1 /*- 2 * Copyright (c) 2011 NetApp, Inc. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD$ 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/sysctl.h> 37 #include <sys/malloc.h> 38 #include <sys/pcpu.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/proc.h> 42 #include <sys/rwlock.h> 43 #include <sys/sched.h> 44 #include <sys/smp.h> 45 #include <sys/systm.h> 46 47 #include <vm/vm.h> 48 #include <vm/vm_object.h> 49 #include <vm/vm_page.h> 50 #include <vm/pmap.h> 51 #include <vm/vm_map.h> 52 #include <vm/vm_extern.h> 53 #include <vm/vm_param.h> 54 55 #include <machine/cpu.h> 56 #include <machine/vm.h> 57 #include <machine/pcb.h> 58 #include <machine/smp.h> 59 #include <x86/psl.h> 60 #include <x86/apicreg.h> 61 #include <machine/vmparam.h> 62 63 #include <machine/vmm.h> 64 #include <machine/vmm_dev.h> 65 #include <machine/vmm_instruction_emul.h> 66 67 #include "vmm_ioport.h" 68 #include "vmm_ktr.h" 69 #include "vmm_host.h" 70 #include "vmm_mem.h" 71 #include "vmm_util.h" 72 #include "vatpic.h" 73 #include "vatpit.h" 74 #include "vhpet.h" 75 #include "vioapic.h" 76 #include "vlapic.h" 77 #include "vmm_msr.h" 78 #include "vmm_ipi.h" 79 #include "vmm_stat.h" 80 #include "vmm_lapic.h" 81 82 #include "io/ppt.h" 83 #include "io/iommu.h" 84 85 struct vlapic; 86 87 /* 88 * Initialization: 89 * (a) allocated when vcpu is created 90 * (i) initialized when vcpu is created and when it is reinitialized 91 * (o) initialized the first time the vcpu is created 92 * (x) initialized before use 93 */ 94 struct vcpu { 95 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 96 enum vcpu_state state; /* (o) vcpu state */ 97 int hostcpu; /* (o) vcpu's host cpu */ 98 struct vlapic *vlapic; /* (i) APIC device model */ 99 enum x2apic_state x2apic_state; /* (i) APIC mode */ 100 uint64_t exitintinfo; /* (i) events pending at VM exit */ 101 int nmi_pending; /* (i) NMI pending */ 102 int extint_pending; /* (i) INTR pending */ 103 struct vm_exception exception; /* (x) exception collateral */ 104 int exception_pending; /* (i) exception pending */ 105 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 106 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 107 void *stats; /* (a,i) statistics */ 108 uint64_t guest_msrs[VMM_MSR_NUM]; /* (i) emulated MSRs */ 109 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 110 }; 111 112 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx)) 113 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 114 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 115 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 116 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 117 118 struct mem_seg { 119 vm_paddr_t gpa; 120 size_t len; 121 boolean_t wired; 122 vm_object_t object; 123 }; 124 #define VM_MAX_MEMORY_SEGMENTS 2 125 126 /* 127 * Initialization: 128 * (o) initialized the first time the VM is created 129 * (i) initialized when VM is created and when it is reinitialized 130 * (x) initialized before use 131 */ 132 struct vm { 133 void *cookie; /* (i) cpu-specific data */ 134 void *iommu; /* (x) iommu-specific data */ 135 struct vhpet *vhpet; /* (i) virtual HPET */ 136 struct vioapic *vioapic; /* (i) virtual ioapic */ 137 struct vatpic *vatpic; /* (i) virtual atpic */ 138 struct vatpit *vatpit; /* (i) virtual atpit */ 139 volatile cpuset_t active_cpus; /* (i) active vcpus */ 140 int suspend; /* (i) stop VM execution */ 141 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 142 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 143 cpuset_t rendezvous_req_cpus; /* (x) rendezvous requested */ 144 cpuset_t rendezvous_done_cpus; /* (x) rendezvous finished */ 145 void *rendezvous_arg; /* (x) rendezvous func/arg */ 146 vm_rendezvous_func_t rendezvous_func; 147 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 148 int num_mem_segs; /* (o) guest memory segments */ 149 struct mem_seg mem_segs[VM_MAX_MEMORY_SEGMENTS]; 150 struct vmspace *vmspace; /* (o) guest's address space */ 151 char name[VM_MAX_NAMELEN]; /* (o) virtual machine name */ 152 struct vcpu vcpu[VM_MAXCPU]; /* (i) guest vcpus */ 153 }; 154 155 static int vmm_initialized; 156 157 static struct vmm_ops *ops; 158 #define VMM_INIT(num) (ops != NULL ? (*ops->init)(num) : 0) 159 #define VMM_CLEANUP() (ops != NULL ? (*ops->cleanup)() : 0) 160 #define VMM_RESUME() (ops != NULL ? (*ops->resume)() : 0) 161 162 #define VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL) 163 #define VMRUN(vmi, vcpu, rip, pmap, rptr, sptr) \ 164 (ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, rptr, sptr) : ENXIO) 165 #define VMCLEANUP(vmi) (ops != NULL ? (*ops->vmcleanup)(vmi) : NULL) 166 #define VMSPACE_ALLOC(min, max) \ 167 (ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL) 168 #define VMSPACE_FREE(vmspace) \ 169 (ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO) 170 #define VMGETREG(vmi, vcpu, num, retval) \ 171 (ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO) 172 #define VMSETREG(vmi, vcpu, num, val) \ 173 (ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO) 174 #define VMGETDESC(vmi, vcpu, num, desc) \ 175 (ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO) 176 #define VMSETDESC(vmi, vcpu, num, desc) \ 177 (ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO) 178 #define VMGETCAP(vmi, vcpu, num, retval) \ 179 (ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO) 180 #define VMSETCAP(vmi, vcpu, num, val) \ 181 (ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO) 182 #define VLAPIC_INIT(vmi, vcpu) \ 183 (ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL) 184 #define VLAPIC_CLEANUP(vmi, vlapic) \ 185 (ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL) 186 187 #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS) 188 #define fpu_stop_emulating() clts() 189 190 static MALLOC_DEFINE(M_VM, "vm", "vm"); 191 CTASSERT(VMM_MSR_NUM <= 64); /* msr_mask can keep track of up to 64 msrs */ 192 193 /* statistics */ 194 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 195 196 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL); 197 198 /* 199 * Halt the guest if all vcpus are executing a HLT instruction with 200 * interrupts disabled. 