1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include "opt_bhyve_snapshot.h" 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/kernel.h> 39 #include <sys/module.h> 40 #include <sys/sysctl.h> 41 #include <sys/malloc.h> 42 #include <sys/pcpu.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/proc.h> 46 #include <sys/rwlock.h> 47 #include <sys/sched.h> 48 #include <sys/smp.h> 49 #include <sys/vnode.h> 50 51 #include <vm/vm.h> 52 #include <vm/vm_param.h> 53 #include <vm/vm_extern.h> 54 #include <vm/vm_object.h> 55 #include <vm/vm_page.h> 56 #include <vm/pmap.h> 57 #include <vm/vm_map.h> 58 #include <vm/vm_pager.h> 59 #include <vm/vm_kern.h> 60 #include <vm/vnode_pager.h> 61 #include <vm/swap_pager.h> 62 #include <vm/uma.h> 63 64 #include <machine/cpu.h> 65 #include <machine/pcb.h> 66 #include <machine/smp.h> 67 #include <machine/md_var.h> 68 #include <x86/psl.h> 69 #include <x86/apicreg.h> 70 #include <x86/ifunc.h> 71 72 #include <machine/vmm.h> 73 #include <machine/vmm_dev.h> 74 #include <machine/vmm_instruction_emul.h> 75 #include <machine/vmm_snapshot.h> 76 77 #include "vmm_ioport.h" 78 #include "vmm_ktr.h" 79 #include "vmm_host.h" 80 #include "vmm_mem.h" 81 #include "vmm_util.h" 82 #include "vatpic.h" 83 #include "vatpit.h" 84 #include "vhpet.h" 85 #include "vioapic.h" 86 #include "vlapic.h" 87 #include "vpmtmr.h" 88 #include "vrtc.h" 89 #include "vmm_stat.h" 90 #include "vmm_lapic.h" 91 92 #include "io/ppt.h" 93 #include "io/iommu.h" 94 95 struct vlapic; 96 97 /* 98 * Initialization: 99 * (a) allocated when vcpu is created 100 * (i) initialized when vcpu is created and when it is reinitialized 101 * (o) initialized the first time the vcpu is created 102 * (x) initialized before use 103 */ 104 struct vcpu { 105 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 106 enum vcpu_state state; /* (o) vcpu state */ 107 int hostcpu; /* (o) vcpu's host cpu */ 108 int reqidle; /* (i) request vcpu to idle */ 109 struct vlapic *vlapic; /* (i) APIC device model */ 110 enum x2apic_state x2apic_state; /* (i) APIC mode */ 111 uint64_t exitintinfo; /* (i) events pending at VM exit */ 112 int nmi_pending; /* (i) NMI pending */ 113 int extint_pending; /* (i) INTR pending */ 114 int exception_pending; /* (i) exception pending */ 115 int exc_vector; /* (x) exception collateral */ 116 int exc_errcode_valid; 117 uint32_t exc_errcode; 118 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 119 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 120 void *stats; /* (a,i) statistics */ 121 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 122 uint64_t nextrip; /* (x) next instruction to execute */ 123 uint64_t tsc_offset; /* (o) TSC offsetting */ 124 }; 125 126 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx)) 127 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 128 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 129 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 130 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 131 132 struct mem_seg { 133 size_t len; 134 bool sysmem; 135 struct vm_object *object; 136 }; 137 #define VM_MAX_MEMSEGS 3 138 139 struct mem_map { 140 vm_paddr_t gpa; 141 size_t len; 142 vm_ooffset_t segoff; 143 int segid; 144 int prot; 145 int flags; 146 }; 147 #define VM_MAX_MEMMAPS 8 148 149 /* 150 * Initialization: 151 * (o) initialized the first time the VM is created 152 * (i) initialized when VM is created and when it is reinitialized 153 * (x) initialized before use 154 */ 155 struct vm { 156 void *cookie; /* (i) cpu-specific data */ 157 void *iommu; /* (x) iommu-specific data */ 158 struct vhpet *vhpet; /* (i) virtual HPET */ 159 struct vioapic *vioapic; /* (i) virtual ioapic */ 160 struct vatpic *vatpic; /* (i) virtual atpic */ 161 struct vatpit *vatpit; /* (i) virtual atpit */ 162 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ 163 struct vrtc *vrtc; /* (o) virtual RTC */ 164 volatile cpuset_t active_cpus; /* (i) active vcpus */ 165 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */ 166 int suspend; /* (i) stop VM execution */ 167 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 168 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 169 cpuset_t rendezvous_req_cpus; /* (x) rendezvous requested */ 170 cpuset_t rendezvous_done_cpus; /* (x) rendezvous finished */ 171 void *rendezvous_arg; /* (x) rendezvous func/arg */ 172 vm_rendezvous_func_t rendezvous_func; 173 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 174 struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */ 175 struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */ 176 struct vmspace *vmspace; /* (o) guest's address space */ 177 char name[VM_MAX_NAMELEN]; /* (o) virtual machine name */ 178 struct vcpu vcpu[VM_MAXCPU]; /* (i) guest vcpus */ 179 /* The following describe the vm cpu topology */ 180 uint16_t sockets; /* (o) num of sockets */ 181 uint16_t cores; /* (o) num of cores/socket */ 182 uint16_t threads; /* (o) num of threads/core */ 183 uint16_t maxcpus; /* (o) max pluggable cpus */ 184 }; 185 186 static int vmm_initialized; 187 188 static void vmmops_panic(void); 189 190 static void 191 vmmops_panic(void) 192 { 193 panic("vmm_ops func called when !vmm_is_intel() && !vmm_is_svm()"); 194 } 195 196 #define DEFINE_VMMOPS_IFUNC(ret_type, opname, args) \ 197 DEFINE_IFUNC(static, ret_type, vmmops_##opname, args) \ 198 { \ 199 if (vmm_is_intel()) \ 200 return (vmm_ops_intel.opname); \ 201 else if (vmm_is_svm()) \ 202 return (vmm_ops_amd.opname); \ 203 else \ 204 return ((ret_type (*)args)vmmops_panic); \ 205 } 206 207 DEFINE_VMMOPS_IFUNC(int, modinit, (int ipinum)) 208 DEFINE_VMMOPS_IFUNC(int, modcleanup, (void)) 209 DEFINE_VMMOPS_IFUNC(void, modresume, (void)) 210 DEFINE_VMMOPS_IFUNC(void *, init, (struct vm *vm, struct pmap *pmap)) 211 DEFINE_VMMOPS_IFUNC(int, run, (void *vmi, int vcpu, register_t rip, 212 struct pmap *pmap, struct vm_eventinfo *info)) 213 DEFINE_VMMOPS_IFUNC(void, cleanup, (void *vmi)) 214 DEFINE_VMMOPS_IFUNC(int, getreg, (void *vmi, int vcpu, int num, 215 uint64_t *retval)) 216 DEFINE_VMMOPS_IFUNC(int, setreg, (void *vmi, int vcpu, int num, 217 uint64_t val)) 218 DEFINE_VMMOPS_IFUNC(int, getdesc, (void *vmi, int vcpu, int num, 219 struct seg_desc *desc)) 220 DEFINE_VMMOPS_IFUNC(int, setdesc, (void *vmi, int vcpu, int num, 221 struct seg_desc *desc)) 222 DEFINE_VMMOPS_IFUNC(int, getcap, (void *vmi, int vcpu, int num, int *retval)) 223 DEFINE_VMMOPS_IFUNC(int, setcap, (void *vmi, int vcpu, int num, int val)) 224 DEFINE_VMMOPS_IFUNC(struct vmspace *, vmspace_alloc, (vm_offset_t min, 225 vm_offset_t max)) 226 DEFINE_VMMOPS_IFUNC(void, vmspace_free, (struct vmspace *vmspace)) 227 DEFINE_VMMOPS_IFUNC(struct vlapic *, vlapic_init, (void *vmi, int vcpu)) 228 DEFINE_VMMOPS_IFUNC(void, vlapic_cleanup, (void *vmi, struct vlapic *vlapic)) 229 #ifdef BHYVE_SNAPSHOT 230 DEFINE_VMMOPS_IFUNC(int, snapshot, (void *vmi, struct vm_snapshot_meta 231 *meta)) 232 DEFINE_VMMOPS_IFUNC(int, vmcx_snapshot, (void *vmi, struct vm_snapshot_meta 233 *meta, int vcpu)) 234 DEFINE_VMMOPS_IFUNC(int, restore_tsc, (void *vmi, int vcpuid, uint64_t now)) 235 #endif 236 237 #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS) 238 #define fpu_stop_emulating() clts() 239 240 SDT_PROVIDER_DEFINE(vmm); 241 242 static MALLOC_DEFINE(M_VM, "vm", "vm"); 243 244 /* statistics */ 245 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 246 247 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 248 NULL); 249 250 /* 251 * Halt the guest if all vcpus are executing a HLT instruction with 252 * interrupts disabled. 253 */ 254 static int halt_detection_enabled = 1; 255 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 256 &halt_detection_enabled, 0, 257 "Halt VM if all vcpus execute HLT with interrupts disabled"); 258 259 static int vmm_ipinum; 260 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 261 "IPI vector used for vcpu notifications"); 262 263 static int trace_guest_exceptions; 264 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN, 265 &trace_guest_exceptions, 0, 266 "Trap into hypervisor on all guest exceptions and reflect them back"); 267 268 static void vm_free_memmap(struct vm *vm, int ident); 269 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm); 270 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr); 271 272 #ifdef KTR 273 static const char * 274 vcpu_state2str(enum vcpu_state state) 275 { 276 277 switch (state) { 278 case VCPU_IDLE: 279 return ("idle"); 280 case VCPU_FROZEN: 281 return ("frozen"); 282 case VCPU_RUNNING: 283 return ("running"); 284 case VCPU_SLEEPING: 285 return ("sleeping"); 286 default: 287 return ("unknown"); 288 } 289 } 290 #endif 291 292 static void 293 vcpu_cleanup(struct vm *vm, int i, bool destroy) 294 { 295 struct vcpu *vcpu = &vm->vcpu[i]; 296 297 vmmops_vlapic_cleanup(vm->cookie, vcpu->vlapic); 298 if (destroy) { 299 vmm_stat_free(vcpu->stats); 300 fpu_save_area_free(vcpu->guestfpu); 301 } 302 } 303 304 static void 305 vcpu_init(struct vm *vm, int vcpu_id, bool create) 306 { 307 struct vcpu *vcpu; 308 309 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus, 310 ("vcpu_init: invalid vcpu %d", vcpu_id)); 311 312 vcpu = &vm->vcpu[vcpu_id]; 313 314 if (create) { 315 KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already " 316 "initialized", vcpu_id)); 317 vcpu_lock_init(vcpu); 318 vcpu->state = VCPU_IDLE; 319 vcpu->hostcpu = NOCPU; 320 vcpu->guestfpu = fpu_save_area_alloc(); 321 vcpu->stats = vmm_stat_alloc(); 322 vcpu->tsc_offset = 0; 323 } 324 325 vcpu->vlapic = vmmops_vlapic_init(vm->cookie, vcpu_id); 326 vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED); 327 vcpu->reqidle = 0; 328 vcpu->exitintinfo = 0; 329 vcpu->nmi_pending = 0; 330 vcpu->extint_pending = 0; 331 vcpu->exception_pending = 0; 332 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 333 fpu_save_area_reset(vcpu->guestfpu); 334 vmm_stat_init(vcpu->stats); 335 } 336 337 int 338 vcpu_trace_exceptions(struct vm *vm, int vcpuid) 339 { 340 341 return (trace_guest_exceptions); 342 } 343 344 struct vm_exit * 345 vm_exitinfo(struct vm *vm, int cpuid) 346 { 347 struct vcpu *vcpu; 348 349 if (cpuid < 0 || cpuid >= vm->maxcpus) 350 panic("vm_exitinfo: invalid cpuid %d", cpuid); 351 352 vcpu = &vm->vcpu[cpuid]; 353 354 return (&vcpu->exitinfo); 355 } 356 357 static int 358 vmm_init(void) 359 { 360 int error; 361 362 if (!vmm_is_hw_supported()) 363 return (ENXIO); 364 365 vmm_host_state_init(); 366 367 vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) : 368 &IDTVEC(justreturn)); 369 if (vmm_ipinum < 0) 370 vmm_ipinum = IPI_AST; 371 372 error = vmm_mem_init(); 373 if (error) 374 return (error); 375 376 vmm_resume_p = vmmops_modresume; 377 378 return (vmmops_modinit(vmm_ipinum)); 379 } 380 381 static int 382 vmm_handler(module_t mod, int what, void *arg) 383 { 384 int error; 385 386 switch (what) { 387 case MOD_LOAD: 388 if (vmm_is_hw_supported()) { 389 vmmdev_init(); 390 error = vmm_init(); 391 if (error == 0) 392 vmm_initialized = 1; 393 } else { 394 error = ENXIO; 395 } 396 break; 397 case MOD_UNLOAD: 398 if (vmm_is_hw_supported()) { 399 error = vmmdev_cleanup(); 400 if (error == 0) { 401 vmm_resume_p = NULL; 402 iommu_cleanup(); 403 if (vmm_ipinum != IPI_AST) 404 lapic_ipi_free(vmm_ipinum); 405 error = vmmops_modcleanup(); 406 /* 407 * Something bad happened - prevent new 408 * VMs from being created 409 */ 410 if (error) 411 vmm_initialized = 0; 412 } 413 } else { 414 error = 0; 415 } 416 break; 417 default: 418 error = 0; 419 break; 420 } 421 return (error); 422 } 423 424 static moduledata_t vmm_kmod = { 425 "vmm", 426 vmm_handler, 427 NULL 428 }; 429 430 /* 431 * vmm initialization has the following dependencies: 432 * 433 * - VT-x initialization requires smp_rendezvous() and therefore must happen 434 * after SMP is fully functional (after SI_SUB_SMP). 435 */ 436 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 437 MODULE_VERSION(vmm, 1); 438 439 static void 440 vm_init(struct vm *vm, bool create) 441 { 442 int i; 443 444 vm->cookie = vmmops_init(vm, vmspace_pmap(vm->vmspace)); 445 vm->iommu = NULL; 446 vm->vioapic = vioapic_init(vm); 447 vm->vhpet = vhpet_init(vm); 448 vm->vatpic = vatpic_init(vm); 449 vm->vatpit = vatpit_init(vm); 450 vm->vpmtmr = vpmtmr_init(vm); 451 if (create) 452 vm->vrtc = vrtc_init(vm); 453 454 CPU_ZERO(&vm->active_cpus); 455 CPU_ZERO(&vm->debug_cpus); 456 457 vm->suspend = 0; 458 CPU_ZERO(&vm->suspended_cpus); 459 460 for (i = 0; i < vm->maxcpus; i++) 461 vcpu_init(vm, i, create); 462 } 463 464 /* 465 * The default CPU topology is a single thread per package. 466 */ 467 u_int cores_per_package = 1; 468 u_int threads_per_core = 1; 469 470 int 471 vm_create(const char *name, struct vm **retvm) 472 { 473 struct vm *vm; 474 struct vmspace *vmspace; 475 476 /* 477 * If vmm.ko could not be successfully initialized then don't attempt 478 * to create the virtual machine. 479 */ 480 if (!vmm_initialized) 481 return (ENXIO); 482 483 if (name == NULL || strlen(name) >= VM_MAX_NAMELEN) 484 return (EINVAL); 485 486 vmspace = vmmops_vmspace_alloc(0, VM_MAXUSER_ADDRESS_LA48); 487 if (vmspace == NULL) 488 return (ENOMEM); 489 490 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 491 strcpy(vm->name, name); 492 vm->vmspace = vmspace; 493 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 494 495 vm->sockets = 1; 496 vm->cores = cores_per_package; /* XXX backwards compatibility */ 497 vm->threads = threads_per_core; /* XXX backwards compatibility */ 498 vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */ 499 500 vm_init(vm, true); 501 502 *retvm = vm; 503 return (0); 504 } 505 506 void 507 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, 508 uint16_t *threads, uint16_t *maxcpus) 509 { 510 *sockets = vm->sockets; 511 *cores = vm->cores; 512 *threads = vm->threads; 513 *maxcpus = vm->maxcpus; 514 } 515 516 uint16_t 517 vm_get_maxcpus(struct vm *vm) 518 { 519 return (vm->maxcpus); 520 } 521 522 int 523 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, 524 uint16_t threads, uint16_t maxcpus) 525 { 526 if (maxcpus != 0) 527 return (EINVAL); /* XXX remove when supported */ 528 if ((sockets * cores * threads) > vm->maxcpus) 529 return (EINVAL); 530 /* XXX need to check sockets * cores * threads == vCPU, how? */ 531 vm->sockets = sockets; 532 vm->cores = cores; 533 vm->threads = threads; 534 vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */ 535 return(0); 536 } 537 538 static void 539 vm_cleanup(struct vm *vm, bool destroy) 540 { 541 struct mem_map *mm; 542 int i; 543 544 ppt_unassign_all(vm); 545 546 if (vm->iommu != NULL) 547 iommu_destroy_domain(vm->iommu); 548 549 if (destroy) 550 vrtc_cleanup(vm->vrtc); 551 else 552 vrtc_reset(vm->vrtc); 553 vpmtmr_cleanup(vm->vpmtmr); 554 vatpit_cleanup(vm->vatpit); 555 vhpet_cleanup(vm->vhpet); 556 vatpic_cleanup(vm->vatpic); 557 vioapic_cleanup(vm->vioapic); 558 559 for (i = 0; i < vm->maxcpus; i++) 560 vcpu_cleanup(vm, i, destroy); 561 562 vmmops_cleanup(vm->cookie); 563 564 /* 565 * System memory is removed from the guest address space only when 566 * the VM is destroyed. This is because the mapping remains the same 567 * across VM reset. 568 * 569 * Device memory can be relocated by the guest (e.g. using PCI BARs) 570 * so those mappings are removed on a VM reset. 571 */ 572 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 573 mm = &vm->mem_maps[i]; 574 if (destroy || !sysmem_mapping(vm, mm)) 575 vm_free_memmap(vm, i); 576 } 577 578 if (destroy) { 579 for (i = 0; i < VM_MAX_MEMSEGS; i++) 580 vm_free_memseg(vm, i); 581 582 vmmops_vmspace_free(vm->vmspace); 583 vm->vmspace = NULL; 584 } 585 } 586 587 void 588 vm_destroy(struct vm *vm) 589 { 590 vm_cleanup(vm, true); 591 free(vm, M_VM); 592 } 593 594 int 595 vm_reinit(struct vm *vm) 596 { 597 int error; 598 599 /* 600 * A virtual machine can be reset only if all vcpus are suspended. 601 */ 602 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 603 vm_cleanup(vm, false); 604 vm_init(vm, false); 605 error = 0; 606 } else { 607 error = EBUSY; 608 } 609 610 return (error); 611 } 612 613 const char * 614 vm_name(struct vm *vm) 615 { 616 return (vm->name); 617 } 618 619 int 620 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 621 { 622 vm_object_t obj; 623 624 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 625 return (ENOMEM); 626 else 627 return (0); 628 } 629 630 int 631 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 632 { 633 634 vmm_mmio_free(vm->vmspace, gpa, len); 635 return (0); 636 } 637 638 /* 639 * Return 'true' if 'gpa' is allocated in the guest address space. 640 * 641 * This function is called in the context of a running vcpu which acts as 642 * an implicit lock on 'vm->mem_maps[]'. 643 */ 644 bool 645 vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa) 646 { 647 struct mem_map *mm; 648 int i; 649 650 #ifdef INVARIANTS 651 int hostcpu, state; 652 state = vcpu_get_state(vm, vcpuid, &hostcpu); 653 KASSERT(state == VCPU_RUNNING && hostcpu == curcpu, 654 ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu)); 655 #endif 656 657 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 658 mm = &vm->mem_maps[i]; 659 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len) 660 return (true); /* 'gpa' is sysmem or devmem */ 661 } 662 663 if (ppt_is_mmio(vm, gpa)) 664 return (true); /* 'gpa' is pci passthru mmio */ 665 666 return (false); 667 } 668 669 int 670 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem) 671 { 672 struct mem_seg *seg; 673 vm_object_t obj; 674 675 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 676 return (EINVAL); 677 678 if (len == 0 || (len & PAGE_MASK)) 679 return (EINVAL); 680 681 seg = &vm->mem_segs[ident]; 682 if (seg->object != NULL) { 683 if (seg->len == len && seg->sysmem == sysmem) 684 return (EEXIST); 685 else 686 return (EINVAL); 687 } 688 689 obj = vm_object_allocate(OBJT_DEFAULT, len >> PAGE_SHIFT); 690 if (obj == NULL) 691 return (ENOMEM); 692 693 seg->len = len; 694 seg->object = obj; 695 seg->sysmem = sysmem; 696 return (0); 697 } 698 699 int 700 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, 701 vm_object_t *objptr) 702 { 703 struct mem_seg *seg; 704 705 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 706 return (EINVAL); 707 708 seg = &vm->mem_segs[ident]; 709 if (len) 710 *len = seg->len; 711 if (sysmem) 712 *sysmem = seg->sysmem; 713 if (objptr) 714 *objptr = seg->object; 715 return (0); 716 } 717 718 void 719 vm_free_memseg(struct vm *vm, int ident) 720 { 721 struct mem_seg *seg; 722 723 KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS, 724 ("%s: invalid memseg ident %d", __func__, ident)); 725 726 seg = &vm->mem_segs[ident]; 727 if (seg->object != NULL) { 728 vm_object_deallocate(seg->object); 729 bzero(seg, sizeof(struct mem_seg)); 730 } 731 } 732 733 int 734 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first, 735 size_t len, int prot, int flags) 736 { 737 struct mem_seg *seg; 738 struct mem_map *m, *map; 739 vm_ooffset_t last; 740 int i, error; 741 742 if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0) 743 return (EINVAL); 744 745 if (flags & ~VM_MEMMAP_F_WIRED) 746 return (EINVAL); 747 748 if (segid < 0 || segid >= VM_MAX_MEMSEGS) 749 return (EINVAL); 750 751 seg = &vm->mem_segs[segid]; 752 if (seg->object == NULL) 753 return (EINVAL); 754 755 last = first + len; 756 if (first < 0 || first >= last || last > seg->len) 757 return (EINVAL); 758 759 if ((gpa | first | last) & PAGE_MASK) 760 return (EINVAL); 761 762 map = NULL; 763 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 764 m = &vm->mem_maps[i]; 765 if (m->len == 0) { 766 map = m; 767 break; 768 } 769 } 770 771 if (map == NULL) 772 return (ENOSPC); 773 774 error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa, 775 len, 0, VMFS_NO_SPACE, prot, prot, 0); 776 if (error != KERN_SUCCESS) 777 return (EFAULT); 778 779 vm_object_reference(seg->object); 780 781 if (flags & VM_MEMMAP_F_WIRED) { 782 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len, 783 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 784 if (error != KERN_SUCCESS) { 785 vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len); 786 return (error == KERN_RESOURCE_SHORTAGE ? ENOMEM : 787 EFAULT); 788 } 789 } 790 791 map->gpa = gpa; 792 map->len = len; 793 map->segoff = first; 794 map->segid = segid; 795 map->prot = prot; 796 map->flags = flags; 797 return (0); 798 } 799 800 int 801 vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len) 802 { 803 struct mem_map *m; 804 int i; 805 806 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 807 m = &vm->mem_maps[i]; 808 if (m->gpa == gpa && m->len == len && 809 (m->flags & VM_MEMMAP_F_IOMMU) == 0) { 810 vm_free_memmap(vm, i); 811 return (0); 812 } 813 } 814 815 return (EINVAL); 816 } 817 818 int 819 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, 820 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 821 { 822 struct mem_map *mm, *mmnext; 823 int i; 824 825 mmnext = NULL; 826 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 827 mm = &vm->mem_maps[i]; 828 if (mm->len == 0 || mm->gpa < *gpa) 829 continue; 830 if (mmnext == NULL || mm->gpa < mmnext->gpa) 831 mmnext = mm; 832 } 833 834 if (mmnext != NULL) { 835 *gpa = mmnext->gpa; 836 if (segid) 837 *segid = mmnext->segid; 838 if (segoff) 839 *segoff = mmnext->segoff; 840 if (len) 841 *len = mmnext->len; 842 if (prot) 843 *prot = mmnext->prot; 844 if (flags) 845 *flags = mmnext->flags; 846 return (0); 847 } else { 848 return (ENOENT); 849 } 850 } 851 852 static void 853 vm_free_memmap(struct vm *vm, int ident) 854 { 855 struct mem_map *mm; 856 int error; 857 858 mm = &vm->mem_maps[ident]; 859 if (mm->len) { 860 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa, 861 mm->gpa + mm->len); 862 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d", 863 __func__, error)); 864 bzero(mm, sizeof(struct mem_map)); 865 } 866 } 867 868 static __inline bool 869 sysmem_mapping(struct vm *vm, struct mem_map *mm) 870 { 871 872 if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem) 873 return (true); 874 else 875 return (false); 876 } 877 878 vm_paddr_t 879 vmm_sysmem_maxaddr(struct vm *vm) 880 { 881 struct mem_map *mm; 882 vm_paddr_t maxaddr; 883 int i; 884 885 maxaddr = 0; 886 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 887 mm = &vm->mem_maps[i]; 888 if (sysmem_mapping(vm, mm)) { 889 if (maxaddr < mm->gpa + mm->len) 890 maxaddr = mm->gpa + mm->len; 891 } 892 } 893 return (maxaddr); 894 } 895 896 static void 897 vm_iommu_modify(struct vm *vm, bool map) 898 { 899 int i, sz; 900 vm_paddr_t gpa, hpa; 901 struct mem_map *mm; 902 void *vp, *cookie, *host_domain; 903 904 sz = PAGE_SIZE; 905 host_domain = iommu_host_domain(); 906 907 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 908 mm = &vm->mem_maps[i]; 909 if (!sysmem_mapping(vm, mm)) 910 continue; 911 912 if (map) { 913 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0, 914 ("iommu map found invalid memmap %#lx/%#lx/%#x", 915 mm->gpa, mm->len, mm->flags)); 916 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0) 917 continue; 918 mm->flags |= VM_MEMMAP_F_IOMMU; 919 } else { 920 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0) 921 continue; 922 mm->flags &= ~VM_MEMMAP_F_IOMMU; 923 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0, 924 ("iommu unmap found invalid memmap %#lx/%#lx/%#x", 925 mm->gpa, mm->len, mm->flags)); 926 } 927 928 gpa = mm->gpa; 929 while (gpa < mm->gpa + mm->len) { 930 vp = vm_gpa_hold(vm, -1, gpa, PAGE_SIZE, VM_PROT_WRITE, 931 &cookie); 932 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", 933 vm_name(vm), gpa)); 934 935 vm_gpa_release(cookie); 936 937 hpa = DMAP_TO_PHYS((uintptr_t)vp); 938 if (map) { 939 iommu_create_mapping(vm->iommu, gpa, hpa, sz); 940 iommu_remove_mapping(host_domain, hpa, sz); 941 } else { 942 iommu_remove_mapping(vm->iommu, gpa, sz); 943 iommu_create_mapping(host_domain, hpa, hpa, sz); 944 } 945 946 gpa += PAGE_SIZE; 947 } 948 } 949 950 /* 951 * Invalidate the cached translations associated with the domain 952 * from which pages were removed. 953 */ 954 if (map) 955 iommu_invalidate_tlb(host_domain); 956 else 957 iommu_invalidate_tlb(vm->iommu); 958 } 959 960 #define vm_iommu_unmap(vm) vm_iommu_modify((vm), false) 961 #define vm_iommu_map(vm) vm_iommu_modify((vm), true) 962 963 int 964 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 965 { 966 int error; 967 968 error = ppt_unassign_device(vm, bus, slot, func); 969 if (error) 970 return (error); 971 972 if (ppt_assigned_devices(vm) == 0) 973 vm_iommu_unmap(vm); 974 975 return (0); 976 } 977 978 int 979 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 980 { 981 int error; 982 vm_paddr_t maxaddr; 983 984 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */ 985 if (ppt_assigned_devices(vm) == 0) { 986 KASSERT(vm->iommu == NULL, 987 ("vm_assign_pptdev: iommu must be NULL")); 988 maxaddr = vmm_sysmem_maxaddr(vm); 989 vm->iommu = iommu_create_domain(maxaddr); 990 if (vm->iommu == NULL) 991 return (ENXIO); 992 vm_iommu_map(vm); 993 } 994 995 error = ppt_assign_device(vm, bus, slot, func); 996 return (error); 997 } 998 999 void * 1000 vm_gpa_hold(struct vm *vm, int vcpuid, vm_paddr_t gpa, size_t len, int reqprot, 1001 void **cookie) 1002 { 1003 int i, count, pageoff; 1004 struct mem_map *mm; 1005 vm_page_t m; 1006 #ifdef INVARIANTS 1007 /* 1008 * All vcpus are frozen by ioctls that modify the memory map 1009 * (e.g. VM_MMAP_MEMSEG). Therefore 'vm->memmap[]' stability is 1010 * guaranteed if at least one vcpu is in the VCPU_FROZEN state. 1011 */ 1012 int state; 1013 KASSERT(vcpuid >= -1 && vcpuid < vm->maxcpus, ("%s: invalid vcpuid %d", 1014 __func__, vcpuid)); 1015 for (i = 0; i < vm->maxcpus; i++) { 1016 if (vcpuid != -1 && vcpuid != i) 1017 continue; 1018 state = vcpu_get_state(vm, i, NULL); 1019 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d", 1020 __func__, state)); 1021 } 1022 #endif 1023 pageoff = gpa & PAGE_MASK; 1024 if (len > PAGE_SIZE - pageoff) 1025 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 1026 1027 count = 0; 1028 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1029 mm = &vm->mem_maps[i]; 1030 if (gpa >= mm->gpa && gpa < mm->gpa + mm->len) { 1031 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 1032 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 1033 break; 1034 } 1035 } 1036 1037 if (count == 1) { 1038 *cookie = m; 1039 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 1040 } else { 1041 *cookie = NULL; 1042 return (NULL); 1043 } 1044 } 1045 1046 void 1047 vm_gpa_release(void *cookie) 1048 { 1049 vm_page_t m = cookie; 1050 1051 vm_page_unwire(m, PQ_ACTIVE); 1052 } 1053 1054 int 1055 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval) 1056 { 1057 1058 if (vcpu < 0 || vcpu >= vm->maxcpus) 1059 return (EINVAL); 1060 1061 if (reg >= VM_REG_LAST) 1062 return (EINVAL); 1063 1064 return (vmmops_getreg(vm->cookie, vcpu, reg, retval)); 1065 } 1066 1067 int 1068 vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val) 1069 { 1070 struct vcpu *vcpu; 1071 int error; 1072 1073 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1074 return (EINVAL); 1075 1076 if (reg >= VM_REG_LAST) 1077 return (EINVAL); 1078 1079 error = vmmops_setreg(vm->cookie, vcpuid, reg, val); 1080 if (error || reg != VM_REG_GUEST_RIP) 1081 return (error); 1082 1083 /* Set 'nextrip' to match the value of %rip */ 1084 VCPU_CTR1(vm, vcpuid, "Setting nextrip to %#lx", val); 1085 vcpu = &vm->vcpu[vcpuid]; 1086 vcpu->nextrip = val; 1087 return (0); 1088 } 1089 1090 static bool 1091 is_descriptor_table(int reg) 1092 { 1093 1094 switch (reg) { 1095 case VM_REG_GUEST_IDTR: 1096 case VM_REG_GUEST_GDTR: 1097 return (true); 1098 default: 1099 return (false); 1100 } 1101 } 1102 1103 static bool 1104 is_segment_register(int reg) 1105 { 1106 1107 switch (reg) { 1108 case VM_REG_GUEST_ES: 1109 case VM_REG_GUEST_CS: 1110 case VM_REG_GUEST_SS: 1111 case VM_REG_GUEST_DS: 1112 case VM_REG_GUEST_FS: 1113 case VM_REG_GUEST_GS: 1114 case VM_REG_GUEST_TR: 1115 case VM_REG_GUEST_LDTR: 1116 return (true); 1117 default: 1118 return (false); 1119 } 1120 } 1121 1122 int 1123 vm_get_seg_desc(struct vm *vm, int vcpu, int reg, 1124 struct seg_desc *desc) 1125 { 1126 1127 if (vcpu < 0 || vcpu >= vm->maxcpus) 1128 return (EINVAL); 1129 1130 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1131 return (EINVAL); 1132 1133 return (vmmops_getdesc(vm->cookie, vcpu, reg, desc)); 1134 } 1135 1136 int 1137 vm_set_seg_desc(struct vm *vm, int vcpu, int reg, 1138 struct seg_desc *desc) 1139 { 1140 if (vcpu < 0 || vcpu >= vm->maxcpus) 1141 return (EINVAL); 1142 