1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include "opt_bhyve_snapshot.h" 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/kernel.h> 39 #include <sys/module.h> 40 #include <sys/sysctl.h> 41 #include <sys/malloc.h> 42 #include <sys/pcpu.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/proc.h> 46 #include <sys/rwlock.h> 47 #include <sys/sched.h> 48 #include <sys/smp.h> 49 #include <sys/sx.h> 50 #include <sys/vnode.h> 51 52 #include <vm/vm.h> 53 #include <vm/vm_param.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_object.h> 56 #include <vm/vm_page.h> 57 #include <vm/pmap.h> 58 #include <vm/vm_map.h> 59 #include <vm/vm_pager.h> 60 #include <vm/vm_kern.h> 61 #include <vm/vnode_pager.h> 62 #include <vm/swap_pager.h> 63 #include <vm/uma.h> 64 65 #include <machine/cpu.h> 66 #include <machine/pcb.h> 67 #include <machine/smp.h> 68 #include <machine/md_var.h> 69 #include <x86/psl.h> 70 #include <x86/apicreg.h> 71 #include <x86/ifunc.h> 72 73 #include <machine/vmm.h> 74 #include <machine/vmm_dev.h> 75 #include <machine/vmm_instruction_emul.h> 76 #include <machine/vmm_snapshot.h> 77 78 #include "vmm_ioport.h" 79 #include "vmm_ktr.h" 80 #include "vmm_host.h" 81 #include "vmm_mem.h" 82 #include "vmm_util.h" 83 #include "vatpic.h" 84 #include "vatpit.h" 85 #include "vhpet.h" 86 #include "vioapic.h" 87 #include "vlapic.h" 88 #include "vpmtmr.h" 89 #include "vrtc.h" 90 #include "vmm_stat.h" 91 #include "vmm_lapic.h" 92 93 #include "io/ppt.h" 94 #include "io/iommu.h" 95 96 struct vlapic; 97 98 /* 99 * Initialization: 100 * (a) allocated when vcpu is created 101 * (i) initialized when vcpu is created and when it is reinitialized 102 * (o) initialized the first time the vcpu is created 103 * (x) initialized before use 104 */ 105 struct vcpu { 106 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 107 enum vcpu_state state; /* (o) vcpu state */ 108 int vcpuid; /* (o) */ 109 int hostcpu; /* (o) vcpu's host cpu */ 110 int reqidle; /* (i) request vcpu to idle */ 111 struct vm *vm; /* (o) */ 112 void *cookie; /* (i) cpu-specific data */ 113 struct vlapic *vlapic; /* (i) APIC device model */ 114 enum x2apic_state x2apic_state; /* (i) APIC mode */ 115 uint64_t exitintinfo; /* (i) events pending at VM exit */ 116 int nmi_pending; /* (i) NMI pending */ 117 int extint_pending; /* (i) INTR pending */ 118 int exception_pending; /* (i) exception pending */ 119 int exc_vector; /* (x) exception collateral */ 120 int exc_errcode_valid; 121 uint32_t exc_errcode; 122 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 123 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 124 void *stats; /* (a,i) statistics */ 125 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 126 uint64_t nextrip; /* (x) next instruction to execute */ 127 uint64_t tsc_offset; /* (o) TSC offsetting */ 128 }; 129 130 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 131 #define vcpu_lock_destroy(v) mtx_destroy(&((v)->mtx)) 132 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 133 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 134 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 135 136 struct mem_seg { 137 size_t len; 138 bool sysmem; 139 struct vm_object *object; 140 }; 141 #define VM_MAX_MEMSEGS 4 142 143 struct mem_map { 144 vm_paddr_t gpa; 145 size_t len; 146 vm_ooffset_t segoff; 147 int segid; 148 int prot; 149 int flags; 150 }; 151 #define VM_MAX_MEMMAPS 8 152 153 /* 154 * Initialization: 155 * (o) initialized the first time the VM is created 156 * (i) initialized when VM is created and when it is reinitialized 157 * (x) initialized before use 158 * 159 * Locking: 160 * [m] mem_segs_lock 161 * [r] rendezvous_mtx 162 * [v] reads require one frozen vcpu, writes require freezing all vcpus 163 */ 164 struct vm { 165 void *cookie; /* (i) cpu-specific data */ 166 void *iommu; /* (x) iommu-specific data */ 167 struct vhpet *vhpet; /* (i) virtual HPET */ 168 struct vioapic *vioapic; /* (i) virtual ioapic */ 169 struct vatpic *vatpic; /* (i) virtual atpic */ 170 struct vatpit *vatpit; /* (i) virtual atpit */ 171 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ 172 struct vrtc *vrtc; /* (o) virtual RTC */ 173 volatile cpuset_t active_cpus; /* (i) active vcpus */ 174 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */ 175 cpuset_t startup_cpus; /* (i) [r] waiting for startup */ 176 int suspend; /* (i) stop VM execution */ 177 bool dying; /* (o) is dying */ 178 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 179 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 180 cpuset_t rendezvous_req_cpus; /* (x) [r] rendezvous requested */ 181 cpuset_t rendezvous_done_cpus; /* (x) [r] rendezvous finished */ 182 void *rendezvous_arg; /* (x) [r] rendezvous func/arg */ 183 vm_rendezvous_func_t rendezvous_func; 184 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 185 struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) [m+v] guest address space */ 186 struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) [m+v] guest memory regions */ 187 struct vmspace *vmspace; /* (o) guest's address space */ 188 char name[VM_MAX_NAMELEN+1]; /* (o) virtual machine name */ 189 struct vcpu **vcpu; /* (o) guest vcpus */ 190 /* The following describe the vm cpu topology */ 191 uint16_t sockets; /* (o) num of sockets */ 192 uint16_t cores; /* (o) num of cores/socket */ 193 uint16_t threads; /* (o) num of threads/core */ 194 uint16_t maxcpus; /* (o) max pluggable cpus */ 195 struct sx mem_segs_lock; /* (o) */ 196 struct sx vcpus_init_lock; /* (o) */ 197 }; 198 199 #define VMM_CTR0(vcpu, format) \ 200 VCPU_CTR0((vcpu)->vm, (vcpu)->vcpuid, format) 201 202 #define VMM_CTR1(vcpu, format, p1) \ 203 VCPU_CTR1((vcpu)->vm, (vcpu)->vcpuid, format, p1) 204 205 #define VMM_CTR2(vcpu, format, p1, p2) \ 206 VCPU_CTR2((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2) 207 208 #define VMM_CTR3(vcpu, format, p1, p2, p3) \ 209 VCPU_CTR3((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3) 210 211 #define VMM_CTR4(vcpu, format, p1, p2, p3, p4) \ 212 VCPU_CTR4((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3, p4) 213 214 static int vmm_initialized; 215 216 static void vmmops_panic(void); 217 218 static void 219 vmmops_panic(void) 220 { 221 panic("vmm_ops func called when !vmm_is_intel() && !vmm_is_svm()"); 222 } 223 224 #define DEFINE_VMMOPS_IFUNC(ret_type, opname, args) \ 225 DEFINE_IFUNC(static, ret_type, vmmops_##opname, args) \ 226 { \ 227 if (vmm_is_intel()) \ 228 return (vmm_ops_intel.opname); \ 229 else if (vmm_is_svm()) \ 230 return (vmm_ops_amd.opname); \ 231 else \ 232 return ((ret_type (*)args)vmmops_panic); \ 233 } 234 235 DEFINE_VMMOPS_IFUNC(int, modinit, (int ipinum)) 236 DEFINE_VMMOPS_IFUNC(int, modcleanup, (void)) 237 DEFINE_VMMOPS_IFUNC(void, modresume, (void)) 238 DEFINE_VMMOPS_IFUNC(void *, init, (struct vm *vm, struct pmap *pmap)) 239 DEFINE_VMMOPS_IFUNC(int, run, (void *vcpui, register_t rip, struct pmap *pmap, 240 struct vm_eventinfo *info)) 241 DEFINE_VMMOPS_IFUNC(void, cleanup, (void *vmi)) 242 DEFINE_VMMOPS_IFUNC(void *, vcpu_init, (void *vmi, struct vcpu *vcpu, 243 int vcpu_id)) 244 DEFINE_VMMOPS_IFUNC(void, vcpu_cleanup, (void *vcpui)) 245 DEFINE_VMMOPS_IFUNC(int, getreg, (void *vcpui, int num, uint64_t *retval)) 246 DEFINE_VMMOPS_IFUNC(int, setreg, (void *vcpui, int num, uint64_t val)) 247 DEFINE_VMMOPS_IFUNC(int, getdesc, (void *vcpui, int num, struct seg_desc *desc)) 248 DEFINE_VMMOPS_IFUNC(int, setdesc, (void *vcpui, int num, struct seg_desc *desc)) 249 DEFINE_VMMOPS_IFUNC(int, getcap, (void *vcpui, int num, int *retval)) 250 DEFINE_VMMOPS_IFUNC(int, setcap, (void *vcpui, int num, int val)) 251 DEFINE_VMMOPS_IFUNC(struct vmspace *, vmspace_alloc, (vm_offset_t min, 252 vm_offset_t max)) 253 DEFINE_VMMOPS_IFUNC(void, vmspace_free, (struct vmspace *vmspace)) 254 DEFINE_VMMOPS_IFUNC(struct vlapic *, vlapic_init, (void *vcpui)) 255 DEFINE_VMMOPS_IFUNC(void, vlapic_cleanup, (struct vlapic *vlapic)) 256 #ifdef BHYVE_SNAPSHOT 257 DEFINE_VMMOPS_IFUNC(int, snapshot, (void *vmi, struct vm_snapshot_meta *meta)) 258 DEFINE_VMMOPS_IFUNC(int, vcpu_snapshot, (void *vcpui, 259 struct vm_snapshot_meta *meta)) 260 DEFINE_VMMOPS_IFUNC(int, restore_tsc, (void *vcpui, uint64_t now)) 261 #endif 262 263 #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS) 264 #define fpu_stop_emulating() clts() 265 266 SDT_PROVIDER_DEFINE(vmm); 267 268 static MALLOC_DEFINE(M_VM, "vm", "vm"); 269 270 /* statistics */ 271 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 272 273 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 274 NULL); 275 276 /* 277 * Halt the guest if all vcpus are executing a HLT instruction with 278 * interrupts disabled. 279 */ 280 static int halt_detection_enabled = 1; 281 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 282 &halt_detection_enabled, 0, 283 "Halt VM if all vcpus execute HLT with interrupts disabled"); 284 285 static int vmm_ipinum; 286 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 287 "IPI vector used for vcpu notifications"); 288 289 static int trace_guest_exceptions; 290 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN, 291 &trace_guest_exceptions, 0, 292 "Trap into hypervisor on all guest exceptions and reflect them back"); 293 294 static int trap_wbinvd; 295 SYSCTL_INT(_hw_vmm, OID_AUTO, trap_wbinvd, CTLFLAG_RDTUN, &trap_wbinvd, 0, 296 "WBINVD triggers a VM-exit"); 297 298 u_int vm_maxcpu; 299 SYSCTL_UINT(_hw_vmm, OID_AUTO, maxcpu, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 300 &vm_maxcpu, 0, "Maximum number of vCPUs"); 301 302 static void vm_free_memmap(struct vm *vm, int ident); 303 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm); 304 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr); 305 306 /* 307 * Upper limit on vm_maxcpu. Limited by use of uint16_t types for CPU 308 * counts as well as range of vpid values for VT-x and by the capacity 309 * of cpuset_t masks. The call to new_unrhdr() in vpid_init() in 310 * vmx.c requires 'vm_maxcpu + 1 <= 0xffff', hence the '- 1' below. 