201 */ 202 static int halt_detection_enabled = 1; 203 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 204 &halt_detection_enabled, 0, 205 "Halt VM if all vcpus execute HLT with interrupts disabled"); 206 207 static int vmm_ipinum; 208 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 209 "IPI vector used for vcpu notifications"); 210 211 static void 212 vcpu_cleanup(struct vm *vm, int i, bool destroy) 213 { 214 struct vcpu *vcpu = &vm->vcpu[i]; 215 216 VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic); 217 if (destroy) { 218 vmm_stat_free(vcpu->stats); 219 fpu_save_area_free(vcpu->guestfpu); 220 } 221 } 222 223 static void 224 vcpu_init(struct vm *vm, int vcpu_id, bool create) 225 { 226 struct vcpu *vcpu; 227 228 KASSERT(vcpu_id >= 0 && vcpu_id < VM_MAXCPU, 229 ("vcpu_init: invalid vcpu %d", vcpu_id)); 230 231 vcpu = &vm->vcpu[vcpu_id]; 232 233 if (create) { 234 KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already " 235 "initialized", vcpu_id)); 236 vcpu_lock_init(vcpu); 237 vcpu->state = VCPU_IDLE; 238 vcpu->hostcpu = NOCPU; 239 vcpu->guestfpu = fpu_save_area_alloc(); 240 vcpu->stats = vmm_stat_alloc(); 241 } 242 243 vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id); 244 vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED); 245 vcpu->exitintinfo = 0; 246 vcpu->nmi_pending = 0; 247 vcpu->extint_pending = 0; 248 vcpu->exception_pending = 0; 249 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 250 fpu_save_area_reset(vcpu->guestfpu); 251 vmm_stat_init(vcpu->stats); 252 guest_msrs_init(vm, vcpu_id); 253 } 254 255 struct vm_exit * 256 vm_exitinfo(struct vm *vm, int cpuid) 257 { 258 struct vcpu *vcpu; 259 260 if (cpuid < 0 || cpuid >= VM_MAXCPU) 261 panic("vm_exitinfo: invalid cpuid %d", cpuid); 262 263 vcpu = &vm->vcpu[cpuid]; 264 265 return (&vcpu->exitinfo); 266 } 267 268 static void 269 vmm_resume(void) 270 { 271 VMM_RESUME(); 272 } 273 274 static int 275 vmm_init(void) 276 { 277 int error; 278 279 vmm_host_state_init(); 280 281 vmm_ipinum = vmm_ipi_alloc(); 282 if (vmm_ipinum == 0) 283 vmm_ipinum = IPI_AST; 284 285 error = vmm_mem_init(); 286 if (error) 287 return (error); 288 289 if (vmm_is_intel()) 290 ops = &vmm_ops_intel; 291 else if (vmm_is_amd()) 292 ops = &vmm_ops_amd; 293 else 294 return (ENXIO); 295 296 vmm_msr_init(); 297 vmm_resume_p = vmm_resume; 298 299 return (VMM_INIT(vmm_ipinum)); 300 } 301 302 static int 303 vmm_handler(module_t mod, int what, void *arg) 304 { 305 int error; 306 307 switch (what) { 308 case MOD_LOAD: 309 vmmdev_init(); 310 if (ppt_avail_devices() > 0) 311 iommu_init(); 312 error = vmm_init(); 313 if (error == 0) 314 vmm_initialized = 1; 315 break; 316 case MOD_UNLOAD: 317 error = vmmdev_cleanup(); 318 if (error == 0) { 319 vmm_resume_p = NULL; 320 iommu_cleanup(); 321 if (vmm_ipinum != IPI_AST) 322 vmm_ipi_free(vmm_ipinum); 323 error = VMM_CLEANUP(); 324 /* 325 * Something bad happened - prevent new 326 * VMs from being created 327 */ 328 if (error) 329 vmm_initialized = 0; 330 } 331 break; 332 default: 333 error = 0; 334 break; 335 } 336 return (error); 337 } 338 339 static moduledata_t vmm_kmod = { 340 "vmm", 341 vmm_handler, 342 NULL 343 }; 344 345 /* 346 * vmm initialization has the following dependencies: 347 * 348 * - iommu initialization must happen after the pci passthru driver has had 349 * a chance to attach to any passthru devices (after SI_SUB_CONFIGURE). 350 * 351 * - VT-x initialization requires smp_rendezvous() and therefore must happen 352 * after SMP is fully functional (after SI_SUB_SMP). 353 */ 354 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 355 MODULE_VERSION(vmm, 1); 356 357 static void 358 vm_init(struct vm *vm, bool create) 359 { 360 int i; 361 362 vm->cookie = VMINIT(vm, vmspace_pmap(vm->vmspace)); 363 vm->iommu = NULL; 364 vm->vioapic = vioapic_init(vm); 365 vm->vhpet = vhpet_init(vm); 366 vm->vatpic = vatpic_init(vm); 367 vm->vatpit = vatpit_init(vm); 368 369 CPU_ZERO(&vm->active_cpus); 370 371 vm->suspend = 0; 372 CPU_ZERO(&vm->suspended_cpus); 373 374 for (i = 0; i < VM_MAXCPU; i++) 375 vcpu_init(vm, i, create); 376 } 377 378 int 379 vm_create(const char *name, struct vm **retvm) 380 { 381 struct vm *vm; 382 struct vmspace *vmspace; 383 384 /* 385 * If vmm.ko could not be successfully initialized then don't attempt 386 * to create the virtual machine. 387 */ 388 if (!vmm_initialized) 389 return (ENXIO); 390 391 if (name == NULL || strlen(name) >= VM_MAX_NAMELEN) 392 return (EINVAL); 393 394 vmspace = VMSPACE_ALLOC(VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS); 395 if (vmspace == NULL) 396 return (ENOMEM); 397 398 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 399 strcpy(vm->name, name); 400 vm->num_mem_segs = 0; 401 vm->vmspace = vmspace; 402 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 403 404 vm_init(vm, true); 405 406 *retvm = vm; 407 return (0); 408 } 409 410 static void 411 vm_free_mem_seg(struct vm *vm, struct mem_seg *seg) 412 { 413 414 if (seg->object != NULL) 415 vmm_mem_free(vm->vmspace, seg->gpa, seg->len); 416 417 bzero(seg, sizeof(*seg)); 418 } 419 420 static void 421 vm_cleanup(struct vm *vm, bool destroy) 422 { 423 int i; 424 425 ppt_unassign_all(vm); 426 427 if (vm->iommu != NULL) 428 iommu_destroy_domain(vm->iommu); 429 430 vatpit_cleanup(vm->vatpit); 431 vhpet_cleanup(vm->vhpet); 432 vatpic_cleanup(vm->vatpic); 433 vioapic_cleanup(vm->vioapic); 434 435 for (i = 0; i < VM_MAXCPU; i++) 436 vcpu_cleanup(vm, i, destroy); 437 438 VMCLEANUP(vm->cookie); 439 440 if (destroy) { 441 for (i = 0; i < vm->num_mem_segs; i++) 442 vm_free_mem_seg(vm, &vm->mem_segs[i]); 443 444 vm->num_mem_segs = 0; 445 446 VMSPACE_FREE(vm->vmspace); 447 vm->vmspace = NULL; 448 } 449 } 450 451 void 452 vm_destroy(struct vm *vm) 453 { 454 vm_cleanup(vm, true); 455 free(vm, M_VM); 456 } 457 458 int 459 vm_reinit(struct vm *vm) 460 { 461 int error; 462 463 /* 464 * A virtual machine can be reset only if all vcpus are suspended. 465 */ 466 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 467 vm_cleanup(vm, false); 468 vm_init(vm, false); 469 error = 0; 470 } else { 471 error = EBUSY; 472 } 473 474 return (error); 475 } 476 477 const char * 478 vm_name(struct vm *vm) 479 { 480 return (vm->name); 481 } 482 483 int 484 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 485 { 486 vm_object_t obj; 487 488 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 489 return (ENOMEM); 490 else 491 return (0); 492 } 493 494 int 495 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 496 { 497 498 vmm_mmio_free(vm->vmspace, gpa, len); 499 return (0); 500 } 501 502 boolean_t 503 vm_mem_allocated(struct vm *vm, vm_paddr_t gpa) 504 { 505 int i; 506 vm_paddr_t gpabase, gpalimit; 507 508 for (i = 0; i < vm->num_mem_segs; i++) { 509 gpabase = vm->mem_segs[i].gpa; 510 gpalimit = gpabase + vm->mem_segs[i].len; 511 if (gpa >= gpabase && gpa < gpalimit) 512 return (TRUE); /* 'gpa' is regular memory */ 513 } 514 515 if (ppt_is_mmio(vm, gpa)) 516 return (TRUE); /* 'gpa' is pci passthru mmio */ 517 518 return (FALSE); 519 } 520 521 int 522 vm_malloc(struct vm *vm, vm_paddr_t gpa, size_t len) 523 { 524 int available, allocated; 525 struct mem_seg *seg; 526 vm_object_t object; 527 vm_paddr_t g; 528 529 if ((gpa & PAGE_MASK) || (len & PAGE_MASK) || len == 0) 530 return (EINVAL); 531 532 available = allocated = 0; 533 g = gpa; 534 while (g < gpa + len) { 535 if (vm_mem_allocated(vm, g)) 536 allocated++; 537 else 538 available++; 539 540 g += PAGE_SIZE; 541 } 542 543 /* 544 * If there are some allocated and some available pages in the address 545 * range then it is an error. 