1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include "opt_bhyve_snapshot.h" 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/sysctl.h> 37 #include <sys/malloc.h> 38 #include <sys/pcpu.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/proc.h> 42 #include <sys/rwlock.h> 43 #include <sys/sched.h> 44 #include <sys/smp.h> 45 #include <sys/sx.h> 46 #include <sys/vnode.h> 47 48 #include <vm/vm.h> 49 #include <vm/vm_param.h> 50 #include <vm/vm_extern.h> 51 #include <vm/vm_object.h> 52 #include <vm/vm_page.h> 53 #include <vm/pmap.h> 54 #include <vm/vm_map.h> 55 #include <vm/vm_pager.h> 56 #include <vm/vm_kern.h> 57 #include <vm/vnode_pager.h> 58 #include <vm/swap_pager.h> 59 #include <vm/uma.h> 60 61 #include <machine/cpu.h> 62 #include <machine/pcb.h> 63 #include <machine/smp.h> 64 #include <machine/md_var.h> 65 #include <x86/psl.h> 66 #include <x86/apicreg.h> 67 #include <x86/ifunc.h> 68 69 #include <machine/vmm.h> 70 #include <machine/vmm_instruction_emul.h> 71 #include <machine/vmm_snapshot.h> 72 73 #include <dev/vmm/vmm_dev.h> 74 #include <dev/vmm/vmm_ktr.h> 75 76 #include "vmm_ioport.h" 77 #include "vmm_host.h" 78 #include "vmm_mem.h" 79 #include "vmm_util.h" 80 #include "vatpic.h" 81 #include "vatpit.h" 82 #include "vhpet.h" 83 #include "vioapic.h" 84 #include "vlapic.h" 85 #include "vpmtmr.h" 86 #include "vrtc.h" 87 #include "vmm_stat.h" 88 #include "vmm_lapic.h" 89 90 #include "io/ppt.h" 91 #include "io/iommu.h" 92 93 struct vlapic; 94 95 /* 96 * Initialization: 97 * (a) allocated when vcpu is created 98 * (i) initialized when vcpu is created and when it is reinitialized 99 * (o) initialized the first time the vcpu is created 100 * (x) initialized before use 101 */ 102 struct vcpu { 103 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 104 enum vcpu_state state; /* (o) vcpu state */ 105 int vcpuid; /* (o) */ 106 int hostcpu; /* (o) vcpu's host cpu */ 107 int reqidle; /* (i) request vcpu to idle */ 108 struct vm *vm; /* (o) */ 109 void *cookie; /* (i) cpu-specific data */ 110 struct vlapic *vlapic; /* (i) APIC device model */ 111 enum x2apic_state x2apic_state; /* (i) APIC mode */ 112 uint64_t exitintinfo; /* (i) events pending at VM exit */ 113 int nmi_pending; /* (i) NMI pending */ 114 int extint_pending; /* (i) INTR pending */ 115 int exception_pending; /* (i) exception pending */ 116 int exc_vector; /* (x) exception collateral */ 117 int exc_errcode_valid; 118 uint32_t exc_errcode; 119 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 120 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 121 void *stats; /* (a,i) statistics */ 122 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 123 cpuset_t exitinfo_cpuset; /* (x) storage for vmexit handlers */ 124 uint64_t nextrip; /* (x) next instruction to execute */ 125 uint64_t tsc_offset; /* (o) TSC offsetting */ 126 }; 127 128 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 129 #define vcpu_lock_destroy(v) mtx_destroy(&((v)->mtx)) 130 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 131 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 132 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 133 134 struct mem_seg { 135 size_t len; 136 bool sysmem; 137 struct vm_object *object; 138 }; 139 #define VM_MAX_MEMSEGS 4 140 141 struct mem_map { 142 vm_paddr_t gpa; 143 size_t len; 144 vm_ooffset_t segoff; 145 int segid; 146 int prot; 147 int flags; 148 }; 149 #define VM_MAX_MEMMAPS 8 150 151 /* 152 * Initialization: 153 * (o) initialized the first time the VM is created 154 * (i) initialized when VM is created and when it is reinitialized 155 * (x) initialized before use 156 * 157 * Locking: 158 * [m] mem_segs_lock 159 * [r] rendezvous_mtx 160 * [v] reads require one frozen vcpu, writes require freezing all vcpus 161 */ 162 struct vm { 163 void *cookie; /* (i) cpu-specific data */ 164 void *iommu; /* (x) iommu-specific data */ 165 struct vhpet *vhpet; /* (i) virtual HPET */ 166 struct vioapic *vioapic; /* (i) virtual ioapic */ 167 struct vatpic *vatpic; /* (i) virtual atpic */ 168 struct vatpit *vatpit; /* (i) virtual atpit */ 169 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ 170 struct vrtc *vrtc; /* (o) virtual RTC */ 171 volatile cpuset_t active_cpus; /* (i) active vcpus */ 172 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */ 173 cpuset_t startup_cpus; /* (i) [r] waiting for startup */ 174 int suspend; /* (i) stop VM execution */ 175 bool dying; /* (o) is dying */ 176 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 177 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 178 cpuset_t rendezvous_req_cpus; /* (x) [r] rendezvous requested */ 179 cpuset_t rendezvous_done_cpus; /* (x) [r] rendezvous finished */ 180 void *rendezvous_arg; /* (x) [r] rendezvous func/arg */ 181 vm_rendezvous_func_t rendezvous_func; 182 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 183 struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) [m+v] guest address space */ 184 struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) [m+v] guest memory regions */ 185 struct vmspace *vmspace; /* (o) guest's address space */ 186 char name[VM_MAX_NAMELEN+1]; /* (o) virtual machine name */ 187 struct vcpu **vcpu; /* (o) guest vcpus */ 188 /* The following describe the vm cpu topology */ 189 uint16_t sockets; /* (o) num of sockets */ 190 uint16_t cores; /* (o) num of cores/socket */ 191 uint16_t threads; /* (o) num of threads/core */ 192 uint16_t maxcpus; /* (o) max pluggable cpus */ 193 struct sx mem_segs_lock; /* (o) */ 194 struct sx vcpus_init_lock; /* (o) */ 195 }; 196 197 #define VMM_CTR0(vcpu, format) \ 198 VCPU_CTR0((vcpu)->vm, (vcpu)->vcpuid, format) 199 200 #define VMM_CTR1(vcpu, format, p1) \ 201 VCPU_CTR1((vcpu)->vm, (vcpu)->vcpuid, format, p1) 202 203 #define VMM_CTR2(vcpu, format, p1, p2) \ 204 VCPU_CTR2((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2) 205 206 #define VMM_CTR3(vcpu, format, p1, p2, p3) \ 207 VCPU_CTR3((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3) 208 209 #define VMM_CTR4(vcpu, format, p1, p2, p3, p4) \ 210 VCPU_CTR4((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3, p4) 211 212 static int vmm_initialized; 213 214 static void vmmops_panic(void); 215 216 static void 217 vmmops_panic(void) 218 { 219 panic("vmm_ops func called when !vmm_is_intel() && !vmm_is_svm()"); 220 } 221 222 #define DEFINE_VMMOPS_IFUNC(ret_type, opname, args) \ 223 DEFINE_IFUNC(static, ret_type, vmmops_##opname, args) \ 224 { \ 225 if (vmm_is_intel()) \ 226 return (vmm_ops_intel.opname); \ 227 else if (vmm_is_svm()) \ 228 return (vmm_ops_amd.opname); \ 229 else \ 230 return ((ret_type (*)args)vmmops_panic); \ 231 } 232 233 DEFINE_VMMOPS_IFUNC(int, modinit, (int ipinum)) 234 DEFINE_VMMOPS_IFUNC(int, modcleanup, (void)) 235 DEFINE_VMMOPS_IFUNC(void, modresume, (void)) 236 DEFINE_VMMOPS_IFUNC(void *, init, (struct vm *vm, struct pmap *pmap)) 237 DEFINE_VMMOPS_IFUNC(int, run, (void *vcpui, register_t rip, struct pmap *pmap, 238 struct vm_eventinfo *info)) 239 DEFINE_VMMOPS_IFUNC(void, cleanup, (void *vmi)) 240 DEFINE_VMMOPS_IFUNC(void *, vcpu_init, (void *vmi, struct vcpu *vcpu, 241 int vcpu_id)) 242 DEFINE_VMMOPS_IFUNC(void, vcpu_cleanup, (void *vcpui)) 243 DEFINE_VMMOPS_IFUNC(int, getreg, (void *vcpui, int num, uint64_t *retval)) 244 DEFINE_VMMOPS_IFUNC(int, setreg, (void *vcpui, int num, uint64_t val)) 245 DEFINE_VMMOPS_IFUNC(int, getdesc, (void *vcpui, int num, struct seg_desc *desc)) 246 DEFINE_VMMOPS_IFUNC(int, setdesc, (void *vcpui, int num, struct seg_desc *desc)) 247 DEFINE_VMMOPS_IFUNC(int, getcap, (void *vcpui, int num, int *retval)) 248 DEFINE_VMMOPS_IFUNC(int, setcap, (void *vcpui, int num, int val)) 249 DEFINE_VMMOPS_IFUNC(struct vmspace *, vmspace_alloc, (vm_offset_t min, 250 vm_offset_t max)) 251 DEFINE_VMMOPS_IFUNC(void, vmspace_free, (struct vmspace *vmspace)) 252 DEFINE_VMMOPS_IFUNC(struct vlapic *, vlapic_init, (void *vcpui)) 253 DEFINE_VMMOPS_IFUNC(void, vlapic_cleanup, (struct vlapic *vlapic)) 254 #ifdef BHYVE_SNAPSHOT 255 DEFINE_VMMOPS_IFUNC(int, vcpu_snapshot, (void *vcpui, 256 struct vm_snapshot_meta *meta)) 257 DEFINE_VMMOPS_IFUNC(int, restore_tsc, (void *vcpui, uint64_t now)) 258 #endif 259 260 SDT_PROVIDER_DEFINE(vmm); 261 262 static MALLOC_DEFINE(M_VM, "vm", "vm"); 263 264 /* statistics */ 265 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 266 267 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 268 NULL); 269 270 /* 271 * Halt the guest if all vcpus are executing a HLT instruction with 272 * interrupts disabled. 273 */ 274 static int halt_detection_enabled = 1; 275 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 276 &halt_detection_enabled, 0, 277 "Halt VM if all vcpus execute HLT with interrupts disabled"); 278 279 static int vmm_ipinum; 280 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 281 "IPI vector used for vcpu notifications"); 282 283 static int trace_guest_exceptions; 284 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN, 285 &trace_guest_exceptions, 0, 286 "Trap into hypervisor on all guest exceptions and reflect them back"); 287 288 static int trap_wbinvd; 289 SYSCTL_INT(_hw_vmm, OID_AUTO, trap_wbinvd, CTLFLAG_RDTUN, &trap_wbinvd, 0, 290 "WBINVD triggers a VM-exit"); 291 292 u_int vm_maxcpu; 293 SYSCTL_UINT(_hw_vmm, OID_AUTO, maxcpu, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 294 &vm_maxcpu, 0, "Maximum number of vCPUs"); 295 296 static void vm_free_memmap(struct vm *vm, int ident); 297 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm); 298 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr); 299 300 /* global statistics */ 301 VMM_STAT(VCPU_MIGRATIONS, "vcpu migration across host cpus"); 302 VMM_STAT(VMEXIT_COUNT, "total number of vm exits"); 303 VMM_STAT(VMEXIT_EXTINT, "vm exits due to external interrupt"); 304 VMM_STAT(VMEXIT_HLT, "number of times hlt was intercepted"); 305 VMM_STAT(VMEXIT_CR_ACCESS, "number of times %cr access was intercepted"); 306 VMM_STAT(VMEXIT_RDMSR, "number of times rdmsr was intercepted"); 307 VMM_STAT(VMEXIT_WRMSR, "number of times wrmsr was intercepted"); 308 VMM_STAT(VMEXIT_MTRAP, "number of monitor trap exits"); 309 VMM_STAT(VMEXIT_PAUSE, "number of times pause was intercepted"); 310 VMM_STAT(VMEXIT_INTR_WINDOW, "vm exits due to interrupt window opening"); 311 VMM_STAT(VMEXIT_NMI_WINDOW, "vm exits due to nmi window opening"); 312 VMM_STAT(VMEXIT_INOUT, "number of times in/out was intercepted"); 313 VMM_STAT(VMEXIT_CPUID, "number of times cpuid was intercepted"); 314 VMM_STAT(VMEXIT_NESTED_FAULT, "vm exits due to nested page fault"); 315 VMM_STAT(VMEXIT_INST_EMUL, "vm exits for instruction emulation"); 316 VMM_STAT(VMEXIT_UNKNOWN, "number of vm exits for unknown reason"); 317 VMM_STAT(VMEXIT_ASTPENDING, "number of times astpending at exit"); 318 VMM_STAT(VMEXIT_REQIDLE, "number of times idle requested at exit"); 319 VMM_STAT(VMEXIT_USERSPACE, "number of vm exits handled in userspace"); 320 VMM_STAT(VMEXIT_RENDEZVOUS, "number of times rendezvous pending at exit"); 321 VMM_STAT(VMEXIT_EXCEPTION, "number of vm exits due to exceptions"); 322 323 /* 324 * Upper limit on vm_maxcpu. Limited by use of uint16_t types for CPU 325 * counts as well as range of vpid values for VT-x and by the capacity 326 * of cpuset_t masks. The call to new_unrhdr() in vpid_init() in 327 * vmx.c requires 'vm_maxcpu + 1 <= 0xffff', hence the '- 1' below. 