 static __inline bool 870 sysmem_mapping(struct vm *vm, struct mem_map *mm) 871 { 872 873 if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem) 874 return (true); 875 else 876 return (false); 877 } 878 879 vm_paddr_t 880 vmm_sysmem_maxaddr(struct vm *vm) 881 { 882 struct mem_map *mm; 883 vm_paddr_t maxaddr; 884 int i; 885 886 maxaddr = 0; 887 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 888 mm = &vm->mem_maps[i]; 889 if (sysmem_mapping(vm, mm)) { 890 if (maxaddr < mm->gpa + mm->len) 891 maxaddr = mm->gpa + mm->len; 892 } 893 } 894 return (maxaddr); 895 } 896 897 static void 898 vm_iommu_modify(struct vm *vm, bool map) 899 { 900 int i, sz; 901 vm_paddr_t gpa, hpa; 902 struct mem_map *mm; 903 void *vp, *cookie, *host_domain; 904 905 sz = PAGE_SIZE; 906 host_domain = iommu_host_domain(); 907 908 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 909 mm = &vm->mem_maps[i]; 910 if (!sysmem_mapping(vm, mm)) 911 continue; 912 913 if (map) { 914 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0, 915 ("iommu map found invalid memmap %#lx/%#lx/%#x", 916 mm->gpa, mm->len, mm->flags)); 917 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0) 918 continue; 919 mm->flags |= VM_MEMMAP_F_IOMMU; 920 } else { 921 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0) 922 continue; 923 mm->flags &= ~VM_MEMMAP_F_IOMMU; 924 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0, 925 ("iommu unmap found invalid memmap %#lx/%#lx/%#x", 926 mm->gpa, mm->len, mm->flags)); 927 } 928 929 gpa = mm->gpa; 930 while (gpa < mm->gpa + mm->len) { 931 vp = vm_gpa_hold(vm, -1, gpa, PAGE_SIZE, VM_PROT_WRITE, 932 &cookie); 933 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", 934 vm_name(vm), gpa)); 935 936 vm_gpa_release(cookie); 937 938 hpa = DMAP_TO_PHYS((uintptr_t)vp); 939 if (map) { 940 iommu_create_mapping(vm->iommu, gpa, hpa, sz); 941 iommu_remove_mapping(host_domain, hpa, sz); 942 } else { 943 iommu_remove_mapping(vm->iommu, gpa, sz); 944 iommu_create_mapping(host_domain, hpa, hpa, sz); 945 } 946 947 gpa += PAGE_SIZE; 948 } 949 } 950 951 /* 952 * Invalidate the cached translations associated with the domain 953 * from which pages were removed. 954 */ 955 if (map) 956 iommu_invalidate_tlb(host_domain); 957 else 958 iommu_invalidate_tlb(vm->iommu); 959 } 960 961 #define vm_iommu_unmap(vm) vm_iommu_modify((vm), false) 962 #define vm_iommu_map(vm) vm_iommu_modify((vm), true) 963 964 int 965 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 966 { 967 int error; 968 969 error = ppt_unassign_device(vm, bus, slot, func); 970 if (error) 971 return (error); 972 973 if (ppt_assigned_devices(vm) == 0) 974 vm_iommu_unmap(vm); 975 976 return (0); 977 } 978 979 int 980 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 981 { 982 int error; 983 vm_paddr_t maxaddr; 984 985 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */ 986 if (ppt_assigned_devices(vm) == 0) { 987 KASSERT(vm->iommu == NULL, 988 ("vm_assign_pptdev: iommu must be NULL")); 989 maxaddr = vmm_sysmem_maxaddr(vm); 990 vm->iommu = iommu_create_domain(maxaddr); 991 if (vm->iommu == NULL) 992 return (ENXIO); 993 vm_iommu_map(vm); 994 } 995 996 error = ppt_assign_device(vm, bus, slot, func); 997 return (error); 998 } 999 1000 void * 1001 vm_gpa_hold(struct vm *vm, int vcpuid, vm_paddr_t gpa, size_t len, int reqprot, 1002 void **cookie) 1003 { 1004 int i, count, pageoff; 1005 struct mem_map *mm; 1006 vm_page_t m; 1007 #ifdef INVARIANTS 1008 /* 1009 * All vcpus are frozen by ioctls that modify the memory map 1010 * (e.g. VM_MMAP_MEMSEG). Therefore 'vm->memmap[]' stability is 1011 * guaranteed if at least one vcpu is in the VCPU_FROZEN state. 1012 */ 1013 int state; 1014 KASSERT(vcpuid >= -1 && vcpuid < vm->maxcpus, ("%s: invalid vcpuid %d", 1015 __func__, vcpuid)); 1016 for (i = 0; i < vm->maxcpus; i++) { 1017 if (vcpuid != -1 && vcpuid != i) 1018 continue; 1019 state = vcpu_get_state(vm, i, NULL); 1020 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d", 1021 __func__, state)); 1022 } 1023 #endif 1024 pageoff = gpa & PAGE_MASK; 1025 if (len > PAGE_SIZE - pageoff) 1026 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 1027 1028 count = 0; 1029 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1030 mm = &vm->mem_maps[i]; 1031 if (gpa >= mm->gpa && gpa < mm->gpa + mm->len) { 1032 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 1033 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 1034 break; 1035 } 1036 } 1037 1038 if (count == 1) { 1039 *cookie = m; 1040 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 1041 } else { 1042 *cookie = NULL; 1043 return (NULL); 1044 } 1045 } 1046 1047 void 1048 vm_gpa_release(void *cookie) 1049 { 1050 vm_page_t m = cookie; 1051 1052 vm_page_unwire(m, PQ_ACTIVE); 1053 } 1054 1055 int 1056 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval) 1057 { 1058 1059 if (vcpu < 0 || vcpu >= vm->maxcpus) 1060 return (EINVAL); 1061 1062 if (reg >= VM_REG_LAST) 1063 return (EINVAL); 1064 1065 return (vmmops_getreg(vm->cookie, vcpu, reg, retval)); 1066 } 1067 1068 int 1069 vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val) 1070 { 1071 struct vcpu *vcpu; 1072 int error; 1073 1074 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1075 return (EINVAL); 1076 1077 if (reg >= VM_REG_LAST) 1078 return (EINVAL); 1079 1080 error = vmmops_setreg(vm->cookie, vcpuid, reg, val); 1081 if (error || reg != VM_REG_GUEST_RIP) 1082 return (error); 1083 1084 /* Set 'nextrip' to match the value of %rip */ 1085 VCPU_CTR1(vm, vcpuid, "Setting nextrip to %#lx", val); 1086 vcpu = &vm->vcpu[vcpuid]; 1087 vcpu->nextrip = val; 1088 return (0); 1089 } 1090 1091 static bool 1092 is_descriptor_table(int reg) 1093 { 1094 1095 switch (reg) { 1096 case VM_REG_GUEST_IDTR: 1097 case VM_REG_GUEST_GDTR: 1098 return (true); 1099 default: 1100 return (false); 1101 } 1102 } 1103 1104 static bool 1105 is_segment_register(int reg) 1106 { 1107 1108 switch (reg) { 1109 case VM_REG_GUEST_ES: 1110 case VM_REG_GUEST_CS: 1111 case VM_REG_GUEST_SS: 1112 case VM_REG_GUEST_DS: 1113 case VM_REG_GUEST_FS: 1114 case VM_REG_GUEST_GS: 1115 case VM_REG_GUEST_TR: 1116 case VM_REG_GUEST_LDTR: 1117 return (true); 1118 default: 1119 return (false); 1120 } 1121 } 1122 1123 int 1124 vm_get_seg_desc(struct vm *vm, int vcpu, int reg, 1125 struct seg_desc *desc) 1126 { 1127 1128 if (vcpu < 0 || vcpu >= vm->maxcpus) 1129 return (EINVAL); 1130 1131 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1132 return (EINVAL); 1133 1134 return (vmmops_getdesc(vm->cookie, vcpu, reg, desc)); 1135 } 1136 1137 int 1138 vm_set_seg_desc(struct vm *vm, int vcpu, int reg, 1139 struct seg_desc *desc) 1140 { 1141 if (vcpu < 0 || vcpu >= vm->maxcpus) 1142 return (EINVAL); 1143 1144 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1145 return (EINVAL); 