546 */ 547 if (allocated && available) 548 return (EINVAL); 549 550 /* 551 * If the entire address range being requested has already been 552 * allocated then there isn't anything more to do. 553 */ 554 if (allocated && available == 0) 555 return (0); 556 557 if (vm->num_mem_segs >= VM_MAX_MEMORY_SEGMENTS) 558 return (E2BIG); 559 560 seg = &vm->mem_segs[vm->num_mem_segs]; 561 562 if ((object = vmm_mem_alloc(vm->vmspace, gpa, len)) == NULL) 563 return (ENOMEM); 564 565 seg->gpa = gpa; 566 seg->len = len; 567 seg->object = object; 568 seg->wired = FALSE; 569 570 vm->num_mem_segs++; 571 572 return (0); 573 } 574 575 static void 576 vm_gpa_unwire(struct vm *vm) 577 { 578 int i, rv; 579 struct mem_seg *seg; 580 581 for (i = 0; i < vm->num_mem_segs; i++) { 582 seg = &vm->mem_segs[i]; 583 if (!seg->wired) 584 continue; 585 586 rv = vm_map_unwire(&vm->vmspace->vm_map, 587 seg->gpa, seg->gpa + seg->len, 588 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 589 KASSERT(rv == KERN_SUCCESS, ("vm(%s) memory segment " 590 "%#lx/%ld could not be unwired: %d", 591 vm_name(vm), seg->gpa, seg->len, rv)); 592 593 seg->wired = FALSE; 594 } 595 } 596 597 static int 598 vm_gpa_wire(struct vm *vm) 599 { 600 int i, rv; 601 struct mem_seg *seg; 602 603 for (i = 0; i < vm->num_mem_segs; i++) { 604 seg = &vm->mem_segs[i]; 605 if (seg->wired) 606 continue; 607 608 /* XXX rlimits? */ 609 rv = vm_map_wire(&vm->vmspace->vm_map, 610 seg->gpa, seg->gpa + seg->len, 611 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 612 if (rv != KERN_SUCCESS) 613 break; 614 615 seg->wired = TRUE; 616 } 617 618 if (i < vm->num_mem_segs) { 619 /* 620 * Undo the wiring before returning an error. 621 */ 622 vm_gpa_unwire(vm); 623 return (EAGAIN); 624 } 625 626 return (0); 627 } 628 629 static void 630 vm_iommu_modify(struct vm *vm, boolean_t map) 631 { 632 int i, sz; 633 vm_paddr_t gpa, hpa; 634 struct mem_seg *seg; 635 void *vp, *cookie, *host_domain; 636 637 sz = PAGE_SIZE; 638 host_domain = iommu_host_domain(); 639 640 for (i = 0; i < vm->num_mem_segs; i++) { 641 seg = &vm->mem_segs[i]; 642 KASSERT(seg->wired, ("vm(%s) memory segment %#lx/%ld not wired", 643 vm_name(vm), seg->gpa, seg->len)); 644 645 gpa = seg->gpa; 646 while (gpa < seg->gpa + seg->len) { 647 vp = vm_gpa_hold(vm, gpa, PAGE_SIZE, VM_PROT_WRITE, 648 &cookie); 649 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", 650 vm_name(vm), gpa)); 651 652 vm_gpa_release(cookie); 653 654 hpa = DMAP_TO_PHYS((uintptr_t)vp); 655 if (map) { 656 iommu_create_mapping(vm->iommu, gpa, hpa, sz); 657 iommu_remove_mapping(host_domain, hpa, sz); 658 } else { 659 iommu_remove_mapping(vm->iommu, gpa, sz); 660 iommu_create_mapping(host_domain, hpa, hpa, sz); 661 } 662 663 gpa += PAGE_SIZE; 664 } 665 } 666 667 /* 668 * Invalidate the cached translations associated with the domain 669 * from which pages were removed. 670 */ 671 if (map) 672 iommu_invalidate_tlb(host_domain); 673 else 674 iommu_invalidate_tlb(vm->iommu); 675 } 676 677 #define vm_iommu_unmap(vm) vm_iommu_modify((vm), FALSE) 678 #define vm_iommu_map(vm) vm_iommu_modify((vm), TRUE) 679 680 int 681 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 682 { 683 int error; 684 685 error = ppt_unassign_device(vm, bus, slot, func); 686 if (error) 687 return (error); 688 689 if (ppt_assigned_devices(vm) == 0) { 690 vm_iommu_unmap(vm); 691 vm_gpa_unwire(vm); 692 } 693 return (0); 694 } 695 696 int 697 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 698 { 699 int error; 700 vm_paddr_t maxaddr; 701 702 /* 703 * Virtual machines with pci passthru devices get special treatment: 704 * - the guest physical memory is wired 705 * - the iommu is programmed to do the 'gpa' to 'hpa' translation 706 * 707 * We need to do this before the first pci passthru device is attached. 708 */ 709 if (ppt_assigned_devices(vm) == 0) { 710 KASSERT(vm->iommu == NULL, 711 ("vm_assign_pptdev: iommu must be NULL")); 712 maxaddr = vmm_mem_maxaddr(); 713 vm->iommu = iommu_create_domain(maxaddr); 714 715 error = vm_gpa_wire(vm); 716 if (error) 717 return (error); 718 719 vm_iommu_map(vm); 720 } 721 722 error = ppt_assign_device(vm, bus, slot, func); 723 return (error); 724 } 725 726 void * 727 vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 728 void **cookie) 729 { 730 int count, pageoff; 731 vm_page_t m; 732 733 pageoff = gpa & PAGE_MASK; 734 if (len > PAGE_SIZE - pageoff) 735 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 736 737 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 738 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 739 740 if (count == 1) { 741 *cookie = m; 742 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 743 } else { 744 *cookie = NULL; 745 return (NULL); 746 } 747 } 748 749 void 750 vm_gpa_release(void *cookie) 751 { 752 vm_page_t m = cookie; 753 754 vm_page_lock(m); 755 vm_page_unhold(m); 756 vm_page_unlock(m); 757 } 758 759 int 760 vm_gpabase2memseg(struct vm *vm, vm_paddr_t gpabase, 761 struct vm_memory_segment *seg) 762 { 763 int i; 764 765 for (i = 0; i < vm->num_mem_segs; i++) { 766 if (gpabase == vm->mem_segs[i].gpa) { 767 seg->gpa = vm->mem_segs[i].gpa; 768 seg->len = vm->mem_segs[i].len; 769 seg->wired = vm->mem_segs[i].wired; 770 return (0); 771 } 772 } 773 return (-1); 774 } 775 776 int 777 vm_get_memobj(struct vm *vm, vm_paddr_t gpa, size_t len, 778 vm_offset_t *offset, struct vm_object **object) 779 { 780 int i; 781 size_t seg_len; 782 vm_paddr_t seg_gpa; 783 vm_object_t seg_obj; 784 785 for (i = 0; i < vm->num_mem_segs; i++) { 786 if ((seg_obj = vm->mem_segs[i].object) == NULL) 787 continue; 788 789 seg_gpa = vm->mem_segs[i].gpa; 790 seg_len = vm->mem_segs[i].len; 791 792 if (gpa >= seg_gpa && gpa < seg_gpa + seg_len) { 793 *offset = gpa - seg_gpa; 794 *object = seg_obj; 795 vm_object_reference(seg_obj); 796 return (0); 797 } 798 } 799 800 return (EINVAL); 801 } 802 803 int 804 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval) 805 { 806 807 if (vcpu < 0 || vcpu >= VM_MAXCPU) 808 return (EINVAL); 809 810 if (reg >= VM_REG_LAST) 811 return (EINVAL); 812 813 return (VMGETREG(vm->cookie, vcpu, reg, retval)); 814 } 815 816 int 817 vm_set_register(struct vm *vm, int vcpu, int reg, uint64_t val) 818 { 819 820 if (vcpu < 0 || vcpu >= VM_MAXCPU) 821 return (EINVAL); 822 823 if (reg >= VM_REG_LAST) 824 return (EINVAL); 825 826 return (VMSETREG(vm->cookie, vcpu, reg, val)); 827 } 828 829 static boolean_t 830 is_descriptor_table(int reg) 831 { 832 833 switch (reg) { 834 case VM_REG_GUEST_IDTR: 835 case VM_REG_GUEST_GDTR: 836 return (TRUE); 837 default: 838 return (FALSE); 839 } 840 } 841 842 static boolean_t 843 is_segment_register(int reg) 844 { 845 846 switch (reg) { 847 case VM_REG_GUEST_ES: 848 case VM_REG_GUEST_CS: 849 case VM_REG_GUEST_SS: 850 case VM_REG_GUEST_DS: 851 case VM_REG_GUEST_FS: 852 case VM_REG_GUEST_GS: 853 case VM_REG_GUEST_TR: 854 case VM_REG_GUEST_LDTR: 855 return (TRUE); 856 default: 857 return (FALSE); 858 } 859 } 860 861 int 862 vm_get_seg_desc(struct vm *vm, int vcpu, int reg, 863 struct seg_desc *desc) 864 { 865 866 if (vcpu < 0 || vcpu >= VM_MAXCPU) 867 return (EINVAL); 868 869 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 870 return (EINVAL); 871 872 return (VMGETDESC(vm->cookie, vcpu, reg, desc)); 