xref: /freebsd/sys/amd64/vmm/vmm.c (revision 8ef24a0d4b28fe230e20637f56869cc4148cd2ca)
1 /*-
2  * Copyright (c) 2011 NetApp, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/module.h>
36 #include <sys/sysctl.h>
37 #include <sys/malloc.h>
38 #include <sys/pcpu.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/proc.h>
42 #include <sys/rwlock.h>
43 #include <sys/sched.h>
44 #include <sys/smp.h>
45 #include <sys/systm.h>
46 
47 #include <vm/vm.h>
48 #include <vm/vm_object.h>
49 #include <vm/vm_page.h>
50 #include <vm/pmap.h>
51 #include <vm/vm_map.h>
52 #include <vm/vm_extern.h>
53 #include <vm/vm_param.h>
54 
55 #include <machine/cpu.h>
56 #include <machine/pcb.h>
57 #include <machine/smp.h>
58 #include <x86/psl.h>
59 #include <x86/apicreg.h>
60 
61 #include <machine/vmm.h>
62 #include <machine/vmm_dev.h>
63 #include <machine/vmm_instruction_emul.h>
64 
65 #include "vmm_ioport.h"
66 #include "vmm_ktr.h"
67 #include "vmm_host.h"
68 #include "vmm_mem.h"
69 #include "vmm_util.h"
70 #include "vatpic.h"
71 #include "vatpit.h"
72 #include "vhpet.h"
73 #include "vioapic.h"
74 #include "vlapic.h"
75 #include "vpmtmr.h"
76 #include "vrtc.h"
77 #include "vmm_stat.h"
78 #include "vmm_lapic.h"
79 
80 #include "io/ppt.h"
81 #include "io/iommu.h"
82 
83 struct vlapic;
84 
85 /*
86  * Initialization:
87  * (a) allocated when vcpu is created
88  * (i) initialized when vcpu is created and when it is reinitialized
89  * (o) initialized the first time the vcpu is created
90  * (x) initialized before use
91  */
92 struct vcpu {
93 	struct mtx 	mtx;		/* (o) protects 'state' and 'hostcpu' */
94 	enum vcpu_state	state;		/* (o) vcpu state */
95 	int		hostcpu;	/* (o) vcpu's host cpu */
96 	int		reqidle;	/* (i) request vcpu to idle */
97 	struct vlapic	*vlapic;	/* (i) APIC device model */
98 	enum x2apic_state x2apic_state;	/* (i) APIC mode */
99 	uint64_t	exitintinfo;	/* (i) events pending at VM exit */
100 	int		nmi_pending;	/* (i) NMI pending */
101 	int		extint_pending;	/* (i) INTR pending */
102 	int	exception_pending;	/* (i) exception pending */
103 	int	exc_vector;		/* (x) exception collateral */
104 	int	exc_errcode_valid;
105 	uint32_t exc_errcode;
106 	struct savefpu	*guestfpu;	/* (a,i) guest fpu state */
107 	uint64_t	guest_xcr0;	/* (i) guest %xcr0 register */
108 	void		*stats;		/* (a,i) statistics */
109 	struct vm_exit	exitinfo;	/* (x) exit reason and collateral */
110 	uint64_t	nextrip;	/* (x) next instruction to execute */
111 };
112 
113 #define	vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx))
114 #define	vcpu_lock_init(v)	mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN)
115 #define	vcpu_lock(v)		mtx_lock_spin(&((v)->mtx))
116 #define	vcpu_unlock(v)		mtx_unlock_spin(&((v)->mtx))
117 #define	vcpu_assert_locked(v)	mtx_assert(&((v)->mtx), MA_OWNED)
118 
119 struct mem_seg {
120 	size_t	len;
121 	bool	sysmem;
122 	struct vm_object *object;
123 };
124 #define	VM_MAX_MEMSEGS	3
125 
126 struct mem_map {
127 	vm_paddr_t	gpa;
128 	size_t		len;
129 	vm_ooffset_t	segoff;
130 	int		segid;
131 	int		prot;
132 	int		flags;
133 };
134 #define	VM_MAX_MEMMAPS	4
135 
136 /*
137  * Initialization:
138  * (o) initialized the first time the VM is created
139  * (i) initialized when VM is created and when it is reinitialized
140  * (x) initialized before use
141  */
142 struct vm {
143 	void		*cookie;		/* (i) cpu-specific data */
144 	void		*iommu;			/* (x) iommu-specific data */
145 	struct vhpet	*vhpet;			/* (i) virtual HPET */
146 	struct vioapic	*vioapic;		/* (i) virtual ioapic */
147 	struct vatpic	*vatpic;		/* (i) virtual atpic */
148 	struct vatpit	*vatpit;		/* (i) virtual atpit */
149 	struct vpmtmr	*vpmtmr;		/* (i) virtual ACPI PM timer */
150 	struct vrtc	*vrtc;			/* (o) virtual RTC */
151 	volatile cpuset_t active_cpus;		/* (i) active vcpus */
152 	int		suspend;		/* (i) stop VM execution */
153 	volatile cpuset_t suspended_cpus; 	/* (i) suspended vcpus */
154 	volatile cpuset_t halted_cpus;		/* (x) cpus in a hard halt */
155 	cpuset_t	rendezvous_req_cpus;	/* (x) rendezvous requested */
156 	cpuset_t	rendezvous_done_cpus;	/* (x) rendezvous finished */
157 	void		*rendezvous_arg;	/* (x) rendezvous func/arg */
158 	vm_rendezvous_func_t rendezvous_func;
159 	struct mtx	rendezvous_mtx;		/* (o) rendezvous lock */
160 	struct mem_map	mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */
161 	struct mem_seg	mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */
162 	struct vmspace	*vmspace;		/* (o) guest's address space */
163 	char		name[VM_MAX_NAMELEN];	/* (o) virtual machine name */
164 	struct vcpu	vcpu[VM_MAXCPU];	/* (i) guest vcpus */
165 };
166 
167 static int vmm_initialized;
168 
169 static struct vmm_ops *ops;
170 #define	VMM_INIT(num)	(ops != NULL ? (*ops->init)(num) : 0)
171 #define	VMM_CLEANUP()	(ops != NULL ? (*ops->cleanup)() : 0)
172 #define	VMM_RESUME()	(ops != NULL ? (*ops->resume)() : 0)
173 
174 #define	VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL)
175 #define	VMRUN(vmi, vcpu, rip, pmap, evinfo) \
176 	(ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, evinfo) : ENXIO)
177 #define	VMCLEANUP(vmi)	(ops != NULL ? (*ops->vmcleanup)(vmi) : NULL)
178 #define	VMSPACE_ALLOC(min, max) \
179 	(ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL)
180 #define	VMSPACE_FREE(vmspace) \
181 	(ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO)
182 #define	VMGETREG(vmi, vcpu, num, retval)		\
183 	(ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO)
184 #define	VMSETREG(vmi, vcpu, num, val)		\
185 	(ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO)
186 #define	VMGETDESC(vmi, vcpu, num, desc)		\
187 	(ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO)
188 #define	VMSETDESC(vmi, vcpu, num, desc)		\
189 	(ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO)
190 #define	VMGETCAP(vmi, vcpu, num, retval)	\
191 	(ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO)
192 #define	VMSETCAP(vmi, vcpu, num, val)		\
193 	(ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO)
194 #define	VLAPIC_INIT(vmi, vcpu)			\
195 	(ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL)
196 #define	VLAPIC_CLEANUP(vmi, vlapic)		\
197 	(ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL)
198 
199 #define	fpu_start_emulating()	load_cr0(rcr0() | CR0_TS)
200 #define	fpu_stop_emulating()	clts()
201 
202 static MALLOC_DEFINE(M_VM, "vm", "vm");
203 
204 /* statistics */
205 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime");
206 
207 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL);
208 
209 /*
210  * Halt the guest if all vcpus are executing a HLT instruction with
211  * interrupts disabled.
