1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include "opt_bhyve_snapshot.h" 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/kernel.h> 39 #include <sys/module.h> 40 #include <sys/sysctl.h> 41 #include <sys/malloc.h> 42 #include <sys/pcpu.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/proc.h> 46 #include <sys/rwlock.h> 47 #include <sys/sched.h> 48 #include <sys/smp.h> 49 #include <sys/vnode.h> 50 51 #include <vm/vm.h> 52 #include <vm/vm_param.h> 53 #include <vm/vm_extern.h> 54 #include <vm/vm_object.h> 55 #include <vm/vm_page.h> 56 #include <vm/pmap.h> 57 #include <vm/vm_map.h> 58 #include <vm/vm_pager.h> 59 #include <vm/vm_kern.h> 60 #include <vm/vnode_pager.h> 61 #include <vm/swap_pager.h> 62 #include <vm/uma.h> 63 64 #include <machine/cpu.h> 65 #include <machine/pcb.h> 66 #include <machine/smp.h> 67 #include <machine/md_var.h> 68 #include <x86/psl.h> 69 #include <x86/apicreg.h> 70 #include <x86/ifunc.h> 71 72 #include <machine/vmm.h> 73 #include <machine/vmm_dev.h> 74 #include <machine/vmm_instruction_emul.h> 75 #include <machine/vmm_snapshot.h> 76 77 #include "vmm_ioport.h" 78 #include "vmm_ktr.h" 79 #include "vmm_host.h" 80 #include "vmm_mem.h" 81 #include "vmm_util.h" 82 #include "vatpic.h" 83 #include "vatpit.h" 84 #include "vhpet.h" 85 #include "vioapic.h" 86 #include "vlapic.h" 87 #include "vpmtmr.h" 88 #include "vrtc.h" 89 #include "vmm_stat.h" 90 #include "vmm_lapic.h" 91 92 #include "io/ppt.h" 93 #include "io/iommu.h" 94 95 struct vlapic; 96 97 /* 98 * Initialization: 99 * (a) allocated when vcpu is created 100 * (i) initialized when vcpu is created and when it is reinitialized 101 * (o) initialized the first time the vcpu is created 102 * (x) initialized before use 103 */ 104 struct vcpu { 105 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 106 enum vcpu_state state; /* (o) vcpu state */ 107 int hostcpu; /* (o) vcpu's host cpu */ 108 int reqidle; /* (i) request vcpu to idle */ 109 struct vlapic *vlapic; /* (i) APIC device model */ 110 enum x2apic_state x2apic_state; /* (i) APIC mode */ 111 uint64_t exitintinfo; /* (i) events pending at VM exit */ 112 int nmi_pending; /* (i) NMI pending */ 113 int extint_pending; /* (i) INTR pending */ 114 int exception_pending; /* (i) exception pending */ 115 int exc_vector; /* (x) exception collateral */ 116 int exc_errcode_valid; 117 uint32_t exc_errcode; 118 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 119 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 120 void *stats; /* (a,i) statistics */ 121 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 122 uint64_t nextrip; /* (x) next instruction to execute */ 123 uint64_t tsc_offset; /* (o) TSC offsetting */ 124 }; 125 126 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx)) 127 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 128 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 129 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 130 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 131 132 struct mem_seg { 133 size_t len; 134 bool sysmem; 135 struct vm_object *object; 136 }; 137 #define VM_MAX_MEMSEGS 4 138 139 struct mem_map { 140 vm_paddr_t gpa; 141 size_t len; 142 vm_ooffset_t segoff; 143 int segid; 144 int prot; 145 int flags; 146 }; 147 #define VM_MAX_MEMMAPS 8 148 149 /* 150 * Initialization: 151 * (o) initialized the first time the VM is created 152 * (i) initialized when VM is created and when it is reinitialized 153 * (x) initialized before use 154 */ 155 struct vm { 156 void *cookie; /* (i) cpu-specific data */ 157 void *iommu; /* (x) iommu-specific data */ 158 struct vhpet *vhpet; /* (i) virtual HPET */ 159 struct vioapic *vioapic; /* (i) virtual ioapic */ 160 struct vatpic *vatpic; /* (i) virtual atpic */ 161 struct vatpit *vatpit; /* (i) virtual atpit */ 162 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ 163 struct vrtc *vrtc; /* (o) virtual RTC */ 164 volatile cpuset_t active_cpus; /* (i) active vcpus */ 165 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */ 166 int suspend; /* (i) stop VM execution */ 167 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 168 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 169 cpuset_t rendezvous_req_cpus; /* (x) rendezvous requested */ 170 cpuset_t rendezvous_done_cpus; /* (x) rendezvous finished */ 171 void *rendezvous_arg; /* (x) rendezvous func/arg */ 172 vm_rendezvous_func_t rendezvous_func; 173 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 174 struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */ 175 struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */ 176 struct vmspace *vmspace; /* (o) guest's address space */ 177 char name[VM_MAX_NAMELEN+1]; /* (o) virtual machine name */ 178 struct vcpu vcpu[VM_MAXCPU]; /* (i) guest vcpus */ 179 /* The following describe the vm cpu topology */ 180 uint16_t sockets; /* (o) num of sockets */ 181 uint16_t cores; /* (o) num of cores/socket */ 182 uint16_t threads; /* (o) num of threads/core */ 183 uint16_t maxcpus; /* (o) max pluggable cpus */ 184 }; 185 186 static int vmm_initialized; 187 188 static void vmmops_panic(void); 189 190 static void 191 vmmops_panic(void) 192 { 193 panic("vmm_ops func called when !vmm_is_intel() && !vmm_is_svm()"); 194 } 195 196 #define DEFINE_VMMOPS_IFUNC(ret_type, opname, args) \ 197 DEFINE_IFUNC(static, ret_type, vmmops_##opname, args) \ 198 { \ 199 if (vmm_is_intel()) \ 200 return (vmm_ops_intel.opname); \ 201 else if (vmm_is_svm()) \ 202 return (vmm_ops_amd.opname); \ 203 else \ 204 return ((ret_type (*)args)vmmops_panic); \ 205 } 206 207 DEFINE_VMMOPS_IFUNC(int, modinit, (int ipinum)) 208 DEFINE_VMMOPS_IFUNC(int, modcleanup, (void)) 209 DEFINE_VMMOPS_IFUNC(void, modresume, (void)) 210 DEFINE_VMMOPS_IFUNC(void *, init, (struct vm *vm, struct pmap *pmap)) 211 DEFINE_VMMOPS_IFUNC(int, run, (void *vmi, int vcpu, register_t rip, 212 struct pmap *pmap, struct vm_eventinfo *info)) 213 DEFINE_VMMOPS_IFUNC(void, cleanup, (void *vmi)) 214 DEFINE_VMMOPS_IFUNC(int, getreg, (void *vmi, int vcpu, int num, 215 uint64_t *retval)) 216 DEFINE_VMMOPS_IFUNC(int, setreg, (void *vmi, int vcpu, int num, 217 uint64_t val)) 218 DEFINE_VMMOPS_IFUNC(int, getdesc, (void *vmi, int vcpu, int num, 219 struct seg_desc *desc)) 220 DEFINE_VMMOPS_IFUNC(int, setdesc, (void *vmi, int vcpu, int num, 221 struct seg_desc *desc)) 222 DEFINE_VMMOPS_IFUNC(int, getcap, (void *vmi, int vcpu, int num, int *retval)) 223 DEFINE_VMMOPS_IFUNC(int, setcap, (void *vmi, int vcpu, int num, int val)) 224 DEFINE_VMMOPS_IFUNC(struct vmspace *, vmspace_alloc, (vm_offset_t min, 225 vm_offset_t max)) 226 DEFINE_VMMOPS_IFUNC(void, vmspace_free, (struct vmspace *vmspace)) 227 DEFINE_VMMOPS_IFUNC(struct vlapic *, vlapic_init, (void *vmi, int vcpu)) 228 DEFINE_VMMOPS_IFUNC(void, vlapic_cleanup, (void *vmi, struct vlapic *vlapic)) 229 #ifdef BHYVE_SNAPSHOT 230 DEFINE_VMMOPS_IFUNC(int, snapshot, (void *vmi, struct vm_snapshot_meta 231 *meta)) 232 DEFINE_VMMOPS_IFUNC(int, vmcx_snapshot, (void *vmi, struct vm_snapshot_meta 233 *meta, int vcpu)) 234 DEFINE_VMMOPS_IFUNC(int, restore_tsc, (void *vmi, int vcpuid, uint64_t now)) 235 #endif 236 237 #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS) 238 #define fpu_stop_emulating() clts() 239 240 SDT_PROVIDER_DEFINE(vmm); 241 242 static MALLOC_DEFINE(M_VM, "vm", "vm"); 243 244 /* statistics */ 245 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 246 247 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 248 NULL); 249 250 /* 251 * Halt the guest if all vcpus are executing a HLT instruction with 252 * interrupts disabled. 253 */ 254 static int halt_detection_enabled = 1; 255 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 256 &halt_detection_enabled, 0, 257 "Halt VM if all vcpus execute HLT with interrupts disabled"); 258 259 static int vmm_ipinum; 260 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 261 "IPI vector used for vcpu notifications"); 262 263 static int trace_guest_exceptions; 264 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN, 265 &trace_guest_exceptions, 0, 266 "Trap into hypervisor on all guest exceptions and reflect them back"); 267 268 static int trap_wbinvd; 269 SYSCTL_INT(_hw_vmm, OID_AUTO, trap_wbinvd, CTLFLAG_RDTUN, &trap_wbinvd, 0, 270 "WBINVD triggers a VM-exit"); 271 272 static void vm_free_memmap(struct vm *vm, int ident); 273 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm); 274 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr); 275 276 #ifdef KTR 277 static const char * 278 vcpu_state2str(enum vcpu_state state) 279 { 280 281 switch (state) { 282 case VCPU_IDLE: 283 return ("idle"); 284 case VCPU_FROZEN: 285 return ("frozen"); 286 case VCPU_RUNNING: 287 return ("running"); 288 case VCPU_SLEEPING: 289 return ("sleeping"); 290 default: 291 return ("unknown"); 292 } 293 } 294 #endif 295 296 static void 297 vcpu_cleanup(struct vm *vm, int i, bool destroy) 298 { 299 struct vcpu *vcpu = &vm->vcpu[i]; 300 301 vmmops_vlapic_cleanup(vm->cookie, vcpu->vlapic); 302 if (destroy) { 303 vmm_stat_free(vcpu->stats); 304 fpu_save_area_free(vcpu->guestfpu); 305 } 306 } 307 308 static void 309 vcpu_init(struct vm *vm, int vcpu_id, bool create) 310 { 311 struct vcpu *vcpu; 312 313 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus, 314 ("vcpu_init: invalid vcpu %d", vcpu_id)); 315 316 vcpu = &vm->vcpu[vcpu_id]; 317 318 if (create) { 319 KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already " 320 "initialized", vcpu_id)); 321 vcpu_lock_init(vcpu); 322 vcpu->state = VCPU_IDLE; 323 vcpu->hostcpu = NOCPU; 324 vcpu->guestfpu = fpu_save_area_alloc(); 325 vcpu->stats = vmm_stat_alloc(); 326 vcpu->tsc_offset = 0; 327 } 328 329 vcpu->vlapic = vmmops_vlapic_init(vm->cookie, vcpu_id); 330 vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED); 331 vcpu->reqidle = 0; 332 vcpu->exitintinfo = 0; 333 vcpu->nmi_pending = 0; 334 vcpu->extint_pending = 0; 335 vcpu->exception_pending = 0; 336 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 337 fpu_save_area_reset(vcpu->guestfpu); 338 vmm_stat_init(vcpu->stats); 339 } 340 341 int 342 vcpu_trace_exceptions(struct vm *vm, int vcpuid) 343 { 344 345 return (trace_guest_exceptions); 346 } 347 348 int 349 vcpu_trap_wbinvd(struct vm *vm, int vcpuid) 350 { 351 return (trap_wbinvd); 352 } 353 354 struct vm_exit * 355 vm_exitinfo(struct vm *vm, int cpuid) 356 { 357 struct vcpu *vcpu; 358 359 if (cpuid < 0 || cpuid >= vm->maxcpus) 360 panic("vm_exitinfo: invalid cpuid %d", cpuid); 361 362 vcpu = &vm->vcpu[cpuid]; 363 364 return (&vcpu->exitinfo); 365 } 366 367 static int 368 vmm_init(void) 369 { 370 int error; 371 372 if (!vmm_is_hw_supported()) 373 return (ENXIO); 374 375 vmm_host_state_init(); 376 377 vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) : 378 &IDTVEC(justreturn)); 379 if (vmm_ipinum < 0) 380 vmm_ipinum = IPI_AST; 381 382 error = vmm_mem_init(); 383 if (error) 384 return (error); 385 386 vmm_resume_p = vmmops_modresume; 387 388 return (vmmops_modinit(vmm_ipinum)); 389 } 390 391 static int 392 vmm_handler(module_t mod, int what, void *arg) 393 { 394 int error; 395 396 switch (what) { 397 case MOD_LOAD: 398 if (vmm_is_hw_supported()) { 399 vmmdev_init(); 400 error = vmm_init(); 401 if (error == 0) 402 vmm_initialized = 1; 403 } else { 404 error = ENXIO; 405 } 406 break; 407 case MOD_UNLOAD: 408 if (vmm_is_hw_supported()) { 409 error = vmmdev_cleanup(); 410 if (error == 0) { 411 vmm_resume_p = NULL; 412 iommu_cleanup(); 413 if (vmm_ipinum != IPI_AST) 414 lapic_ipi_free(vmm_ipinum); 415 error = vmmops_modcleanup(); 416 /* 417 * Something bad happened - prevent new 418 * VMs from being created 419 */ 420 if (error) 421 vmm_initialized = 0; 422 } 423 } else { 424 error = 0; 425 } 426 break; 427 default: 428 error = 0; 429 break; 430 } 431 return (error); 432 } 433 434 static moduledata_t vmm_kmod = { 435 "vmm", 436 vmm_handler, 437 NULL 438 }; 439 440 /* 441 * vmm initialization has the following dependencies: 442 * 443 * - VT-x initialization requires smp_rendezvous() and therefore must happen 444 * after SMP is fully functional (after SI_SUB_SMP). 445 */ 446 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 447 MODULE_VERSION(vmm, 1); 448 449 static void 450 vm_init(struct vm *vm, bool create) 451 { 452 int i; 453 454 vm->cookie = vmmops_init(vm, vmspace_pmap(vm->vmspace)); 455 vm->iommu = NULL; 456 vm->vioapic = vioapic_init(vm); 457 vm->vhpet = vhpet_init(vm); 458 vm->vatpic = vatpic_init(vm); 459 vm->vatpit = vatpit_init(vm); 460 vm->vpmtmr = vpmtmr_init(vm); 461 if (create) 462 vm->vrtc = vrtc_init(vm); 463 464 CPU_ZERO(&vm->active_cpus); 465 CPU_ZERO(&vm->debug_cpus); 466 467 vm->suspend = 0; 468 CPU_ZERO(&vm->suspended_cpus); 469 470 for (i = 0; i < vm->maxcpus; i++) 471 vcpu_init(vm, i, create); 472 } 473 474 /* 475 * The default CPU topology is a single thread per package. 476 */ 477 u_int cores_per_package = 1; 478 u_int threads_per_core = 1; 479 480 int 481 vm_create(const char *name, struct vm **retvm) 482 { 483 struct vm *vm; 484 struct vmspace *vmspace; 485 486 /* 487 * If vmm.ko could not be successfully initialized then don't attempt 488 * to create the virtual machine. 489 */ 490 if (!vmm_initialized) 491 return (ENXIO); 492 493 if (name == NULL || strnlen(name, VM_MAX_NAMELEN + 1) == 494 VM_MAX_NAMELEN + 1) 495 return (EINVAL); 496 497 vmspace = vmmops_vmspace_alloc(0, VM_MAXUSER_ADDRESS_LA48); 498 if (vmspace == NULL) 499 return (ENOMEM); 500 501 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 502 strcpy(vm->name, name); 503 vm->vmspace = vmspace; 504 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 505 506 vm->sockets = 1; 507 vm->cores = cores_per_package; /* XXX backwards compatibility */ 508 vm->threads = threads_per_core; /* XXX backwards compatibility */ 509 vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */ 510 511 vm_init(vm, true); 512 513 *retvm = vm; 514 return (0); 515 } 516 517 void 518 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, 519 uint16_t *threads, uint16_t *maxcpus) 520 { 521 *sockets = vm->sockets; 522 *cores = vm->cores; 523 *threads = vm->threads; 524 *maxcpus = vm->maxcpus; 525 } 526 527 uint16_t 528 vm_get_maxcpus(struct vm *vm) 529 { 530 return (vm->maxcpus); 531 } 532 533 int 534 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, 535 uint16_t threads, uint16_t maxcpus) 536 { 537 if (maxcpus != 0) 538 return (EINVAL); /* XXX remove when supported */ 539 if ((sockets * cores * threads) > vm->maxcpus) 540 return (EINVAL); 541 /* XXX need to check sockets * cores * threads == vCPU, how? */ 542 vm->sockets = sockets; 543 vm->cores = cores; 544 vm->threads = threads; 545 vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */ 546 return(0); 547 } 548 549 static void 550 vm_cleanup(struct vm *vm, bool destroy) 551 { 552 struct mem_map *mm; 553 int i; 554 555 ppt_unassign_all(vm); 556 557 if (vm->iommu != NULL) 558 iommu_destroy_domain(vm->iommu); 559 560 if (destroy) 561 vrtc_cleanup(vm->vrtc); 562 else 563 vrtc_reset(vm->vrtc); 564 vpmtmr_cleanup(vm->vpmtmr); 565 vatpit_cleanup(vm->vatpit); 566 vhpet_cleanup(vm->vhpet); 567 vatpic_cleanup(vm->vatpic); 568 vioapic_cleanup(vm->vioapic); 569 570 for (i = 0; i < vm->maxcpus; i++) 571 vcpu_cleanup(vm, i, destroy); 572 573 vmmops_cleanup(vm->cookie); 574 575 /* 576 * System memory is removed from the guest address space only when 577 * the VM is destroyed. This is because the mapping remains the same 578 * across VM reset. 579 * 580 * Device memory can be relocated by the guest (e.g. using PCI BARs) 581 * so those mappings are removed on a VM reset. 582 */ 583 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 584 mm = &vm->mem_maps[i]; 585 if (destroy || !sysmem_mapping(vm, mm)) 586 vm_free_memmap(vm, i); 587 } 588 589 if (destroy) { 590 for (i = 0; i < VM_MAX_MEMSEGS; i++) 591 vm_free_memseg(vm, i); 592 593 vmmops_vmspace_free(vm->vmspace); 594 vm->vmspace = NULL; 595 } 596 } 597 598 void 599 vm_destroy(struct vm *vm) 600 { 601 vm_cleanup(vm, true); 602 free(vm, M_VM); 603 } 604 605 int 606 vm_reinit(struct vm *vm) 607 { 608 int error; 609 610 /* 611 * A virtual machine can be reset only if all vcpus are suspended. 612 */ 613 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 614 vm_cleanup(vm, false); 615 vm_init(vm, false); 616 error = 0; 617 } else { 618 error = EBUSY; 619 } 620 621 return (error); 622 } 623 624 const char * 625 vm_name(struct vm *vm) 626 { 627 return (vm->name); 628 } 629 630 int 631 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 632 { 633 vm_object_t obj; 634 635 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 636 return (ENOMEM); 637 else 638 return (0); 639 } 640 641 int 642 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 643 { 644 645 vmm_mmio_free(vm->vmspace, gpa, len); 646 return (0); 647 } 648 649 /* 650 * Return 'true' if 'gpa' is allocated in the guest address space. 651 * 652 * This function is called in the context of a running vcpu which acts as 653 * an implicit lock on 'vm->mem_maps[]'. 654 */ 655 bool 656 vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa) 657 { 658 struct mem_map *mm; 659 int i; 660 661 #ifdef INVARIANTS 662 int hostcpu, state; 663 state = vcpu_get_state(vm, vcpuid, &hostcpu); 664 KASSERT(state == VCPU_RUNNING && hostcpu == curcpu, 665 ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu)); 666 #endif 667 668 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 669 mm = &vm->mem_maps[i]; 670 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len) 671 return (true); /* 'gpa' is sysmem or devmem */ 672 } 673 674 if (ppt_is_mmio(vm, gpa)) 675 return (true); /* 'gpa' is pci passthru mmio */ 676 677 return (false); 678 } 679 680 int 681 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem) 682 { 683 struct mem_seg *seg; 684 vm_object_t obj; 685 686 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 687 return (EINVAL); 688 689 if (len == 0 || (len & PAGE_MASK)) 690 return (EINVAL); 691 692 seg = &vm->mem_segs[ident]; 693 if (seg->object != NULL) { 694 if (seg->len == len && seg->sysmem == sysmem) 695 return (EEXIST); 696 else 697 return (EINVAL); 698 } 699 700 obj = vm_object_allocate(OBJT_SWAP, len >> PAGE_SHIFT); 701 if (obj == NULL) 702 return (ENOMEM); 703 704 seg->len = len; 705 seg->object = obj; 706 seg->sysmem = sysmem; 707 return (0); 708 } 709 710 int 711 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, 712 vm_object_t *objptr) 713 { 714 struct mem_seg *seg; 715 716 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 717 return (EINVAL); 718 719 seg = &vm->mem_segs[ident]; 720 if (len) 721 *len = seg->len; 722 if (sysmem) 723 *sysmem = seg->sysmem; 724 if (objptr) 725 *objptr = seg->object; 726 return (0); 727 } 728 729 void 730 vm_free_memseg(struct vm *vm, int ident) 731 { 732 struct mem_seg *seg; 733 734 KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS, 735 ("%s: invalid memseg ident %d", __func__, ident)); 736 737 seg = &vm->mem_segs[ident]; 738 if (seg->object != NULL) { 739 vm_object_deallocate(seg->object); 740 bzero(seg, sizeof(struct mem_seg)); 741 } 742 } 743 744 int 745 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first, 746 