328 */ 329 #define VM_MAXCPU MIN(0xffff - 1, CPU_SETSIZE) 330 331 #ifdef KTR 332 static const char * 333 vcpu_state2str(enum vcpu_state state) 334 { 335 336 switch (state) { 337 case VCPU_IDLE: 338 return ("idle"); 339 case VCPU_FROZEN: 340 return ("frozen"); 341 case VCPU_RUNNING: 342 return ("running"); 343 case VCPU_SLEEPING: 344 return ("sleeping"); 345 default: 346 return ("unknown"); 347 } 348 } 349 #endif 350 351 static void 352 vcpu_cleanup(struct vcpu *vcpu, bool destroy) 353 { 354 vmmops_vlapic_cleanup(vcpu->vlapic); 355 vmmops_vcpu_cleanup(vcpu->cookie); 356 vcpu->cookie = NULL; 357 if (destroy) { 358 vmm_stat_free(vcpu->stats); 359 fpu_save_area_free(vcpu->guestfpu); 360 vcpu_lock_destroy(vcpu); 361 free(vcpu, M_VM); 362 } 363 } 364 365 static struct vcpu * 366 vcpu_alloc(struct vm *vm, int vcpu_id) 367 { 368 struct vcpu *vcpu; 369 370 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus, 371 ("vcpu_init: invalid vcpu %d", vcpu_id)); 372 373 vcpu = malloc(sizeof(*vcpu), M_VM, M_WAITOK | M_ZERO); 374 vcpu_lock_init(vcpu); 375 vcpu->state = VCPU_IDLE; 376 vcpu->hostcpu = NOCPU; 377 vcpu->vcpuid = vcpu_id; 378 vcpu->vm = vm; 379 vcpu->guestfpu = fpu_save_area_alloc(); 380 vcpu->stats = vmm_stat_alloc(); 381 vcpu->tsc_offset = 0; 382 return (vcpu); 383 } 384 385 static void 386 vcpu_init(struct vcpu *vcpu) 387 { 388 vcpu->cookie = vmmops_vcpu_init(vcpu->vm->cookie, vcpu, vcpu->vcpuid); 389 vcpu->vlapic = vmmops_vlapic_init(vcpu->cookie); 390 vm_set_x2apic_state(vcpu, X2APIC_DISABLED); 391 vcpu->reqidle = 0; 392 vcpu->exitintinfo = 0; 393 vcpu->nmi_pending = 0; 394 vcpu->extint_pending = 0; 395 vcpu->exception_pending = 0; 396 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 397 fpu_save_area_reset(vcpu->guestfpu); 398 vmm_stat_init(vcpu->stats); 399 } 400 401 int 402 vcpu_trace_exceptions(struct vcpu *vcpu) 403 { 404 405 return (trace_guest_exceptions); 406 } 407 408 int 409 vcpu_trap_wbinvd(struct vcpu *vcpu) 410 { 411 return (trap_wbinvd); 412 } 413 414 struct vm_exit * 415 vm_exitinfo(struct vcpu *vcpu) 416 { 417 return (&vcpu->exitinfo); 418 } 419 420 cpuset_t * 421 vm_exitinfo_cpuset(struct vcpu *vcpu) 422 { 423 return (&vcpu->exitinfo_cpuset); 424 } 425 426 static int 427 vmm_init(void) 428 { 429 int error; 430 431 if (!vmm_is_hw_supported()) 432 return (ENXIO); 433 434 vm_maxcpu = mp_ncpus; 435 TUNABLE_INT_FETCH("hw.vmm.maxcpu", &vm_maxcpu); 436 437 if (vm_maxcpu > VM_MAXCPU) { 438 printf("vmm: vm_maxcpu clamped to %u\n", VM_MAXCPU); 439 vm_maxcpu = VM_MAXCPU; 440 } 441 if (vm_maxcpu == 0) 442 vm_maxcpu = 1; 443 444 vmm_host_state_init(); 445 446 vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) : 447 &IDTVEC(justreturn)); 448 if (vmm_ipinum < 0) 449 vmm_ipinum = IPI_AST; 450 451 error = vmm_mem_init(); 452 if (error) 453 return (error); 454 455 vmm_resume_p = vmmops_modresume; 456 457 return (vmmops_modinit(vmm_ipinum)); 458 } 459 460 static int 461 vmm_handler(module_t mod, int what, void *arg) 462 { 463 int error; 464 465 switch (what) { 466 case MOD_LOAD: 467 if (vmm_is_hw_supported()) { 468 vmmdev_init(); 469 error = vmm_init(); 470 if (error == 0) 471 vmm_initialized = 1; 472 } else { 473 error = ENXIO; 474 } 475 break; 476 case MOD_UNLOAD: 477 if (vmm_is_hw_supported()) { 478 error = vmmdev_cleanup(); 479 if (error == 0) { 480 vmm_resume_p = NULL; 481 iommu_cleanup(); 482 if (vmm_ipinum != IPI_AST) 483 lapic_ipi_free(vmm_ipinum); 484 error = vmmops_modcleanup(); 485 /* 486 * Something bad happened - prevent new 487 * VMs from being created 488 */ 489 if (error) 490 vmm_initialized = 0; 491 } 492 } else { 493 error = 0; 494 } 495 break; 496 default: 497 error = 0; 498 break; 499 } 500 return (error); 501 } 502 503 static moduledata_t vmm_kmod = { 504 "vmm", 505 vmm_handler, 506 NULL 507 }; 508 509 /* 510 * vmm initialization has the following dependencies: 511 * 512 * - VT-x initialization requires smp_rendezvous() and therefore must happen 513 * after SMP is fully functional (after SI_SUB_SMP). 514 */ 515 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 516 MODULE_VERSION(vmm, 1); 517 518 static void 519 vm_init(struct vm *vm, bool create) 520 { 521 vm->cookie = vmmops_init(vm, vmspace_pmap(vm->vmspace)); 522 vm->iommu = NULL; 523 vm->vioapic = vioapic_init(vm); 524 vm->vhpet = vhpet_init(vm); 525 vm->vatpic = vatpic_init(vm); 526 vm->vatpit = vatpit_init(vm); 527 vm->vpmtmr = vpmtmr_init(vm); 528 if (create) 529 vm->vrtc = vrtc_init(vm); 530 531 CPU_ZERO(&vm->active_cpus); 532 CPU_ZERO(&vm->debug_cpus); 533 CPU_ZERO(&vm->startup_cpus); 534 535 vm->suspend = 0; 536 CPU_ZERO(&vm->suspended_cpus); 537 538 if (!create) { 539 for (int i = 0; i < vm->maxcpus; i++) { 540 if (vm->vcpu[i] != NULL) 541 vcpu_init(vm->vcpu[i]); 542 } 543 } 544 } 545 546 void 547 vm_disable_vcpu_creation(struct vm *vm) 548 { 549 sx_xlock(&vm->vcpus_init_lock); 550 vm->dying = true; 551 sx_xunlock(&vm->vcpus_init_lock); 552 } 553 554 struct vcpu * 555 vm_alloc_vcpu(struct vm *vm, int vcpuid) 556 { 557 struct vcpu *vcpu; 558 559 if (vcpuid < 0 || vcpuid >= vm_get_maxcpus(vm)) 560 return (NULL); 561 562 vcpu = atomic_load_ptr(&vm->vcpu[vcpuid]); 563 if (__predict_true(vcpu != NULL)) 564 return (vcpu); 565 566 sx_xlock(&vm->vcpus_init_lock); 567 vcpu = vm->vcpu[vcpuid]; 568 if (vcpu == NULL && !vm->dying) { 569 vcpu = vcpu_alloc(vm, vcpuid); 570 vcpu_init(vcpu); 571 572 /* 573 * Ensure vCPU is fully created before updating pointer 574 * to permit unlocked reads above. 575 */ 576 atomic_store_rel_ptr((uintptr_t *)&vm->vcpu[vcpuid], 577 (uintptr_t)vcpu); 578 } 579 sx_xunlock(&vm->vcpus_init_lock); 580 return (vcpu); 581 } 582 583 void 584 vm_slock_vcpus(struct vm *vm) 585 { 586 sx_slock(&vm->vcpus_init_lock); 587 } 588 589 void 590 vm_unlock_vcpus(struct vm *vm) 591 { 592 sx_unlock(&vm->vcpus_init_lock); 593 } 594 595 /* 596 * The default CPU topology is a single thread per package. 597 */ 598 u_int cores_per_package = 1; 599 u_int threads_per_core = 1; 600 601 int 602 vm_create(const char *name, struct vm **retvm) 603 { 604 struct vm *vm; 605 struct vmspace *vmspace; 606 607 /* 608 * If vmm.ko could not be successfully initialized then don't attempt 609 * to create the virtual machine. 610 */ 611 if (!vmm_initialized) 612 return (ENXIO); 613 614 if (name == NULL || strnlen(name, VM_MAX_NAMELEN + 1) == 615 VM_MAX_NAMELEN + 1) 616 return (EINVAL); 617 618 vmspace = vmmops_vmspace_alloc(0, VM_MAXUSER_ADDRESS_LA48); 619 if (vmspace == NULL) 620 return (ENOMEM); 621 622 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 623 strcpy(vm->name, name); 624 vm->vmspace = vmspace; 625 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 626 sx_init(&vm->mem_segs_lock, "vm mem_segs"); 627 sx_init(&vm->vcpus_init_lock, "vm vcpus"); 628 vm->vcpu = malloc(sizeof(*vm->vcpu) * vm_maxcpu, M_VM, M_WAITOK | 629 M_ZERO); 630 631 vm->sockets = 1; 632 vm->cores = cores_per_package; /* XXX backwards compatibility */ 633 vm->threads = threads_per_core; /* XXX backwards compatibility */ 634 vm->maxcpus = vm_maxcpu; 635 636 vm_init(vm, true); 637 638 *retvm = vm; 639 return (0); 640 } 641 642 void 643 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, 644 uint16_t *threads, uint16_t *maxcpus) 645 { 646 *sockets = vm->sockets; 647 *cores = vm->cores; 648 *threads = vm->threads; 649 *maxcpus = vm->maxcpus; 650 } 651 652 uint16_t 653 vm_get_maxcpus(struct vm *vm) 654 { 655 return (vm->maxcpus); 656 } 657 658 int 659 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, 660 uint16_t threads, uint16_t maxcpus __unused) 661 { 662 /* Ignore maxcpus. */ 663 if ((sockets * cores * threads) > vm->maxcpus) 664 return (EINVAL); 665 vm->sockets = sockets; 666 vm->cores = cores; 667 vm->threads = threads; 668 return(0); 669 } 670 671 static void 672 vm_cleanup(struct vm *vm, bool destroy) 673 { 674 struct mem_map *mm; 675 int i; 676 677 if (destroy) 678 vm_xlock_memsegs(vm); 679 680 ppt_unassign_all(vm); 681 682 if (vm->iommu != NULL) 683 iommu_destroy_domain(vm->iommu); 684 685 if (destroy) 686 vrtc_cleanup(vm->vrtc); 687 else 688 vrtc_reset(vm->vrtc); 689 vpmtmr_cleanup(vm->vpmtmr); 690 vatpit_cleanup(vm->vatpit); 691 vhpet_cleanup(vm->vhpet); 692 vatpic_cleanup(vm->vatpic); 693 vioapic_cleanup(vm->vioapic); 694 695 for (i = 0; i < vm->maxcpus; i++) { 696 if (vm->vcpu[i] != NULL) 697 vcpu_cleanup(vm->vcpu[i], destroy); 698 } 699 700 vmmops_cleanup(vm->cookie); 701 702 /* 703 * System memory is removed from the guest address space only when 704 * the VM is destroyed. This is because the mapping remains the same 705 * across VM reset. 