212  */
213 static int halt_detection_enabled = 1;
214 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN,
215     &halt_detection_enabled, 0,
216     "Halt VM if all vcpus execute HLT with interrupts disabled");
217 
218 static int vmm_ipinum;
219 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0,
220     "IPI vector used for vcpu notifications");
221 
222 static int trace_guest_exceptions;
223 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN,
224     &trace_guest_exceptions, 0,
225     "Trap into hypervisor on all guest exceptions and reflect them back");
226 
227 static int vmm_force_iommu = 0;
228 TUNABLE_INT("hw.vmm.force_iommu", &vmm_force_iommu);
229 SYSCTL_INT(_hw_vmm, OID_AUTO, force_iommu, CTLFLAG_RDTUN, &vmm_force_iommu, 0,
230     "Force use of I/O MMU even if no passthrough devices were found.");
231 
232 static void vm_free_memmap(struct vm *vm, int ident);
233 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm);
234 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr);
235 
236 #ifdef KTR
237 static const char *
238 vcpu_state2str(enum vcpu_state state)
239 {
240 
241 	switch (state) {
242 	case VCPU_IDLE:
243 		return ("idle");
244 	case VCPU_FROZEN:
245 		return ("frozen");
246 	case VCPU_RUNNING:
247 		return ("running");
248 	case VCPU_SLEEPING:
249 		return ("sleeping");
250 	default:
251 		return ("unknown");
252 	}
253 }
254 #endif
255 
256 static void
257 vcpu_cleanup(struct vm *vm, int i, bool destroy)
258 {
259 	struct vcpu *vcpu = &vm->vcpu[i];
260 
261 	VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic);
262 	if (destroy) {
263 		vmm_stat_free(vcpu->stats);
264 		fpu_save_area_free(vcpu->guestfpu);
265 	}
266 }
267 
268 static void
269 vcpu_init(struct vm *vm, int vcpu_id, bool create)
270 {
271 	struct vcpu *vcpu;
272 
273 	KASSERT(vcpu_id >= 0 && vcpu_id < VM_MAXCPU,
274 	    ("vcpu_init: invalid vcpu %d", vcpu_id));
275 
276 	vcpu = &vm->vcpu[vcpu_id];
277 
278 	if (create) {
279 		KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already "
280 		    "initialized", vcpu_id));
281 		vcpu_lock_init(vcpu);
282 		vcpu->state = VCPU_IDLE;
283 		vcpu->hostcpu = NOCPU;
284 		vcpu->guestfpu = fpu_save_area_alloc();
285 		vcpu->stats = vmm_stat_alloc();
286 	}
287 
288 	vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id);
289 	vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED);
290 	vcpu->reqidle = 0;
291 	vcpu->exitintinfo = 0;
292 	vcpu->nmi_pending = 0;
293 	vcpu->extint_pending = 0;
294 	vcpu->exception_pending = 0;
295 	vcpu->guest_xcr0 = XFEATURE_ENABLED_X87;
296 	fpu_save_area_reset(vcpu->guestfpu);
297 	vmm_stat_init(vcpu->stats);
298 }
299 
300 int
301 vcpu_trace_exceptions(struct vm *vm, int vcpuid)
302 {
303 
304 	return (trace_guest_exceptions);
305 }
306 
307 struct vm_exit *
308 vm_exitinfo(struct vm *vm, int cpuid)
309 {
310 	struct vcpu *vcpu;
311 
312 	if (cpuid < 0 || cpuid >= VM_MAXCPU)
313 		panic("vm_exitinfo: invalid cpuid %d", cpuid);
314 
315 	vcpu = &vm->vcpu[cpuid];
316 
317 	return (&vcpu->exitinfo);
318 }
319 
320 static void
321 vmm_resume(void)
322 {
323 	VMM_RESUME();
324 }
325 
326 static int
327 vmm_init(void)
328 {
329 	int error;
330 
331 	vmm_host_state_init();
332 
333 	vmm_ipinum = lapic_ipi_alloc(&IDTVEC(justreturn));
334 	if (vmm_ipinum < 0)
335 		vmm_ipinum = IPI_AST;
336 
337 	error = vmm_mem_init();
338 	if (error)
339 		return (error);
340 
341 	if (vmm_is_intel())
342 		ops = &vmm_ops_intel;
343 	else if (vmm_is_amd())
344 		ops = &vmm_ops_amd;
345 	else
346 		return (ENXIO);
347 
348 	vmm_resume_p = vmm_resume;
349 
350 	return (VMM_INIT(vmm_ipinum));
351 }
352 
353 static int
354 vmm_handler(module_t mod, int what, void *arg)
355 {
356 	int error;
357 
358 	switch (what) {
359 	case MOD_LOAD:
360 		vmmdev_init();
361 		if (vmm_force_iommu || ppt_avail_devices() > 0)
362 			iommu_init();
363 		error = vmm_init();
364 		if (error == 0)
365 			vmm_initialized = 1;
366 		break;
367 	case MOD_UNLOAD:
368 		error = vmmdev_cleanup();
369 		if (error == 0) {
370 			vmm_resume_p = NULL;
371 			iommu_cleanup();
372 			if (vmm_ipinum != IPI_AST)
373 				lapic_ipi_free(vmm_ipinum);
374 			error = VMM_CLEANUP();
375 			/*
376 			 * Something bad happened - prevent new
377 			 * VMs from being created
378 			 */
379 			if (error)
380 				vmm_initialized = 0;
381 		}
382 		break;
383 	default:
384 		error = 0;
385 		break;
386 	}
387 	return (error);
388 }
389 
390 static moduledata_t vmm_kmod = {
391 	"vmm",
392 	vmm_handler,
393 	NULL
394 };
395 
396 /*
397  * vmm initialization has the following dependencies:
398  *
399  * - iommu initialization must happen after the pci passthru driver has had
400  *   a chance to attach to any passthru devices (after SI_SUB_CONFIGURE).
401  *
402  * - VT-x initialization requires smp_rendezvous() and therefore must happen
403  *   after SMP is fully functional (after SI_SUB_SMP).
404  */
405 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY);
406 MODULE_VERSION(vmm, 1);
407 
408 static void
409 vm_init(struct vm *vm, bool create)
410 {
411 	int i;
412 
413 	vm->cookie = VMINIT(vm, vmspace_pmap(vm->vmspace));
414 	vm->iommu = NULL;
415 	vm->vioapic = vioapic_init(vm);
416 	vm->vhpet = vhpet_init(vm);
417 	vm->vatpic = vatpic_init(vm);
418 	vm->vatpit = vatpit_init(vm);
419 	vm->vpmtmr = vpmtmr_init(vm);
420 	if (create)
421 		vm->vrtc = vrtc_init(vm);
422 
423 	CPU_ZERO(&vm->active_cpus);
424 
425 	vm->suspend = 0;
426 	CPU_ZERO(&vm->suspended_cpus);
427 
428 	for (i = 0; i < VM_MAXCPU; i++)
429 		vcpu_init(vm, i, create);
430 }
431 
432 int
433 vm_create(const char *name, struct vm **retvm)
434 {
435 	struct vm *vm;
436 	struct vmspace *vmspace;
437 
438 	/*
439 	 * If vmm.ko could not be successfully initialized then don't attempt
440 	 * to create the virtual machine.
441 	 */
442 	if (!vmm_initialized)
443 		return (ENXIO);
444 
445 	if (name == NULL || strlen(name) >= VM_MAX_NAMELEN)
446 		return (EINVAL);
447 
448 	vmspace = VMSPACE_ALLOC(0, VM_MAXUSER_ADDRESS);
449 	if (vmspace == NULL)
450 		return (ENOMEM);
451 
452 	vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO);
453 	strcpy(vm->name, name);
454 	vm->vmspace = vmspace;
455 	mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF);
456 
457 	vm_init(vm, true);
458 
459 	*retvm = vm;
460 	return (0);
461 }
462 
463 static void
464 vm_cleanup(struct vm *vm, bool destroy)
465 {
466 	struct mem_map *mm;
467 	int i;
468 
469 	ppt_unassign_all(vm);
470 
471 	if (vm->iommu != NULL)
472 		iommu_destroy_domain(vm->iommu);
473 
474 	if (destroy)
475 		vrtc_cleanup(vm->vrtc);
476 	else
477 		vrtc_reset(vm->vrtc);
478 	vpmtmr_cleanup(vm->vpmtmr);
479 	vatpit_cleanup(vm->vatpit);
480 	vhpet_cleanup(vm->vhpet);
481 	vatpic_cleanup(vm->vatpic);
482 	vioapic_cleanup(vm->vioapic);
483 
484 	for (i = 0; i < VM_MAXCPU; i++)
485 		vcpu_cleanup(vm, i, destroy);
486 
487 	VMCLEANUP(vm->cookie);
488 
489 	/*
490 	 * System memory is removed from the guest address space only when
491 	 * the VM is destroyed. This is because the mapping remains the same
492 	 * across VM reset.
493 	 *
494 	 * Device memory can be relocated by the guest (e.g. using PCI BARs)
495 	 * so those mappings are removed on a VM reset.
496 	 */
497 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
498 		mm = &vm->mem_maps[i];
499 		if (destroy || !sysmem_mapping(vm, mm))
500 			vm_free_memmap(vm, i);
501 	}
502 
503 	if (destroy) {
504 		for (i = 0; i < VM_MAX_MEMSEGS; i++)
505 			vm_free_memseg(vm, i);
506 
507 		VMSPACE_FREE(vm->vmspace);
508 		vm->vmspace = NULL;
509 	}
510 }
511 
512 void
513 vm_destroy(struct vm *vm)
514 {
515 	vm_cleanup(vm, true);
516 	free(vm, M_VM);
517 }
518 
519 int
520 vm_reinit(struct vm *vm)
521 {
522 	int error;
523 
524 	/*
525 	 * A virtual machine can be reset only if all vcpus are suspended.
526 	 */
527 	if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
528 		vm_cleanup(vm, false);
529 		vm_init(vm, false);
530 		error = 0;
531 	} else {
532 		error = EBUSY;
533 	}
534 
535 	return (error);
536 }
537 
538 const char *
539 vm_name(struct vm *vm)
540 {
541 	return (vm->name);
542 }
543 
544 int
545 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
546 {
547 	vm_object_t obj;
548 
549 	if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL)
550 		return (ENOMEM);
551 	else
552 		return (0);
553 }
554 
555 int
556 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len)
557 {
558 
559 	vmm_mmio_free(vm->vmspace, gpa, len);
560 	return (0);
561 }
562 
563 /*
564  * Return 'true' if 'gpa' is allocated in the guest address space.
565  *
566  * This function is called in the context of a running vcpu which acts as
567  * an implicit lock on 'vm->mem_maps[]'.