size_t len, int prot, int flags) 747 { 748 struct mem_seg *seg; 749 struct mem_map *m, *map; 750 vm_ooffset_t last; 751 int i, error; 752 753 if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0) 754 return (EINVAL); 755 756 if (flags & ~VM_MEMMAP_F_WIRED) 757 return (EINVAL); 758 759 if (segid < 0 || segid >= VM_MAX_MEMSEGS) 760 return (EINVAL); 761 762 seg = &vm->mem_segs[segid]; 763 if (seg->object == NULL) 764 return (EINVAL); 765 766 last = first + len; 767 if (first < 0 || first >= last || last > seg->len) 768 return (EINVAL); 769 770 if ((gpa | first | last) & PAGE_MASK) 771 return (EINVAL); 772 773 map = NULL; 774 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 775 m = &vm->mem_maps[i]; 776 if (m->len == 0) { 777 map = m; 778 break; 779 } 780 } 781 782 if (map == NULL) 783 return (ENOSPC); 784 785 error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa, 786 len, 0, VMFS_NO_SPACE, prot, prot, 0); 787 if (error != KERN_SUCCESS) 788 return (EFAULT); 789 790 vm_object_reference(seg->object); 791 792 if (flags & VM_MEMMAP_F_WIRED) { 793 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len, 794 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 795 if (error != KERN_SUCCESS) { 796 vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len); 797 return (error == KERN_RESOURCE_SHORTAGE ? ENOMEM : 798 EFAULT); 799 } 800 } 801 802 map->gpa = gpa; 803 map->len = len; 804 map->segoff = first; 805 map->segid = segid; 806 map->prot = prot; 807 map->flags = flags; 808 return (0); 809 } 810 811 int 812 vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len) 813 { 814 struct mem_map *m; 815 int i; 816 817 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 818 m = &vm->mem_maps[i]; 819 if (m->gpa == gpa && m->len == len && 820 (m->flags & VM_MEMMAP_F_IOMMU) == 0) { 821 vm_free_memmap(vm, i); 822 return (0); 823 } 824 } 825 826 return (EINVAL); 827 } 828 829 int 830 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, 831 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 832 { 833 struct mem_map *mm, *mmnext; 834 int i; 835 836 mmnext = NULL; 837 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 838 mm = &vm->mem_maps[i]; 839 if (mm->len == 0 || mm->gpa < *gpa) 840 continue; 841 if (mmnext == NULL || mm->gpa < mmnext->gpa) 842 mmnext = mm; 843 } 844 845 if (mmnext != NULL) { 846 *gpa = mmnext->gpa; 847 if (segid) 848 *segid = mmnext->segid; 849 if (segoff) 850 *segoff = mmnext->segoff; 851 if (len) 852 *len = mmnext->len; 853 if (prot) 854 *prot = mmnext->prot; 855 if (flags) 856 *flags = mmnext->flags; 857 return (0); 858 } else { 859 return (ENOENT); 860 } 861 } 862 863 static void 864 vm_free_memmap(struct vm *vm, int ident) 865 { 866 struct mem_map *mm; 867 int error __diagused; 868 869 mm = &vm->mem_maps[ident]; 870 if (mm->len) { 871 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa, 872 mm->gpa + mm->len); 873 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d", 874 __func__, error)); 875 bzero(mm, sizeof(struct mem_map)); 876 } 877 } 878 879 static __inline bool 880 sysmem_mapping(struct vm *vm, struct mem_map *mm) 881 { 882 883 if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem) 884 return (true); 885 else 886 return (false); 887 } 888 889 vm_paddr_t 890 vmm_sysmem_maxaddr(struct vm *vm) 891 { 892 struct mem_map *mm; 893 vm_paddr_t maxaddr; 894 int i; 895 896 maxaddr = 0; 897 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 898 mm = &vm->mem_maps[i]; 899 if (sysmem_mapping(vm, mm)) { 900 if (maxaddr < mm->gpa + mm->len) 901 maxaddr = mm->gpa + mm->len; 902 } 903 } 904 return (maxaddr); 905 } 906 907 static void 908 vm_iommu_modify(struct vm *vm, bool map) 909 { 910 int i, sz; 911 vm_paddr_t gpa, hpa; 912 struct mem_map *mm; 913 void *vp, *cookie, *host_domain; 914 915 sz = PAGE_SIZE; 916 host_domain = iommu_host_domain(); 917 918 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 919 mm = &vm->mem_maps[i]; 920 if (!sysmem_mapping(vm, mm)) 921 continue; 922 923 if (map) { 924 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0, 925 ("iommu map found invalid memmap %#lx/%#lx/%#x", 926 mm->gpa, mm->len, mm->flags)); 927 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0) 928 continue; 929 mm->flags |= VM_MEMMAP_F_IOMMU; 930 } else { 931 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0) 932 continue; 933 mm->flags &= ~VM_MEMMAP_F_IOMMU; 934 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0, 935 ("iommu unmap found invalid memmap %#lx/%#lx/%#x", 936 mm->gpa, mm->len, mm->flags)); 937 } 938 939 gpa = mm->gpa; 940 while (gpa < mm->gpa + mm->len) { 941 vp = vm_gpa_hold(vm, -1, gpa, PAGE_SIZE, VM_PROT_WRITE, 942 &cookie); 943 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", 944 vm_name(vm), gpa)); 945 946 vm_gpa_release(cookie); 947 948 hpa = DMAP_TO_PHYS((uintptr_t)vp); 949 if (map) { 950 iommu_create_mapping(vm->iommu, gpa, hpa, sz); 951 } else { 952 iommu_remove_mapping(vm->iommu, gpa, sz); 953 } 954 955 gpa += PAGE_SIZE; 956 } 957 } 958 959 /* 960 * Invalidate the cached translations associated with the domain 961 * from which pages were removed. 962 */ 963 if (map) 964 iommu_invalidate_tlb(host_domain); 965 else 966 iommu_invalidate_tlb(vm->iommu); 967 } 968 969 #define vm_iommu_unmap(vm) vm_iommu_modify((vm), false) 970 #define vm_iommu_map(vm) vm_iommu_modify((vm), true) 971 972 int 973 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 974 { 975 int error; 976 977 error = ppt_unassign_device(vm, bus, slot, func); 978 if (error) 979 return (error); 980 981 if (ppt_assigned_devices(vm) == 0) 982 vm_iommu_unmap(vm); 983 984 return (0); 985 } 986 987 int 988 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 989 { 990 int error; 991 vm_paddr_t maxaddr; 992 993 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */ 994 if (ppt_assigned_devices(vm) == 0) { 995 KASSERT(vm->iommu == NULL, 996 ("vm_assign_pptdev: iommu must be NULL")); 997 maxaddr = vmm_sysmem_maxaddr(vm); 998 vm->iommu = iommu_create_domain(maxaddr); 999 if (vm->iommu == NULL) 1000 return (ENXIO); 1001 vm_iommu_map(vm); 1002 } 1003 1004 error = ppt_assign_device(vm, bus, slot, func); 1005 return (error); 1006 } 1007 1008 void * 1009 vm_gpa_hold(struct vm *vm, int vcpuid, vm_paddr_t gpa, size_t len, int reqprot, 1010 void **cookie) 1011 { 1012 int i, count, pageoff; 1013 struct mem_map *mm; 1014 vm_page_t m; 1015 #ifdef INVARIANTS 1016 /* 1017 * All vcpus are frozen by ioctls that modify the memory map 1018 * (e.g. VM_MMAP_MEMSEG). Therefore 'vm->memmap[]' stability is 1019 * guaranteed if at least one vcpu is in the VCPU_FROZEN state. 1020 */ 1021 int state; 1022 KASSERT(vcpuid >= -1 && vcpuid < vm->maxcpus, ("%s: invalid vcpuid %d", 1023 __func__, vcpuid)); 1024 for (i = 0; i < vm->maxcpus; i++) { 1025 if (vcpuid != -1 && vcpuid != i) 1026 continue; 1027 state = vcpu_get_state(vm, i, NULL); 1028 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d", 1029 __func__, state)); 1030 } 1031 #endif 1032 pageoff = gpa & PAGE_MASK; 1033 if (len > PAGE_SIZE - pageoff) 1034 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 1035 1036 count = 0; 1037 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1038 mm = &vm->mem_maps[i]; 1039 if (gpa >= mm->gpa && gpa < mm->gpa + mm->len) { 1040 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 1041 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 1042 break; 1043 } 1044 } 1045 1046 if (count == 1) { 1047 *cookie = m; 1048 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 1049 } else { 1050 *cookie = NULL; 1051 return (NULL); 1052 } 1053 } 1054 1055 void 1056 vm_gpa_release(void *cookie) 1057 { 1058 vm_page_t m = cookie; 1059 1060 vm_page_unwire(m, PQ_ACTIVE); 1061 } 1062 1063 int 1064 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval) 1065 { 1066 1067 if (vcpu < 0 || vcpu >= vm->maxcpus) 1068 return (EINVAL); 1069 1070 if (reg >= VM_REG_LAST) 1071 return (EINVAL); 1072 1073 return (vmmops_getreg(vm->cookie, vcpu, reg, retval)); 1074 } 1075 1076 int 1077 vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val) 1078 { 1079 struct vcpu *vcpu; 1080 int error; 1081 1082 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1083 return (EINVAL); 1084 1085 if (reg >= VM_REG_LAST) 1086 return (EINVAL); 1087 1088 error = vmmops_setreg(vm->cookie, vcpuid, reg, val); 1089 if (error || reg != VM_REG_GUEST_RIP) 1090 return (error); 1091 1092 /* Set 'nextrip' to match the value of %rip */ 1093 VCPU_CTR1(vm, vcpuid, "Setting nextrip to %#lx", val); 1094 vcpu = &vm->vcpu[vcpuid]; 1095 vcpu->nextrip = val; 1096 return (0); 1097 } 1098 1099 static bool 1100 is_descriptor_table(int reg) 1101 { 1102 1103 switch (reg) { 1104 case VM_REG_GUEST_IDTR: 1105 case VM_REG_GUEST_GDTR: 1106 return (true); 1107 default: 1108 return (false); 1109 } 1110 } 1111 1112 static bool 1113 is_segment_register(int reg) 1114 { 1115 1116 switch (reg) { 1117 case VM_REG_GUEST_ES: 1118 case VM_REG_GUEST_CS: 1119 case VM_REG_GUEST_SS: 1120 case VM_REG_GUEST_DS: 1121 case VM_REG_GUEST_FS: 1122 case VM_REG_GUEST_GS: 1123 case VM_REG_GUEST_TR: 1124 case VM_REG_GUEST_LDTR: 1125 return (true); 1126 default: 1127 return (false); 1128 } 1129 } 1130 1131 int 1132 vm_get_seg_desc(struct vm *vm, int vcpu, int reg, 1133 struct seg_desc *desc) 1134 { 1135 1136 if (vcpu < 0 || vcpu >= vm->maxcpus) 1137 return (EINVAL); 1138 1139 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1140 return (EINVAL); 1141 1142 return (vmmops_getdesc(vm->cookie, vcpu, reg, desc)); 1143 } 1144 1145 int 1146 vm_set_seg_desc(struct vm *vm, int vcpu, int reg, 1147 struct