873 } 874 875 int 876 vm_set_seg_desc(struct vm *vm, int vcpu, int reg, 877 struct seg_desc *desc) 878 { 879 if (vcpu < 0 || vcpu >= VM_MAXCPU) 880 return (EINVAL); 881 882 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 883 return (EINVAL); 884 885 return (VMSETDESC(vm->cookie, vcpu, reg, desc)); 886 } 887 888 static void 889 restore_guest_fpustate(struct vcpu *vcpu) 890 { 891 892 /* flush host state to the pcb */ 893 fpuexit(curthread); 894 895 /* restore guest FPU state */ 896 fpu_stop_emulating(); 897 fpurestore(vcpu->guestfpu); 898 899 /* restore guest XCR0 if XSAVE is enabled in the host */ 900 if (rcr4() & CR4_XSAVE) 901 load_xcr(0, vcpu->guest_xcr0); 902 903 /* 904 * The FPU is now "dirty" with the guest's state so turn on emulation 905 * to trap any access to the FPU by the host. 906 */ 907 fpu_start_emulating(); 908 } 909 910 static void 911 save_guest_fpustate(struct vcpu *vcpu) 912 { 913 914 if ((rcr0() & CR0_TS) == 0) 915 panic("fpu emulation not enabled in host!"); 916 917 /* save guest XCR0 and restore host XCR0 */ 918 if (rcr4() & CR4_XSAVE) { 919 vcpu->guest_xcr0 = rxcr(0); 920 load_xcr(0, vmm_get_host_xcr0()); 921 } 922 923 /* save guest FPU state */ 924 fpu_stop_emulating(); 925 fpusave(vcpu->guestfpu); 926 fpu_start_emulating(); 927 } 928 929 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 930 931 static int 932 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate, 933 bool from_idle) 934 { 935 int error; 936 937 vcpu_assert_locked(vcpu); 938 939 /* 940 * State transitions from the vmmdev_ioctl() must always begin from 941 * the VCPU_IDLE state. This guarantees that there is only a single 942 * ioctl() operating on a vcpu at any point. 943 */ 944 if (from_idle) { 945 while (vcpu->state != VCPU_IDLE) 946 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 947 } else { 948 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 949 "vcpu idle state")); 950 } 951 952 if (vcpu->state == VCPU_RUNNING) { 953 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 954 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 955 } else { 956 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 957 "vcpu that is not running", vcpu->hostcpu)); 958 } 959 960 /* 961 * The following state transitions are allowed: 962 * IDLE -> FROZEN -> IDLE 963 * FROZEN -> RUNNING -> FROZEN 964 * FROZEN -> SLEEPING -> FROZEN 965 */ 966 switch (vcpu->state) { 967 case VCPU_IDLE: 968 case VCPU_RUNNING: 969 case VCPU_SLEEPING: 970 error = (newstate != VCPU_FROZEN); 971 break; 972 case VCPU_FROZEN: 973 error = (newstate == VCPU_FROZEN); 974 break; 975 default: 976 error = 1; 977 break; 978 } 979 980 if (error) 981 return (EBUSY); 982 983 vcpu->state = newstate; 984 if (newstate == VCPU_RUNNING) 985 vcpu->hostcpu = curcpu; 986 else 987 vcpu->hostcpu = NOCPU; 988 989 if (newstate == VCPU_IDLE) 990 wakeup(&vcpu->state); 991 992 return (0); 993 } 994 995 static void 996 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate) 997 { 998 int error; 999 1000 if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0) 1001 panic("Error %d setting state to %d\n", error, newstate); 1002 } 1003 1004 static void 1005 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate) 1006 { 1007 int error; 1008 1009 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0) 1010 panic("Error %d setting state to %d", error, newstate); 1011 } 1012 1013 static void 1014 vm_set_rendezvous_func(struct vm *vm, vm_rendezvous_func_t func) 1015 { 1016 1017 KASSERT(mtx_owned(&vm->rendezvous_mtx), ("rendezvous_mtx not locked")); 1018 1019 /* 1020 * Update 'rendezvous_func' and execute a write memory barrier to 1021 * ensure that it is visible across all host cpus. This is not needed 1022 * for correctness but it does ensure that all the vcpus will notice 1023 * that the rendezvous is requested immediately. 1024 */ 1025 vm->rendezvous_func = func; 1026 wmb(); 1027 } 1028 1029 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt) \ 1030 do { \ 1031 if (vcpuid >= 0) \ 1032 VCPU_CTR0(vm, vcpuid, fmt); \ 1033 else \ 1034 VM_CTR0(vm, fmt); \ 1035 } while (0) 1036 1037 static void 1038 vm_handle_rendezvous(struct vm *vm, int vcpuid) 1039 { 1040 1041 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU), 1042 ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid)); 1043 1044 mtx_lock(&vm->rendezvous_mtx); 1045 while (vm->rendezvous_func != NULL) { 1046 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1047 CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus); 1048 1049 if (vcpuid != -1 && 1050 CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1051 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1052 VCPU_CTR0(vm, vcpuid, "Calling rendezvous func"); 1053 (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg); 1054 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1055 } 1056 if (CPU_CMP(&vm->rendezvous_req_cpus, 1057 &vm->rendezvous_done_cpus) == 0) { 1058 VCPU_CTR0(vm, vcpuid, "Rendezvous completed"); 1059 vm_set_rendezvous_func(vm, NULL); 1060 wakeup(&vm->rendezvous_func); 1061 break; 1062 } 1063 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion"); 1064 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1065 "vmrndv", 0); 1066 } 1067 mtx_unlock(&vm->rendezvous_mtx); 1068 } 1069 1070 /* 1071 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1072 */ 1073 static int 1074 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu) 1075 { 1076 struct vcpu *vcpu; 1077 const char *wmesg; 1078 int t, vcpu_halted, vm_halted; 1079 1080 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1081 1082 vcpu = &vm->vcpu[vcpuid]; 1083 vcpu_halted = 0; 1084 vm_halted = 0; 1085 1086 vcpu_lock(vcpu); 1087 while (1) { 1088 /* 1089 * Do a final check for pending NMI or interrupts before 1090 * really putting this thread to sleep. Also check for 1091 * software events that would cause this vcpu to wakeup. 1092 * 1093 * These interrupts/events could have happened after the 1094 * vcpu returned from VMRUN() and before it acquired the 1095 * vcpu lock above. 1096 */ 1097 if (vm->rendezvous_func != NULL || vm->suspend) 1098 break; 1099 if (vm_nmi_pending(vm, vcpuid)) 1100 break; 1101 if (!intr_disabled) { 1102 if (vm_extint_pending(vm, vcpuid) || 1103 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1104 break; 1105 } 1106 } 1107 1108 /* 1109 * Some Linux guests implement "halt" by having all vcpus 1110 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1111 * track of the vcpus that have entered this state. When all 1112 * vcpus enter the halted state the virtual machine is halted. 