568  */
569 bool
570 vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa)
571 {
572 	struct mem_map *mm;
573 	int i;
574 
575 #ifdef INVARIANTS
576 	int hostcpu, state;
577 	state = vcpu_get_state(vm, vcpuid, &hostcpu);
578 	KASSERT(state == VCPU_RUNNING && hostcpu == curcpu,
579 	    ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu));
580 #endif
581 
582 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
583 		mm = &vm->mem_maps[i];
584 		if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len)
585 			return (true);		/* 'gpa' is sysmem or devmem */
586 	}
587 
588 	if (ppt_is_mmio(vm, gpa))
589 		return (true);			/* 'gpa' is pci passthru mmio */
590 
591 	return (false);
592 }
593 
594 int
595 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem)
596 {
597 	struct mem_seg *seg;
598 	vm_object_t obj;
599 
600 	if (ident < 0 || ident >= VM_MAX_MEMSEGS)
601 		return (EINVAL);
602 
603 	if (len == 0 || (len & PAGE_MASK))
604 		return (EINVAL);
605 
606 	seg = &vm->mem_segs[ident];
607 	if (seg->object != NULL) {
608 		if (seg->len == len && seg->sysmem == sysmem)
609 			return (EEXIST);
610 		else
611 			return (EINVAL);
612 	}
613 
614 	obj = vm_object_allocate(OBJT_DEFAULT, len >> PAGE_SHIFT);
615 	if (obj == NULL)
616 		return (ENOMEM);
617 
618 	seg->len = len;
619 	seg->object = obj;
620 	seg->sysmem = sysmem;
621 	return (0);
622 }
623 
624 int
625 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem,
626     vm_object_t *objptr)
627 {
628 	struct mem_seg *seg;
629 
630 	if (ident < 0 || ident >= VM_MAX_MEMSEGS)
631 		return (EINVAL);
632 
633 	seg = &vm->mem_segs[ident];
634 	if (len)
635 		*len = seg->len;
636 	if (sysmem)
637 		*sysmem = seg->sysmem;
638 	if (objptr)
639 		*objptr = seg->object;
640 	return (0);
641 }
642 
643 void
644 vm_free_memseg(struct vm *vm, int ident)
645 {
646 	struct mem_seg *seg;
647 
648 	KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS,
649 	    ("%s: invalid memseg ident %d", __func__, ident));
650 
651 	seg = &vm->mem_segs[ident];
652 	if (seg->object != NULL) {
653 		vm_object_deallocate(seg->object);
654 		bzero(seg, sizeof(struct mem_seg));
655 	}
656 }
657 
658 int
659 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first,
660     size_t len, int prot, int flags)
661 {
662 	struct mem_seg *seg;
663 	struct mem_map *m, *map;
664 	vm_ooffset_t last;
665 	int i, error;
666 
667 	if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0)
668 		return (EINVAL);
669 
670 	if (flags & ~VM_MEMMAP_F_WIRED)
671 		return (EINVAL);
672 
673 	if (segid < 0 || segid >= VM_MAX_MEMSEGS)
674 		return (EINVAL);
675 
676 	seg = &vm->mem_segs[segid];
677 	if (seg->object == NULL)
678 		return (EINVAL);
679 
680 	last = first + len;
681 	if (first < 0 || first >= last || last > seg->len)
682 		return (EINVAL);
683 
684 	if ((gpa | first | last) & PAGE_MASK)
685 		return (EINVAL);
686 
687 	map = NULL;
688 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
689 		m = &vm->mem_maps[i];
690 		if (m->len == 0) {
691 			map = m;
692 			break;
693 		}
694 	}
695 
696 	if (map == NULL)
697 		return (ENOSPC);
698 
699 	error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa,
700 	    len, 0, VMFS_NO_SPACE, prot, prot, 0);
701 	if (error != KERN_SUCCESS)
702 		return (EFAULT);
703 
704 	vm_object_reference(seg->object);
705 
706 	if (flags & VM_MEMMAP_F_WIRED) {
707 		error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len,
708 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
709 		if (error != KERN_SUCCESS) {
710 			vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len);
711 			return (EFAULT);
712 		}
713 	}
714 
715 	map->gpa = gpa;
716 	map->len = len;
717 	map->segoff = first;
718 	map->segid = segid;
719 	map->prot = prot;
720 	map->flags = flags;
721 	return (0);
722 }
723 
724 int
725 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid,
726     vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
727 {
728 	struct mem_map *mm, *mmnext;
729 	int i;
730 
731 	mmnext = NULL;
732 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
733 		mm = &vm->mem_maps[i];
734 		if (mm->len == 0 || mm->gpa < *gpa)
735 			continue;
736 		if (mmnext == NULL || mm->gpa < mmnext->gpa)
737 			mmnext = mm;
738 	}
739 
740 	if (mmnext != NULL) {
741 		*gpa = mmnext->gpa;
742 		if (segid)
743 			*segid = mmnext->segid;
744 		if (segoff)
745 			*segoff = mmnext->segoff;
746 		if (len)
747 			*len = mmnext->len;
748 		if (prot)
749 			*prot = mmnext->prot;
750 		if (flags)
751 			*flags = mmnext->flags;
752 		return (0);
753 	} else {
754 		return (ENOENT);
755 	}
756 }
757 
758 static void
759 vm_free_memmap(struct vm *vm, int ident)
760 {
761 	struct mem_map *mm;
762 	int error;
763 
764 	mm = &vm->mem_maps[ident];
765 	if (mm->len) {
766 		error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa,
767 		    mm->gpa + mm->len);
768 		KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d",
769 		    __func__, error));
770 		bzero(mm, sizeof(struct mem_map));
771 	}
772 }
773 
774 static __inline bool
775 sysmem_mapping(struct vm *vm, struct mem_map *mm)
776 {
777 
778 	if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem)
779 		return (true);
780 	else
781 		return (false);
782 }
783 
784 static vm_paddr_t
785 sysmem_maxaddr(struct vm *vm)
786 {
787 	struct mem_map *mm;
788 	vm_paddr_t maxaddr;
789 	int i;
790 
791 	maxaddr = 0;
792 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
793 		mm = &vm->mem_maps[i];
794 		if (sysmem_mapping(vm, mm)) {
795 			if (maxaddr < mm->gpa + mm->len)
796 				maxaddr = mm->gpa + mm->len;
797 		}
798 	}
799 	return (maxaddr);
800 }
801 
802 static void
803 vm_iommu_modify(struct vm *vm, boolean_t map)
804 {
805 	int i, sz;
806 	vm_paddr_t gpa, hpa;
807 	struct mem_map *mm;
808 	void *vp, *cookie, *host_domain;
809 
810 	sz = PAGE_SIZE;
811 	host_domain = iommu_host_domain();
812 
813 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
814 		mm = &vm->mem_maps[i];
815 		if (!sysmem_mapping(vm, mm))
816 			continue;
817 
818 		if (map) {
819 			KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0,
820 			    ("iommu map found invalid memmap %#lx/%#lx/%#x",
821 			    mm->gpa, mm->len, mm->flags));
822 			if ((mm->flags & VM_MEMMAP_F_WIRED) == 0)
823 				continue;
824 			mm->flags |= VM_MEMMAP_F_IOMMU;
825 		} else {
826 			if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0)
827 				continue;
828 			mm->flags &= ~VM_MEMMAP_F_IOMMU;
829 			KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0,
830 			    ("iommu unmap found invalid memmap %#lx/%#lx/%#x",
831 			    mm->gpa, mm->len, mm->flags));
832 		}
833 
834 		gpa = mm->gpa;
835 		while (gpa < mm->gpa + mm->len) {
836 			vp = vm_gpa_hold(vm, -1, gpa, PAGE_SIZE, VM_PROT_WRITE,
837 					 &cookie);
838 			KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx",
839 			    vm_name(vm), gpa));
840 
841 			vm_gpa_release(cookie);
842 
843 			hpa = DMAP_TO_PHYS((uintptr_t)vp);
844 			if (map) {
845 				iommu_create_mapping(vm->iommu, gpa, hpa, sz);
846 				iommu_remove_mapping(host_domain, hpa, sz);
847 			} else {
848 				iommu_remove_mapping(vm->iommu, gpa, sz);
849 				iommu_create_mapping(host_domain, hpa, hpa, sz);
850 			}
851 
852 			gpa += PAGE_SIZE;
853 		}
854 	}
855 
856 	/*
857 	 * Invalidate the cached translations associated with the domain
858 	 * from which pages were removed.
859 	 */
860 	if (map)
861 		iommu_invalidate_tlb(host_domain);
862 	else
863 		iommu_invalidate_tlb(vm->iommu);
864 }
865 
866 #define	vm_iommu_unmap(vm)	vm_iommu_modify((vm), FALSE)
867 #define	vm_iommu_map(vm)	vm_iommu_modify((vm), TRUE)
868 
869 int
870 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func)
871 {
872 	int error;
873 
874 	error = ppt_unassign_device(vm, bus, slot, func);
875 	if (error)
876 		return (error);
877 
878 	if (ppt_assigned_devices(vm) == 0)
879 		vm_iommu_unmap(vm);
880 
881 	return (0);
882 }
883 
884 int
885 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func)
886 {
887 	int error;
888 	vm_paddr_t maxaddr;
889 
890 	/* Set up the IOMMU to do the 'gpa' to 'hpa' translation */
891 	if (ppt_assigned_devices(vm) == 0) {
892 		KASSERT(vm->iommu == NULL,
893 		    ("vm_assign_pptdev: iommu must be NULL"));
894 		maxaddr = sysmem_maxaddr(vm);
895 		vm->iommu = iommu_create_domain(maxaddr);
896 		vm_iommu_map(vm);
897 	}
898 
899 	error = ppt_assign_device(vm, bus, slot, func);
900 	return (error);
901 }
902 
903 void *
904 vm_gpa_hold(struct vm *vm, int vcpuid, vm_paddr_t gpa, size_t len, int reqprot,
905 	    void **cookie)
906 {
907 	int i, count, pageoff;
908 	struct mem_map *mm;
909 	vm_page_t m;
910 #ifdef INVARIANTS
911 	/*
912 	 * All vcpus are frozen by ioctls that modify the memory map
913 	 * (e.g. VM_MMAP_MEMSEG). Therefore 'vm->memmap[]' stability is
914 	 * guaranteed if at least one vcpu is in the VCPU_FROZEN state.