311 */ 312 #define VM_MAXCPU MIN(0xffff - 1, CPU_SETSIZE) 313 314 #ifdef KTR 315 static const char * 316 vcpu_state2str(enum vcpu_state state) 317 { 318 319 switch (state) { 320 case VCPU_IDLE: 321 return ("idle"); 322 case VCPU_FROZEN: 323 return ("frozen"); 324 case VCPU_RUNNING: 325 return ("running"); 326 case VCPU_SLEEPING: 327 return ("sleeping"); 328 default: 329 return ("unknown"); 330 } 331 } 332 #endif 333 334 static void 335 vcpu_cleanup(struct vcpu *vcpu, bool destroy) 336 { 337 vmmops_vlapic_cleanup(vcpu->vlapic); 338 vmmops_vcpu_cleanup(vcpu->cookie); 339 vcpu->cookie = NULL; 340 if (destroy) { 341 vmm_stat_free(vcpu->stats); 342 fpu_save_area_free(vcpu->guestfpu); 343 vcpu_lock_destroy(vcpu); 344 } 345 } 346 347 static struct vcpu * 348 vcpu_alloc(struct vm *vm, int vcpu_id) 349 { 350 struct vcpu *vcpu; 351 352 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus, 353 ("vcpu_init: invalid vcpu %d", vcpu_id)); 354 355 vcpu = malloc(sizeof(*vcpu), M_VM, M_WAITOK | M_ZERO); 356 vcpu_lock_init(vcpu); 357 vcpu->state = VCPU_IDLE; 358 vcpu->hostcpu = NOCPU; 359 vcpu->vcpuid = vcpu_id; 360 vcpu->vm = vm; 361 vcpu->guestfpu = fpu_save_area_alloc(); 362 vcpu->stats = vmm_stat_alloc(); 363 vcpu->tsc_offset = 0; 364 return (vcpu); 365 } 366 367 static void 368 vcpu_init(struct vcpu *vcpu) 369 { 370 vcpu->cookie = vmmops_vcpu_init(vcpu->vm->cookie, vcpu, vcpu->vcpuid); 371 vcpu->vlapic = vmmops_vlapic_init(vcpu->cookie); 372 vm_set_x2apic_state(vcpu, X2APIC_DISABLED); 373 vcpu->reqidle = 0; 374 vcpu->exitintinfo = 0; 375 vcpu->nmi_pending = 0; 376 vcpu->extint_pending = 0; 377 vcpu->exception_pending = 0; 378 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 379 fpu_save_area_reset(vcpu->guestfpu); 380 vmm_stat_init(vcpu->stats); 381 } 382 383 int 384 vcpu_trace_exceptions(struct vcpu *vcpu) 385 { 386 387 return (trace_guest_exceptions); 388 } 389 390 int 391 vcpu_trap_wbinvd(struct vcpu *vcpu) 392 { 393 return (trap_wbinvd); 394 } 395 396 struct vm_exit * 397 vm_exitinfo(struct vcpu *vcpu) 398 { 399 return (&vcpu->exitinfo); 400 } 401 402 static int 403 vmm_init(void) 404 { 405 int error; 406 407 if (!vmm_is_hw_supported()) 408 return (ENXIO); 409 410 vm_maxcpu = mp_ncpus; 411 TUNABLE_INT_FETCH("hw.vmm.maxcpu", &vm_maxcpu); 412 413 if (vm_maxcpu > VM_MAXCPU) { 414 printf("vmm: vm_maxcpu clamped to %u\n", VM_MAXCPU); 415 vm_maxcpu = VM_MAXCPU; 416 } 417 if (vm_maxcpu == 0) 418 vm_maxcpu = 1; 419 420 vmm_host_state_init(); 421 422 vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) : 423 &IDTVEC(justreturn)); 424 if (vmm_ipinum < 0) 425 vmm_ipinum = IPI_AST; 426 427 error = vmm_mem_init(); 428 if (error) 429 return (error); 430 431 vmm_resume_p = vmmops_modresume; 432 433 return (vmmops_modinit(vmm_ipinum)); 434 } 435 436 static int 437 vmm_handler(module_t mod, int what, void *arg) 438 { 439 int error; 440 441 switch (what) { 442 case MOD_LOAD: 443 if (vmm_is_hw_supported()) { 444 vmmdev_init(); 445 error = vmm_init(); 446 if (error == 0) 447 vmm_initialized = 1; 448 } else { 449 error = ENXIO; 450 } 451 break; 452 case MOD_UNLOAD: 453 if (vmm_is_hw_supported()) { 454 error = vmmdev_cleanup(); 455 if (error == 0) { 456 vmm_resume_p = NULL; 457 iommu_cleanup(); 458 if (vmm_ipinum != IPI_AST) 459 lapic_ipi_free(vmm_ipinum); 460 error = vmmops_modcleanup(); 461 /* 462 * Something bad happened - prevent new 463 * VMs from being created 464 */ 465 if (error) 466 vmm_initialized = 0; 467 } 468 } else { 469 error = 0; 470 } 471 break; 472 default: 473 error = 0; 474 break; 475 } 476 return (error); 477 } 478 479 static moduledata_t vmm_kmod = { 480 "vmm", 481 vmm_handler, 482 NULL 483 }; 484 485 /* 486 * vmm initialization has the following dependencies: 487 * 488 * - VT-x initialization requires smp_rendezvous() and therefore must happen 489 * after SMP is fully functional (after SI_SUB_SMP). 490 */ 491 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 492 MODULE_VERSION(vmm, 1); 493 494 static void 495 vm_init(struct vm *vm, bool create) 496 { 497 vm->cookie = vmmops_init(vm, vmspace_pmap(vm->vmspace)); 498 vm->iommu = NULL; 499 vm->vioapic = vioapic_init(vm); 500 vm->vhpet = vhpet_init(vm); 501 vm->vatpic = vatpic_init(vm); 502 vm->vatpit = vatpit_init(vm); 503 vm->vpmtmr = vpmtmr_init(vm); 504 if (create) 505 vm->vrtc = vrtc_init(vm); 506 507 CPU_ZERO(&vm->active_cpus); 508 CPU_ZERO(&vm->debug_cpus); 509 CPU_ZERO(&vm->startup_cpus); 510 511 vm->suspend = 0; 512 CPU_ZERO(&vm->suspended_cpus); 513 514 if (!create) { 515 for (int i = 0; i < vm->maxcpus; i++) { 516 if (vm->vcpu[i] != NULL) 517 vcpu_init(vm->vcpu[i]); 518 } 519 } 520 } 521 522 void 523 vm_disable_vcpu_creation(struct vm *vm) 524 { 525 sx_xlock(&vm->vcpus_init_lock); 526 vm->dying = true; 527 sx_xunlock(&vm->vcpus_init_lock); 528 } 529 530 struct vcpu * 531 vm_alloc_vcpu(struct vm *vm, int vcpuid) 532 { 533 struct vcpu *vcpu; 534 535 if (vcpuid < 0 || vcpuid >= vm_get_maxcpus(vm)) 536 return (NULL); 537 538 vcpu = atomic_load_ptr(&vm->vcpu[vcpuid]); 539 if (__predict_true(vcpu != NULL)) 540 return (vcpu); 541 542 sx_xlock(&vm->vcpus_init_lock); 543 vcpu = vm->vcpu[vcpuid]; 544 if (vcpu == NULL && !vm->dying) { 545 vcpu = vcpu_alloc(vm, vcpuid); 546 vcpu_init(vcpu); 547 548 /* 549 * Ensure vCPU is fully created before updating pointer 550 * to permit unlocked reads above. 551 */ 552 atomic_store_rel_ptr((uintptr_t *)&vm->vcpu[vcpuid], 553 (uintptr_t)vcpu); 554 } 555 sx_xunlock(&vm->vcpus_init_lock); 556 return (vcpu); 557 } 558 559 void 560 vm_slock_vcpus(struct vm *vm) 561 { 562 sx_slock(&vm->vcpus_init_lock); 563 } 564 565 void 566 vm_unlock_vcpus(struct vm *vm) 567 { 568 sx_unlock(&vm->vcpus_init_lock); 569 } 570 571 /* 572 * The default CPU topology is a single thread per package. 573 */ 574 u_int cores_per_package = 1; 575 u_int threads_per_core = 1; 576 577 int 578 vm_create(const char *name, struct vm **retvm) 579 { 580 struct vm *vm; 581 struct vmspace *vmspace; 582 583 /* 584 * If vmm.ko could not be successfully initialized then don't attempt 585 * to create the virtual machine. 586 */ 587 if (!vmm_initialized) 588 return (ENXIO); 589 590 if (name == NULL || strnlen(name, VM_MAX_NAMELEN + 1) == 591 VM_MAX_NAMELEN + 1) 592 return (EINVAL); 593 594 vmspace = vmmops_vmspace_alloc(0, VM_MAXUSER_ADDRESS_LA48); 595 if (vmspace == NULL) 596 return (ENOMEM); 597 598 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 599 strcpy(vm->name, name); 600 vm->vmspace = vmspace; 601 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 602 sx_init(&vm->mem_segs_lock, "vm mem_segs"); 603 sx_init(&vm->vcpus_init_lock, "vm vcpus"); 604 vm->vcpu = malloc(sizeof(*vm->vcpu) * vm_maxcpu, M_VM, M_WAITOK | 605 M_ZERO); 606 607 vm->sockets = 1; 608 vm->cores = cores_per_package; /* XXX backwards compatibility */ 609 vm->threads = threads_per_core; /* XXX backwards compatibility */ 610 vm->maxcpus = vm_maxcpu; 611 612 vm_init(vm, true); 613 614 *retvm = vm; 615 return (0); 616 } 617 618 void 619 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, 620 uint16_t *threads, uint16_t *maxcpus) 621 { 622 *sockets = vm->sockets; 623 *cores = vm->cores; 624 *threads = vm->threads; 625 *maxcpus = vm->maxcpus; 626 } 627 628 uint16_t 629 vm_get_maxcpus(struct vm *vm) 630 { 631 return (vm->maxcpus); 632 } 633 634 int 635 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, 636 uint16_t threads, uint16_t maxcpus __unused) 637 { 638 /* Ignore maxcpus. */ 639 if ((sockets * cores * threads) > vm->maxcpus) 640 return (EINVAL); 641 vm->sockets = sockets; 642 vm->cores = cores; 643 vm->threads = threads; 644 return(0); 645 } 646 647 static void 648 vm_cleanup(struct vm *vm, bool destroy) 649 { 650 struct mem_map *mm; 651 int i; 652 653 ppt_unassign_all(vm); 654 655 if (vm->iommu != NULL) 656 iommu_destroy_domain(vm->iommu); 657 658 if (destroy) 659 vrtc_cleanup(vm->vrtc); 660 else 661 vrtc_reset(vm->vrtc); 662 vpmtmr_cleanup(vm->vpmtmr); 663 vatpit_cleanup(vm->vatpit); 664 vhpet_cleanup(vm->vhpet); 665 vatpic_cleanup(vm->vatpic); 666 vioapic_cleanup(vm->vioapic); 667 668 for (i = 0; i < vm->maxcpus; i++) { 669 if (vm->vcpu[i] != NULL) 670 vcpu_cleanup(vm->vcpu[i], destroy); 671 } 672 673 vmmops_cleanup(vm->cookie); 674 675 /* 676 * System memory is removed from the guest address space only when 677 * the VM is destroyed. This is because the mapping remains the same 678 * across VM reset. 679 * 680 * Device memory can be relocated by the guest (e.g. using PCI BARs) 681 * so those mappings are removed on a VM reset. 682 */ 683 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 684 mm = &vm->mem_maps[i]; 685 if (destroy || !sysmem_mapping(vm, mm)) 686 vm_free_memmap(vm, i); 687 } 688 689 if (destroy) { 690 for (i = 0; i < VM_MAX_MEMSEGS; i++) 691 vm_free_memseg(vm, i); 692 693 vmmops_vmspace_free(vm->vmspace); 694 vm->vmspace = NULL; 695 696 free(vm->vcpu, M_VM); 697 sx_destroy(&vm->vcpus_init_lock); 698 sx_destroy(&vm->mem_segs_lock); 699 mtx_destroy(&vm->rendezvous_mtx); 700 } 701 } 702 703 void 704 vm_destroy(struct vm *vm) 705 { 706 vm_cleanup(vm, true); 707 free(vm, M_VM); 708 } 709 710 int 711 vm_reinit(struct vm *vm) 712 { 713 int error; 714 715 /* 716 * A virtual machine can be reset only if all vcpus are suspended. 