1 /*- 2 * Copyright (c) 2011 NetApp, Inc. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD$ 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/sysctl.h> 37 #include <sys/malloc.h> 38 #include <sys/pcpu.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/proc.h> 42 #include <sys/rwlock.h> 43 #include <sys/sched.h> 44 #include <sys/smp.h> 45 #include <sys/systm.h> 46 47 #include <vm/vm.h> 48 #include <vm/vm_object.h> 49 #include <vm/vm_page.h> 50 #include <vm/pmap.h> 51 #include <vm/vm_map.h> 52 #include <vm/vm_extern.h> 53 #include <vm/vm_param.h> 54 55 #include <machine/cpu.h> 56 #include <machine/vm.h> 57 #include <machine/pcb.h> 58 #include <machine/smp.h> 59 #include <x86/psl.h> 60 #include <x86/apicreg.h> 61 #include <machine/vmparam.h> 62 63 #include <machine/vmm.h> 64 #include <machine/vmm_dev.h> 65 #include <machine/vmm_instruction_emul.h> 66 67 #include "vmm_ioport.h" 68 #include "vmm_ktr.h" 69 #include "vmm_host.h" 70 #include "vmm_mem.h" 71 #include "vmm_util.h" 72 #include "vatpic.h" 73 #include "vatpit.h" 74 #include "vhpet.h" 75 #include "vioapic.h" 76 #include "vlapic.h" 77 #include "vpmtmr.h" 78 #include "vrtc.h" 79 #include "vmm_stat.h" 80 #include "vmm_lapic.h" 81 82 #include "io/ppt.h" 83 #include "io/iommu.h" 84 85 struct vlapic; 86 87 /* 88 * Initialization: 89 * (a) allocated when vcpu is created 90 * (i) initialized when vcpu is created and when it is reinitialized 91 * (o) initialized the first time the vcpu is created 92 * (x) initialized before use 93 */ 94 struct vcpu { 95 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 96 enum vcpu_state state; /* (o) vcpu state */ 97 int hostcpu; /* (o) vcpu's host cpu */ 98 struct vlapic *vlapic; /* (i) APIC device model */ 99 enum x2apic_state x2apic_state; /* (i) APIC mode */ 100 uint64_t exitintinfo; /* (i) events pending at VM exit */ 101 int nmi_pending; /* (i) NMI pending */ 102 int extint_pending; /* (i) INTR pending */ 103 int exception_pending; /* (i) exception pending */ 104 int exc_vector; /* (x) exception collateral */ 105 int exc_errcode_valid; 106 uint32_t exc_errcode; 107 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 108 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 109 void *stats; /* (a,i) statistics */ 110 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 111 uint64_t nextrip; /* (x) next instruction to execute */ 112 }; 113 114 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx)) 115 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 116 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 117 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 118 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 119 120 struct mem_seg { 121 vm_paddr_t gpa; 122 size_t len; 123 boolean_t wired; 124 vm_object_t object; 125 }; 126 #define VM_MAX_MEMORY_SEGMENTS 2 127 128 /* 129 * Initialization: 130 * (o) initialized the first time the VM is created 131 * (i) initialized when VM is created and when it is reinitialized 132 * (x) initialized before use 133 */ 134 struct vm { 135 void *cookie; /* (i) cpu-specific data */ 136 void *iommu; /* (x) iommu-specific data */ 137 struct vhpet *vhpet; /* (i) virtual HPET */ 138 struct vioapic *vioapic; /* (i) virtual ioapic */ 139 struct vatpic *vatpic; /* (i) virtual atpic */ 140 struct vatpit *vatpit; /* (i) virtual atpit */ 141 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ 142 struct vrtc *vrtc; /* (o) virtual RTC */ 143 volatile cpuset_t active_cpus; /* (i) active vcpus */ 144 int suspend; /* (i) stop VM execution */ 145 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 146 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 147 cpuset_t rendezvous_req_cpus; /* (x) rendezvous requested */ 148 cpuset_t rendezvous_done_cpus; /* (x) rendezvous finished */ 149 void *rendezvous_arg; /* (x) rendezvous func/arg */ 150 vm_rendezvous_func_t rendezvous_func; 151 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 152 int num_mem_segs; /* (o) guest memory segments */ 153 struct mem_seg mem_segs[VM_MAX_MEMORY_SEGMENTS]; 154 struct vmspace *vmspace; /* (o) guest's address space */ 155 char name[VM_MAX_NAMELEN]; /* (o) virtual machine name */ 156 struct vcpu vcpu[VM_MAXCPU]; /* (i) guest vcpus */ 157 }; 158 159 static int vmm_initialized; 160 161 static struct vmm_ops *ops; 162 #define VMM_INIT(num) (ops != NULL ? (*ops->init)(num) : 0) 163 #define VMM_CLEANUP() (ops != NULL ? (*ops->cleanup)() : 0) 164 #define VMM_RESUME() (ops != NULL ? (*ops->resume)() : 0) 165 166 #define VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL) 167 #define VMRUN(vmi, vcpu, rip, pmap, rptr, sptr) \ 168 (ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, rptr, sptr) : ENXIO) 169 #define VMCLEANUP(vmi) (ops != NULL ? (*ops->vmcleanup)(vmi) : NULL) 170 #define VMSPACE_ALLOC(min, max) \ 171 (ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL) 172 #define VMSPACE_FREE(vmspace) \ 173 (ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO) 174 #define VMGETREG(vmi, vcpu, num, retval) \ 175 (ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO) 176 #define VMSETREG(vmi, vcpu, num, val) \ 177 (ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO) 178 #define VMGETDESC(vmi, vcpu, num, desc) \ 179 (ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO) 180 #define VMSETDESC(vmi, vcpu, num, desc) \ 181 (ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO) 182 #define VMGETCAP(vmi, vcpu, num, retval) \ 183 (ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO) 184 #define VMSETCAP(vmi, vcpu, num, val) \ 185 (ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO) 186 #define VLAPIC_INIT(vmi, vcpu) \ 187 (ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL) 188 #define VLAPIC_CLEANUP(vmi, vlapic) \ 189 (ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL) 190 191 #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS) 192 #define fpu_stop_emulating() clts() 193 194 static MALLOC_DEFINE(M_VM, "vm", "vm"); 195 196 /* statistics */ 197 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 198 199 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL); 200 201 /* 202 * Halt the guest if all vcpus are executing a HLT instruction with 203 * interrupts disabled. 204 */ 205 static int halt_detection_enabled = 1; 206 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 207 &halt_detection_enabled, 0, 208 "Halt VM if all vcpus execute HLT with interrupts disabled"); 209 210 static int vmm_ipinum; 211 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 212 "IPI vector used for vcpu notifications"); 213 214 static int trace_guest_exceptions; 215 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN, 216 &trace_guest_exceptions, 0, 217 "Trap into hypervisor on all guest exceptions and reflect them back"); 218 219 static int vmm_force_iommu = 0; 220 TUNABLE_INT("hw.vmm.force_iommu", &vmm_force_iommu); 221 SYSCTL_INT(_hw_vmm, OID_AUTO, force_iommu, CTLFLAG_RDTUN, &vmm_force_iommu, 0, 222 "Force use of I/O MMU even if no passthrough devices were found."); 223 224 static void 225 vcpu_cleanup(struct vm *vm, int i, bool destroy) 226 { 227 struct vcpu *vcpu = &vm->vcpu[i]; 228 229 VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic); 230 if (destroy) { 231 vmm_stat_free(vcpu->stats); 232 fpu_save_area_free(vcpu->guestfpu); 233 } 234 } 235 236 static void 237 vcpu_init(struct vm *vm, int vcpu_id, bool create) 238 { 239 struct vcpu *vcpu; 240 241 KASSERT(vcpu_id >= 0 && vcpu_id < VM_MAXCPU, 242 ("vcpu_init: invalid vcpu %d", vcpu_id)); 243 244 vcpu = &vm->vcpu[vcpu_id]; 245 246 if (create) { 247 KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already " 248 "initialized", vcpu_id)); 249 vcpu_lock_init(vcpu); 250 vcpu->state = VCPU_IDLE; 251 vcpu->hostcpu = NOCPU; 252 