706 * 707 * Device memory can be relocated by the guest (e.g. using PCI BARs) 708 * so those mappings are removed on a VM reset. 709 */ 710 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 711 mm = &vm->mem_maps[i]; 712 if (destroy || !sysmem_mapping(vm, mm)) 713 vm_free_memmap(vm, i); 714 } 715 716 if (destroy) { 717 for (i = 0; i < VM_MAX_MEMSEGS; i++) 718 vm_free_memseg(vm, i); 719 vm_unlock_memsegs(vm); 720 721 vmmops_vmspace_free(vm->vmspace); 722 vm->vmspace = NULL; 723 724 free(vm->vcpu, M_VM); 725 sx_destroy(&vm->vcpus_init_lock); 726 sx_destroy(&vm->mem_segs_lock); 727 mtx_destroy(&vm->rendezvous_mtx); 728 } 729 } 730 731 void 732 vm_destroy(struct vm *vm) 733 { 734 vm_cleanup(vm, true); 735 free(vm, M_VM); 736 } 737 738 int 739 vm_reinit(struct vm *vm) 740 { 741 int error; 742 743 /* 744 * A virtual machine can be reset only if all vcpus are suspended. 745 */ 746 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 747 vm_cleanup(vm, false); 748 vm_init(vm, false); 749 error = 0; 750 } else { 751 error = EBUSY; 752 } 753 754 return (error); 755 } 756 757 const char * 758 vm_name(struct vm *vm) 759 { 760 return (vm->name); 761 } 762 763 void 764 vm_slock_memsegs(struct vm *vm) 765 { 766 sx_slock(&vm->mem_segs_lock); 767 } 768 769 void 770 vm_xlock_memsegs(struct vm *vm) 771 { 772 sx_xlock(&vm->mem_segs_lock); 773 } 774 775 void 776 vm_unlock_memsegs(struct vm *vm) 777 { 778 sx_unlock(&vm->mem_segs_lock); 779 } 780 781 int 782 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 783 { 784 vm_object_t obj; 785 786 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 787 return (ENOMEM); 788 else 789 return (0); 790 } 791 792 int 793 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 794 { 795 796 vmm_mmio_free(vm->vmspace, gpa, len); 797 return (0); 798 } 799 800 /* 801 * Return 'true' if 'gpa' is allocated in the guest address space. 802 * 803 * This function is called in the context of a running vcpu which acts as 804 * an implicit lock on 'vm->mem_maps[]'. 805 */ 806 bool 807 vm_mem_allocated(struct vcpu *vcpu, vm_paddr_t gpa) 808 { 809 struct vm *vm = vcpu->vm; 810 struct mem_map *mm; 811 int i; 812 813 #ifdef INVARIANTS 814 int hostcpu, state; 815 state = vcpu_get_state(vcpu, &hostcpu); 816 KASSERT(state == VCPU_RUNNING && hostcpu == curcpu, 817 ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu)); 818 #endif 819 820 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 821 mm = &vm->mem_maps[i]; 822 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len) 823 return (true); /* 'gpa' is sysmem or devmem */ 824 } 825 826 if (ppt_is_mmio(vm, gpa)) 827 return (true); /* 'gpa' is pci passthru mmio */ 828 829 return (false); 830 } 831 832 int 833 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem) 834 { 835 struct mem_seg *seg; 836 vm_object_t obj; 837 838 sx_assert(&vm->mem_segs_lock, SX_XLOCKED); 839 840 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 841 return (EINVAL); 842 843 if (len == 0 || (len & PAGE_MASK)) 844 return (EINVAL); 845 846 seg = &vm->mem_segs[ident]; 847 if (seg->object != NULL) { 848 if (seg->len == len && seg->sysmem == sysmem) 849 return (EEXIST); 850 else 851 return (EINVAL); 852 } 853 854 obj = vm_object_allocate(OBJT_SWAP, len >> PAGE_SHIFT); 855 if (obj == NULL) 856 return (ENOMEM); 857 858 seg->len = len; 859 seg->object = obj; 860 seg->sysmem = sysmem; 861 return (0); 862 } 863 864 int 865 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, 866 vm_object_t *objptr) 867 { 868 struct mem_seg *seg; 869 870 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 871 872 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 873 return (EINVAL); 874 875 seg = &vm->mem_segs[ident]; 876 if (len) 877 *len = seg->len; 878 if (sysmem) 879 *sysmem = seg->sysmem; 880 if (objptr) 881 *objptr = seg->object; 882 return (0); 883 } 884 885 void 886 vm_free_memseg(struct vm *vm, int ident) 887 { 888 struct mem_seg *seg; 889 890 KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS, 891 ("%s: invalid memseg ident %d", __func__, ident)); 892 893 seg = &vm->mem_segs[ident]; 894 if (seg->object != NULL) { 895 vm_object_deallocate(seg->object); 896 bzero(seg, sizeof(struct mem_seg)); 897 } 898 } 899 900 int 901 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first, 902 size_t len, int prot, int flags) 903 { 904 struct mem_seg *seg; 905 struct mem_map *m, *map; 906 vm_ooffset_t last; 907 int i, error; 908 909 if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0) 910 return (EINVAL); 911 912 if (flags & ~VM_MEMMAP_F_WIRED) 913 return (EINVAL); 914 915 if (segid < 0 || segid >= VM_MAX_MEMSEGS) 916 return (EINVAL); 917 918 seg = &vm->mem_segs[segid]; 919 if (seg->object == NULL) 920 return (EINVAL); 921 922 last = first + len; 923 if (first < 0 || first >= last || last > seg->len) 924 return (EINVAL); 925 926 if ((gpa | first | last) & PAGE_MASK) 927 return (EINVAL); 928 929 map = NULL; 930 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 931 m = &vm->mem_maps[i]; 932 if (m->len == 0) { 933 map = m; 934 break; 935 } 936 } 937 938 if (map == NULL) 939 return (ENOSPC); 940 941 error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa, 942 len, 0, VMFS_NO_SPACE, prot, prot, 0); 943 if (error != KERN_SUCCESS) 944 return (EFAULT); 945 946 vm_object_reference(seg->object); 947 948 if (flags & VM_MEMMAP_F_WIRED) { 949 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len, 950 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 951 if (error != KERN_SUCCESS) { 952 vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len); 953 return (error == KERN_RESOURCE_SHORTAGE ? ENOMEM : 954 EFAULT); 955 } 956 } 957 958 map->gpa = gpa; 959 map->len = len; 960 map->segoff = first; 961 map->segid = segid; 962 map->prot = prot; 963 map->flags = flags; 964 return (0); 965 } 966 967 int 968 vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len) 969 { 970 struct mem_map *m; 971 int i; 972 973 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 974 m = &vm->mem_maps[i]; 975 if (m->gpa == gpa && m->len == len && 976 (m->flags & VM_MEMMAP_F_IOMMU) == 0) { 977 vm_free_memmap(vm, i); 978 return (0); 979 } 980 } 981 982 return (EINVAL); 983 } 984 985 int 986 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, 987 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 988 { 989 struct mem_map *mm, *mmnext; 990 int i; 991 992 mmnext = NULL; 993 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 994 mm = &vm->mem_maps[i]; 995 if (mm->len == 0 || mm->gpa < *gpa) 996 continue; 997 if (mmnext == NULL || mm->gpa < mmnext->gpa) 998 mmnext = mm; 999 } 1000 1001 if (mmnext != NULL) { 1002 *gpa = mmnext->gpa; 1003 if (segid) 1004 *segid = mmnext->segid; 1005 if (segoff) 1006 *segoff = mmnext->segoff; 1007 if (len) 1008 *len = mmnext->len; 1009 if (prot) 1010 *prot = mmnext->prot; 1011 if (flags) 1012 *flags = mmnext->flags; 1013 return (0); 1014 } else { 1015 return (ENOENT); 1016 } 1017 } 1018 1019 static void 1020 vm_free_memmap(struct vm *vm, int ident) 1021 { 1022 struct mem_map *mm; 1023 int error __diagused; 1024 1025 mm = &vm->mem_maps[ident]; 1026 if (mm->len) { 1027 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa, 1028 mm->gpa + mm->len); 1029 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d", 1030 __func__, error)); 1031 bzero(mm, sizeof(struct mem_map)); 1032 } 1033 } 1034 1035 static __inline bool 1036 sysmem_mapping(struct vm *vm, struct mem_map *mm) 1037 { 1038 1039 if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem) 1040 return (true); 1041 else 1042 return (false); 1043 } 1044 1045 vm_paddr_t 1046 vmm_sysmem_maxaddr(struct vm *vm) 1047 { 1048 struct mem_map *mm; 1049 vm_paddr_t maxaddr; 1050 int i; 1051 1052 maxaddr = 0; 1053 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1054 mm = &vm->mem_maps[i]; 1055 if (sysmem_mapping(vm, mm)) { 1056 if (maxaddr < mm->gpa + mm->len) 1057 maxaddr = mm->gpa + mm->len; 1058 } 1059 } 1060 return (maxaddr); 1061 } 1062 1063 static void 1064 vm_iommu_map(struct vm *vm) 1065 { 1066 vm_paddr_t gpa, hpa; 1067 struct mem_map *mm; 1068 int i; 1069 1070 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 1071 1072 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1073 mm = &vm->mem_maps[i]; 1074 if (!sysmem_mapping(vm, mm)) 1075 continue; 1076 1077 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0, 1078 ("iommu map found invalid memmap %#lx/%#lx/%#x", 1079 mm->gpa, mm->len, mm->flags)); 1080 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0) 1081 continue; 1082 mm->flags |= VM_MEMMAP_F_IOMMU; 1083 1084 for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) { 1085 hpa = pmap_extract(vmspace_pmap(vm->vmspace), gpa); 1086 1087 /* 1088 * All mappings in the vmm vmspace must be 1089 * present since they are managed by vmm in this way. 1090 * Because we are in pass-through mode, the 1091 * mappings must also be wired. This implies 1092 * that all pages must be mapped and wired, 1093 * allowing to use pmap_extract() and avoiding the 1094 * need to use vm_gpa_hold_global(). 1095 * 1096 * This could change if/when we start 1097 * supporting page faults on IOMMU maps. 1098 */ 1099 KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(hpa)), 1100 ("vm_iommu_map: vm %p gpa %jx hpa %jx not wired", 1101 vm, (uintmax_t)gpa, (uintmax_t)hpa)); 1102 1103 iommu_create_mapping(vm->iommu, gpa, hpa, PAGE_SIZE); 1104 } 1105 } 1106 1107 iommu_invalidate_tlb(iommu_host_domain()); 1108 } 1109 1110 static void 1111 vm_iommu_unmap(struct vm *vm) 1112 { 1113 vm_paddr_t gpa; 1114 struct mem_map *mm; 1115 int i; 1116 1117 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 1118 1119 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1120 mm = &vm->mem_maps[i]; 1121 if (!sysmem_mapping(vm, mm)) 1122 continue; 1123 1124 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0) 1125 continue; 1126 mm->flags &= ~VM_MEMMAP_F_IOMMU; 1127 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0, 1128 ("iommu unmap found invalid memmap %#lx/%#lx/%#x", 1129 mm->gpa, mm->len, mm->flags)); 1130 1131 for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) { 1132 KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(pmap_extract( 1133 vmspace_pmap(vm->vmspace), gpa))), 1134 ("vm_iommu_unmap: vm %p gpa %jx not wired", 1135 vm, (uintmax_t)gpa)); 1136 iommu_remove_mapping(vm->iommu, gpa, PAGE_SIZE); 1137 } 1138 } 1139 1140 /* 1141 * Invalidate the cached translations associated with the domain 1142 * from which pages were removed. 