717 */ 718 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 719 vm_cleanup(vm, false); 720 vm_init(vm, false); 721 error = 0; 722 } else { 723 error = EBUSY; 724 } 725 726 return (error); 727 } 728 729 const char * 730 vm_name(struct vm *vm) 731 { 732 return (vm->name); 733 } 734 735 void 736 vm_slock_memsegs(struct vm *vm) 737 { 738 sx_slock(&vm->mem_segs_lock); 739 } 740 741 void 742 vm_xlock_memsegs(struct vm *vm) 743 { 744 sx_xlock(&vm->mem_segs_lock); 745 } 746 747 void 748 vm_unlock_memsegs(struct vm *vm) 749 { 750 sx_unlock(&vm->mem_segs_lock); 751 } 752 753 int 754 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 755 { 756 vm_object_t obj; 757 758 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 759 return (ENOMEM); 760 else 761 return (0); 762 } 763 764 int 765 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 766 { 767 768 vmm_mmio_free(vm->vmspace, gpa, len); 769 return (0); 770 } 771 772 /* 773 * Return 'true' if 'gpa' is allocated in the guest address space. 774 * 775 * This function is called in the context of a running vcpu which acts as 776 * an implicit lock on 'vm->mem_maps[]'. 777 */ 778 bool 779 vm_mem_allocated(struct vcpu *vcpu, vm_paddr_t gpa) 780 { 781 struct vm *vm = vcpu->vm; 782 struct mem_map *mm; 783 int i; 784 785 #ifdef INVARIANTS 786 int hostcpu, state; 787 state = vcpu_get_state(vcpu, &hostcpu); 788 KASSERT(state == VCPU_RUNNING && hostcpu == curcpu, 789 ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu)); 790 #endif 791 792 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 793 mm = &vm->mem_maps[i]; 794 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len) 795 return (true); /* 'gpa' is sysmem or devmem */ 796 } 797 798 if (ppt_is_mmio(vm, gpa)) 799 return (true); /* 'gpa' is pci passthru mmio */ 800 801 return (false); 802 } 803 804 int 805 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem) 806 { 807 struct mem_seg *seg; 808 vm_object_t obj; 809 810 sx_assert(&vm->mem_segs_lock, SX_XLOCKED); 811 812 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 813 return (EINVAL); 814 815 if (len == 0 || (len & PAGE_MASK)) 816 return (EINVAL); 817 818 seg = &vm->mem_segs[ident]; 819 if (seg->object != NULL) { 820 if (seg->len == len && seg->sysmem == sysmem) 821 return (EEXIST); 822 else 823 return (EINVAL); 824 } 825 826 obj = vm_object_allocate(OBJT_SWAP, len >> PAGE_SHIFT); 827 if (obj == NULL) 828 return (ENOMEM); 829 830 seg->len = len; 831 seg->object = obj; 832 seg->sysmem = sysmem; 833 return (0); 834 } 835 836 int 837 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, 838 vm_object_t *objptr) 839 { 840 struct mem_seg *seg; 841 842 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 843 844 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 845 return (EINVAL); 846 847 seg = &vm->mem_segs[ident]; 848 if (len) 849 *len = seg->len; 850 if (sysmem) 851 *sysmem = seg->sysmem; 852 if (objptr) 853 *objptr = seg->object; 854 return (0); 855 } 856 857 void 858 vm_free_memseg(struct vm *vm, int ident) 859 { 860 struct mem_seg *seg; 861 862 KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS, 863 ("%s: invalid memseg ident %d", __func__, ident)); 864 865 seg = &vm->mem_segs[ident]; 866 if (seg->object != NULL) { 867 vm_object_deallocate(seg->object); 868 bzero(seg, sizeof(struct mem_seg)); 869 } 870 } 871 872 int 873 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first, 874 size_t len, int prot, int flags) 875 { 876 struct mem_seg *seg; 877 struct mem_map *m, *map; 878 vm_ooffset_t last; 879 int i, error; 880 881 if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0) 882 return (EINVAL); 883 884 if (flags & ~VM_MEMMAP_F_WIRED) 885 return (EINVAL); 886 887 if (segid < 0 || segid >= VM_MAX_MEMSEGS) 888 return (EINVAL); 889 890 seg = &vm->mem_segs[segid]; 891 if (seg->object == NULL) 892 return (EINVAL); 893 894 last = first + len; 895 if (first < 0 || first >= last || last > seg->len) 896 return (EINVAL); 897 898 if ((gpa | first | last) & PAGE_MASK) 899 return (EINVAL); 900 901 map = NULL; 902 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 903 m = &vm->mem_maps[i]; 904 if (m->len == 0) { 905 map = m; 906 break; 907 } 908 } 909 910 if (map == NULL) 911 return (ENOSPC); 912 913 error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa, 914 len, 0, VMFS_NO_SPACE, prot, prot, 0); 915 if (error != KERN_SUCCESS) 916 return (EFAULT); 917 918 vm_object_reference(seg->object); 919 920 if (flags & VM_MEMMAP_F_WIRED) { 921 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len, 922 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 923 if (error != KERN_SUCCESS) { 924 vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len); 925 return (error == KERN_RESOURCE_SHORTAGE ? ENOMEM : 926 EFAULT); 927 } 928 } 929 930 map->gpa = gpa; 931 map->len = len; 932 map->segoff = first; 933 map->segid = segid; 934 map->prot = prot; 935 map->flags = flags; 936 return (0); 937 } 938 939 int 940 vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len) 941 { 942 struct mem_map *m; 943 int i; 944 945 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 946 m = &vm->mem_maps[i]; 947 if (m->gpa == gpa && m->len == len && 948 (m->flags & VM_MEMMAP_F_IOMMU) == 0) { 949 vm_free_memmap(vm, i); 950 return (0); 951 } 952 } 953 954 return (EINVAL); 955 } 956 957 int 958 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, 959 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 960 { 961 struct mem_map *mm, *mmnext; 962 int i; 963 964 mmnext = NULL; 965 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 966 mm = &vm->mem_maps[i]; 967 if (mm->len == 0 || mm->gpa < *gpa) 968 continue; 969 if (mmnext == NULL || mm->gpa < mmnext->gpa) 970 mmnext = mm; 971 } 972 973 if (mmnext != NULL) { 974 *gpa = mmnext->gpa; 975 if (segid) 976 *segid = mmnext->segid; 977 if (segoff) 978 *segoff = mmnext->segoff; 979 if (len) 980 *len = mmnext->len; 981 if (prot) 982 *prot = mmnext->prot; 983 if (flags) 984 *flags = mmnext->flags; 985 return (0); 986 } else { 987 return (ENOENT); 988 } 989 } 990 991 static void 992 vm_free_memmap(struct vm *vm, int ident) 993 { 994 struct mem_map *mm; 995 int error __diagused; 996 997 mm = &vm->mem_maps[ident]; 998 if (mm->len) { 999 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa, 1000 mm->gpa + mm->len); 1001 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d", 1002 __func__, error)); 1003 bzero(mm, sizeof(struct mem_map)); 1004 } 1005 } 1006 1007 static __inline bool 1008 sysmem_mapping(struct vm *vm, struct mem_map *mm) 1009 { 1010 1011 if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem) 1012 return (true); 1013 else 1014 return (false); 1015 } 1016 1017 vm_paddr_t 1018 vmm_sysmem_maxaddr(struct vm *vm) 1019 { 1020 struct mem_map *mm; 1021 vm_paddr_t maxaddr; 1022 int i; 1023 1024 maxaddr = 0; 1025 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1026 mm = &vm->mem_maps[i]; 1027 if (sysmem_mapping(vm, mm)) { 1028 if (maxaddr < mm->gpa + mm->len) 1029 maxaddr = mm->gpa + mm->len; 1030 } 1031 } 1032 return (maxaddr); 1033 } 1034 1035 static void 1036 vm_iommu_modify(struct vm *vm, bool map) 1037 { 1038 int i, sz; 1039 vm_paddr_t gpa, hpa; 1040 struct mem_map *mm; 1041 void *vp, *cookie, *host_domain; 1042 1043 sz = PAGE_SIZE; 1044 host_domain = iommu_host_domain(); 1045 1046 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1047 mm = &vm->mem_maps[i]; 1048 if (!sysmem_mapping(vm, mm)) 1049 continue; 1050 1051 if (map) { 1052 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0, 1053 ("iommu map found invalid memmap %#lx/%#lx/%#x", 1054 mm->gpa, mm->len, mm->flags)); 1055 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0) 1056 continue; 1057 mm->flags |= VM_MEMMAP_F_IOMMU; 1058 } else { 1059 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0) 1060 continue; 1061 mm->flags &= ~VM_MEMMAP_F_IOMMU; 1062 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0, 1063 ("iommu unmap found invalid memmap %#lx/%#lx/%#x", 1064 mm->gpa, mm->len, mm->flags)); 1065 } 1066 1067 gpa = mm->gpa; 1068 while (gpa < mm->gpa + mm->len) { 1069 vp = vm_gpa_hold_global(vm, gpa, PAGE_SIZE, 1070 VM_PROT_WRITE, &cookie); 1071 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", 1072 vm_name(vm), gpa)); 1073 1074 vm_gpa_release(cookie); 1075 1076 hpa = DMAP_TO_PHYS((uintptr_t)vp); 1077 if (map) { 1078 iommu_create_mapping(vm->iommu, gpa, hpa, sz); 1079 } else { 1080 iommu_remove_mapping(vm->iommu, gpa, sz); 1081 } 1082 1083 gpa += PAGE_SIZE; 1084 } 1085 } 1086 1087 /* 1088 * Invalidate the cached translations associated with the domain 1089 * from which pages were removed. 