915 	 */
916 	int state;
917 	KASSERT(vcpuid >= -1 || vcpuid < VM_MAXCPU, ("%s: invalid vcpuid %d",
918 	    __func__, vcpuid));
919 	for (i = 0; i < VM_MAXCPU; i++) {
920 		if (vcpuid != -1 && vcpuid != i)
921 			continue;
922 		state = vcpu_get_state(vm, i, NULL);
923 		KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d",
924 		    __func__, state));
925 	}
926 #endif
927 	pageoff = gpa & PAGE_MASK;
928 	if (len > PAGE_SIZE - pageoff)
929 		panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len);
930 
931 	count = 0;
932 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
933 		mm = &vm->mem_maps[i];
934 		if (sysmem_mapping(vm, mm) && gpa >= mm->gpa &&
935 		    gpa < mm->gpa + mm->len) {
936 			count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map,
937 			    trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1);
938 			break;
939 		}
940 	}
941 
942 	if (count == 1) {
943 		*cookie = m;
944 		return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff));
945 	} else {
946 		*cookie = NULL;
947 		return (NULL);
948 	}
949 }
950 
951 void
952 vm_gpa_release(void *cookie)
953 {
954 	vm_page_t m = cookie;
955 
956 	vm_page_lock(m);
957 	vm_page_unhold(m);
958 	vm_page_unlock(m);
959 }
960 
961 int
962 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval)
963 {
964 
965 	if (vcpu < 0 || vcpu >= VM_MAXCPU)
966 		return (EINVAL);
967 
968 	if (reg >= VM_REG_LAST)
969 		return (EINVAL);
970 
971 	return (VMGETREG(vm->cookie, vcpu, reg, retval));
972 }
973 
974 int
975 vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val)
976 {
977 	struct vcpu *vcpu;
978 	int error;
979 
980 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
981 		return (EINVAL);
982 
983 	if (reg >= VM_REG_LAST)
984 		return (EINVAL);
985 
986 	error = VMSETREG(vm->cookie, vcpuid, reg, val);
987 	if (error || reg != VM_REG_GUEST_RIP)
988 		return (error);
989 
990 	/* Set 'nextrip' to match the value of %rip */
991 	VCPU_CTR1(vm, vcpuid, "Setting nextrip to %#lx", val);
992 	vcpu = &vm->vcpu[vcpuid];
993 	vcpu->nextrip = val;
994 	return (0);
995 }
996 
997 static boolean_t
998 is_descriptor_table(int reg)
999 {
1000 
1001 	switch (reg) {
1002 	case VM_REG_GUEST_IDTR:
1003 	case VM_REG_GUEST_GDTR:
1004 		return (TRUE);
1005 	default:
1006 		return (FALSE);
1007 	}
1008 }
1009 
1010 static boolean_t
1011 is_segment_register(int reg)
1012 {
1013 
1014 	switch (reg) {
1015 	case VM_REG_GUEST_ES:
1016 	case VM_REG_GUEST_CS:
1017 	case VM_REG_GUEST_SS:
1018 	case VM_REG_GUEST_DS:
1019 	case VM_REG_GUEST_FS:
1020 	case VM_REG_GUEST_GS:
1021 	case VM_REG_GUEST_TR:
1022 	case VM_REG_GUEST_LDTR:
1023 		return (TRUE);
1024 	default:
1025 		return (FALSE);
1026 	}
1027 }
1028 
1029 int
1030 vm_get_seg_desc(struct vm *vm, int vcpu, int reg,
1031 		struct seg_desc *desc)
1032 {
1033 
1034 	if (vcpu < 0 || vcpu >= VM_MAXCPU)
1035 		return (EINVAL);
1036 
1037 	if (!is_segment_register(reg) && !is_descriptor_table(reg))
1038 		return (EINVAL);
1039 
1040 	return (VMGETDESC(vm->cookie, vcpu, reg, desc));
1041 }
1042 
1043 int
1044 vm_set_seg_desc(struct vm *vm, int vcpu, int reg,
1045 		struct seg_desc *desc)
1046 {
1047 	if (vcpu < 0 || vcpu >= VM_MAXCPU)
1048 		return (EINVAL);
1049 
1050 	if (!is_segment_register(reg) && !is_descriptor_table(reg))
1051 		return (EINVAL);
1052 
1053 	return (VMSETDESC(vm->cookie, vcpu, reg, desc));
1054 }
1055 
1056 static void
1057 restore_guest_fpustate(struct vcpu *vcpu)
1058 {
1059 
1060 	/* flush host state to the pcb */
1061 	fpuexit(curthread);
1062 
1063 	/* restore guest FPU state */
1064 	fpu_stop_emulating();
1065 	fpurestore(vcpu->guestfpu);
1066 
1067 	/* restore guest XCR0 if XSAVE is enabled in the host */
1068 	if (rcr4() & CR4_XSAVE)
1069 		load_xcr(0, vcpu->guest_xcr0);
1070 
1071 	/*
1072 	 * The FPU is now "dirty" with the guest's state so turn on emulation
1073 	 * to trap any access to the FPU by the host.
1074 	 */
1075 	fpu_start_emulating();
1076 }
1077 
1078 static void
1079 save_guest_fpustate(struct vcpu *vcpu)
1080 {
1081 
1082 	if ((rcr0() & CR0_TS) == 0)
1083 		panic("fpu emulation not enabled in host!");
1084 
1085 	/* save guest XCR0 and restore host XCR0 */
1086 	if (rcr4() & CR4_XSAVE) {
1087 		vcpu->guest_xcr0 = rxcr(0);
1088 		load_xcr(0, vmm_get_host_xcr0());
1089 	}
1090 
1091 	/* save guest FPU state */
1092 	fpu_stop_emulating();
1093 	fpusave(vcpu->guestfpu);
1094 	fpu_start_emulating();
1095 }
1096 
1097 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle");
1098 
1099 static int
1100 vcpu_set_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate,
1101     bool from_idle)
1102 {
1103 	struct vcpu *vcpu;
1104 	int error;
1105 
1106 	vcpu = &vm->vcpu[vcpuid];
1107 	vcpu_assert_locked(vcpu);
1108 
1109 	/*
1110 	 * State transitions from the vmmdev_ioctl() must always begin from
1111 	 * the VCPU_IDLE state. This guarantees that there is only a single
1112 	 * ioctl() operating on a vcpu at any point.
1113 	 */
1114 	if (from_idle) {
1115 		while (vcpu->state != VCPU_IDLE) {
1116 			vcpu->reqidle = 1;
1117 			vcpu_notify_event_locked(vcpu, false);
1118 			VCPU_CTR1(vm, vcpuid, "vcpu state change from %s to "
1119 			    "idle requested", vcpu_state2str(vcpu->state));
1120 			msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz);
1121 		}
1122 	} else {
1123 		KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from "
1124 		    "vcpu idle state"));
1125 	}
1126 
1127 	if (vcpu->state == VCPU_RUNNING) {
1128 		KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d "
1129 		    "mismatch for running vcpu", curcpu, vcpu->hostcpu));
1130 	} else {
1131 		KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a "
1132 		    "vcpu that is not running", vcpu->hostcpu));
1133 	}
1134 
1135 	/*
1136 	 * The following state transitions are allowed:
1137 	 * IDLE -> FROZEN -> IDLE
1138 	 * FROZEN -> RUNNING -> FROZEN
1139 	 * FROZEN -> SLEEPING -> FROZEN
1140 	 */
1141 	switch (vcpu->state) {
1142 	case VCPU_IDLE:
1143 	case VCPU_RUNNING:
1144 	case VCPU_SLEEPING:
1145 		error = (newstate != VCPU_FROZEN);
1146 		break;
1147 	case VCPU_FROZEN:
1148 		error = (newstate == VCPU_FROZEN);
1149 		break;
1150 	default:
1151 		error = 1;
1152 		break;
1153 	}
1154 
1155 	if (error)
1156 		return (EBUSY);
1157 
1158 	VCPU_CTR2(vm, vcpuid, "vcpu state changed from %s to %s",
1159 	    vcpu_state2str(vcpu->state), vcpu_state2str(newstate));
1160 
1161 	vcpu->state = newstate;
1162 	if (newstate == VCPU_RUNNING)
1163 		vcpu->hostcpu = curcpu;
1164 	else
1165 		vcpu->hostcpu = NOCPU;
1166 
1167 	if (newstate == VCPU_IDLE)
1168 		wakeup(&vcpu->state);
1169 
1170 	return (0);
1171 }
1172 
1173 static void
1174 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate)
1175 {
1176 	int error;
1177 
1178 	if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0)
1179 		panic("Error %d setting state to %d\n", error, newstate);
1180 }
1181 
1182 static void
1183 vcpu_require_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate)
1184 {
1185 	int error;
1186 
1187 	if ((error = vcpu_set_state_locked(vm, vcpuid, newstate, false)) != 0)
1188 		panic("Error %d setting state to %d", error, newstate);
1189 }
1190 
1191 static void
1192 vm_set_rendezvous_func(struct vm *vm, vm_rendezvous_func_t func)
1193 {
1194 
1195 	KASSERT(mtx_owned(&vm->rendezvous_mtx), ("rendezvous_mtx not locked"));
1196 
1197 	/*
1198 	 * Update 'rendezvous_func' and execute a write memory barrier to
1199 	 * ensure that it is visible across all host cpus. This is not needed
1200 	 * for correctness but it does ensure that all the vcpus will notice
1201 	 * that the rendezvous is requested immediately.
1202 	 */
1203 	vm->rendezvous_func = func;
1204 	wmb();
1205 }
1206 
1207 #define	RENDEZVOUS_CTR0(vm, vcpuid, fmt)				\
1208 	do {								\
1209 		if (vcpuid >= 0)					\
1210 			VCPU_CTR0(vm, vcpuid, fmt);			\
1211 		else							\
1212 			VM_CTR0(vm, fmt);				\
1213 	} while (0)
1214 
1215 static void
1216 vm_handle_rendezvous(struct vm *vm, int vcpuid)
1217 {
1218 
1219 	KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU),
1220 	    ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid));
1221 
1222 	mtx_lock(&vm->rendezvous_mtx);
1223 	while (vm->rendezvous_func != NULL) {
1224 		/* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */
1225 		CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus);
1226 
1227 		if (vcpuid != -1 &&
1228 		    CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) &&
1229 		    !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) {
1230 			VCPU_CTR0(vm, vcpuid, "Calling rendezvous func");
1231 			(*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg);
1232 			CPU_SET(vcpuid, &vm->rendezvous_done_cpus);
1233 		}
1234 		if (CPU_CMP(&vm->rendezvous_req_cpus,
1235 		    &vm->rendezvous_done_cpus) == 0) {
1236 			VCPU_CTR0(vm, vcpuid, "Rendezvous completed");
1237 			vm_set_rendezvous_func(vm, NULL);
1238 			wakeup(&vm->rendezvous_func);
1239 			break;
1240 		}
1241 		RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion");
1242 		mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0,
1243 		    "vmrndv", 0);
1244 	}
1245 	mtx_unlock(&vm->rendezvous_mtx);
1246 }
1247 
1248 /*
1249  * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run.
1250  */
1251 static int
1252 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu)
1253 {
1254 	struct vcpu *vcpu;
1255 	const char *wmesg;
1256 	int t, vcpu_halted, vm_halted;
1257 
1258 	KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted"));
1259 
1260 	vcpu = &vm->vcpu[vcpuid];
1261 	vcpu_halted = 0;
1262 	vm_halted = 0;
1263 
1264 	vcpu_lock(vcpu);
1265 	while (1) {
1266 		/*
1267 		 * Do a final check for pending NMI or interrupts before
1268 		 * really putting this thread to sleep. Also check for
1269 		 * software events that would cause this vcpu to wakeup.
1270 		 *
1271 		 * These interrupts/events could have happened after the
1272 		 * vcpu returned from VMRUN() and before it acquired the
1273 		 * vcpu lock above.
1274 		 */
1275 		if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle)
1276 			break;
1277 		if (vm_nmi_pending(vm, vcpuid))
1278 			break;
1279 		if (!intr_disabled) {
1280 			if (vm_extint_pending(vm, vcpuid) ||
1281 			    vlapic_pending_intr(vcpu->vlapic, NULL)) {
1282 				break;
1283 			}
1284 		}
1285 
1286 		/* Don't go to sleep if the vcpu thread needs to yield */
1287 		if (vcpu_should_yield(vm, vcpuid))
1288 			break;
1289 
1290 		/*
1291 		 * Some Linux guests implement "halt" by having all vcpus
1292 		 * execute HLT with interrupts disabled. 'halted_cpus' keeps
1293 		 * track of the vcpus that have entered this state. When all
1294 		 * vcpus enter the halted state the virtual machine is halted.