1146 1147 return (vmmops_setdesc(vm->cookie, vcpu, reg, desc)); 1148 } 1149 1150 static void 1151 restore_guest_fpustate(struct vcpu *vcpu) 1152 { 1153 1154 /* flush host state to the pcb */ 1155 fpuexit(curthread); 1156 1157 /* restore guest FPU state */ 1158 fpu_stop_emulating(); 1159 fpurestore(vcpu->guestfpu); 1160 1161 /* restore guest XCR0 if XSAVE is enabled in the host */ 1162 if (rcr4() & CR4_XSAVE) 1163 load_xcr(0, vcpu->guest_xcr0); 1164 1165 /* 1166 * The FPU is now "dirty" with the guest's state so turn on emulation 1167 * to trap any access to the FPU by the host. 1168 */ 1169 fpu_start_emulating(); 1170 } 1171 1172 static void 1173 save_guest_fpustate(struct vcpu *vcpu) 1174 { 1175 1176 if ((rcr0() & CR0_TS) == 0) 1177 panic("fpu emulation not enabled in host!"); 1178 1179 /* save guest XCR0 and restore host XCR0 */ 1180 if (rcr4() & CR4_XSAVE) { 1181 vcpu->guest_xcr0 = rxcr(0); 1182 load_xcr(0, vmm_get_host_xcr0()); 1183 } 1184 1185 /* save guest FPU state */ 1186 fpu_stop_emulating(); 1187 fpusave(vcpu->guestfpu); 1188 fpu_start_emulating(); 1189 } 1190 1191 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 1192 1193 static int 1194 vcpu_set_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate, 1195 bool from_idle) 1196 { 1197 struct vcpu *vcpu; 1198 int error; 1199 1200 vcpu = &vm->vcpu[vcpuid]; 1201 vcpu_assert_locked(vcpu); 1202 1203 /* 1204 * State transitions from the vmmdev_ioctl() must always begin from 1205 * the VCPU_IDLE state. This guarantees that there is only a single 1206 * ioctl() operating on a vcpu at any point. 1207 */ 1208 if (from_idle) { 1209 while (vcpu->state != VCPU_IDLE) { 1210 vcpu->reqidle = 1; 1211 vcpu_notify_event_locked(vcpu, false); 1212 VCPU_CTR1(vm, vcpuid, "vcpu state change from %s to " 1213 "idle requested", vcpu_state2str(vcpu->state)); 1214 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 1215 } 1216 } else { 1217 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 1218 "vcpu idle state")); 1219 } 1220 1221 if (vcpu->state == VCPU_RUNNING) { 1222 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 1223 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 1224 } else { 1225 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 1226 "vcpu that is not running", vcpu->hostcpu)); 1227 } 1228 1229 /* 1230 * The following state transitions are allowed: 1231 * IDLE -> FROZEN -> IDLE 1232 * FROZEN -> RUNNING -> FROZEN 1233 * FROZEN -> SLEEPING -> FROZEN 1234 */ 1235 switch (vcpu->state) { 1236 case VCPU_IDLE: 1237 case VCPU_RUNNING: 1238 case VCPU_SLEEPING: 1239 error = (newstate != VCPU_FROZEN); 1240 break; 1241 case VCPU_FROZEN: 1242 error = (newstate == VCPU_FROZEN); 1243 break; 1244 default: 1245 error = 1; 1246 break; 1247 } 1248 1249 if (error) 1250 return (EBUSY); 1251 1252 VCPU_CTR2(vm, vcpuid, "vcpu state changed from %s to %s", 1253 vcpu_state2str(vcpu->state), vcpu_state2str(newstate)); 1254 1255 vcpu->state = newstate; 1256 if (newstate == VCPU_RUNNING) 1257 vcpu->hostcpu = curcpu; 1258 else 1259 vcpu->hostcpu = NOCPU; 1260 1261 if (newstate == VCPU_IDLE) 1262 wakeup(&vcpu->state); 1263 1264 return (0); 1265 } 1266 1267 static void 1268 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1269 { 1270 int error; 1271 1272 if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0) 1273 panic("Error %d setting state to %d\n", error, newstate); 1274 } 1275 1276 static void 1277 vcpu_require_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1278 { 1279 int error; 1280 1281 if ((error = vcpu_set_state_locked(vm, vcpuid, newstate, false)) != 0) 1282 panic("Error %d setting state to %d", error, newstate); 1283 } 1284 1285 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt) \ 1286 do { \ 1287 if (vcpuid >= 0) \ 1288 VCPU_CTR0(vm, vcpuid, fmt); \ 1289 else \ 1290 VM_CTR0(vm, fmt); \ 1291 } while (0) 1292 1293 static int 1294 vm_handle_rendezvous(struct vm *vm, int vcpuid) 1295 { 1296 struct thread *td; 1297 int error; 1298 1299 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus), 1300 ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid)); 1301 1302 error = 0; 1303 td = curthread; 1304 mtx_lock(&vm->rendezvous_mtx); 1305 while (vm->rendezvous_func != NULL) { 1306 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1307 CPU_AND(&vm->rendezvous_req_cpus, &vm->rendezvous_req_cpus, &vm->active_cpus); 1308 1309 if (vcpuid != -1 && 1310 CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1311 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1312 VCPU_CTR0(vm, vcpuid, "Calling rendezvous func"); 1313 (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg); 1314 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1315 } 1316 if (CPU_CMP(&vm->rendezvous_req_cpus, 1317 &vm->rendezvous_done_cpus) == 0) { 1318 VCPU_CTR0(vm, vcpuid, "Rendezvous completed"); 1319 vm->rendezvous_func = NULL; 1320 wakeup(&vm->rendezvous_func); 1321 break; 1322 } 1323 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion"); 1324 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1325 "vmrndv", hz); 1326 if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) { 1327 mtx_unlock(&vm->rendezvous_mtx); 1328 error = thread_check_susp(td, true); 1329 if (error != 0) 1330 return (error); 1331 mtx_lock(&vm->rendezvous_mtx); 1332 } 1333 } 1334 mtx_unlock(&vm->rendezvous_mtx); 1335 return (0); 1336 } 1337 1338 /* 1339 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1340 */ 1341 static int 1342 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu) 1343 { 1344 struct vcpu *vcpu; 1345 const char *wmesg; 1346 struct thread *td; 1347 int error, t, vcpu_halted, vm_halted; 1348 1349 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1350 1351 vcpu = &vm->vcpu[vcpuid]; 1352 vcpu_halted = 0; 1353 vm_halted = 0; 1354 error = 0; 1355 td = curthread; 1356 1357 vcpu_lock(vcpu); 1358 while (1) { 1359 /* 1360 * Do a final check for pending NMI or interrupts before 1361 * really putting this thread to sleep. Also check for 1362 * software events that would cause this vcpu to wakeup. 1363 * 1364 * These interrupts/events could have happened after the 1365 * vcpu returned from vmmops_run() and before it acquired the 1366 * vcpu lock above. 1367 */ 1368 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle) 1369 break; 1370 if (vm_nmi_pending(vm, vcpuid)) 1371 break; 1372 if (!intr_disabled) { 1373 if (vm_extint_pending(vm, vcpuid) || 1374 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1375 break; 1376 } 1377 } 1378 1379 /* Don't go to sleep if the vcpu thread needs to yield */ 1380 if (vcpu_should_yield(vm, vcpuid)) 1381 break; 1382 1383 if (vcpu_debugged(vm, vcpuid)) 1384 break; 1385 1386 /* 1387 * Some Linux guests implement "halt" by having all vcpus 1388 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1389 * track of the vcpus that have entered this state. When all 1390 * vcpus enter the halted state the virtual machine is halted. 