vcpu->guestfpu = fpu_save_area_alloc(); 253 vcpu->stats = vmm_stat_alloc(); 254 } 255 256 vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id); 257 vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED); 258 vcpu->exitintinfo = 0; 259 vcpu->nmi_pending = 0; 260 vcpu->extint_pending = 0; 261 vcpu->exception_pending = 0; 262 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 263 fpu_save_area_reset(vcpu->guestfpu); 264 vmm_stat_init(vcpu->stats); 265 } 266 267 int 268 vcpu_trace_exceptions(struct vm *vm, int vcpuid) 269 { 270 271 return (trace_guest_exceptions); 272 } 273 274 struct vm_exit * 275 vm_exitinfo(struct vm *vm, int cpuid) 276 { 277 struct vcpu *vcpu; 278 279 if (cpuid < 0 || cpuid >= VM_MAXCPU) 280 panic("vm_exitinfo: invalid cpuid %d", cpuid); 281 282 vcpu = &vm->vcpu[cpuid]; 283 284 return (&vcpu->exitinfo); 285 } 286 287 static void 288 vmm_resume(void) 289 { 290 VMM_RESUME(); 291 } 292 293 static int 294 vmm_init(void) 295 { 296 int error; 297 298 vmm_host_state_init(); 299 300 vmm_ipinum = lapic_ipi_alloc(&IDTVEC(justreturn)); 301 if (vmm_ipinum < 0) 302 vmm_ipinum = IPI_AST; 303 304 error = vmm_mem_init(); 305 if (error) 306 return (error); 307 308 if (vmm_is_intel()) 309 ops = &vmm_ops_intel; 310 else if (vmm_is_amd()) 311 ops = &vmm_ops_amd; 312 else 313 return (ENXIO); 314 315 vmm_resume_p = vmm_resume; 316 317 return (VMM_INIT(vmm_ipinum)); 318 } 319 320 static int 321 vmm_handler(module_t mod, int what, void *arg) 322 { 323 int error; 324 325 switch (what) { 326 case MOD_LOAD: 327 vmmdev_init(); 328 if (vmm_force_iommu || ppt_avail_devices() > 0) 329 iommu_init(); 330 error = vmm_init(); 331 if (error == 0) 332 vmm_initialized = 1; 333 break; 334 case MOD_UNLOAD: 335 error = vmmdev_cleanup(); 336 if (error == 0) { 337 vmm_resume_p = NULL; 338 iommu_cleanup(); 339 if (vmm_ipinum != IPI_AST) 340 lapic_ipi_free(vmm_ipinum); 341 error = VMM_CLEANUP(); 342 /* 343 * Something bad happened - prevent new 344 * VMs from being created 345 */ 346 if (error) 347 vmm_initialized = 0; 348 } 349 break; 350 default: 351 error = 0; 352 break; 353 } 354 return (error); 355 } 356 357 static moduledata_t vmm_kmod = { 358 "vmm", 359 vmm_handler, 360 NULL 361 }; 362 363 /* 364 * vmm initialization has the following dependencies: 365 * 366 * - iommu initialization must happen after the pci passthru driver has had 367 * a chance to attach to any passthru devices (after SI_SUB_CONFIGURE). 368 * 369 * - VT-x initialization requires smp_rendezvous() and therefore must happen 370 * after SMP is fully functional (after SI_SUB_SMP). 371 */ 372 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 373 MODULE_VERSION(vmm, 1); 374 375 static void 376 vm_init(struct vm *vm, bool create) 377 { 378 int i; 379 380 vm->cookie = VMINIT(vm, vmspace_pmap(vm->vmspace)); 381 vm->iommu = NULL; 382 vm->vioapic = vioapic_init(vm); 383 vm->vhpet = vhpet_init(vm); 384 vm->vatpic = vatpic_init(vm); 385 vm->vatpit = vatpit_init(vm); 386 vm->vpmtmr = vpmtmr_init(vm); 387 if (create) 388 vm->vrtc = vrtc_init(vm); 389 390 CPU_ZERO(&vm->active_cpus); 391 392 vm->suspend = 0; 393 CPU_ZERO(&vm->suspended_cpus); 394 395 for (i = 0; i < VM_MAXCPU; i++) 396 vcpu_init(vm, i, create); 397 } 398 399 int 400 vm_create(const char *name, struct vm **retvm) 401 { 402 struct vm *vm; 403 struct vmspace *vmspace; 404 405 /* 406 * If vmm.ko could not be successfully initialized then don't attempt 407 * to create the virtual machine. 408 */ 409 if (!vmm_initialized) 410 return (ENXIO); 411 412 if (name == NULL || strlen(name) >= VM_MAX_NAMELEN) 413 return (EINVAL); 414 415 vmspace = VMSPACE_ALLOC(0, VM_MAXUSER_ADDRESS); 416 if (vmspace == NULL) 417 return (ENOMEM); 418 419 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 420 strcpy(vm->name, name); 421 vm->num_mem_segs = 0; 422 vm->vmspace = vmspace; 423 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 424 425 vm_init(vm, true); 426 427 *retvm = vm; 428 return (0); 429 } 430 431 static void 432 vm_free_mem_seg(struct vm *vm, struct mem_seg *seg) 433 { 434 435 if (seg->object != NULL) 436 vmm_mem_free(vm->vmspace, seg->gpa, seg->len); 437 438 bzero(seg, sizeof(*seg)); 439 } 440 441 static void 442 vm_cleanup(struct vm *vm, bool destroy) 443 { 444 int i; 445 446 ppt_unassign_all(vm); 447 448 if (vm->iommu != NULL) 449 iommu_destroy_domain(vm->iommu); 450 451 if (destroy) 452 vrtc_cleanup(vm->vrtc); 453 else 454 vrtc_reset(vm->vrtc); 455 vpmtmr_cleanup(vm->vpmtmr); 456 vatpit_cleanup(vm->vatpit); 457 vhpet_cleanup(vm->vhpet); 458 vatpic_cleanup(vm->vatpic); 459 vioapic_cleanup(vm->vioapic); 460 461 for (i = 0; i < VM_MAXCPU; i++) 462 vcpu_cleanup(vm, i, destroy); 463 464 VMCLEANUP(vm->cookie); 465 466 if (destroy) { 467 for (i = 0; i < vm->num_mem_segs; i++) 468 vm_free_mem_seg(vm, &vm->mem_segs[i]); 469 470 vm->num_mem_segs = 0; 471 472 VMSPACE_FREE(vm->vmspace); 473 vm->vmspace = NULL; 474 } 475 } 476 477 void 478 vm_destroy(struct vm *vm) 479 { 480 vm_cleanup(vm, true); 481 free(vm, M_VM); 482 } 483 484 int 485 vm_reinit(struct vm *vm) 486 { 487 int error; 488 489 /* 490 * A virtual machine can be reset only if all vcpus are suspended. 491 */ 492 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 493 vm_cleanup(vm, false); 494 vm_init(vm, false); 495 error = 0; 496 } else { 497 error = EBUSY; 498 } 499 500 return (error); 501 } 502 503 const char * 504 vm_name(struct vm *vm) 505 { 506 return (vm->name); 507 } 508 509 int 510 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 511 { 512 vm_object_t obj; 513 514 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 515 return (ENOMEM); 516 else 517 return (0); 518 } 519 520 int 521 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 522 { 523 524 vmm_mmio_free(vm->vmspace, gpa, len); 525 return (0); 526 } 527 528 boolean_t 529 vm_mem_allocated(struct vm *vm, vm_paddr_t gpa) 530 { 531 int i; 532 vm_paddr_t gpabase, gpalimit; 533 534 for (i = 0; i < vm->num_mem_segs; i++) { 535 gpabase = vm->mem_segs[i].gpa; 536 gpalimit = gpabase + vm->mem_segs[i].len; 537 if (gpa >= gpabase && gpa < gpalimit) 538 return (TRUE); /* 'gpa' is regular memory */ 539 } 540 541 if (ppt_is_mmio(vm, gpa)) 542 return (TRUE); /* 'gpa' is pci passthru mmio */ 543 544 return (FALSE); 545 } 546 547 int 548 vm_malloc(struct vm *vm, vm_paddr_t gpa, size_t len) 549 { 550 int available, allocated; 551 struct mem_seg *seg; 552 vm_object_t object; 553 vm_paddr_t g; 554 555 if ((gpa & PAGE_MASK) || (len & PAGE_MASK) || len == 0) 556 return (EINVAL); 557 558 available = allocated = 0; 559 g = gpa; 560 while (g < gpa + len) { 561 if (vm_mem_allocated(vm, g)) 562 allocated++; 563 else 564 available++; 565 566 g += PAGE_SIZE; 567 } 568 569 /* 570 * If there are some allocated and some available pages in the address 571 * range then it is an error. 