1090 */ 1091 if (map) 1092 iommu_invalidate_tlb(host_domain); 1093 else 1094 iommu_invalidate_tlb(vm->iommu); 1095 } 1096 1097 #define vm_iommu_unmap(vm) vm_iommu_modify((vm), false) 1098 #define vm_iommu_map(vm) vm_iommu_modify((vm), true) 1099 1100 int 1101 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 1102 { 1103 int error; 1104 1105 error = ppt_unassign_device(vm, bus, slot, func); 1106 if (error) 1107 return (error); 1108 1109 if (ppt_assigned_devices(vm) == 0) 1110 vm_iommu_unmap(vm); 1111 1112 return (0); 1113 } 1114 1115 int 1116 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 1117 { 1118 int error; 1119 vm_paddr_t maxaddr; 1120 1121 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */ 1122 if (ppt_assigned_devices(vm) == 0) { 1123 KASSERT(vm->iommu == NULL, 1124 ("vm_assign_pptdev: iommu must be NULL")); 1125 maxaddr = vmm_sysmem_maxaddr(vm); 1126 vm->iommu = iommu_create_domain(maxaddr); 1127 if (vm->iommu == NULL) 1128 return (ENXIO); 1129 vm_iommu_map(vm); 1130 } 1131 1132 error = ppt_assign_device(vm, bus, slot, func); 1133 return (error); 1134 } 1135 1136 static void * 1137 _vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 1138 void **cookie) 1139 { 1140 int i, count, pageoff; 1141 struct mem_map *mm; 1142 vm_page_t m; 1143 1144 pageoff = gpa & PAGE_MASK; 1145 if (len > PAGE_SIZE - pageoff) 1146 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 1147 1148 count = 0; 1149 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1150 mm = &vm->mem_maps[i]; 1151 if (gpa >= mm->gpa && gpa < mm->gpa + mm->len) { 1152 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 1153 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 1154 break; 1155 } 1156 } 1157 1158 if (count == 1) { 1159 *cookie = m; 1160 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 1161 } else { 1162 *cookie = NULL; 1163 return (NULL); 1164 } 1165 } 1166 1167 void * 1168 vm_gpa_hold(struct vcpu *vcpu, vm_paddr_t gpa, size_t len, int reqprot, 1169 void **cookie) 1170 { 1171 #ifdef INVARIANTS 1172 /* 1173 * The current vcpu should be frozen to ensure 'vm_memmap[]' 1174 * stability. 1175 */ 1176 int state = vcpu_get_state(vcpu, NULL); 1177 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d", 1178 __func__, state)); 1179 #endif 1180 return (_vm_gpa_hold(vcpu->vm, gpa, len, reqprot, cookie)); 1181 } 1182 1183 void * 1184 vm_gpa_hold_global(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 1185 void **cookie) 1186 { 1187 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 1188 return (_vm_gpa_hold(vm, gpa, len, reqprot, cookie)); 1189 } 1190 1191 void 1192 vm_gpa_release(void *cookie) 1193 { 1194 vm_page_t m = cookie; 1195 1196 vm_page_unwire(m, PQ_ACTIVE); 1197 } 1198 1199 int 1200 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval) 1201 { 1202 1203 if (reg >= VM_REG_LAST) 1204 return (EINVAL); 1205 1206 return (vmmops_getreg(vcpu->cookie, reg, retval)); 1207 } 1208 1209 int 1210 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val) 1211 { 1212 int error; 1213 1214 if (reg >= VM_REG_LAST) 1215 return (EINVAL); 1216 1217 error = vmmops_setreg(vcpu->cookie, reg, val); 1218 if (error || reg != VM_REG_GUEST_RIP) 1219 return (error); 1220 1221 /* Set 'nextrip' to match the value of %rip */ 1222 VMM_CTR1(vcpu, "Setting nextrip to %#lx", val); 1223 vcpu->nextrip = val; 1224 return (0); 1225 } 1226 1227 static bool 1228 is_descriptor_table(int reg) 1229 { 1230 1231 switch (reg) { 1232 case VM_REG_GUEST_IDTR: 1233 case VM_REG_GUEST_GDTR: 1234 return (true); 1235 default: 1236 return (false); 1237 } 1238 } 1239 1240 static bool 1241 is_segment_register(int reg) 1242 { 1243 1244 switch (reg) { 1245 case VM_REG_GUEST_ES: 1246 case VM_REG_GUEST_CS: 1247 case VM_REG_GUEST_SS: 1248 case VM_REG_GUEST_DS: 1249 case VM_REG_GUEST_FS: 1250 case VM_REG_GUEST_GS: 1251 case VM_REG_GUEST_TR: 1252 case VM_REG_GUEST_LDTR: 1253 return (true); 1254 default: 1255 return (false); 1256 } 1257 } 1258 1259 int 1260 vm_get_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc) 1261 { 1262 1263 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1264 return (EINVAL); 1265 1266 return (vmmops_getdesc(vcpu->cookie, reg, desc)); 1267 } 1268 1269 int 1270 vm_set_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc) 1271 { 1272 1273 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1274 return (EINVAL); 1275 1276 return (vmmops_setdesc(vcpu->cookie, reg, desc)); 1277 } 1278 1279 static void 1280 restore_guest_fpustate(struct vcpu *vcpu) 1281 { 1282 1283 /* flush host state to the pcb */ 1284 fpuexit(curthread); 1285 1286 /* restore guest FPU state */ 1287 fpu_stop_emulating(); 1288 fpurestore(vcpu->guestfpu); 1289 1290 /* restore guest XCR0 if XSAVE is enabled in the host */ 1291 if (rcr4() & CR4_XSAVE) 1292 load_xcr(0, vcpu->guest_xcr0); 1293 1294 /* 1295 * The FPU is now "dirty" with the guest's state so turn on emulation 1296 * to trap any access to the FPU by the host. 1297 */ 1298 fpu_start_emulating(); 1299 } 1300 1301 static void 1302 save_guest_fpustate(struct vcpu *vcpu) 1303 { 1304 1305 if ((rcr0() & CR0_TS) == 0) 1306 panic("fpu emulation not enabled in host!"); 1307 1308 /* save guest XCR0 and restore host XCR0 */ 1309 if (rcr4() & CR4_XSAVE) { 1310 vcpu->guest_xcr0 = rxcr(0); 1311 load_xcr(0, vmm_get_host_xcr0()); 1312 } 1313 1314 /* save guest FPU state */ 1315 fpu_stop_emulating(); 1316 fpusave(vcpu->guestfpu); 1317 fpu_start_emulating(); 1318 } 1319 1320 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 1321 1322 static int 1323 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate, 1324 bool from_idle) 1325 { 1326 int error; 1327 1328 vcpu_assert_locked(vcpu); 1329 1330 /* 1331 * State transitions from the vmmdev_ioctl() must always begin from 1332 * the VCPU_IDLE state. This guarantees that there is only a single 1333 * ioctl() operating on a vcpu at any point. 1334 */ 1335 if (from_idle) { 1336 while (vcpu->state != VCPU_IDLE) { 1337 vcpu->reqidle = 1; 1338 vcpu_notify_event_locked(vcpu, false); 1339 VMM_CTR1(vcpu, "vcpu state change from %s to " 1340 "idle requested", vcpu_state2str(vcpu->state)); 1341 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 1342 } 1343 } else { 1344 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 1345 "vcpu idle state")); 1346 } 1347 1348 if (vcpu->state == VCPU_RUNNING) { 1349 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 1350 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 1351 } else { 1352 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 1353 "vcpu that is not running", vcpu->hostcpu)); 1354 } 1355 1356 /* 1357 * The following state transitions are allowed: 1358 * IDLE -> FROZEN -> IDLE 1359 * FROZEN -> RUNNING -> FROZEN 1360 * FROZEN -> SLEEPING -> FROZEN 1361 */ 1362 switch (vcpu->state) { 1363 case VCPU_IDLE: 1364 case VCPU_RUNNING: 1365 case VCPU_SLEEPING: 1366 error = (newstate != VCPU_FROZEN); 1367 break; 1368 case VCPU_FROZEN: 1369 error = (newstate == VCPU_FROZEN); 1370 break; 1371 default: 1372 error = 1; 1373 break; 1374 } 1375 1376 if (error) 1377 return (EBUSY); 1378 1379 VMM_CTR2(vcpu, "vcpu state changed from %s to %s", 1380 vcpu_state2str(vcpu->state), vcpu_state2str(newstate)); 1381 1382 vcpu->state = newstate; 1383 if (newstate == VCPU_RUNNING) 1384 vcpu->hostcpu = curcpu; 1385 else 1386 vcpu->hostcpu = NOCPU; 1387 1388 if (newstate == VCPU_IDLE) 1389 wakeup(&vcpu->state); 1390 1391 return (0); 1392 } 1393 1394 static void 1395 vcpu_require_state(struct vcpu *vcpu, enum vcpu_state newstate) 1396 { 1397 int error; 1398 1399 if ((error = vcpu_set_state(vcpu, newstate, false)) != 0) 1400 panic("Error %d setting state to %d\n", error, newstate); 1401 } 1402 1403 static void 1404 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate) 1405 { 1406 int error; 1407 1408 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0) 1409 panic("Error %d setting state to %d", error, newstate); 1410 } 1411 1412 static int 1413 vm_handle_rendezvous(struct vcpu *vcpu) 1414 { 1415 struct vm *vm = vcpu->vm; 1416 struct thread *td; 1417 int error, vcpuid; 1418 1419 error = 0; 1420 vcpuid = vcpu->vcpuid; 1421 td = curthread; 1422 mtx_lock(&vm->rendezvous_mtx); 1423 while (vm->rendezvous_func != NULL) { 1424 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1425 CPU_AND(&vm->rendezvous_req_cpus, &vm->rendezvous_req_cpus, &vm->active_cpus); 1426 1427 if (CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1428 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1429 VMM_CTR0(vcpu, "Calling rendezvous func"); 1430 (*vm->rendezvous_func)(vcpu, vm->rendezvous_arg); 1431 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1432 } 1433 if (CPU_CMP(&vm->rendezvous_req_cpus, 1434 &vm->rendezvous_done_cpus) == 0) { 1435 VMM_CTR0(vcpu, "Rendezvous completed"); 1436 vm->rendezvous_func = NULL; 1437 wakeup(&vm->rendezvous_func); 1438 break; 1439 } 1440 VMM_CTR0(vcpu, "Wait for rendezvous completion"); 1441 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1442 "vmrndv", hz); 1443 if (td_ast_pending(td, TDA_SUSPEND)) { 1444 mtx_unlock(&vm->rendezvous_mtx); 1445 error = thread_check_susp(td, true); 1446 if (error != 0) 1447 return (error); 1448 mtx_lock(&vm->rendezvous_mtx); 1449 } 1450 } 1451 mtx_unlock(&vm->rendezvous_mtx); 1452 return (0); 1453 } 1454 1455 /* 1456 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1457 */ 1458 static int 1459 vm_handle_hlt(struct vcpu *vcpu, bool intr_disabled, bool *retu) 1460 { 1461 struct vm *vm = vcpu->vm; 1462 const char *wmesg; 1463 struct thread *td; 1464 int error, t, vcpuid, vcpu_halted, vm_halted; 1465 1466 vcpuid = vcpu->vcpuid; 1467 vcpu_halted = 0; 1468 vm_halted = 0; 1469 error = 0; 1470 td = curthread; 1471 1472 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1473 1474 vcpu_lock(vcpu); 1475 while (1) { 1476 /* 1477 * Do a final check for pending NMI or interrupts before 1478 * really putting this thread to sleep. Also check for 1479 * software events that would cause this vcpu to wakeup. 1480 * 1481 * These interrupts/events could have happened after the 1482 * vcpu returned from vmmops_run() and before it acquired the 1483 * vcpu lock above. 