1391 */ 1392 if (intr_disabled) { 1393 wmesg = "vmhalt"; 1394 VCPU_CTR0(vm, vcpuid, "Halted"); 1395 if (!vcpu_halted && halt_detection_enabled) { 1396 vcpu_halted = 1; 1397 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1398 } 1399 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1400 vm_halted = 1; 1401 break; 1402 } 1403 } else { 1404 wmesg = "vmidle"; 1405 } 1406 1407 t = ticks; 1408 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); 1409 /* 1410 * XXX msleep_spin() cannot be interrupted by signals so 1411 * wake up periodically to check pending signals. 1412 */ 1413 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1414 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); 1415 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t); 1416 if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) { 1417 vcpu_unlock(vcpu); 1418 error = thread_check_susp(td, false); 1419 if (error != 0) 1420 return (error); 1421 vcpu_lock(vcpu); 1422 } 1423 } 1424 1425 if (vcpu_halted) 1426 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1427 1428 vcpu_unlock(vcpu); 1429 1430 if (vm_halted) 1431 vm_suspend(vm, VM_SUSPEND_HALT); 1432 1433 return (0); 1434 } 1435 1436 static int 1437 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu) 1438 { 1439 int rv, ftype; 1440 struct vm_map *map; 1441 struct vcpu *vcpu; 1442 struct vm_exit *vme; 1443 1444 vcpu = &vm->vcpu[vcpuid]; 1445 vme = &vcpu->exitinfo; 1446 1447 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1448 __func__, vme->inst_length)); 1449 1450 ftype = vme->u.paging.fault_type; 1451 KASSERT(ftype == VM_PROT_READ || 1452 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1453 ("vm_handle_paging: invalid fault_type %d", ftype)); 1454 1455 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1456 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1457 vme->u.paging.gpa, ftype); 1458 if (rv == 0) { 1459 VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx", 1460 ftype == VM_PROT_READ ? "accessed" : "dirty", 1461 vme->u.paging.gpa); 1462 goto done; 1463 } 1464 } 1465 1466 map = &vm->vmspace->vm_map; 1467 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL); 1468 1469 VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, " 1470 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1471 1472 if (rv != KERN_SUCCESS) 1473 return (EFAULT); 1474 done: 1475 return (0); 1476 } 1477 1478 static int 1479 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu) 1480 { 1481 struct vie *vie; 1482 struct vcpu *vcpu; 1483 struct vm_exit *vme; 1484 uint64_t gla, gpa, cs_base; 1485 struct vm_guest_paging *paging; 1486 mem_region_read_t mread; 1487 mem_region_write_t mwrite; 1488 enum vm_cpu_mode cpu_mode; 1489 int cs_d, error, fault; 1490 1491 vcpu = &vm->vcpu[vcpuid]; 1492 vme = &vcpu->exitinfo; 1493 1494 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1495 __func__, vme->inst_length)); 1496 1497 gla = vme->u.inst_emul.gla; 1498 gpa = vme->u.inst_emul.gpa; 1499 cs_base = vme->u.inst_emul.cs_base; 1500 cs_d = vme->u.inst_emul.cs_d; 1501 vie = &vme->u.inst_emul.vie; 1502 paging = &vme->u.inst_emul.paging; 1503 cpu_mode = paging->cpu_mode; 1504 1505 VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa); 1506 1507 /* Fetch, decode and emulate the faulting instruction */ 1508 if (vie->num_valid == 0) { 1509 error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip + 1510 cs_base, VIE_INST_SIZE, vie, &fault); 1511 } else { 1512 /* 1513 * The instruction bytes have already been copied into 'vie' 1514 */ 1515 error = fault = 0; 1516 } 1517 if (error || fault) 1518 return (error); 1519 1520 if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) { 1521 VCPU_CTR1(vm, vcpuid, "Error decoding instruction at %#lx", 1522 vme->rip + cs_base); 1523 *retu = true; /* dump instruction bytes in userspace */ 1524 return (0); 1525 } 1526 1527 /* 1528 * Update 'nextrip' based on the length of the emulated instruction. 1529 */ 1530 vme->inst_length = vie->num_processed; 1531 vcpu->nextrip += vie->num_processed; 1532 VCPU_CTR1(vm, vcpuid, "nextrip updated to %#lx after instruction " 1533 "decoding", vcpu->nextrip); 1534 1535 /* return to userland unless this is an in-kernel emulated device */ 1536 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1537 mread = lapic_mmio_read; 1538 mwrite = lapic_mmio_write; 1539 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1540 mread = vioapic_mmio_read; 1541 mwrite = vioapic_mmio_write; 1542 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1543 mread = vhpet_mmio_read; 1544 mwrite = vhpet_mmio_write; 1545 } else { 1546 *retu = true; 1547 return (0); 1548 } 1549 1550 error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging, 1551 mread, mwrite, retu); 1552 1553 return (error); 1554 } 1555 1556 static int 1557 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu) 1558 { 1559 int error, i; 1560 struct vcpu *vcpu; 1561 struct thread *td; 1562 1563 error = 0; 1564 vcpu = &vm->vcpu[vcpuid]; 1565 td = curthread; 1566 1567 CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus); 1568 1569 /* 1570 * Wait until all 'active_cpus' have suspended themselves. 1571 * 1572 * Since a VM may be suspended at any time including when one or 1573 * more vcpus are doing a rendezvous we need to call the rendezvous 1574 * handler while we are waiting to prevent a deadlock. 1575 */ 1576 vcpu_lock(vcpu); 1577 while (error == 0) { 1578 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1579 VCPU_CTR0(vm, vcpuid, "All vcpus suspended"); 1580 break; 1581 } 1582 1583 if (vm->rendezvous_func == NULL) { 1584 VCPU_CTR0(vm, vcpuid, "Sleeping during suspend"); 1585 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); 1586 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1587 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); 1588 if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) { 1589 vcpu_unlock(vcpu); 1590 error = thread_check_susp(td, false); 1591 vcpu_lock(vcpu); 1592 } 1593 } else { 1594 VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend"); 1595 vcpu_unlock(vcpu); 1596 error = vm_handle_rendezvous(vm, vcpuid); 1597 vcpu_lock(vcpu); 1598 } 1599 } 1600 vcpu_unlock(vcpu); 1601 1602 /* 1603 * Wakeup the other sleeping vcpus and return to userspace. 