1113 */ 1114 if (intr_disabled) { 1115 wmesg = "vmhalt"; 1116 VCPU_CTR0(vm, vcpuid, "Halted"); 1117 if (!vcpu_halted && halt_detection_enabled) { 1118 vcpu_halted = 1; 1119 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1120 } 1121 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1122 vm_halted = 1; 1123 break; 1124 } 1125 } else { 1126 wmesg = "vmidle"; 1127 } 1128 1129 t = ticks; 1130 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1131 msleep_spin(vcpu, &vcpu->mtx, wmesg, 0); 1132 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1133 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t); 1134 } 1135 1136 if (vcpu_halted) 1137 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1138 1139 vcpu_unlock(vcpu); 1140 1141 if (vm_halted) 1142 vm_suspend(vm, VM_SUSPEND_HALT); 1143 1144 return (0); 1145 } 1146 1147 static int 1148 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu) 1149 { 1150 int rv, ftype; 1151 struct vm_map *map; 1152 struct vcpu *vcpu; 1153 struct vm_exit *vme; 1154 1155 vcpu = &vm->vcpu[vcpuid]; 1156 vme = &vcpu->exitinfo; 1157 1158 ftype = vme->u.paging.fault_type; 1159 KASSERT(ftype == VM_PROT_READ || 1160 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1161 ("vm_handle_paging: invalid fault_type %d", ftype)); 1162 1163 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1164 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1165 vme->u.paging.gpa, ftype); 1166 if (rv == 0) 1167 goto done; 1168 } 1169 1170 map = &vm->vmspace->vm_map; 1171 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL); 1172 1173 VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, " 1174 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1175 1176 if (rv != KERN_SUCCESS) 1177 return (EFAULT); 1178 done: 1179 /* restart execution at the faulting instruction */ 1180 vme->inst_length = 0; 1181 1182 return (0); 1183 } 1184 1185 static int 1186 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu) 1187 { 1188 struct vie *vie; 1189 struct vcpu *vcpu; 1190 struct vm_exit *vme; 1191 uint64_t gla, gpa; 1192 struct vm_guest_paging *paging; 1193 mem_region_read_t mread; 1194 mem_region_write_t mwrite; 1195 enum vm_cpu_mode cpu_mode; 1196 int cs_d, error; 1197 1198 vcpu = &vm->vcpu[vcpuid]; 1199 vme = &vcpu->exitinfo; 1200 1201 gla = vme->u.inst_emul.gla; 1202 gpa = vme->u.inst_emul.gpa; 1203 cs_d = vme->u.inst_emul.cs_d; 1204 vie = &vme->u.inst_emul.vie; 1205 paging = &vme->u.inst_emul.paging; 1206 cpu_mode = paging->cpu_mode; 1207 1208 vie_init(vie); 1209 1210 /* Fetch, decode and emulate the faulting instruction */ 1211 error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip, 1212 vme->inst_length, vie); 1213 if (error == 1) 1214 return (0); /* Resume guest to handle page fault */ 1215 else if (error == -1) 1216 return (EFAULT); 1217 else if (error != 0) 1218 panic("%s: vmm_fetch_instruction error %d", __func__, error); 1219 1220 if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) 1221 return (EFAULT); 1222 1223 /* return to userland unless this is an in-kernel emulated device */ 1224 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1225 mread = lapic_mmio_read; 1226 mwrite = lapic_mmio_write; 1227 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1228 mread = vioapic_mmio_read; 1229 mwrite = vioapic_mmio_write; 1230 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1231 mread = vhpet_mmio_read; 1232 mwrite = vhpet_mmio_write; 1233 } else { 1234 *retu = true; 1235 return (0); 1236 } 1237 1238 error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, mread, mwrite, 1239 retu); 1240 1241 return (error); 1242 } 1243 1244 static int 1245 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu) 1246 { 1247 int i, done; 1248 struct vcpu *vcpu; 1249 1250 done = 0; 1251 vcpu = &vm->vcpu[vcpuid]; 1252 1253 CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus); 1254 1255 /* 1256 * Wait until all 'active_cpus' have suspended themselves. 1257 * 1258 * Since a VM may be suspended at any time including when one or 1259 * more vcpus are doing a rendezvous we need to call the rendezvous 1260 * handler while we are waiting to prevent a deadlock. 1261 */ 1262 vcpu_lock(vcpu); 1263 while (1) { 1264 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1265 VCPU_CTR0(vm, vcpuid, "All vcpus suspended"); 1266 break; 1267 } 1268 1269 if (vm->rendezvous_func == NULL) { 1270 VCPU_CTR0(vm, vcpuid, "Sleeping during suspend"); 1271 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1272 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1273 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1274 } else { 1275 VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend"); 1276 vcpu_unlock(vcpu); 1277 vm_handle_rendezvous(vm, vcpuid); 1278 vcpu_lock(vcpu); 1279 } 1280 } 1281 vcpu_unlock(vcpu); 1282 1283 /* 1284 * Wakeup the other sleeping vcpus and return to userspace. 1285 */ 1286 for (i = 0; i < VM_MAXCPU; i++) { 1287 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1288 vcpu_notify_event(vm, i, false); 1289 } 1290 } 1291 1292 *retu = true; 1293 return (0); 1294 } 1295 1296 int 1297 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1298 { 1299 int i; 1300 1301 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1302 return (EINVAL); 1303 1304 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1305 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1306 vm->suspend, how); 1307 return (EALREADY); 1308 } 1309 1310 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1311 1312 /* 1313 * Notify all active vcpus that they are now suspended. 1314 */ 1315 for (i = 0; i < VM_MAXCPU; i++) { 1316 if (CPU_ISSET(i, &vm->active_cpus)) 1317 vcpu_notify_event(vm, i, false); 1318 } 1319 1320 return (0); 1321 } 1322 1323 void 1324 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip) 1325 { 1326 struct vm_exit *vmexit; 1327 1328 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1329 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1330 1331 vmexit = vm_exitinfo(vm, vcpuid); 1332 vmexit->rip = rip; 1333 vmexit->inst_length = 0; 1334 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1335 vmexit->u.suspended.how = vm->suspend; 1336 } 1337 1338 void 1339 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip) 1340 { 1341 struct vm_exit *vmexit; 1342 1343 KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress")); 1344 1345 vmexit = vm_exitinfo(vm, vcpuid); 1346 vmexit->rip = rip; 1347 vmexit->inst_length = 0; 1348 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1349 vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1); 1350 } 1351 1352 void 1353 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip) 1354 { 1355 struct vm_exit *vmexit; 1356 1357 vmexit = vm_exitinfo(vm, vcpuid); 1358 vmexit->rip = rip; 1359 vmexit->inst_length = 0; 1360 vmexit->exitcode = VM_EXITCODE_BOGUS; 1361 vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1); 1362 } 1363 1364 int 1365 vm_run(struct vm *vm, struct vm_run *vmrun) 1366 { 1367 int error, vcpuid; 1368 struct vcpu *vcpu; 1369 struct pcb *pcb; 1370 uint64_t tscval, rip; 1371 struct vm_exit *vme; 1372 bool retu, intr_disabled; 1373 pmap_t pmap; 1374 void *rptr, *sptr; 1375 1376 vcpuid = vmrun->cpuid; 1377 1378 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1379 return (EINVAL); 1380 1381 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1382 return (EINVAL); 1383 1384 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1385 