1143 */ 1144 iommu_invalidate_tlb(vm->iommu); 1145 } 1146 1147 int 1148 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 1149 { 1150 int error; 1151 1152 error = ppt_unassign_device(vm, bus, slot, func); 1153 if (error) 1154 return (error); 1155 1156 if (ppt_assigned_devices(vm) == 0) 1157 vm_iommu_unmap(vm); 1158 1159 return (0); 1160 } 1161 1162 int 1163 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 1164 { 1165 int error; 1166 vm_paddr_t maxaddr; 1167 1168 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */ 1169 if (ppt_assigned_devices(vm) == 0) { 1170 KASSERT(vm->iommu == NULL, 1171 ("vm_assign_pptdev: iommu must be NULL")); 1172 maxaddr = vmm_sysmem_maxaddr(vm); 1173 vm->iommu = iommu_create_domain(maxaddr); 1174 if (vm->iommu == NULL) 1175 return (ENXIO); 1176 vm_iommu_map(vm); 1177 } 1178 1179 error = ppt_assign_device(vm, bus, slot, func); 1180 return (error); 1181 } 1182 1183 static void * 1184 _vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 1185 void **cookie) 1186 { 1187 int i, count, pageoff; 1188 struct mem_map *mm; 1189 vm_page_t m; 1190 1191 pageoff = gpa & PAGE_MASK; 1192 if (len > PAGE_SIZE - pageoff) 1193 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 1194 1195 count = 0; 1196 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1197 mm = &vm->mem_maps[i]; 1198 if (gpa >= mm->gpa && gpa < mm->gpa + mm->len) { 1199 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 1200 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 1201 break; 1202 } 1203 } 1204 1205 if (count == 1) { 1206 *cookie = m; 1207 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 1208 } else { 1209 *cookie = NULL; 1210 return (NULL); 1211 } 1212 } 1213 1214 void * 1215 vm_gpa_hold(struct vcpu *vcpu, vm_paddr_t gpa, size_t len, int reqprot, 1216 void **cookie) 1217 { 1218 #ifdef INVARIANTS 1219 /* 1220 * The current vcpu should be frozen to ensure 'vm_memmap[]' 1221 * stability. 1222 */ 1223 int state = vcpu_get_state(vcpu, NULL); 1224 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d", 1225 __func__, state)); 1226 #endif 1227 return (_vm_gpa_hold(vcpu->vm, gpa, len, reqprot, cookie)); 1228 } 1229 1230 void * 1231 vm_gpa_hold_global(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 1232 void **cookie) 1233 { 1234 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 1235 return (_vm_gpa_hold(vm, gpa, len, reqprot, cookie)); 1236 } 1237 1238 void 1239 vm_gpa_release(void *cookie) 1240 { 1241 vm_page_t m = cookie; 1242 1243 vm_page_unwire(m, PQ_ACTIVE); 1244 } 1245 1246 int 1247 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval) 1248 { 1249 1250 if (reg >= VM_REG_LAST) 1251 return (EINVAL); 1252 1253 return (vmmops_getreg(vcpu->cookie, reg, retval)); 1254 } 1255 1256 int 1257 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val) 1258 { 1259 int error; 1260 1261 if (reg >= VM_REG_LAST) 1262 return (EINVAL); 1263 1264 error = vmmops_setreg(vcpu->cookie, reg, val); 1265 if (error || reg != VM_REG_GUEST_RIP) 1266 return (error); 1267 1268 /* Set 'nextrip' to match the value of %rip */ 1269 VMM_CTR1(vcpu, "Setting nextrip to %#lx", val); 1270 vcpu->nextrip = val; 1271 return (0); 1272 } 1273 1274 static bool 1275 is_descriptor_table(int reg) 1276 { 1277 1278 switch (reg) { 1279 case VM_REG_GUEST_IDTR: 1280 case VM_REG_GUEST_GDTR: 1281 return (true); 1282 default: 1283 return (false); 1284 } 1285 } 1286 1287 static bool 1288 is_segment_register(int reg) 1289 { 1290 1291 switch (reg) { 1292 case VM_REG_GUEST_ES: 1293 case VM_REG_GUEST_CS: 1294 case VM_REG_GUEST_SS: 1295 case VM_REG_GUEST_DS: 1296 case VM_REG_GUEST_FS: 1297 case VM_REG_GUEST_GS: 1298 case VM_REG_GUEST_TR: 1299 case VM_REG_GUEST_LDTR: 1300 return (true); 1301 default: 1302 return (false); 1303 } 1304 } 1305 1306 int 1307 vm_get_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc) 1308 { 1309 1310 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1311 return (EINVAL); 1312 1313 return (vmmops_getdesc(vcpu->cookie, reg, desc)); 1314 } 1315 1316 int 1317 vm_set_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc) 1318 { 1319 1320 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1321 return (EINVAL); 1322 1323 return (vmmops_setdesc(vcpu->cookie, reg, desc)); 1324 } 1325 1326 static void 1327 restore_guest_fpustate(struct vcpu *vcpu) 1328 { 1329 1330 /* flush host state to the pcb */ 1331 fpuexit(curthread); 1332 1333 /* restore guest FPU state */ 1334 fpu_enable(); 1335 fpurestore(vcpu->guestfpu); 1336 1337 /* restore guest XCR0 if XSAVE is enabled in the host */ 1338 if (rcr4() & CR4_XSAVE) 1339 load_xcr(0, vcpu->guest_xcr0); 1340 1341 /* 1342 * The FPU is now "dirty" with the guest's state so disable 1343 * the FPU to trap any access by the host. 1344 */ 1345 fpu_disable(); 1346 } 1347 1348 static void 1349 save_guest_fpustate(struct vcpu *vcpu) 1350 { 1351 1352 if ((rcr0() & CR0_TS) == 0) 1353 panic("fpu emulation not enabled in host!"); 1354 1355 /* save guest XCR0 and restore host XCR0 */ 1356 if (rcr4() & CR4_XSAVE) { 1357 vcpu->guest_xcr0 = rxcr(0); 1358 load_xcr(0, vmm_get_host_xcr0()); 1359 } 1360 1361 /* save guest FPU state */ 1362 fpu_enable(); 1363 fpusave(vcpu->guestfpu); 1364 fpu_disable(); 1365 } 1366 1367 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 1368 1369 static int 1370 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate, 1371 bool from_idle) 1372 { 1373 int error; 1374 1375 vcpu_assert_locked(vcpu); 1376 1377 /* 1378 * State transitions from the vmmdev_ioctl() must always begin from 1379 * the VCPU_IDLE state. This guarantees that there is only a single 1380 * ioctl() operating on a vcpu at any point. 1381 */ 1382 if (from_idle) { 1383 while (vcpu->state != VCPU_IDLE) { 1384 vcpu->reqidle = 1; 1385 vcpu_notify_event_locked(vcpu, false); 1386 VMM_CTR1(vcpu, "vcpu state change from %s to " 1387 "idle requested", vcpu_state2str(vcpu->state)); 1388 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 1389 } 1390 } else { 1391 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 1392 "vcpu idle state")); 1393 } 1394 1395 if (vcpu->state == VCPU_RUNNING) { 1396 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 1397 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 1398 } else { 1399 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 1400 "vcpu that is not running", vcpu->hostcpu)); 1401 } 1402 1403 /* 1404 * The following state transitions are allowed: 1405 * IDLE -> FROZEN -> IDLE 1406 * FROZEN -> RUNNING -> FROZEN 1407 * FROZEN -> SLEEPING -> FROZEN 1408 */ 1409 switch (vcpu->state) { 1410 case VCPU_IDLE: 1411 case VCPU_RUNNING: 1412 case VCPU_SLEEPING: 1413 error = (newstate != VCPU_FROZEN); 1414 break; 1415 case VCPU_FROZEN: 1416 error = (newstate == VCPU_FROZEN); 1417 break; 1418 default: 1419 error = 1; 1420 break; 1421 } 1422 1423 if (error) 1424 return (EBUSY); 1425 1426 VMM_CTR2(vcpu, "vcpu state changed from %s to %s", 1427 vcpu_state2str(vcpu->state), vcpu_state2str(newstate)); 1428 1429 vcpu->state = newstate; 1430 if (newstate == VCPU_RUNNING) 1431 vcpu->hostcpu = curcpu; 1432 else 1433 vcpu->hostcpu = NOCPU; 1434 1435 if (newstate == VCPU_IDLE) 1436 wakeup(&vcpu->state); 1437 1438 return (0); 1439 } 1440 1441 static void 1442 vcpu_require_state(struct vcpu *vcpu, enum vcpu_state newstate) 1443 { 1444 int error; 1445 1446 if ((error = vcpu_set_state(vcpu, newstate, false)) != 0) 1447 panic("Error %d setting state to %d\n", error, newstate); 1448 } 1449 1450 static void 1451 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate) 1452 { 1453 int error; 1454 1455 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0) 1456 panic("Error %d setting state to %d", error, newstate); 1457 } 1458 1459 static int 1460 vm_handle_rendezvous(struct vcpu *vcpu) 1461 { 1462 struct vm *vm = vcpu->vm; 1463 struct thread *td; 1464 int error, vcpuid; 1465 1466 error = 0; 1467 vcpuid = vcpu->vcpuid; 1468 td = curthread; 1469 mtx_lock(&vm->rendezvous_mtx); 1470 while (vm->rendezvous_func != NULL) { 1471 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1472 CPU_AND(&vm->rendezvous_req_cpus, &vm->rendezvous_req_cpus, &vm->active_cpus); 1473 1474 if (CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1475 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1476 VMM_CTR0(vcpu, "Calling rendezvous func"); 1477 (*vm->rendezvous_func)(vcpu, vm->rendezvous_arg); 1478 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1479 } 1480 if (CPU_CMP(&vm->rendezvous_req_cpus, 1481 &vm->rendezvous_done_cpus) == 0) { 1482 VMM_CTR0(vcpu, "Rendezvous completed"); 1483 CPU_ZERO(&vm->rendezvous_req_cpus); 1484 vm->rendezvous_func = NULL; 1485 wakeup(&vm->rendezvous_func); 1486 break; 1487 } 1488 VMM_CTR0(vcpu, "Wait for rendezvous completion"); 1489 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1490 "vmrndv", hz); 1491 if (td_ast_pending(td, TDA_SUSPEND)) { 1492 mtx_unlock(&vm->rendezvous_mtx); 1493 error = thread_check_susp(td, true); 1494 if (error != 0) 1495 return (error); 1496 mtx_lock(&vm->rendezvous_mtx); 1497 } 1498 } 1499 mtx_unlock(&vm->rendezvous_mtx); 1500 return (0); 1501 } 1502 1503 /* 1504 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1505 */ 1506 static int 1507 vm_handle_hlt(struct vcpu *vcpu, bool intr_disabled, bool *retu) 1508 { 1509 struct vm *vm = vcpu->vm; 1510 const char *wmesg; 1511 struct thread *td; 1512 int error, t, vcpuid, vcpu_halted, vm_halted; 1513 1514 vcpuid = vcpu->vcpuid; 1515 vcpu_halted = 0; 1516 vm_halted = 0; 1517 error = 0; 1518 td = curthread; 1519 1520 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1521 1522 vcpu_lock(vcpu); 1523 while (1) { 1524 /* 1525 * Do a final check for pending NMI or interrupts before 1526 * really putting this thread to sleep. Also check for 1527 * software events that would cause this vcpu to wakeup. 