1604 */ 1605 for (i = 0; i < vm->maxcpus; i++) { 1606 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1607 vcpu_notify_event(vm, i, false); 1608 } 1609 } 1610 1611 *retu = true; 1612 return (error); 1613 } 1614 1615 static int 1616 vm_handle_reqidle(struct vm *vm, int vcpuid, bool *retu) 1617 { 1618 struct vcpu *vcpu = &vm->vcpu[vcpuid]; 1619 1620 vcpu_lock(vcpu); 1621 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle)); 1622 vcpu->reqidle = 0; 1623 vcpu_unlock(vcpu); 1624 *retu = true; 1625 return (0); 1626 } 1627 1628 int 1629 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1630 { 1631 int i; 1632 1633 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1634 return (EINVAL); 1635 1636 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1637 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1638 vm->suspend, how); 1639 return (EALREADY); 1640 } 1641 1642 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1643 1644 /* 1645 * Notify all active vcpus that they are now suspended. 1646 */ 1647 for (i = 0; i < vm->maxcpus; i++) { 1648 if (CPU_ISSET(i, &vm->active_cpus)) 1649 vcpu_notify_event(vm, i, false); 1650 } 1651 1652 return (0); 1653 } 1654 1655 void 1656 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip) 1657 { 1658 struct vm_exit *vmexit; 1659 1660 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1661 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1662 1663 vmexit = vm_exitinfo(vm, vcpuid); 1664 vmexit->rip = rip; 1665 vmexit->inst_length = 0; 1666 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1667 vmexit->u.suspended.how = vm->suspend; 1668 } 1669 1670 void 1671 vm_exit_debug(struct vm *vm, int vcpuid, uint64_t rip) 1672 { 1673 struct vm_exit *vmexit; 1674 1675 vmexit = vm_exitinfo(vm, vcpuid); 1676 vmexit->rip = rip; 1677 vmexit->inst_length = 0; 1678 vmexit->exitcode = VM_EXITCODE_DEBUG; 1679 } 1680 1681 void 1682 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip) 1683 { 1684 struct vm_exit *vmexit; 1685 1686 KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress")); 1687 1688 vmexit = vm_exitinfo(vm, vcpuid); 1689 vmexit->rip = rip; 1690 vmexit->inst_length = 0; 1691 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1692 vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1); 1693 } 1694 1695 void 1696 vm_exit_reqidle(struct vm *vm, int vcpuid, uint64_t rip) 1697 { 1698 struct vm_exit *vmexit; 1699 1700 vmexit = vm_exitinfo(vm, vcpuid); 1701 vmexit->rip = rip; 1702 vmexit->inst_length = 0; 1703 vmexit->exitcode = VM_EXITCODE_REQIDLE; 1704 vmm_stat_incr(vm, vcpuid, VMEXIT_REQIDLE, 1); 1705 } 1706 1707 void 1708 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip) 1709 { 1710 struct vm_exit *vmexit; 1711 1712 vmexit = vm_exitinfo(vm, vcpuid); 1713 vmexit->rip = rip; 1714 vmexit->inst_length = 0; 1715 vmexit->exitcode = VM_EXITCODE_BOGUS; 1716 vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1); 1717 } 1718 1719 int 1720 vm_run(struct vm *vm, struct vm_run *vmrun) 1721 { 1722 struct vm_eventinfo evinfo; 1723 int error, vcpuid; 1724 struct vcpu *vcpu; 1725 struct pcb *pcb; 1726 uint64_t tscval; 1727 struct vm_exit *vme; 1728 bool retu, intr_disabled; 1729 pmap_t pmap; 1730 1731 vcpuid = vmrun->cpuid; 1732 1733 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1734 return (EINVAL); 1735 1736 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1737 return (EINVAL); 1738 1739 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1740 return (EINVAL); 1741 1742 pmap = vmspace_pmap(vm->vmspace); 1743 vcpu = &vm->vcpu[vcpuid]; 1744 vme = &vcpu->exitinfo; 1745 evinfo.rptr = &vm->rendezvous_func; 1746 evinfo.sptr = &vm->suspend; 1747 evinfo.iptr = &vcpu->reqidle; 1748 restart: 1749 critical_enter(); 1750 1751 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1752 ("vm_run: absurd pm_active")); 1753 1754 tscval = rdtsc(); 1755 1756 pcb = PCPU_GET(curpcb); 1757 set_pcb_flags(pcb, PCB_FULL_IRET); 1758 1759 restore_guest_fpustate(vcpu); 1760 1761 vcpu_require_state(vm, vcpuid, VCPU_RUNNING); 1762 error = vmmops_run(vm->cookie, vcpuid, vcpu->nextrip, pmap, &evinfo); 1763 vcpu_require_state(vm, vcpuid, VCPU_FROZEN); 1764 1765 save_guest_fpustate(vcpu); 1766 1767 vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1768 1769 critical_exit(); 1770 1771 if (error == 0) { 1772 retu = false; 1773 vcpu->nextrip = vme->rip + vme->inst_length; 1774 switch (vme->exitcode) { 1775 case VM_EXITCODE_REQIDLE: 1776 error = vm_handle_reqidle(vm, vcpuid, &retu); 1777 break; 1778 case VM_EXITCODE_SUSPENDED: 1779 error = vm_handle_suspend(vm, vcpuid, &retu); 1780 break; 1781 case VM_EXITCODE_IOAPIC_EOI: 1782 vioapic_process_eoi(vm, vcpuid, 1783 vme->u.ioapic_eoi.vector); 1784 break; 1785 case VM_EXITCODE_RENDEZVOUS: 1786 error = vm_handle_rendezvous(vm, vcpuid); 1787 break; 1788 case VM_EXITCODE_HLT: 1789 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1790 error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu); 1791 break; 1792 case VM_EXITCODE_PAGING: 1793 error = vm_handle_paging(vm, vcpuid, &retu); 1794 break; 1795 case VM_EXITCODE_INST_EMUL: 1796 error = vm_handle_inst_emul(vm, vcpuid, &retu); 1797 break; 1798 case VM_EXITCODE_INOUT: 1799 case VM_EXITCODE_INOUT_STR: 1800 error = vm_handle_inout(vm, vcpuid, vme, &retu); 1801 break; 1802 case VM_EXITCODE_MONITOR: 1803 case VM_EXITCODE_MWAIT: 1804 case VM_EXITCODE_VMINSN: 1805 vm_inject_ud(vm, vcpuid); 1806 break; 1807 default: 1808 retu = true; /* handled in userland */ 1809 break; 1810 } 1811 } 1812 1813 if (error == 0 && retu == false) 1814 goto restart; 1815 1816 VCPU_CTR2(vm, vcpuid, "retu %d/%d", error, vme->exitcode); 1817 1818 /* copy the exit information */ 1819 bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit)); 1820 return (error); 1821 } 1822 1823 int 1824 vm_restart_instruction(void *arg, int vcpuid) 1825 { 1826 struct vm *vm; 1827 struct vcpu *vcpu; 1828 enum vcpu_state state; 1829 uint64_t rip; 1830 int error; 1831 1832 vm = arg; 1833 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1834 return (EINVAL); 1835 1836 vcpu = &vm->vcpu[vcpuid]; 1837 state = vcpu_get_state(vm, vcpuid, NULL); 1838 if (state == VCPU_RUNNING) { 1839 /* 1840 * When a vcpu is "running" the next instruction is determined 1841 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'. 1842 * Thus setting 'inst_length' to zero will cause the current 1843 * instruction to be restarted. 