1295 		 */
1296 		if (intr_disabled) {
1297 			wmesg = "vmhalt";
1298 			VCPU_CTR0(vm, vcpuid, "Halted");
1299 			if (!vcpu_halted && halt_detection_enabled) {
1300 				vcpu_halted = 1;
1301 				CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus);
1302 			}
1303 			if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) {
1304 				vm_halted = 1;
1305 				break;
1306 			}
1307 		} else {
1308 			wmesg = "vmidle";
1309 		}
1310 
1311 		t = ticks;
1312 		vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING);
1313 		/*
1314 		 * XXX msleep_spin() cannot be interrupted by signals so
1315 		 * wake up periodically to check pending signals.
1316 		 */
1317 		msleep_spin(vcpu, &vcpu->mtx, wmesg, hz);
1318 		vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN);
1319 		vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t);
1320 	}
1321 
1322 	if (vcpu_halted)
1323 		CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus);
1324 
1325 	vcpu_unlock(vcpu);
1326 
1327 	if (vm_halted)
1328 		vm_suspend(vm, VM_SUSPEND_HALT);
1329 
1330 	return (0);
1331 }
1332 
1333 static int
1334 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu)
1335 {
1336 	int rv, ftype;
1337 	struct vm_map *map;
1338 	struct vcpu *vcpu;
1339 	struct vm_exit *vme;
1340 
1341 	vcpu = &vm->vcpu[vcpuid];
1342 	vme = &vcpu->exitinfo;
1343 
1344 	KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
1345 	    __func__, vme->inst_length));
1346 
1347 	ftype = vme->u.paging.fault_type;
1348 	KASSERT(ftype == VM_PROT_READ ||
1349 	    ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE,
1350 	    ("vm_handle_paging: invalid fault_type %d", ftype));
1351 
1352 	if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
1353 		rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace),
1354 		    vme->u.paging.gpa, ftype);
1355 		if (rv == 0) {
1356 			VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx",
1357 			    ftype == VM_PROT_READ ? "accessed" : "dirty",
1358 			    vme->u.paging.gpa);
1359 			goto done;
1360 		}
1361 	}
1362 
1363 	map = &vm->vmspace->vm_map;
1364 	rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL);
1365 
1366 	VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, "
1367 	    "ftype = %d", rv, vme->u.paging.gpa, ftype);
1368 
1369 	if (rv != KERN_SUCCESS)
1370 		return (EFAULT);
1371 done:
1372 	return (0);
1373 }
1374 
1375 static int
1376 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu)
1377 {
1378 	struct vie *vie;
1379 	struct vcpu *vcpu;
1380 	struct vm_exit *vme;
1381 	uint64_t gla, gpa, cs_base;
1382 	struct vm_guest_paging *paging;
1383 	mem_region_read_t mread;
1384 	mem_region_write_t mwrite;
1385 	enum vm_cpu_mode cpu_mode;
1386 	int cs_d, error, fault;
1387 
1388 	vcpu = &vm->vcpu[vcpuid];
1389 	vme = &vcpu->exitinfo;
1390 
1391 	KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
1392 	    __func__, vme->inst_length));
1393 
1394 	gla = vme->u.inst_emul.gla;
1395 	gpa = vme->u.inst_emul.gpa;
1396 	cs_base = vme->u.inst_emul.cs_base;
1397 	cs_d = vme->u.inst_emul.cs_d;
1398 	vie = &vme->u.inst_emul.vie;
1399 	paging = &vme->u.inst_emul.paging;
1400 	cpu_mode = paging->cpu_mode;
1401 
1402 	VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa);
1403 
1404 	/* Fetch, decode and emulate the faulting instruction */
1405 	if (vie->num_valid == 0) {
1406 		error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip +
1407 		    cs_base, VIE_INST_SIZE, vie, &fault);
1408 	} else {
1409 		/*
1410 		 * The instruction bytes have already been copied into 'vie'
1411 		 */
1412 		error = fault = 0;
1413 	}
1414 	if (error || fault)
1415 		return (error);
1416 
1417 	if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) {
1418 		VCPU_CTR1(vm, vcpuid, "Error decoding instruction at %#lx",
1419 		    vme->rip + cs_base);
1420 		*retu = true;	    /* dump instruction bytes in userspace */
1421 		return (0);
1422 	}
1423 
1424 	/*
1425 	 * Update 'nextrip' based on the length of the emulated instruction.
1426 	 */
1427 	vme->inst_length = vie->num_processed;
1428 	vcpu->nextrip += vie->num_processed;
1429 	VCPU_CTR1(vm, vcpuid, "nextrip updated to %#lx after instruction "
1430 	    "decoding", vcpu->nextrip);
1431 
1432 	/* return to userland unless this is an in-kernel emulated device */
1433 	if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) {
1434 		mread = lapic_mmio_read;
1435 		mwrite = lapic_mmio_write;
1436 	} else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) {
1437 		mread = vioapic_mmio_read;
1438 		mwrite = vioapic_mmio_write;
1439 	} else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) {
1440 		mread = vhpet_mmio_read;
1441 		mwrite = vhpet_mmio_write;
1442 	} else {
1443 		*retu = true;
1444 		return (0);
1445 	}
1446 
1447 	error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging,
1448 	    mread, mwrite, retu);
1449 
1450 	return (error);
1451 }
1452 
1453 static int
1454 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu)
1455 {
1456 	int i, done;
1457 	struct vcpu *vcpu;
1458 
1459 	done = 0;
1460 	vcpu = &vm->vcpu[vcpuid];
1461 
1462 	CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus);
1463 
1464 	/*
1465 	 * Wait until all 'active_cpus' have suspended themselves.
1466 	 *
1467 	 * Since a VM may be suspended at any time including when one or
1468 	 * more vcpus are doing a rendezvous we need to call the rendezvous
1469 	 * handler while we are waiting to prevent a deadlock.
1470 	 */
1471 	vcpu_lock(vcpu);
1472 	while (1) {
1473 		if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
1474 			VCPU_CTR0(vm, vcpuid, "All vcpus suspended");
1475 			break;
1476 		}
1477 
1478 		if (vm->rendezvous_func == NULL) {
1479 			VCPU_CTR0(vm, vcpuid, "Sleeping during suspend");
1480 			vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING);
1481 			msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz);
1482 			vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN);
1483 		} else {
1484 			VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend");
1485 			vcpu_unlock(vcpu);
1486 			vm_handle_rendezvous(vm, vcpuid);
1487 			vcpu_lock(vcpu);
1488 		}
1489 	}
1490 	vcpu_unlock(vcpu);
1491 
1492 	/*
1493 	 * Wakeup the other sleeping vcpus and return to userspace.
1494 	 */
1495 	for (i = 0; i < VM_MAXCPU; i++) {
1496 		if (CPU_ISSET(i, &vm->suspended_cpus)) {
1497 			vcpu_notify_event(vm, i, false);
1498 		}
1499 	}
1500 
1501 	*retu = true;
1502 	return (0);
1503 }
1504 
1505 static int
1506 vm_handle_reqidle(struct vm *vm, int vcpuid, bool *retu)
1507 {
1508 	struct vcpu *vcpu = &vm->vcpu[vcpuid];
1509 
1510 	vcpu_lock(vcpu);
1511 	KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle));
1512 	vcpu->reqidle = 0;
1513 	vcpu_unlock(vcpu);
1514 	*retu = true;
1515 	return (0);
1516 }
1517 
1518 int
1519 vm_suspend(struct vm *vm, enum vm_suspend_how how)
1520 {
1521 	int i;
1522 
1523 	if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST)
1524 		return (EINVAL);
1525 
1526 	if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) {
1527 		VM_CTR2(vm, "virtual machine already suspended %d/%d",
1528 		    vm->suspend, how);
1529 		return (EALREADY);
1530 	}
1531 
1532 	VM_CTR1(vm, "virtual machine successfully suspended %d", how);
1533 
1534 	/*
1535 	 * Notify all active vcpus that they are now suspended.