572 */ 573 if (allocated && available) 574 return (EINVAL); 575 576 /* 577 * If the entire address range being requested has already been 578 * allocated then there isn't anything more to do. 579 */ 580 if (allocated && available == 0) 581 return (0); 582 583 if (vm->num_mem_segs >= VM_MAX_MEMORY_SEGMENTS) 584 return (E2BIG); 585 586 seg = &vm->mem_segs[vm->num_mem_segs]; 587 588 if ((object = vmm_mem_alloc(vm->vmspace, gpa, len)) == NULL) 589 return (ENOMEM); 590 591 seg->gpa = gpa; 592 seg->len = len; 593 seg->object = object; 594 seg->wired = FALSE; 595 596 vm->num_mem_segs++; 597 598 return (0); 599 } 600 601 static vm_paddr_t 602 vm_maxmem(struct vm *vm) 603 { 604 int i; 605 vm_paddr_t gpa, maxmem; 606 607 maxmem = 0; 608 for (i = 0; i < vm->num_mem_segs; i++) { 609 gpa = vm->mem_segs[i].gpa + vm->mem_segs[i].len; 610 if (gpa > maxmem) 611 maxmem = gpa; 612 } 613 return (maxmem); 614 } 615 616 static void 617 vm_gpa_unwire(struct vm *vm) 618 { 619 int i, rv; 620 struct mem_seg *seg; 621 622 for (i = 0; i < vm->num_mem_segs; i++) { 623 seg = &vm->mem_segs[i]; 624 if (!seg->wired) 625 continue; 626 627 rv = vm_map_unwire(&vm->vmspace->vm_map, 628 seg->gpa, seg->gpa + seg->len, 629 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 630 KASSERT(rv == KERN_SUCCESS, ("vm(%s) memory segment " 631 "%#lx/%ld could not be unwired: %d", 632 vm_name(vm), seg->gpa, seg->len, rv)); 633 634 seg->wired = FALSE; 635 } 636 } 637 638 static int 639 vm_gpa_wire(struct vm *vm) 640 { 641 int i, rv; 642 struct mem_seg *seg; 643 644 for (i = 0; i < vm->num_mem_segs; i++) { 645 seg = &vm->mem_segs[i]; 646 if (seg->wired) 647 continue; 648 649 /* XXX rlimits? */ 650 rv = vm_map_wire(&vm->vmspace->vm_map, 651 seg->gpa, seg->gpa + seg->len, 652 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 653 if (rv != KERN_SUCCESS) 654 break; 655 656 seg->wired = TRUE; 657 } 658 659 if (i < vm->num_mem_segs) { 660 /* 661 * Undo the wiring before returning an error. 662 */ 663 vm_gpa_unwire(vm); 664 return (EAGAIN); 665 } 666 667 return (0); 668 } 669 670 static void 671 vm_iommu_modify(struct vm *vm, boolean_t map) 672 { 673 int i, sz; 674 vm_paddr_t gpa, hpa; 675 struct mem_seg *seg; 676 void *vp, *cookie, *host_domain; 677 678 sz = PAGE_SIZE; 679 host_domain = iommu_host_domain(); 680 681 for (i = 0; i < vm->num_mem_segs; i++) { 682 seg = &vm->mem_segs[i]; 683 KASSERT(seg->wired, ("vm(%s) memory segment %#lx/%ld not wired", 684 vm_name(vm), seg->gpa, seg->len)); 685 686 gpa = seg->gpa; 687 while (gpa < seg->gpa + seg->len) { 688 vp = vm_gpa_hold(vm, gpa, PAGE_SIZE, VM_PROT_WRITE, 689 &cookie); 690 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", 691 vm_name(vm), gpa)); 692 693 vm_gpa_release(cookie); 694 695 hpa = DMAP_TO_PHYS((uintptr_t)vp); 696 if (map) { 697 iommu_create_mapping(vm->iommu, gpa, hpa, sz); 698 iommu_remove_mapping(host_domain, hpa, sz); 699 } else { 700 iommu_remove_mapping(vm->iommu, gpa, sz); 701 iommu_create_mapping(host_domain, hpa, hpa, sz); 702 } 703 704 gpa += PAGE_SIZE; 705 } 706 } 707 708 /* 709 * Invalidate the cached translations associated with the domain 710 * from which pages were removed. 711 */ 712 if (map) 713 iommu_invalidate_tlb(host_domain); 714 else 715 iommu_invalidate_tlb(vm->iommu); 716 } 717 718 #define vm_iommu_unmap(vm) vm_iommu_modify((vm), FALSE) 719 #define vm_iommu_map(vm) vm_iommu_modify((vm), TRUE) 720 721 int 722 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 723 { 724 int error; 725 726 error = ppt_unassign_device(vm, bus, slot, func); 727 if (error) 728 return (error); 729 730 if (ppt_assigned_devices(vm) == 0) { 731 vm_iommu_unmap(vm); 732 vm_gpa_unwire(vm); 733 } 734 return (0); 735 } 736 737 int 738 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 739 { 740 int error; 741 vm_paddr_t maxaddr; 742 743 /* 744 * Virtual machines with pci passthru devices get special treatment: 745 * - the guest physical memory is wired 746 * - the iommu is programmed to do the 'gpa' to 'hpa' translation 747 * 748 * We need to do this before the first pci passthru device is attached. 749 */ 750 if (ppt_assigned_devices(vm) == 0) { 751 KASSERT(vm->iommu == NULL, 752 ("vm_assign_pptdev: iommu must be NULL")); 753 maxaddr = vm_maxmem(vm); 754 vm->iommu = iommu_create_domain(maxaddr); 755 756 error = vm_gpa_wire(vm); 757 if (error) 758 return (error); 759 760 vm_iommu_map(vm); 761 } 762 763 error = ppt_assign_device(vm, bus, slot, func); 764 return (error); 765 } 766 767 void * 768 vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 769 void **cookie) 770 { 771 int count, pageoff; 772 vm_page_t m; 773 774 pageoff = gpa & PAGE_MASK; 775 if (len > PAGE_SIZE - pageoff) 776 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 777 778 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 779 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 780 781 if (count == 1) { 782 *cookie = m; 783 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 784 } else { 785 *cookie = NULL; 786 return (NULL); 787 } 788 } 789 790 void 791 vm_gpa_release(void *cookie) 792 { 793 vm_page_t m = cookie; 794 795 vm_page_lock(m); 796 vm_page_unhold(m); 797 vm_page_unlock(m); 798 } 799 800 int 801 vm_gpabase2memseg(struct vm *vm, vm_paddr_t gpabase, 802 struct vm_memory_segment *seg) 803 { 804 int i; 805 806 for (i = 0; i < vm->num_mem_segs; i++) { 807 if (gpabase == vm->mem_segs[i].gpa) { 808 seg->gpa = vm->mem_segs[i].gpa; 809 seg->len = vm->mem_segs[i].len; 810 seg->wired = vm->mem_segs[i].wired; 811 return (0); 812 } 813 } 814 return (-1); 815 } 816 817 int 818 vm_get_memobj(struct vm *vm, vm_paddr_t gpa, size_t len, 819 vm_offset_t *offset, struct vm_object **object) 820 { 821 int i; 822 size_t seg_len; 823 vm_paddr_t seg_gpa; 824 vm_object_t seg_obj; 825 826 for (i = 0; i < vm->num_mem_segs; i++) { 827 if ((seg_obj = vm->mem_segs[i].object) == NULL) 828 continue; 829 830 seg_gpa = vm->mem_segs[i].gpa; 831 seg_len = vm->mem_segs[i].len; 832 833 if (gpa >= seg_gpa && gpa < seg_gpa + seg_len) { 834 *offset = gpa - seg_gpa; 835 *object = seg_obj; 836 vm_object_reference(seg_obj); 837 return (0); 838 } 839 } 840 841 return (EINVAL); 842 } 843 844 int 845 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval) 846 { 847 848 if (vcpu < 0 || vcpu >= VM_MAXCPU) 849 return (EINVAL); 850 851 if (reg >= VM_REG_LAST) 852 return (EINVAL); 853 854 return (VMGETREG(vm->cookie, vcpu, reg, retval)); 855 } 856 857 int 858 vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val) 859 { 860 struct vcpu *vcpu; 861 int error; 862 863 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 864 return (EINVAL); 865 866 if (reg >= VM_REG_LAST) 867 return (EINVAL); 868 869 error = VMSETREG(vm->cookie, vcpuid, reg, val); 870 if (error || reg != VM_REG_GUEST_RIP) 871 return (error); 872 873 /* Set 'nextrip' to match the value of %rip */ 874 VCPU_CTR1(vm, vcpuid, "Setting nextrip to %#lx", val); 875 vcpu = &vm->vcpu[vcpuid]; 876 vcpu->nextrip = val; 877 return (0); 878 } 879 880 static boolean_t 881 is_descriptor_table(int reg) 882 { 883 884 switch (reg) { 885 case VM_REG_GUEST_IDTR: 886 case VM_REG_GUEST_GDTR: 887 return (TRUE); 888 default: 889 return (FALSE); 890 } 891 } 892 893 static boolean_t 894 is_segment_register(int reg) 895 { 896 897 switch (reg) { 898 case VM_REG_GUEST_ES: 899 case VM_REG_GUEST_CS: 900 case VM_REG_GUEST_SS: 901 case VM_REG_GUEST_DS: 902 case VM_REG_GUEST_FS: 903 case VM_REG_GUEST_GS: 904 case VM_REG_GUEST_TR: 905 case VM_REG_GUEST_LDTR: 906 return (TRUE); 907 default: 908 return (FALSE); 909 } 910 } 911 912 int 913 vm_get_seg_desc(struct vm *vm, int vcpu, int reg, 914 struct seg_desc *desc) 915 { 916 917 if (vcpu < 0 || vcpu >= VM_MAXCPU) 918 return (EINVAL); 919 920 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 921 return (EINVAL); 922 923 return (VMGETDESC(vm->cookie, vcpu, reg, desc)); 924 } 925 926 int 927 vm_set_seg_desc(struct vm *vm, int vcpu, int reg, 928 struct seg_desc *desc) 929 { 930 if (vcpu < 0 || vcpu >= VM_MAXCPU) 931 return (EINVAL); 932 933 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 934 return (EINVAL); 935 936 return (VMSETDESC(vm->cookie, vcpu, reg, desc)); 937 } 938 939 static void 940 restore_guest_fpustate(struct vcpu *vcpu) 941 { 942 943 /* flush host state to the pcb */ 944 fpuexit(curthread); 945 946 /* restore guest FPU state */ 947 fpu_stop_emulating(); 948 fpurestore(vcpu->guestfpu); 949 950 /* restore guest XCR0 if XSAVE is enabled in the host */ 951 if (rcr4() & CR4_XSAVE) 952 load_xcr(0, vcpu->guest_xcr0); 953 954 /* 955 * The FPU is now "dirty" with the guest's state so turn on emulation 956 * to trap any access to the FPU by the host. 957 */ 958 fpu_start_emulating(); 959 } 960 961 static void 962 save_guest_fpustate(struct vcpu *vcpu) 963 { 964 965 if ((rcr0() & CR0_TS) == 0) 966 panic("fpu emulation not enabled in host!"); 967 968 /* save guest XCR0 and restore host XCR0 */ 969 if (rcr4() & CR4_XSAVE) { 970 vcpu->guest_xcr0 = rxcr(0); 971 load_xcr(0, vmm_get_host_xcr0()); 972 } 973 974 /* save guest FPU state */ 975 fpu_stop_emulating(); 976 fpusave(vcpu->guestfpu); 977 fpu_start_emulating(); 978 } 979 980 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 981 982 static int 983 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate, 984 bool from_idle) 985 { 986 int error; 987 988 vcpu_assert_locked(vcpu); 989 990 /* 991 * State transitions from the vmmdev_ioctl() must always begin from 992 * the VCPU_IDLE state. This guarantees that there is only a single 993 * ioctl() operating on a vcpu at any point. 