1143 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1144 return (EINVAL); 1145 1146 return (vmmops_setdesc(vm->cookie, vcpu, reg, desc)); 1147 } 1148 1149 static void 1150 restore_guest_fpustate(struct vcpu *vcpu) 1151 { 1152 1153 /* flush host state to the pcb */ 1154 fpuexit(curthread); 1155 1156 /* restore guest FPU state */ 1157 fpu_stop_emulating(); 1158 fpurestore(vcpu->guestfpu); 1159 1160 /* restore guest XCR0 if XSAVE is enabled in the host */ 1161 if (rcr4() & CR4_XSAVE) 1162 load_xcr(0, vcpu->guest_xcr0); 1163 1164 /* 1165 * The FPU is now "dirty" with the guest's state so turn on emulation 1166 * to trap any access to the FPU by the host. 1167 */ 1168 fpu_start_emulating(); 1169 } 1170 1171 static void 1172 save_guest_fpustate(struct vcpu *vcpu) 1173 { 1174 1175 if ((rcr0() & CR0_TS) == 0) 1176 panic("fpu emulation not enabled in host!"); 1177 1178 /* save guest XCR0 and restore host XCR0 */ 1179 if (rcr4() & CR4_XSAVE) { 1180 vcpu->guest_xcr0 = rxcr(0); 1181 load_xcr(0, vmm_get_host_xcr0()); 1182 } 1183 1184 /* save guest FPU state */ 1185 fpu_stop_emulating(); 1186 fpusave(vcpu->guestfpu); 1187 fpu_start_emulating(); 1188 } 1189 1190 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 1191 1192 static int 1193 vcpu_set_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate, 1194 bool from_idle) 1195 { 1196 struct vcpu *vcpu; 1197 int error; 1198 1199 vcpu = &vm->vcpu[vcpuid]; 1200 vcpu_assert_locked(vcpu); 1201 1202 /* 1203 * State transitions from the vmmdev_ioctl() must always begin from 1204 * the VCPU_IDLE state. This guarantees that there is only a single 1205 * ioctl() operating on a vcpu at any point. 1206 */ 1207 if (from_idle) { 1208 while (vcpu->state != VCPU_IDLE) { 1209 vcpu->reqidle = 1; 1210 vcpu_notify_event_locked(vcpu, false); 1211 VCPU_CTR1(vm, vcpuid, "vcpu state change from %s to " 1212 "idle requested", vcpu_state2str(vcpu->state)); 1213 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 1214 } 1215 } else { 1216 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 1217 "vcpu idle state")); 1218 } 1219 1220 if (vcpu->state == VCPU_RUNNING) { 1221 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 1222 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 1223 } else { 1224 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 1225 "vcpu that is not running", vcpu->hostcpu)); 1226 } 1227 1228 /* 1229 * The following state transitions are allowed: 1230 * IDLE -> FROZEN -> IDLE 1231 * FROZEN -> RUNNING -> FROZEN 1232 * FROZEN -> SLEEPING -> FROZEN 1233 */ 1234 switch (vcpu->state) { 1235 case VCPU_IDLE: 1236 case VCPU_RUNNING: 1237 case VCPU_SLEEPING: 1238 error = (newstate != VCPU_FROZEN); 1239 break; 1240 case VCPU_FROZEN: 1241 error = (newstate == VCPU_FROZEN); 1242 break; 1243 default: 1244 error = 1; 1245 break; 1246 } 1247 1248 if (error) 1249 return (EBUSY); 1250 1251 VCPU_CTR2(vm, vcpuid, "vcpu state changed from %s to %s", 1252 vcpu_state2str(vcpu->state), vcpu_state2str(newstate)); 1253 1254 vcpu->state = newstate; 1255 if (newstate == VCPU_RUNNING) 1256 vcpu->hostcpu = curcpu; 1257 else 1258 vcpu->hostcpu = NOCPU; 1259 1260 if (newstate == VCPU_IDLE) 1261 wakeup(&vcpu->state); 1262 1263 return (0); 1264 } 1265 1266 static void 1267 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1268 { 1269 int error; 1270 1271 if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0) 1272 panic("Error %d setting state to %d\n", error, newstate); 1273 } 1274 1275 static void 1276 vcpu_require_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1277 { 1278 int error; 1279 1280 if ((error = vcpu_set_state_locked(vm, vcpuid, newstate, false)) != 0) 1281 panic("Error %d setting state to %d", error, newstate); 1282 } 1283 1284 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt) \ 1285 do { \ 1286 if (vcpuid >= 0) \ 1287 VCPU_CTR0(vm, vcpuid, fmt); \ 1288 else \ 1289 VM_CTR0(vm, fmt); \ 1290 } while (0) 1291 1292 static int 1293 vm_handle_rendezvous(struct vm *vm, int vcpuid) 1294 { 1295 struct thread *td; 1296 int error; 1297 1298 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus), 1299 ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid)); 1300 1301 error = 0; 1302 td = curthread; 1303 mtx_lock(&vm->rendezvous_mtx); 1304 while (vm->rendezvous_func != NULL) { 1305 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1306 CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus); 1307 1308 if (vcpuid != -1 && 1309 CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1310 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1311 VCPU_CTR0(vm, vcpuid, "Calling rendezvous func"); 1312 (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg); 1313 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1314 } 1315 if (CPU_CMP(&vm->rendezvous_req_cpus, 1316 &vm->rendezvous_done_cpus) == 0) { 1317 VCPU_CTR0(vm, vcpuid, "Rendezvous completed"); 1318 vm->rendezvous_func = NULL; 1319 wakeup(&vm->rendezvous_func); 1320 break; 1321 } 1322 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion"); 1323 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1324 "vmrndv", hz); 1325 if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) { 1326 mtx_unlock(&vm->rendezvous_mtx); 1327 error = thread_check_susp(td, true); 1328 if (error != 0) 1329 return (error); 1330 mtx_lock(&vm->rendezvous_mtx); 1331 } 1332 } 1333 mtx_unlock(&vm->rendezvous_mtx); 1334 return (0); 1335 } 1336 1337 /* 1338 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1339 */ 1340 static int 1341 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu) 1342 { 1343 struct vcpu *vcpu; 1344 const char *wmesg; 1345 struct thread *td; 1346 int error, t, vcpu_halted, vm_halted; 1347 1348 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1349 1350 vcpu = &vm->vcpu[vcpuid]; 1351 vcpu_halted = 0; 1352 vm_halted = 0; 1353 error = 0; 1354 td = curthread; 1355 1356 vcpu_lock(vcpu); 1357 while (1) { 1358 /* 1359 * Do a final check for pending NMI or interrupts before 1360 * really putting this thread to sleep. Also check for 1361 * software events that would cause this vcpu to wakeup. 1362 * 1363 * These interrupts/events could have happened after the 1364 * vcpu returned from vmmops_run() and before it acquired the 1365 * vcpu lock above. 1366 */ 1367 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle) 1368 break; 1369 if (vm_nmi_pending(vm, vcpuid)) 1370 break; 1371 if (!intr_disabled) { 1372 if (vm_extint_pending(vm, vcpuid) || 1373 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1374 break; 1375 } 1376 } 1377 1378 /* Don't go to sleep if the vcpu thread needs to yield */ 1379 if (vcpu_should_yield(vm, vcpuid)) 1380 break; 1381 1382 if (vcpu_debugged(vm, vcpuid)) 1383 break; 1384 1385 /* 1386 * Some Linux guests implement "halt" by having all vcpus 1387 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1388 * track of the vcpus that have entered this state. When all 1389 * vcpus enter the halted state the virtual machine is halted. 1390 */ 1391 if (intr_disabled) { 1392 wmesg = "vmhalt"; 1393 VCPU_CTR0(vm, vcpuid, "Halted"); 1394 if (!vcpu_halted && halt_detection_enabled) { 1395 vcpu_halted = 1; 1396 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1397 } 1398 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1399 vm_halted = 1; 1400 break; 1401 } 1402 } else { 1403 wmesg = "vmidle"; 1404 } 1405 1406 t = ticks; 1407 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); 1408 /* 1409 * XXX msleep_spin() cannot be interrupted by signals so 1410 * wake up periodically to check pending signals. 1411 */ 1412 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1413 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); 1414 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t); 1415 if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) { 1416 vcpu_unlock(vcpu); 1417 error = thread_check_susp(td, false); 1418 if (error != 0) 1419 return (error); 1420 vcpu_lock(vcpu); 1421 } 1422 } 1423 1424 if (vcpu_halted) 1425 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1426 1427 vcpu_unlock(vcpu); 1428 1429 if (vm_halted) 1430 vm_suspend(vm, VM_SUSPEND_HALT); 1431 1432 return (0); 1433 } 1434 1435 static int 1436 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu) 1437 { 1438 int rv, ftype; 1439 struct vm_map *map; 1440 struct vcpu *vcpu; 1441 struct vm_exit *vme; 1442 1443 vcpu = &vm->vcpu[vcpuid]; 1444 vme = &vcpu->exitinfo; 1445 1446 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1447 __func__, vme->inst_length)); 1448 1449 ftype = vme->u.paging.fault_type; 1450 KASSERT(ftype == VM_PROT_READ || 1451 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1452 ("vm_handle_paging: invalid fault_type %d", ftype)); 1453 1454 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1455 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1456 vme->u.paging.gpa, ftype); 1457 if (rv == 0) { 1458 VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx", 1459 ftype == VM_PROT_READ ? "accessed" : "dirty", 1460 vme->u.paging.gpa); 1461 goto done; 1462 } 1463 } 1464 1465 map = &vm->vmspace->vm_map; 1466 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL); 1467 1468 VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, " 1469 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1470 1471 if (rv != KERN_SUCCESS) 1472 return (EFAULT); 1473 done: 1474 return (0); 1475 } 1476 1477 static int 1478 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu) 1479 { 1480 struct vie *vie; 1481 struct vcpu *vcpu; 1482 struct vm_exit *vme; 1483 uint64_t gla, gpa, cs_base; 1484 struct vm_guest_paging *paging; 1485 mem_region_read_t mread; 1486 mem_region_write_t mwrite; 1487 enum vm_cpu_mode cpu_mode; 1488 int cs_d, error, fault; 1489 1490 vcpu = &vm->vcpu[vcpuid]; 1491 vme = &vcpu->exitinfo; 1492 1493 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1494 __func__, vme->inst_length)); 1495 1496 gla = vme->u.inst_emul.gla; 1497 gpa = vme->u.inst_emul.gpa; 1498 cs_base = vme->u.inst_emul.cs_base; 1499 cs_d = vme->u.inst_emul.cs_d; 1500 vie = &vme->u.inst_emul.vie; 1501 paging = &vme->u.inst_emul.paging; 1502 cpu_mode = paging->cpu_mode; 1503 1504 VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa); 1505 1506 /* Fetch, decode and emulate the faulting instruction */ 1507 if (vie->num_valid == 0) { 1508 error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip + 1509 cs_base, VIE_INST_SIZE, vie, &fault); 1510 } else { 1511 /* 1512 * The instruction bytes have already been copied into 'vie' 1513 */ 1514 error = fault = 0; 1515 } 1516 if (error || fault) 1517 return (error); 1518 1519 if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) { 1520 VCPU_CTR1(vm, vcpuid, "Error decoding instruction at %#lx", 1521 vme->rip + cs_base); 1522 *retu = true; /* dump instruction bytes in userspace */ 1523 return (0); 1524 } 1525 1526 /* 1527 * Update 'nextrip' based on the length of the emulated instruction. 