return (EINVAL); 1386 1387 rptr = &vm->rendezvous_func; 1388 sptr = &vm->suspend; 1389 pmap = vmspace_pmap(vm->vmspace); 1390 vcpu = &vm->vcpu[vcpuid]; 1391 vme = &vcpu->exitinfo; 1392 rip = vmrun->rip; 1393 restart: 1394 critical_enter(); 1395 1396 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1397 ("vm_run: absurd pm_active")); 1398 1399 tscval = rdtsc(); 1400 1401 pcb = PCPU_GET(curpcb); 1402 set_pcb_flags(pcb, PCB_FULL_IRET); 1403 1404 restore_guest_msrs(vm, vcpuid); 1405 restore_guest_fpustate(vcpu); 1406 1407 vcpu_require_state(vm, vcpuid, VCPU_RUNNING); 1408 error = VMRUN(vm->cookie, vcpuid, rip, pmap, rptr, sptr); 1409 vcpu_require_state(vm, vcpuid, VCPU_FROZEN); 1410 1411 save_guest_fpustate(vcpu); 1412 restore_host_msrs(vm, vcpuid); 1413 1414 vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1415 1416 critical_exit(); 1417 1418 if (error == 0) { 1419 retu = false; 1420 switch (vme->exitcode) { 1421 case VM_EXITCODE_SUSPENDED: 1422 error = vm_handle_suspend(vm, vcpuid, &retu); 1423 break; 1424 case VM_EXITCODE_IOAPIC_EOI: 1425 vioapic_process_eoi(vm, vcpuid, 1426 vme->u.ioapic_eoi.vector); 1427 break; 1428 case VM_EXITCODE_RENDEZVOUS: 1429 vm_handle_rendezvous(vm, vcpuid); 1430 error = 0; 1431 break; 1432 case VM_EXITCODE_HLT: 1433 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1434 error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu); 1435 break; 1436 case VM_EXITCODE_PAGING: 1437 error = vm_handle_paging(vm, vcpuid, &retu); 1438 break; 1439 case VM_EXITCODE_INST_EMUL: 1440 error = vm_handle_inst_emul(vm, vcpuid, &retu); 1441 break; 1442 case VM_EXITCODE_INOUT: 1443 case VM_EXITCODE_INOUT_STR: 1444 error = vm_handle_inout(vm, vcpuid, vme, &retu); 1445 break; 1446 default: 1447 retu = true; /* handled in userland */ 1448 break; 1449 } 1450 } 1451 1452 if (error == 0 && retu == false) { 1453 rip = vme->rip + vme->inst_length; 1454 goto restart; 1455 } 1456 1457 /* copy the exit information */ 1458 bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit)); 1459 return (error); 1460 } 1461 1462 int 1463 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info) 1464 { 1465 struct vcpu *vcpu; 1466 int type, vector; 1467 1468 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1469 return (EINVAL); 1470 1471 vcpu = &vm->vcpu[vcpuid]; 1472 1473 if (info & VM_INTINFO_VALID) { 1474 type = info & VM_INTINFO_TYPE; 1475 vector = info & 0xff; 1476 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 1477 return (EINVAL); 1478 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 1479 return (EINVAL); 1480 if (info & VM_INTINFO_RSVD) 1481 return (EINVAL); 1482 } else { 1483 info = 0; 1484 } 1485 VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info); 1486 vcpu->exitintinfo = info; 1487 return (0); 1488 } 1489 1490 enum exc_class { 1491 EXC_BENIGN, 1492 EXC_CONTRIBUTORY, 1493 EXC_PAGEFAULT 1494 }; 1495 1496 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 1497 1498 static enum exc_class 1499 exception_class(uint64_t info) 1500 { 1501 int type, vector; 1502 1503 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 1504 type = info & VM_INTINFO_TYPE; 1505 vector = info & 0xff; 1506 1507 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 1508 switch (type) { 1509 case VM_INTINFO_HWINTR: 1510 case VM_INTINFO_SWINTR: 1511 case VM_INTINFO_NMI: 1512 return (EXC_BENIGN); 1513 default: 1514 /* 1515 * Hardware exception. 1516 * 1517 * SVM and VT-x use identical type values to represent NMI, 1518 * hardware interrupt and software interrupt. 1519 * 1520 * SVM uses type '3' for all exceptions. VT-x uses type '3' 1521 * for exceptions except #BP and #OF. #BP and #OF use a type 1522 * value of '5' or '6'. Therefore we don't check for explicit 1523 * values of 'type' to classify 'intinfo' into a hardware 1524 * exception. 1525 */ 1526 break; 1527 } 1528 1529 switch (vector) { 1530 case IDT_PF: 1531 case IDT_VE: 1532 return (EXC_PAGEFAULT); 1533 case IDT_DE: 1534 case IDT_TS: 1535 case IDT_NP: 1536 case IDT_SS: 1537 case IDT_GP: 1538 return (EXC_CONTRIBUTORY); 1539 default: 1540 return (EXC_BENIGN); 1541 } 1542 } 1543 1544 static int 1545 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2, 1546 uint64_t *retinfo) 1547 { 1548 enum exc_class exc1, exc2; 1549 int type1, vector1; 1550 1551 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 1552 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 1553 1554 /* 1555 * If an exception occurs while attempting to call the double-fault 1556 * handler the processor enters shutdown mode (aka triple fault). 1557 */ 1558 type1 = info1 & VM_INTINFO_TYPE; 1559 vector1 = info1 & 0xff; 1560 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 1561 VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)", 1562 info1, info2); 1563 vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT); 1564 *retinfo = 0; 1565 return (0); 1566 } 1567 1568 /* 1569 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 1570 */ 1571 exc1 = exception_class(info1); 1572 exc2 = exception_class(info2); 1573 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 1574 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 1575 /* Convert nested fault into a double fault. */ 1576 *retinfo = IDT_DF; 1577 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1578 *retinfo |= VM_INTINFO_DEL_ERRCODE; 1579 } else { 1580 /* Handle exceptions serially */ 1581 *retinfo = info2; 1582 } 1583 return (1); 1584 } 1585 1586 static uint64_t 1587 vcpu_exception_intinfo(struct vcpu *vcpu) 1588 { 1589 uint64_t info = 0; 1590 1591 if (vcpu->exception_pending) { 1592 info = vcpu->exception.vector & 0xff; 1593 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1594 if (vcpu->exception.error_code_valid) { 1595 info |= VM_INTINFO_DEL_ERRCODE; 1596 info |= (uint64_t)vcpu->exception.error_code << 32; 1597 } 1598 } 1599 return (info); 1600 } 1601 1602 int 1603 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo) 1604 { 1605 struct vcpu *vcpu; 1606 uint64_t info1, info2; 1607 int valid; 1608 1609 KASSERT(vcpuid >= 0 && vcpuid < VM_MAXCPU, ("invalid vcpu %d", vcpuid)); 1610 1611 vcpu = &vm->vcpu[vcpuid]; 1612 1613 info1 = vcpu->exitintinfo; 1614 vcpu->exitintinfo = 0; 1615 1616 info2 = 0; 1617 if (vcpu->exception_pending) { 1618 info2 = vcpu_exception_intinfo(vcpu); 1619 vcpu->exception_pending = 0; 1620 VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx", 1621 vcpu->exception.vector, info2); 1622 } 1623 1624 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 1625 valid = nested_fault(vm, vcpuid, info1, info2, retinfo); 1626 } else if (info1 & VM_INTINFO_VALID) { 1627 *retinfo = info1; 1628 valid = 1; 1629 } else if (info2 & VM_INTINFO_VALID) { 1630 *retinfo = info2; 1631 valid = 1; 1632 } else { 1633 valid = 0; 1634 } 1635 1636 if (valid) { 1637 VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), " 1638 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 1639 } 1640 1641 return (valid); 1642 } 1643 1644 int 1645 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2) 1646 { 1647 struct vcpu *vcpu; 1648 1649 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1650 return (EINVAL); 1651 1652 vcpu = &vm->vcpu[vcpuid]; 1653 *info1 = vcpu->exitintinfo; 1654 *info2 = vcpu_exception_intinfo(vcpu); 1655 return (0); 1656 } 1657 1658 int 1659 vm_inject_exception(struct vm *vm, int vcpuid, struct vm_exception *exception) 1660 { 1661 struct vcpu *vcpu; 1662 1663 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1664 return (EINVAL); 1665 1666 if (exception->vector < 0 || exception->vector >= 32) 1667 return (EINVAL); 1668 1669 /* 1670 * A double fault exception should never be injected directly into 1671 * the guest. It is a derived exception that results from specific 1672 * combinations of nested faults. 