1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/kernel.h> 37 #include <sys/module.h> 38 #include <sys/sysctl.h> 39 #include <sys/malloc.h> 40 #include <sys/pcpu.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/proc.h> 44 #include <sys/rwlock.h> 45 #include <sys/sched.h> 46 #include <sys/smp.h> 47 #include <sys/systm.h> 48 49 #include <vm/vm.h> 50 #include <vm/vm_object.h> 51 #include <vm/vm_page.h> 52 #include <vm/pmap.h> 53 #include <vm/vm_map.h> 54 #include <vm/vm_extern.h> 55 #include <vm/vm_param.h> 56 57 #include <machine/cpu.h> 58 #include <machine/pcb.h> 59 #include <machine/smp.h> 60 #include <machine/md_var.h> 61 #include <x86/psl.h> 62 #include <x86/apicreg.h> 63 64 #include <machine/vmm.h> 65 #include <machine/vmm_dev.h> 66 #include <machine/vmm_instruction_emul.h> 67 68 #include "vmm_ioport.h" 69 #include "vmm_ktr.h" 70 #include "vmm_host.h" 71 #include "vmm_mem.h" 72 #include "vmm_util.h" 73 #include "vatpic.h" 74 #include "vatpit.h" 75 #include "vhpet.h" 76 #include "vioapic.h" 77 #include "vlapic.h" 78 #include "vpmtmr.h" 79 #include "vrtc.h" 80 #include "vmm_stat.h" 81 #include "vmm_lapic.h" 82 83 #include "io/ppt.h" 84 #include "io/iommu.h" 85 86 struct vlapic; 87 88 /* 89 * Initialization: 90 * (a) allocated when vcpu is created 91 * (i) initialized when vcpu is created and when it is reinitialized 92 * (o) initialized the first time the vcpu is created 93 * (x) initialized before use 94 */ 95 struct vcpu { 96 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 97 enum vcpu_state state; /* (o) vcpu state */ 98 int hostcpu; /* (o) vcpu's host cpu */ 99 int reqidle; /* (i) request vcpu to idle */ 100 struct vlapic *vlapic; /* (i) APIC device model */ 101 enum x2apic_state x2apic_state; /* (i) APIC mode */ 102 uint64_t exitintinfo; /* (i) events pending at VM exit */ 103 int nmi_pending; /* (i) NMI pending */ 104 int extint_pending; /* (i) INTR pending */ 105 int exception_pending; /* (i) exception pending */ 106 int exc_vector; /* (x) exception collateral */ 107 int exc_errcode_valid; 108 uint32_t exc_errcode; 109 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 110 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 111 void *stats; /* (a,i) statistics */ 112 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 113 uint64_t nextrip; /* (x) next instruction to execute */ 114 }; 115 116 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx)) 117 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 118 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 119 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 120 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 121 122 struct mem_seg { 123 size_t len; 124 bool sysmem; 125 struct vm_object *object; 126 }; 127 #define VM_MAX_MEMSEGS 3 128 129 struct mem_map { 130 vm_paddr_t gpa; 131 size_t len; 132 vm_ooffset_t segoff; 133 int segid; 134 int prot; 135 int flags; 136 }; 137 #define VM_MAX_MEMMAPS 4 138 139 /* 140 * Initialization: 141 * (o) initialized the first time the VM is created 142 * (i) initialized when VM is created and when it is reinitialized 143 * (x) initialized before use 144 */ 145 struct vm { 146 void *cookie; /* (i) cpu-specific data */ 147 void *iommu; /* (x) iommu-specific data */ 148 struct vhpet *vhpet; /* (i) virtual HPET */ 149 struct vioapic *vioapic; /* (i) virtual ioapic */ 150 struct vatpic *vatpic; /* (i) virtual atpic */ 151 struct vatpit *vatpit; /* (i) virtual atpit */ 152 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ 153 struct vrtc *vrtc; /* (o) virtual RTC */ 154 volatile cpuset_t active_cpus; /* (i) active vcpus */ 155 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */ 156 int suspend; /* (i) stop VM execution */ 157 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 158 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 159 cpuset_t rendezvous_req_cpus; /* (x) rendezvous requested */ 160 cpuset_t rendezvous_done_cpus; /* (x) rendezvous finished */ 161 void *rendezvous_arg; /* (x) rendezvous func/arg */ 162 vm_rendezvous_func_t rendezvous_func; 163 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 164 struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */ 165 struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */ 166 struct vmspace *vmspace; /* (o) guest's address space */ 167 char name[VM_MAX_NAMELEN]; /* (o) virtual machine name */ 168 struct vcpu vcpu[VM_MAXCPU]; /* (i) guest vcpus */ 169 /* The following describe the vm cpu topology */ 170 uint16_t sockets; /* (o) num of sockets */ 171 uint16_t cores; /* (o) num of cores/socket */ 172 uint16_t threads; /* (o) num of threads/core */ 173 uint16_t maxcpus; /* (o) max pluggable cpus */ 174 }; 175 176 static int vmm_initialized; 177 178 static struct vmm_ops *ops; 179 #define VMM_INIT(num) (ops != NULL ? (*ops->init)(num) : 0) 180 #define VMM_CLEANUP() (ops != NULL ? (*ops->cleanup)() : 0) 181 #define VMM_RESUME() (ops != NULL ? (*ops->resume)() : 0) 182 183 #define VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL) 184 #define VMRUN(vmi, vcpu, rip, pmap, evinfo) \ 185 (ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, evinfo) : ENXIO) 186 #define VMCLEANUP(vmi) (ops != NULL ? (*ops->vmcleanup)(vmi) : NULL) 187 #define VMSPACE_ALLOC(min, max) \ 188 (ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL) 189 #define VMSPACE_FREE(vmspace) \ 190 (ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO) 191 #define VMGETREG(vmi, vcpu, num, retval) \ 192 (ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO) 193 #define VMSETREG(vmi, vcpu, num, val) \ 194 (ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO) 195 #define VMGETDESC(vmi, vcpu, num, desc) \ 196 (ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO) 197 #define VMSETDESC(vmi, vcpu, num, desc) \ 198 (ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO) 199 #define VMGETCAP(vmi, vcpu, num, retval) \ 200 (ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO) 201 #define VMSETCAP(vmi, vcpu, num, val) \ 202 (ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO) 203 #define VLAPIC_INIT(vmi, vcpu) \ 204 (ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL) 205 #define VLAPIC_CLEANUP(vmi, vlapic) \ 206 (ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL) 207 208 #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS) 209 #define fpu_stop_emulating() clts() 210 211 SDT_PROVIDER_DEFINE(vmm); 212 213 static MALLOC_DEFINE(M_VM, "vm", "vm"); 214 215 /* statistics */ 216 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 217 218 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL); 219 220 /* 221 * Halt the guest if all vcpus are executing a HLT instruction with 222 * interrupts disabled. 223 */ 224 static int halt_detection_enabled = 1; 225 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 226 &halt_detection_enabled, 0, 227 "Halt VM if all vcpus execute HLT with interrupts disabled"); 228 229 static int vmm_ipinum; 230 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 231 "IPI vector used for vcpu notifications"); 232 233 static int trace_guest_exceptions; 234 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN, 235 &trace_guest_exceptions, 0, 236 "Trap into hypervisor on all guest exceptions and reflect them back"); 237 238 static void vm_free_memmap(struct vm *vm, int ident); 239 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm); 240 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr); 241 242 #ifdef KTR 243 static const char * 244 vcpu_state2str(enum vcpu_state state) 245 { 246 247 switch (state) { 248 case VCPU_IDLE: 249 return ("idle"); 250 case VCPU_FROZEN: 251 return ("frozen"); 252 case VCPU_RUNNING: 253 return ("running"); 254 case VCPU_SLEEPING: 255 return ("sleeping"); 256 default: 257 return ("unknown"); 258 } 259 } 260 #endif 261 262 static void 263 vcpu_cleanup(struct vm *vm, int i, bool destroy) 264 { 265 struct vcpu *vcpu = &vm->vcpu[i]; 266 267 VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic); 268 if (destroy) { 269 vmm_stat_free(vcpu->stats); 270 fpu_save_area_free(vcpu->guestfpu); 271 } 272 } 273 274 static void 275 vcpu_init(struct vm *vm, int vcpu_id, bool create) 276 { 277 struct vcpu *vcpu; 278 279 KASSERT(vcpu_id >= 0 && vcpu_id < VM_MAXCPU, 280 ("vcpu_init: invalid vcpu %d", vcpu_id)); 281 282 vcpu = &vm->vcpu[vcpu_id]; 283 284 if (create) { 285 KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already " 286 "initialized", vcpu_id)); 287 vcpu_lock_init(vcpu); 288 vcpu->state = VCPU_IDLE; 289 vcpu->hostcpu = NOCPU; 290 vcpu->guestfpu = fpu_save_area_alloc(); 291 vcpu->stats = vmm_stat_alloc(); 292 } 293 294 vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id); 295 vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED); 296 