1536 	 */
1537 	for (i = 0; i < VM_MAXCPU; i++) {
1538 		if (CPU_ISSET(i, &vm->active_cpus))
1539 			vcpu_notify_event(vm, i, false);
1540 	}
1541 
1542 	return (0);
1543 }
1544 
1545 void
1546 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip)
1547 {
1548 	struct vm_exit *vmexit;
1549 
1550 	KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST,
1551 	    ("vm_exit_suspended: invalid suspend type %d", vm->suspend));
1552 
1553 	vmexit = vm_exitinfo(vm, vcpuid);
1554 	vmexit->rip = rip;
1555 	vmexit->inst_length = 0;
1556 	vmexit->exitcode = VM_EXITCODE_SUSPENDED;
1557 	vmexit->u.suspended.how = vm->suspend;
1558 }
1559 
1560 void
1561 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip)
1562 {
1563 	struct vm_exit *vmexit;
1564 
1565 	KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress"));
1566 
1567 	vmexit = vm_exitinfo(vm, vcpuid);
1568 	vmexit->rip = rip;
1569 	vmexit->inst_length = 0;
1570 	vmexit->exitcode = VM_EXITCODE_RENDEZVOUS;
1571 	vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1);
1572 }
1573 
1574 void
1575 vm_exit_reqidle(struct vm *vm, int vcpuid, uint64_t rip)
1576 {
1577 	struct vm_exit *vmexit;
1578 
1579 	vmexit = vm_exitinfo(vm, vcpuid);
1580 	vmexit->rip = rip;
1581 	vmexit->inst_length = 0;
1582 	vmexit->exitcode = VM_EXITCODE_REQIDLE;
1583 	vmm_stat_incr(vm, vcpuid, VMEXIT_REQIDLE, 1);
1584 }
1585 
1586 void
1587 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip)
1588 {
1589 	struct vm_exit *vmexit;
1590 
1591 	vmexit = vm_exitinfo(vm, vcpuid);
1592 	vmexit->rip = rip;
1593 	vmexit->inst_length = 0;
1594 	vmexit->exitcode = VM_EXITCODE_BOGUS;
1595 	vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1);
1596 }
1597 
1598 int
1599 vm_run(struct vm *vm, struct vm_run *vmrun)
1600 {
1601 	struct vm_eventinfo evinfo;
1602 	int error, vcpuid;
1603 	struct vcpu *vcpu;
1604 	struct pcb *pcb;
1605 	uint64_t tscval;
1606 	struct vm_exit *vme;
1607 	bool retu, intr_disabled;
1608 	pmap_t pmap;
1609 
1610 	vcpuid = vmrun->cpuid;
1611 
1612 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1613 		return (EINVAL);
1614 
1615 	if (!CPU_ISSET(vcpuid, &vm->active_cpus))
1616 		return (EINVAL);
1617 
1618 	if (CPU_ISSET(vcpuid, &vm->suspended_cpus))
1619 		return (EINVAL);
1620 
1621 	pmap = vmspace_pmap(vm->vmspace);
1622 	vcpu = &vm->vcpu[vcpuid];
1623 	vme = &vcpu->exitinfo;
1624 	evinfo.rptr = &vm->rendezvous_func;
1625 	evinfo.sptr = &vm->suspend;
1626 	evinfo.iptr = &vcpu->reqidle;
1627 restart:
1628 	critical_enter();
1629 
1630 	KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
1631 	    ("vm_run: absurd pm_active"));
1632 
1633 	tscval = rdtsc();
1634 
1635 	pcb = PCPU_GET(curpcb);
1636 	set_pcb_flags(pcb, PCB_FULL_IRET);
1637 
1638 	restore_guest_fpustate(vcpu);
1639 
1640 	vcpu_require_state(vm, vcpuid, VCPU_RUNNING);
1641 	error = VMRUN(vm->cookie, vcpuid, vcpu->nextrip, pmap, &evinfo);
1642 	vcpu_require_state(vm, vcpuid, VCPU_FROZEN);
1643 
1644 	save_guest_fpustate(vcpu);
1645 
1646 	vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval);
1647 
1648 	critical_exit();
1649 
1650 	if (error == 0) {
1651 		retu = false;
1652 		vcpu->nextrip = vme->rip + vme->inst_length;
1653 		switch (vme->exitcode) {
1654 		case VM_EXITCODE_REQIDLE:
1655 			error = vm_handle_reqidle(vm, vcpuid, &retu);
1656 			break;
1657 		case VM_EXITCODE_SUSPENDED:
1658 			error = vm_handle_suspend(vm, vcpuid, &retu);
1659 			break;
1660 		case VM_EXITCODE_IOAPIC_EOI:
1661 			vioapic_process_eoi(vm, vcpuid,
1662 			    vme->u.ioapic_eoi.vector);
1663 			break;
1664 		case VM_EXITCODE_RENDEZVOUS:
1665 			vm_handle_rendezvous(vm, vcpuid);
1666 			error = 0;
1667 			break;
1668 		case VM_EXITCODE_HLT:
1669 			intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0);
1670 			error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu);
1671 			break;
1672 		case VM_EXITCODE_PAGING:
1673 			error = vm_handle_paging(vm, vcpuid, &retu);
1674 			break;
1675 		case VM_EXITCODE_INST_EMUL:
1676 			error = vm_handle_inst_emul(vm, vcpuid, &retu);
1677 			break;
1678 		case VM_EXITCODE_INOUT:
1679 		case VM_EXITCODE_INOUT_STR:
1680 			error = vm_handle_inout(vm, vcpuid, vme, &retu);
1681 			break;
1682 		case VM_EXITCODE_MONITOR:
1683 		case VM_EXITCODE_MWAIT:
1684 			vm_inject_ud(vm, vcpuid);
1685 			break;
1686 		default:
1687 			retu = true;	/* handled in userland */
1688 			break;
1689 		}
1690 	}
1691 
1692 	if (error == 0 && retu == false)
1693 		goto restart;
1694 
1695 	VCPU_CTR2(vm, vcpuid, "retu %d/%d", error, vme->exitcode);
1696 
1697 	/* copy the exit information */
1698 	bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit));
1699 	return (error);
1700 }
1701 
1702 int
1703 vm_restart_instruction(void *arg, int vcpuid)
1704 {
1705 	struct vm *vm;
1706 	struct vcpu *vcpu;
1707 	enum vcpu_state state;
1708 	uint64_t rip;
1709 	int error;
1710 
1711 	vm = arg;
1712 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1713 		return (EINVAL);
1714 
1715 	vcpu = &vm->vcpu[vcpuid];
1716 	state = vcpu_get_state(vm, vcpuid, NULL);
1717 	if (state == VCPU_RUNNING) {
1718 		/*
1719 		 * When a vcpu is "running" the next instruction is determined
1720 		 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'.
1721 		 * Thus setting 'inst_length' to zero will cause the current
1722 		 * instruction to be restarted.
1723 		 */
1724 		vcpu->exitinfo.inst_length = 0;
1725 		VCPU_CTR1(vm, vcpuid, "restarting instruction at %#lx by "
1726 		    "setting inst_length to zero", vcpu->exitinfo.rip);
1727 	} else if (state == VCPU_FROZEN) {
1728 		/*
1729 		 * When a vcpu is "frozen" it is outside the critical section
1730 		 * around VMRUN() and 'nextrip' points to the next instruction.
1731 		 * Thus instruction restart is achieved by setting 'nextrip'
1732 		 * to the vcpu's %rip.
1733 		 */
1734 		error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip);
1735 		KASSERT(!error, ("%s: error %d getting rip", __func__, error));
1736 		VCPU_CTR2(vm, vcpuid, "restarting instruction by updating "
1737 		    "nextrip from %#lx to %#lx", vcpu->nextrip, rip);
1738 		vcpu->nextrip = rip;
1739 	} else {
1740 		panic("%s: invalid state %d", __func__, state);
1741 	}
1742 	return (0);
1743 }
1744 
1745 int
1746 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info)
1747 {
1748 	struct vcpu *vcpu;
1749 	int type, vector;
1750 
1751 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1752 		return (EINVAL);
1753 
1754 	vcpu = &vm->vcpu[vcpuid];
1755 
1756 	if (info & VM_INTINFO_VALID) {
1757 		type = info & VM_INTINFO_TYPE;
1758 		vector = info & 0xff;
1759 		if (type == VM_INTINFO_NMI && vector != IDT_NMI)
1760 			return (EINVAL);
1761 		if (type == VM_INTINFO_HWEXCEPTION && vector >= 32)
1762 			return (EINVAL);
1763 		if (info & VM_INTINFO_RSVD)
1764 			return (EINVAL);
1765 	} else {
1766 		info = 0;
1767 	}
1768 	VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info);
1769 	vcpu->exitintinfo = info;
1770 	return (0);
1771 }
1772 
1773 enum exc_class {
1774 	EXC_BENIGN,
1775 	EXC_CONTRIBUTORY,
1776 	EXC_PAGEFAULT
1777 };
1778 
1779 #define	IDT_VE	20	/* Virtualization Exception (Intel specific) */
1780 
1781 static enum exc_class
1782 exception_class(uint64_t info)
1783 {
1784 	int type, vector;
1785 
1786 	KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info));
1787 	type = info & VM_INTINFO_TYPE;
1788 	vector = info & 0xff;
1789 
1790 	/* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */
1791 	switch (type) {
1792 	case VM_INTINFO_HWINTR:
1793 	case VM_INTINFO_SWINTR:
1794 	case VM_INTINFO_NMI:
1795 		return (EXC_BENIGN);
1796 	default:
1797 		/*
1798 		 * Hardware exception.
1799 		 *
1800 		 * SVM and VT-x use identical type values to represent NMI,
1801 		 * hardware interrupt and software interrupt.
1802 		 *
1803 		 * SVM uses type '3' for all exceptions. VT-x uses type '3'
1804 		 * for exceptions except #BP and #OF. #BP and #OF use a type
1805 		 * value of '5' or '6'. Therefore we don't check for explicit
1806 		 * values of 'type' to classify 'intinfo' into a hardware
1807 		 * exception.
1808 		 */
1809 		break;
1810 	}
1811 
1812 	switch (vector) {
1813 	case IDT_PF:
1814 	case IDT_VE:
1815 		return (EXC_PAGEFAULT);
1816 	case IDT_DE:
1817 	case IDT_TS:
1818 	case IDT_NP:
1819 	case IDT_SS:
1820 	case IDT_GP:
1821 		return (EXC_CONTRIBUTORY);
1822 	default:
1823 		return (EXC_BENIGN);
1824 	}
1825 }
1826 
1827 static int
1828 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2,
1829     uint64_t *retinfo)
1830 {
1831 	enum exc_class exc1, exc2;
1832 	int type1, vector1;
1833 
1834 	KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1));
1835 	KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2));
1836 
1837 	/*
1838 	 * If an exception occurs while attempting to call the double-fault
1839 	 * handler the processor enters shutdown mode (aka triple fault).
1840 	 */
1841 	type1 = info1 & VM_INTINFO_TYPE;
1842 	vector1 = info1 & 0xff;
1843 	if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) {
1844 		VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)",
1845 		    info1, info2);
1846 		vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT);
1847 		*retinfo = 0;
1848 		return (0);
1849 	}
1850 
1851 	/*
1852 	 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3
1853 	 */
1854 	exc1 = exception_class(info1);
1855 	exc2 = exception_class(info2);
1856 	if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) ||
1857 	    (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) {
1858 		/* Convert nested fault into a double fault. */
1859 		*retinfo = IDT_DF;
1860 		*retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
1861 		*retinfo |= VM_INTINFO_DEL_ERRCODE;
1862 	} else {
1863 		/* Handle exceptions serially */
1864 		*retinfo = info2;
1865 	}
1866 	return (1);
1867 }
1868 
1869 static uint64_t
1870 vcpu_exception_intinfo(struct vcpu *vcpu)
1871 {
1872 	uint64_t info = 0;
1873 
1874 	if (vcpu->exception_pending) {
1875 		info = vcpu->exc_vector & 0xff;
1876 		info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
1877 		if (vcpu->exc_errcode_valid) {
1878 			info |= VM_INTINFO_DEL_ERRCODE;
1879 			info |= (uint64_t)vcpu->exc_errcode << 32;
1880 		}
1881 	}
1882 	return (info);
1883 }
1884 
1885 int
1886 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo)
1887 {
1888 	struct vcpu *vcpu;
1889 	uint64_t info1, info2;
1890 	int valid;
1891 
1892 	KASSERT(vcpuid >= 0 && vcpuid < VM_MAXCPU, ("invalid vcpu %d", vcpuid));
1893 
1894 	vcpu = &vm->vcpu[vcpuid];
1895 
1896 	info1 = vcpu->exitintinfo;
1897 	vcpu->exitintinfo = 0;
1898 
1899 	info2 = 0;
1900 	if (vcpu->exception_pending) {
1901 		info2 = vcpu_exception_intinfo(vcpu);
1902 		vcpu->exception_pending = 0;
1903 		VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx",
1904 		    vcpu->exc_vector, info2);
1905 	}
1906 
1907 	if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) {
1908 		valid = nested_fault(vm, vcpuid, info1, info2, retinfo);
1909 	} else if (info1 & VM_INTINFO_VALID) {
1910 		*retinfo = info1;
1911 		valid = 1;
1912 	} else if (info2 & VM_INTINFO_VALID) {
1913 		*retinfo = info2;
1914 		valid = 1;
1915 	} else {
1916 		valid = 0;
1917 	}
1918 
1919 	if (valid) {
1920 		VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), "
1921 		    "retinfo(%#lx)", __func__, info1, info2, *retinfo);
1922 	}
1923 
1924 	return (valid);
1925 }
1926 
1927 int
1928 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2)
1929 {
1930 	struct vcpu *vcpu;
1931 
1932 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1933 		return (EINVAL);
1934 
1935 	vcpu = &vm->vcpu[vcpuid];
1936 	*info1 = vcpu->exitintinfo;
1937 	*info2 = vcpu_exception_intinfo(vcpu);
1938 	return (0);
1939 }
1940 
1941 int
1942 vm_inject_exception(struct vm *vm, int vcpuid, int vector, int errcode_valid,
1943     uint32_t errcode, int restart_instruction)
1944 {
1945 	struct vcpu *vcpu;
1946 	uint64_t regval;
1947 	int error;
1948 
1949 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1950 		return (EINVAL);
1951 
1952 	if (vector < 0 || vector >= 32)
1953 		return (EINVAL);
1954 
1955 	/*
1956 	 * A double fault exception should never be injected directly into
1957 	 * the guest. It is a derived exception that results from specific
1958 	 * combinations of nested faults.