994 */ 995 if (from_idle) { 996 while (vcpu->state != VCPU_IDLE) 997 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 998 } else { 999 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 1000 "vcpu idle state")); 1001 } 1002 1003 if (vcpu->state == VCPU_RUNNING) { 1004 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 1005 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 1006 } else { 1007 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 1008 "vcpu that is not running", vcpu->hostcpu)); 1009 } 1010 1011 /* 1012 * The following state transitions are allowed: 1013 * IDLE -> FROZEN -> IDLE 1014 * FROZEN -> RUNNING -> FROZEN 1015 * FROZEN -> SLEEPING -> FROZEN 1016 */ 1017 switch (vcpu->state) { 1018 case VCPU_IDLE: 1019 case VCPU_RUNNING: 1020 case VCPU_SLEEPING: 1021 error = (newstate != VCPU_FROZEN); 1022 break; 1023 case VCPU_FROZEN: 1024 error = (newstate == VCPU_FROZEN); 1025 break; 1026 default: 1027 error = 1; 1028 break; 1029 } 1030 1031 if (error) 1032 return (EBUSY); 1033 1034 vcpu->state = newstate; 1035 if (newstate == VCPU_RUNNING) 1036 vcpu->hostcpu = curcpu; 1037 else 1038 vcpu->hostcpu = NOCPU; 1039 1040 if (newstate == VCPU_IDLE) 1041 wakeup(&vcpu->state); 1042 1043 return (0); 1044 } 1045 1046 static void 1047 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1048 { 1049 int error; 1050 1051 if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0) 1052 panic("Error %d setting state to %d\n", error, newstate); 1053 } 1054 1055 static void 1056 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate) 1057 { 1058 int error; 1059 1060 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0) 1061 panic("Error %d setting state to %d", error, newstate); 1062 } 1063 1064 static void 1065 vm_set_rendezvous_func(struct vm *vm, vm_rendezvous_func_t func) 1066 { 1067 1068 KASSERT(mtx_owned(&vm->rendezvous_mtx), ("rendezvous_mtx not locked")); 1069 1070 /* 1071 * Update 'rendezvous_func' and execute a write memory barrier to 1072 * ensure that it is visible across all host cpus. This is not needed 1073 * for correctness but it does ensure that all the vcpus will notice 1074 * that the rendezvous is requested immediately. 1075 */ 1076 vm->rendezvous_func = func; 1077 wmb(); 1078 } 1079 1080 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt) \ 1081 do { \ 1082 if (vcpuid >= 0) \ 1083 VCPU_CTR0(vm, vcpuid, fmt); \ 1084 else \ 1085 VM_CTR0(vm, fmt); \ 1086 } while (0) 1087 1088 static void 1089 vm_handle_rendezvous(struct vm *vm, int vcpuid) 1090 { 1091 1092 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU), 1093 ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid)); 1094 1095 mtx_lock(&vm->rendezvous_mtx); 1096 while (vm->rendezvous_func != NULL) { 1097 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1098 CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus); 1099 1100 if (vcpuid != -1 && 1101 CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1102 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1103 VCPU_CTR0(vm, vcpuid, "Calling rendezvous func"); 1104 (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg); 1105 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1106 } 1107 if (CPU_CMP(&vm->rendezvous_req_cpus, 1108 &vm->rendezvous_done_cpus) == 0) { 1109 VCPU_CTR0(vm, vcpuid, "Rendezvous completed"); 1110 vm_set_rendezvous_func(vm, NULL); 1111 wakeup(&vm->rendezvous_func); 1112 break; 1113 } 1114 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion"); 1115 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1116 "vmrndv", 0); 1117 } 1118 mtx_unlock(&vm->rendezvous_mtx); 1119 } 1120 1121 /* 1122 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1123 */ 1124 static int 1125 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu) 1126 { 1127 struct vcpu *vcpu; 1128 const char *wmesg; 1129 int t, vcpu_halted, vm_halted; 1130 1131 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1132 1133 vcpu = &vm->vcpu[vcpuid]; 1134 vcpu_halted = 0; 1135 vm_halted = 0; 1136 1137 vcpu_lock(vcpu); 1138 while (1) { 1139 /* 1140 * Do a final check for pending NMI or interrupts before 1141 * really putting this thread to sleep. Also check for 1142 * software events that would cause this vcpu to wakeup. 1143 * 1144 * These interrupts/events could have happened after the 1145 * vcpu returned from VMRUN() and before it acquired the 1146 * vcpu lock above. 1147 */ 1148 if (vm->rendezvous_func != NULL || vm->suspend) 1149 break; 1150 if (vm_nmi_pending(vm, vcpuid)) 1151 break; 1152 if (!intr_disabled) { 1153 if (vm_extint_pending(vm, vcpuid) || 1154 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1155 break; 1156 } 1157 } 1158 1159 /* Don't go to sleep if the vcpu thread needs to yield */ 1160 if (vcpu_should_yield(vm, vcpuid)) 1161 break; 1162 1163 /* 1164 * Some Linux guests implement "halt" by having all vcpus 1165 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1166 * track of the vcpus that have entered this state. When all 1167 * vcpus enter the halted state the virtual machine is halted. 1168 */ 1169 if (intr_disabled) { 1170 wmesg = "vmhalt"; 1171 VCPU_CTR0(vm, vcpuid, "Halted"); 1172 if (!vcpu_halted && halt_detection_enabled) { 1173 vcpu_halted = 1; 1174 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1175 } 1176 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1177 vm_halted = 1; 1178 break; 1179 } 1180 } else { 1181 wmesg = "vmidle"; 1182 } 1183 1184 t = ticks; 1185 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1186 /* 1187 * XXX msleep_spin() cannot be interrupted by signals so 1188 * wake up periodically to check pending signals. 1189 */ 1190 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1191 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1192 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t); 1193 } 1194 1195 if (vcpu_halted) 1196 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1197 1198 vcpu_unlock(vcpu); 1199 1200 if (vm_halted) 1201 vm_suspend(vm, VM_SUSPEND_HALT); 1202 1203 return (0); 1204 } 1205 1206 static int 1207 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu) 1208 { 1209 int rv, ftype; 1210 struct vm_map *map; 1211 struct vcpu *vcpu; 1212 struct vm_exit *vme; 1213 1214 vcpu = &vm->vcpu[vcpuid]; 1215 vme = &vcpu->exitinfo; 1216 1217 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1218 __func__, vme->inst_length)); 1219 1220 ftype = vme->u.paging.fault_type; 1221 KASSERT(ftype == VM_PROT_READ || 1222 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1223 ("vm_handle_paging: invalid fault_type %d", ftype)); 1224 1225 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1226 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1227 vme->u.paging.gpa, ftype); 1228 if (rv == 0) { 1229 VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx", 1230 ftype == VM_PROT_READ ? "accessed" : "dirty", 1231 vme->u.paging.gpa); 1232 goto done; 1233 } 1234 } 1235 1236 map = &vm->vmspace->vm_map; 1237 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL); 1238 1239 VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, " 1240 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1241 1242 if (rv != KERN_SUCCESS) 1243 return (EFAULT); 1244 done: 1245 return (0); 1246 } 1247 1248 static int 1249 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu) 1250 { 1251 struct vie *vie; 1252 struct vcpu *vcpu; 1253 struct vm_exit *vme; 1254 uint64_t gla, gpa, cs_base; 1255 struct vm_guest_paging *paging; 1256 mem_region_read_t mread; 1257 mem_region_write_t mwrite; 1258 enum vm_cpu_mode cpu_mode; 1259 int cs_d, error, length; 1260 1261 vcpu = &vm->vcpu[vcpuid]; 1262 vme = &vcpu->exitinfo; 1263 1264 gla = vme->u.inst_emul.gla; 1265 gpa = vme->u.inst_emul.gpa; 1266 cs_base = vme->u.inst_emul.cs_base; 1267 cs_d = vme->u.inst_emul.cs_d; 1268 vie = &vme->u.inst_emul.vie; 1269 paging = &vme->u.inst_emul.paging; 1270 cpu_mode = paging->cpu_mode; 1271 1272 VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa); 1273 1274 /* Fetch, decode and emulate the faulting instruction */ 1275 if (vie->num_valid == 0) { 1276 /* 1277 * If the instruction length is not known then assume a 1278 * maximum size instruction. 1279 */ 1280 length = vme->inst_length ? vme->inst_length : VIE_INST_SIZE; 1281 error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip + 1282 cs_base, length, vie); 1283 } else { 1284 /* 1285 * The instruction bytes have already been copied into 'vie' 1286 */ 1287 error = 0; 1288 } 1289 if (error == 1) 1290 return (0); /* Resume guest to handle page fault */ 1291 else if (error == -1) 1292 return (EFAULT); 1293 else if (error != 0) 1294 panic("%s: vmm_fetch_instruction error %d", __func__, error); 1295 1296 if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) 1297 return (EFAULT); 1298 1299 /* 1300 * If the instruction length was not specified then update it now 1301 * along with 'nextrip'. 1302 */ 1303 if (vme->inst_length == 0) { 1304 vme->inst_length = vie->num_processed; 1305 vcpu->nextrip += vie->num_processed; 1306 } 1307 1308 /* return to userland unless this is an in-kernel emulated device */ 1309 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1310 mread = lapic_mmio_read; 1311 mwrite = lapic_mmio_write; 1312 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1313 mread = vioapic_mmio_read; 1314 mwrite = vioapic_mmio_write; 1315 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1316 mread = vhpet_mmio_read; 1317 mwrite = vhpet_mmio_write; 1318 } else { 1319 *retu = true; 1320 return (0); 1321 } 1322 1323 error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging, 1324 mread, mwrite, retu); 1325 1326 return (error); 1327 } 1328 1329 static int 1330 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu) 1331 { 1332 int i, done; 1333 struct vcpu *vcpu; 1334 1335 done = 0; 1336 vcpu = &vm->vcpu[vcpuid]; 1337 1338 CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus); 1339 1340 /* 1341 * Wait until all 'active_cpus' have suspended themselves. 1342 * 1343 * Since a VM may be suspended at any time including when one or 1344 * more vcpus are doing a rendezvous we need to call the rendezvous 1345 * handler while we are waiting to prevent a deadlock. 1346 */ 1347 vcpu_lock(vcpu); 1348 while (1) { 1349 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1350 VCPU_CTR0(vm, vcpuid, "All vcpus suspended"); 1351 break; 1352 } 1353 1354 if (vm->rendezvous_func == NULL) { 1355 VCPU_CTR0(vm, vcpuid, "Sleeping during suspend"); 1356 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1357 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1358 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1359 } else { 1360 VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend"); 1361 vcpu_unlock(vcpu); 1362 vm_handle_rendezvous(vm, vcpuid); 1363 vcpu_lock(vcpu); 1364 } 1365 } 1366 vcpu_unlock(vcpu); 1367 1368 /* 1369 * Wakeup the other sleeping vcpus and return to userspace. 1370 */ 1371 for (i = 0; i < VM_MAXCPU; i++) { 1372 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1373 vcpu_notify_event(vm, i, false); 1374 } 1375 } 1376 1377 *retu = true; 1378 return (0); 1379 } 1380 1381 int 1382 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1383 { 1384 int i; 1385 1386 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1387 return (EINVAL); 1388 1389 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1390 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1391 vm->suspend, how); 1392 return (EALREADY); 1393 } 1394 1395 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1396 1397 /* 1398 * Notify all active vcpus that they are now suspended. 1399 */ 1400 for (i = 0; i < VM_MAXCPU; i++) { 1401 if (CPU_ISSET(i, &vm->active_cpus)) 1402 vcpu_notify_event(vm, i, false); 1403 } 1404 1405 return (0); 1406 } 1407 1408 void 1409 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip) 1410 { 1411 struct vm_exit *vmexit; 1412 1413 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1414 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1415 1416 vmexit = vm_exitinfo(vm, vcpuid); 1417 vmexit->rip = rip; 1418 vmexit->inst_length = 0; 1419 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1420 vmexit->u.suspended.how = vm->suspend; 1421 } 1422 1423 void 1424 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip) 1425 { 1426 struct vm_exit *vmexit; 1427 1428 KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress")); 1429 1430 vmexit = vm_exitinfo(vm, vcpuid); 1431 vmexit->rip = rip; 1432 vmexit->inst_length = 0; 1433 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1434 vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1); 1435 } 1436 1437 void 1438 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip) 1439 { 1440 struct vm_exit *vmexit; 1441 1442 vmexit = vm_exitinfo(vm, vcpuid); 1443 vmexit->rip = rip; 1444 vmexit->inst_length = 0; 1445 vmexit->exitcode = VM_EXITCODE_BOGUS; 1446 vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1); 1447 } 1448 1449 int 1450 vm_run(struct vm *vm, struct vm_run *vmrun) 1451 { 1452 int error, vcpuid; 1453 struct vcpu *vcpu; 1454 struct pcb *pcb; 1455 uint64_t tscval; 1456 struct vm_exit *vme; 1457 bool retu, intr_disabled; 1458 pmap_t pmap; 1459 void *rptr, *sptr; 1460 1461 vcpuid = vmrun->cpuid; 1462 1463 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1464 return (EINVAL); 1465 1466 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1467 return (EINVAL); 1468 1469 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1470 return (EINVAL); 1471 1472 rptr = &vm->rendezvous_func; 1473 sptr = &vm->suspend; 1474 pmap = vmspace_pmap(vm->vmspace); 1475 vcpu = &vm->vcpu[vcpuid]; 1476 vme = &vcpu->exitinfo; 1477 restart: 1478 critical_enter(); 1479 1480 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1481 ("vm_run: absurd pm_active")); 1482 1483 tscval = rdtsc(); 1484 1485 pcb = PCPU_GET(curpcb); 1486 set_pcb_flags(pcb, PCB_FULL_IRET); 1487 1488 restore_guest_fpustate(vcpu); 1489 1490 vcpu_require_state(vm, vcpuid, VCPU_RUNNING); 1491 error = VMRUN(vm->cookie, vcpuid, vcpu->nextrip, pmap, rptr, sptr); 1492 vcpu_require_state(vm, vcpuid, VCPU_FROZEN); 1493 1494 save_guest_fpustate(vcpu); 1495 1496 vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1497 1498 critical_exit(); 1499 1500 if (error == 0) { 1501 retu = false; 1502 vcpu->nextrip = vme->rip + vme->inst_length; 1503 switch (vme->exitcode) { 1504 case VM_EXITCODE_SUSPENDED: 1505 error = vm_handle_suspend(vm, vcpuid, &retu); 1506 break; 1507 case VM_EXITCODE_IOAPIC_EOI: 1508 vioapic_process_eoi(vm, vcpuid, 1509 vme->u.ioapic_eoi.vector); 1510 break; 1511 case VM_EXITCODE_RENDEZVOUS: 1512 vm_handle_rendezvous(vm, vcpuid); 1513 error = 0; 1514 break; 1515 case