vcpu->reqidle = 0; 297 vcpu->exitintinfo = 0; 298 vcpu->nmi_pending = 0; 299 vcpu->extint_pending = 0; 300 vcpu->exception_pending = 0; 301 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 302 fpu_save_area_reset(vcpu->guestfpu); 303 vmm_stat_init(vcpu->stats); 304 } 305 306 int 307 vcpu_trace_exceptions(struct vm *vm, int vcpuid) 308 { 309 310 return (trace_guest_exceptions); 311 } 312 313 struct vm_exit * 314 vm_exitinfo(struct vm *vm, int cpuid) 315 { 316 struct vcpu *vcpu; 317 318 if (cpuid < 0 || cpuid >= VM_MAXCPU) 319 panic("vm_exitinfo: invalid cpuid %d", cpuid); 320 321 vcpu = &vm->vcpu[cpuid]; 322 323 return (&vcpu->exitinfo); 324 } 325 326 static void 327 vmm_resume(void) 328 { 329 VMM_RESUME(); 330 } 331 332 static int 333 vmm_init(void) 334 { 335 int error; 336 337 vmm_host_state_init(); 338 339 vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) : 340 &IDTVEC(justreturn)); 341 if (vmm_ipinum < 0) 342 vmm_ipinum = IPI_AST; 343 344 error = vmm_mem_init(); 345 if (error) 346 return (error); 347 348 if (vmm_is_intel()) 349 ops = &vmm_ops_intel; 350 else if (vmm_is_amd()) 351 ops = &vmm_ops_amd; 352 else 353 return (ENXIO); 354 355 vmm_resume_p = vmm_resume; 356 357 return (VMM_INIT(vmm_ipinum)); 358 } 359 360 static int 361 vmm_handler(module_t mod, int what, void *arg) 362 { 363 int error; 364 365 switch (what) { 366 case MOD_LOAD: 367 vmmdev_init(); 368 error = vmm_init(); 369 if (error == 0) 370 vmm_initialized = 1; 371 break; 372 case MOD_UNLOAD: 373 error = vmmdev_cleanup(); 374 if (error == 0) { 375 vmm_resume_p = NULL; 376 iommu_cleanup(); 377 if (vmm_ipinum != IPI_AST) 378 lapic_ipi_free(vmm_ipinum); 379 error = VMM_CLEANUP(); 380 /* 381 * Something bad happened - prevent new 382 * VMs from being created 383 */ 384 if (error) 385 vmm_initialized = 0; 386 } 387 break; 388 default: 389 error = 0; 390 break; 391 } 392 return (error); 393 } 394 395 static moduledata_t vmm_kmod = { 396 "vmm", 397 vmm_handler, 398 NULL 399 }; 400 401 /* 402 * vmm initialization has the following dependencies: 403 * 404 * - VT-x initialization requires smp_rendezvous() and therefore must happen 405 * after SMP is fully functional (after SI_SUB_SMP). 406 */ 407 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 408 MODULE_VERSION(vmm, 1); 409 410 static void 411 vm_init(struct vm *vm, bool create) 412 { 413 int i; 414 415 vm->cookie = VMINIT(vm, vmspace_pmap(vm->vmspace)); 416 vm->iommu = NULL; 417 vm->vioapic = vioapic_init(vm); 418 vm->vhpet = vhpet_init(vm); 419 vm->vatpic = vatpic_init(vm); 420 vm->vatpit = vatpit_init(vm); 421 vm->vpmtmr = vpmtmr_init(vm); 422 if (create) 423 vm->vrtc = vrtc_init(vm); 424 425 CPU_ZERO(&vm->active_cpus); 426 CPU_ZERO(&vm->debug_cpus); 427 428 vm->suspend = 0; 429 CPU_ZERO(&vm->suspended_cpus); 430 431 for (i = 0; i < VM_MAXCPU; i++) 432 vcpu_init(vm, i, create); 433 } 434 435 /* 436 * The default CPU topology is a single thread per package. 437 */ 438 u_int cores_per_package = 1; 439 u_int threads_per_core = 1; 440 441 int 442 vm_create(const char *name, struct vm **retvm) 443 { 444 struct vm *vm; 445 struct vmspace *vmspace; 446 447 /* 448 * If vmm.ko could not be successfully initialized then don't attempt 449 * to create the virtual machine. 450 */ 451 if (!vmm_initialized) 452 return (ENXIO); 453 454 if (name == NULL || strlen(name) >= VM_MAX_NAMELEN) 455 return (EINVAL); 456 457 vmspace = VMSPACE_ALLOC(0, VM_MAXUSER_ADDRESS); 458 if (vmspace == NULL) 459 return (ENOMEM); 460 461 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 462 strcpy(vm->name, name); 463 vm->vmspace = vmspace; 464 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 465 466 vm->sockets = 1; 467 vm->cores = cores_per_package; /* XXX backwards compatibility */ 468 vm->threads = threads_per_core; /* XXX backwards compatibility */ 469 vm->maxcpus = 0; /* XXX not implemented */ 470 471 vm_init(vm, true); 472 473 *retvm = vm; 474 return (0); 475 } 476 477 void 478 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, 479 uint16_t *threads, uint16_t *maxcpus) 480 { 481 *sockets = vm->sockets; 482 *cores = vm->cores; 483 *threads = vm->threads; 484 *maxcpus = vm->maxcpus; 485 } 486 487 int 488 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, 489 uint16_t threads, uint16_t maxcpus) 490 { 491 if (maxcpus != 0) 492 return (EINVAL); /* XXX remove when supported */ 493 if ((sockets * cores * threads) > VM_MAXCPU) 494 return (EINVAL); 495 /* XXX need to check sockets * cores * threads == vCPU, how? */ 496 vm->sockets = sockets; 497 vm->cores = cores; 498 vm->threads = threads; 499 vm->maxcpus = maxcpus; 500 return(0); 501 } 502 503 static void 504 vm_cleanup(struct vm *vm, bool destroy) 505 { 506 struct mem_map *mm; 507 int i; 508 509 ppt_unassign_all(vm); 510 511 if (vm->iommu != NULL) 512 iommu_destroy_domain(vm->iommu); 513 514 if (destroy) 515 vrtc_cleanup(vm->vrtc); 516 else 517 vrtc_reset(vm->vrtc); 518 vpmtmr_cleanup(vm->vpmtmr); 519 vatpit_cleanup(vm->vatpit); 520 vhpet_cleanup(vm->vhpet); 521 vatpic_cleanup(vm->vatpic); 522 vioapic_cleanup(vm->vioapic); 523 524 for (i = 0; i < VM_MAXCPU; i++) 525 vcpu_cleanup(vm, i, destroy); 526 527 VMCLEANUP(vm->cookie); 528 529 /* 530 * System memory is removed from the guest address space only when 531 * the VM is destroyed. This is because the mapping remains the same 532 * across VM reset. 533 * 534 * Device memory can be relocated by the guest (e.g. using PCI BARs) 535 * so those mappings are removed on a VM reset. 536 */ 537 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 538 mm = &vm->mem_maps[i]; 539 if (destroy || !sysmem_mapping(vm, mm)) 540 vm_free_memmap(vm, i); 541 } 542 543 if (destroy) { 544 for (i = 0; i < VM_MAX_MEMSEGS; i++) 545 vm_free_memseg(vm, i); 546 547 VMSPACE_FREE(vm->vmspace); 548 vm->vmspace = NULL; 549 } 550 } 551 552 void 553 vm_destroy(struct vm *vm) 554 { 555 vm_cleanup(vm, true); 556 free(vm, M_VM); 557 } 558 559 int 560 vm_reinit(struct vm *vm) 561 { 562 int error; 563 564 /* 565 * A virtual machine can be reset only if all vcpus are suspended. 566 */ 567 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 568 vm_cleanup(vm, false); 569 vm_init(vm, false); 570 error = 0; 571 } else { 572 error = EBUSY; 573 } 574 575 return (error); 576 } 577 578 const char * 579 vm_name(struct vm *vm) 580 { 581 return (vm->name); 582 } 583 584 int 585 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 586 { 587 vm_object_t obj; 588 589 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 590 return (ENOMEM); 591 else 592 return (0); 593 } 594 595 int 596 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 597 { 598 599 vmm_mmio_free(vm->vmspace, gpa, len); 600 return (0); 601 } 602 603 /* 604 * Return 'true' if 'gpa' is allocated in the guest address space. 605 * 606 * This function is called in the context of a running vcpu which acts as 607 * an implicit lock on 'vm->mem_maps[]'. 608 */ 609 bool 610 vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa) 611 { 612 struct mem_map *mm; 613 int i; 614 615 #ifdef INVARIANTS 616 int hostcpu, state; 617 state = vcpu_get_state(vm, vcpuid, &hostcpu); 618 KASSERT(state == VCPU_RUNNING && hostcpu == curcpu, 619 ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu)); 620 #endif 621 622 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 623 mm = &vm->mem_maps[i]; 624 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len) 625 return (true); /* 'gpa' is sysmem or devmem */ 626 } 627 628 if (ppt_is_mmio(vm, gpa)) 629 return (true); /* 'gpa' is pci passthru mmio */ 630 631 return (false); 632 } 633 634 int 635 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem) 636 { 637 struct mem_seg *seg; 638 vm_object_t obj; 639 640 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 641 return (EINVAL); 642 643 if (len == 0 || (len & PAGE_MASK)) 644 return (EINVAL); 645 646 seg = &vm->mem_segs[ident]; 647 if (seg->object != NULL) { 648 if (seg->len == len && seg->sysmem == sysmem) 649 return (EEXIST); 650 else 651 return (EINVAL); 652 } 653 654 obj = vm_object_allocate(OBJT_DEFAULT, len >> PAGE_SHIFT); 655 if (obj == NULL) 656 return (ENOMEM); 657 658 seg->len = len; 659 seg->object = obj; 660 seg->sysmem = sysmem; 661 return (0); 662 } 663 664 int 665 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, 666 vm_object_t *objptr) 667 { 668 struct mem_seg *seg; 669 670 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 671 return (EINVAL); 672 673 seg = &vm->mem_segs[ident]; 674 if (len) 675 *len = seg->len; 676 if (sysmem) 677 *sysmem = seg->sysmem; 678 if (objptr) 679 *objptr = seg->object; 680 return (0); 681 } 682 683 void 684 vm_free_memseg(struct vm *vm, int ident) 685 { 686 struct mem_seg *seg; 687 688 KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS, 