seg_desc *desc) 1148 { 1149 if (vcpu < 0 || vcpu >= vm->maxcpus) 1150 return (EINVAL); 1151 1152 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1153 return (EINVAL); 1154 1155 return (vmmops_setdesc(vm->cookie, vcpu, reg, desc)); 1156 } 1157 1158 static void 1159 restore_guest_fpustate(struct vcpu *vcpu) 1160 { 1161 1162 /* flush host state to the pcb */ 1163 fpuexit(curthread); 1164 1165 /* restore guest FPU state */ 1166 fpu_stop_emulating(); 1167 fpurestore(vcpu->guestfpu); 1168 1169 /* restore guest XCR0 if XSAVE is enabled in the host */ 1170 if (rcr4() & CR4_XSAVE) 1171 load_xcr(0, vcpu->guest_xcr0); 1172 1173 /* 1174 * The FPU is now "dirty" with the guest's state so turn on emulation 1175 * to trap any access to the FPU by the host. 1176 */ 1177 fpu_start_emulating(); 1178 } 1179 1180 static void 1181 save_guest_fpustate(struct vcpu *vcpu) 1182 { 1183 1184 if ((rcr0() & CR0_TS) == 0) 1185 panic("fpu emulation not enabled in host!"); 1186 1187 /* save guest XCR0 and restore host XCR0 */ 1188 if (rcr4() & CR4_XSAVE) { 1189 vcpu->guest_xcr0 = rxcr(0); 1190 load_xcr(0, vmm_get_host_xcr0()); 1191 } 1192 1193 /* save guest FPU state */ 1194 fpu_stop_emulating(); 1195 fpusave(vcpu->guestfpu); 1196 fpu_start_emulating(); 1197 } 1198 1199 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 1200 1201 static int 1202 vcpu_set_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate, 1203 bool from_idle) 1204 { 1205 struct vcpu *vcpu; 1206 int error; 1207 1208 vcpu = &vm->vcpu[vcpuid]; 1209 vcpu_assert_locked(vcpu); 1210 1211 /* 1212 * State transitions from the vmmdev_ioctl() must always begin from 1213 * the VCPU_IDLE state. This guarantees that there is only a single 1214 * ioctl() operating on a vcpu at any point. 1215 */ 1216 if (from_idle) { 1217 while (vcpu->state != VCPU_IDLE) { 1218 vcpu->reqidle = 1; 1219 vcpu_notify_event_locked(vcpu, false); 1220 VCPU_CTR1(vm, vcpuid, "vcpu state change from %s to " 1221 "idle requested", vcpu_state2str(vcpu->state)); 1222 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 1223 } 1224 } else { 1225 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 1226 "vcpu idle state")); 1227 } 1228 1229 if (vcpu->state == VCPU_RUNNING) { 1230 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 1231 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 1232 } else { 1233 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 1234 "vcpu that is not running", vcpu->hostcpu)); 1235 } 1236 1237 /* 1238 * The following state transitions are allowed: 1239 * IDLE -> FROZEN -> IDLE 1240 * FROZEN -> RUNNING -> FROZEN 1241 * FROZEN -> SLEEPING -> FROZEN 1242 */ 1243 switch (vcpu->state) { 1244 case VCPU_IDLE: 1245 case VCPU_RUNNING: 1246 case VCPU_SLEEPING: 1247 error = (newstate != VCPU_FROZEN); 1248 break; 1249 case VCPU_FROZEN: 1250 error = (newstate == VCPU_FROZEN); 1251 break; 1252 default: 1253 error = 1; 1254 break; 1255 } 1256 1257 if (error) 1258 return (EBUSY); 1259 1260 VCPU_CTR2(vm, vcpuid, "vcpu state changed from %s to %s", 1261 vcpu_state2str(vcpu->state), vcpu_state2str(newstate)); 1262 1263 vcpu->state = newstate; 1264 if (newstate == VCPU_RUNNING) 1265 vcpu->hostcpu = curcpu; 1266 else 1267 vcpu->hostcpu = NOCPU; 1268 1269 if (newstate == VCPU_IDLE) 1270 wakeup(&vcpu->state); 1271 1272 return (0); 1273 } 1274 1275 static void 1276 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1277 { 1278 int error; 1279 1280 if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0) 1281 panic("Error %d setting state to %d\n", error, newstate); 1282 } 1283 1284 static void 1285 vcpu_require_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1286 { 1287 int error; 1288 1289 if ((error = vcpu_set_state_locked(vm, vcpuid, newstate, false)) != 0) 1290 panic("Error %d setting state to %d", error, newstate); 1291 } 1292 1293 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt) \ 1294 do { \ 1295 if (vcpuid >= 0) \ 1296 VCPU_CTR0(vm, vcpuid, fmt); \ 1297 else \ 1298 VM_CTR0(vm, fmt); \ 1299 } while (0) 1300 1301 static int 1302 vm_handle_rendezvous(struct vm *vm, int vcpuid) 1303 { 1304 struct thread *td; 1305 int error; 1306 1307 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus), 1308 ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid)); 1309 1310 error = 0; 1311 td = curthread; 1312 mtx_lock(&vm->rendezvous_mtx); 1313 while (vm->rendezvous_func != NULL) { 1314 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1315 CPU_AND(&vm->rendezvous_req_cpus, &vm->rendezvous_req_cpus, &vm->active_cpus); 1316 1317 if (vcpuid != -1 && 1318 CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1319 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1320 VCPU_CTR0(vm, vcpuid, "Calling rendezvous func"); 1321 (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg); 1322 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1323 } 1324 if (CPU_CMP(&vm->rendezvous_req_cpus, 1325 &vm->rendezvous_done_cpus) == 0) { 1326 VCPU_CTR0(vm, vcpuid, "Rendezvous completed"); 1327 vm->rendezvous_func = NULL; 1328 wakeup(&vm->rendezvous_func); 1329 break; 1330 } 1331 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion"); 1332 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1333 "vmrndv", hz); 1334 if (td_ast_pending(td, TDA_SUSPEND)) { 1335 mtx_unlock(&vm->rendezvous_mtx); 1336 error = thread_check_susp(td, true); 1337 if (error != 0) 1338 return (error); 1339 mtx_lock(&vm->rendezvous_mtx); 1340 } 1341 } 1342 mtx_unlock(&vm->rendezvous_mtx); 1343 return (0); 1344 } 1345 1346 /* 1347 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1348 */ 1349 static int 1350 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu) 1351 { 1352 struct vcpu *vcpu; 1353 const char *wmesg; 1354 struct thread *td; 1355 int error, t, vcpu_halted, vm_halted; 1356 1357 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1358 1359 vcpu = &vm->vcpu[vcpuid]; 1360 vcpu_halted = 0; 1361 vm_halted = 0; 1362 error = 0; 1363 td = curthread; 1364 1365 vcpu_lock(vcpu); 1366 while (1) { 1367 /* 1368 * Do a final check for pending NMI or interrupts before 1369 * really putting this thread to sleep. Also check for 1370 * software events that would cause this vcpu to wakeup. 1371 * 1372 * These interrupts/events could have happened after the 1373 * vcpu returned from vmmops_run() and before it acquired the 1374 * vcpu lock above. 1375 */ 1376 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle) 1377 break; 1378 if (vm_nmi_pending(vm, vcpuid)) 1379 break; 1380 if (!intr_disabled) { 1381 if (vm_extint_pending(vm, vcpuid) || 1382 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1383 break; 1384 } 1385 } 1386 1387 /* Don't go to sleep if the vcpu thread needs to yield */ 1388 if (vcpu_should_yield(vm, vcpuid)) 1389 break; 1390 1391 if (vcpu_debugged(vm, vcpuid)) 1392 break; 1393 1394 /* 1395 * Some Linux guests implement "halt" by having all vcpus 1396 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1397 * track of the vcpus that have entered this state. When all 1398 * vcpus enter the halted state the virtual machine is halted. 1399 */ 1400 if (intr_disabled) { 1401 wmesg = "vmhalt"; 1402 VCPU_CTR0(vm, vcpuid, "Halted"); 1403 if (!vcpu_halted && halt_detection_enabled) { 1404 vcpu_halted = 1; 1405 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1406 } 1407 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1408 vm_halted = 1; 1409 break; 1410 } 1411 } else { 1412 wmesg = "vmidle"; 1413 } 1414 1415 t = ticks; 1416 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); 1417 /* 1418 * XXX msleep_spin() cannot be interrupted by signals so 1419 * wake up periodically to check pending signals. 1420 */ 1421 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1422 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); 1423 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t); 1424 if (td_ast_pending(td, TDA_SUSPEND)) { 1425 vcpu_unlock(vcpu); 1426 error = thread_check_susp(td, false); 1427 if (error != 0) 1428 return (error); 1429 vcpu_lock(vcpu); 1430 } 1431 } 1432 1433 if (vcpu_halted) 1434 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1435 1436 vcpu_unlock(vcpu); 1437 1438 if (vm_halted) 1439 vm_suspend(vm, VM_SUSPEND_HALT); 1440 1441 return (0); 1442 } 1443 1444 static int 1445 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu) 1446 { 1447 int rv, ftype; 1448 struct vm_map *map; 1449 struct vcpu *vcpu; 1450 struct vm_exit *vme; 1451 1452 vcpu = &vm->vcpu[vcpuid]; 1453 vme = &vcpu->exitinfo; 1454 1455 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1456 __func__, vme->inst_length)); 1457 1458 ftype = vme->u.paging.fault_type; 1459 KASSERT(ftype == VM_PROT_READ || 1460 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1461 ("vm_handle_paging: invalid fault_type %d", ftype)); 1462 1463 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1464 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1465 vme->u.paging.gpa, ftype); 1466 if (rv == 0) { 1467 VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx", 1468 ftype == VM_PROT_READ ? "accessed" : "dirty", 1469 vme->u.paging.gpa); 1470 goto done; 1471 } 1472 } 1473 1474 map = &vm->vmspace->vm_map; 1475 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL); 1476 1477 VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, " 1478 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1479 1480 if (rv != KERN_SUCCESS) 1481 return (EFAULT); 1482 done: 1483 return (0); 1484 } 1485 1486 static int 1487 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu) 1488 { 1489 struct vie *vie; 1490 struct vcpu *vcpu; 1491 struct vm_exit *vme; 1492 uint64_t gla, gpa, cs_base; 1493 struct vm_guest_paging *paging; 1494 mem_region_read_t mread; 1495 mem_region_write_t mwrite; 1496 enum vm_cpu_mode cpu_mode; 1497 int cs_d, error, fault; 1498 1499 vcpu = &vm->vcpu[vcpuid]; 1500 vme = &vcpu->exitinfo; 1501 1502 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1503 __func__, vme->inst_length)); 1504 1505 gla = vme->u.inst_emul.gla; 1506 gpa = vme->u.inst_emul.gpa; 1507 cs_base = vme->u.inst_emul.cs_base; 1508 cs_d = vme->u.inst_emul.cs_d; 1509 vie = &vme->u.inst_emul.vie; 1510 paging = &vme->u.inst_emul.paging; 1511 cpu_mode = paging->cpu_mode; 1512 1513 VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa); 1514 1515 /* Fetch, decode and emulate the faulting instruction */ 1516 if (vie->num_valid == 0) { 1517 error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip + 1518 cs_base, VIE_INST_SIZE, vie, &fault); 1519 } else { 1520 /* 1521 * The instruction bytes have already been copied into 'vie' 1522 */ 1523 error = fault = 0; 1524 } 1525 if (error || fault) 1526 return (error); 1527 1528 if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) { 1529 VCPU_CTR1(vm, vcpuid, "Error decoding instruction at %#lx", 1530 vme->rip + cs_base); 1531 *retu = true; /* dump instruction bytes in userspace */ 1532 return (0); 1533 } 1534 1535 /* 1536 * Update 'nextrip' based on the length of the emulated instruction. 