1844 */ 1845 vcpu->exitinfo.inst_length = 0; 1846 VCPU_CTR1(vm, vcpuid, "restarting instruction at %#lx by " 1847 "setting inst_length to zero", vcpu->exitinfo.rip); 1848 } else if (state == VCPU_FROZEN) { 1849 /* 1850 * When a vcpu is "frozen" it is outside the critical section 1851 * around vmmops_run() and 'nextrip' points to the next 1852 * instruction. Thus instruction restart is achieved by setting 1853 * 'nextrip' to the vcpu's %rip. 1854 */ 1855 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip); 1856 KASSERT(!error, ("%s: error %d getting rip", __func__, error)); 1857 VCPU_CTR2(vm, vcpuid, "restarting instruction by updating " 1858 "nextrip from %#lx to %#lx", vcpu->nextrip, rip); 1859 vcpu->nextrip = rip; 1860 } else { 1861 panic("%s: invalid state %d", __func__, state); 1862 } 1863 return (0); 1864 } 1865 1866 int 1867 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info) 1868 { 1869 struct vcpu *vcpu; 1870 int type, vector; 1871 1872 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1873 return (EINVAL); 1874 1875 vcpu = &vm->vcpu[vcpuid]; 1876 1877 if (info & VM_INTINFO_VALID) { 1878 type = info & VM_INTINFO_TYPE; 1879 vector = info & 0xff; 1880 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 1881 return (EINVAL); 1882 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 1883 return (EINVAL); 1884 if (info & VM_INTINFO_RSVD) 1885 return (EINVAL); 1886 } else { 1887 info = 0; 1888 } 1889 VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info); 1890 vcpu->exitintinfo = info; 1891 return (0); 1892 } 1893 1894 enum exc_class { 1895 EXC_BENIGN, 1896 EXC_CONTRIBUTORY, 1897 EXC_PAGEFAULT 1898 }; 1899 1900 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 1901 1902 static enum exc_class 1903 exception_class(uint64_t info) 1904 { 1905 int type, vector; 1906 1907 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 1908 type = info & VM_INTINFO_TYPE; 1909 vector = info & 0xff; 1910 1911 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 1912 switch (type) { 1913 case VM_INTINFO_HWINTR: 1914 case VM_INTINFO_SWINTR: 1915 case VM_INTINFO_NMI: 1916 return (EXC_BENIGN); 1917 default: 1918 /* 1919 * Hardware exception. 1920 * 1921 * SVM and VT-x use identical type values to represent NMI, 1922 * hardware interrupt and software interrupt. 1923 * 1924 * SVM uses type '3' for all exceptions. VT-x uses type '3' 1925 * for exceptions except #BP and #OF. #BP and #OF use a type 1926 * value of '5' or '6'. Therefore we don't check for explicit 1927 * values of 'type' to classify 'intinfo' into a hardware 1928 * exception. 1929 */ 1930 break; 1931 } 1932 1933 switch (vector) { 1934 case IDT_PF: 1935 case IDT_VE: 1936 return (EXC_PAGEFAULT); 1937 case IDT_DE: 1938 case IDT_TS: 1939 case IDT_NP: 1940 case IDT_SS: 1941 case IDT_GP: 1942 return (EXC_CONTRIBUTORY); 1943 default: 1944 return (EXC_BENIGN); 1945 } 1946 } 1947 1948 static int 1949 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2, 1950 uint64_t *retinfo) 1951 { 1952 enum exc_class exc1, exc2; 1953 int type1, vector1; 1954 1955 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 1956 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 1957 1958 /* 1959 * If an exception occurs while attempting to call the double-fault 1960 * handler the processor enters shutdown mode (aka triple fault). 1961 */ 1962 type1 = info1 & VM_INTINFO_TYPE; 1963 vector1 = info1 & 0xff; 1964 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 1965 VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)", 1966 info1, info2); 1967 vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT); 1968 *retinfo = 0; 1969 return (0); 1970 } 1971 1972 /* 1973 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 1974 */ 1975 exc1 = exception_class(info1); 1976 exc2 = exception_class(info2); 1977 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 1978 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 1979 /* Convert nested fault into a double fault. */ 1980 *retinfo = IDT_DF; 1981 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1982 *retinfo |= VM_INTINFO_DEL_ERRCODE; 1983 } else { 1984 /* Handle exceptions serially */ 1985 *retinfo = info2; 1986 } 1987 return (1); 1988 } 1989 1990 static uint64_t 1991 vcpu_exception_intinfo(struct vcpu *vcpu) 1992 { 1993 uint64_t info = 0; 1994 1995 if (vcpu->exception_pending) { 1996 info = vcpu->exc_vector & 0xff; 1997 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1998 if (vcpu->exc_errcode_valid) { 1999 info |= VM_INTINFO_DEL_ERRCODE; 2000 info |= (uint64_t)vcpu->exc_errcode << 32; 2001 } 2002 } 2003 return (info); 2004 } 2005 2006 int 2007 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo) 2008 { 2009 struct vcpu *vcpu; 2010 uint64_t info1, info2; 2011 int valid; 2012 2013 KASSERT(vcpuid >= 0 && 2014 vcpuid < vm->maxcpus, ("invalid vcpu %d", vcpuid)); 2015 2016 vcpu = &vm->vcpu[vcpuid]; 2017 2018 info1 = vcpu->exitintinfo; 2019 vcpu->exitintinfo = 0; 2020 2021 info2 = 0; 2022 if (vcpu->exception_pending) { 2023 info2 = vcpu_exception_intinfo(vcpu); 2024 vcpu->exception_pending = 0; 2025 VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx", 2026 vcpu->exc_vector, info2); 2027 } 2028 2029 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 2030 valid = nested_fault(vm, vcpuid, info1, info2, retinfo); 2031 } else if (info1 & VM_INTINFO_VALID) { 2032 *retinfo = info1; 2033 valid = 1; 2034 } else if (info2 & VM_INTINFO_VALID) { 2035 *retinfo = info2; 2036 valid = 1; 2037 } else { 2038 valid = 0; 2039 } 2040 2041 if (valid) { 2042 VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), " 2043 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 2044 } 2045 2046 return (valid); 2047 } 2048 2049 int 2050 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2) 2051 { 2052 struct vcpu *vcpu; 2053 2054 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2055 return (EINVAL); 2056 2057 vcpu = &vm->vcpu[vcpuid]; 2058 *info1 = vcpu->exitintinfo; 2059 *info2 = vcpu_exception_intinfo(vcpu); 2060 return (0); 2061 } 2062 2063 int 2064 vm_inject_exception(struct vm *vm, int vcpuid, int vector, int errcode_valid, 2065 uint32_t errcode, int restart_instruction) 2066 { 2067 struct vcpu *vcpu; 2068 uint64_t regval; 2069 int error; 2070 2071 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2072 return (EINVAL); 2073 2074 if (vector < 0 || vector >= 32) 2075 return (EINVAL); 2076 2077 /* 2078 * A double fault exception should never be injected directly into 2079 * the guest. It is a derived exception that results from specific 2080 * combinations of nested faults. 2081 */ 2082 if (vector == IDT_DF) 2083 return (EINVAL); 2084 2085 vcpu = &vm->vcpu[vcpuid]; 2086 2087 if (vcpu->exception_pending) { 2088 VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to " 2089 "pending exception %d", vector, vcpu->exc_vector); 2090 return (EBUSY); 2091 } 2092 2093 if (errcode_valid) { 2094 /* 2095 * Exceptions don't deliver an error code in real mode. 2096 */ 2097 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_CR0, ®val); 2098 KASSERT(!error, ("%s: error %d getting CR0", __func__, error)); 2099 if (!(regval & CR0_PE)) 2100 errcode_valid = 0; 2101 } 2102 2103 /* 2104 * From section 26.6.1 "Interruptibility State" in Intel SDM: 2105 * 2106 * Event blocking by "STI" or "MOV SS" is cleared after guest executes 2107 * one instruction or incurs an exception. 