689 ("%s: invalid memseg ident %d", __func__, ident)); 690 691 seg = &vm->mem_segs[ident]; 692 if (seg->object != NULL) { 693 vm_object_deallocate(seg->object); 694 bzero(seg, sizeof(struct mem_seg)); 695 } 696 } 697 698 int 699 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first, 700 size_t len, int prot, int flags) 701 { 702 struct mem_seg *seg; 703 struct mem_map *m, *map; 704 vm_ooffset_t last; 705 int i, error; 706 707 if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0) 708 return (EINVAL); 709 710 if (flags & ~VM_MEMMAP_F_WIRED) 711 return (EINVAL); 712 713 if (segid < 0 || segid >= VM_MAX_MEMSEGS) 714 return (EINVAL); 715 716 seg = &vm->mem_segs[segid]; 717 if (seg->object == NULL) 718 return (EINVAL); 719 720 last = first + len; 721 if (first < 0 || first >= last || last > seg->len) 722 return (EINVAL); 723 724 if ((gpa | first | last) & PAGE_MASK) 725 return (EINVAL); 726 727 map = NULL; 728 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 729 m = &vm->mem_maps[i]; 730 if (m->len == 0) { 731 map = m; 732 break; 733 } 734 } 735 736 if (map == NULL) 737 return (ENOSPC); 738 739 error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa, 740 len, 0, VMFS_NO_SPACE, prot, prot, 0); 741 if (error != KERN_SUCCESS) 742 return (EFAULT); 743 744 vm_object_reference(seg->object); 745 746 if (flags & VM_MEMMAP_F_WIRED) { 747 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len, 748 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 749 if (error != KERN_SUCCESS) { 750 vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len); 751 return (EFAULT); 752 } 753 } 754 755 map->gpa = gpa; 756 map->len = len; 757 map->segoff = first; 758 map->segid = segid; 759 map->prot = prot; 760 map->flags = flags; 761 return (0); 762 } 763 764 int 765 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, 766 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 767 { 768 struct mem_map *mm, *mmnext; 769 int i; 770 771 mmnext = NULL; 772 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 773 mm = &vm->mem_maps[i]; 774 if (mm->len == 0 || mm->gpa < *gpa) 775 continue; 776 if (mmnext == NULL || mm->gpa < mmnext->gpa) 777 mmnext = mm; 778 } 779 780 if (mmnext != NULL) { 781 *gpa = mmnext->gpa; 782 if (segid) 783 *segid = mmnext->segid; 784 if (segoff) 785 *segoff = mmnext->segoff; 786 if (len) 787 *len = mmnext->len; 788 if (prot) 789 *prot = mmnext->prot; 790 if (flags) 791 *flags = mmnext->flags; 792 return (0); 793 } else { 794 return (ENOENT); 795 } 796 } 797 798 static void 799 vm_free_memmap(struct vm *vm, int ident) 800 { 801 struct mem_map *mm; 802 int error; 803 804 mm = &vm->mem_maps[ident]; 805 if (mm->len) { 806 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa, 807 mm->gpa + mm->len); 808 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d", 809 __func__, error)); 810 bzero(mm, sizeof(struct mem_map)); 811 } 812 } 813 814 static __inline bool 815 sysmem_mapping(struct vm *vm, struct mem_map *mm) 816 { 817 818 if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem) 819 return (true); 820 else 821 return (false); 822 } 823 824 vm_paddr_t 825 vmm_sysmem_maxaddr(struct vm *vm) 826 { 827 struct mem_map *mm; 828 vm_paddr_t maxaddr; 829 int i; 830 831 maxaddr = 0; 832 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 833 mm = &vm->mem_maps[i]; 834 if (sysmem_mapping(vm, mm)) { 835 if (maxaddr < mm->gpa + mm->len) 836 maxaddr = mm->gpa + mm->len; 837 } 838 } 839 return (maxaddr); 840 } 841 842 static void 843 vm_iommu_modify(struct vm *vm, boolean_t map) 844 { 845 int i, sz; 846 vm_paddr_t gpa, hpa; 847 struct mem_map *mm; 848 void *vp, *cookie, *host_domain; 849 850 sz = PAGE_SIZE; 851 host_domain = iommu_host_domain(); 852 853 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 854 mm = &vm->mem_maps[i]; 855 if (!sysmem_mapping(vm, mm)) 856 continue; 857 858 if (map) { 859 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0, 860 ("iommu map found invalid memmap %#lx/%#lx/%#x", 861 mm->gpa, mm->len, mm->flags)); 862 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0) 863 continue; 864 mm->flags |= VM_MEMMAP_F_IOMMU; 865 } else { 866 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0) 867 continue; 868 mm->flags &= ~VM_MEMMAP_F_IOMMU; 869 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0, 870 ("iommu unmap found invalid memmap %#lx/%#lx/%#x", 871 mm->gpa, mm->len, mm->flags)); 872 } 873 874 gpa = mm->gpa; 875 while (gpa < mm->gpa + mm->len) { 876 vp = vm_gpa_hold(vm, -1, gpa, PAGE_SIZE, VM_PROT_WRITE, 877 &cookie); 878 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", 879 vm_name(vm), gpa)); 880 881 vm_gpa_release(cookie); 882 883 hpa = DMAP_TO_PHYS((uintptr_t)vp); 884 if (map) { 885 iommu_create_mapping(vm->iommu, gpa, hpa, sz); 886 iommu_remove_mapping(host_domain, hpa, sz); 887 } else { 888 iommu_remove_mapping(vm->iommu, gpa, sz); 889 iommu_create_mapping(host_domain, hpa, hpa, sz); 890 } 891 892 gpa += PAGE_SIZE; 893 } 894 } 895 896 /* 897 * Invalidate the cached translations associated with the domain 898 * from which pages were removed. 899 */ 900 if (map) 901 iommu_invalidate_tlb(host_domain); 902 else 903 iommu_invalidate_tlb(vm->iommu); 904 } 905 906 #define vm_iommu_unmap(vm) vm_iommu_modify((vm), FALSE) 907 #define vm_iommu_map(vm) vm_iommu_modify((vm), TRUE) 908 909 int 910 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 911 { 912 int error; 913 914 error = ppt_unassign_device(vm, bus, slot, func); 915 if (error) 916 return (error); 917 918 if (ppt_assigned_devices(vm) == 0) 919 vm_iommu_unmap(vm); 920 921 return (0); 922 } 923 924 int 925 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 926 { 927 int error; 928 vm_paddr_t maxaddr; 929 930 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */ 931 if (ppt_assigned_devices(vm) == 0) { 932 KASSERT(vm->iommu == NULL, 933 ("vm_assign_pptdev: iommu must be NULL")); 934 maxaddr = vmm_sysmem_maxaddr(vm); 935 vm->iommu = iommu_create_domain(maxaddr); 936 if (vm->iommu == NULL) 937 return (ENXIO); 938 vm_iommu_map(vm); 939 } 940 941 error = ppt_assign_device(vm, bus, slot, func); 942 return (error); 943 } 944 945 void * 946 vm_gpa_hold(struct vm *vm, int vcpuid, vm_paddr_t gpa, size_t len, int reqprot, 947 void **cookie) 948 { 949 int i, count, pageoff; 950 struct mem_map *mm; 951 vm_page_t m; 952 #ifdef INVARIANTS 953 /* 954 * All vcpus are frozen by ioctls that modify the memory map 955 * (e.g. VM_MMAP_MEMSEG). Therefore 'vm->memmap[]' stability is 956 * guaranteed if at least one vcpu is in the VCPU_FROZEN state. 957 */ 958 int state; 959 KASSERT(vcpuid >= -1 && vcpuid < VM_MAXCPU, ("%s: invalid vcpuid %d", 960 __func__, vcpuid)); 961 for (i = 0; i < VM_MAXCPU; i++) { 962 if (vcpuid != -1 && vcpuid != i) 963 continue; 964 state = vcpu_get_state(vm, i, NULL); 965 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d", 966 __func__, state)); 967 } 968 #endif 969 pageoff = gpa & PAGE_MASK; 970 if (len > PAGE_SIZE - pageoff) 971 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 972 973 count = 0; 974 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 975 mm = &vm->mem_maps[i]; 976 if (sysmem_mapping(vm, mm) && gpa >= mm->gpa && 977 gpa < mm->gpa + mm->len) { 978 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 979 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 980 break; 981 } 982 } 983 984 if (count == 1) { 985 *cookie = m; 986 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 987 } else { 988 *cookie = NULL; 989 return (NULL); 990 } 991 } 992 993 void 994 vm_gpa_release(void *cookie) 995 { 996 vm_page_t m = cookie; 997 998 vm_page_lock(m); 999 vm_page_unhold(m); 1000 vm_page_unlock(m); 1001 } 1002 1003 int 1004 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval) 1005 { 1006 1007 if (vcpu < 0 || vcpu >= VM_MAXCPU) 1008 return (EINVAL); 1009 1010 if (reg >= VM_REG_LAST) 1011 return (EINVAL); 1012 1013 return (VMGETREG(vm->cookie, vcpu, reg, retval)); 1014 } 1015 1016 int 1017 vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val) 1018 { 1019 struct vcpu *vcpu; 1020 int error; 1021 1022 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1023 return (EINVAL); 1024 1025 if (reg >= VM_REG_LAST) 1026 return (EINVAL); 1027 1028 error = VMSETREG(vm->cookie, vcpuid, reg, val); 1029 if (error || reg != VM_REG_GUEST_RIP) 1030 return (error); 1031 1032 /* Set 'nextrip' to match the value of %rip */ 1033 VCPU_CTR1(vm, vcpuid, "Setting nextrip to %#lx", val); 1034 vcpu = &vm->vcpu[vcpuid]; 1035 vcpu->nextrip = val; 1036 return (0); 1037 } 1038 1039 static boolean_t 1040 is_descriptor_table(int reg) 1041 { 1042 1043 switch (reg) { 1044 case VM_REG_GUEST_IDTR: 1045 case VM_REG_GUEST_GDTR: 1046 return (TRUE); 1047 default: 1048 return (FALSE); 1049 } 1050 } 1051 1052 static boolean_t 1053 is_segment_register(int reg) 1054 { 1055 1056 switch (reg) { 1057 case VM_REG_GUEST_ES: 1058 case VM_REG_GUEST_CS: 1059 case VM_REG_GUEST_SS: 1060 case VM_REG_GUEST_DS: 1061 case VM_REG_GUEST_FS: 1062 case VM_REG_GUEST_GS: 1063 case VM_REG_GUEST_TR: 1064 case VM_REG_GUEST_LDTR: 1065 return (TRUE); 1066 default: 1067 return (FALSE); 1068 } 1069 } 1070 1071 int 1072 vm_get_seg_desc(struct vm *vm, int vcpu, int reg, 1073 struct seg_desc *desc) 1074 { 1075 1076 if (vcpu < 0 || vcpu >= VM_MAXCPU) 1077 return (EINVAL); 1078 1079 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1080 return (EINVAL); 1081 1082 return (VMGETDESC(vm->cookie, vcpu, reg, desc)); 1083 } 1084 1085 int 1086 vm_set_seg_desc(struct vm *vm, int vcpu, int reg, 1087 struct seg_desc *desc) 1088 { 1089 if (vcpu < 0 || vcpu >= VM_MAXCPU) 1090 return (EINVAL); 1091 1092 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1093 return (EINVAL); 1094 1095 return (VMSETDESC(vm->cookie, vcpu, reg, desc)); 1096 } 1097 1098 static void 1099 restore_guest_fpustate(struct vcpu *vcpu) 1100 { 1101 1102 /* flush host state to the pcb */ 1103 fpuexit(curthread); 1104 1105 /* restore guest FPU state */ 1106 fpu_stop_emulating(); 1107 fpurestore(vcpu->guestfpu); 1108 1109 /* restore guest XCR0 if XSAVE is enabled in the host */ 1110 if (rcr4() & CR4_XSAVE) 1111 load_xcr(0, vcpu->guest_xcr0); 1112 1113 /* 1114 * The FPU is now "dirty" with the guest's state so turn on emulation 1115 * to trap any access to the FPU by the host. 1116 */ 1117 fpu_start_emulating(); 1118 } 1119 1120 static void 1121 save_guest_fpustate(struct vcpu *vcpu) 1122 { 1123 1124 if ((rcr0() & CR0_TS) == 0) 1125 panic("fpu emulation not enabled in host!"); 1126 1127 /* save guest XCR0 and restore host XCR0 */ 1128 if (rcr4() & CR4_XSAVE) { 1129 vcpu->guest_xcr0 = rxcr(0); 1130 load_xcr(0, vmm_get_host_xcr0()); 1131 } 1132 1133 /* save guest FPU state */ 1134 fpu_stop_emulating(); 1135 fpusave(vcpu->guestfpu); 1136 fpu_start_emulating(); 1137 } 1138 1139 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 1140 1141 static int 1142 vcpu_set_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate, 1143 bool from_idle) 1144 { 1145 struct vcpu *vcpu; 1146 int error; 1147 1148 vcpu = &vm->vcpu[vcpuid]; 1149 vcpu_assert_locked(vcpu); 1150 1151 /* 1152 * State transitions from the vmmdev_ioctl() must always begin from 1153 * the VCPU_IDLE state. This guarantees that there is only a single 1154 * ioctl() operating on a vcpu at any point. 1155 */ 1156 if (from_idle) { 1157 while (vcpu->state != VCPU_IDLE) { 1158 vcpu->reqidle = 1; 1159 vcpu_notify_event_locked(vcpu, false); 1160 VCPU_CTR1(vm, vcpuid, "vcpu state change from %s to " 1161 "idle requested", vcpu_state2str(vcpu->state)); 1162 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 1163 } 1164 } else { 1165 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 1166 "vcpu idle state")); 1167 } 1168 1169 if (vcpu->state == VCPU_RUNNING) { 1170 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 1171 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 1172 } else { 1173 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 1174 "vcpu that is not running", vcpu->hostcpu)); 1175 } 1176 1177 /* 1178 * The following state transitions are allowed: 1179 * IDLE -> FROZEN -> IDLE 1180 * FROZEN -> RUNNING -> FROZEN 1181 * FROZEN -> SLEEPING -> FROZEN 1182 */ 1183 switch (vcpu->state) { 1184 case VCPU_IDLE: 1185 case VCPU_RUNNING: 1186 case VCPU_SLEEPING: 1187 error = (newstate != VCPU_FROZEN); 1188 break; 1189 case VCPU_FROZEN: 1190 error = (newstate == VCPU_FROZEN); 1191 break; 1192 default: 1193 error = 1; 1194 break; 1195 } 1196 1197 if (error) 1198 return (EBUSY); 1199 1200 VCPU_CTR2(vm, vcpuid, "vcpu state changed from %s to %s", 1201 vcpu_state2str(vcpu->state), vcpu_state2str(newstate)); 1202 1203 vcpu->state = newstate; 1204 if (newstate == VCPU_RUNNING) 1205 vcpu->hostcpu = curcpu; 1206 else 1207 vcpu->hostcpu = NOCPU; 1208 1209 if (newstate == VCPU_IDLE) 1210 wakeup(&vcpu->state); 1211 1212 return (0); 1213 } 1214 1215 static void 1216 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1217 { 1218 int error; 1219 1220 if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0) 1221 panic("Error %d setting state to %d\n", error, newstate); 1222 } 1223 1224 static void 1225 vcpu_require_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1226 { 1227 int error; 1228 1229 if ((error = vcpu_set_state_locked(vm, vcpuid, newstate, false)) != 0) 1230 panic("Error %d setting state to %d", error, newstate); 1231 } 1232 1233 static void 1234 vm_set_rendezvous_func(struct vm *vm, vm_rendezvous_func_t func) 1235 { 1236 1237 KASSERT(mtx_owned(&vm->rendezvous_mtx), ("rendezvous_mtx not locked")); 1238 1239 /* 1240 * Update 'rendezvous_func' and execute a write memory barrier to 1241 * ensure that it is visible across all host cpus. This is not needed 1242 * for correctness but it does ensure that all the vcpus will notice 1243 * that the rendezvous is requested immediately. 1244 */ 1245 vm->rendezvous_func = func; 1246 wmb(); 1247 } 1248 1249 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt) \ 1250 do { \ 1251 if (vcpuid >= 0) \ 1252 VCPU_CTR0(vm, vcpuid, fmt); \ 1253 else \ 1254 VM_CTR0(vm, fmt); \ 1255 } while (0) 1256 1257 static void 1258 vm_handle_rendezvous(struct vm *vm, int vcpuid) 1259 { 1260 1261 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU), 1262 ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid)); 1263 1264 mtx_lock(&vm->rendezvous_mtx); 1265 while (vm->rendezvous_func != NULL) { 1266 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1267 CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus); 1268 1269 if (vcpuid != -1 && 1270 CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1271 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1272 VCPU_CTR0(vm, vcpuid, "Calling rendezvous func"); 1273 (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg); 1274 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1275 } 1276 if (CPU_CMP(&vm->rendezvous_req_cpus, 1277 &vm->rendezvous_done_cpus) == 0) { 1278 VCPU_CTR0(vm, vcpuid, "Rendezvous completed"); 1279 vm_set_rendezvous_func(vm, NULL); 1280 wakeup(&vm->rendezvous_func); 1281 break; 1282 } 1283 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion"); 1284 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1285 "vmrndv", 0); 1286 } 1287 mtx_unlock(&vm->rendezvous_mtx); 1288 } 1289 1290 /* 1291 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1292 */ 1293 static int 1294 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu) 1295 { 1296 struct vcpu *vcpu; 1297 const char *wmesg; 1298 int t, vcpu_halted, vm_halted; 1299 1300 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1301 1302 vcpu = &vm->vcpu[vcpuid]; 1303 vcpu_halted = 0; 1304 vm_halted = 0; 1305 1306 vcpu_lock(vcpu); 1307 while (1) { 1308 /* 1309 * Do a final check for pending NMI or interrupts before 1310 * really putting this thread to sleep. Also check for 1311 * software events that would cause this vcpu to wakeup. 1312 * 1313 * These interrupts/events could have happened after the 1314 * vcpu returned from VMRUN() and before it acquired the 1315 * vcpu lock above. 1316 */ 1317 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle) 1318 break; 1319 if (vm_nmi_pending(vm, vcpuid)) 1320 break; 1321 if (!intr_disabled) { 1322 if (vm_extint_pending(vm, vcpuid) || 1323 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1324 break; 1325 } 1326 } 1327 1328 /* Don't go to sleep if the vcpu thread needs to yield */ 1329 if (vcpu_should_yield(vm, vcpuid)) 1330 break; 1331 1332 if (vcpu_debugged(vm, vcpuid)) 1333 break; 1334 1335 /* 1336 * Some Linux guests implement "halt" by having all vcpus 1337 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1338 * track of the vcpus that have entered this state. When all 1339 * vcpus enter the halted state the virtual machine is halted. 1340 */ 1341 if (intr_disabled) { 1342 wmesg = "vmhalt"; 1343 VCPU_CTR0(vm, vcpuid, "Halted"); 1344 if (!vcpu_halted && halt_detection_enabled) { 1345 vcpu_halted = 1; 1346 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1347 } 1348 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1349 vm_halted = 1; 1350 break; 1351 } 1352 } else { 1353 wmesg = "vmidle"; 1354 } 1355 1356 t = ticks; 1357 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); 1358 /* 1359 * XXX msleep_spin() cannot be interrupted by signals so 1360 * wake up periodically to check pending signals. 