1537 */ 1538 vme->inst_length = vie->num_processed; 1539 vcpu->nextrip += vie->num_processed; 1540 VCPU_CTR1(vm, vcpuid, "nextrip updated to %#lx after instruction " 1541 "decoding", vcpu->nextrip); 1542 1543 /* return to userland unless this is an in-kernel emulated device */ 1544 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1545 mread = lapic_mmio_read; 1546 mwrite = lapic_mmio_write; 1547 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1548 mread = vioapic_mmio_read; 1549 mwrite = vioapic_mmio_write; 1550 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1551 mread = vhpet_mmio_read; 1552 mwrite = vhpet_mmio_write; 1553 } else { 1554 *retu = true; 1555 return (0); 1556 } 1557 1558 error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging, 1559 mread, mwrite, retu); 1560 1561 return (error); 1562 } 1563 1564 static int 1565 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu) 1566 { 1567 int error, i; 1568 struct vcpu *vcpu; 1569 struct thread *td; 1570 1571 error = 0; 1572 vcpu = &vm->vcpu[vcpuid]; 1573 td = curthread; 1574 1575 CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus); 1576 1577 /* 1578 * Wait until all 'active_cpus' have suspended themselves. 1579 * 1580 * Since a VM may be suspended at any time including when one or 1581 * more vcpus are doing a rendezvous we need to call the rendezvous 1582 * handler while we are waiting to prevent a deadlock. 1583 */ 1584 vcpu_lock(vcpu); 1585 while (error == 0) { 1586 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1587 VCPU_CTR0(vm, vcpuid, "All vcpus suspended"); 1588 break; 1589 } 1590 1591 if (vm->rendezvous_func == NULL) { 1592 VCPU_CTR0(vm, vcpuid, "Sleeping during suspend"); 1593 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); 1594 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1595 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); 1596 if (td_ast_pending(td, TDA_SUSPEND)) { 1597 vcpu_unlock(vcpu); 1598 error = thread_check_susp(td, false); 1599 vcpu_lock(vcpu); 1600 } 1601 } else { 1602 VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend"); 1603 vcpu_unlock(vcpu); 1604 error = vm_handle_rendezvous(vm, vcpuid); 1605 vcpu_lock(vcpu); 1606 } 1607 } 1608 vcpu_unlock(vcpu); 1609 1610 /* 1611 * Wakeup the other sleeping vcpus and return to userspace. 1612 */ 1613 for (i = 0; i < vm->maxcpus; i++) { 1614 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1615 vcpu_notify_event(vm, i, false); 1616 } 1617 } 1618 1619 *retu = true; 1620 return (error); 1621 } 1622 1623 static int 1624 vm_handle_reqidle(struct vm *vm, int vcpuid, bool *retu) 1625 { 1626 struct vcpu *vcpu = &vm->vcpu[vcpuid]; 1627 1628 vcpu_lock(vcpu); 1629 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle)); 1630 vcpu->reqidle = 0; 1631 vcpu_unlock(vcpu); 1632 *retu = true; 1633 return (0); 1634 } 1635 1636 int 1637 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1638 { 1639 int i; 1640 1641 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1642 return (EINVAL); 1643 1644 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1645 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1646 vm->suspend, how); 1647 return (EALREADY); 1648 } 1649 1650 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1651 1652 /* 1653 * Notify all active vcpus that they are now suspended. 1654 */ 1655 for (i = 0; i < vm->maxcpus; i++) { 1656 if (CPU_ISSET(i, &vm->active_cpus)) 1657 vcpu_notify_event(vm, i, false); 1658 } 1659 1660 return (0); 1661 } 1662 1663 void 1664 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip) 1665 { 1666 struct vm_exit *vmexit; 1667 1668 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1669 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1670 1671 vmexit = vm_exitinfo(vm, vcpuid); 1672 vmexit->rip = rip; 1673 vmexit->inst_length = 0; 1674 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1675 vmexit->u.suspended.how = vm->suspend; 1676 } 1677 1678 void 1679 vm_exit_debug(struct vm *vm, int vcpuid, uint64_t rip) 1680 { 1681 struct vm_exit *vmexit; 1682 1683 vmexit = vm_exitinfo(vm, vcpuid); 1684 vmexit->rip = rip; 1685 vmexit->inst_length = 0; 1686 vmexit->exitcode = VM_EXITCODE_DEBUG; 1687 } 1688 1689 void 1690 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip) 1691 { 1692 struct vm_exit *vmexit; 1693 1694 KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress")); 1695 1696 vmexit = vm_exitinfo(vm, vcpuid); 1697 vmexit->rip = rip; 1698 vmexit->inst_length = 0; 1699 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1700 vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1); 1701 } 1702 1703 void 1704 vm_exit_reqidle(struct vm *vm, int vcpuid, uint64_t rip) 1705 { 1706 struct vm_exit *vmexit; 1707 1708 vmexit = vm_exitinfo(vm, vcpuid); 1709 vmexit->rip = rip; 1710 vmexit->inst_length = 0; 1711 vmexit->exitcode = VM_EXITCODE_REQIDLE; 1712 vmm_stat_incr(vm, vcpuid, VMEXIT_REQIDLE, 1); 1713 } 1714 1715 void 1716 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip) 1717 { 1718 struct vm_exit *vmexit; 1719 1720 vmexit = vm_exitinfo(vm, vcpuid); 1721 vmexit->rip = rip; 1722 vmexit->inst_length = 0; 1723 vmexit->exitcode = VM_EXITCODE_BOGUS; 1724 vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1); 1725 } 1726 1727 int 1728 vm_run(struct vm *vm, struct vm_run *vmrun) 1729 { 1730 struct vm_eventinfo evinfo; 1731 int error, vcpuid; 1732 struct vcpu *vcpu; 1733 struct pcb *pcb; 1734 uint64_t tscval; 1735 struct vm_exit *vme; 1736 bool retu, intr_disabled; 1737 pmap_t pmap; 1738 1739 vcpuid = vmrun->cpuid; 1740 1741 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1742 return (EINVAL); 1743 1744 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1745 return (EINVAL); 1746 1747 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1748 return (EINVAL); 1749 1750 pmap = vmspace_pmap(vm->vmspace); 1751 vcpu = &vm->vcpu[vcpuid]; 1752 vme = &vcpu->exitinfo; 1753 evinfo.rptr = &vm->rendezvous_func; 1754 evinfo.sptr = &vm->suspend; 1755 evinfo.iptr = &vcpu->reqidle; 1756 restart: 1757 critical_enter(); 1758 1759 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1760 ("vm_run: absurd pm_active")); 1761 1762 tscval = rdtsc(); 1763 1764 pcb = PCPU_GET(curpcb); 1765 set_pcb_flags(pcb, PCB_FULL_IRET); 1766 1767 restore_guest_fpustate(vcpu); 1768 1769 vcpu_require_state(vm, vcpuid, VCPU_RUNNING); 1770 error = vmmops_run(vm->cookie, vcpuid, vcpu->nextrip, pmap, &evinfo); 1771 vcpu_require_state(vm, vcpuid, VCPU_FROZEN); 1772 1773 save_guest_fpustate(vcpu); 1774 1775 vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1776 1777 critical_exit(); 1778 1779 if (error == 0) { 1780 retu = false; 1781 vcpu->nextrip = vme->rip + vme->inst_length; 1782 switch (vme->exitcode) { 1783 case VM_EXITCODE_REQIDLE: 1784 error = vm_handle_reqidle(vm, vcpuid, &retu); 1785 break; 1786 case VM_EXITCODE_SUSPENDED: 1787 error = vm_handle_suspend(vm, vcpuid, &retu); 1788 break; 1789 case VM_EXITCODE_IOAPIC_EOI: 1790 vioapic_process_eoi(vm, vcpuid, 1791 vme->u.ioapic_eoi.vector); 1792 break; 1793 case VM_EXITCODE_RENDEZVOUS: 1794 error = vm_handle_rendezvous(vm, vcpuid); 1795 break; 1796 case VM_EXITCODE_HLT: 1797 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1798 error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu); 1799 break; 1800 case VM_EXITCODE_PAGING: 1801 error = vm_handle_paging(vm, vcpuid, &retu); 1802 break; 1803 case VM_EXITCODE_INST_EMUL: 1804 error = vm_handle_inst_emul(vm, vcpuid, &retu); 1805 break; 1806 case VM_EXITCODE_INOUT: 1807 case VM_EXITCODE_INOUT_STR: 1808 error = vm_handle_inout(vm, vcpuid, vme, &retu); 1809 break; 1810 case VM_EXITCODE_MONITOR: 1811 case VM_EXITCODE_MWAIT: 1812 case VM_EXITCODE_VMINSN: 1813 vm_inject_ud(vm, vcpuid); 1814 break; 1815 default: 1816 retu = true; /* handled in userland */ 1817 break; 1818 } 1819 } 1820 1821 if (error == 0 && retu == false) 1822 goto restart; 1823 1824 vmm_stat_incr(vm, vcpuid, VMEXIT_USERSPACE, 1); 1825 VCPU_CTR2(vm, vcpuid, "retu %d/%d", error, vme->exitcode); 1826 1827 /* copy the exit information */ 1828 bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit)); 1829 return (error); 1830 } 1831 1832 int 1833 vm_restart_instruction(void *arg, int vcpuid) 1834 { 1835 struct vm *vm; 1836 struct vcpu *vcpu; 1837 enum vcpu_state state; 1838 uint64_t rip; 1839 int error __diagused; 1840 1841 vm = arg; 1842 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1843 return (EINVAL); 1844 1845 vcpu = &vm->vcpu[vcpuid]; 1846 state = vcpu_get_state(vm, vcpuid, NULL); 1847 if (state == VCPU_RUNNING) { 1848 /* 1849 * When a vcpu is "running" the next instruction is determined 1850 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'. 