1673 */ 1674 if (exception->vector == IDT_DF) 1675 return (EINVAL); 1676 1677 vcpu = &vm->vcpu[vcpuid]; 1678 1679 if (vcpu->exception_pending) { 1680 VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to " 1681 "pending exception %d", exception->vector, 1682 vcpu->exception.vector); 1683 return (EBUSY); 1684 } 1685 1686 vcpu->exception_pending = 1; 1687 vcpu->exception = *exception; 1688 VCPU_CTR1(vm, vcpuid, "Exception %d pending", exception->vector); 1689 return (0); 1690 } 1691 1692 static void 1693 vm_inject_fault(struct vm *vm, int vcpuid, struct vm_exception *exception) 1694 { 1695 struct vm_exit *vmexit; 1696 int error; 1697 1698 error = vm_inject_exception(vm, vcpuid, exception); 1699 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 1700 1701 /* 1702 * A fault-like exception allows the instruction to be restarted 1703 * after the exception handler returns. 1704 * 1705 * By setting the inst_length to 0 we ensure that the instruction 1706 * pointer remains at the faulting instruction. 1707 */ 1708 vmexit = vm_exitinfo(vm, vcpuid); 1709 vmexit->inst_length = 0; 1710 } 1711 1712 void 1713 vm_inject_pf(struct vm *vm, int vcpuid, int error_code, uint64_t cr2) 1714 { 1715 struct vm_exception pf = { 1716 .vector = IDT_PF, 1717 .error_code_valid = 1, 1718 .error_code = error_code 1719 }; 1720 int error; 1721 1722 VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx", 1723 error_code, cr2); 1724 1725 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2); 1726 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 1727 1728 vm_inject_fault(vm, vcpuid, &pf); 1729 } 1730 1731 void 1732 vm_inject_gp(struct vm *vm, int vcpuid) 1733 { 1734 struct vm_exception gpf = { 1735 .vector = IDT_GP, 1736 .error_code_valid = 1, 1737 .error_code = 0 1738 }; 1739 1740 vm_inject_fault(vm, vcpuid, &gpf); 1741 } 1742 1743 void 1744 vm_inject_ud(struct vm *vm, int vcpuid) 1745 { 1746 struct vm_exception udf = { 1747 .vector = IDT_UD, 1748 .error_code_valid = 0 1749 }; 1750 1751 vm_inject_fault(vm, vcpuid, &udf); 1752 } 1753 1754 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 1755 1756 int 1757 vm_inject_nmi(struct vm *vm, int vcpuid) 1758 { 1759 struct vcpu *vcpu; 1760 1761 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1762 return (EINVAL); 1763 1764 vcpu = &vm->vcpu[vcpuid]; 1765 1766 vcpu->nmi_pending = 1; 1767 vcpu_notify_event(vm, vcpuid, false); 1768 return (0); 1769 } 1770 1771 int 1772 vm_nmi_pending(struct vm *vm, int vcpuid) 1773 { 1774 struct vcpu *vcpu; 1775 1776 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1777 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 1778 1779 vcpu = &vm->vcpu[vcpuid]; 1780 1781 return (vcpu->nmi_pending); 1782 } 1783 1784 void 1785 vm_nmi_clear(struct vm *vm, int vcpuid) 1786 { 1787 struct vcpu *vcpu; 1788 1789 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1790 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 1791 1792 vcpu = &vm->vcpu[vcpuid]; 1793 1794 if (vcpu->nmi_pending == 0) 1795 panic("vm_nmi_clear: inconsistent nmi_pending state"); 1796 1797 vcpu->nmi_pending = 0; 1798 vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1); 1799 } 1800 1801 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 1802 1803 int 1804 vm_inject_extint(struct vm *vm, int vcpuid) 1805 { 1806 struct vcpu *vcpu; 1807 1808 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1809 return (EINVAL); 1810 1811 vcpu = &vm->vcpu[vcpuid]; 1812 1813 vcpu->extint_pending = 1; 1814 vcpu_notify_event(vm, vcpuid, false); 1815 return (0); 1816 } 1817 1818 int 1819 vm_extint_pending(struct vm *vm, int vcpuid) 1820 { 1821 struct vcpu *vcpu; 1822 1823 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1824 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 1825 1826 vcpu = &vm->vcpu[vcpuid]; 1827 1828 return (vcpu->extint_pending); 1829 } 1830 1831 void 1832 vm_extint_clear(struct vm *vm, int vcpuid) 1833 { 1834 struct vcpu *vcpu; 1835 1836 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1837 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 1838 1839 vcpu = &vm->vcpu[vcpuid]; 1840 1841 if (vcpu->extint_pending == 0) 1842 panic("vm_extint_clear: inconsistent extint_pending state"); 1843 1844 vcpu->extint_pending = 0; 1845 vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1); 1846 } 1847 1848 int 1849 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval) 1850 { 1851 if (vcpu < 0 || vcpu >= VM_MAXCPU) 1852 return (EINVAL); 1853 1854 if (type < 0 || type >= VM_CAP_MAX) 1855 return (EINVAL); 1856 1857 return (VMGETCAP(vm->cookie, vcpu, type, retval)); 1858 } 1859 1860 int 1861 vm_set_capability(struct vm *vm, int vcpu, int type, int val) 1862 { 1863 if (vcpu < 0 || vcpu >= VM_MAXCPU) 1864 return (EINVAL); 1865 1866 if (type < 0 || type >= VM_CAP_MAX) 1867 return (EINVAL); 1868 1869 return (VMSETCAP(vm->cookie, vcpu, type, val)); 1870 } 1871 1872 uint64_t * 1873 vm_guest_msrs(struct vm *vm, int cpu) 1874 { 1875 return (vm->vcpu[cpu].guest_msrs); 1876 } 1877 1878 struct vlapic * 1879 vm_lapic(struct vm *vm, int cpu) 1880 { 1881 return (vm->vcpu[cpu].vlapic); 1882 } 1883 1884 struct vioapic * 1885 vm_ioapic(struct vm *vm) 1886 { 1887 1888 return (vm->vioapic); 1889 } 1890 1891 struct vhpet * 1892 vm_hpet(struct vm *vm) 1893 { 1894 1895 return (vm->vhpet); 1896 } 1897 1898 boolean_t 1899 vmm_is_pptdev(int bus, int slot, int func) 1900 { 1901 int found, i, n; 1902 int b, s, f; 1903 char *val, *cp, *cp2; 1904 1905 /* 1906 * XXX 1907 * The length of an environment variable is limited to 128 bytes which 1908 * puts an upper limit on the number of passthru devices that may be 1909 * specified using a single environment variable. 