1361 */ 1362 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1363 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); 1364 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t); 1365 } 1366 1367 if (vcpu_halted) 1368 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1369 1370 vcpu_unlock(vcpu); 1371 1372 if (vm_halted) 1373 vm_suspend(vm, VM_SUSPEND_HALT); 1374 1375 return (0); 1376 } 1377 1378 static int 1379 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu) 1380 { 1381 int rv, ftype; 1382 struct vm_map *map; 1383 struct vcpu *vcpu; 1384 struct vm_exit *vme; 1385 1386 vcpu = &vm->vcpu[vcpuid]; 1387 vme = &vcpu->exitinfo; 1388 1389 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1390 __func__, vme->inst_length)); 1391 1392 ftype = vme->u.paging.fault_type; 1393 KASSERT(ftype == VM_PROT_READ || 1394 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1395 ("vm_handle_paging: invalid fault_type %d", ftype)); 1396 1397 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1398 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1399 vme->u.paging.gpa, ftype); 1400 if (rv == 0) { 1401 VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx", 1402 ftype == VM_PROT_READ ? "accessed" : "dirty", 1403 vme->u.paging.gpa); 1404 goto done; 1405 } 1406 } 1407 1408 map = &vm->vmspace->vm_map; 1409 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL); 1410 1411 VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, " 1412 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1413 1414 if (rv != KERN_SUCCESS) 1415 return (EFAULT); 1416 done: 1417 return (0); 1418 } 1419 1420 static int 1421 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu) 1422 { 1423 struct vie *vie; 1424 struct vcpu *vcpu; 1425 struct vm_exit *vme; 1426 uint64_t gla, gpa, cs_base; 1427 struct vm_guest_paging *paging; 1428 mem_region_read_t mread; 1429 mem_region_write_t mwrite; 1430 enum vm_cpu_mode cpu_mode; 1431 int cs_d, error, fault; 1432 1433 vcpu = &vm->vcpu[vcpuid]; 1434 vme = &vcpu->exitinfo; 1435 1436 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1437 __func__, vme->inst_length)); 1438 1439 gla = vme->u.inst_emul.gla; 1440 gpa = vme->u.inst_emul.gpa; 1441 cs_base = vme->u.inst_emul.cs_base; 1442 cs_d = vme->u.inst_emul.cs_d; 1443 vie = &vme->u.inst_emul.vie; 1444 paging = &vme->u.inst_emul.paging; 1445 cpu_mode = paging->cpu_mode; 1446 1447 VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa); 1448 1449 /* Fetch, decode and emulate the faulting instruction */ 1450 if (vie->num_valid == 0) { 1451 error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip + 1452 cs_base, VIE_INST_SIZE, vie, &fault); 1453 } else { 1454 /* 1455 * The instruction bytes have already been copied into 'vie' 1456 */ 1457 error = fault = 0; 1458 } 1459 if (error || fault) 1460 return (error); 1461 1462 if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) { 1463 VCPU_CTR1(vm, vcpuid, "Error decoding instruction at %#lx", 1464 vme->rip + cs_base); 1465 *retu = true; /* dump instruction bytes in userspace */ 1466 return (0); 1467 } 1468 1469 /* 1470 * Update 'nextrip' based on the length of the emulated instruction. 1471 */ 1472 vme->inst_length = vie->num_processed; 1473 vcpu->nextrip += vie->num_processed; 1474 VCPU_CTR1(vm, vcpuid, "nextrip updated to %#lx after instruction " 1475 "decoding", vcpu->nextrip); 1476 1477 /* return to userland unless this is an in-kernel emulated device */ 1478 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1479 mread = lapic_mmio_read; 1480 mwrite = lapic_mmio_write; 1481 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1482 mread = vioapic_mmio_read; 1483 mwrite = vioapic_mmio_write; 1484 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1485 mread = vhpet_mmio_read; 1486 mwrite = vhpet_mmio_write; 1487 } else { 1488 *retu = true; 1489 return (0); 1490 } 1491 1492 error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging, 1493 mread, mwrite, retu); 1494 1495 return (error); 1496 } 1497 1498 static int 1499 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu) 1500 { 1501 int i, done; 1502 struct vcpu *vcpu; 1503 1504 done = 0; 1505 vcpu = &vm->vcpu[vcpuid]; 1506 1507 CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus); 1508 1509 /* 1510 * Wait until all 'active_cpus' have suspended themselves. 1511 * 1512 * Since a VM may be suspended at any time including when one or 1513 * more vcpus are doing a rendezvous we need to call the rendezvous 1514 * handler while we are waiting to prevent a deadlock. 1515 */ 1516 vcpu_lock(vcpu); 1517 while (1) { 1518 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1519 VCPU_CTR0(vm, vcpuid, "All vcpus suspended"); 1520 break; 1521 } 1522 1523 if (vm->rendezvous_func == NULL) { 1524 VCPU_CTR0(vm, vcpuid, "Sleeping during suspend"); 1525 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); 1526 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1527 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); 1528 } else { 1529 VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend"); 1530 vcpu_unlock(vcpu); 1531 vm_handle_rendezvous(vm, vcpuid); 1532 vcpu_lock(vcpu); 1533 } 1534 } 1535 vcpu_unlock(vcpu); 1536 1537 /* 1538 * Wakeup the other sleeping vcpus and return to userspace. 1539 */ 1540 for (i = 0; i < VM_MAXCPU; i++) { 1541 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1542 vcpu_notify_event(vm, i, false); 1543 } 1544 } 1545 1546 *retu = true; 1547 return (0); 1548 } 1549 1550 static int 1551 vm_handle_reqidle(struct vm *vm, int vcpuid, bool *retu) 1552 { 1553 struct vcpu *vcpu = &vm->vcpu[vcpuid]; 1554 1555 vcpu_lock(vcpu); 1556 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle)); 1557 vcpu->reqidle = 0; 1558 vcpu_unlock(vcpu); 1559 *retu = true; 1560 return (0); 1561 } 1562 1563 int 1564 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1565 { 1566 int i; 1567 1568 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1569 return (EINVAL); 1570 1571 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1572 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1573 vm->suspend, how); 1574 return (EALREADY); 1575 } 1576 1577 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1578 1579 /* 1580 * Notify all active vcpus that they are now suspended. 1581 */ 1582 for (i = 0; i < VM_MAXCPU; i++) { 1583 if (CPU_ISSET(i, &vm->active_cpus)) 1584 vcpu_notify_event(vm, i, false); 1585 } 1586 1587 return (0); 1588 } 1589 1590 void 1591 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip) 1592 { 1593 struct vm_exit *vmexit; 1594 1595 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1596 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1597 1598 vmexit = vm_exitinfo(vm, vcpuid); 1599 vmexit->rip = rip; 1600 vmexit->inst_length = 0; 1601 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1602 vmexit->u.suspended.how = vm->suspend; 1603 } 1604 1605 void 1606 vm_exit_debug(struct vm *vm, int vcpuid, uint64_t rip) 1607 { 1608 struct vm_exit *vmexit; 1609 1610 vmexit = vm_exitinfo(vm, vcpuid); 1611 vmexit->rip = rip; 1612 vmexit->inst_length = 0; 1613 vmexit->exitcode = VM_EXITCODE_DEBUG; 1614 } 1615 1616 void 1617 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip) 1618 { 1619 struct vm_exit *vmexit; 1620 1621 KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress")); 1622 1623 vmexit = vm_exitinfo(vm, vcpuid); 1624 vmexit->rip = rip; 1625 vmexit->inst_length = 0; 1626 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1627 vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1); 1628 } 1629 1630 void 1631 vm_exit_reqidle(struct vm *vm, int vcpuid, uint64_t rip) 1632 { 1633 struct vm_exit *vmexit; 1634 1635 vmexit = vm_exitinfo(vm, vcpuid); 1636 vmexit->rip = rip; 1637 vmexit->inst_length = 0; 1638 vmexit->exitcode = VM_EXITCODE_REQIDLE; 1639 vmm_stat_incr(vm, vcpuid, VMEXIT_REQIDLE, 1); 1640 } 1641 1642 void 1643 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip) 1644 { 1645 struct vm_exit *vmexit; 1646 1647 vmexit = vm_exitinfo(vm, vcpuid); 1648 vmexit->rip = rip; 1649 vmexit->inst_length = 0; 1650 vmexit->exitcode = VM_EXITCODE_BOGUS; 1651 vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1); 1652 } 1653 1654 int 1655 vm_run(struct vm *vm, struct vm_run *vmrun) 1656 { 1657 struct vm_eventinfo evinfo; 1658 int error, vcpuid; 1659 struct vcpu *vcpu; 1660 struct pcb *pcb; 1661 uint64_t tscval; 1662 struct vm_exit *vme; 1663 bool retu, intr_disabled; 1664 pmap_t pmap; 1665 1666 vcpuid = vmrun->cpuid; 1667 1668 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1669 return (EINVAL); 1670 1671 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1672 return (EINVAL); 1673 1674 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1675 return (EINVAL); 1676 1677 pmap = vmspace_pmap(vm->vmspace); 1678 vcpu = &vm->vcpu[vcpuid]; 1679 vme = &vcpu->exitinfo; 1680 evinfo.rptr = &vm->rendezvous_func; 1681 evinfo.sptr = &vm->suspend; 