1959 	 */
1960 	if (vector == IDT_DF)
1961 		return (EINVAL);
1962 
1963 	vcpu = &vm->vcpu[vcpuid];
1964 
1965 	if (vcpu->exception_pending) {
1966 		VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to "
1967 		    "pending exception %d", vector, vcpu->exc_vector);
1968 		return (EBUSY);
1969 	}
1970 
1971 	if (errcode_valid) {
1972 		/*
1973 		 * Exceptions don't deliver an error code in real mode.
1974 		 */
1975 		error = vm_get_register(vm, vcpuid, VM_REG_GUEST_CR0, &regval);
1976 		KASSERT(!error, ("%s: error %d getting CR0", __func__, error));
1977 		if (!(regval & CR0_PE))
1978 			errcode_valid = 0;
1979 	}
1980 
1981 	/*
1982 	 * From section 26.6.1 "Interruptibility State" in Intel SDM:
1983 	 *
1984 	 * Event blocking by "STI" or "MOV SS" is cleared after guest executes
1985 	 * one instruction or incurs an exception.
1986 	 */
1987 	error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0);
1988 	KASSERT(error == 0, ("%s: error %d clearing interrupt shadow",
1989 	    __func__, error));
1990 
1991 	if (restart_instruction)
1992 		vm_restart_instruction(vm, vcpuid);
1993 
1994 	vcpu->exception_pending = 1;
1995 	vcpu->exc_vector = vector;
1996 	vcpu->exc_errcode = errcode;
1997 	vcpu->exc_errcode_valid = errcode_valid;
1998 	VCPU_CTR1(vm, vcpuid, "Exception %d pending", vector);
1999 	return (0);
2000 }
2001 
2002 void
2003 vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid,
2004     int errcode)
2005 {
2006 	struct vm *vm;
2007 	int error, restart_instruction;
2008 
2009 	vm = vmarg;
2010 	restart_instruction = 1;
2011 
2012 	error = vm_inject_exception(vm, vcpuid, vector, errcode_valid,
2013 	    errcode, restart_instruction);
2014 	KASSERT(error == 0, ("vm_inject_exception error %d", error));
2015 }
2016 
2017 void
2018 vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2)
2019 {
2020 	struct vm *vm;
2021 	int error;
2022 
2023 	vm = vmarg;
2024 	VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx",
2025 	    error_code, cr2);
2026 
2027 	error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2);
2028 	KASSERT(error == 0, ("vm_set_register(cr2) error %d", error));
2029 
2030 	vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code);
2031 }
2032 
2033 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu");
2034 
2035 int
2036 vm_inject_nmi(struct vm *vm, int vcpuid)
2037 {
2038 	struct vcpu *vcpu;
2039 
2040 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2041 		return (EINVAL);
2042 
2043 	vcpu = &vm->vcpu[vcpuid];
2044 
2045 	vcpu->nmi_pending = 1;
2046 	vcpu_notify_event(vm, vcpuid, false);
2047 	return (0);
2048 }
2049 
2050 int
2051 vm_nmi_pending(struct vm *vm, int vcpuid)
2052 {
2053 	struct vcpu *vcpu;
2054 
2055 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2056 		panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
2057 
2058 	vcpu = &vm->vcpu[vcpuid];
2059 
2060 	return (vcpu->nmi_pending);
2061 }
2062 
2063 void
2064 vm_nmi_clear(struct vm *vm, int vcpuid)
2065 {
2066 	struct vcpu *vcpu;
2067 
2068 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2069 		panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
2070 
2071 	vcpu = &vm->vcpu[vcpuid];
2072 
2073 	if (vcpu->nmi_pending == 0)
2074 		panic("vm_nmi_clear: inconsistent nmi_pending state");
2075 
2076 	vcpu->nmi_pending = 0;
2077 	vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1);
2078 }
2079 
2080 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu");
2081 
2082 int
2083 vm_inject_extint(struct vm *vm, int vcpuid)
2084 {
2085 	struct vcpu *vcpu;
2086 
2087 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2088 		return (EINVAL);
2089 
2090 	vcpu = &vm->vcpu[vcpuid];
2091 
2092 	vcpu->extint_pending = 1;
2093 	vcpu_notify_event(vm, vcpuid, false);
2094 	return (0);
2095 }
2096 
2097 int
2098 vm_extint_pending(struct vm *vm, int vcpuid)
2099 {
2100 	struct vcpu *vcpu;
2101 
2102 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2103 		panic("vm_extint_pending: invalid vcpuid %d", vcpuid);
2104 
2105 	vcpu = &vm->vcpu[vcpuid];
2106 
2107 	return (vcpu->extint_pending);
2108 }
2109 
2110 void
2111 vm_extint_clear(struct vm *vm, int vcpuid)
2112 {
2113 	struct vcpu *vcpu;
2114 
2115 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2116 		panic("vm_extint_pending: invalid vcpuid %d", vcpuid);
2117 
2118 	vcpu = &vm->vcpu[vcpuid];
2119 
2120 	if (vcpu->extint_pending == 0)
2121 		panic("vm_extint_clear: inconsistent extint_pending state");
2122 
2123 	vcpu->extint_pending = 0;
2124 	vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1);
2125 }
2126 
2127 int
2128 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval)
2129 {
2130 	if (vcpu < 0 || vcpu >= VM_MAXCPU)
2131 		return (EINVAL);
2132 
2133 	if (type < 0 || type >= VM_CAP_MAX)
2134 		return (EINVAL);
2135 
2136 	return (VMGETCAP(vm->cookie, vcpu, type, retval));
2137 }
2138 
2139 int
2140 vm_set_capability(struct vm *vm, int vcpu, int type, int val)
2141 {
2142 	if (vcpu < 0 || vcpu >= VM_MAXCPU)
2143 		return (EINVAL);
2144 
2145 	if (type < 0 || type >= VM_CAP_MAX)
2146 		return (EINVAL);
2147 
2148 	return (VMSETCAP(vm->cookie, vcpu, type, val));
2149 }
2150 
2151 struct vlapic *
2152 vm_lapic(struct vm *vm, int cpu)
2153 {
2154 	return (vm->vcpu[cpu].vlapic);
2155 }
2156 
2157 struct vioapic *
2158 vm_ioapic(struct vm *vm)
2159 {
2160 
2161 	return (vm->vioapic);
2162 }
2163 
2164 struct vhpet *
2165 vm_hpet(struct vm *vm)
2166 {
2167 
2168 	return (vm->vhpet);
2169 }
2170 
2171 boolean_t
2172 vmm_is_pptdev(int bus, int slot, int func)
2173 {
2174 	int found, i, n;
2175 	int b, s, f;
2176 	char *val, *cp, *cp2;
2177 
2178 	/*
2179 	 * XXX
2180 	 * The length of an environment variable is limited to 128 bytes which
2181 	 * puts an upper limit on the number of passthru devices that may be
2182 	 * specified using a single environment variable.
2183 	 *
2184 	 * Work around this by scanning multiple environment variable
2185 	 * names instead of a single one - yuck!