2108 */ 2109 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0); 2110 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", 2111 __func__, error)); 2112 2113 if (restart_instruction) 2114 vm_restart_instruction(vm, vcpuid); 2115 2116 vcpu->exception_pending = 1; 2117 vcpu->exc_vector = vector; 2118 vcpu->exc_errcode = errcode; 2119 vcpu->exc_errcode_valid = errcode_valid; 2120 VCPU_CTR1(vm, vcpuid, "Exception %d pending", vector); 2121 return (0); 2122 } 2123 2124 void 2125 vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid, 2126 int errcode) 2127 { 2128 struct vm *vm; 2129 int error, restart_instruction; 2130 2131 vm = vmarg; 2132 restart_instruction = 1; 2133 2134 error = vm_inject_exception(vm, vcpuid, vector, errcode_valid, 2135 errcode, restart_instruction); 2136 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 2137 } 2138 2139 void 2140 vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2) 2141 { 2142 struct vm *vm; 2143 int error; 2144 2145 vm = vmarg; 2146 VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx", 2147 error_code, cr2); 2148 2149 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2); 2150 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 2151 2152 vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code); 2153 } 2154 2155 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 2156 2157 int 2158 vm_inject_nmi(struct vm *vm, int vcpuid) 2159 { 2160 struct vcpu *vcpu; 2161 2162 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2163 return (EINVAL); 2164 2165 vcpu = &vm->vcpu[vcpuid]; 2166 2167 vcpu->nmi_pending = 1; 2168 vcpu_notify_event(vm, vcpuid, false); 2169 return (0); 2170 } 2171 2172 int 2173 vm_nmi_pending(struct vm *vm, int vcpuid) 2174 { 2175 struct vcpu *vcpu; 2176 2177 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2178 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 2179 2180 vcpu = &vm->vcpu[vcpuid]; 2181 2182 return (vcpu->nmi_pending); 2183 } 2184 2185 void 2186 vm_nmi_clear(struct vm *vm, int vcpuid) 2187 { 2188 struct vcpu *vcpu; 2189 2190 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2191 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 2192 2193 vcpu = &vm->vcpu[vcpuid]; 2194 2195 if (vcpu->nmi_pending == 0) 2196 panic("vm_nmi_clear: inconsistent nmi_pending state"); 2197 2198 vcpu->nmi_pending = 0; 2199 vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1); 2200 } 2201 2202 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 2203 2204 int 2205 vm_inject_extint(struct vm *vm, int vcpuid) 2206 { 2207 struct vcpu *vcpu; 2208 2209 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2210 return (EINVAL); 2211 2212 vcpu = &vm->vcpu[vcpuid]; 2213 2214 vcpu->extint_pending = 1; 2215 vcpu_notify_event(vm, vcpuid, false); 2216 return (0); 2217 } 2218 2219 int 2220 vm_extint_pending(struct vm *vm, int vcpuid) 2221 { 2222 struct vcpu *vcpu; 2223 2224 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2225 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 2226 2227 vcpu = &vm->vcpu[vcpuid]; 2228 2229 return (vcpu->extint_pending); 2230 } 2231 2232 void 2233 vm_extint_clear(struct vm *vm, int vcpuid) 2234 { 2235 struct vcpu *vcpu; 2236 2237 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2238 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 2239 2240 vcpu = &vm->vcpu[vcpuid]; 2241 2242 if (vcpu->extint_pending == 0) 2243 panic("vm_extint_clear: inconsistent extint_pending state"); 2244 2245 vcpu->extint_pending = 0; 2246 vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1); 2247 } 2248 2249 int 2250 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval) 2251 { 2252 if (vcpu < 0 || vcpu >= vm->maxcpus) 2253 return (EINVAL); 2254 2255 if (type < 0 || type >= VM_CAP_MAX) 2256 return (EINVAL); 2257 2258 return (vmmops_getcap(vm->cookie, vcpu, type, retval)); 2259 } 2260 2261 int 2262 vm_set_capability(struct vm *vm, int vcpu, int type, int val) 2263 { 2264 if (vcpu < 0 || vcpu >= vm->maxcpus) 2265 return (EINVAL); 2266 2267 if (type < 0 || type >= VM_CAP_MAX) 2268 return (EINVAL); 2269 2270 return (vmmops_setcap(vm->cookie, vcpu, type, val)); 2271 } 2272 2273 struct vlapic * 2274 vm_lapic(struct vm *vm, int cpu) 2275 { 2276 return (vm->vcpu[cpu].vlapic); 2277 } 2278 2279 struct vioapic * 2280 vm_ioapic(struct vm *vm) 2281 { 2282 2283 return (vm->vioapic); 2284 } 2285 2286 struct vhpet * 2287 vm_hpet(struct vm *vm) 2288 { 2289 2290 return (vm->vhpet); 2291 } 2292 2293 bool 2294 vmm_is_pptdev(int bus, int slot, int func) 2295 { 2296 int b, f, i, n, s; 2297 char *val, *cp, *cp2; 2298 bool found; 2299 2300 /* 2301 * XXX 2302 * The length of an environment variable is limited to 128 bytes which 2303 * puts an upper limit on the number of passthru devices that may be 2304 * specified using a single environment variable. 2305 * 2306 * Work around this by scanning multiple environment variable 2307 * names instead of a single one - yuck! 2308 */ 2309 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 2310 2311 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 2312 found = false; 2313 for (i = 0; names[i] != NULL && !found; i++) { 2314 cp = val = kern_getenv(names[i]); 2315 while (cp != NULL && *cp != '\0') { 2316 if ((cp2 = strchr(cp, ' ')) != NULL) 2317 *cp2 = '\0'; 2318 2319 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 2320 if (n == 3 && bus == b && slot == s && func == f) { 2321 found = true; 2322 break; 2323 } 2324 2325 if (cp2 != NULL) 2326 *cp2++ = ' '; 2327 2328 cp = cp2; 2329 } 2330 freeenv(val); 2331 } 2332 return (found); 2333 } 2334 2335 void * 2336 vm_iommu_domain(struct vm *vm) 2337 { 2338 2339 return (vm->iommu); 2340 } 2341 2342 int 2343 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate, 2344 bool from_idle) 2345 { 2346 int error; 2347 struct vcpu *vcpu; 2348 2349 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2350 panic("vm_set_run_state: invalid vcpuid %d", vcpuid); 2351 2352 vcpu = &vm->vcpu[vcpuid]; 2353 2354 vcpu_lock(vcpu); 2355 error = vcpu_set_state_locked(vm, vcpuid, newstate, from_idle); 2356 vcpu_unlock(vcpu); 2357 2358 return (error); 2359 } 2360 2361 enum vcpu_state 2362 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu) 2363 { 2364 struct vcpu *vcpu; 2365 enum vcpu_state state; 2366 2367 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2368 panic("vm_get_run_state: invalid vcpuid %d", vcpuid); 2369 2370 vcpu = &vm->vcpu[vcpuid]; 2371 2372 vcpu_lock(vcpu); 2373 state = vcpu->state; 2374 if (hostcpu != NULL) 2375 *hostcpu = vcpu->hostcpu; 2376 vcpu_unlock(vcpu); 2377 2378 return (state); 2379 } 2380 2381 int 2382 vm_activate_cpu(struct vm *vm, int vcpuid) 2383 { 2384 2385 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2386 return (EINVAL); 2387 2388 if (CPU_ISSET(vcpuid, &vm->active_cpus)) 2389 return (EBUSY); 2390 2391 VCPU_CTR0(vm, vcpuid, "activated"); 2392 CPU_SET_ATOMIC(vcpuid, &vm->active_cpus); 2393 return (0); 2394 } 2395 2396 int 2397 vm_suspend_cpu(struct vm *vm, int vcpuid) 2398 { 2399 int i; 2400 2401 if (vcpuid < -1 || vcpuid >= vm->maxcpus) 2402 return (EINVAL); 2403 