1528 */ 1529 vme->inst_length = vie->num_processed; 1530 vcpu->nextrip += vie->num_processed; 1531 VCPU_CTR1(vm, vcpuid, "nextrip updated to %#lx after instruction " 1532 "decoding", vcpu->nextrip); 1533 1534 /* return to userland unless this is an in-kernel emulated device */ 1535 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1536 mread = lapic_mmio_read; 1537 mwrite = lapic_mmio_write; 1538 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1539 mread = vioapic_mmio_read; 1540 mwrite = vioapic_mmio_write; 1541 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1542 mread = vhpet_mmio_read; 1543 mwrite = vhpet_mmio_write; 1544 } else { 1545 *retu = true; 1546 return (0); 1547 } 1548 1549 error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging, 1550 mread, mwrite, retu); 1551 1552 return (error); 1553 } 1554 1555 static int 1556 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu) 1557 { 1558 int error, i; 1559 struct vcpu *vcpu; 1560 struct thread *td; 1561 1562 error = 0; 1563 vcpu = &vm->vcpu[vcpuid]; 1564 td = curthread; 1565 1566 CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus); 1567 1568 /* 1569 * Wait until all 'active_cpus' have suspended themselves. 1570 * 1571 * Since a VM may be suspended at any time including when one or 1572 * more vcpus are doing a rendezvous we need to call the rendezvous 1573 * handler while we are waiting to prevent a deadlock. 1574 */ 1575 vcpu_lock(vcpu); 1576 while (error == 0) { 1577 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1578 VCPU_CTR0(vm, vcpuid, "All vcpus suspended"); 1579 break; 1580 } 1581 1582 if (vm->rendezvous_func == NULL) { 1583 VCPU_CTR0(vm, vcpuid, "Sleeping during suspend"); 1584 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); 1585 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1586 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); 1587 if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) { 1588 vcpu_unlock(vcpu); 1589 error = thread_check_susp(td, false); 1590 vcpu_lock(vcpu); 1591 } 1592 } else { 1593 VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend"); 1594 vcpu_unlock(vcpu); 1595 error = vm_handle_rendezvous(vm, vcpuid); 1596 vcpu_lock(vcpu); 1597 } 1598 } 1599 vcpu_unlock(vcpu); 1600 1601 /* 1602 * Wakeup the other sleeping vcpus and return to userspace. 1603 */ 1604 for (i = 0; i < vm->maxcpus; i++) { 1605 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1606 vcpu_notify_event(vm, i, false); 1607 } 1608 } 1609 1610 *retu = true; 1611 return (error); 1612 } 1613 1614 static int 1615 vm_handle_reqidle(struct vm *vm, int vcpuid, bool *retu) 1616 { 1617 struct vcpu *vcpu = &vm->vcpu[vcpuid]; 1618 1619 vcpu_lock(vcpu); 1620 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle)); 1621 vcpu->reqidle = 0; 1622 vcpu_unlock(vcpu); 1623 *retu = true; 1624 return (0); 1625 } 1626 1627 int 1628 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1629 { 1630 int i; 1631 1632 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1633 return (EINVAL); 1634 1635 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1636 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1637 vm->suspend, how); 1638 return (EALREADY); 1639 } 1640 1641 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1642 1643 /* 1644 * Notify all active vcpus that they are now suspended. 1645 */ 1646 for (i = 0; i < vm->maxcpus; i++) { 1647 if (CPU_ISSET(i, &vm->active_cpus)) 1648 vcpu_notify_event(vm, i, false); 1649 } 1650 1651 return (0); 1652 } 1653 1654 void 1655 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip) 1656 { 1657 struct vm_exit *vmexit; 1658 1659 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1660 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1661 1662 vmexit = vm_exitinfo(vm, vcpuid); 1663 vmexit->rip = rip; 1664 vmexit->inst_length = 0; 1665 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1666 vmexit->u.suspended.how = vm->suspend; 1667 } 1668 1669 void 1670 vm_exit_debug(struct vm *vm, int vcpuid, uint64_t rip) 1671 { 1672 struct vm_exit *vmexit; 1673 1674 vmexit = vm_exitinfo(vm, vcpuid); 1675 vmexit->rip = rip; 1676 vmexit->inst_length = 0; 1677 vmexit->exitcode = VM_EXITCODE_DEBUG; 1678 } 1679 1680 void 1681 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip) 1682 { 1683 struct vm_exit *vmexit; 1684 1685 KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress")); 1686 1687 vmexit = vm_exitinfo(vm, vcpuid); 1688 vmexit->rip = rip; 1689 vmexit->inst_length = 0; 1690 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1691 vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1); 1692 } 1693 1694 void 1695 vm_exit_reqidle(struct vm *vm, int vcpuid, uint64_t rip) 1696 { 1697 struct vm_exit *vmexit; 1698 1699 vmexit = vm_exitinfo(vm, vcpuid); 1700 vmexit->rip = rip; 1701 vmexit->inst_length = 0; 1702 vmexit->exitcode = VM_EXITCODE_REQIDLE; 1703 vmm_stat_incr(vm, vcpuid, VMEXIT_REQIDLE, 1); 1704 } 1705 1706 void 1707 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip) 1708 { 1709 struct vm_exit *vmexit; 1710 1711 vmexit = vm_exitinfo(vm, vcpuid); 1712 vmexit->rip = rip; 1713 vmexit->inst_length = 0; 1714 vmexit->exitcode = VM_EXITCODE_BOGUS; 1715 vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1); 1716 } 1717 1718 int 1719 vm_run(struct vm *vm, struct vm_run *vmrun) 1720 { 1721 struct vm_eventinfo evinfo; 1722 int error, vcpuid; 1723 struct vcpu *vcpu; 1724 struct pcb *pcb; 1725 uint64_t tscval; 1726 struct vm_exit *vme; 1727 bool retu, intr_disabled; 1728 pmap_t pmap; 1729 1730 vcpuid = vmrun->cpuid; 1731 1732 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1733 return (EINVAL); 1734 1735 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1736 return (EINVAL); 1737 1738 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1739 return (EINVAL); 1740 1741 pmap = vmspace_pmap(vm->vmspace); 1742 vcpu = &vm->vcpu[vcpuid]; 1743 vme = &vcpu->exitinfo; 1744 evinfo.rptr = &vm->rendezvous_func; 1745 evinfo.sptr = &vm->suspend; 1746 evinfo.iptr = &vcpu->reqidle; 1747 restart: 1748 critical_enter(); 1749 1750 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1751 ("vm_run: absurd pm_active")); 1752 1753 tscval = rdtsc(); 1754 1755 pcb = PCPU_GET(curpcb); 1756 set_pcb_flags(pcb, PCB_FULL_IRET); 1757 1758 restore_guest_fpustate(vcpu); 1759 1760 vcpu_require_state(vm, vcpuid, VCPU_RUNNING); 1761 error = vmmops_run(vm->cookie, vcpuid, vcpu->nextrip, pmap, &evinfo); 1762 vcpu_require_state(vm, vcpuid, VCPU_FROZEN); 1763 1764 save_guest_fpustate(vcpu); 1765 1766 vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1767 1768 critical_exit(); 1769 1770 if (error == 0) { 1771 retu = false; 1772 vcpu->nextrip = vme->rip + vme->inst_length; 1773 switch (vme->exitcode) { 1774 case VM_EXITCODE_REQIDLE: 1775 error = vm_handle_reqidle(vm, vcpuid, &retu); 1776 break; 1777 case VM_EXITCODE_SUSPENDED: 1778 error = vm_handle_suspend(vm, vcpuid, &retu); 1779 break; 1780 case VM_EXITCODE_IOAPIC_EOI: 1781 vioapic_process_eoi(vm, vcpuid, 1782 vme->u.ioapic_eoi.vector); 1783 break; 1784 case VM_EXITCODE_RENDEZVOUS: 1785 error = vm_handle_rendezvous(vm, vcpuid); 1786 break; 1787 case VM_EXITCODE_HLT: 1788 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1789 error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu); 1790 break; 1791 case VM_EXITCODE_PAGING: 1792 error = vm_handle_paging(vm, vcpuid, &retu); 1793 break; 1794 case VM_EXITCODE_INST_EMUL: 1795 error = vm_handle_inst_emul(vm, vcpuid, &retu); 1796 break; 1797 case VM_EXITCODE_INOUT: 1798 case VM_EXITCODE_INOUT_STR: 1799 error = vm_handle_inout(vm, vcpuid, vme, &retu); 1800 break; 1801 case VM_EXITCODE_MONITOR: 1802 case VM_EXITCODE_MWAIT: 1803 case VM_EXITCODE_VMINSN: 1804 vm_inject_ud(vm, vcpuid); 1805 break; 1806 default: 1807 retu = true; /* handled in userland */ 1808 break; 1809 } 1810 } 1811 1812 if (error == 0 && retu == false) 1813 goto restart; 1814 1815 VCPU_CTR2(vm, vcpuid, "retu %d/%d", error, vme->exitcode); 1816 1817 /* copy the exit information */ 1818 bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit)); 1819 return (error); 1820 } 1821 1822 int 1823 vm_restart_instruction(void *arg, int vcpuid) 1824 { 1825 struct vm *vm; 1826 struct vcpu *vcpu; 1827 enum vcpu_state state; 1828 uint64_t rip; 1829 int error; 1830 1831 vm = arg; 1832 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1833 return (EINVAL); 1834 1835 vcpu = &vm->vcpu[vcpuid]; 1836 state = vcpu_get_state(vm, vcpuid, NULL); 1837 if (state == VCPU_RUNNING) { 1838 /* 1839 * When a vcpu is "running" the next instruction is determined 1840 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'. 