2186 	 */
2187 	const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL };
2188 
2189 	/* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */
2190 	found = 0;
2191 	for (i = 0; names[i] != NULL && !found; i++) {
2192 		cp = val = kern_getenv(names[i]);
2193 		while (cp != NULL && *cp != '\0') {
2194 			if ((cp2 = strchr(cp, ' ')) != NULL)
2195 				*cp2 = '\0';
2196 
2197 			n = sscanf(cp, "%d/%d/%d", &b, &s, &f);
2198 			if (n == 3 && bus == b && slot == s && func == f) {
2199 				found = 1;
2200 				break;
2201 			}
2202 
2203 			if (cp2 != NULL)
2204 				*cp2++ = ' ';
2205 
2206 			cp = cp2;
2207 		}
2208 		freeenv(val);
2209 	}
2210 	return (found);
2211 }
2212 
2213 void *
2214 vm_iommu_domain(struct vm *vm)
2215 {
2216 
2217 	return (vm->iommu);
2218 }
2219 
2220 int
2221 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate,
2222     bool from_idle)
2223 {
2224 	int error;
2225 	struct vcpu *vcpu;
2226 
2227 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2228 		panic("vm_set_run_state: invalid vcpuid %d", vcpuid);
2229 
2230 	vcpu = &vm->vcpu[vcpuid];
2231 
2232 	vcpu_lock(vcpu);
2233 	error = vcpu_set_state_locked(vm, vcpuid, newstate, from_idle);
2234 	vcpu_unlock(vcpu);
2235 
2236 	return (error);
2237 }
2238 
2239 enum vcpu_state
2240 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu)
2241 {
2242 	struct vcpu *vcpu;
2243 	enum vcpu_state state;
2244 
2245 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2246 		panic("vm_get_run_state: invalid vcpuid %d", vcpuid);
2247 
2248 	vcpu = &vm->vcpu[vcpuid];
2249 
2250 	vcpu_lock(vcpu);
2251 	state = vcpu->state;
2252 	if (hostcpu != NULL)
2253 		*hostcpu = vcpu->hostcpu;
2254 	vcpu_unlock(vcpu);
2255 
2256 	return (state);
2257 }
2258 
2259 int
2260 vm_activate_cpu(struct vm *vm, int vcpuid)
2261 {
2262 
2263 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2264 		return (EINVAL);
2265 
2266 	if (CPU_ISSET(vcpuid, &vm->active_cpus))
2267 		return (EBUSY);
2268 
2269 	VCPU_CTR0(vm, vcpuid, "activated");
2270 	CPU_SET_ATOMIC(vcpuid, &vm->active_cpus);
2271 	return (0);
2272 }
2273 
2274 cpuset_t
2275 vm_active_cpus(struct vm *vm)
2276 {
2277 
2278 	return (vm->active_cpus);
2279 }
2280 
2281 cpuset_t
2282 vm_suspended_cpus(struct vm *vm)
2283 {
2284 
2285 	return (vm->suspended_cpus);
2286 }
2287 
2288 void *
2289 vcpu_stats(struct vm *vm, int vcpuid)
2290 {
2291 
2292 	return (vm->vcpu[vcpuid].stats);
2293 }
2294 
2295 int
2296 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state)
2297 {
2298 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2299 		return (EINVAL);
2300 
2301 	*state = vm->vcpu[vcpuid].x2apic_state;
2302 
2303 	return (0);
2304 }
2305 
2306 int
2307 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state)
2308 {
2309 	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2310 		return (EINVAL);
2311 
2312 	if (state >= X2APIC_STATE_LAST)
2313 		return (EINVAL);
2314 
2315 	vm->vcpu[vcpuid].x2apic_state = state;
2316 
2317 	vlapic_set_x2apic_state(vm, vcpuid, state);
2318 
2319 	return (0);
2320 }
2321 
2322 /*
2323  * This function is called to ensure that a vcpu "sees" a pending event
2324  * as soon as possible:
2325  * - If the vcpu thread is sleeping then it is woken up.
2326  * - If the vcpu is running on a different host_cpu then an IPI will be directed
2327  *   to the host_cpu to cause the vcpu to trap into the hypervisor.
2328  */
2329 static void
2330 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr)
2331 {
2332 	int hostcpu;
2333 
2334 	hostcpu = vcpu->hostcpu;
2335 	if (vcpu->state == VCPU_RUNNING) {
2336 		KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu"));
2337 		if (hostcpu != curcpu) {
2338 			if (lapic_intr) {
2339 				vlapic_post_intr(vcpu->vlapic, hostcpu,
2340 				    vmm_ipinum);
2341 			} else {
2342 				ipi_cpu(hostcpu, vmm_ipinum);
2343 			}
2344 		} else {
2345 			/*
2346 			 * If the 'vcpu' is running on 'curcpu' then it must
2347 			 * be sending a notification to itself (e.g. SELF_IPI).
2348 			 * The pending event will be picked up when the vcpu
2349 			 * transitions back to guest context.
2350 			 */
2351 		}
2352 	} else {
2353 		KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent "
2354 		    "with hostcpu %d", vcpu->state, hostcpu));
2355 		if (vcpu->state == VCPU_SLEEPING)
2356 			wakeup_one(vcpu);
2357 	}
2358 }
2359 
2360 void
2361 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr)
2362 {
2363 	struct vcpu *vcpu = &vm->vcpu[vcpuid];
2364 
2365 	vcpu_lock(vcpu);
2366 	vcpu_notify_event_locked(vcpu, lapic_intr);
2367 	vcpu_unlock(vcpu);
2368 }
2369 
2370 struct vmspace *
2371 vm_get_vmspace(struct vm *vm)
2372 {
2373 
2374 	return (vm->vmspace);
2375 }
2376 
2377 int
2378 vm_apicid2vcpuid(struct vm *vm, int apicid)
2379 {
2380 	/*
2381 	 * XXX apic id is assumed to be numerically identical to vcpu id
2382 	 */
2383 	return (apicid);
2384 }
2385 
2386 void
2387 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest,
2388     vm_rendezvous_func_t func, void *arg)
2389 {
2390 	int i;
2391 
2392 	/*
2393 	 * Enforce that this function is called without any locks
2394 	 */
2395 	WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous");
2396 	KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU),
2397 	    ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid));
2398 
2399 restart:
2400 	mtx_lock(&vm->rendezvous_mtx);
2401 	if (vm->rendezvous_func != NULL) {
2402 		/*
2403 		 * If a rendezvous is already in progress then we need to
2404 		 * call the rendezvous handler in case this 'vcpuid' is one
2405 		 * of the targets of the rendezvous.
2406 		 */
2407 		RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress");
2408 		mtx_unlock(&vm->rendezvous_mtx);
2409 		vm_handle_rendezvous(vm, vcpuid);
2410 		goto restart;
2411 	}
2412 	KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous "
2413 	    "rendezvous is still in progress"));
2414 
2415 	RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous");
2416 	vm->rendezvous_req_cpus = dest;
2417 	CPU_ZERO(&vm->rendezvous_done_cpus);
2418 	vm->rendezvous_arg = arg;
2419 	vm_set_rendezvous_func(vm, func);
2420 	mtx_unlock(&vm->rendezvous_mtx);
2421 
2422 	/*
2423 	 * Wake up any sleeping vcpus and trigger a VM-exit in any running
2424 	 * vcpus so they handle the rendezvous as soon as possible.
2425 	 */
2426 	for (i = 0; i < VM_MAXCPU; i++) {
2427 		if (CPU_ISSET(i, &dest))
2428 			vcpu_notify_event(vm, i, false);
2429 	}
2430 
2431 	vm_handle_rendezvous(vm, vcpuid);
2432 }
2433 
2434 struct vatpic *
2435 vm_atpic(struct vm *vm)
2436 {
2437 	return (vm->vatpic);
2438 }
2439 
2440 struct vatpit *
2441 vm_atpit(struct vm *vm)
2442 {
2443 	return (vm->vatpit);
2444 }
2445 
2446 struct vpmtmr *
2447 vm_pmtmr(struct vm *vm)
2448 {
2449 
2450 	return (vm->vpmtmr);
2451 }
2452 
2453 struct vrtc *
2454 vm_rtc(struct vm *vm)
2455 {
2456 
2457 	return (vm->vrtc);
2458 }
2459 
2460 enum vm_reg_name
2461 vm_segment_name(int seg)
2462 {
2463 	static enum vm_reg_name seg_names[] = {
2464 		VM_REG_GUEST_ES,
2465 		VM_REG_GUEST_CS,
2466 		VM_REG_GUEST_SS,
2467 		VM_REG_GUEST_DS,
2468 		VM_REG_GUEST_FS,
2469 		VM_REG_GUEST_GS
2470 	};
2471 
2472 	KASSERT(seg >= 0 && seg < nitems(seg_names),
2473 	    ("%s: invalid segment encoding %d", __func__, seg));
2474 	return (seg_names[seg]);
2475 }
2476 
2477 void
2478 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo,
2479     int num_copyinfo)
2480 {
2481 	int idx;
2482 
2483 	for (idx = 0; idx < num_copyinfo; idx++) {
2484 		if (copyinfo[idx].cookie != NULL)
2485 			vm_gpa_release(copyinfo[idx].cookie);
2486 	}
2487 	bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo));
2488 }
2489 
2490 int
2491 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging,
2492     uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo,
2493     int num_copyinfo, int *fault)
2494 {
2495 	int error, idx, nused;
2496 	size_t n, off, remaining;
2497 	void *hva, *cookie;
2498 	uint64_t gpa;
2499 
2500 	bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo);
2501 
2502 	nused = 0;
2503 	remaining = len;
2504 	while (remaining > 0) {
2505 		KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo"));
2506 		error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa, fault);
2507 		if (error || *fault)
2508 			return (error);
2509 		off = gpa & PAGE_MASK;
2510 		n = min(remaining, PAGE_SIZE - off);
2511 		copyinfo[nused].gpa = gpa;
2512 		copyinfo[nused].len = n;
2513 		remaining -= n;
2514 		gla += n;
2515 		nused++;
2516 	}
2517 
2518 	for (idx = 0; idx < nused; idx++) {
2519 		hva = vm_gpa_hold(vm, vcpuid, copyinfo[idx].gpa,
2520 		    copyinfo[idx].len, prot, &cookie);
2521 		if (hva == NULL)
2522 			break;
2523 		copyinfo[idx].hva = hva;
2524 		copyinfo[idx].cookie = cookie;
2525 	}
2526 
2527 	if (idx != nused) {
2528 		vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo);
2529 		return (EFAULT);
2530 	} else {
2531 		*fault = 0;
2532 		return (0);
2533 	}
2534 }
2535 
2536 void
2537 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr,
2538     size_t len)
2539 {
2540 	char *dst;
2541 	int idx;
2542 
2543 	dst = kaddr;
2544 	idx = 0;
2545 	while (len > 0) {
2546 		bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len);
2547 		len -= copyinfo[idx].len;
2548 		dst += copyinfo[idx].len;
2549 		idx++;
2550 	}
2551 }
2552 
2553 void
2554 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr,
2555     struct vm_copyinfo *copyinfo, size_t len)
2556 {
2557 	const char *src;
2558 	int idx;
2559 
2560 	src = kaddr;
2561 	idx = 0;
2562 	while (len > 0) {
2563 		bcopy(src, copyinfo[idx].hva, copyinfo[idx].len);
2564 		len -= copyinfo[idx].len;
2565 		src += copyinfo[idx].len;
2566 		idx++;
2567 	}
2568 }
2569 
2570 /*
2571  * Return the amount of in-use and wired memory for the VM. Since
2572  * these are global stats, only return the values with for vCPU 0
2573  */
2574 VMM_STAT_DECLARE(VMM_MEM_RESIDENT);
2575 VMM_STAT_DECLARE(VMM_MEM_WIRED);
2576 
2577 static void
2578 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat)
2579 {
2580 
2581 	if (vcpu == 0) {
2582 		vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT,
2583 	       	    PAGE_SIZE * vmspace_resident_count(vm->vmspace));
2584 	}
2585 }
2586 
2587 static void
2588 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat)
2589 {
2590 
2591 	if (vcpu == 0) {
2592 		vmm_stat_set(vm, vcpu, VMM_MEM_WIRED,
2593 	      	    PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace)));
2594 	}
2595 }
2596 
2597 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt);
2598 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt);
2599