1528 * 1529 * These interrupts/events could have happened after the 1530 * vcpu returned from vmmops_run() and before it acquired the 1531 * vcpu lock above. 1532 */ 1533 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle) 1534 break; 1535 if (vm_nmi_pending(vcpu)) 1536 break; 1537 if (!intr_disabled) { 1538 if (vm_extint_pending(vcpu) || 1539 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1540 break; 1541 } 1542 } 1543 1544 /* Don't go to sleep if the vcpu thread needs to yield */ 1545 if (vcpu_should_yield(vcpu)) 1546 break; 1547 1548 if (vcpu_debugged(vcpu)) 1549 break; 1550 1551 /* 1552 * Some Linux guests implement "halt" by having all vcpus 1553 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1554 * track of the vcpus that have entered this state. When all 1555 * vcpus enter the halted state the virtual machine is halted. 1556 */ 1557 if (intr_disabled) { 1558 wmesg = "vmhalt"; 1559 VMM_CTR0(vcpu, "Halted"); 1560 if (!vcpu_halted && halt_detection_enabled) { 1561 vcpu_halted = 1; 1562 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1563 } 1564 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1565 vm_halted = 1; 1566 break; 1567 } 1568 } else { 1569 wmesg = "vmidle"; 1570 } 1571 1572 t = ticks; 1573 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1574 /* 1575 * XXX msleep_spin() cannot be interrupted by signals so 1576 * wake up periodically to check pending signals. 1577 */ 1578 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1579 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1580 vmm_stat_incr(vcpu, VCPU_IDLE_TICKS, ticks - t); 1581 if (td_ast_pending(td, TDA_SUSPEND)) { 1582 vcpu_unlock(vcpu); 1583 error = thread_check_susp(td, false); 1584 if (error != 0) { 1585 if (vcpu_halted) { 1586 CPU_CLR_ATOMIC(vcpuid, 1587 &vm->halted_cpus); 1588 } 1589 return (error); 1590 } 1591 vcpu_lock(vcpu); 1592 } 1593 } 1594 1595 if (vcpu_halted) 1596 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1597 1598 vcpu_unlock(vcpu); 1599 1600 if (vm_halted) 1601 vm_suspend(vm, VM_SUSPEND_HALT); 1602 1603 return (0); 1604 } 1605 1606 static int 1607 vm_handle_paging(struct vcpu *vcpu, bool *retu) 1608 { 1609 struct vm *vm = vcpu->vm; 1610 int rv, ftype; 1611 struct vm_map *map; 1612 struct vm_exit *vme; 1613 1614 vme = &vcpu->exitinfo; 1615 1616 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1617 __func__, vme->inst_length)); 1618 1619 ftype = vme->u.paging.fault_type; 1620 KASSERT(ftype == VM_PROT_READ || 1621 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1622 ("vm_handle_paging: invalid fault_type %d", ftype)); 1623 1624 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1625 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1626 vme->u.paging.gpa, ftype); 1627 if (rv == 0) { 1628 VMM_CTR2(vcpu, "%s bit emulation for gpa %#lx", 1629 ftype == VM_PROT_READ ? "accessed" : "dirty", 1630 vme->u.paging.gpa); 1631 goto done; 1632 } 1633 } 1634 1635 map = &vm->vmspace->vm_map; 1636 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL); 1637 1638 VMM_CTR3(vcpu, "vm_handle_paging rv = %d, gpa = %#lx, " 1639 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1640 1641 if (rv != KERN_SUCCESS) 1642 return (EFAULT); 1643 done: 1644 return (0); 1645 } 1646 1647 static int 1648 vm_handle_inst_emul(struct vcpu *vcpu, bool *retu) 1649 { 1650 struct vie *vie; 1651 struct vm_exit *vme; 1652 uint64_t gla, gpa, cs_base; 1653 struct vm_guest_paging *paging; 1654 mem_region_read_t mread; 1655 mem_region_write_t mwrite; 1656 enum vm_cpu_mode cpu_mode; 1657 int cs_d, error, fault; 1658 1659 vme = &vcpu->exitinfo; 1660 1661 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1662 __func__, vme->inst_length)); 1663 1664 gla = vme->u.inst_emul.gla; 1665 gpa = vme->u.inst_emul.gpa; 1666 cs_base = vme->u.inst_emul.cs_base; 1667 cs_d = vme->u.inst_emul.cs_d; 1668 vie = &vme->u.inst_emul.vie; 1669 paging = &vme->u.inst_emul.paging; 1670 cpu_mode = paging->cpu_mode; 1671 1672 VMM_CTR1(vcpu, "inst_emul fault accessing gpa %#lx", gpa); 1673 1674 /* Fetch, decode and emulate the faulting instruction */ 1675 if (vie->num_valid == 0) { 1676 error = vmm_fetch_instruction(vcpu, paging, vme->rip + cs_base, 1677 VIE_INST_SIZE, vie, &fault); 1678 } else { 1679 /* 1680 * The instruction bytes have already been copied into 'vie' 1681 */ 1682 error = fault = 0; 1683 } 1684 if (error || fault) 1685 return (error); 1686 1687 if (vmm_decode_instruction(vcpu, gla, cpu_mode, cs_d, vie) != 0) { 1688 VMM_CTR1(vcpu, "Error decoding instruction at %#lx", 1689 vme->rip + cs_base); 1690 *retu = true; /* dump instruction bytes in userspace */ 1691 return (0); 1692 } 1693 1694 /* 1695 * Update 'nextrip' based on the length of the emulated instruction. 1696 */ 1697 vme->inst_length = vie->num_processed; 1698 vcpu->nextrip += vie->num_processed; 1699 VMM_CTR1(vcpu, "nextrip updated to %#lx after instruction decoding", 1700 vcpu->nextrip); 1701 1702 /* return to userland unless this is an in-kernel emulated device */ 1703 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1704 mread = lapic_mmio_read; 1705 mwrite = lapic_mmio_write; 1706 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1707 mread = vioapic_mmio_read; 1708 mwrite = vioapic_mmio_write; 1709 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1710 mread = vhpet_mmio_read; 1711 mwrite = vhpet_mmio_write; 1712 } else { 1713 *retu = true; 1714 return (0); 1715 } 1716 1717 error = vmm_emulate_instruction(vcpu, gpa, vie, paging, mread, mwrite, 1718 retu); 1719 1720 return (error); 1721 } 1722 1723 static int 1724 vm_handle_suspend(struct vcpu *vcpu, bool *retu) 1725 { 1726 struct vm *vm = vcpu->vm; 1727 int error, i; 1728 struct thread *td; 1729 1730 error = 0; 1731 td = curthread; 1732 1733 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->suspended_cpus); 1734 1735 /* 1736 * Wait until all 'active_cpus' have suspended themselves. 1737 * 1738 * Since a VM may be suspended at any time including when one or 1739 * more vcpus are doing a rendezvous we need to call the rendezvous 1740 * handler while we are waiting to prevent a deadlock. 1741 */ 1742 vcpu_lock(vcpu); 1743 while (error == 0) { 1744 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1745 VMM_CTR0(vcpu, "All vcpus suspended"); 1746 break; 1747 } 1748 1749 if (vm->rendezvous_func == NULL) { 1750 VMM_CTR0(vcpu, "Sleeping during suspend"); 1751 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1752 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1753 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1754 if (td_ast_pending(td, TDA_SUSPEND)) { 1755 vcpu_unlock(vcpu); 1756 error = thread_check_susp(td, false); 1757 vcpu_lock(vcpu); 1758 } 1759 } else { 1760 VMM_CTR0(vcpu, "Rendezvous during suspend"); 1761 vcpu_unlock(vcpu); 1762 error = vm_handle_rendezvous(vcpu); 1763 vcpu_lock(vcpu); 1764 } 1765 } 1766 vcpu_unlock(vcpu); 1767 1768 /* 1769 * Wakeup the other sleeping vcpus and return to userspace. 1770 */ 1771 for (i = 0; i < vm->maxcpus; i++) { 1772 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1773 vcpu_notify_event(vm_vcpu(vm, i), false); 1774 } 1775 } 1776 1777 *retu = true; 1778 return (error); 1779 } 1780 1781 static int 1782 vm_handle_reqidle(struct vcpu *vcpu, bool *retu) 1783 { 1784 vcpu_lock(vcpu); 1785 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle)); 1786 vcpu->reqidle = 0; 1787 vcpu_unlock(vcpu); 1788 *retu = true; 1789 return (0); 1790 } 1791 1792 static int 1793 vm_handle_db(struct vcpu *vcpu, struct vm_exit *vme, bool *retu) 1794 { 1795 int error, fault; 1796 uint64_t rsp; 1797 uint64_t rflags; 1798 struct vm_copyinfo copyinfo; 1799 1800 *retu = true; 1801 if (!vme->u.dbg.pushf_intercept || vme->u.dbg.tf_shadow_val != 0) { 1802 return (0); 1803 } 1804 1805 vm_get_register(vcpu, VM_REG_GUEST_RSP, &rsp); 1806 error = vm_copy_setup(vcpu, &vme->u.dbg.paging, rsp, sizeof(uint64_t), 1807 VM_PROT_RW, ©info, 1, &fault); 1808 if (error != 0 || fault != 0) { 1809 *retu = false; 1810 return (EINVAL); 1811 } 1812 1813 /* Read pushed rflags value from top of stack. */ 1814 vm_copyin(©info, &rflags, sizeof(uint64_t)); 1815 1816 /* Clear TF bit. */ 1817 rflags &= ~(PSL_T); 1818 1819 /* Write updated value back to memory. */ 1820 vm_copyout(&rflags, ©info, sizeof(uint64_t)); 1821 vm_copy_teardown(©info, 1); 1822 1823 return (0); 1824 } 1825 1826 int 1827 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1828 { 1829 int i; 1830 1831 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1832 return (EINVAL); 1833 1834 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1835 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1836 vm->suspend, how); 1837 return (EALREADY); 1838 } 1839 1840 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1841 1842 /* 1843 * Notify all active vcpus that they are now suspended. 