1484 */ 1485 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle) 1486 break; 1487 if (vm_nmi_pending(vcpu)) 1488 break; 1489 if (!intr_disabled) { 1490 if (vm_extint_pending(vcpu) || 1491 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1492 break; 1493 } 1494 } 1495 1496 /* Don't go to sleep if the vcpu thread needs to yield */ 1497 if (vcpu_should_yield(vcpu)) 1498 break; 1499 1500 if (vcpu_debugged(vcpu)) 1501 break; 1502 1503 /* 1504 * Some Linux guests implement "halt" by having all vcpus 1505 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1506 * track of the vcpus that have entered this state. When all 1507 * vcpus enter the halted state the virtual machine is halted. 1508 */ 1509 if (intr_disabled) { 1510 wmesg = "vmhalt"; 1511 VMM_CTR0(vcpu, "Halted"); 1512 if (!vcpu_halted && halt_detection_enabled) { 1513 vcpu_halted = 1; 1514 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1515 } 1516 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1517 vm_halted = 1; 1518 break; 1519 } 1520 } else { 1521 wmesg = "vmidle"; 1522 } 1523 1524 t = ticks; 1525 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1526 /* 1527 * XXX msleep_spin() cannot be interrupted by signals so 1528 * wake up periodically to check pending signals. 1529 */ 1530 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1531 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1532 vmm_stat_incr(vcpu, VCPU_IDLE_TICKS, ticks - t); 1533 if (td_ast_pending(td, TDA_SUSPEND)) { 1534 vcpu_unlock(vcpu); 1535 error = thread_check_susp(td, false); 1536 if (error != 0) { 1537 if (vcpu_halted) { 1538 CPU_CLR_ATOMIC(vcpuid, 1539 &vm->halted_cpus); 1540 } 1541 return (error); 1542 } 1543 vcpu_lock(vcpu); 1544 } 1545 } 1546 1547 if (vcpu_halted) 1548 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1549 1550 vcpu_unlock(vcpu); 1551 1552 if (vm_halted) 1553 vm_suspend(vm, VM_SUSPEND_HALT); 1554 1555 return (0); 1556 } 1557 1558 static int 1559 vm_handle_paging(struct vcpu *vcpu, bool *retu) 1560 { 1561 struct vm *vm = vcpu->vm; 1562 int rv, ftype; 1563 struct vm_map *map; 1564 struct vm_exit *vme; 1565 1566 vme = &vcpu->exitinfo; 1567 1568 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1569 __func__, vme->inst_length)); 1570 1571 ftype = vme->u.paging.fault_type; 1572 KASSERT(ftype == VM_PROT_READ || 1573 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1574 ("vm_handle_paging: invalid fault_type %d", ftype)); 1575 1576 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1577 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1578 vme->u.paging.gpa, ftype); 1579 if (rv == 0) { 1580 VMM_CTR2(vcpu, "%s bit emulation for gpa %#lx", 1581 ftype == VM_PROT_READ ? "accessed" : "dirty", 1582 vme->u.paging.gpa); 1583 goto done; 1584 } 1585 } 1586 1587 map = &vm->vmspace->vm_map; 1588 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL); 1589 1590 VMM_CTR3(vcpu, "vm_handle_paging rv = %d, gpa = %#lx, " 1591 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1592 1593 if (rv != KERN_SUCCESS) 1594 return (EFAULT); 1595 done: 1596 return (0); 1597 } 1598 1599 static int 1600 vm_handle_inst_emul(struct vcpu *vcpu, bool *retu) 1601 { 1602 struct vie *vie; 1603 struct vm_exit *vme; 1604 uint64_t gla, gpa, cs_base; 1605 struct vm_guest_paging *paging; 1606 mem_region_read_t mread; 1607 mem_region_write_t mwrite; 1608 enum vm_cpu_mode cpu_mode; 1609 int cs_d, error, fault; 1610 1611 vme = &vcpu->exitinfo; 1612 1613 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1614 __func__, vme->inst_length)); 1615 1616 gla = vme->u.inst_emul.gla; 1617 gpa = vme->u.inst_emul.gpa; 1618 cs_base = vme->u.inst_emul.cs_base; 1619 cs_d = vme->u.inst_emul.cs_d; 1620 vie = &vme->u.inst_emul.vie; 1621 paging = &vme->u.inst_emul.paging; 1622 cpu_mode = paging->cpu_mode; 1623 1624 VMM_CTR1(vcpu, "inst_emul fault accessing gpa %#lx", gpa); 1625 1626 /* Fetch, decode and emulate the faulting instruction */ 1627 if (vie->num_valid == 0) { 1628 error = vmm_fetch_instruction(vcpu, paging, vme->rip + cs_base, 1629 VIE_INST_SIZE, vie, &fault); 1630 } else { 1631 /* 1632 * The instruction bytes have already been copied into 'vie' 1633 */ 1634 error = fault = 0; 1635 } 1636 if (error || fault) 1637 return (error); 1638 1639 if (vmm_decode_instruction(vcpu, gla, cpu_mode, cs_d, vie) != 0) { 1640 VMM_CTR1(vcpu, "Error decoding instruction at %#lx", 1641 vme->rip + cs_base); 1642 *retu = true; /* dump instruction bytes in userspace */ 1643 return (0); 1644 } 1645 1646 /* 1647 * Update 'nextrip' based on the length of the emulated instruction. 1648 */ 1649 vme->inst_length = vie->num_processed; 1650 vcpu->nextrip += vie->num_processed; 1651 VMM_CTR1(vcpu, "nextrip updated to %#lx after instruction decoding", 1652 vcpu->nextrip); 1653 1654 /* return to userland unless this is an in-kernel emulated device */ 1655 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1656 mread = lapic_mmio_read; 1657 mwrite = lapic_mmio_write; 1658 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1659 mread = vioapic_mmio_read; 1660 mwrite = vioapic_mmio_write; 1661 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1662 mread = vhpet_mmio_read; 1663 mwrite = vhpet_mmio_write; 1664 } else { 1665 *retu = true; 1666 return (0); 1667 } 1668 1669 error = vmm_emulate_instruction(vcpu, gpa, vie, paging, mread, mwrite, 1670 retu); 1671 1672 return (error); 1673 } 1674 1675 static int 1676 vm_handle_suspend(struct vcpu *vcpu, bool *retu) 1677 { 1678 struct vm *vm = vcpu->vm; 1679 int error, i; 1680 struct thread *td; 1681 1682 error = 0; 1683 td = curthread; 1684 1685 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->suspended_cpus); 1686 1687 /* 1688 * Wait until all 'active_cpus' have suspended themselves. 1689 * 1690 * Since a VM may be suspended at any time including when one or 1691 * more vcpus are doing a rendezvous we need to call the rendezvous 1692 * handler while we are waiting to prevent a deadlock. 1693 */ 1694 vcpu_lock(vcpu); 1695 while (error == 0) { 1696 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1697 VMM_CTR0(vcpu, "All vcpus suspended"); 1698 break; 1699 } 1700 1701 if (vm->rendezvous_func == NULL) { 1702 VMM_CTR0(vcpu, "Sleeping during suspend"); 1703 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1704 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1705 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1706 if (td_ast_pending(td, TDA_SUSPEND)) { 1707 vcpu_unlock(vcpu); 1708 error = thread_check_susp(td, false); 1709 vcpu_lock(vcpu); 1710 } 1711 } else { 1712 VMM_CTR0(vcpu, "Rendezvous during suspend"); 1713 vcpu_unlock(vcpu); 1714 error = vm_handle_rendezvous(vcpu); 1715 vcpu_lock(vcpu); 1716 } 1717 } 1718 vcpu_unlock(vcpu); 1719 1720 /* 1721 * Wakeup the other sleeping vcpus and return to userspace. 1722 */ 1723 for (i = 0; i < vm->maxcpus; i++) { 1724 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1725 vcpu_notify_event(vm_vcpu(vm, i), false); 1726 } 1727 } 1728 1729 *retu = true; 1730 return (error); 1731 } 1732 1733 static int 1734 vm_handle_reqidle(struct vcpu *vcpu, bool *retu) 1735 { 1736 vcpu_lock(vcpu); 1737 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle)); 1738 vcpu->reqidle = 0; 1739 vcpu_unlock(vcpu); 1740 *retu = true; 1741 return (0); 1742 } 1743 1744 int 1745 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1746 { 1747 int i; 1748 1749 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1750 return (EINVAL); 1751 1752 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1753 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1754 vm->suspend, how); 1755 return (EALREADY); 1756 } 1757 1758 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1759 1760 /* 1761 * Notify all active vcpus that they are now suspended. 1762 */ 1763 for (i = 0; i < vm->maxcpus; i++) { 1764 if (CPU_ISSET(i, &vm->active_cpus)) 1765 vcpu_notify_event(vm_vcpu(vm, i), false); 1766 } 1767 1768 return (0); 1769 } 1770 1771 void 1772 vm_exit_suspended(struct vcpu *vcpu, uint64_t rip) 1773 { 1774 struct vm *vm = vcpu->vm; 1775 struct vm_exit *vmexit; 1776 1777 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1778 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1779 1780 vmexit = vm_exitinfo(vcpu); 1781 vmexit->rip = rip; 1782 vmexit->inst_length = 0; 1783 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1784 vmexit->u.suspended.how = vm->suspend; 1785 } 1786 1787 void 1788 vm_exit_debug(struct vcpu *vcpu, uint64_t rip) 1789 { 1790 struct vm_exit *vmexit; 1791 1792 vmexit = vm_exitinfo(vcpu); 1793 vmexit->rip = rip; 1794 vmexit->inst_length = 0; 1795 vmexit->exitcode = VM_EXITCODE_DEBUG; 1796 } 1797 1798 void 1799 vm_exit_rendezvous(struct vcpu *vcpu, uint64_t rip) 1800 { 1801 struct vm_exit *vmexit; 1802 1803 vmexit = vm_exitinfo(vcpu); 1804 vmexit->rip = rip; 1805 vmexit->inst_length = 0; 1806 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1807 vmm_stat_incr(vcpu, VMEXIT_RENDEZVOUS, 1); 1808 } 1809 1810 void 1811 vm_exit_reqidle(struct vcpu *vcpu, uint64_t rip) 1812 { 1813 struct vm_exit *vmexit; 1814 1815 vmexit = vm_exitinfo(vcpu); 1816 vmexit->rip = rip; 1817 vmexit->inst_length = 0; 1818 vmexit->exitcode = VM_EXITCODE_REQIDLE; 1819 vmm_stat_incr(vcpu, VMEXIT_REQIDLE, 1); 1820 } 1821 1822 void 1823 vm_exit_astpending(struct vcpu *vcpu, uint64_t rip) 1824 { 1825 struct vm_exit *vmexit; 1826 1827 vmexit = vm_exitinfo(vcpu); 1828 vmexit->rip = rip; 1829 vmexit->inst_length = 0; 1830 vmexit->exitcode = VM_EXITCODE_BOGUS; 1831 vmm_stat_incr(vcpu, VMEXIT_ASTPENDING, 1); 1832 } 1833 1834 int 1835 vm_run(struct vcpu *vcpu, struct vm_exit *vme_user) 1836 { 1837 struct vm *vm = vcpu->vm; 1838 struct vm_eventinfo evinfo; 1839 int error, vcpuid; 1840 struct pcb *pcb; 1841 uint64_t tscval; 1842 struct vm_exit *vme; 1843 bool retu, intr_disabled; 1844 pmap_t pmap; 1845 1846 vcpuid = vcpu->vcpuid; 1847 1848 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1849 return (EINVAL); 1850 1851 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1852 return (EINVAL); 1853 1854 pmap = vmspace_pmap(vm->vmspace); 1855 vme = &vcpu->exitinfo; 1856 evinfo.rptr = &vm->rendezvous_func; 1857 evinfo.sptr = &vm->suspend; 1858 evinfo.iptr = &vcpu->reqidle; 1859 restart: 1860 critical_enter(); 1861 1862 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1863 ("vm_run: absurd pm_active")); 1864 1865 tscval = rdtsc(); 1866 1867 pcb = PCPU_GET(curpcb); 1868 set_pcb_flags(pcb, PCB_FULL_IRET); 1869 1870 restore_guest_fpustate(vcpu); 1871 1872 vcpu_require_state(vcpu, VCPU_RUNNING); 1873 error = vmmops_run(vcpu->cookie, vcpu->nextrip, pmap, &evinfo); 1874 vcpu_require_state(vcpu, VCPU_FROZEN); 1875 1876 save_guest_fpustate(vcpu); 1877 1878 vmm_stat_incr(vcpu, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1879 1880 critical_exit(); 1881 1882 if (error == 0) { 1883 retu = false; 1884 vcpu->nextrip = vme->rip + vme->inst_length; 1885 switch (vme->exitcode) { 1886 case VM_EXITCODE_REQIDLE: 1887 error = vm_handle_reqidle(vcpu, &retu); 1888 break; 1889 case VM_EXITCODE_SUSPENDED: 1890 error = vm_handle_suspend(vcpu, &retu); 1891 break; 1892 case VM_EXITCODE_IOAPIC_EOI: 1893 vioapic_process_eoi(vm, vme->u.ioapic_eoi.vector); 1894 break; 1895 case VM_EXITCODE_RENDEZVOUS: 1896 error = vm_handle_rendezvous(vcpu); 1897 break; 1898 case VM_EXITCODE_HLT: 1899 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1900 error = vm_handle_hlt(vcpu, intr_disabled, &retu); 1901 break; 1902 case VM_EXITCODE_PAGING: 1903 error = vm_handle_paging(vcpu, &retu); 1904 break; 1905 case VM_EXITCODE_INST_EMUL: 1906 error = vm_handle_inst_emul(vcpu, &retu); 1907 break; 1908 case VM_EXITCODE_INOUT: 1909 case VM_EXITCODE_INOUT_STR: 1910 error = vm_handle_inout(vcpu, vme, &retu); 1911 break; 1912 case VM_EXITCODE_MONITOR: 1913 case VM_EXITCODE_MWAIT: 1914 case VM_EXITCODE_VMINSN: 1915 vm_inject_ud(vcpu); 1916 break; 1917 default: 1918 retu = true; /* handled in userland */ 1919 break; 1920 } 1921 } 1922 1923 /* 1924 * VM_EXITCODE_INST_EMUL could access the apic which could transform the 1925 * exit code into VM_EXITCODE_IPI. 1926 */ 1927 if (error == 0 && vme->exitcode == VM_EXITCODE_IPI) { 1928 retu = false; 1929 error = vm_handle_ipi(vcpu, vme, &retu); 1930 } 1931 1932 if (error == 0 && retu == false) 1933 goto restart; 1934 1935 vmm_stat_incr(vcpu, VMEXIT_USERSPACE, 1); 1936 VMM_CTR2(vcpu, "retu %d/%d", error, vme->exitcode); 1937 1938 /* copy the exit information */ 1939 *vme_user = *vme; 1940 return (error); 1941 } 1942 1943 int 1944 vm_restart_instruction(struct vcpu *vcpu) 1945 { 1946 enum vcpu_state state; 1947 uint64_t rip; 1948 int error __diagused; 1949 1950 state = vcpu_get_state(vcpu, NULL); 1951 if (state == VCPU_RUNNING) { 1952 /* 1953 * When a vcpu is "running" the next instruction is determined 1954 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'. 1955 * Thus setting 'inst_length' to zero will cause the current 1956 * instruction to be restarted. 1957 */ 1958 vcpu->exitinfo.inst_length = 0; 1959 VMM_CTR1(vcpu, "restarting instruction at %#lx by " 1960 "setting inst_length to zero", vcpu->exitinfo.rip); 1961 } else if (state == VCPU_FROZEN) { 1962 /* 1963 * When a vcpu is "frozen" it is outside the critical section 1964 * around vmmops_run() and 'nextrip' points to the next 1965 * instruction. Thus instruction restart is achieved by setting 1966 * 'nextrip' to the vcpu's %rip. 1967 */ 1968 error = vm_get_register(vcpu, VM_REG_GUEST_RIP, &rip); 1969 KASSERT(!error, ("%s: error %d getting rip", __func__, error)); 1970 VMM_CTR2(vcpu, "restarting instruction by updating " 1971 "nextrip from %#lx to %#lx", vcpu->nextrip, rip); 1972 vcpu->nextrip = rip; 1973 } else { 1974 panic("%s: invalid state %d", __func__, state); 1975 } 1976 return (0); 1977 } 1978 1979 int 1980 vm_exit_intinfo(struct vcpu *vcpu, uint64_t info) 1981 { 1982 int type, vector; 1983 1984 if (info & VM_INTINFO_VALID) { 1985 type = info & VM_INTINFO_TYPE; 1986 vector = info & 0xff; 1987 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 1988 return (EINVAL); 1989 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 1990 return (EINVAL); 1991 if (info & VM_INTINFO_RSVD) 1992 return (EINVAL); 1993 } else { 1994 info = 0; 1995 } 1996 VMM_CTR2(vcpu, "%s: info1(%#lx)", __func__, info); 1997 vcpu->exitintinfo = info; 1998 return (0); 1999 } 2000 2001 enum exc_class { 2002 EXC_BENIGN, 2003 EXC_CONTRIBUTORY, 2004 EXC_PAGEFAULT 2005 }; 2006 2007 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 2008 2009 static enum exc_class 2010 exception_class(uint64_t info) 2011 { 2012 int type, vector; 2013 2014 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 2015 type = info & VM_INTINFO_TYPE; 2016 vector = info & 0xff; 2017 2018 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 2019 switch (type) { 2020 case VM_INTINFO_HWINTR: 2021 case VM_INTINFO_SWINTR: 2022 case VM_INTINFO_NMI: 2023 return (EXC_BENIGN); 2024 default: 2025 /* 2026 * Hardware exception. 2027 * 2028 * SVM and VT-x use identical type values to represent NMI, 2029 * hardware interrupt and software interrupt. 2030 * 2031 * SVM uses type '3' for all exceptions. VT-x uses type '3' 2032 * for exceptions except #BP and #OF. #BP and #OF use a type 2033 * value of '5' or '6'. Therefore we don't check for explicit 2034 * values of 'type' to classify 'intinfo' into a hardware 2035 * exception. 2036 */ 2037 break; 2038 } 2039 2040 switch (vector) { 2041 case IDT_PF: 2042 case IDT_VE: 2043 return (EXC_PAGEFAULT); 2044 case IDT_DE: 2045 case IDT_TS: 2046 case IDT_NP: 2047 case IDT_SS: 2048 case IDT_GP: 2049 return (EXC_CONTRIBUTORY); 2050 default: 2051 return (EXC_BENIGN); 2052 } 2053 } 2054 2055 static int 2056 nested_fault(struct vcpu *vcpu, uint64_t info1, uint64_t info2, 2057 uint64_t *retinfo) 2058 { 2059 enum exc_class exc1, exc2; 2060 int type1, vector1; 2061 2062 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 2063 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 2064 2065 /* 2066 * If an exception occurs while attempting to call the double-fault 2067 * handler the processor enters shutdown mode (aka triple fault). 2068 */ 2069 type1 = info1 & VM_INTINFO_TYPE; 2070 vector1 = info1 & 0xff; 2071 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 2072 VMM_CTR2(vcpu, "triple fault: info1(%#lx), info2(%#lx)", 2073 info1, info2); 2074 vm_suspend(vcpu->vm, VM_SUSPEND_TRIPLEFAULT); 2075 *retinfo = 0; 2076 return (0); 2077 } 2078 2079 /* 2080 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 2081 */ 2082 exc1 = exception_class(info1); 2083 exc2 = exception_class(info2); 2084 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 2085 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 2086 /* Convert nested fault into a double fault. */ 2087 *retinfo = IDT_DF; 2088 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 2089 *retinfo |= VM_INTINFO_DEL_ERRCODE; 2090 } else { 2091 /* Handle exceptions serially */ 2092 *retinfo = info2; 2093 } 2094 return (1); 2095 } 2096 2097 static uint64_t 2098 vcpu_exception_intinfo(struct vcpu *vcpu) 2099 { 2100 uint64_t info = 0; 2101 2102 if (vcpu->exception_pending) { 2103 info = vcpu->exc_vector & 0xff; 2104 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 2105 if (vcpu->exc_errcode_valid) { 2106 info |= VM_INTINFO_DEL_ERRCODE; 2107 info |= (uint64_t)vcpu->exc_errcode << 32; 2108 } 2109 } 2110 return (info); 2111 } 2112 2113 int 2114 vm_entry_intinfo(struct vcpu *vcpu, uint64_t *retinfo) 2115 { 2116 uint64_t info1, info2; 2117 int valid; 2118 2119 info1 = vcpu->exitintinfo; 2120 vcpu->exitintinfo = 0; 2121 2122 info2 = 0; 2123 if (vcpu->exception_pending) { 2124 info2 = vcpu_exception_intinfo(vcpu); 2125 vcpu->exception_pending = 0; 2126 VMM_CTR2(vcpu, "Exception %d delivered: %#lx", 2127 vcpu->exc_vector, info2); 2128 } 2129 2130 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 2131 valid = nested_fault(vcpu, info1, info2, retinfo); 2132 } else if (info1 & VM_INTINFO_VALID) { 2133 *retinfo = info1; 2134 valid = 1; 2135 } else if (info2 & VM_INTINFO_VALID) { 2136 *retinfo = info2; 2137 valid = 1; 2138 } else { 2139 valid = 0; 2140 } 2141 2142 if (valid) { 2143 VMM_CTR4(vcpu, "%s: info1(%#lx), info2(%#lx), " 2144 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 2145 } 2146 2147 return (valid); 2148 } 2149 2150 int 2151 vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2) 2152 { 2153 *info1 = vcpu->exitintinfo; 2154 *info2 = vcpu_exception_intinfo(vcpu); 2155 return (0); 2156 } 2157 2158 int 2159 vm_inject_exception(struct vcpu *vcpu, int vector, int errcode_valid, 2160 uint32_t errcode, int restart_instruction) 2161 { 2162 uint64_t regval; 2163 int error __diagused; 2164 2165 if (vector < 0 || vector >= 32) 2166 return (EINVAL); 2167 2168 /* 2169 * A double fault exception should never be injected directly into 2170 * the guest. It is a derived exception that results from specific 2171 * combinations of nested faults. 2172 */ 2173 if (vector == IDT_DF) 2174 return (EINVAL); 2175 2176 if (vcpu->exception_pending) { 2177 VMM_CTR2(vcpu, "Unable to inject exception %d due to " 2178 "pending exception %d", vector, vcpu->exc_vector); 2179 return (EBUSY); 2180 } 2181 2182 if (errcode_valid) { 2183 /* 2184 * Exceptions don't deliver an error code in real mode. 2185 */ 2186 error = vm_get_register(vcpu, VM_REG_GUEST_CR0, ®val); 2187 KASSERT(!error, ("%s: error %d getting CR0", __func__, error)); 2188 if (!