2404 if (vcpuid == -1) { 2405 vm->debug_cpus = vm->active_cpus; 2406 for (i = 0; i < vm->maxcpus; i++) { 2407 if (CPU_ISSET(i, &vm->active_cpus)) 2408 vcpu_notify_event(vm, i, false); 2409 } 2410 } else { 2411 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 2412 return (EINVAL); 2413 2414 CPU_SET_ATOMIC(vcpuid, &vm->debug_cpus); 2415 vcpu_notify_event(vm, vcpuid, false); 2416 } 2417 return (0); 2418 } 2419 2420 int 2421 vm_resume_cpu(struct vm *vm, int vcpuid) 2422 { 2423 2424 if (vcpuid < -1 || vcpuid >= vm->maxcpus) 2425 return (EINVAL); 2426 2427 if (vcpuid == -1) { 2428 CPU_ZERO(&vm->debug_cpus); 2429 } else { 2430 if (!CPU_ISSET(vcpuid, &vm->debug_cpus)) 2431 return (EINVAL); 2432 2433 CPU_CLR_ATOMIC(vcpuid, &vm->debug_cpus); 2434 } 2435 return (0); 2436 } 2437 2438 int 2439 vcpu_debugged(struct vm *vm, int vcpuid) 2440 { 2441 2442 return (CPU_ISSET(vcpuid, &vm->debug_cpus)); 2443 } 2444 2445 cpuset_t 2446 vm_active_cpus(struct vm *vm) 2447 { 2448 2449 return (vm->active_cpus); 2450 } 2451 2452 cpuset_t 2453 vm_debug_cpus(struct vm *vm) 2454 { 2455 2456 return (vm->debug_cpus); 2457 } 2458 2459 cpuset_t 2460 vm_suspended_cpus(struct vm *vm) 2461 { 2462 2463 return (vm->suspended_cpus); 2464 } 2465 2466 void * 2467 vcpu_stats(struct vm *vm, int vcpuid) 2468 { 2469 2470 return (vm->vcpu[vcpuid].stats); 2471 } 2472 2473 int 2474 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state) 2475 { 2476 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2477 return (EINVAL); 2478 2479 *state = vm->vcpu[vcpuid].x2apic_state; 2480 2481 return (0); 2482 } 2483 2484 int 2485 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state) 2486 { 2487 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2488 return (EINVAL); 2489 2490 if (state >= X2APIC_STATE_LAST) 2491 return (EINVAL); 2492 2493 vm->vcpu[vcpuid].x2apic_state = state; 2494 2495 vlapic_set_x2apic_state(vm, vcpuid, state); 2496 2497 return (0); 2498 } 2499 2500 /* 2501 * This function is called to ensure that a vcpu "sees" a pending event 2502 * as soon as possible: 2503 * - If the vcpu thread is sleeping then it is woken up. 2504 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2505 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2506 */ 2507 static void 2508 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr) 2509 { 2510 int hostcpu; 2511 2512 hostcpu = vcpu->hostcpu; 2513 if (vcpu->state == VCPU_RUNNING) { 2514 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2515 if (hostcpu != curcpu) { 2516 if (lapic_intr) { 2517 vlapic_post_intr(vcpu->vlapic, hostcpu, 2518 vmm_ipinum); 2519 } else { 2520 ipi_cpu(hostcpu, vmm_ipinum); 2521 } 2522 } else { 2523 /* 2524 * If the 'vcpu' is running on 'curcpu' then it must 2525 * be sending a notification to itself (e.g. SELF_IPI). 2526 * The pending event will be picked up when the vcpu 2527 * transitions back to guest context. 2528 */ 2529 } 2530 } else { 2531 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2532 "with hostcpu %d", vcpu->state, hostcpu)); 2533 if (vcpu->state == VCPU_SLEEPING) 2534 wakeup_one(vcpu); 2535 } 2536 } 2537 2538 void 2539 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr) 2540 { 2541 struct vcpu *vcpu = &vm->vcpu[vcpuid]; 2542 2543 vcpu_lock(vcpu); 2544 vcpu_notify_event_locked(vcpu, lapic_intr); 2545 vcpu_unlock(vcpu); 2546 } 2547 2548 struct vmspace * 2549 vm_get_vmspace(struct vm *vm) 2550 { 2551 2552 return (vm->vmspace); 2553 } 2554 2555 int 2556 vm_apicid2vcpuid(struct vm *vm, int apicid) 2557 { 2558 /* 2559 * XXX apic id is assumed to be numerically identical to vcpu id 2560 */ 2561 return (apicid); 2562 } 2563 2564 int 2565 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest, 2566 vm_rendezvous_func_t func, void *arg) 2567 { 2568 int error, i; 2569 2570 /* 2571 * Enforce that this function is called without any locks 2572 */ 2573 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2574 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus), 2575 ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid)); 2576 2577 restart: 2578 mtx_lock(&vm->rendezvous_mtx); 2579 if (vm->rendezvous_func != NULL) { 2580 /* 2581 * If a rendezvous is already in progress then we need to 2582 * call the rendezvous handler in case this 'vcpuid' is one 2583 * of the targets of the rendezvous. 2584 */ 2585 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress"); 2586 mtx_unlock(&vm->rendezvous_mtx); 2587 error = vm_handle_rendezvous(vm, vcpuid); 2588 if (error != 0) 2589 return (error); 2590 goto restart; 2591 } 2592 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2593 "rendezvous is still in progress")); 2594 2595 RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous"); 2596 vm->rendezvous_req_cpus = dest; 2597 CPU_ZERO(&vm->rendezvous_done_cpus); 2598 vm->rendezvous_arg = arg; 2599 vm->rendezvous_func = func; 2600 mtx_unlock(&vm->rendezvous_mtx); 2601 2602 /* 2603 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2604 * vcpus so they handle the rendezvous as soon as possible. 2605 */ 2606 for (i = 0; i < vm->maxcpus; i++) { 2607 if (CPU_ISSET(i, &dest)) 2608 vcpu_notify_event(vm, i, false); 2609 } 2610 2611 return (vm_handle_rendezvous(vm, vcpuid)); 2612 } 2613 2614 struct vatpic * 2615 vm_atpic(struct vm *vm) 2616 { 2617 return (vm->vatpic); 2618 } 2619 2620 struct vatpit * 2621 vm_atpit(struct vm *vm) 2622 { 2623 return (vm->vatpit); 2624 } 2625 2626 struct vpmtmr * 2627 vm_pmtmr(struct vm *vm) 2628 { 2629 2630 return (vm->vpmtmr); 2631 } 2632 2633 struct vrtc * 2634 vm_rtc(struct vm *vm) 2635 { 2636 2637 return (vm->vrtc); 2638 } 2639 2640 enum vm_reg_name 2641 vm_segment_name(int seg) 2642 { 2643 static enum vm_reg_name seg_names[] = { 2644 VM_REG_GUEST_ES, 2645 VM_REG_GUEST_CS, 2646 VM_REG_GUEST_SS, 2647 VM_REG_GUEST_DS, 2648 VM_REG_GUEST_FS, 2649 VM_REG_GUEST_GS 2650 }; 2651 2652 KASSERT(seg >= 0 && seg < nitems(seg_names), 2653 ("%s: invalid segment encoding %d", __func__, seg)); 2654 return (seg_names[seg]); 2655 } 2656 2657 void 2658 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, 2659 int num_copyinfo) 2660 { 2661 int idx; 2662 2663 for (idx = 0; idx < num_copyinfo; idx++) { 2664 if (copyinfo[idx].cookie != NULL) 2665 vm_gpa_release(copyinfo[idx].cookie); 2666 } 2667 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2668 } 2669 2670 int 2671 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging, 2672 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2673 int num_copyinfo, int *fault) 2674 { 2675 int error, idx, nused; 2676 size_t n, off, remaining; 2677 void *hva, *cookie; 2678 uint64_t gpa; 2679 2680 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2681 2682 nused = 0; 2683 remaining = len; 2684 while (remaining > 0) { 2685 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo")); 2686 