1844 */ 1845 for (i = 0; i < vm->maxcpus; i++) { 1846 if (CPU_ISSET(i, &vm->active_cpus)) 1847 vcpu_notify_event(vm_vcpu(vm, i), false); 1848 } 1849 1850 return (0); 1851 } 1852 1853 void 1854 vm_exit_suspended(struct vcpu *vcpu, uint64_t rip) 1855 { 1856 struct vm *vm = vcpu->vm; 1857 struct vm_exit *vmexit; 1858 1859 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1860 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1861 1862 vmexit = vm_exitinfo(vcpu); 1863 vmexit->rip = rip; 1864 vmexit->inst_length = 0; 1865 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1866 vmexit->u.suspended.how = vm->suspend; 1867 } 1868 1869 void 1870 vm_exit_debug(struct vcpu *vcpu, uint64_t rip) 1871 { 1872 struct vm_exit *vmexit; 1873 1874 vmexit = vm_exitinfo(vcpu); 1875 vmexit->rip = rip; 1876 vmexit->inst_length = 0; 1877 vmexit->exitcode = VM_EXITCODE_DEBUG; 1878 } 1879 1880 void 1881 vm_exit_rendezvous(struct vcpu *vcpu, uint64_t rip) 1882 { 1883 struct vm_exit *vmexit; 1884 1885 vmexit = vm_exitinfo(vcpu); 1886 vmexit->rip = rip; 1887 vmexit->inst_length = 0; 1888 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1889 vmm_stat_incr(vcpu, VMEXIT_RENDEZVOUS, 1); 1890 } 1891 1892 void 1893 vm_exit_reqidle(struct vcpu *vcpu, uint64_t rip) 1894 { 1895 struct vm_exit *vmexit; 1896 1897 vmexit = vm_exitinfo(vcpu); 1898 vmexit->rip = rip; 1899 vmexit->inst_length = 0; 1900 vmexit->exitcode = VM_EXITCODE_REQIDLE; 1901 vmm_stat_incr(vcpu, VMEXIT_REQIDLE, 1); 1902 } 1903 1904 void 1905 vm_exit_astpending(struct vcpu *vcpu, uint64_t rip) 1906 { 1907 struct vm_exit *vmexit; 1908 1909 vmexit = vm_exitinfo(vcpu); 1910 vmexit->rip = rip; 1911 vmexit->inst_length = 0; 1912 vmexit->exitcode = VM_EXITCODE_BOGUS; 1913 vmm_stat_incr(vcpu, VMEXIT_ASTPENDING, 1); 1914 } 1915 1916 int 1917 vm_run(struct vcpu *vcpu) 1918 { 1919 struct vm *vm = vcpu->vm; 1920 struct vm_eventinfo evinfo; 1921 int error, vcpuid; 1922 struct pcb *pcb; 1923 uint64_t tscval; 1924 struct vm_exit *vme; 1925 bool retu, intr_disabled; 1926 pmap_t pmap; 1927 1928 vcpuid = vcpu->vcpuid; 1929 1930 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1931 return (EINVAL); 1932 1933 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1934 return (EINVAL); 1935 1936 pmap = vmspace_pmap(vm->vmspace); 1937 vme = &vcpu->exitinfo; 1938 evinfo.rptr = &vm->rendezvous_req_cpus; 1939 evinfo.sptr = &vm->suspend; 1940 evinfo.iptr = &vcpu->reqidle; 1941 restart: 1942 critical_enter(); 1943 1944 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1945 ("vm_run: absurd pm_active")); 1946 1947 tscval = rdtsc(); 1948 1949 pcb = PCPU_GET(curpcb); 1950 set_pcb_flags(pcb, PCB_FULL_IRET); 1951 1952 restore_guest_fpustate(vcpu); 1953 1954 vcpu_require_state(vcpu, VCPU_RUNNING); 1955 error = vmmops_run(vcpu->cookie, vcpu->nextrip, pmap, &evinfo); 1956 vcpu_require_state(vcpu, VCPU_FROZEN); 1957 1958 save_guest_fpustate(vcpu); 1959 1960 vmm_stat_incr(vcpu, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1961 1962 critical_exit(); 1963 1964 if (error == 0) { 1965 retu = false; 1966 vcpu->nextrip = vme->rip + vme->inst_length; 1967 switch (vme->exitcode) { 1968 case VM_EXITCODE_REQIDLE: 1969 error = vm_handle_reqidle(vcpu, &retu); 1970 break; 1971 case VM_EXITCODE_SUSPENDED: 1972 error = vm_handle_suspend(vcpu, &retu); 1973 break; 1974 case VM_EXITCODE_IOAPIC_EOI: 1975 vioapic_process_eoi(vm, vme->u.ioapic_eoi.vector); 1976 break; 1977 case VM_EXITCODE_RENDEZVOUS: 1978 error = vm_handle_rendezvous(vcpu); 1979 break; 1980 case VM_EXITCODE_HLT: 1981 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1982 error = vm_handle_hlt(vcpu, intr_disabled, &retu); 1983 break; 1984 case VM_EXITCODE_PAGING: 1985 error = vm_handle_paging(vcpu, &retu); 1986 break; 1987 case VM_EXITCODE_INST_EMUL: 1988 error = vm_handle_inst_emul(vcpu, &retu); 1989 break; 1990 case VM_EXITCODE_INOUT: 1991 case VM_EXITCODE_INOUT_STR: 1992 error = vm_handle_inout(vcpu, vme, &retu); 1993 break; 1994 case VM_EXITCODE_DB: 1995 error = vm_handle_db(vcpu, vme, &retu); 1996 break; 1997 case VM_EXITCODE_MONITOR: 1998 case VM_EXITCODE_MWAIT: 1999 case VM_EXITCODE_VMINSN: 2000 vm_inject_ud(vcpu); 2001 break; 2002 default: 2003 retu = true; /* handled in userland */ 2004 break; 2005 } 2006 } 2007 2008 /* 2009 * VM_EXITCODE_INST_EMUL could access the apic which could transform the 2010 * exit code into VM_EXITCODE_IPI. 2011 */ 2012 if (error == 0 && vme->exitcode == VM_EXITCODE_IPI) 2013 error = vm_handle_ipi(vcpu, vme, &retu); 2014 2015 if (error == 0 && retu == false) 2016 goto restart; 2017 2018 vmm_stat_incr(vcpu, VMEXIT_USERSPACE, 1); 2019 VMM_CTR2(vcpu, "retu %d/%d", error, vme->exitcode); 2020 2021 return (error); 2022 } 2023 2024 int 2025 vm_restart_instruction(struct vcpu *vcpu) 2026 { 2027 enum vcpu_state state; 2028 uint64_t rip; 2029 int error __diagused; 2030 2031 state = vcpu_get_state(vcpu, NULL); 2032 if (state == VCPU_RUNNING) { 2033 /* 2034 * When a vcpu is "running" the next instruction is determined 2035 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'. 2036 * Thus setting 'inst_length' to zero will cause the current 2037 * instruction to be restarted. 2038 */ 2039 vcpu->exitinfo.inst_length = 0; 2040 VMM_CTR1(vcpu, "restarting instruction at %#lx by " 2041 "setting inst_length to zero", vcpu->exitinfo.rip); 2042 } else if (state == VCPU_FROZEN) { 2043 /* 2044 * When a vcpu is "frozen" it is outside the critical section 2045 * around vmmops_run() and 'nextrip' points to the next 2046 * instruction. Thus instruction restart is achieved by setting 2047 * 'nextrip' to the vcpu's %rip. 2048 */ 2049 error = vm_get_register(vcpu, VM_REG_GUEST_RIP, &rip); 2050 KASSERT(!error, ("%s: error %d getting rip", __func__, error)); 2051 VMM_CTR2(vcpu, "restarting instruction by updating " 2052 "nextrip from %#lx to %#lx", vcpu->nextrip, rip); 2053 vcpu->nextrip = rip; 2054 } else { 2055 panic("%s: invalid state %d", __func__, state); 2056 } 2057 return (0); 2058 } 2059 2060 int 2061 vm_exit_intinfo(struct vcpu *vcpu, uint64_t info) 2062 { 2063 int type, vector; 2064 2065 if (info & VM_INTINFO_VALID) { 2066 type = info & VM_INTINFO_TYPE; 2067 vector = info & 0xff; 2068 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 2069 return (EINVAL); 2070 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 2071 return (EINVAL); 2072 if (info & VM_INTINFO_RSVD) 2073 return (EINVAL); 2074 } else { 2075 info = 0; 2076 } 2077 VMM_CTR2(vcpu, "%s: info1(%#lx)", __func__, info); 2078 vcpu->exitintinfo = info; 2079 return (0); 2080 } 2081 2082 enum exc_class { 2083 EXC_BENIGN, 2084 EXC_CONTRIBUTORY, 2085 EXC_PAGEFAULT 2086 }; 2087 2088 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 2089 2090 static enum exc_class 2091 exception_class(uint64_t info) 2092 { 2093 int type, vector; 2094 2095 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 2096 type = info & VM_INTINFO_TYPE; 2097 vector = info & 0xff; 2098 2099 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 2100 switch (type) { 2101 case VM_INTINFO_HWINTR: 2102 case VM_INTINFO_SWINTR: 2103 case VM_INTINFO_NMI: 2104 return (EXC_BENIGN); 2105 default: 2106 /* 2107 * Hardware exception. 2108 * 2109 * SVM and VT-x use identical type values to represent NMI, 2110 * hardware interrupt and software interrupt. 2111 * 2112 * SVM uses type '3' for all exceptions. VT-x uses type '3' 2113 * for exceptions except #BP and #OF. #BP and #OF use a type 2114 * value of '5' or '6'. Therefore we don't check for explicit 2115 * values of 'type' to classify 'intinfo' into a hardware 2116 * exception. 2117 */ 2118 break; 2119 } 2120 2121 switch (vector) { 2122 case IDT_PF: 2123 case IDT_VE: 2124 return (EXC_PAGEFAULT); 2125 case IDT_DE: 2126 case IDT_TS: 2127 case IDT_NP: 2128 case IDT_SS: 2129 case IDT_GP: 2130 return (EXC_CONTRIBUTORY); 2131 default: 2132 return (EXC_BENIGN); 2133 } 2134 } 2135 2136 static int 2137 nested_fault(struct vcpu *vcpu, uint64_t info1, uint64_t info2, 2138 uint64_t *retinfo) 2139 { 2140 enum exc_class exc1, exc2; 2141 int type1, vector1; 2142 2143 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 2144 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 2145 2146 /* 2147 * If an exception occurs while attempting to call the double-fault 2148 * handler the processor enters shutdown mode (aka triple fault). 2149 */ 2150 type1 = info1 & VM_INTINFO_TYPE; 2151 vector1 = info1 & 0xff; 2152 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 2153 VMM_CTR2(vcpu, "triple fault: info1(%#lx), info2(%#lx)", 2154 info1, info2); 2155 vm_suspend(vcpu->vm, VM_SUSPEND_TRIPLEFAULT); 2156 *retinfo = 0; 2157 return (0); 2158 } 2159 2160 /* 2161 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 2162 */ 2163 exc1 = exception_class(info1); 2164 exc2 = exception_class(info2); 2165 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 2166 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 2167 /* Convert nested fault into a double fault. */ 2168 *retinfo = IDT_DF; 2169 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 2170 *retinfo |= VM_INTINFO_DEL_ERRCODE; 2171 } else { 2172 /* Handle exceptions serially */ 2173 *retinfo = info2; 2174 } 2175 return (1); 2176 } 2177 2178 static uint64_t 2179 vcpu_exception_intinfo(struct vcpu *vcpu) 2180 { 2181 uint64_t info = 0; 2182 2183 if (vcpu->exception_pending) { 2184 info = vcpu->exc_vector & 0xff; 2185 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 2186 if (vcpu->exc_errcode_valid) { 2187 info |= VM_INTINFO_DEL_ERRCODE; 2188 info |= (uint64_t)vcpu->exc_errcode << 32; 2189 } 2190 } 2191 return (info); 2192 } 2193 2194 int 2195 vm_entry_intinfo(struct vcpu *vcpu, uint64_t *retinfo) 2196 { 2197 uint64_t info1, info2; 2198 int valid; 2199 2200 info1 = vcpu->exitintinfo; 2201 vcpu->exitintinfo = 0; 2202 2203 info2 = 0; 2204 if (vcpu->exception_pending) { 2205 info2 = vcpu_exception_intinfo(vcpu); 2206 vcpu->exception_pending = 0; 2207 VMM_CTR2(vcpu, "Exception %d delivered: %#lx", 2208 vcpu->exc_vector, info2); 2209 } 2210 2211 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 2212 valid = nested_fault(vcpu, info1, info2, retinfo); 2213 } else if (info1 & VM_INTINFO_VALID) { 2214 *retinfo = info1; 2215 valid = 1; 2216 } else if (info2 & VM_INTINFO_VALID) { 2217 *retinfo = info2; 2218 valid = 1; 2219 } else { 2220 valid = 0; 2221 } 2222 2223 if (valid) { 2224 VMM_CTR4(vcpu, "%s: info1(%#lx), info2(%#lx), " 2225 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 2226 } 2227 2228 return (valid); 2229 } 2230 2231 int 2232 vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2) 2233 { 2234 *info1 = vcpu->exitintinfo; 2235 *info2 = vcpu_exception_intinfo(vcpu); 2236 return (0); 2237 } 2238 2239 int 2240 vm_inject_exception(struct vcpu *vcpu, int vector, int errcode_valid, 2241 uint32_t errcode, int restart_instruction) 2242 { 2243 uint64_t regval; 2244 int error __diagused; 2245 2246 if (vector < 0 || vector >= 32) 2247 return (EINVAL); 2248 2249 /* 2250 * A double fault exception should never be injected directly into 2251 * the guest. It is a derived exception that results from specific 2252 * combinations of nested faults. 