VM_EXITCODE_HLT: 1516 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1517 error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu); 1518 break; 1519 case VM_EXITCODE_PAGING: 1520 error = vm_handle_paging(vm, vcpuid, &retu); 1521 break; 1522 case VM_EXITCODE_INST_EMUL: 1523 error = vm_handle_inst_emul(vm, vcpuid, &retu); 1524 break; 1525 case VM_EXITCODE_INOUT: 1526 case VM_EXITCODE_INOUT_STR: 1527 error = vm_handle_inout(vm, vcpuid, vme, &retu); 1528 break; 1529 case VM_EXITCODE_MONITOR: 1530 case VM_EXITCODE_MWAIT: 1531 vm_inject_ud(vm, vcpuid); 1532 break; 1533 default: 1534 retu = true; /* handled in userland */ 1535 break; 1536 } 1537 } 1538 1539 if (error == 0 && retu == false) 1540 goto restart; 1541 1542 /* copy the exit information */ 1543 bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit)); 1544 return (error); 1545 } 1546 1547 int 1548 vm_restart_instruction(void *arg, int vcpuid) 1549 { 1550 struct vm *vm; 1551 struct vcpu *vcpu; 1552 enum vcpu_state state; 1553 uint64_t rip; 1554 int error; 1555 1556 vm = arg; 1557 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1558 return (EINVAL); 1559 1560 vcpu = &vm->vcpu[vcpuid]; 1561 state = vcpu_get_state(vm, vcpuid, NULL); 1562 if (state == VCPU_RUNNING) { 1563 /* 1564 * When a vcpu is "running" the next instruction is determined 1565 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'. 1566 * Thus setting 'inst_length' to zero will cause the current 1567 * instruction to be restarted. 1568 */ 1569 vcpu->exitinfo.inst_length = 0; 1570 VCPU_CTR1(vm, vcpuid, "restarting instruction at %#lx by " 1571 "setting inst_length to zero", vcpu->exitinfo.rip); 1572 } else if (state == VCPU_FROZEN) { 1573 /* 1574 * When a vcpu is "frozen" it is outside the critical section 1575 * around VMRUN() and 'nextrip' points to the next instruction. 1576 * Thus instruction restart is achieved by setting 'nextrip' 1577 * to the vcpu's %rip. 1578 */ 1579 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip); 1580 KASSERT(!error, ("%s: error %d getting rip", __func__, error)); 1581 VCPU_CTR2(vm, vcpuid, "restarting instruction by updating " 1582 "nextrip from %#lx to %#lx", vcpu->nextrip, rip); 1583 vcpu->nextrip = rip; 1584 } else { 1585 panic("%s: invalid state %d", __func__, state); 1586 } 1587 return (0); 1588 } 1589 1590 int 1591 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info) 1592 { 1593 struct vcpu *vcpu; 1594 int type, vector; 1595 1596 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1597 return (EINVAL); 1598 1599 vcpu = &vm->vcpu[vcpuid]; 1600 1601 if (info & VM_INTINFO_VALID) { 1602 type = info & VM_INTINFO_TYPE; 1603 vector = info & 0xff; 1604 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 1605 return (EINVAL); 1606 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 1607 return (EINVAL); 1608 if (info & VM_INTINFO_RSVD) 1609 return (EINVAL); 1610 } else { 1611 info = 0; 1612 } 1613 VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info); 1614 vcpu->exitintinfo = info; 1615 return (0); 1616 } 1617 1618 enum exc_class { 1619 EXC_BENIGN, 1620 EXC_CONTRIBUTORY, 1621 EXC_PAGEFAULT 1622 }; 1623 1624 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 1625 1626 static enum exc_class 1627 exception_class(uint64_t info) 1628 { 1629 int type, vector; 1630 1631 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 1632 type = info & VM_INTINFO_TYPE; 1633 vector = info & 0xff; 1634 1635 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 1636 switch (type) { 1637 case VM_INTINFO_HWINTR: 1638 case VM_INTINFO_SWINTR: 1639 case VM_INTINFO_NMI: 1640 return (EXC_BENIGN); 1641 default: 1642 /* 1643 * Hardware exception. 1644 * 1645 * SVM and VT-x use identical type values to represent NMI, 1646 * hardware interrupt and software interrupt. 1647 * 1648 * SVM uses type '3' for all exceptions. VT-x uses type '3' 1649 * for exceptions except #BP and #OF. #BP and #OF use a type 1650 * value of '5' or '6'. Therefore we don't check for explicit 1651 * values of 'type' to classify 'intinfo' into a hardware 1652 * exception. 1653 */ 1654 break; 1655 } 1656 1657 switch (vector) { 1658 case IDT_PF: 1659 case IDT_VE: 1660 return (EXC_PAGEFAULT); 1661 case IDT_DE: 1662 case IDT_TS: 1663 case IDT_NP: 1664 case IDT_SS: 1665 case IDT_GP: 1666 return (EXC_CONTRIBUTORY); 1667 default: 1668 return (EXC_BENIGN); 1669 } 1670 } 1671 1672 static int 1673 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2, 1674 uint64_t *retinfo) 1675 { 1676 enum exc_class exc1, exc2; 1677 int type1, vector1; 1678 1679 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 1680 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 1681 1682 /* 1683 * If an exception occurs while attempting to call the double-fault 1684 * handler the processor enters shutdown mode (aka triple fault). 1685 */ 1686 type1 = info1 & VM_INTINFO_TYPE; 1687 vector1 = info1 & 0xff; 1688 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 1689 VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)", 1690 info1, info2); 1691 vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT); 1692 *retinfo = 0; 1693 return (0); 1694 } 1695 1696 /* 1697 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 1698 */ 1699 exc1 = exception_class(info1); 1700 exc2 = exception_class(info2); 1701 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 1702 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 1703 /* Convert nested fault into a double fault. */ 1704 *retinfo = IDT_DF; 1705 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1706 *retinfo |= VM_INTINFO_DEL_ERRCODE; 1707 } else { 1708 /* Handle exceptions serially */ 1709 *retinfo = info2; 1710 } 1711 return (1); 1712 } 1713 1714 static uint64_t 1715 vcpu_exception_intinfo(struct vcpu *vcpu) 1716 { 1717 uint64_t info = 0; 1718 1719 if (vcpu->exception_pending) { 1720 info = vcpu->exc_vector & 0xff; 1721 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1722 if (vcpu->exc_errcode_valid) { 1723 info |= VM_INTINFO_DEL_ERRCODE; 1724 info |= (uint64_t)vcpu->exc_errcode << 32; 1725 } 1726 } 1727 return (info); 1728 } 1729 1730 int 1731 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo) 1732 { 1733 struct vcpu *vcpu; 1734 uint64_t info1, info2; 1735 int valid; 1736 1737 KASSERT(vcpuid >= 0 && vcpuid < VM_MAXCPU, ("invalid vcpu %d", vcpuid)); 1738 1739 vcpu = &vm->vcpu[vcpuid]; 1740 1741 info1 = vcpu->exitintinfo; 1742 vcpu->exitintinfo = 0; 1743 1744 info2 = 0; 1745 if (vcpu->exception_pending) { 1746 info2 = vcpu_exception_intinfo(vcpu); 1747 vcpu->exception_pending = 0; 1748 VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx", 1749 vcpu->exc_vector, info2); 1750 } 1751 1752 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 1753 valid = nested_fault(vm, vcpuid, info1, info2, retinfo); 1754 } else if (info1 & VM_INTINFO_VALID) { 1755 *retinfo = info1; 1756 valid = 1; 1757 } else if (info2 & VM_INTINFO_VALID) { 1758 *retinfo = info2; 1759 valid = 1; 1760 } else { 1761 valid = 0; 1762 } 1763 1764 if (valid) { 1765 VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), " 1766 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 1767 } 1768 1769 return (valid); 1770 } 1771 1772 int 1773 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2) 1774 { 1775 struct vcpu *vcpu; 1776 1777 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1778 return (EINVAL); 1779 1780 vcpu = &vm->vcpu[vcpuid]; 1781 *info1 = vcpu->exitintinfo; 1782 *info2 = vcpu_exception_intinfo(vcpu); 1783 return (0); 1784 } 1785 1786 int 1787 vm_inject_exception(struct vm *vm, int vcpuid, int vector, int errcode_valid, 1788 uint32_t errcode, int restart_instruction) 1789 { 1790 struct vcpu *vcpu; 1791 int error; 1792 1793 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1794 return (EINVAL); 1795 1796 if (vector < 0 || vector >= 32) 1797 return (EINVAL); 1798 1799 /* 1800 * A double fault exception should never be injected directly into 1801 * the guest. It is a derived exception that results from specific 1802 * combinations of nested faults. 