1682 evinfo.iptr = &vcpu->reqidle; 1683 restart: 1684 critical_enter(); 1685 1686 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1687 ("vm_run: absurd pm_active")); 1688 1689 tscval = rdtsc(); 1690 1691 pcb = PCPU_GET(curpcb); 1692 set_pcb_flags(pcb, PCB_FULL_IRET); 1693 1694 restore_guest_fpustate(vcpu); 1695 1696 vcpu_require_state(vm, vcpuid, VCPU_RUNNING); 1697 error = VMRUN(vm->cookie, vcpuid, vcpu->nextrip, pmap, &evinfo); 1698 vcpu_require_state(vm, vcpuid, VCPU_FROZEN); 1699 1700 save_guest_fpustate(vcpu); 1701 1702 vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1703 1704 critical_exit(); 1705 1706 if (error == 0) { 1707 retu = false; 1708 vcpu->nextrip = vme->rip + vme->inst_length; 1709 switch (vme->exitcode) { 1710 case VM_EXITCODE_REQIDLE: 1711 error = vm_handle_reqidle(vm, vcpuid, &retu); 1712 break; 1713 case VM_EXITCODE_SUSPENDED: 1714 error = vm_handle_suspend(vm, vcpuid, &retu); 1715 break; 1716 case VM_EXITCODE_IOAPIC_EOI: 1717 vioapic_process_eoi(vm, vcpuid, 1718 vme->u.ioapic_eoi.vector); 1719 break; 1720 case VM_EXITCODE_RENDEZVOUS: 1721 vm_handle_rendezvous(vm, vcpuid); 1722 error = 0; 1723 break; 1724 case VM_EXITCODE_HLT: 1725 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1726 error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu); 1727 break; 1728 case VM_EXITCODE_PAGING: 1729 error = vm_handle_paging(vm, vcpuid, &retu); 1730 break; 1731 case VM_EXITCODE_INST_EMUL: 1732 error = vm_handle_inst_emul(vm, vcpuid, &retu); 1733 break; 1734 case VM_EXITCODE_INOUT: 1735 case VM_EXITCODE_INOUT_STR: 1736 error = vm_handle_inout(vm, vcpuid, vme, &retu); 1737 break; 1738 case VM_EXITCODE_MONITOR: 1739 case VM_EXITCODE_MWAIT: 1740 case VM_EXITCODE_VMINSN: 1741 vm_inject_ud(vm, vcpuid); 1742 break; 1743 default: 1744 retu = true; /* handled in userland */ 1745 break; 1746 } 1747 } 1748 1749 if (error == 0 && retu == false) 1750 goto restart; 1751 1752 VCPU_CTR2(vm, vcpuid, "retu %d/%d", error, vme->exitcode); 1753 1754 /* copy the exit information */ 1755 bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit)); 1756 return (error); 1757 } 1758 1759 int 1760 vm_restart_instruction(void *arg, int vcpuid) 1761 { 1762 struct vm *vm; 1763 struct vcpu *vcpu; 1764 enum vcpu_state state; 1765 uint64_t rip; 1766 int error; 1767 1768 vm = arg; 1769 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1770 return (EINVAL); 1771 1772 vcpu = &vm->vcpu[vcpuid]; 1773 state = vcpu_get_state(vm, vcpuid, NULL); 1774 if (state == VCPU_RUNNING) { 1775 /* 1776 * When a vcpu is "running" the next instruction is determined 1777 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'. 1778 * Thus setting 'inst_length' to zero will cause the current 1779 * instruction to be restarted. 1780 */ 1781 vcpu->exitinfo.inst_length = 0; 1782 VCPU_CTR1(vm, vcpuid, "restarting instruction at %#lx by " 1783 "setting inst_length to zero", vcpu->exitinfo.rip); 1784 } else if (state == VCPU_FROZEN) { 1785 /* 1786 * When a vcpu is "frozen" it is outside the critical section 1787 * around VMRUN() and 'nextrip' points to the next instruction. 1788 * Thus instruction restart is achieved by setting 'nextrip' 1789 * to the vcpu's %rip. 1790 */ 1791 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip); 1792 KASSERT(!error, ("%s: error %d getting rip", __func__, error)); 1793 VCPU_CTR2(vm, vcpuid, "restarting instruction by updating " 1794 "nextrip from %#lx to %#lx", vcpu->nextrip, rip); 1795 vcpu->nextrip = rip; 1796 } else { 1797 panic("%s: invalid state %d", __func__, state); 1798 } 1799 return (0); 1800 } 1801 1802 int 1803 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info) 1804 { 1805 struct vcpu *vcpu; 1806 int type, vector; 1807 1808 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1809 return (EINVAL); 1810 1811 vcpu = &vm->vcpu[vcpuid]; 1812 1813 if (info & VM_INTINFO_VALID) { 1814 type = info & VM_INTINFO_TYPE; 1815 vector = info & 0xff; 1816 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 1817 return (EINVAL); 1818 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 1819 return (EINVAL); 1820 if (info & VM_INTINFO_RSVD) 1821 return (EINVAL); 1822 } else { 1823 info = 0; 1824 } 1825 VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info); 1826 vcpu->exitintinfo = info; 1827 return (0); 1828 } 1829 1830 enum exc_class { 1831 EXC_BENIGN, 1832 EXC_CONTRIBUTORY, 1833 EXC_PAGEFAULT 1834 }; 1835 1836 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 1837 1838 static enum exc_class 1839 exception_class(uint64_t info) 1840 { 1841 int type, vector; 1842 1843 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 1844 type = info & VM_INTINFO_TYPE; 1845 vector = info & 0xff; 1846 1847 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 1848 switch (type) { 1849 case VM_INTINFO_HWINTR: 1850 case VM_INTINFO_SWINTR: 1851 case VM_INTINFO_NMI: 1852 return (EXC_BENIGN); 1853 default: 1854 /* 1855 * Hardware exception. 1856 * 1857 * SVM and VT-x use identical type values to represent NMI, 1858 * hardware interrupt and software interrupt. 1859 * 1860 * SVM uses type '3' for all exceptions. VT-x uses type '3' 1861 * for exceptions except #BP and #OF. #BP and #OF use a type 1862 * value of '5' or '6'. Therefore we don't check for explicit 1863 * values of 'type' to classify 'intinfo' into a hardware 1864 * exception. 1865 */ 1866 break; 1867 } 1868 1869 switch (vector) { 1870 case IDT_PF: 1871 case IDT_VE: 1872 return (EXC_PAGEFAULT); 1873 case IDT_DE: 1874 case IDT_TS: 1875 case IDT_NP: 1876 case IDT_SS: 1877 case IDT_GP: 1878 return (EXC_CONTRIBUTORY); 1879 default: 1880 return (EXC_BENIGN); 1881 } 1882 } 1883 1884 static int 1885 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2, 1886 uint64_t *retinfo) 1887 { 1888 enum exc_class exc1, exc2; 1889 int type1, vector1; 1890 1891 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 1892 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 1893 1894 /* 1895 * If an exception occurs while attempting to call the double-fault 1896 * handler the processor enters shutdown mode (aka triple fault). 1897 */ 1898 type1 = info1 & VM_INTINFO_TYPE; 1899 vector1 = info1 & 0xff; 1900 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 1901 VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)", 1902 info1, info2); 1903 vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT); 1904 *retinfo = 0; 1905 return (0); 1906 } 1907 1908 /* 1909 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 1910 */ 1911 exc1 = exception_class(info1); 1912 exc2 = exception_class(info2); 1913 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 1914 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 1915 /* Convert nested fault into a double fault. */ 1916 *retinfo = IDT_DF; 1917 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1918 *retinfo |= VM_INTINFO_DEL_ERRCODE; 1919 } else { 1920 /* Handle exceptions serially */ 1921 *retinfo = info2; 1922 } 1923 return (1); 1924 } 1925 1926 static uint64_t 1927 vcpu_exception_intinfo(struct vcpu *vcpu) 1928 { 1929 uint64_t info = 0; 1930 1931 if (vcpu->exception_pending) { 1932 info = vcpu->exc_vector & 0xff; 1933 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1934 if (vcpu->exc_errcode_valid) { 1935 info |= VM_INTINFO_DEL_ERRCODE; 1936 info |= (uint64_t)vcpu->exc_errcode << 32; 1937 } 1938 } 1939 return (info); 1940 } 1941 1942 int 1943 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo) 1944 { 1945 struct vcpu *vcpu; 1946 uint64_t info1, info2; 1947 int valid; 1948 1949 KASSERT(vcpuid >= 0 && vcpuid < VM_MAXCPU, ("invalid vcpu %d", vcpuid)); 1950 1951 vcpu = &vm->vcpu[vcpuid]; 1952 1953 info1 = vcpu->exitintinfo; 1954 vcpu->exitintinfo = 0; 1955 1956 info2 = 0; 1957 if (vcpu->exception_pending) { 1958 info2 = vcpu_exception_intinfo(vcpu); 1959 vcpu->exception_pending = 0; 1960 VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx", 1961 vcpu->exc_vector, info2); 1962 } 1963 1964 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 1965 valid = nested_fault(vm, vcpuid, info1, info2, retinfo); 1966 } else if (info1 & VM_INTINFO_VALID) { 1967 *retinfo = info1; 1968 valid = 1; 1969 } else if (info2 & VM_INTINFO_VALID) { 1970 *retinfo = info2; 1971 valid = 1; 1972 } else { 1973 valid = 0; 1974 } 1975 1976 if (valid) { 1977 VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), " 1978 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 1979 } 1980 1981 return (valid); 1982 } 1983 1984 int 1985 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2) 1986 { 1987 struct vcpu *vcpu; 1988 1989 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1990 return (EINVAL); 1991 1992 vcpu = &vm->vcpu[vcpuid]; 1993 *info1 = vcpu->exitintinfo; 1994 *info2 = vcpu_exception_intinfo(vcpu); 1995 return (0); 1996 } 1997 1998 int 1999 vm_inject_exception(struct vm *vm, int vcpuid, int vector, int errcode_valid, 2000 uint32_t errcode, int restart_instruction) 2001 { 2002 struct vcpu *vcpu; 2003 uint64_t regval; 2004 int error; 2005 2006 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2007 return (EINVAL); 2008 2009 if (vector < 0 || vector >= 32) 2010 return (EINVAL); 2011 2012 /* 2013 * A double fault exception should never be injected directly into 2014 * the guest. It is a derived exception that results from specific 2015 * combinations of nested faults. 