2253 */ 2254 if (vector == IDT_DF) 2255 return (EINVAL); 2256 2257 if (vcpu->exception_pending) { 2258 VMM_CTR2(vcpu, "Unable to inject exception %d due to " 2259 "pending exception %d", vector, vcpu->exc_vector); 2260 return (EBUSY); 2261 } 2262 2263 if (errcode_valid) { 2264 /* 2265 * Exceptions don't deliver an error code in real mode. 2266 */ 2267 error = vm_get_register(vcpu, VM_REG_GUEST_CR0, ®val); 2268 KASSERT(!error, ("%s: error %d getting CR0", __func__, error)); 2269 if (!(regval & CR0_PE)) 2270 errcode_valid = 0; 2271 } 2272 2273 /* 2274 * From section 26.6.1 "Interruptibility State" in Intel SDM: 2275 * 2276 * Event blocking by "STI" or "MOV SS" is cleared after guest executes 2277 * one instruction or incurs an exception. 2278 */ 2279 error = vm_set_register(vcpu, VM_REG_GUEST_INTR_SHADOW, 0); 2280 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", 2281 __func__, error)); 2282 2283 if (restart_instruction) 2284 vm_restart_instruction(vcpu); 2285 2286 vcpu->exception_pending = 1; 2287 vcpu->exc_vector = vector; 2288 vcpu->exc_errcode = errcode; 2289 vcpu->exc_errcode_valid = errcode_valid; 2290 VMM_CTR1(vcpu, "Exception %d pending", vector); 2291 return (0); 2292 } 2293 2294 void 2295 vm_inject_fault(struct vcpu *vcpu, int vector, int errcode_valid, int errcode) 2296 { 2297 int error __diagused, restart_instruction; 2298 2299 restart_instruction = 1; 2300 2301 error = vm_inject_exception(vcpu, vector, errcode_valid, 2302 errcode, restart_instruction); 2303 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 2304 } 2305 2306 void 2307 vm_inject_pf(struct vcpu *vcpu, int error_code, uint64_t cr2) 2308 { 2309 int error __diagused; 2310 2311 VMM_CTR2(vcpu, "Injecting page fault: error_code %#x, cr2 %#lx", 2312 error_code, cr2); 2313 2314 error = vm_set_register(vcpu, VM_REG_GUEST_CR2, cr2); 2315 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 2316 2317 vm_inject_fault(vcpu, IDT_PF, 1, error_code); 2318 } 2319 2320 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 2321 2322 int 2323 vm_inject_nmi(struct vcpu *vcpu) 2324 { 2325 2326 vcpu->nmi_pending = 1; 2327 vcpu_notify_event(vcpu, false); 2328 return (0); 2329 } 2330 2331 int 2332 vm_nmi_pending(struct vcpu *vcpu) 2333 { 2334 return (vcpu->nmi_pending); 2335 } 2336 2337 void 2338 vm_nmi_clear(struct vcpu *vcpu) 2339 { 2340 if (vcpu->nmi_pending == 0) 2341 panic("vm_nmi_clear: inconsistent nmi_pending state"); 2342 2343 vcpu->nmi_pending = 0; 2344 vmm_stat_incr(vcpu, VCPU_NMI_COUNT, 1); 2345 } 2346 2347 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 2348 2349 int 2350 vm_inject_extint(struct vcpu *vcpu) 2351 { 2352 2353 vcpu->extint_pending = 1; 2354 vcpu_notify_event(vcpu, false); 2355 return (0); 2356 } 2357 2358 int 2359 vm_extint_pending(struct vcpu *vcpu) 2360 { 2361 return (vcpu->extint_pending); 2362 } 2363 2364 void 2365 vm_extint_clear(struct vcpu *vcpu) 2366 { 2367 if (vcpu->extint_pending == 0) 2368 panic("vm_extint_clear: inconsistent extint_pending state"); 2369 2370 vcpu->extint_pending = 0; 2371 vmm_stat_incr(vcpu, VCPU_EXTINT_COUNT, 1); 2372 } 2373 2374 int 2375 vm_get_capability(struct vcpu *vcpu, int type, int *retval) 2376 { 2377 if (type < 0 || type >= VM_CAP_MAX) 2378 return (EINVAL); 2379 2380 return (vmmops_getcap(vcpu->cookie, type, retval)); 2381 } 2382 2383 int 2384 vm_set_capability(struct vcpu *vcpu, int type, int val) 2385 { 2386 if (type < 0 || type >= VM_CAP_MAX) 2387 return (EINVAL); 2388 2389 return (vmmops_setcap(vcpu->cookie, type, val)); 2390 } 2391 2392 struct vm * 2393 vcpu_vm(struct vcpu *vcpu) 2394 { 2395 return (vcpu->vm); 2396 } 2397 2398 int 2399 vcpu_vcpuid(struct vcpu *vcpu) 2400 { 2401 return (vcpu->vcpuid); 2402 } 2403 2404 struct vcpu * 2405 vm_vcpu(struct vm *vm, int vcpuid) 2406 { 2407 return (vm->vcpu[vcpuid]); 2408 } 2409 2410 struct vlapic * 2411 vm_lapic(struct vcpu *vcpu) 2412 { 2413 return (vcpu->vlapic); 2414 } 2415 2416 struct vioapic * 2417 vm_ioapic(struct vm *vm) 2418 { 2419 2420 return (vm->vioapic); 2421 } 2422 2423 struct vhpet * 2424 vm_hpet(struct vm *vm) 2425 { 2426 2427 return (vm->vhpet); 2428 } 2429 2430 bool 2431 vmm_is_pptdev(int bus, int slot, int func) 2432 { 2433 int b, f, i, n, s; 2434 char *val, *cp, *cp2; 2435 bool found; 2436 2437 /* 2438 * XXX 2439 * The length of an environment variable is limited to 128 bytes which 2440 * puts an upper limit on the number of passthru devices that may be 2441 * specified using a single environment variable. 2442 * 2443 * Work around this by scanning multiple environment variable 2444 * names instead of a single one - yuck! 2445 */ 2446 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 2447 2448 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 2449 found = false; 2450 for (i = 0; names[i] != NULL && !found; i++) { 2451 cp = val = kern_getenv(names[i]); 2452 while (cp != NULL && *cp != '\0') { 2453 if ((cp2 = strchr(cp, ' ')) != NULL) 2454 *cp2 = '\0'; 2455 2456 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 2457 if (n == 3 && bus == b && slot == s && func == f) { 2458 found = true; 2459 break; 2460 } 2461 2462 if (cp2 != NULL) 2463 *cp2++ = ' '; 2464 2465 cp = cp2; 2466 } 2467 freeenv(val); 2468 } 2469 return (found); 2470 } 2471 2472 void * 2473 vm_iommu_domain(struct vm *vm) 2474 { 2475 2476 return (vm->iommu); 2477 } 2478 2479 int 2480 vcpu_set_state(struct vcpu *vcpu, enum vcpu_state newstate, bool from_idle) 2481 { 2482 int error; 2483 2484 vcpu_lock(vcpu); 2485 error = vcpu_set_state_locked(vcpu, newstate, from_idle); 2486 vcpu_unlock(vcpu); 2487 2488 return (error); 2489 } 2490 2491 enum vcpu_state 2492 vcpu_get_state(struct vcpu *vcpu, int *hostcpu) 2493 { 2494 enum vcpu_state state; 2495 2496 vcpu_lock(vcpu); 2497 state = vcpu->state; 2498 if (hostcpu != NULL) 2499 *hostcpu = vcpu->hostcpu; 2500 vcpu_unlock(vcpu); 2501 2502 return (state); 2503 } 2504 2505 int 2506 vm_activate_cpu(struct vcpu *vcpu) 2507 { 2508 struct vm *vm = vcpu->vm; 2509 2510 if (CPU_ISSET(vcpu->vcpuid, &vm->active_cpus)) 2511 return (EBUSY); 2512 2513 VMM_CTR0(vcpu, "activated"); 2514 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->active_cpus); 2515 return (0); 2516 } 2517 2518 int 2519 vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu) 2520 { 2521 if (vcpu == NULL) { 2522 vm->debug_cpus = vm->active_cpus; 2523 for (int i = 0; i < vm->maxcpus; i++) { 2524 if (CPU_ISSET(i, &vm->active_cpus)) 2525 vcpu_notify_event(vm_vcpu(vm, i), false); 2526 } 2527 } else { 2528 if (!CPU_ISSET(vcpu->vcpuid, &vm->active_cpus)) 2529 return (EINVAL); 2530 2531 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->debug_cpus); 2532 vcpu_notify_event(vcpu, false); 2533 } 2534 return (0); 2535 } 2536 2537 int 2538 vm_resume_cpu(struct vm *vm, struct vcpu *vcpu) 2539 { 2540 2541 if (vcpu == NULL) { 2542 CPU_ZERO(&vm->debug_cpus); 2543 } else { 2544 if (!CPU_ISSET(vcpu->vcpuid, &vm->debug_cpus)) 2545 return (EINVAL); 2546 2547 CPU_CLR_ATOMIC(vcpu->vcpuid, &vm->debug_cpus); 2548 } 2549 return (0); 2550 } 2551 2552 int 2553 vcpu_debugged(struct vcpu *vcpu) 2554 { 2555 2556 return (CPU_ISSET(vcpu->vcpuid, &vcpu->vm->debug_cpus)); 2557 } 2558 2559 cpuset_t 2560 vm_active_cpus(struct vm *vm) 2561 { 2562 2563 return (vm->active_cpus); 2564 } 2565 2566 cpuset_t 2567 vm_debug_cpus(struct vm *vm) 2568 { 2569 2570 return (vm->debug_cpus); 2571 } 2572 2573 cpuset_t 2574 vm_suspended_cpus(struct vm *vm) 2575 { 2576 2577 return (vm->suspended_cpus); 2578 } 2579 2580 /* 2581 * Returns the subset of vCPUs in tostart that are awaiting startup. 2582 * These vCPUs are also marked as no longer awaiting startup. 2583 */ 2584 cpuset_t 2585 vm_start_cpus(struct vm *vm, const cpuset_t *tostart) 2586 { 2587 cpuset_t set; 2588 2589 mtx_lock(&vm->rendezvous_mtx); 2590 CPU_AND(&set, &vm->startup_cpus, tostart); 2591 CPU_ANDNOT(&vm->startup_cpus, &vm->startup_cpus, &set); 2592 mtx_unlock(&vm->rendezvous_mtx); 2593 return (set); 2594 } 2595 2596 void 2597 vm_await_start(struct vm *vm, const cpuset_t *waiting) 2598 { 2599 mtx_lock(&vm->rendezvous_mtx); 2600 CPU_OR(&vm->startup_cpus, &vm->startup_cpus, waiting); 2601 mtx_unlock(&vm->rendezvous_mtx); 2602 } 2603 2604 void * 2605 vcpu_stats(struct vcpu *vcpu) 2606 { 2607 2608 return (vcpu->stats); 2609 } 2610 2611 int 2612 vm_get_x2apic_state(struct vcpu *vcpu, enum x2apic_state *state) 2613 { 2614 *state = vcpu->x2apic_state; 2615 2616 return (0); 2617 } 2618 2619 int 2620 vm_set_x2apic_state(struct vcpu *vcpu, enum x2apic_state state) 2621 { 2622 if (state >= X2APIC_STATE_LAST) 2623 return (EINVAL); 2624 2625 vcpu->x2apic_state = state; 2626 2627 vlapic_set_x2apic_state(vcpu, state); 2628 2629 return (0); 2630 } 2631 2632 /* 2633 * This function is called to ensure that a vcpu "sees" a pending event 2634 * as soon as possible: 2635 * - If the vcpu thread is sleeping then it is woken up. 2636 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2637 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2638 */ 2639 static void 2640 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr) 2641 { 2642 int hostcpu; 2643 2644 hostcpu = vcpu->hostcpu; 2645 if (vcpu->state == VCPU_RUNNING) { 2646 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2647 if (hostcpu != curcpu) { 2648 if (lapic_intr) { 2649 vlapic_post_intr(vcpu->vlapic, hostcpu, 2650 vmm_ipinum); 2651 } else { 2652 ipi_cpu(hostcpu, vmm_ipinum); 2653 } 2654 } else { 2655 /* 2656 * If the 'vcpu' is running on 'curcpu' then it must 2657 * be sending a notification to itself (e.g. SELF_IPI). 2658 * The pending event will be picked up when the vcpu 2659 * transitions back to guest context. 