error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa, fault); 2687 if (error || *fault) 2688 return (error); 2689 off = gpa & PAGE_MASK; 2690 n = min(remaining, PAGE_SIZE - off); 2691 copyinfo[nused].gpa = gpa; 2692 copyinfo[nused].len = n; 2693 remaining -= n; 2694 gla += n; 2695 nused++; 2696 } 2697 2698 for (idx = 0; idx < nused; idx++) { 2699 hva = vm_gpa_hold(vm, vcpuid, copyinfo[idx].gpa, 2700 copyinfo[idx].len, prot, &cookie); 2701 if (hva == NULL) 2702 break; 2703 copyinfo[idx].hva = hva; 2704 copyinfo[idx].cookie = cookie; 2705 } 2706 2707 if (idx != nused) { 2708 vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo); 2709 return (EFAULT); 2710 } else { 2711 *fault = 0; 2712 return (0); 2713 } 2714 } 2715 2716 void 2717 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr, 2718 size_t len) 2719 { 2720 char *dst; 2721 int idx; 2722 2723 dst = kaddr; 2724 idx = 0; 2725 while (len > 0) { 2726 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2727 len -= copyinfo[idx].len; 2728 dst += copyinfo[idx].len; 2729 idx++; 2730 } 2731 } 2732 2733 void 2734 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr, 2735 struct vm_copyinfo *copyinfo, size_t len) 2736 { 2737 const char *src; 2738 int idx; 2739 2740 src = kaddr; 2741 idx = 0; 2742 while (len > 0) { 2743 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2744 len -= copyinfo[idx].len; 2745 src += copyinfo[idx].len; 2746 idx++; 2747 } 2748 } 2749 2750 /* 2751 * Return the amount of in-use and wired memory for the VM. Since 2752 * these are global stats, only return the values with for vCPU 0 2753 */ 2754 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2755 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2756 2757 static void 2758 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2759 { 2760 2761 if (vcpu == 0) { 2762 vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT, 2763 PAGE_SIZE * vmspace_resident_count(vm->vmspace)); 2764 } 2765 } 2766 2767 static void 2768 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2769 { 2770 2771 if (vcpu == 0) { 2772 vmm_stat_set(vm, vcpu, VMM_MEM_WIRED, 2773 PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace))); 2774 } 2775 } 2776 2777 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2778 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2779 2780 #ifdef BHYVE_SNAPSHOT 2781 static int 2782 vm_snapshot_vcpus(struct vm *vm, struct vm_snapshot_meta *meta) 2783 { 2784 int ret; 2785 int i; 2786 struct vcpu *vcpu; 2787 2788 for (i = 0; i < VM_MAXCPU; i++) { 2789 vcpu = &vm->vcpu[i]; 2790 2791 SNAPSHOT_VAR_OR_LEAVE(vcpu->x2apic_state, meta, ret, done); 2792 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitintinfo, meta, ret, done); 2793 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_vector, meta, ret, done); 2794 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode_valid, meta, ret, done); 2795 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode, meta, ret, done); 2796 SNAPSHOT_VAR_OR_LEAVE(vcpu->guest_xcr0, meta, ret, done); 2797 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitinfo, meta, ret, done); 2798 SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, ret, done); 2799 /* XXX we're cheating here, since the value of tsc_offset as 2800 * saved here is actually the value of the guest's TSC value. 2801 * 2802 * It will be turned turned back into an actual offset when the 2803 * TSC restore function is called 2804 */ 2805 SNAPSHOT_VAR_OR_LEAVE(vcpu->tsc_offset, meta, ret, done); 2806 } 2807 2808 done: 2809 return (ret); 2810 } 2811 2812 static int 2813 vm_snapshot_vm(struct vm *vm, struct vm_snapshot_meta *meta) 2814 { 2815 int ret; 2816 int i; 2817 uint64_t now; 2818 2819 ret = 0; 2820 now = rdtsc(); 2821 2822 if (meta->op == VM_SNAPSHOT_SAVE) { 2823 /* XXX make tsc_offset take the value TSC proper as seen by the 2824 * guest 2825 */ 2826 for (i = 0; i < VM_MAXCPU; i++) 2827 vm->vcpu[i].tsc_offset += now; 2828 } 2829 2830 ret = vm_snapshot_vcpus(vm, meta); 2831 if (ret != 0) { 2832 printf("%s: failed to copy vm data to user buffer", __func__); 2833 goto done; 2834 } 2835 2836 if (meta->op == VM_SNAPSHOT_SAVE) { 2837 /* XXX turn tsc_offset back into an offset; actual value is only 2838 * required for restore; using it otherwise would be wrong 2839 */ 2840 for (i = 0; i < VM_MAXCPU; i++) 2841 vm->vcpu[i].tsc_offset -= now; 2842 } 2843 2844 done: 2845 return (ret); 2846 } 2847 2848 static int 2849 vm_snapshot_vmcx(struct vm *vm, struct vm_snapshot_meta *meta) 2850 { 2851 int i, error; 2852 2853 error = 0; 2854 2855 for (i = 0; i < VM_MAXCPU; i++) { 2856 error = vmmops_vmcx_snapshot(vm->cookie, meta, i); 2857 if (error != 0) { 2858 printf("%s: failed to snapshot vmcs/vmcb data for " 2859 "vCPU: %d; error: %d\n", __func__, i, error); 2860 goto done; 2861 } 2862 } 2863 2864 done: 2865 return (error); 2866 } 2867 2868 /* 2869 * Save kernel-side structures to user-space for snapshotting. 2870 */ 2871 int 2872 vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta) 2873 { 2874 int ret = 0; 2875 2876 switch (meta->dev_req) { 2877 case STRUCT_VMX: 2878 ret = vmmops_snapshot(vm->cookie, meta); 2879 break; 2880 case STRUCT_VMCX: 2881 ret = vm_snapshot_vmcx(vm, meta); 2882 break; 2883 case STRUCT_VM: 2884 ret = vm_snapshot_vm(vm, meta); 2885 break; 2886 case STRUCT_VIOAPIC: 2887 ret = vioapic_snapshot(vm_ioapic(vm), meta); 2888 break; 2889 case STRUCT_VLAPIC: 2890 ret = vlapic_snapshot(vm, meta); 2891 break; 2892 case STRUCT_VHPET: 2893 ret = vhpet_snapshot(vm_hpet(vm), meta); 2894 break; 2895 case STRUCT_VATPIC: 2896 ret = vatpic_snapshot(vm_atpic(vm), meta); 2897 break; 2898 case STRUCT_VATPIT: 2899 ret = vatpit_snapshot(vm_atpit(vm), meta); 2900 break; 2901 case STRUCT_VPMTMR: 2902 ret = vpmtmr_snapshot(vm_pmtmr(vm), meta); 2903 break; 2904 case STRUCT_VRTC: 2905 ret = vrtc_snapshot(vm_rtc(vm), meta); 2906 break; 2907 default: 2908 printf("%s: failed to find the requested type %#x\n", 2909 __func__, meta->dev_req); 2910 ret = (EINVAL); 2911 } 2912 return (ret); 2913 } 2914 2915 int 2916 vm_set_tsc_offset(struct vm *vm, int vcpuid, uint64_t offset) 2917 { 2918 struct vcpu *vcpu; 2919 2920 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2921 return (EINVAL); 2922 2923 vcpu = &vm->vcpu[vcpuid]; 2924 vcpu->tsc_offset = offset; 2925 2926 return (0); 2927 } 2928 2929 int 2930 vm_restore_time(struct vm *vm) 2931 { 2932 int error, i; 2933 uint64_t now; 2934 struct vcpu *vcpu; 2935 2936 now = rdtsc(); 2937 2938 error = vhpet_restore_time(vm_hpet(vm)); 2939 if (error) 2940 return (error); 2941 2942 for (i = 0; i < nitems(vm->vcpu); i++) { 2943 vcpu = &vm->vcpu[i]; 2944 2945 error = vmmops_restore_tsc(vm->cookie, i, vcpu->tsc_offset - 2946 now); 2947 if (error) 2948 return (error); 2949 } 2950 2951 return (0); 2952 } 2953 #endif 2954