1851 * Thus setting 'inst_length' to zero will cause the current 1852 * instruction to be restarted. 1853 */ 1854 vcpu->exitinfo.inst_length = 0; 1855 VCPU_CTR1(vm, vcpuid, "restarting instruction at %#lx by " 1856 "setting inst_length to zero", vcpu->exitinfo.rip); 1857 } else if (state == VCPU_FROZEN) { 1858 /* 1859 * When a vcpu is "frozen" it is outside the critical section 1860 * around vmmops_run() and 'nextrip' points to the next 1861 * instruction. Thus instruction restart is achieved by setting 1862 * 'nextrip' to the vcpu's %rip. 1863 */ 1864 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip); 1865 KASSERT(!error, ("%s: error %d getting rip", __func__, error)); 1866 VCPU_CTR2(vm, vcpuid, "restarting instruction by updating " 1867 "nextrip from %#lx to %#lx", vcpu->nextrip, rip); 1868 vcpu->nextrip = rip; 1869 } else { 1870 panic("%s: invalid state %d", __func__, state); 1871 } 1872 return (0); 1873 } 1874 1875 int 1876 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info) 1877 { 1878 struct vcpu *vcpu; 1879 int type, vector; 1880 1881 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1882 return (EINVAL); 1883 1884 vcpu = &vm->vcpu[vcpuid]; 1885 1886 if (info & VM_INTINFO_VALID) { 1887 type = info & VM_INTINFO_TYPE; 1888 vector = info & 0xff; 1889 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 1890 return (EINVAL); 1891 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 1892 return (EINVAL); 1893 if (info & VM_INTINFO_RSVD) 1894 return (EINVAL); 1895 } else { 1896 info = 0; 1897 } 1898 VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info); 1899 vcpu->exitintinfo = info; 1900 return (0); 1901 } 1902 1903 enum exc_class { 1904 EXC_BENIGN, 1905 EXC_CONTRIBUTORY, 1906 EXC_PAGEFAULT 1907 }; 1908 1909 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 1910 1911 static enum exc_class 1912 exception_class(uint64_t info) 1913 { 1914 int type, vector; 1915 1916 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 1917 type = info & VM_INTINFO_TYPE; 1918 vector = info & 0xff; 1919 1920 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 1921 switch (type) { 1922 case VM_INTINFO_HWINTR: 1923 case VM_INTINFO_SWINTR: 1924 case VM_INTINFO_NMI: 1925 return (EXC_BENIGN); 1926 default: 1927 /* 1928 * Hardware exception. 1929 * 1930 * SVM and VT-x use identical type values to represent NMI, 1931 * hardware interrupt and software interrupt. 1932 * 1933 * SVM uses type '3' for all exceptions. VT-x uses type '3' 1934 * for exceptions except #BP and #OF. #BP and #OF use a type 1935 * value of '5' or '6'. Therefore we don't check for explicit 1936 * values of 'type' to classify 'intinfo' into a hardware 1937 * exception. 1938 */ 1939 break; 1940 } 1941 1942 switch (vector) { 1943 case IDT_PF: 1944 case IDT_VE: 1945 return (EXC_PAGEFAULT); 1946 case IDT_DE: 1947 case IDT_TS: 1948 case IDT_NP: 1949 case IDT_SS: 1950 case IDT_GP: 1951 return (EXC_CONTRIBUTORY); 1952 default: 1953 return (EXC_BENIGN); 1954 } 1955 } 1956 1957 static int 1958 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2, 1959 uint64_t *retinfo) 1960 { 1961 enum exc_class exc1, exc2; 1962 int type1, vector1; 1963 1964 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 1965 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 1966 1967 /* 1968 * If an exception occurs while attempting to call the double-fault 1969 * handler the processor enters shutdown mode (aka triple fault). 1970 */ 1971 type1 = info1 & VM_INTINFO_TYPE; 1972 vector1 = info1 & 0xff; 1973 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 1974 VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)", 1975 info1, info2); 1976 vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT); 1977 *retinfo = 0; 1978 return (0); 1979 } 1980 1981 /* 1982 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 1983 */ 1984 exc1 = exception_class(info1); 1985 exc2 = exception_class(info2); 1986 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 1987 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 1988 /* Convert nested fault into a double fault. */ 1989 *retinfo = IDT_DF; 1990 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1991 *retinfo |= VM_INTINFO_DEL_ERRCODE; 1992 } else { 1993 /* Handle exceptions serially */ 1994 *retinfo = info2; 1995 } 1996 return (1); 1997 } 1998 1999 static uint64_t 2000 vcpu_exception_intinfo(struct vcpu *vcpu) 2001 { 2002 uint64_t info = 0; 2003 2004 if (vcpu->exception_pending) { 2005 info = vcpu->exc_vector & 0xff; 2006 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 2007 if (vcpu->exc_errcode_valid) { 2008 info |= VM_INTINFO_DEL_ERRCODE; 2009 info |= (uint64_t)vcpu->exc_errcode << 32; 2010 } 2011 } 2012 return (info); 2013 } 2014 2015 int 2016 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo) 2017 { 2018 struct vcpu *vcpu; 2019 uint64_t info1, info2; 2020 int valid; 2021 2022 KASSERT(vcpuid >= 0 && 2023 vcpuid < vm->maxcpus, ("invalid vcpu %d", vcpuid)); 2024 2025 vcpu = &vm->vcpu[vcpuid]; 2026 2027 info1 = vcpu->exitintinfo; 2028 vcpu->exitintinfo = 0; 2029 2030 info2 = 0; 2031 if (vcpu->exception_pending) { 2032 info2 = vcpu_exception_intinfo(vcpu); 2033 vcpu->exception_pending = 0; 2034 VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx", 2035 vcpu->exc_vector, info2); 2036 } 2037 2038 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 2039 valid = nested_fault(vm, vcpuid, info1, info2, retinfo); 2040 } else if (info1 & VM_INTINFO_VALID) { 2041 *retinfo = info1; 2042 valid = 1; 2043 } else if (info2 & VM_INTINFO_VALID) { 2044 *retinfo = info2; 2045 valid = 1; 2046 } else { 2047 valid = 0; 2048 } 2049 2050 if (valid) { 2051 VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), " 2052 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 2053 } 2054 2055 return (valid); 2056 } 2057 2058 int 2059 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2) 2060 { 2061 struct vcpu *vcpu; 2062 2063 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2064 return (EINVAL); 2065 2066 vcpu = &vm->vcpu[vcpuid]; 2067 *info1 = vcpu->exitintinfo; 2068 *info2 = vcpu_exception_intinfo(vcpu); 2069 return (0); 2070 } 2071 2072 int 2073 vm_inject_exception(struct vm *vm, int vcpuid, int vector, int errcode_valid, 2074 uint32_t errcode, int restart_instruction) 2075 { 2076 struct vcpu *vcpu; 2077 uint64_t regval; 2078 int error __diagused; 2079 2080 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2081 return (EINVAL); 2082 2083 if (vector < 0 || vector >= 32) 2084 return (EINVAL); 2085 2086 /* 2087 * A double fault exception should never be injected directly into 2088 * the guest. It is a derived exception that results from specific 2089 * combinations of nested faults. 2090 */ 2091 if (vector == IDT_DF) 2092 return (EINVAL); 2093 2094 vcpu = &vm->vcpu[vcpuid]; 2095 2096 if (vcpu->exception_pending) { 2097 VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to " 2098 "pending exception %d", vector, vcpu->exc_vector); 2099 return (EBUSY); 2100 } 2101 2102 if (errcode_valid) { 2103 /* 2104 * Exceptions don't deliver an error code in real mode. 2105 */ 2106 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_CR0, ®val); 2107 KASSERT(!error, ("%s: error %d getting CR0", __func__, error)); 2108 if (!(regval & CR0_PE)) 2109 errcode_valid = 0; 2110 } 2111 2112 /* 2113 * From section 26.6.1 "Interruptibility State" in Intel SDM: 2114 * 2115 * Event blocking by "STI" or "MOV SS" is cleared after guest executes 2116 * one instruction or incurs an exception. 2117 */ 2118 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0); 2119 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", 2120 __func__, error)); 2121 2122 if (restart_instruction) 2123 vm_restart_instruction(vm, vcpuid); 2124 2125 vcpu->exception_pending = 1; 2126 vcpu->exc_vector = vector; 2127 vcpu->exc_errcode = errcode; 2128 vcpu->exc_errcode_valid = errcode_valid; 2129 VCPU_CTR1(vm, vcpuid, "Exception %d pending", vector); 2130 return (0); 2131 } 2132 2133 void 2134 vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid, 2135 int errcode) 2136 { 2137 struct vm *vm; 2138 int error __diagused, restart_instruction; 2139 2140 vm = vmarg; 2141 restart_instruction = 1; 2142 2143 error = vm_inject_exception(vm, vcpuid, vector, errcode_valid, 2144 errcode, restart_instruction); 2145 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 2146 } 2147 2148 void 2149 vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2) 2150 { 2151 struct vm *vm; 2152 int error __diagused; 2153 2154 vm = vmarg; 2155 VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx", 2156 error_code, cr2); 2157 2158 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2); 2159 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 2160 2161 vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code); 2162 } 2163 2164 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 2165 2166 int 2167 vm_inject_nmi(struct vm *vm, int vcpuid) 2168 { 2169 struct vcpu *vcpu; 2170 2171 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2172 return (EINVAL); 2173 2174 vcpu = &vm->vcpu[vcpuid]; 2175 2176 vcpu->nmi_pending = 1; 2177 vcpu_notify_event(vm, vcpuid, false); 2178 return (0); 2179 } 2180 2181 int 2182 vm_nmi_pending(struct vm *vm, int vcpuid) 2183 { 2184 struct vcpu *vcpu; 2185 2186 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2187 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 2188 2189 vcpu = &vm->vcpu[vcpuid]; 2190 2191 return (vcpu->nmi_pending); 2192 } 2193 2194 void 2195 vm_nmi_clear(struct vm *vm, int vcpuid) 2196 { 2197 struct vcpu *vcpu; 2198 2199 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2200 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 2201 2202 vcpu = &vm->vcpu[vcpuid]; 2203 2204 if (vcpu->nmi_pending == 0) 2205 panic("vm_nmi_clear: inconsistent nmi_pending state"); 2206 2207 vcpu->nmi_pending = 0; 2208 vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1); 2209 } 2210 2211 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 2212 2213 int 2214 vm_inject_extint(struct vm *vm, int vcpuid) 2215 { 2216 struct vcpu *vcpu; 2217 2218 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2219 return (EINVAL); 2220 2221 vcpu = &vm->vcpu[vcpuid]; 2222 2223 vcpu->extint_pending = 1; 2224 vcpu_notify_event(vm, vcpuid, false); 2225 return (0); 2226 } 2227 2228 int 2229 vm_extint_pending(struct vm *vm, int vcpuid) 2230 { 2231 struct vcpu *vcpu; 2232 2233 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2234 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 2235 2236 vcpu = &vm->vcpu[vcpuid]; 2237 2238 return (vcpu->extint_pending); 2239 } 2240 2241 void 2242 vm_extint_clear(struct vm *vm, int vcpuid) 2243 { 2244 struct vcpu *vcpu; 2245 2246 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2247 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 2248 2249 vcpu = &vm->vcpu[vcpuid]; 2250 2251 if (vcpu->extint_pending == 0) 2252 panic("vm_extint_clear: inconsistent extint_pending state"); 2253 2254 vcpu->extint_pending = 0; 2255 vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1); 2256 } 2257 2258 int 2259 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval) 2260 { 2261 if (vcpu < 0 || vcpu >= vm->maxcpus) 2262 return (EINVAL); 2263 2264 if (type < 0 || type >= VM_CAP_MAX) 2265 return (EINVAL); 2266 2267 return (vmmops_getcap(vm->cookie, vcpu, type, retval)); 2268 } 2269 2270 int 2271 vm_set_capability(struct vm *vm, int vcpu, int type, int val) 2272 { 2273 if (vcpu < 0 || vcpu >= vm->maxcpus) 2274 return (EINVAL); 2275 2276 if (type < 0 || type >= VM_CAP_MAX) 2277 return (EINVAL); 2278 2279 return (vmmops_setcap(vm->cookie, vcpu, type, val)); 2280 } 2281 2282 struct vlapic * 2283 vm_lapic(struct vm *vm, int cpu) 2284 { 2285 return (vm->vcpu[cpu].vlapic); 2286 } 2287 2288 struct vioapic * 2289 vm_ioapic(struct vm *vm) 2290 { 2291 2292 return (vm->vioapic); 2293 } 2294 2295 struct vhpet * 2296 vm_hpet(struct vm *vm) 2297 { 2298 2299 return (vm->vhpet); 2300 } 2301 2302 bool 2303 vmm_is_pptdev(int bus, int slot, int func) 2304 { 2305 int b, f, i, n, s; 2306 char *val, *cp, *cp2; 2307 bool found; 2308 2309 /* 2310 * XXX 2311 * The length of an environment variable is limited to 128 bytes which 2312 * puts an upper limit on the number of passthru devices that may be 2313 * specified using a single environment variable. 2314 * 2315 * Work around this by scanning multiple environment variable 2316 * names instead of a single one - yuck! 2317 */ 2318 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 2319 2320 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 2321 found = false; 2322 for (i = 0; names[i] != NULL && !found; i++) { 2323 cp = val = kern_getenv(names[i]); 2324 while (cp != NULL && *cp != '\0') { 2325 if ((cp2 = strchr(cp, ' ')) != NULL) 2326 *cp2 = '\0'; 2327 2328 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 2329 if (n == 3 && bus == b && slot == s && func == f) { 2330 found = true; 2331 break; 2332 } 2333 2334 if (cp2 != NULL) 2335 *cp2++ = ' '; 2336 2337 cp = cp2; 2338 } 2339 freeenv(val); 2340 } 2341 return (found); 2342 } 2343 2344 void * 2345 vm_iommu_domain(struct vm *vm) 2346 { 2347 2348 return (vm->iommu); 2349 } 2350 2351 int 2352 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate, 2353 bool from_idle) 2354 { 2355 int error; 2356 struct vcpu *vcpu; 2357 2358 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2359 panic("vm_set_run_state: invalid vcpuid %d", vcpuid); 2360 2361 vcpu = &vm->vcpu[vcpuid]; 2362 2363 vcpu_lock(vcpu); 2364 error = vcpu_set_state_locked(vm, vcpuid, newstate, from_idle); 2365 vcpu_unlock(vcpu); 2366 2367 return (error); 2368 } 2369 2370 enum vcpu_state 2371 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu) 2372 { 2373 struct vcpu *vcpu; 2374 enum vcpu_state state; 2375 2376 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2377 panic("vm_get_run_state: invalid vcpuid %d", vcpuid); 2378 2379 vcpu = &vm->vcpu[vcpuid]; 2380 2381 vcpu_lock(vcpu); 2382 state = vcpu->state; 2383 if (hostcpu != NULL) 2384 *hostcpu = vcpu->hostcpu; 2385 vcpu_unlock(vcpu); 2386 2387 return (state); 2388 } 2389 2390 int 2391 vm_activate_cpu(struct vm *vm, int vcpuid) 2392 { 2393 2394 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2395 return (EINVAL); 2396 2397 if (CPU_ISSET(vcpuid, &vm->active_cpus)) 2398 return (EBUSY); 2399 2400 VCPU_CTR0(vm, vcpuid, "activated"); 2401 CPU_SET_ATOMIC(vcpuid, &vm->active_cpus); 2402 return (0); 2403 } 2404 2405 int 2406 vm_suspend_cpu(struct vm *vm, int vcpuid) 2407 { 2408 int i; 2409 2410 if (vcpuid < -1 || vcpuid >= vm->maxcpus) 2411 return (EINVAL); 2412 2413 if (vcpuid == -1) { 2414 vm->debug_cpus = vm->active_cpus; 2415 for (i = 0; i < vm->maxcpus; i++) { 2416 if (CPU_ISSET(i, &vm->active_cpus)) 2417 vcpu_notify_event(vm, i, false); 2418 } 2419 } else { 2420 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 2421 return (EINVAL); 2422 2423 CPU_SET_ATOMIC(vcpuid, &vm->debug_cpus); 2424 vcpu_notify_event(vm, vcpuid, false); 2425 } 2426 return (0); 2427 } 2428 2429 int 2430 vm_resume_cpu(struct vm *vm, int vcpuid) 2431 { 2432 2433 if (vcpuid < -1 || vcpuid >= vm->maxcpus) 2434 return (EINVAL); 2435 2436 if (vcpuid == -1) { 2437 CPU_ZERO(&vm->debug_cpus); 2438 } else { 2439 if (!CPU_ISSET(vcpuid, &vm->debug_cpus)) 2440 return (EINVAL); 2441 2442 CPU_CLR_ATOMIC(vcpuid, &vm->debug_cpus); 2443 } 2444 return (0); 2445 } 2446 2447 int 2448 vcpu_debugged(struct vm *vm, int vcpuid) 2449 { 2450 2451 return (CPU_ISSET(vcpuid, &vm->debug_cpus)); 2452 } 2453 2454 cpuset_t 2455 vm_active_cpus(struct vm *vm) 2456 { 2457 2458 return (vm->active_cpus); 2459 } 2460 2461 cpuset_t 2462 vm_debug_cpus(struct vm *vm) 2463 { 2464 2465 return (vm->debug_cpus); 2466 } 2467 2468 cpuset_t 2469 vm_suspended_cpus(struct vm *vm) 2470 { 2471 2472 return (vm->suspended_cpus); 2473 } 2474 2475 void * 2476 vcpu_stats(struct vm *vm, int vcpuid) 2477 { 2478 2479 return (vm->vcpu[vcpuid].stats); 2480 } 2481 2482 int 2483 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state) 2484 { 2485 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2486 return (EINVAL); 2487 2488 *state = vm->vcpu[vcpuid].x2apic_state; 2489 2490 return (0); 2491 } 2492 2493 int 2494 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state) 2495 { 2496 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2497 return (EINVAL); 2498 2499 if (state >= X2APIC_STATE_LAST) 2500 return (EINVAL); 2501 2502 vm->vcpu[vcpuid].x2apic_state = state; 2503 2504 vlapic_set_x2apic_state(vm, vcpuid, state); 2505 2506 return (0); 2507 } 2508 2509 /* 2510 * This function is called to ensure that a vcpu "sees" a pending event 2511 * as soon as possible: 2512 * - If the vcpu thread is sleeping then it is woken up. 2513 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2514 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2515 */ 2516 static void 2517 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr) 2518 { 2519 int hostcpu; 2520 2521 hostcpu = vcpu->hostcpu; 2522 if (vcpu->state == VCPU_RUNNING) { 2523 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2524 if (hostcpu != curcpu) { 2525 if (lapic_intr) { 2526 vlapic_post_intr(vcpu->vlapic, hostcpu, 2527 vmm_ipinum); 2528 } else { 2529 ipi_cpu(hostcpu, vmm_ipinum); 2530 } 2531 } else { 2532 /* 2533 * If the 'vcpu' is running on 'curcpu' then it must 2534 * be sending a notification to itself (e.g. SELF_IPI). 2535 * The pending event will be picked up when the vcpu 2536 * transitions back to guest context. 2537 */ 2538 } 2539 } else { 2540 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2541 "with hostcpu %d", vcpu->state, hostcpu)); 2542 if (vcpu->state == VCPU_SLEEPING) 2543 wakeup_one(vcpu); 2544 } 2545 } 2546 2547 void 2548 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr) 2549 { 2550 struct vcpu *vcpu = &vm->vcpu[vcpuid]; 2551 2552 vcpu_lock(vcpu); 2553 vcpu_notify_event_locked(vcpu, lapic_intr); 2554 vcpu_unlock(vcpu); 2555 } 2556 2557 struct vmspace * 2558 vm_get_vmspace(struct vm *vm) 2559 { 2560 2561 return (vm->vmspace); 2562 } 2563 2564 int 2565 vm_apicid2vcpuid(struct vm *vm, int apicid) 2566 { 2567 /* 2568 * XXX apic id is assumed to be numerically identical to vcpu id 2569 */ 2570 return (apicid); 2571 } 2572 2573 int 2574 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest, 2575 vm_rendezvous_func_t func, void *arg) 2576 { 2577 int error, i; 2578 2579 /* 2580 * Enforce that this function is called without any locks 2581 */ 2582 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2583 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus), 2584 ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid)); 2585 2586 restart: 2587 mtx_lock(&vm->rendezvous_mtx); 2588 if (vm->rendezvous_func != NULL) { 2589 /* 2590 * If a rendezvous is already in progress then we need to 2591 * call the rendezvous handler in case this 'vcpuid' is one 2592 * of the targets of the rendezvous. 