(regval & CR0_PE)) 2189 errcode_valid = 0; 2190 } 2191 2192 /* 2193 * From section 26.6.1 "Interruptibility State" in Intel SDM: 2194 * 2195 * Event blocking by "STI" or "MOV SS" is cleared after guest executes 2196 * one instruction or incurs an exception. 2197 */ 2198 error = vm_set_register(vcpu, VM_REG_GUEST_INTR_SHADOW, 0); 2199 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", 2200 __func__, error)); 2201 2202 if (restart_instruction) 2203 vm_restart_instruction(vcpu); 2204 2205 vcpu->exception_pending = 1; 2206 vcpu->exc_vector = vector; 2207 vcpu->exc_errcode = errcode; 2208 vcpu->exc_errcode_valid = errcode_valid; 2209 VMM_CTR1(vcpu, "Exception %d pending", vector); 2210 return (0); 2211 } 2212 2213 void 2214 vm_inject_fault(struct vcpu *vcpu, int vector, int errcode_valid, int errcode) 2215 { 2216 int error __diagused, restart_instruction; 2217 2218 restart_instruction = 1; 2219 2220 error = vm_inject_exception(vcpu, vector, errcode_valid, 2221 errcode, restart_instruction); 2222 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 2223 } 2224 2225 void 2226 vm_inject_pf(struct vcpu *vcpu, int error_code, uint64_t cr2) 2227 { 2228 int error __diagused; 2229 2230 VMM_CTR2(vcpu, "Injecting page fault: error_code %#x, cr2 %#lx", 2231 error_code, cr2); 2232 2233 error = vm_set_register(vcpu, VM_REG_GUEST_CR2, cr2); 2234 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 2235 2236 vm_inject_fault(vcpu, IDT_PF, 1, error_code); 2237 } 2238 2239 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 2240 2241 int 2242 vm_inject_nmi(struct vcpu *vcpu) 2243 { 2244 2245 vcpu->nmi_pending = 1; 2246 vcpu_notify_event(vcpu, false); 2247 return (0); 2248 } 2249 2250 int 2251 vm_nmi_pending(struct vcpu *vcpu) 2252 { 2253 return (vcpu->nmi_pending); 2254 } 2255 2256 void 2257 vm_nmi_clear(struct vcpu *vcpu) 2258 { 2259 if (vcpu->nmi_pending == 0) 2260 panic("vm_nmi_clear: inconsistent nmi_pending state"); 2261 2262 vcpu->nmi_pending = 0; 2263 vmm_stat_incr(vcpu, VCPU_NMI_COUNT, 1); 2264 } 2265 2266 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 2267 2268 int 2269 vm_inject_extint(struct vcpu *vcpu) 2270 { 2271 2272 vcpu->extint_pending = 1; 2273 vcpu_notify_event(vcpu, false); 2274 return (0); 2275 } 2276 2277 int 2278 vm_extint_pending(struct vcpu *vcpu) 2279 { 2280 return (vcpu->extint_pending); 2281 } 2282 2283 void 2284 vm_extint_clear(struct vcpu *vcpu) 2285 { 2286 if (vcpu->extint_pending == 0) 2287 panic("vm_extint_clear: inconsistent extint_pending state"); 2288 2289 vcpu->extint_pending = 0; 2290 vmm_stat_incr(vcpu, VCPU_EXTINT_COUNT, 1); 2291 } 2292 2293 int 2294 vm_get_capability(struct vcpu *vcpu, int type, int *retval) 2295 { 2296 if (type < 0 || type >= VM_CAP_MAX) 2297 return (EINVAL); 2298 2299 return (vmmops_getcap(vcpu->cookie, type, retval)); 2300 } 2301 2302 int 2303 vm_set_capability(struct vcpu *vcpu, int type, int val) 2304 { 2305 if (type < 0 || type >= VM_CAP_MAX) 2306 return (EINVAL); 2307 2308 return (vmmops_setcap(vcpu->cookie, type, val)); 2309 } 2310 2311 struct vm * 2312 vcpu_vm(struct vcpu *vcpu) 2313 { 2314 return (vcpu->vm); 2315 } 2316 2317 int 2318 vcpu_vcpuid(struct vcpu *vcpu) 2319 { 2320 return (vcpu->vcpuid); 2321 } 2322 2323 struct vcpu * 2324 vm_vcpu(struct vm *vm, int vcpuid) 2325 { 2326 return (vm->vcpu[vcpuid]); 2327 } 2328 2329 struct vlapic * 2330 vm_lapic(struct vcpu *vcpu) 2331 { 2332 return (vcpu->vlapic); 2333 } 2334 2335 struct vioapic * 2336 vm_ioapic(struct vm *vm) 2337 { 2338 2339 return (vm->vioapic); 2340 } 2341 2342 struct vhpet * 2343 vm_hpet(struct vm *vm) 2344 { 2345 2346 return (vm->vhpet); 2347 } 2348 2349 bool 2350 vmm_is_pptdev(int bus, int slot, int func) 2351 { 2352 int b, f, i, n, s; 2353 char *val, *cp, *cp2; 2354 bool found; 2355 2356 /* 2357 * XXX 2358 * The length of an environment variable is limited to 128 bytes which 2359 * puts an upper limit on the number of passthru devices that may be 2360 * specified using a single environment variable. 2361 * 2362 * Work around this by scanning multiple environment variable 2363 * names instead of a single one - yuck! 2364 */ 2365 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 2366 2367 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 2368 found = false; 2369 for (i = 0; names[i] != NULL && !found; i++) { 2370 cp = val = kern_getenv(names[i]); 2371 while (cp != NULL && *cp != '\0') { 2372 if ((cp2 = strchr(cp, ' ')) != NULL) 2373 *cp2 = '\0'; 2374 2375 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 2376 if (n == 3 && bus == b && slot == s && func == f) { 2377 found = true; 2378 break; 2379 } 2380 2381 if (cp2 != NULL) 2382 *cp2++ = ' '; 2383 2384 cp = cp2; 2385 } 2386 freeenv(val); 2387 } 2388 return (found); 2389 } 2390 2391 void * 2392 vm_iommu_domain(struct vm *vm) 2393 { 2394 2395 return (vm->iommu); 2396 } 2397 2398 int 2399 vcpu_set_state(struct vcpu *vcpu, enum vcpu_state newstate, bool from_idle) 2400 { 2401 int error; 2402 2403 vcpu_lock(vcpu); 2404 error = vcpu_set_state_locked(vcpu, newstate, from_idle); 2405 vcpu_unlock(vcpu); 2406 2407 return (error); 2408 } 2409 2410 enum vcpu_state 2411 vcpu_get_state(struct vcpu *vcpu, int *hostcpu) 2412 { 2413 enum vcpu_state state; 2414 2415 vcpu_lock(vcpu); 2416 state = vcpu->state; 2417 if (hostcpu != NULL) 2418 *hostcpu = vcpu->hostcpu; 2419 vcpu_unlock(vcpu); 2420 2421 return (state); 2422 } 2423 2424 int 2425 vm_activate_cpu(struct vcpu *vcpu) 2426 { 2427 struct vm *vm = vcpu->vm; 2428 2429 if (CPU_ISSET(vcpu->vcpuid, &vm->active_cpus)) 2430 return (EBUSY); 2431 2432 VMM_CTR0(vcpu, "activated"); 2433 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->active_cpus); 2434 return (0); 2435 } 2436 2437 int 2438 vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu) 2439 { 2440 if (vcpu == NULL) { 2441 vm->debug_cpus = vm->active_cpus; 2442 for (int i = 0; i < vm->maxcpus; i++) { 2443 if (CPU_ISSET(i, &vm->active_cpus)) 2444 vcpu_notify_event(vm_vcpu(vm, i), false); 2445 } 2446 } else { 2447 if (!CPU_ISSET(vcpu->vcpuid, &vm->active_cpus)) 2448 return (EINVAL); 2449 2450 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->debug_cpus); 2451 vcpu_notify_event(vcpu, false); 2452 } 2453 return (0); 2454 } 2455 2456 int 2457 vm_resume_cpu(struct vm *vm, struct vcpu *vcpu) 2458 { 2459 2460 if (vcpu == NULL) { 2461 CPU_ZERO(&vm->debug_cpus); 2462 } else { 2463 if (!CPU_ISSET(vcpu->vcpuid, &vm->debug_cpus)) 2464 return (EINVAL); 2465 2466 CPU_CLR_ATOMIC(vcpu->vcpuid, &vm->debug_cpus); 2467 } 2468 return (0); 2469 } 2470 2471 int 2472 vcpu_debugged(struct vcpu *vcpu) 2473 { 2474 2475 return (CPU_ISSET(vcpu->vcpuid, &vcpu->vm->debug_cpus)); 2476 } 2477 2478 cpuset_t 2479 vm_active_cpus(struct vm *vm) 2480 { 2481 2482 return (vm->active_cpus); 2483 } 2484 2485 cpuset_t 2486 vm_debug_cpus(struct vm *vm) 2487 { 2488 2489 return (vm->debug_cpus); 2490 } 2491 2492 cpuset_t 2493 vm_suspended_cpus(struct vm *vm) 2494 { 2495 2496 return (vm->suspended_cpus); 2497 } 2498 2499 /* 2500 * Returns the subset of vCPUs in tostart that are awaiting startup. 2501 * These vCPUs are also marked as no longer awaiting startup. 2502 */ 2503 cpuset_t 2504 vm_start_cpus(struct vm *vm, const cpuset_t *tostart) 2505 { 2506 cpuset_t set; 2507 2508 mtx_lock(&vm->rendezvous_mtx); 2509 CPU_AND(&set, &vm->startup_cpus, tostart); 2510 CPU_ANDNOT(&vm->startup_cpus, &vm->startup_cpus, &set); 2511 mtx_unlock(&vm->rendezvous_mtx); 2512 return (set); 2513 } 2514 2515 void 2516 vm_await_start(struct vm *vm, const cpuset_t *waiting) 2517 { 2518 mtx_lock(&vm->rendezvous_mtx); 2519 CPU_OR(&vm->startup_cpus, &vm->startup_cpus, waiting); 2520 mtx_unlock(&vm->rendezvous_mtx); 2521 } 2522 2523 void * 2524 vcpu_stats(struct vcpu *vcpu) 2525 { 2526 2527 return (vcpu->stats); 2528 } 2529 2530 int 2531 vm_get_x2apic_state(struct vcpu *vcpu, enum x2apic_state *state) 2532 { 2533 *state = vcpu->x2apic_state; 2534 2535 return (0); 2536 } 2537 2538 int 2539 vm_set_x2apic_state(struct vcpu *vcpu, enum x2apic_state state) 2540 { 2541 if (state >= X2APIC_STATE_LAST) 2542 return (EINVAL); 2543 2544 vcpu->x2apic_state = state; 2545 2546 vlapic_set_x2apic_state(vcpu, state); 2547 2548 return (0); 2549 } 2550 2551 /* 2552 * This function is called to ensure that a vcpu "sees" a pending event 2553 * as soon as possible: 2554 * - If the vcpu thread is sleeping then it is woken up. 2555 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2556 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2557 */ 2558 static void 2559 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr) 2560 { 2561 int hostcpu; 2562 2563 hostcpu = vcpu->hostcpu; 2564 if (vcpu->state == VCPU_RUNNING) { 2565 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2566 if (hostcpu != curcpu) { 2567 if (lapic_intr) { 2568 vlapic_post_intr(vcpu->vlapic, hostcpu, 2569 vmm_ipinum); 2570 } else { 2571 ipi_cpu(hostcpu, vmm_ipinum); 2572 } 2573 } else { 2574 /* 2575 * If the 'vcpu' is running on 'curcpu' then it must 2576 * be sending a notification to itself (e.g. SELF_IPI). 2577 * The pending event will be picked up when the vcpu 2578 * transitions back to guest context. 