1803 */ 1804 if (vector == IDT_DF) 1805 return (EINVAL); 1806 1807 vcpu = &vm->vcpu[vcpuid]; 1808 1809 if (vcpu->exception_pending) { 1810 VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to " 1811 "pending exception %d", vector, vcpu->exc_vector); 1812 return (EBUSY); 1813 } 1814 1815 /* 1816 * From section 26.6.1 "Interruptibility State" in Intel SDM: 1817 * 1818 * Event blocking by "STI" or "MOV SS" is cleared after guest executes 1819 * one instruction or incurs an exception. 1820 */ 1821 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0); 1822 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", 1823 __func__, error)); 1824 1825 if (restart_instruction) 1826 vm_restart_instruction(vm, vcpuid); 1827 1828 vcpu->exception_pending = 1; 1829 vcpu->exc_vector = vector; 1830 vcpu->exc_errcode = errcode; 1831 vcpu->exc_errcode_valid = errcode_valid; 1832 VCPU_CTR1(vm, vcpuid, "Exception %d pending", vector); 1833 return (0); 1834 } 1835 1836 void 1837 vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid, 1838 int errcode) 1839 { 1840 struct vm *vm; 1841 int error, restart_instruction; 1842 1843 vm = vmarg; 1844 restart_instruction = 1; 1845 1846 error = vm_inject_exception(vm, vcpuid, vector, errcode_valid, 1847 errcode, restart_instruction); 1848 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 1849 } 1850 1851 void 1852 vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2) 1853 { 1854 struct vm *vm; 1855 int error; 1856 1857 vm = vmarg; 1858 VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx", 1859 error_code, cr2); 1860 1861 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2); 1862 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 1863 1864 vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code); 1865 } 1866 1867 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 1868 1869 int 1870 vm_inject_nmi(struct vm *vm, int vcpuid) 1871 { 1872 struct vcpu *vcpu; 1873 1874 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1875 return (EINVAL); 1876 1877 vcpu = &vm->vcpu[vcpuid]; 1878 1879 vcpu->nmi_pending = 1; 1880 vcpu_notify_event(vm, vcpuid, false); 1881 return (0); 1882 } 1883 1884 int 1885 vm_nmi_pending(struct vm *vm, int vcpuid) 1886 { 1887 struct vcpu *vcpu; 1888 1889 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1890 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 1891 1892 vcpu = &vm->vcpu[vcpuid]; 1893 1894 return (vcpu->nmi_pending); 1895 } 1896 1897 void 1898 vm_nmi_clear(struct vm *vm, int vcpuid) 1899 { 1900 struct vcpu *vcpu; 1901 1902 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1903 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 1904 1905 vcpu = &vm->vcpu[vcpuid]; 1906 1907 if (vcpu->nmi_pending == 0) 1908 panic("vm_nmi_clear: inconsistent nmi_pending state"); 1909 1910 vcpu->nmi_pending = 0; 1911 vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1); 1912 } 1913 1914 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 1915 1916 int 1917 vm_inject_extint(struct vm *vm, int vcpuid) 1918 { 1919 struct vcpu *vcpu; 1920 1921 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1922 return (EINVAL); 1923 1924 vcpu = &vm->vcpu[vcpuid]; 1925 1926 vcpu->extint_pending = 1; 1927 vcpu_notify_event(vm, vcpuid, false); 1928 return (0); 1929 } 1930 1931 int 1932 vm_extint_pending(struct vm *vm, int vcpuid) 1933 { 1934 struct vcpu *vcpu; 1935 1936 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1937 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 1938 1939 vcpu = &vm->vcpu[vcpuid]; 1940 1941 return (vcpu->extint_pending); 1942 } 1943 1944 void 1945 vm_extint_clear(struct vm *vm, int vcpuid) 1946 { 1947 struct vcpu *vcpu; 1948 1949 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1950 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 1951 1952 vcpu = &vm->vcpu[vcpuid]; 1953 1954 if (vcpu->extint_pending == 0) 1955 panic("vm_extint_clear: inconsistent extint_pending state"); 1956 1957 vcpu->extint_pending = 0; 1958 vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1); 1959 } 1960 1961 int 1962 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval) 1963 { 1964 if (vcpu < 0 || vcpu >= VM_MAXCPU) 1965 return (EINVAL); 1966 1967 if (type < 0 || type >= VM_CAP_MAX) 1968 return (EINVAL); 1969 1970 return (VMGETCAP(vm->cookie, vcpu, type, retval)); 1971 } 1972 1973 int 1974 vm_set_capability(struct vm *vm, int vcpu, int type, int val) 1975 { 1976 if (vcpu < 0 || vcpu >= VM_MAXCPU) 1977 return (EINVAL); 1978 1979 if (type < 0 || type >= VM_CAP_MAX) 1980 return (EINVAL); 1981 1982 return (VMSETCAP(vm->cookie, vcpu, type, val)); 1983 } 1984 1985 struct vlapic * 1986 vm_lapic(struct vm *vm, int cpu) 1987 { 1988 return (vm->vcpu[cpu].vlapic); 1989 } 1990 1991 struct vioapic * 1992 vm_ioapic(struct vm *vm) 1993 { 1994 1995 return (vm->vioapic); 1996 } 1997 1998 struct vhpet * 1999 vm_hpet(struct vm *vm) 2000 { 2001 2002 return (vm->vhpet); 2003 } 2004 2005 boolean_t 2006 vmm_is_pptdev(int bus, int slot, int func) 2007 { 2008 int found, i, n; 2009 int b, s, f; 2010 char *val, *cp, *cp2; 2011 2012 /* 2013 * XXX 2014 * The length of an environment variable is limited to 128 bytes which 2015 * puts an upper limit on the number of passthru devices that may be 2016 * specified using a single environment variable. 2017 * 2018 * Work around this by scanning multiple environment variable 2019 * names instead of a single one - yuck! 2020 */ 2021 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 2022 2023 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 2024 found = 0; 2025 for (i = 0; names[i] != NULL && !found; i++) { 2026 cp = val = kern_getenv(names[i]); 2027 while (cp != NULL && *cp != '\0') { 2028 if ((cp2 = strchr(cp, ' ')) != NULL) 2029 *cp2 = '\0'; 2030 2031 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 2032 if (n == 3 && bus == b && slot == s && func == f) { 2033 found = 1; 2034 break; 2035 } 2036 2037 if (cp2 != NULL) 2038 *cp2++ = ' '; 2039 2040 cp = cp2; 2041 } 2042 freeenv(val); 2043 } 2044 return (found); 2045 } 2046 2047 void * 2048 vm_iommu_domain(struct vm *vm) 2049 { 2050 2051 return (vm->iommu); 2052 } 2053 2054 int 2055 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate, 2056 bool from_idle) 2057 { 2058 int error; 2059 struct vcpu *vcpu; 2060 2061 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2062 panic("vm_set_run_state: invalid vcpuid %d", vcpuid); 2063 2064 vcpu = &vm->vcpu[vcpuid]; 2065 2066 vcpu_lock(vcpu); 2067 error = vcpu_set_state_locked(vcpu, newstate, from_idle); 2068 vcpu_unlock(vcpu); 2069 2070 return (error); 2071 } 2072 2073 enum vcpu_state 2074 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu) 2075 { 2076 struct vcpu *vcpu; 2077 enum vcpu_state state; 2078 2079 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2080 panic("vm_get_run_state: invalid vcpuid %d", vcpuid); 2081 2082 vcpu = &vm->vcpu[vcpuid]; 2083 2084 vcpu_lock(vcpu); 2085 state = vcpu->state; 2086 if (hostcpu != NULL) 2087 *hostcpu = vcpu->hostcpu; 2088 vcpu_unlock(vcpu); 2089 2090 return (state); 2091 } 2092 2093 int 2094 vm_activate_cpu(struct vm *vm, int vcpuid) 2095 { 2096 2097 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2098 return (EINVAL); 2099 2100 if (CPU_ISSET(vcpuid, &vm->active_cpus)) 2101 return (EBUSY); 2102 2103 VCPU_CTR0(vm, vcpuid, "activated"); 2104 CPU_SET_ATOMIC(vcpuid, &vm->active_cpus); 2105 return (0); 2106 } 2107 2108 cpuset_t 2109 vm_active_cpus(struct vm *vm) 2110 { 2111 2112 return (vm->active_cpus); 2113 } 2114 2115 cpuset_t 2116 vm_suspended_cpus(struct vm *vm) 2117 { 2118 2119 return (vm->suspended_cpus); 2120 } 2121 2122 void * 2123 vcpu_stats(struct vm *vm, int vcpuid) 2124 { 2125 2126 return (vm->vcpu[vcpuid].stats); 2127 } 2128 2129 int 2130 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state) 2131 { 2132 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2133 return (EINVAL); 2134 2135 *state = vm->vcpu[vcpuid].x2apic_state; 2136 2137 return (0); 2138 } 2139 2140 int 2141 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state) 2142 { 2143 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2144 return (EINVAL); 2145 2146 if (state >= X2APIC_STATE_LAST) 2147 return (EINVAL); 2148 2149 vm->vcpu[vcpuid].x2apic_state = state; 2150 2151 vlapic_set_x2apic_state(vm, vcpuid, state); 2152 2153 return (0); 2154 } 2155 2156 /* 2157 * This function is called to ensure that a vcpu "sees" a pending event 2158 * as soon as possible: 2159 * - If the vcpu thread is sleeping then it is woken up. 2160 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2161 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2162 */ 2163 void 2164 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr) 2165 { 2166 int hostcpu; 2167 struct vcpu *vcpu; 2168 2169 vcpu = &vm->vcpu[vcpuid]; 2170 2171 vcpu_lock(vcpu); 2172 hostcpu = vcpu->hostcpu; 2173 if (vcpu->state == VCPU_RUNNING) { 2174 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2175 if (hostcpu != curcpu) { 2176 if (lapic_intr) { 2177 vlapic_post_intr(vcpu->vlapic, hostcpu, 2178 vmm_ipinum); 2179 } else { 2180 ipi_cpu(hostcpu, vmm_ipinum); 2181 } 2182 } else { 2183 /* 2184 * If the 'vcpu' is running on 'curcpu' then it must 2185 * be sending a notification to itself (e.g. SELF_IPI). 2186 * The pending event will be picked up when the vcpu 2187 * transitions back to guest context. 2188 */ 2189 } 2190 } else { 2191 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2192 "with hostcpu %d", vcpu->state, hostcpu)); 2193 if (vcpu->state == VCPU_SLEEPING) 2194 wakeup_one(vcpu); 2195 } 2196 vcpu_unlock(vcpu); 2197 } 2198 2199 struct vmspace * 2200 vm_get_vmspace(struct vm *vm) 2201 { 2202 2203 return (vm->vmspace); 2204 } 2205 2206 int 2207 vm_apicid2vcpuid(struct vm *vm, int apicid) 2208 { 2209 /* 2210 * XXX apic id is assumed to be numerically identical to vcpu id 2211 */ 2212 return (apicid); 2213 } 2214 2215 void 2216 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest, 2217 vm_rendezvous_func_t func, void *arg) 2218 { 2219 int i; 2220 2221 /* 2222 * Enforce that this function is called without any locks 2223 */ 2224 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2225 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU), 2226 ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid)); 2227 2228 restart: 2229 mtx_lock(&vm->rendezvous_mtx); 2230 if (vm->rendezvous_func != NULL) { 2231 /* 2232 * If a rendezvous is already in progress then we need to 2233 * call the rendezvous handler in case this 'vcpuid' is one 2234 * of the targets of the rendezvous. 2235 */ 2236 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress"); 2237 mtx_unlock(&vm->rendezvous_mtx); 2238 vm_handle_rendezvous(vm, vcpuid); 2239 goto restart; 2240 } 2241 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2242 "rendezvous is still in progress")); 2243 2244 RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous"); 2245 vm->rendezvous_req_cpus = dest; 2246 CPU_ZERO(&vm->rendezvous_done_cpus); 2247 vm->rendezvous_arg = arg; 2248 vm_set_rendezvous_func(vm, func); 2249 mtx_unlock(&vm->rendezvous_mtx); 2250 2251 /* 2252 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2253 * vcpus so they handle the rendezvous as soon as possible. 2254 */ 2255 for (i = 0; i < VM_MAXCPU; i++) { 2256 if (CPU_ISSET(i, &dest)) 2257 vcpu_notify_event(vm, i, false); 2258 } 2259 2260 vm_handle_rendezvous(vm, vcpuid); 2261 } 2262 2263 struct vatpic * 2264 vm_atpic(struct vm *vm) 2265 { 2266 return (vm->vatpic); 2267 } 2268 2269 struct vatpit * 2270 vm_atpit(struct vm *vm) 2271 { 2272 return (vm->vatpit); 2273 } 2274 2275 struct vpmtmr * 2276 vm_pmtmr(struct vm *vm) 2277 { 2278 2279 return (vm->vpmtmr); 2280 } 2281 2282 struct vrtc * 2283 vm_rtc(struct vm *vm) 2284 { 2285 2286 return (vm->vrtc); 2287 } 2288 2289 enum vm_reg_name 2290 vm_segment_name(int seg) 2291 { 2292 static enum vm_reg_name seg_names[] = { 2293 VM_REG_GUEST_ES, 2294 VM_REG_GUEST_CS, 2295 VM_REG_GUEST_SS, 2296 VM_REG_GUEST_DS, 2297 VM_REG_GUEST_FS, 2298 VM_REG_GUEST_GS 2299 }; 2300 2301 KASSERT(seg >= 0 && seg < nitems(seg_names), 2302 ("%s: invalid segment encoding %d", __func__, seg)); 2303 return (seg_names[seg]); 2304 } 2305 2306 void 2307 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, 2308 int num_copyinfo) 2309 { 2310 int idx; 2311 2312 for (idx = 0; idx < num_copyinfo; idx++) { 2313 if (copyinfo[idx].cookie != NULL) 2314 vm_gpa_release(copyinfo[idx].cookie); 2315 } 2316 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2317 } 2318 2319 int 2320 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging, 2321 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2322 int num_copyinfo) 2323 { 2324 int error, idx, nused; 2325 size_t n, off, remaining; 2326 void *hva, *cookie; 2327 uint64_t gpa; 2328 2329 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2330 2331 nused = 0; 2332 remaining = len; 2333 while (remaining > 0) { 2334 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo")); 2335 error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa); 2336 if (error) 2337 return (error); 2338 off = gpa & PAGE_MASK; 2339 n = min(remaining, PAGE_SIZE - off); 2340 copyinfo[nused].gpa = gpa; 2341 copyinfo[nused].len = n; 2342 remaining -= n; 2343 gla += n; 2344 nused++; 2345 } 2346 2347 for (idx = 0; idx < nused; idx++) { 2348 hva = vm_gpa_hold(vm, copyinfo[idx].gpa, copyinfo[idx].len, 2349 prot, &cookie); 2350 if (hva == NULL) 2351 break; 2352 copyinfo[idx].hva = hva; 2353 copyinfo[idx].cookie = cookie; 2354 } 2355 2356 if (idx != nused) { 2357 vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo); 2358 return (-1); 2359 } else { 2360 return (0); 2361 } 2362 } 2363 2364 void 2365 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr, 2366 size_t len) 2367 { 2368 char *dst; 2369 int idx; 2370 2371 dst = kaddr; 2372 idx = 0; 2373 while (len > 0) { 2374 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2375 len -= copyinfo[idx].len; 2376 dst += copyinfo[idx].len; 2377 idx++; 2378 } 2379 } 2380 2381 void 2382 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr, 2383 struct vm_copyinfo *copyinfo, size_t len) 2384 { 2385 const char *src; 2386 int idx; 2387 2388 src = kaddr; 2389 idx = 0; 2390 while (len > 0) { 2391 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2392 len -= copyinfo[idx].len; 2393 src += copyinfo[idx].len; 2394 idx++; 2395 } 2396 } 2397 2398 /* 2399 * Return the amount of in-use and wired memory for the VM. Since 2400 * these are global stats, only return the values with for vCPU 0 2401 */ 2402 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2403 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2404 2405 static void 2406 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2407 { 2408 2409 if (vcpu == 0) { 2410 vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT, 2411 PAGE_SIZE * vmspace_resident_count(vm->vmspace)); 2412 } 2413 } 2414 2415 static void 2416 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2417 { 2418 2419 if (vcpu == 0) { 2420 vmm_stat_set(vm, vcpu, VMM_MEM_WIRED, 2421 PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace))); 2422 } 2423 } 2424 2425 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2426 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2427