1841 * Thus setting 'inst_length' to zero will cause the current 1842 * instruction to be restarted. 1843 */ 1844 vcpu->exitinfo.inst_length = 0; 1845 VCPU_CTR1(vm, vcpuid, "restarting instruction at %#lx by " 1846 "setting inst_length to zero", vcpu->exitinfo.rip); 1847 } else if (state == VCPU_FROZEN) { 1848 /* 1849 * When a vcpu is "frozen" it is outside the critical section 1850 * around vmmops_run() and 'nextrip' points to the next 1851 * instruction. Thus instruction restart is achieved by setting 1852 * 'nextrip' to the vcpu's %rip. 1853 */ 1854 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip); 1855 KASSERT(!error, ("%s: error %d getting rip", __func__, error)); 1856 VCPU_CTR2(vm, vcpuid, "restarting instruction by updating " 1857 "nextrip from %#lx to %#lx", vcpu->nextrip, rip); 1858 vcpu->nextrip = rip; 1859 } else { 1860 panic("%s: invalid state %d", __func__, state); 1861 } 1862 return (0); 1863 } 1864 1865 int 1866 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info) 1867 { 1868 struct vcpu *vcpu; 1869 int type, vector; 1870 1871 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1872 return (EINVAL); 1873 1874 vcpu = &vm->vcpu[vcpuid]; 1875 1876 if (info & VM_INTINFO_VALID) { 1877 type = info & VM_INTINFO_TYPE; 1878 vector = info & 0xff; 1879 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 1880 return (EINVAL); 1881 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 1882 return (EINVAL); 1883 if (info & VM_INTINFO_RSVD) 1884 return (EINVAL); 1885 } else { 1886 info = 0; 1887 } 1888 VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info); 1889 vcpu->exitintinfo = info; 1890 return (0); 1891 } 1892 1893 enum exc_class { 1894 EXC_BENIGN, 1895 EXC_CONTRIBUTORY, 1896 EXC_PAGEFAULT 1897 }; 1898 1899 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 1900 1901 static enum exc_class 1902 exception_class(uint64_t info) 1903 { 1904 int type, vector; 1905 1906 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 1907 type = info & VM_INTINFO_TYPE; 1908 vector = info & 0xff; 1909 1910 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 1911 switch (type) { 1912 case VM_INTINFO_HWINTR: 1913 case VM_INTINFO_SWINTR: 1914 case VM_INTINFO_NMI: 1915 return (EXC_BENIGN); 1916 default: 1917 /* 1918 * Hardware exception. 1919 * 1920 * SVM and VT-x use identical type values to represent NMI, 1921 * hardware interrupt and software interrupt. 1922 * 1923 * SVM uses type '3' for all exceptions. VT-x uses type '3' 1924 * for exceptions except #BP and #OF. #BP and #OF use a type 1925 * value of '5' or '6'. Therefore we don't check for explicit 1926 * values of 'type' to classify 'intinfo' into a hardware 1927 * exception. 1928 */ 1929 break; 1930 } 1931 1932 switch (vector) { 1933 case IDT_PF: 1934 case IDT_VE: 1935 return (EXC_PAGEFAULT); 1936 case IDT_DE: 1937 case IDT_TS: 1938 case IDT_NP: 1939 case IDT_SS: 1940 case IDT_GP: 1941 return (EXC_CONTRIBUTORY); 1942 default: 1943 return (EXC_BENIGN); 1944 } 1945 } 1946 1947 static int 1948 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2, 1949 uint64_t *retinfo) 1950 { 1951 enum exc_class exc1, exc2; 1952 int type1, vector1; 1953 1954 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 1955 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 1956 1957 /* 1958 * If an exception occurs while attempting to call the double-fault 1959 * handler the processor enters shutdown mode (aka triple fault). 1960 */ 1961 type1 = info1 & VM_INTINFO_TYPE; 1962 vector1 = info1 & 0xff; 1963 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 1964 VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)", 1965 info1, info2); 1966 vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT); 1967 *retinfo = 0; 1968 return (0); 1969 } 1970 1971 /* 1972 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 1973 */ 1974 exc1 = exception_class(info1); 1975 exc2 = exception_class(info2); 1976 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 1977 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 1978 /* Convert nested fault into a double fault. */ 1979 *retinfo = IDT_DF; 1980 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1981 *retinfo |= VM_INTINFO_DEL_ERRCODE; 1982 } else { 1983 /* Handle exceptions serially */ 1984 *retinfo = info2; 1985 } 1986 return (1); 1987 } 1988 1989 static uint64_t 1990 vcpu_exception_intinfo(struct vcpu *vcpu) 1991 { 1992 uint64_t info = 0; 1993 1994 if (vcpu->exception_pending) { 1995 info = vcpu->exc_vector & 0xff; 1996 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1997 if (vcpu->exc_errcode_valid) { 1998 info |= VM_INTINFO_DEL_ERRCODE; 1999 info |= (uint64_t)vcpu->exc_errcode << 32; 2000 } 2001 } 2002 return (info); 2003 } 2004 2005 int 2006 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo) 2007 { 2008 struct vcpu *vcpu; 2009 uint64_t info1, info2; 2010 int valid; 2011 2012 KASSERT(vcpuid >= 0 && 2013 vcpuid < vm->maxcpus, ("invalid vcpu %d", vcpuid)); 2014 2015 vcpu = &vm->vcpu[vcpuid]; 2016 2017 info1 = vcpu->exitintinfo; 2018 vcpu->exitintinfo = 0; 2019 2020 info2 = 0; 2021 if (vcpu->exception_pending) { 2022 info2 = vcpu_exception_intinfo(vcpu); 2023 vcpu->exception_pending = 0; 2024 VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx", 2025 vcpu->exc_vector, info2); 2026 } 2027 2028 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 2029 valid = nested_fault(vm, vcpuid, info1, info2, retinfo); 2030 } else if (info1 & VM_INTINFO_VALID) { 2031 *retinfo = info1; 2032 valid = 1; 2033 } else if (info2 & VM_INTINFO_VALID) { 2034 *retinfo = info2; 2035 valid = 1; 2036 } else { 2037 valid = 0; 2038 } 2039 2040 if (valid) { 2041 VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), " 2042 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 2043 } 2044 2045 return (valid); 2046 } 2047 2048 int 2049 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2) 2050 { 2051 struct vcpu *vcpu; 2052 2053 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2054 return (EINVAL); 2055 2056 vcpu = &vm->vcpu[vcpuid]; 2057 *info1 = vcpu->exitintinfo; 2058 *info2 = vcpu_exception_intinfo(vcpu); 2059 return (0); 2060 } 2061 2062 int 2063 vm_inject_exception(struct vm *vm, int vcpuid, int vector, int errcode_valid, 2064 uint32_t errcode, int restart_instruction) 2065 { 2066 struct vcpu *vcpu; 2067 uint64_t regval; 2068 int error; 2069 2070 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2071 return (EINVAL); 2072 2073 if (vector < 0 || vector >= 32) 2074 return (EINVAL); 2075 2076 /* 2077 * A double fault exception should never be injected directly into 2078 * the guest. It is a derived exception that results from specific 2079 * combinations of nested faults. 2080 */ 2081 if (vector == IDT_DF) 2082 return (EINVAL); 2083 2084 vcpu = &vm->vcpu[vcpuid]; 2085 2086 if (vcpu->exception_pending) { 2087 VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to " 2088 "pending exception %d", vector, vcpu->exc_vector); 2089 return (EBUSY); 2090 } 2091 2092 if (errcode_valid) { 2093 /* 2094 * Exceptions don't deliver an error code in real mode. 2095 */ 2096 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_CR0, ®val); 2097 KASSERT(!error, ("%s: error %d getting CR0", __func__, error)); 2098 if (!(regval & CR0_PE)) 2099 errcode_valid = 0; 2100 } 2101 2102 /* 2103 * From section 26.6.1 "Interruptibility State" in Intel SDM: 2104 * 2105 * Event blocking by "STI" or "MOV SS" is cleared after guest executes 2106 * one instruction or incurs an exception. 2107 */ 2108 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0); 2109 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", 2110 __func__, error)); 2111 2112 if (restart_instruction) 2113 vm_restart_instruction(vm, vcpuid); 2114 2115 vcpu->exception_pending = 1; 2116 vcpu->exc_vector = vector; 2117 vcpu->exc_errcode = errcode; 2118 vcpu->exc_errcode_valid = errcode_valid; 2119 VCPU_CTR1(vm, vcpuid, "Exception %d pending", vector); 2120 return (0); 2121 } 2122 2123 void 2124 vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid, 2125 int errcode) 2126 { 2127 struct vm *vm; 2128 int error, restart_instruction; 2129 2130 vm = vmarg; 2131 restart_instruction = 1; 2132 2133 error = vm_inject_exception(vm, vcpuid, vector, errcode_valid, 2134 errcode, restart_instruction); 2135 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 2136 } 2137 2138 void 2139 vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2) 2140 { 2141 struct vm *vm; 2142 int error; 2143 2144 vm = vmarg; 2145 VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx", 2146 error_code, cr2); 2147 2148 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2); 2149 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 2150 2151 vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code); 2152 } 2153 2154 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 2155 2156 int 2157 vm_inject_nmi(struct vm *vm, int vcpuid) 2158 { 2159 struct vcpu *vcpu; 2160 2161 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2162 return (EINVAL); 2163 2164 vcpu = &vm->vcpu[vcpuid]; 2165 2166 vcpu->nmi_pending = 1; 2167 