1910 * 1911 * Work around this by scanning multiple environment variable 1912 * names instead of a single one - yuck! 1913 */ 1914 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 1915 1916 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 1917 found = 0; 1918 for (i = 0; names[i] != NULL && !found; i++) { 1919 cp = val = getenv(names[i]); 1920 while (cp != NULL && *cp != '\0') { 1921 if ((cp2 = strchr(cp, ' ')) != NULL) 1922 *cp2 = '\0'; 1923 1924 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 1925 if (n == 3 && bus == b && slot == s && func == f) { 1926 found = 1; 1927 break; 1928 } 1929 1930 if (cp2 != NULL) 1931 *cp2++ = ' '; 1932 1933 cp = cp2; 1934 } 1935 freeenv(val); 1936 } 1937 return (found); 1938 } 1939 1940 void * 1941 vm_iommu_domain(struct vm *vm) 1942 { 1943 1944 return (vm->iommu); 1945 } 1946 1947 int 1948 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate, 1949 bool from_idle) 1950 { 1951 int error; 1952 struct vcpu *vcpu; 1953 1954 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1955 panic("vm_set_run_state: invalid vcpuid %d", vcpuid); 1956 1957 vcpu = &vm->vcpu[vcpuid]; 1958 1959 vcpu_lock(vcpu); 1960 error = vcpu_set_state_locked(vcpu, newstate, from_idle); 1961 vcpu_unlock(vcpu); 1962 1963 return (error); 1964 } 1965 1966 enum vcpu_state 1967 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu) 1968 { 1969 struct vcpu *vcpu; 1970 enum vcpu_state state; 1971 1972 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1973 panic("vm_get_run_state: invalid vcpuid %d", vcpuid); 1974 1975 vcpu = &vm->vcpu[vcpuid]; 1976 1977 vcpu_lock(vcpu); 1978 state = vcpu->state; 1979 if (hostcpu != NULL) 1980 *hostcpu = vcpu->hostcpu; 1981 vcpu_unlock(vcpu); 1982 1983 return (state); 1984 } 1985 1986 int 1987 vm_activate_cpu(struct vm *vm, int vcpuid) 1988 { 1989 1990 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1991 return (EINVAL); 1992 1993 if (CPU_ISSET(vcpuid, &vm->active_cpus)) 1994 return (EBUSY); 1995 1996 VCPU_CTR0(vm, vcpuid, "activated"); 1997 CPU_SET_ATOMIC(vcpuid, &vm->active_cpus); 1998 return (0); 1999 } 2000 2001 cpuset_t 2002 vm_active_cpus(struct vm *vm) 2003 { 2004 2005 return (vm->active_cpus); 2006 } 2007 2008 cpuset_t 2009 vm_suspended_cpus(struct vm *vm) 2010 { 2011 2012 return (vm->suspended_cpus); 2013 } 2014 2015 void * 2016 vcpu_stats(struct vm *vm, int vcpuid) 2017 { 2018 2019 return (vm->vcpu[vcpuid].stats); 2020 } 2021 2022 int 2023 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state) 2024 { 2025 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2026 return (EINVAL); 2027 2028 *state = vm->vcpu[vcpuid].x2apic_state; 2029 2030 return (0); 2031 } 2032 2033 int 2034 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state) 2035 { 2036 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2037 return (EINVAL); 2038 2039 if (state >= X2APIC_STATE_LAST) 2040 return (EINVAL); 2041 2042 vm->vcpu[vcpuid].x2apic_state = state; 2043 2044 vlapic_set_x2apic_state(vm, vcpuid, state); 2045 2046 return (0); 2047 } 2048 2049 /* 2050 * This function is called to ensure that a vcpu "sees" a pending event 2051 * as soon as possible: 2052 * - If the vcpu thread is sleeping then it is woken up. 2053 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2054 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2055 */ 2056 void 2057 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr) 2058 { 2059 int hostcpu; 2060 struct vcpu *vcpu; 2061 2062 vcpu = &vm->vcpu[vcpuid]; 2063 2064 vcpu_lock(vcpu); 2065 hostcpu = vcpu->hostcpu; 2066 if (vcpu->state == VCPU_RUNNING) { 2067 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2068 if (hostcpu != curcpu) { 2069 if (lapic_intr) { 2070 vlapic_post_intr(vcpu->vlapic, hostcpu, 2071 vmm_ipinum); 2072 } else { 2073 ipi_cpu(hostcpu, vmm_ipinum); 2074 } 2075 } else { 2076 /* 2077 * If the 'vcpu' is running on 'curcpu' then it must 2078 * be sending a notification to itself (e.g. SELF_IPI). 2079 * The pending event will be picked up when the vcpu 2080 * transitions back to guest context. 2081 */ 2082 } 2083 } else { 2084 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2085 "with hostcpu %d", vcpu->state, hostcpu)); 2086 if (vcpu->state == VCPU_SLEEPING) 2087 wakeup_one(vcpu); 2088 } 2089 vcpu_unlock(vcpu); 2090 } 2091 2092 struct vmspace * 2093 vm_get_vmspace(struct vm *vm) 2094 { 2095 2096 return (vm->vmspace); 2097 } 2098 2099 int 2100 vm_apicid2vcpuid(struct vm *vm, int apicid) 2101 { 2102 /* 2103 * XXX apic id is assumed to be numerically identical to vcpu id 2104 */ 2105 return (apicid); 2106 } 2107 2108 void 2109 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest, 2110 vm_rendezvous_func_t func, void *arg) 2111 { 2112 int i; 2113 2114 /* 2115 * Enforce that this function is called without any locks 2116 */ 2117 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2118 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU), 2119 ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid)); 2120 2121 restart: 2122 mtx_lock(&vm->rendezvous_mtx); 2123 if (vm->rendezvous_func != NULL) { 2124 /* 2125 * If a rendezvous is already in progress then we need to 2126 * call the rendezvous handler in case this 'vcpuid' is one 2127 * of the targets of the rendezvous. 2128 */ 2129 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress"); 2130 mtx_unlock(&vm->rendezvous_mtx); 2131 vm_handle_rendezvous(vm, vcpuid); 2132 goto restart; 2133 } 2134 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2135 "rendezvous is still in progress")); 2136 2137 RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous"); 2138 vm->rendezvous_req_cpus = dest; 2139 CPU_ZERO(&vm->rendezvous_done_cpus); 2140 vm->rendezvous_arg = arg; 2141 vm_set_rendezvous_func(vm, func); 2142 mtx_unlock(&vm->rendezvous_mtx); 2143 2144 /* 2145 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2146 * vcpus so they handle the rendezvous as soon as possible. 2147 */ 2148 for (i = 0; i < VM_MAXCPU; i++) { 2149 if (CPU_ISSET(i, &dest)) 2150 vcpu_notify_event(vm, i, false); 2151 } 2152 2153 vm_handle_rendezvous(vm, vcpuid); 2154 } 2155 2156 struct vatpic * 2157 vm_atpic(struct vm *vm) 2158 { 2159 return (vm->vatpic); 2160 } 2161 2162 struct vatpit * 2163 vm_atpit(struct vm *vm) 2164 { 2165 return (vm->vatpit); 2166 } 2167 2168 enum vm_reg_name 2169 vm_segment_name(int seg) 2170 { 2171 static enum vm_reg_name seg_names[] = { 2172 VM_REG_GUEST_ES, 2173 VM_REG_GUEST_CS, 2174 VM_REG_GUEST_SS, 2175 VM_REG_GUEST_DS, 2176 VM_REG_GUEST_FS, 2177 VM_REG_GUEST_GS 2178 }; 2179 2180 KASSERT(seg >= 0 && seg < nitems(seg_names), 2181 ("%s: invalid segment encoding %d", __func__, seg)); 2182 return (seg_names[seg]); 2183 } 2184 2185 2186 /* 2187 * Return the amount of in-use and wired memory for the VM. Since 2188 * these are global stats, only return the values with for vCPU 0 2189 */ 2190 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2191 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2192 2193 static void 2194 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2195 { 2196 2197 if (vcpu == 0) { 2198 vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT, 2199 PAGE_SIZE * vmspace_resident_count(vm->vmspace)); 2200 } 2201 } 2202 2203 static void 2204 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2205 { 2206 2207 if (vcpu == 0) { 2208 vmm_stat_set(vm, vcpu, VMM_MEM_WIRED, 2209 PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace))); 2210 } 2211 } 2212 2213 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2214 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2215