2660 */ 2661 } 2662 } else { 2663 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2664 "with hostcpu %d", vcpu->state, hostcpu)); 2665 if (vcpu->state == VCPU_SLEEPING) 2666 wakeup_one(vcpu); 2667 } 2668 } 2669 2670 void 2671 vcpu_notify_event(struct vcpu *vcpu, bool lapic_intr) 2672 { 2673 vcpu_lock(vcpu); 2674 vcpu_notify_event_locked(vcpu, lapic_intr); 2675 vcpu_unlock(vcpu); 2676 } 2677 2678 struct vmspace * 2679 vm_get_vmspace(struct vm *vm) 2680 { 2681 2682 return (vm->vmspace); 2683 } 2684 2685 int 2686 vm_apicid2vcpuid(struct vm *vm, int apicid) 2687 { 2688 /* 2689 * XXX apic id is assumed to be numerically identical to vcpu id 2690 */ 2691 return (apicid); 2692 } 2693 2694 int 2695 vm_smp_rendezvous(struct vcpu *vcpu, cpuset_t dest, 2696 vm_rendezvous_func_t func, void *arg) 2697 { 2698 struct vm *vm = vcpu->vm; 2699 int error, i; 2700 2701 /* 2702 * Enforce that this function is called without any locks 2703 */ 2704 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2705 2706 restart: 2707 mtx_lock(&vm->rendezvous_mtx); 2708 if (vm->rendezvous_func != NULL) { 2709 /* 2710 * If a rendezvous is already in progress then we need to 2711 * call the rendezvous handler in case this 'vcpu' is one 2712 * of the targets of the rendezvous. 2713 */ 2714 VMM_CTR0(vcpu, "Rendezvous already in progress"); 2715 mtx_unlock(&vm->rendezvous_mtx); 2716 error = vm_handle_rendezvous(vcpu); 2717 if (error != 0) 2718 return (error); 2719 goto restart; 2720 } 2721 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2722 "rendezvous is still in progress")); 2723 2724 VMM_CTR0(vcpu, "Initiating rendezvous"); 2725 vm->rendezvous_req_cpus = dest; 2726 CPU_ZERO(&vm->rendezvous_done_cpus); 2727 vm->rendezvous_arg = arg; 2728 vm->rendezvous_func = func; 2729 mtx_unlock(&vm->rendezvous_mtx); 2730 2731 /* 2732 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2733 * vcpus so they handle the rendezvous as soon as possible. 2734 */ 2735 for (i = 0; i < vm->maxcpus; i++) { 2736 if (CPU_ISSET(i, &dest)) 2737 vcpu_notify_event(vm_vcpu(vm, i), false); 2738 } 2739 2740 return (vm_handle_rendezvous(vcpu)); 2741 } 2742 2743 struct vatpic * 2744 vm_atpic(struct vm *vm) 2745 { 2746 return (vm->vatpic); 2747 } 2748 2749 struct vatpit * 2750 vm_atpit(struct vm *vm) 2751 { 2752 return (vm->vatpit); 2753 } 2754 2755 struct vpmtmr * 2756 vm_pmtmr(struct vm *vm) 2757 { 2758 2759 return (vm->vpmtmr); 2760 } 2761 2762 struct vrtc * 2763 vm_rtc(struct vm *vm) 2764 { 2765 2766 return (vm->vrtc); 2767 } 2768 2769 enum vm_reg_name 2770 vm_segment_name(int seg) 2771 { 2772 static enum vm_reg_name seg_names[] = { 2773 VM_REG_GUEST_ES, 2774 VM_REG_GUEST_CS, 2775 VM_REG_GUEST_SS, 2776 VM_REG_GUEST_DS, 2777 VM_REG_GUEST_FS, 2778 VM_REG_GUEST_GS 2779 }; 2780 2781 KASSERT(seg >= 0 && seg < nitems(seg_names), 2782 ("%s: invalid segment encoding %d", __func__, seg)); 2783 return (seg_names[seg]); 2784 } 2785 2786 void 2787 vm_copy_teardown(struct vm_copyinfo *copyinfo, int num_copyinfo) 2788 { 2789 int idx; 2790 2791 for (idx = 0; idx < num_copyinfo; idx++) { 2792 if (copyinfo[idx].cookie != NULL) 2793 vm_gpa_release(copyinfo[idx].cookie); 2794 } 2795 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2796 } 2797 2798 int 2799 vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging, 2800 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2801 int num_copyinfo, int *fault) 2802 { 2803 int error, idx, nused; 2804 size_t n, off, remaining; 2805 void *hva, *cookie; 2806 uint64_t gpa; 2807 2808 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2809 2810 nused = 0; 2811 remaining = len; 2812 while (remaining > 0) { 2813 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo")); 2814 error = vm_gla2gpa(vcpu, paging, gla, prot, &gpa, fault); 2815 if (error || *fault) 2816 return (error); 2817 off = gpa & PAGE_MASK; 2818 n = min(remaining, PAGE_SIZE - off); 2819 copyinfo[nused].gpa = gpa; 2820 copyinfo[nused].len = n; 2821 remaining -= n; 2822 gla += n; 2823 nused++; 2824 } 2825 2826 for (idx = 0; idx < nused; idx++) { 2827 hva = vm_gpa_hold(vcpu, copyinfo[idx].gpa, 2828 copyinfo[idx].len, prot, &cookie); 2829 if (hva == NULL) 2830 break; 2831 copyinfo[idx].hva = hva; 2832 copyinfo[idx].cookie = cookie; 2833 } 2834 2835 if (idx != nused) { 2836 vm_copy_teardown(copyinfo, num_copyinfo); 2837 return (EFAULT); 2838 } else { 2839 *fault = 0; 2840 return (0); 2841 } 2842 } 2843 2844 void 2845 vm_copyin(struct vm_copyinfo *copyinfo, void *kaddr, size_t len) 2846 { 2847 char *dst; 2848 int idx; 2849 2850 dst = kaddr; 2851 idx = 0; 2852 while (len > 0) { 2853 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2854 len -= copyinfo[idx].len; 2855 dst += copyinfo[idx].len; 2856 idx++; 2857 } 2858 } 2859 2860 void 2861 vm_copyout(const void *kaddr, struct vm_copyinfo *copyinfo, size_t len) 2862 { 2863 const char *src; 2864 int idx; 2865 2866 src = kaddr; 2867 idx = 0; 2868 while (len > 0) { 2869 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2870 len -= copyinfo[idx].len; 2871 src += copyinfo[idx].len; 2872 idx++; 2873 } 2874 } 2875 2876 /* 2877 * Return the amount of in-use and wired memory for the VM. Since 2878 * these are global stats, only return the values with for vCPU 0 2879 */ 2880 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2881 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2882 2883 static void 2884 vm_get_rescnt(struct vcpu *vcpu, struct vmm_stat_type *stat) 2885 { 2886 2887 if (vcpu->vcpuid == 0) { 2888 vmm_stat_set(vcpu, VMM_MEM_RESIDENT, PAGE_SIZE * 2889 vmspace_resident_count(vcpu->vm->vmspace)); 2890 } 2891 } 2892 2893 static void 2894 vm_get_wiredcnt(struct vcpu *vcpu, struct vmm_stat_type *stat) 2895 { 2896 2897 if (vcpu->vcpuid == 0) { 2898 vmm_stat_set(vcpu, VMM_MEM_WIRED, PAGE_SIZE * 2899 pmap_wired_count(vmspace_pmap(vcpu->vm->vmspace))); 2900 } 2901 } 2902 2903 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2904 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2905 2906 #ifdef BHYVE_SNAPSHOT 2907 static int 2908 vm_snapshot_vcpus(struct vm *vm, struct vm_snapshot_meta *meta) 2909 { 2910 uint64_t tsc, now; 2911 int ret; 2912 struct vcpu *vcpu; 2913 uint16_t i, maxcpus; 2914 2915 now = rdtsc(); 2916 maxcpus = vm_get_maxcpus(vm); 2917 for (i = 0; i < maxcpus; i++) { 2918 vcpu = vm->vcpu[i]; 2919 if (vcpu == NULL) 2920 continue; 2921 2922 SNAPSHOT_VAR_OR_LEAVE(vcpu->x2apic_state, meta, ret, done); 2923 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitintinfo, meta, ret, done); 2924 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_vector, meta, ret, done); 2925 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode_valid, meta, ret, done); 2926 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode, meta, ret, done); 2927 SNAPSHOT_VAR_OR_LEAVE(vcpu->guest_xcr0, meta, ret, done); 2928 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitinfo, meta, ret, done); 2929 SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, ret, done); 2930 2931 /* 2932 * Save the absolute TSC value by adding now to tsc_offset. 2933 * 2934 * It will be turned turned back into an actual offset when the 2935 * TSC restore function is called 2936 */ 2937 tsc = now + vcpu->tsc_offset; 2938 SNAPSHOT_VAR_OR_LEAVE(tsc, meta, ret, done); 2939 if (meta->op == VM_SNAPSHOT_RESTORE) 2940 vcpu->tsc_offset = tsc; 2941 } 2942 2943 done: 2944 return (ret); 2945 } 2946 2947 static int 2948 vm_snapshot_vm(struct vm *vm, struct vm_snapshot_meta *meta) 2949 { 2950 int ret; 2951 2952 ret = vm_snapshot_vcpus(vm, meta); 2953 if (ret != 0) 2954 goto done; 2955 2956 SNAPSHOT_VAR_OR_LEAVE(vm->startup_cpus, meta, ret, done); 2957 done: 2958 return (ret); 2959 } 2960 2961 static int 2962 vm_snapshot_vcpu(struct vm *vm, struct vm_snapshot_meta *meta) 2963 { 2964 int error; 2965 struct vcpu *vcpu; 2966 uint16_t i, maxcpus; 2967 2968 error = 0; 2969 2970 maxcpus = vm_get_maxcpus(vm); 2971 for (i = 0; i < maxcpus; i++) { 2972 vcpu = vm->vcpu[i]; 2973 if (vcpu == NULL) 2974 continue; 2975 2976 error = vmmops_vcpu_snapshot(vcpu->cookie, meta); 2977 if (error != 0) { 2978 printf("%s: failed to snapshot vmcs/vmcb data for " 2979 "vCPU: %d; error: %d\n", __func__, i, error); 2980 goto done; 2981 } 2982 } 2983 2984 done: 2985 return (error); 2986 } 2987 2988 /* 2989 * Save kernel-side structures to user-space for snapshotting. 2990 */ 2991 int 2992 vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta) 2993 { 2994 int ret = 0; 2995 2996 switch (meta->dev_req) { 2997 case STRUCT_VMCX: 2998 ret = vm_snapshot_vcpu(vm, meta); 2999 break; 3000 case STRUCT_VM: 3001 ret = vm_snapshot_vm(vm, meta); 3002 break; 3003 case STRUCT_VIOAPIC: 3004 ret = vioapic_snapshot(vm_ioapic(vm), meta); 3005 break; 3006 case STRUCT_VLAPIC: 3007 ret = vlapic_snapshot(vm, meta); 3008 break; 3009 case STRUCT_VHPET: 3010 ret = vhpet_snapshot(vm_hpet(vm), meta); 3011 break; 3012 case STRUCT_VATPIC: 3013 ret = vatpic_snapshot(vm_atpic(vm), meta); 3014 break; 3015 case STRUCT_VATPIT: 3016 ret = vatpit_snapshot(vm_atpit(vm), meta); 3017 break; 3018 case STRUCT_VPMTMR: 3019 ret = vpmtmr_snapshot(vm_pmtmr(vm), meta); 3020 break; 3021 case STRUCT_VRTC: 3022 ret = vrtc_snapshot(vm_rtc(vm), meta); 3023 break; 3024 default: 3025 printf("%s: failed to find the requested type %#x\n", 3026 __func__, meta->dev_req); 3027 ret = (EINVAL); 3028 } 3029 return (ret); 3030 } 3031 3032 void 3033 vm_set_tsc_offset(struct vcpu *vcpu, uint64_t offset) 3034 { 3035 vcpu->tsc_offset = offset; 3036 } 3037 3038 int 3039 vm_restore_time(struct vm *vm) 3040 { 3041 int error; 3042 uint64_t now; 3043 struct vcpu *vcpu; 3044 uint16_t i, maxcpus; 3045 3046 now = rdtsc(); 3047 3048 error = vhpet_restore_time(vm_hpet(vm)); 3049 if (error) 3050 return (error); 3051 3052 maxcpus = vm_get_maxcpus(vm); 3053 for (i = 0; i < maxcpus; i++) { 3054 vcpu = vm->vcpu[i]; 3055 if (vcpu == NULL) 3056 continue; 3057 3058 error = vmmops_restore_tsc(vcpu->cookie, 3059 vcpu->tsc_offset - now); 3060 if (error) 3061 return (error); 3062 } 3063 3064 return (0); 3065 } 3066 #endif 3067