vcpu_notify_event(vm, vcpuid, false); 2168 return (0); 2169 } 2170 2171 int 2172 vm_nmi_pending(struct vm *vm, int vcpuid) 2173 { 2174 struct vcpu *vcpu; 2175 2176 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2177 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 2178 2179 vcpu = &vm->vcpu[vcpuid]; 2180 2181 return (vcpu->nmi_pending); 2182 } 2183 2184 void 2185 vm_nmi_clear(struct vm *vm, int vcpuid) 2186 { 2187 struct vcpu *vcpu; 2188 2189 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2190 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 2191 2192 vcpu = &vm->vcpu[vcpuid]; 2193 2194 if (vcpu->nmi_pending == 0) 2195 panic("vm_nmi_clear: inconsistent nmi_pending state"); 2196 2197 vcpu->nmi_pending = 0; 2198 vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1); 2199 } 2200 2201 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 2202 2203 int 2204 vm_inject_extint(struct vm *vm, int vcpuid) 2205 { 2206 struct vcpu *vcpu; 2207 2208 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2209 return (EINVAL); 2210 2211 vcpu = &vm->vcpu[vcpuid]; 2212 2213 vcpu->extint_pending = 1; 2214 vcpu_notify_event(vm, vcpuid, false); 2215 return (0); 2216 } 2217 2218 int 2219 vm_extint_pending(struct vm *vm, int vcpuid) 2220 { 2221 struct vcpu *vcpu; 2222 2223 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2224 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 2225 2226 vcpu = &vm->vcpu[vcpuid]; 2227 2228 return (vcpu->extint_pending); 2229 } 2230 2231 void 2232 vm_extint_clear(struct vm *vm, int vcpuid) 2233 { 2234 struct vcpu *vcpu; 2235 2236 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2237 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 2238 2239 vcpu = &vm->vcpu[vcpuid]; 2240 2241 if (vcpu->extint_pending == 0) 2242 panic("vm_extint_clear: inconsistent extint_pending state"); 2243 2244 vcpu->extint_pending = 0; 2245 vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1); 2246 } 2247 2248 int 2249 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval) 2250 { 2251 if (vcpu < 0 || vcpu >= vm->maxcpus) 2252 return (EINVAL); 2253 2254 if (type < 0 || type >= VM_CAP_MAX) 2255 return (EINVAL); 2256 2257 return (vmmops_getcap(vm->cookie, vcpu, type, retval)); 2258 } 2259 2260 int 2261 vm_set_capability(struct vm *vm, int vcpu, int type, int val) 2262 { 2263 if (vcpu < 0 || vcpu >= vm->maxcpus) 2264 return (EINVAL); 2265 2266 if (type < 0 || type >= VM_CAP_MAX) 2267 return (EINVAL); 2268 2269 return (vmmops_setcap(vm->cookie, vcpu, type, val)); 2270 } 2271 2272 struct vlapic * 2273 vm_lapic(struct vm *vm, int cpu) 2274 { 2275 return (vm->vcpu[cpu].vlapic); 2276 } 2277 2278 struct vioapic * 2279 vm_ioapic(struct vm *vm) 2280 { 2281 2282 return (vm->vioapic); 2283 } 2284 2285 struct vhpet * 2286 vm_hpet(struct vm *vm) 2287 { 2288 2289 return (vm->vhpet); 2290 } 2291 2292 bool 2293 vmm_is_pptdev(int bus, int slot, int func) 2294 { 2295 int b, f, i, n, s; 2296 char *val, *cp, *cp2; 2297 bool found; 2298 2299 /* 2300 * XXX 2301 * The length of an environment variable is limited to 128 bytes which 2302 * puts an upper limit on the number of passthru devices that may be 2303 * specified using a single environment variable. 2304 * 2305 * Work around this by scanning multiple environment variable 2306 * names instead of a single one - yuck! 2307 */ 2308 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 2309 2310 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 2311 found = false; 2312 for (i = 0; names[i] != NULL && !found; i++) { 2313 cp = val = kern_getenv(names[i]); 2314 while (cp != NULL && *cp != '\0') { 2315 if ((cp2 = strchr(cp, ' ')) != NULL) 2316 *cp2 = '\0'; 2317 2318 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 2319 if (n == 3 && bus == b && slot == s && func == f) { 2320 found = true; 2321 break; 2322 } 2323 2324 if (cp2 != NULL) 2325 *cp2++ = ' '; 2326 2327 cp = cp2; 2328 } 2329 freeenv(val); 2330 } 2331 return (found); 2332 } 2333 2334 void * 2335 vm_iommu_domain(struct vm *vm) 2336 { 2337 2338 return (vm->iommu); 2339 } 2340 2341 int 2342 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate, 2343 bool from_idle) 2344 { 2345 int error; 2346 struct vcpu *vcpu; 2347 2348 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2349 panic("vm_set_run_state: invalid vcpuid %d", vcpuid); 2350 2351 vcpu = &vm->vcpu[vcpuid]; 2352 2353 vcpu_lock(vcpu); 2354 error = vcpu_set_state_locked(vm, vcpuid, newstate, from_idle); 2355 vcpu_unlock(vcpu); 2356 2357 return (error); 2358 } 2359 2360 enum vcpu_state 2361 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu) 2362 { 2363 struct vcpu *vcpu; 2364 enum vcpu_state state; 2365 2366 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2367 panic("vm_get_run_state: invalid vcpuid %d", vcpuid); 2368 2369 vcpu = &vm->vcpu[vcpuid]; 2370 2371 vcpu_lock(vcpu); 2372 state = vcpu->state; 2373 if (hostcpu != NULL) 2374 *hostcpu = vcpu->hostcpu; 2375 vcpu_unlock(vcpu); 2376 2377 return (state); 2378 } 2379 2380 int 2381 vm_activate_cpu(struct vm *vm, int vcpuid) 2382 { 2383 2384 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2385 return (EINVAL); 2386 2387 if (CPU_ISSET(vcpuid, &vm->active_cpus)) 2388 return (EBUSY); 2389 2390 VCPU_CTR0(vm, vcpuid, "activated"); 2391 CPU_SET_ATOMIC(vcpuid, &vm->active_cpus); 2392 return (0); 2393 } 2394 2395 int 2396 vm_suspend_cpu(struct vm *vm, int vcpuid) 2397 { 2398 int i; 2399 2400 if (vcpuid < -1 || vcpuid >= vm->maxcpus) 2401 return (EINVAL); 2402 2403 if (vcpuid == -1) { 2404 vm->debug_cpus = vm->active_cpus; 2405 for (i = 0; i < vm->maxcpus; i++) { 2406 if (CPU_ISSET(i, &vm->active_cpus)) 2407 vcpu_notify_event(vm, i, false); 2408 } 2409 } else { 2410 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 2411 return (EINVAL); 2412 2413 CPU_SET_ATOMIC(vcpuid, &vm->debug_cpus); 2414 vcpu_notify_event(vm, vcpuid, false); 2415 } 2416 return (0); 2417 } 2418 2419 int 2420 vm_resume_cpu(struct vm *vm, int vcpuid) 2421 { 2422 2423 if (vcpuid < -1 || vcpuid >= vm->maxcpus) 2424 return (EINVAL); 2425 2426 if (vcpuid == -1) { 2427 CPU_ZERO(&vm->debug_cpus); 2428 } else { 2429 if (!CPU_ISSET(vcpuid, &vm->debug_cpus)) 2430 return (EINVAL); 2431 2432 CPU_CLR_ATOMIC(vcpuid, &vm->debug_cpus); 2433 } 2434 return (0); 2435 } 2436 2437 int 2438 vcpu_debugged(struct vm *vm, int vcpuid) 2439 { 2440 2441 return (CPU_ISSET(vcpuid, &vm->debug_cpus)); 2442 } 2443 2444 cpuset_t 2445 vm_active_cpus(struct vm *vm) 2446 { 2447 2448 return (vm->active_cpus); 2449 } 2450 2451 cpuset_t 2452 vm_debug_cpus(struct vm *vm) 2453 { 2454 2455 return (vm->debug_cpus); 2456 } 2457 2458 cpuset_t 2459 vm_suspended_cpus(struct vm *vm) 2460 { 2461 2462 return (vm->suspended_cpus); 2463 } 2464 2465 void * 2466 vcpu_stats(struct vm *vm, int vcpuid) 2467 { 2468 2469 return (vm->vcpu[vcpuid].stats); 2470 } 2471 2472 int 2473 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state) 2474 { 2475 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2476 return (EINVAL); 2477 2478 *state = vm->vcpu[vcpuid].x2apic_state; 2479 2480 return (0); 2481 } 2482 2483 int 2484 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state) 2485 { 2486 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2487 return (EINVAL); 2488 2489 if (state >= X2APIC_STATE_LAST) 2490 return (EINVAL); 2491 2492 vm->vcpu[vcpuid].x2apic_state = state; 2493 2494 vlapic_set_x2apic_state(vm, vcpuid, state); 2495 2496 return (0); 2497 } 2498 2499 /* 2500 * This function is called to ensure that a vcpu "sees" a pending event 2501 * as soon as possible: 2502 * - If the vcpu thread is sleeping then it is woken up. 2503 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2504 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2505 */ 2506 static void 2507 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr) 2508 { 2509 int hostcpu; 2510 2511 hostcpu = vcpu->hostcpu; 2512 if (vcpu->state == VCPU_RUNNING) { 2513 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2514 if (hostcpu != curcpu) { 2515 if (lapic_intr) { 2516 vlapic_post_intr(vcpu->vlapic, hostcpu, 2517 vmm_ipinum); 2518 } else { 2519 ipi_cpu(hostcpu, vmm_ipinum); 2520 } 2521 } else { 2522 /* 2523 * If the 'vcpu' is running on 'curcpu' then it must 2524 * be sending a notification to itself (e.g. SELF_IPI). 2525 * The pending event will be picked up when the vcpu 2526 * transitions back to guest context. 2527 */ 2528 } 2529 } else { 2530 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2531 "with hostcpu %d", vcpu->state, hostcpu)); 2532 if (vcpu->state == VCPU_SLEEPING) 2533 wakeup_one(vcpu); 2534 } 2535 } 2536 2537 void 2538 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr) 2539 { 2540 struct vcpu *vcpu = &vm->vcpu[vcpuid]; 2541 2542 vcpu_lock(vcpu); 2543 vcpu_notify_event_locked(vcpu, lapic_intr); 2544 vcpu_unlock(vcpu); 2545 } 2546 2547 struct vmspace * 2548 vm_get_vmspace(struct vm *vm) 2549 { 2550 2551 return (vm->vmspace); 2552 } 2553 2554 int 2555 vm_apicid2vcpuid(struct vm *vm, int apicid) 2556 { 2557 /* 2558 * XXX apic id is assumed to be numerically identical to vcpu id 2559 */ 2560 return (apicid); 2561 } 2562 2563 int 2564 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest, 2565 vm_rendezvous_func_t func, void *arg) 2566 { 2567 int error, i; 2568 2569 /* 2570 * Enforce that this function is called without any locks 2571 */ 2572 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2573 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus), 2574 ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid)); 2575 2576 restart: 2577 mtx_lock(&vm->rendezvous_mtx); 2578 if (vm->rendezvous_func != NULL) { 2579 /* 2580 * If a rendezvous is already in progress then we need to 2581 * call the rendezvous handler in case this 'vcpuid' is one 2582 * of the targets of the rendezvous. 