2593 */ 2594 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress"); 2595 mtx_unlock(&vm->rendezvous_mtx); 2596 error = vm_handle_rendezvous(vm, vcpuid); 2597 if (error != 0) 2598 return (error); 2599 goto restart; 2600 } 2601 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2602 "rendezvous is still in progress")); 2603 2604 RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous"); 2605 vm->rendezvous_req_cpus = dest; 2606 CPU_ZERO(&vm->rendezvous_done_cpus); 2607 vm->rendezvous_arg = arg; 2608 vm->rendezvous_func = func; 2609 mtx_unlock(&vm->rendezvous_mtx); 2610 2611 /* 2612 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2613 * vcpus so they handle the rendezvous as soon as possible. 2614 */ 2615 for (i = 0; i < vm->maxcpus; i++) { 2616 if (CPU_ISSET(i, &dest)) 2617 vcpu_notify_event(vm, i, false); 2618 } 2619 2620 return (vm_handle_rendezvous(vm, vcpuid)); 2621 } 2622 2623 struct vatpic * 2624 vm_atpic(struct vm *vm) 2625 { 2626 return (vm->vatpic); 2627 } 2628 2629 struct vatpit * 2630 vm_atpit(struct vm *vm) 2631 { 2632 return (vm->vatpit); 2633 } 2634 2635 struct vpmtmr * 2636 vm_pmtmr(struct vm *vm) 2637 { 2638 2639 return (vm->vpmtmr); 2640 } 2641 2642 struct vrtc * 2643 vm_rtc(struct vm *vm) 2644 { 2645 2646 return (vm->vrtc); 2647 } 2648 2649 enum vm_reg_name 2650 vm_segment_name(int seg) 2651 { 2652 static enum vm_reg_name seg_names[] = { 2653 VM_REG_GUEST_ES, 2654 VM_REG_GUEST_CS, 2655 VM_REG_GUEST_SS, 2656 VM_REG_GUEST_DS, 2657 VM_REG_GUEST_FS, 2658 VM_REG_GUEST_GS 2659 }; 2660 2661 KASSERT(seg >= 0 && seg < nitems(seg_names), 2662 ("%s: invalid segment encoding %d", __func__, seg)); 2663 return (seg_names[seg]); 2664 } 2665 2666 void 2667 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, 2668 int num_copyinfo) 2669 { 2670 int idx; 2671 2672 for (idx = 0; idx < num_copyinfo; idx++) { 2673 if (copyinfo[idx].cookie != NULL) 2674 vm_gpa_release(copyinfo[idx].cookie); 2675 } 2676 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2677 } 2678 2679 int 2680 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging, 2681 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2682 int num_copyinfo, int *fault) 2683 { 2684 int error, idx, nused; 2685 size_t n, off, remaining; 2686 void *hva, *cookie; 2687 uint64_t gpa; 2688 2689 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2690 2691 nused = 0; 2692 remaining = len; 2693 while (remaining > 0) { 2694 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo")); 2695 error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa, fault); 2696 if (error || *fault) 2697 return (error); 2698 off = gpa & PAGE_MASK; 2699 n = min(remaining, PAGE_SIZE - off); 2700 copyinfo[nused].gpa = gpa; 2701 copyinfo[nused].len = n; 2702 remaining -= n; 2703 gla += n; 2704 nused++; 2705 } 2706 2707 for (idx = 0; idx < nused; idx++) { 2708 hva = vm_gpa_hold(vm, vcpuid, copyinfo[idx].gpa, 2709 copyinfo[idx].len, prot, &cookie); 2710 if (hva == NULL) 2711 break; 2712 copyinfo[idx].hva = hva; 2713 copyinfo[idx].cookie = cookie; 2714 } 2715 2716 if (idx != nused) { 2717 vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo); 2718 return (EFAULT); 2719 } else { 2720 *fault = 0; 2721 return (0); 2722 } 2723 } 2724 2725 void 2726 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr, 2727 size_t len) 2728 { 2729 char *dst; 2730 int idx; 2731 2732 dst = kaddr; 2733 idx = 0; 2734 while (len > 0) { 2735 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2736 len -= copyinfo[idx].len; 2737 dst += copyinfo[idx].len; 2738 idx++; 2739 } 2740 } 2741 2742 void 2743 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr, 2744 struct vm_copyinfo *copyinfo, size_t len) 2745 { 2746 const char *src; 2747 int idx; 2748 2749 src = kaddr; 2750 idx = 0; 2751 while (len > 0) { 2752 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2753 len -= copyinfo[idx].len; 2754 src += copyinfo[idx].len; 2755 idx++; 2756 } 2757 } 2758 2759 /* 2760 * Return the amount of in-use and wired memory for the VM. Since 2761 * these are global stats, only return the values with for vCPU 0 2762 */ 2763 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2764 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2765 2766 static void 2767 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2768 { 2769 2770 if (vcpu == 0) { 2771 vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT, 2772 PAGE_SIZE * vmspace_resident_count(vm->vmspace)); 2773 } 2774 } 2775 2776 static void 2777 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2778 { 2779 2780 if (vcpu == 0) { 2781 vmm_stat_set(vm, vcpu, VMM_MEM_WIRED, 2782 PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace))); 2783 } 2784 } 2785 2786 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2787 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2788 2789 #ifdef BHYVE_SNAPSHOT 2790 static int 2791 vm_snapshot_vcpus(struct vm *vm, struct vm_snapshot_meta *meta) 2792 { 2793 int ret; 2794 int i; 2795 struct vcpu *vcpu; 2796 2797 for (i = 0; i < VM_MAXCPU; i++) { 2798 vcpu = &vm->vcpu[i]; 2799 2800 SNAPSHOT_VAR_OR_LEAVE(vcpu->x2apic_state, meta, ret, done); 2801 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitintinfo, meta, ret, done); 2802 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_vector, meta, ret, done); 2803 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode_valid, meta, ret, done); 2804 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode, meta, ret, done); 2805 SNAPSHOT_VAR_OR_LEAVE(vcpu->guest_xcr0, meta, ret, done); 2806 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitinfo, meta, ret, done); 2807 SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, ret, done); 2808 /* XXX we're cheating here, since the value of tsc_offset as 2809 * saved here is actually the value of the guest's TSC value. 2810 * 2811 * It will be turned turned back into an actual offset when the 2812 * TSC restore function is called 2813 */ 2814 SNAPSHOT_VAR_OR_LEAVE(vcpu->tsc_offset, meta, ret, done); 2815 } 2816 2817 done: 2818 return (ret); 2819 } 2820 2821 static int 2822 vm_snapshot_vm(struct vm *vm, struct vm_snapshot_meta *meta) 2823 { 2824 int ret; 2825 int i; 2826 uint64_t now; 2827 2828 ret = 0; 2829 now = rdtsc(); 2830 2831 if (meta->op == VM_SNAPSHOT_SAVE) { 2832 /* XXX make tsc_offset take the value TSC proper as seen by the 2833 * guest 2834 */ 2835 for (i = 0; i < VM_MAXCPU; i++) 2836 vm->vcpu[i].tsc_offset += now; 2837 } 2838 2839 ret = vm_snapshot_vcpus(vm, meta); 2840 if (ret != 0) { 2841 printf("%s: failed to copy vm data to user buffer", __func__); 2842 goto done; 2843 } 2844 2845 if (meta->op == VM_SNAPSHOT_SAVE) { 2846 /* XXX turn tsc_offset back into an offset; actual value is only 2847 * required for restore; using it otherwise would be wrong 2848 */ 2849 for (i = 0; i < VM_MAXCPU; i++) 2850 vm->vcpu[i].tsc_offset -= now; 2851 } 2852 2853 done: 2854 return (ret); 2855 } 2856 2857 static int 2858 vm_snapshot_vmcx(struct vm *vm, struct vm_snapshot_meta *meta) 2859 { 2860 int i, error; 2861 2862 error = 0; 2863 2864 for (i = 0; i < VM_MAXCPU; i++) { 2865 error = vmmops_vmcx_snapshot(vm->cookie, meta, i); 2866 if (error != 0) { 2867 printf("%s: failed to snapshot vmcs/vmcb data for " 2868 "vCPU: %d; error: %d\n", __func__, i, error); 2869 goto done; 2870 } 2871 } 2872 2873 done: 2874 return (error); 2875 } 2876 2877 /* 2878 * Save kernel-side structures to user-space for snapshotting. 2879 */ 2880 int 2881 vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta) 2882 { 2883 int ret = 0; 2884 2885 switch (meta->dev_req) { 2886 case STRUCT_VMX: 2887 ret = vmmops_snapshot(vm->cookie, meta); 2888 break; 2889 case STRUCT_VMCX: 2890 ret = vm_snapshot_vmcx(vm, meta); 2891 break; 2892 case STRUCT_VM: 2893 ret = vm_snapshot_vm(vm, meta); 2894 break; 2895 case STRUCT_VIOAPIC: 2896 ret = vioapic_snapshot(vm_ioapic(vm), meta); 2897 break; 2898 case STRUCT_VLAPIC: 2899 ret = vlapic_snapshot(vm, meta); 2900 break; 2901 case STRUCT_VHPET: 2902 ret = vhpet_snapshot(vm_hpet(vm), meta); 2903 break; 2904 case STRUCT_VATPIC: 2905 ret = vatpic_snapshot(vm_atpic(vm), meta); 2906 break; 2907 case STRUCT_VATPIT: 2908 ret = vatpit_snapshot(vm_atpit(vm), meta); 2909 break; 2910 case STRUCT_VPMTMR: 2911 ret = vpmtmr_snapshot(vm_pmtmr(vm), meta); 2912 break; 2913 case STRUCT_VRTC: 2914 ret = vrtc_snapshot(vm_rtc(vm), meta); 2915 break; 2916 default: 2917 printf("%s: failed to find the requested type %#x\n", 2918 __func__, meta->dev_req); 2919 ret = (EINVAL); 2920 } 2921 return (ret); 2922 } 2923 2924 int 2925 vm_set_tsc_offset(struct vm *vm, int vcpuid, uint64_t offset) 2926 { 2927 struct vcpu *vcpu; 2928 2929 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2930 return (EINVAL); 2931 2932 vcpu = &vm->vcpu[vcpuid]; 2933 vcpu->tsc_offset = offset; 2934 2935 return (0); 2936 } 2937 2938 int 2939 vm_restore_time(struct vm *vm) 2940 { 2941 int error, i; 2942 uint64_t now; 2943 struct vcpu *vcpu; 2944 2945 now = rdtsc(); 2946 2947 error = vhpet_restore_time(vm_hpet(vm)); 2948 if (error) 2949 return (error); 2950 2951 for (i = 0; i < nitems(vm->vcpu); i++) { 2952 vcpu = &vm->vcpu[i]; 2953 2954 error = vmmops_restore_tsc(vm->cookie, i, vcpu->tsc_offset - 2955 now); 2956 if (error) 2957 return (error); 2958 } 2959 2960 return (0); 2961 } 2962 #endif 2963