2016 */ 2017 if (vector == IDT_DF) 2018 return (EINVAL); 2019 2020 vcpu = &vm->vcpu[vcpuid]; 2021 2022 if (vcpu->exception_pending) { 2023 VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to " 2024 "pending exception %d", vector, vcpu->exc_vector); 2025 return (EBUSY); 2026 } 2027 2028 if (errcode_valid) { 2029 /* 2030 * Exceptions don't deliver an error code in real mode. 2031 */ 2032 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_CR0, ®val); 2033 KASSERT(!error, ("%s: error %d getting CR0", __func__, error)); 2034 if (!(regval & CR0_PE)) 2035 errcode_valid = 0; 2036 } 2037 2038 /* 2039 * From section 26.6.1 "Interruptibility State" in Intel SDM: 2040 * 2041 * Event blocking by "STI" or "MOV SS" is cleared after guest executes 2042 * one instruction or incurs an exception. 2043 */ 2044 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0); 2045 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", 2046 __func__, error)); 2047 2048 if (restart_instruction) 2049 vm_restart_instruction(vm, vcpuid); 2050 2051 vcpu->exception_pending = 1; 2052 vcpu->exc_vector = vector; 2053 vcpu->exc_errcode = errcode; 2054 vcpu->exc_errcode_valid = errcode_valid; 2055 VCPU_CTR1(vm, vcpuid, "Exception %d pending", vector); 2056 return (0); 2057 } 2058 2059 void 2060 vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid, 2061 int errcode) 2062 { 2063 struct vm *vm; 2064 int error, restart_instruction; 2065 2066 vm = vmarg; 2067 restart_instruction = 1; 2068 2069 error = vm_inject_exception(vm, vcpuid, vector, errcode_valid, 2070 errcode, restart_instruction); 2071 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 2072 } 2073 2074 void 2075 vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2) 2076 { 2077 struct vm *vm; 2078 int error; 2079 2080 vm = vmarg; 2081 VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx", 2082 error_code, cr2); 2083 2084 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2); 2085 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 2086 2087 vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code); 2088 } 2089 2090 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 2091 2092 int 2093 vm_inject_nmi(struct vm *vm, int vcpuid) 2094 { 2095 struct vcpu *vcpu; 2096 2097 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2098 return (EINVAL); 2099 2100 vcpu = &vm->vcpu[vcpuid]; 2101 2102 vcpu->nmi_pending = 1; 2103 vcpu_notify_event(vm, vcpuid, false); 2104 return (0); 2105 } 2106 2107 int 2108 vm_nmi_pending(struct vm *vm, int vcpuid) 2109 { 2110 struct vcpu *vcpu; 2111 2112 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2113 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 2114 2115 vcpu = &vm->vcpu[vcpuid]; 2116 2117 return (vcpu->nmi_pending); 2118 } 2119 2120 void 2121 vm_nmi_clear(struct vm *vm, int vcpuid) 2122 { 2123 struct vcpu *vcpu; 2124 2125 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2126 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 2127 2128 vcpu = &vm->vcpu[vcpuid]; 2129 2130 if (vcpu->nmi_pending == 0) 2131 panic("vm_nmi_clear: inconsistent nmi_pending state"); 2132 2133 vcpu->nmi_pending = 0; 2134 vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1); 2135 } 2136 2137 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 2138 2139 int 2140 vm_inject_extint(struct vm *vm, int vcpuid) 2141 { 2142 struct vcpu *vcpu; 2143 2144 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2145 return (EINVAL); 2146 2147 vcpu = &vm->vcpu[vcpuid]; 2148 2149 vcpu->extint_pending = 1; 2150 vcpu_notify_event(vm, vcpuid, false); 2151 return (0); 2152 } 2153 2154 int 2155 vm_extint_pending(struct vm *vm, int vcpuid) 2156 { 2157 struct vcpu *vcpu; 2158 2159 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2160 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 2161 2162 vcpu = &vm->vcpu[vcpuid]; 2163 2164 return (vcpu->extint_pending); 2165 } 2166 2167 void 2168 vm_extint_clear(struct vm *vm, int vcpuid) 2169 { 2170 struct vcpu *vcpu; 2171 2172 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2173 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 2174 2175 vcpu = &vm->vcpu[vcpuid]; 2176 2177 if (vcpu->extint_pending == 0) 2178 panic("vm_extint_clear: inconsistent extint_pending state"); 2179 2180 vcpu->extint_pending = 0; 2181 vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1); 2182 } 2183 2184 int 2185 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval) 2186 { 2187 if (vcpu < 0 || vcpu >= VM_MAXCPU) 2188 return (EINVAL); 2189 2190 if (type < 0 || type >= VM_CAP_MAX) 2191 return (EINVAL); 2192 2193 return (VMGETCAP(vm->cookie, vcpu, type, retval)); 2194 } 2195 2196 int 2197 vm_set_capability(struct vm *vm, int vcpu, int type, int val) 2198 { 2199 if (vcpu < 0 || vcpu >= VM_MAXCPU) 2200 return (EINVAL); 2201 2202 if (type < 0 || type >= VM_CAP_MAX) 2203 return (EINVAL); 2204 2205 return (VMSETCAP(vm->cookie, vcpu, type, val)); 2206 } 2207 2208 struct vlapic * 2209 vm_lapic(struct vm *vm, int cpu) 2210 { 2211 return (vm->vcpu[cpu].vlapic); 2212 } 2213 2214 struct vioapic * 2215 vm_ioapic(struct vm *vm) 2216 { 2217 2218 return (vm->vioapic); 2219 } 2220 2221 struct vhpet * 2222 vm_hpet(struct vm *vm) 2223 { 2224 2225 return (vm->vhpet); 2226 } 2227 2228 boolean_t 2229 vmm_is_pptdev(int bus, int slot, int func) 2230 { 2231 int found, i, n; 2232 int b, s, f; 2233 char *val, *cp, *cp2; 2234 2235 /* 2236 * XXX 2237 * The length of an environment variable is limited to 128 bytes which 2238 * puts an upper limit on the number of passthru devices that may be 2239 * specified using a single environment variable. 2240 * 2241 * Work around this by scanning multiple environment variable 2242 * names instead of a single one - yuck! 2243 */ 2244 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 2245 2246 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 2247 found = 0; 2248 for (i = 0; names[i] != NULL && !found; i++) { 2249 cp = val = kern_getenv(names[i]); 2250 while (cp != NULL && *cp != '\0') { 2251 if ((cp2 = strchr(cp, ' ')) != NULL) 2252 *cp2 = '\0'; 2253 2254 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 2255 if (n == 3 && bus == b && slot == s && func == f) { 2256 found = 1; 2257 break; 2258 } 2259 2260 if (cp2 != NULL) 2261 *cp2++ = ' '; 2262 2263 cp = cp2; 2264 } 2265 freeenv(val); 2266 } 2267 return (found); 2268 } 2269 2270 void * 2271 vm_iommu_domain(struct vm *vm) 2272 { 2273 2274 return (vm->iommu); 2275 } 2276 2277 int 2278 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate, 2279 bool from_idle) 2280 { 2281 int error; 2282 struct vcpu *vcpu; 2283 2284 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2285 panic("vm_set_run_state: invalid vcpuid %d", vcpuid); 2286 2287 vcpu = &vm->vcpu[vcpuid]; 2288 2289 vcpu_lock(vcpu); 2290 error = vcpu_set_state_locked(vm, vcpuid, newstate, from_idle); 2291 vcpu_unlock(vcpu); 2292 2293 return (error); 2294 } 2295 2296 enum vcpu_state 2297 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu) 2298 { 2299 struct vcpu *vcpu; 2300 enum vcpu_state state; 2301 2302 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2303 panic("vm_get_run_state: invalid vcpuid %d", vcpuid); 2304 2305 vcpu = &vm->vcpu[vcpuid]; 2306 2307 vcpu_lock(vcpu); 2308 state = vcpu->state; 2309 if (hostcpu != NULL) 2310 *hostcpu = vcpu->hostcpu; 2311 vcpu_unlock(vcpu); 2312 2313 return (state); 2314 } 2315 2316 int 2317 vm_activate_cpu(struct vm *vm, int vcpuid) 2318 { 2319 2320 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2321 return (EINVAL); 2322 2323 if (CPU_ISSET(vcpuid, &vm->active_cpus)) 2324 return (EBUSY); 2325 2326 VCPU_CTR0(vm, vcpuid, "activated"); 2327 CPU_SET_ATOMIC(vcpuid, &vm->active_cpus); 2328 return (0); 2329 } 2330 2331 int 2332 vm_suspend_cpu(struct vm *vm, int vcpuid) 2333 { 2334 int i; 2335 2336 if (vcpuid < -1 || vcpuid >= VM_MAXCPU) 2337 return (EINVAL); 2338 2339 if (vcpuid == -1) { 2340 vm->debug_cpus = vm->active_cpus; 2341 for (i = 0; i < VM_MAXCPU; i++) { 2342 if (CPU_ISSET(i, &vm->active_cpus)) 2343 vcpu_notify_event(vm, i, false); 2344 } 2345 } else { 2346 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 2347 return (EINVAL); 2348 2349 