2579 */ 2580 } 2581 } else { 2582 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2583 "with hostcpu %d", vcpu->state, hostcpu)); 2584 if (vcpu->state == VCPU_SLEEPING) 2585 wakeup_one(vcpu); 2586 } 2587 } 2588 2589 void 2590 vcpu_notify_event(struct vcpu *vcpu, bool lapic_intr) 2591 { 2592 vcpu_lock(vcpu); 2593 vcpu_notify_event_locked(vcpu, lapic_intr); 2594 vcpu_unlock(vcpu); 2595 } 2596 2597 struct vmspace * 2598 vm_get_vmspace(struct vm *vm) 2599 { 2600 2601 return (vm->vmspace); 2602 } 2603 2604 int 2605 vm_apicid2vcpuid(struct vm *vm, int apicid) 2606 { 2607 /* 2608 * XXX apic id is assumed to be numerically identical to vcpu id 2609 */ 2610 return (apicid); 2611 } 2612 2613 int 2614 vm_smp_rendezvous(struct vcpu *vcpu, cpuset_t dest, 2615 vm_rendezvous_func_t func, void *arg) 2616 { 2617 struct vm *vm = vcpu->vm; 2618 int error, i; 2619 2620 /* 2621 * Enforce that this function is called without any locks 2622 */ 2623 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2624 2625 restart: 2626 mtx_lock(&vm->rendezvous_mtx); 2627 if (vm->rendezvous_func != NULL) { 2628 /* 2629 * If a rendezvous is already in progress then we need to 2630 * call the rendezvous handler in case this 'vcpu' is one 2631 * of the targets of the rendezvous. 2632 */ 2633 VMM_CTR0(vcpu, "Rendezvous already in progress"); 2634 mtx_unlock(&vm->rendezvous_mtx); 2635 error = vm_handle_rendezvous(vcpu); 2636 if (error != 0) 2637 return (error); 2638 goto restart; 2639 } 2640 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2641 "rendezvous is still in progress")); 2642 2643 VMM_CTR0(vcpu, "Initiating rendezvous"); 2644 vm->rendezvous_req_cpus = dest; 2645 CPU_ZERO(&vm->rendezvous_done_cpus); 2646 vm->rendezvous_arg = arg; 2647 vm->rendezvous_func = func; 2648 mtx_unlock(&vm->rendezvous_mtx); 2649 2650 /* 2651 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2652 * vcpus so they handle the rendezvous as soon as possible. 2653 */ 2654 for (i = 0; i < vm->maxcpus; i++) { 2655 if (CPU_ISSET(i, &dest)) 2656 vcpu_notify_event(vm_vcpu(vm, i), false); 2657 } 2658 2659 return (vm_handle_rendezvous(vcpu)); 2660 } 2661 2662 struct vatpic * 2663 vm_atpic(struct vm *vm) 2664 { 2665 return (vm->vatpic); 2666 } 2667 2668 struct vatpit * 2669 vm_atpit(struct vm *vm) 2670 { 2671 return (vm->vatpit); 2672 } 2673 2674 struct vpmtmr * 2675 vm_pmtmr(struct vm *vm) 2676 { 2677 2678 return (vm->vpmtmr); 2679 } 2680 2681 struct vrtc * 2682 vm_rtc(struct vm *vm) 2683 { 2684 2685 return (vm->vrtc); 2686 } 2687 2688 enum vm_reg_name 2689 vm_segment_name(int seg) 2690 { 2691 static enum vm_reg_name seg_names[] = { 2692 VM_REG_GUEST_ES, 2693 VM_REG_GUEST_CS, 2694 VM_REG_GUEST_SS, 2695 VM_REG_GUEST_DS, 2696 VM_REG_GUEST_FS, 2697 VM_REG_GUEST_GS 2698 }; 2699 2700 KASSERT(seg >= 0 && seg < nitems(seg_names), 2701 ("%s: invalid segment encoding %d", __func__, seg)); 2702 return (seg_names[seg]); 2703 } 2704 2705 void 2706 vm_copy_teardown(struct vm_copyinfo *copyinfo, int num_copyinfo) 2707 { 2708 int idx; 2709 2710 for (idx = 0; idx < num_copyinfo; idx++) { 2711 if (copyinfo[idx].cookie != NULL) 2712 vm_gpa_release(copyinfo[idx].cookie); 2713 } 2714 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2715 } 2716 2717 int 2718 vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging, 2719 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2720 int num_copyinfo, int *fault) 2721 { 2722 int error, idx, nused; 2723 size_t n, off, remaining; 2724 void *hva, *cookie; 2725 uint64_t gpa; 2726 2727 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2728 2729 nused = 0; 2730 remaining = len; 2731 while (remaining > 0) { 2732 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo")); 2733 error = vm_gla2gpa(vcpu, paging, gla, prot, &gpa, fault); 2734 if (error || *fault) 2735 return (error); 2736 off = gpa & PAGE_MASK; 2737 n = min(remaining, PAGE_SIZE - off); 2738 copyinfo[nused].gpa = gpa; 2739 copyinfo[nused].len = n; 2740 remaining -= n; 2741 gla += n; 2742 nused++; 2743 } 2744 2745 for (idx = 0; idx < nused; idx++) { 2746 hva = vm_gpa_hold(vcpu, copyinfo[idx].gpa, 2747 copyinfo[idx].len, prot, &cookie); 2748 if (hva == NULL) 2749 break; 2750 copyinfo[idx].hva = hva; 2751 copyinfo[idx].cookie = cookie; 2752 } 2753 2754 if (idx != nused) { 2755 vm_copy_teardown(copyinfo, num_copyinfo); 2756 return (EFAULT); 2757 } else { 2758 *fault = 0; 2759 return (0); 2760 } 2761 } 2762 2763 void 2764 vm_copyin(struct vm_copyinfo *copyinfo, void *kaddr, size_t len) 2765 { 2766 char *dst; 2767 int idx; 2768 2769 dst = kaddr; 2770 idx = 0; 2771 while (len > 0) { 2772 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2773 len -= copyinfo[idx].len; 2774 dst += copyinfo[idx].len; 2775 idx++; 2776 } 2777 } 2778 2779 void 2780 vm_copyout(const void *kaddr, struct vm_copyinfo *copyinfo, size_t len) 2781 { 2782 const char *src; 2783 int idx; 2784 2785 src = kaddr; 2786 idx = 0; 2787 while (len > 0) { 2788 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2789 len -= copyinfo[idx].len; 2790 src += copyinfo[idx].len; 2791 idx++; 2792 } 2793 } 2794 2795 /* 2796 * Return the amount of in-use and wired memory for the VM. Since 2797 * these are global stats, only return the values with for vCPU 0 2798 */ 2799 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2800 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2801 2802 static void 2803 vm_get_rescnt(struct vcpu *vcpu, struct vmm_stat_type *stat) 2804 { 2805 2806 if (vcpu->vcpuid == 0) { 2807 vmm_stat_set(vcpu, VMM_MEM_RESIDENT, PAGE_SIZE * 2808 vmspace_resident_count(vcpu->vm->vmspace)); 2809 } 2810 } 2811 2812 static void 2813 vm_get_wiredcnt(struct vcpu *vcpu, struct vmm_stat_type *stat) 2814 { 2815 2816 if (vcpu->vcpuid == 0) { 2817 vmm_stat_set(vcpu, VMM_MEM_WIRED, PAGE_SIZE * 2818 pmap_wired_count(vmspace_pmap(vcpu->vm->vmspace))); 2819 } 2820 } 2821 2822 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2823 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2824 2825 #ifdef BHYVE_SNAPSHOT 2826 static int 2827 vm_snapshot_vcpus(struct vm *vm, struct vm_snapshot_meta *meta) 2828 { 2829 uint64_t tsc, now; 2830 int ret; 2831 struct vcpu *vcpu; 2832 uint16_t i, maxcpus; 2833 2834 now = rdtsc(); 2835 maxcpus = vm_get_maxcpus(vm); 2836 for (i = 0; i < maxcpus; i++) { 2837 vcpu = vm->vcpu[i]; 2838 if (vcpu == NULL) 2839 continue; 2840 2841 SNAPSHOT_VAR_OR_LEAVE(vcpu->x2apic_state, meta, ret, done); 2842 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitintinfo, meta, ret, done); 2843 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_vector, meta, ret, done); 2844 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode_valid, meta, ret, done); 2845 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode, meta, ret, done); 2846 SNAPSHOT_VAR_OR_LEAVE(vcpu->guest_xcr0, meta, ret, done); 2847 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitinfo, meta, ret, done); 2848 SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, ret, done); 2849 2850 /* 2851 * Save the absolute TSC value by adding now to tsc_offset. 2852 * 2853 * It will be turned turned back into an actual offset when the 2854 * TSC restore function is called 2855 */ 2856 tsc = now + vcpu->tsc_offset; 2857 SNAPSHOT_VAR_OR_LEAVE(tsc, meta, ret, done); 2858 } 2859 2860 done: 2861 return (ret); 2862 } 2863 2864 static int 2865 vm_snapshot_vm(struct vm *vm, struct vm_snapshot_meta *meta) 2866 { 2867 int ret; 2868 2869 ret = vm_snapshot_vcpus(vm, meta); 2870 if (ret != 0) 2871 goto done; 2872 2873 SNAPSHOT_VAR_OR_LEAVE(vm->startup_cpus, meta, ret, done); 2874 done: 2875 return (ret); 2876 } 2877 2878 static int 2879 vm_snapshot_vcpu(struct vm *vm, struct vm_snapshot_meta *meta) 2880 { 2881 int error; 2882 struct vcpu *vcpu; 2883 uint16_t i, maxcpus; 2884 2885 error = 0; 2886 2887 maxcpus = vm_get_maxcpus(vm); 2888 for (i = 0; i < maxcpus; i++) { 2889 vcpu = vm->vcpu[i]; 2890 if (vcpu == NULL) 2891 continue; 2892 2893 error = vmmops_vcpu_snapshot(vcpu->cookie, meta); 2894 if (error != 0) { 2895 printf("%s: failed to snapshot vmcs/vmcb data for " 2896 "vCPU: %d; error: %d\n", __func__, i, error); 2897 goto done; 2898 } 2899 } 2900 2901 done: 2902 return (error); 2903 } 2904 2905 /* 2906 * Save kernel-side structures to user-space for snapshotting. 2907 */ 2908 int 2909 vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta) 2910 { 2911 int ret = 0; 2912 2913 switch (meta->dev_req) { 2914 case STRUCT_VMX: 2915 ret = vmmops_snapshot(vm->cookie, meta); 2916 break; 2917 case STRUCT_VMCX: 2918 ret = vm_snapshot_vcpu(vm, meta); 2919 break; 2920 case STRUCT_VM: 2921 ret = vm_snapshot_vm(vm, meta); 2922 break; 2923 case STRUCT_VIOAPIC: 2924 ret = vioapic_snapshot(vm_ioapic(vm), meta); 2925 break; 2926 case STRUCT_VLAPIC: 2927 ret = vlapic_snapshot(vm, meta); 2928 break; 2929 case STRUCT_VHPET: 2930 ret = vhpet_snapshot(vm_hpet(vm), meta); 2931 break; 2932 case STRUCT_VATPIC: 2933 ret = vatpic_snapshot(vm_atpic(vm), meta); 2934 break; 2935 case STRUCT_VATPIT: 2936 ret = vatpit_snapshot(vm_atpit(vm), meta); 2937 break; 2938 case STRUCT_VPMTMR: 2939 ret = vpmtmr_snapshot(vm_pmtmr(vm), meta); 2940 break; 2941 case STRUCT_VRTC: 2942 ret = vrtc_snapshot(vm_rtc(vm), meta); 2943 break; 2944 default: 2945 printf("%s: failed to find the requested type %#x\n", 2946 __func__, meta->dev_req); 2947 ret = (EINVAL); 2948 } 2949 return (ret); 2950 } 2951 2952 void 2953 vm_set_tsc_offset(struct vcpu *vcpu, uint64_t offset) 2954 { 2955 vcpu->tsc_offset = offset; 2956 } 2957 2958 int 2959 vm_restore_time(struct vm *vm) 2960 { 2961 int error; 2962 uint64_t now; 2963 struct vcpu *vcpu; 2964 uint16_t i, maxcpus; 2965 2966 now = rdtsc(); 2967 2968 error = vhpet_restore_time(vm_hpet(vm)); 2969 if (error) 2970 return (error); 2971 2972 maxcpus = vm_get_maxcpus(vm); 2973 for (i = 0; i < maxcpus; i++) { 2974 vcpu = vm->vcpu[i]; 2975 if (vcpu == NULL) 2976 continue; 2977 2978 error = vmmops_restore_tsc(vcpu->cookie, 2979 vcpu->tsc_offset - now); 2980 if (error) 2981 return (error); 2982 } 2983 2984 return (0); 2985 } 2986 #endif 2987