2583 */ 2584 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress"); 2585 mtx_unlock(&vm->rendezvous_mtx); 2586 error = vm_handle_rendezvous(vm, vcpuid); 2587 if (error != 0) 2588 return (error); 2589 goto restart; 2590 } 2591 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2592 "rendezvous is still in progress")); 2593 2594 RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous"); 2595 vm->rendezvous_req_cpus = dest; 2596 CPU_ZERO(&vm->rendezvous_done_cpus); 2597 vm->rendezvous_arg = arg; 2598 vm->rendezvous_func = func; 2599 mtx_unlock(&vm->rendezvous_mtx); 2600 2601 /* 2602 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2603 * vcpus so they handle the rendezvous as soon as possible. 2604 */ 2605 for (i = 0; i < vm->maxcpus; i++) { 2606 if (CPU_ISSET(i, &dest)) 2607 vcpu_notify_event(vm, i, false); 2608 } 2609 2610 return (vm_handle_rendezvous(vm, vcpuid)); 2611 } 2612 2613 struct vatpic * 2614 vm_atpic(struct vm *vm) 2615 { 2616 return (vm->vatpic); 2617 } 2618 2619 struct vatpit * 2620 vm_atpit(struct vm *vm) 2621 { 2622 return (vm->vatpit); 2623 } 2624 2625 struct vpmtmr * 2626 vm_pmtmr(struct vm *vm) 2627 { 2628 2629 return (vm->vpmtmr); 2630 } 2631 2632 struct vrtc * 2633 vm_rtc(struct vm *vm) 2634 { 2635 2636 return (vm->vrtc); 2637 } 2638 2639 enum vm_reg_name 2640 vm_segment_name(int seg) 2641 { 2642 static enum vm_reg_name seg_names[] = { 2643 VM_REG_GUEST_ES, 2644 VM_REG_GUEST_CS, 2645 VM_REG_GUEST_SS, 2646 VM_REG_GUEST_DS, 2647 VM_REG_GUEST_FS, 2648 VM_REG_GUEST_GS 2649 }; 2650 2651 KASSERT(seg >= 0 && seg < nitems(seg_names), 2652 ("%s: invalid segment encoding %d", __func__, seg)); 2653 return (seg_names[seg]); 2654 } 2655 2656 void 2657 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, 2658 int num_copyinfo) 2659 { 2660 int idx; 2661 2662 for (idx = 0; idx < num_copyinfo; idx++) { 2663 if (copyinfo[idx].cookie != NULL) 2664 vm_gpa_release(copyinfo[idx].cookie); 2665 } 2666 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2667 } 2668 2669 int 2670 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging, 2671 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2672 int num_copyinfo, int *fault) 2673 { 2674 int error, idx, nused; 2675 size_t n, off, remaining; 2676 void *hva, *cookie; 2677 uint64_t gpa; 2678 2679 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2680 2681 nused = 0; 2682 remaining = len; 2683 while (remaining > 0) { 2684 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo")); 2685 error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa, fault); 2686 if (error || *fault) 2687 return (error); 2688 off = gpa & PAGE_MASK; 2689 n = min(remaining, PAGE_SIZE - off); 2690 copyinfo[nused].gpa = gpa; 2691 copyinfo[nused].len = n; 2692 remaining -= n; 2693 gla += n; 2694 nused++; 2695 } 2696 2697 for (idx = 0; idx < nused; idx++) { 2698 hva = vm_gpa_hold(vm, vcpuid, copyinfo[idx].gpa, 2699 copyinfo[idx].len, prot, &cookie); 2700 if (hva == NULL) 2701 break; 2702 copyinfo[idx].hva = hva; 2703 copyinfo[idx].cookie = cookie; 2704 } 2705 2706 if (idx != nused) { 2707 vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo); 2708 return (EFAULT); 2709 } else { 2710 *fault = 0; 2711 return (0); 2712 } 2713 } 2714 2715 void 2716 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr, 2717 size_t len) 2718 { 2719 char *dst; 2720 int idx; 2721 2722 dst = kaddr; 2723 idx = 0; 2724 while (len > 0) { 2725 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2726 len -= copyinfo[idx].len; 2727 dst += copyinfo[idx].len; 2728 idx++; 2729 } 2730 } 2731 2732 void 2733 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr, 2734 struct vm_copyinfo *copyinfo, size_t len) 2735 { 2736 const char *src; 2737 int idx; 2738 2739 src = kaddr; 2740 idx = 0; 2741 while (len > 0) { 2742 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2743 len -= copyinfo[idx].len; 2744 src += copyinfo[idx].len; 2745 idx++; 2746 } 2747 } 2748 2749 /* 2750 * Return the amount of in-use and wired memory for the VM. Since 2751 * these are global stats, only return the values with for vCPU 0 2752 */ 2753 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2754 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2755 2756 static void 2757 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2758 { 2759 2760 if (vcpu == 0) { 2761 vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT, 2762 PAGE_SIZE * vmspace_resident_count(vm->vmspace)); 2763 } 2764 } 2765 2766 static void 2767 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2768 { 2769 2770 if (vcpu == 0) { 2771 vmm_stat_set(vm, vcpu, VMM_MEM_WIRED, 2772 PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace))); 2773 } 2774 } 2775 2776 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2777 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2778 2779 #ifdef BHYVE_SNAPSHOT 2780 static int 2781 vm_snapshot_vcpus(struct vm *vm, struct vm_snapshot_meta *meta) 2782 { 2783 int ret; 2784 int i; 2785 struct vcpu *vcpu; 2786 2787 for (i = 0; i < VM_MAXCPU; i++) { 2788 vcpu = &vm->vcpu[i]; 2789 2790 SNAPSHOT_VAR_OR_LEAVE(vcpu->x2apic_state, meta, ret, done); 2791 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitintinfo, meta, ret, done); 2792 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_vector, meta, ret, done); 2793 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode_valid, meta, ret, done); 2794 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode, meta, ret, done); 2795 SNAPSHOT_VAR_OR_LEAVE(vcpu->guest_xcr0, meta, ret, done); 2796 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitinfo, meta, ret, done); 2797 SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, ret, done); 2798 /* XXX we're cheating here, since the value of tsc_offset as 2799 * saved here is actually the value of the guest's TSC value. 2800 * 2801 * It will be turned turned back into an actual offset when the 2802 * TSC restore function is called 2803 */ 2804 SNAPSHOT_VAR_OR_LEAVE(vcpu->tsc_offset, meta, ret, done); 2805 } 2806 2807 done: 2808 return (ret); 2809 } 2810 2811 static int 2812 vm_snapshot_vm(struct vm *vm, struct vm_snapshot_meta *meta) 2813 { 2814 int ret; 2815 int i; 2816 uint64_t now; 2817 2818 ret = 0; 2819 now = rdtsc(); 2820 2821 if (meta->op == VM_SNAPSHOT_SAVE) { 2822 /* XXX make tsc_offset take the value TSC proper as seen by the 2823 * guest 2824 */ 2825 for (i = 0; i < VM_MAXCPU; i++) 2826 vm->vcpu[i].tsc_offset += now; 2827 } 2828 2829 ret = vm_snapshot_vcpus(vm, meta); 2830 if (ret != 0) { 2831 printf("%s: failed to copy vm data to user buffer", __func__); 2832 goto done; 2833 } 2834 2835 if (meta->op == VM_SNAPSHOT_SAVE) { 2836 /* XXX turn tsc_offset back into an offset; actual value is only 2837 * required for restore; using it otherwise would be wrong 2838 */ 2839 for (i = 0; i < VM_MAXCPU; i++) 2840 vm->vcpu[i].tsc_offset -= now; 2841 } 2842 2843 done: 2844 return (ret); 2845 } 2846 2847 static int 2848 vm_snapshot_vmcx(struct vm *vm, struct vm_snapshot_meta *meta) 2849 { 2850 int i, error; 2851 2852 error = 0; 2853 2854 for (i = 0; i < VM_MAXCPU; i++) { 2855 error = vmmops_vmcx_snapshot(vm->cookie, meta, i); 2856 if (error != 0) { 2857 printf("%s: failed to snapshot vmcs/vmcb data for " 2858 "vCPU: %d; error: %d\n", __func__, i, error); 2859 goto done; 2860 } 2861 } 2862 2863 done: 2864 return (error); 2865 } 2866 2867 /* 2868 * Save kernel-side structures to user-space for snapshotting. 2869 */ 2870 int 2871 vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta) 2872 { 2873 int ret = 0; 2874 2875 switch (meta->dev_req) { 2876 case STRUCT_VMX: 2877 ret = vmmops_snapshot(vm->cookie, meta); 2878 break; 2879 case STRUCT_VMCX: 2880 ret = vm_snapshot_vmcx(vm, meta); 2881 break; 2882 case STRUCT_VM: 2883 ret = vm_snapshot_vm(vm, meta); 2884 break; 2885 case STRUCT_VIOAPIC: 2886 ret = vioapic_snapshot(vm_ioapic(vm), meta); 2887 break; 2888 case STRUCT_VLAPIC: 2889 ret = vlapic_snapshot(vm, meta); 2890 break; 2891 case STRUCT_VHPET: 2892 ret = vhpet_snapshot(vm_hpet(vm), meta); 2893 break; 2894 case STRUCT_VATPIC: 2895 ret = vatpic_snapshot(vm_atpic(vm), meta); 2896 break; 2897 case STRUCT_VATPIT: 2898 ret = vatpit_snapshot(vm_atpit(vm), meta); 2899 break; 2900 case STRUCT_VPMTMR: 2901 ret = vpmtmr_snapshot(vm_pmtmr(vm), meta); 2902 break; 2903 case STRUCT_VRTC: 2904 ret = vrtc_snapshot(vm_rtc(vm), meta); 2905 break; 2906 default: 2907 printf("%s: failed to find the requested type %#x\n", 2908 __func__, meta->dev_req); 2909 ret = (EINVAL); 2910 } 2911 return (ret); 2912 } 2913 2914 int 2915 vm_set_tsc_offset(struct vm *vm, int vcpuid, uint64_t offset) 2916 { 2917 struct vcpu *vcpu; 2918 2919 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2920 return (EINVAL); 2921 2922 vcpu = &vm->vcpu[vcpuid]; 2923 vcpu->tsc_offset = offset; 2924 2925 return (0); 2926 } 2927 2928 int 2929 vm_restore_time(struct vm *vm) 2930 { 2931 int error, i; 2932 uint64_t now; 2933 struct vcpu *vcpu; 2934 2935 now = rdtsc(); 2936 2937 error = vhpet_restore_time(vm_hpet(vm)); 2938 if (error) 2939 return (error); 2940 2941 for (i = 0; i < nitems(vm->vcpu); i++) { 2942 vcpu = &vm->vcpu[i]; 2943 2944 error = vmmops_restore_tsc(vm->cookie, i, vcpu->tsc_offset - 2945 now); 2946 if (error) 2947 return (error); 2948 } 2949 2950 return (0); 2951 } 2952 #endif 2953