CPU_SET_ATOMIC(vcpuid, &vm->debug_cpus); 2350 vcpu_notify_event(vm, vcpuid, false); 2351 } 2352 return (0); 2353 } 2354 2355 int 2356 vm_resume_cpu(struct vm *vm, int vcpuid) 2357 { 2358 2359 if (vcpuid < -1 || vcpuid >= VM_MAXCPU) 2360 return (EINVAL); 2361 2362 if (vcpuid == -1) { 2363 CPU_ZERO(&vm->debug_cpus); 2364 } else { 2365 if (!CPU_ISSET(vcpuid, &vm->debug_cpus)) 2366 return (EINVAL); 2367 2368 CPU_CLR_ATOMIC(vcpuid, &vm->debug_cpus); 2369 } 2370 return (0); 2371 } 2372 2373 int 2374 vcpu_debugged(struct vm *vm, int vcpuid) 2375 { 2376 2377 return (CPU_ISSET(vcpuid, &vm->debug_cpus)); 2378 } 2379 2380 cpuset_t 2381 vm_active_cpus(struct vm *vm) 2382 { 2383 2384 return (vm->active_cpus); 2385 } 2386 2387 cpuset_t 2388 vm_debug_cpus(struct vm *vm) 2389 { 2390 2391 return (vm->debug_cpus); 2392 } 2393 2394 cpuset_t 2395 vm_suspended_cpus(struct vm *vm) 2396 { 2397 2398 return (vm->suspended_cpus); 2399 } 2400 2401 void * 2402 vcpu_stats(struct vm *vm, int vcpuid) 2403 { 2404 2405 return (vm->vcpu[vcpuid].stats); 2406 } 2407 2408 int 2409 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state) 2410 { 2411 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2412 return (EINVAL); 2413 2414 *state = vm->vcpu[vcpuid].x2apic_state; 2415 2416 return (0); 2417 } 2418 2419 int 2420 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state) 2421 { 2422 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2423 return (EINVAL); 2424 2425 if (state >= X2APIC_STATE_LAST) 2426 return (EINVAL); 2427 2428 vm->vcpu[vcpuid].x2apic_state = state; 2429 2430 vlapic_set_x2apic_state(vm, vcpuid, state); 2431 2432 return (0); 2433 } 2434 2435 /* 2436 * This function is called to ensure that a vcpu "sees" a pending event 2437 * as soon as possible: 2438 * - If the vcpu thread is sleeping then it is woken up. 2439 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2440 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2441 */ 2442 static void 2443 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr) 2444 { 2445 int hostcpu; 2446 2447 hostcpu = vcpu->hostcpu; 2448 if (vcpu->state == VCPU_RUNNING) { 2449 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2450 if (hostcpu != curcpu) { 2451 if (lapic_intr) { 2452 vlapic_post_intr(vcpu->vlapic, hostcpu, 2453 vmm_ipinum); 2454 } else { 2455 ipi_cpu(hostcpu, vmm_ipinum); 2456 } 2457 } else { 2458 /* 2459 * If the 'vcpu' is running on 'curcpu' then it must 2460 * be sending a notification to itself (e.g. SELF_IPI). 2461 * The pending event will be picked up when the vcpu 2462 * transitions back to guest context. 2463 */ 2464 } 2465 } else { 2466 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2467 "with hostcpu %d", vcpu->state, hostcpu)); 2468 if (vcpu->state == VCPU_SLEEPING) 2469 wakeup_one(vcpu); 2470 } 2471 } 2472 2473 void 2474 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr) 2475 { 2476 struct vcpu *vcpu = &vm->vcpu[vcpuid]; 2477 2478 vcpu_lock(vcpu); 2479 vcpu_notify_event_locked(vcpu, lapic_intr); 2480 vcpu_unlock(vcpu); 2481 } 2482 2483 struct vmspace * 2484 vm_get_vmspace(struct vm *vm) 2485 { 2486 2487 return (vm->vmspace); 2488 } 2489 2490 int 2491 vm_apicid2vcpuid(struct vm *vm, int apicid) 2492 { 2493 /* 2494 * XXX apic id is assumed to be numerically identical to vcpu id 2495 */ 2496 return (apicid); 2497 } 2498 2499 void 2500 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest, 2501 vm_rendezvous_func_t func, void *arg) 2502 { 2503 int i; 2504 2505 /* 2506 * Enforce that this function is called without any locks 2507 */ 2508 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2509 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU), 2510 ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid)); 2511 2512 restart: 2513 mtx_lock(&vm->rendezvous_mtx); 2514 if (vm->rendezvous_func != NULL) { 2515 /* 2516 * If a rendezvous is already in progress then we need to 2517 * call the rendezvous handler in case this 'vcpuid' is one 2518 * of the targets of the rendezvous. 2519 */ 2520 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress"); 2521 mtx_unlock(&vm->rendezvous_mtx); 2522 vm_handle_rendezvous(vm, vcpuid); 2523 goto restart; 2524 } 2525 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2526 "rendezvous is still in progress")); 2527 2528 RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous"); 2529 vm->rendezvous_req_cpus = dest; 2530 CPU_ZERO(&vm->rendezvous_done_cpus); 2531 vm->rendezvous_arg = arg; 2532 vm_set_rendezvous_func(vm, func); 2533 mtx_unlock(&vm->rendezvous_mtx); 2534 2535 /* 2536 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2537 * vcpus so they handle the rendezvous as soon as possible. 2538 */ 2539 for (i = 0; i < VM_MAXCPU; i++) { 2540 if (CPU_ISSET(i, &dest)) 2541 vcpu_notify_event(vm, i, false); 2542 } 2543 2544 vm_handle_rendezvous(vm, vcpuid); 2545 } 2546 2547 struct vatpic * 2548 vm_atpic(struct vm *vm) 2549 { 2550 return (vm->vatpic); 2551 } 2552 2553 struct vatpit * 2554 vm_atpit(struct vm *vm) 2555 { 2556 return (vm->vatpit); 2557 } 2558 2559 struct vpmtmr * 2560 vm_pmtmr(struct vm *vm) 2561 { 2562 2563 return (vm->vpmtmr); 2564 } 2565 2566 struct vrtc * 2567 vm_rtc(struct vm *vm) 2568 { 2569 2570 return (vm->vrtc); 2571 } 2572 2573 enum vm_reg_name 2574 vm_segment_name(int seg) 2575 { 2576 static enum vm_reg_name seg_names[] = { 2577 VM_REG_GUEST_ES, 2578 VM_REG_GUEST_CS, 2579 VM_REG_GUEST_SS, 2580 VM_REG_GUEST_DS, 2581 VM_REG_GUEST_FS, 2582 VM_REG_GUEST_GS 2583 }; 2584 2585 KASSERT(seg >= 0 && seg < nitems(seg_names), 2586 ("%s: invalid segment encoding %d", __func__, seg)); 2587 return (seg_names[seg]); 2588 } 2589 2590 void 2591 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, 2592 int num_copyinfo) 2593 { 2594 int idx; 2595 2596 for (idx = 0; idx < num_copyinfo; idx++) { 2597 if (copyinfo[idx].cookie != NULL) 2598 vm_gpa_release(copyinfo[idx].cookie); 2599 } 2600 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2601 } 2602 2603 int 2604 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging, 2605 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2606 int num_copyinfo, int *fault) 2607 { 2608 int error, idx, nused; 2609 size_t n, off, remaining; 2610 void *hva, *cookie; 2611 uint64_t gpa; 2612 2613 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2614 2615 nused = 0; 2616 remaining = len; 2617 while (remaining > 0) { 2618 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo")); 2619 error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa, fault); 2620 if (error || *fault) 2621 return (error); 2622 off = gpa & PAGE_MASK; 2623 n = min(remaining, PAGE_SIZE - off); 2624 copyinfo[nused].gpa = gpa; 2625 copyinfo[nused].len = n; 2626 remaining -= n; 2627 gla += n; 2628 nused++; 2629 } 2630 2631 for (idx = 0; idx < nused; idx++) { 2632 hva = vm_gpa_hold(vm, vcpuid, copyinfo[idx].gpa, 2633 copyinfo[idx].len, prot, &cookie); 2634 if (hva == NULL) 2635 break; 2636 copyinfo[idx].hva = hva; 2637 copyinfo[idx].cookie = cookie; 2638 } 2639 2640 if (idx != nused) { 2641 vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo); 2642 return (EFAULT); 2643 } else { 2644 *fault = 0; 2645 return (0); 2646 } 2647 } 2648 2649 void 2650 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr, 2651 size_t len) 2652 { 2653 char *dst; 2654 int idx; 2655 2656 dst = kaddr; 2657 idx = 0; 2658 while (len > 0) { 2659 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2660 len -= copyinfo[idx].len; 2661 dst += copyinfo[idx].len; 2662 idx++; 2663 } 2664 } 2665 2666 void 2667 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr, 2668 struct vm_copyinfo *copyinfo, size_t len) 2669 { 2670 const char *src; 2671 int idx; 2672 2673 src = kaddr; 2674 idx = 0; 2675 while (len > 0) { 2676 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2677 len -= copyinfo[idx].len; 2678 src += copyinfo[idx].len; 2679 idx++; 2680 } 2681 } 2682 2683 /* 2684 * Return the amount of in-use and wired memory for the VM. Since 2685 * these are global stats, only return the values with for vCPU 0 2686 */ 2687 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2688 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2689 2690 static void 2691 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2692 { 2693 2694 if (vcpu == 0) { 2695 vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT, 2696 PAGE_SIZE * vmspace_resident_count(vm->vmspace)); 2697 } 2698 } 2699 2700 static void 2701 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2702 { 2703 2704 if (vcpu == 0) { 2705 vmm_stat_set(vm, vcpu, VMM_MEM_WIRED, 2706 PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace))); 2707 } 2708 } 2709 2710 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2711 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2712