1 /*- 2 * Copyright (c) 2011 NetApp, Inc. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD$ 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/sysctl.h> 37 #include <sys/malloc.h> 38 #include <sys/pcpu.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/proc.h> 42 #include <sys/rwlock.h> 43 #include <sys/sched.h> 44 #include <sys/smp.h> 45 #include <sys/systm.h> 46 47 #include <vm/vm.h> 48 #include <vm/vm_object.h> 49 #include <vm/vm_page.h> 50 #include <vm/pmap.h> 51 #include <vm/vm_map.h> 52 #include <vm/vm_extern.h> 53 #include <vm/vm_param.h> 54 55 #include <machine/cpu.h> 56 #include <machine/vm.h> 57 #include <machine/pcb.h> 58 #include <machine/smp.h> 59 #include <x86/psl.h> 60 #include <x86/apicreg.h> 61 #include <machine/vmparam.h> 62 63 #include <machine/vmm.h> 64 #include <machine/vmm_dev.h> 65 #include <machine/vmm_instruction_emul.h> 66 67 #include "vmm_ioport.h" 68 #include "vmm_ktr.h" 69 #include "vmm_host.h" 70 #include "vmm_mem.h" 71 #include "vmm_util.h" 72 #include "vatpic.h" 73 #include "vatpit.h" 74 #include "vhpet.h" 75 #include "vioapic.h" 76 #include "vlapic.h" 77 #include "vmm_msr.h" 78 #include "vmm_ipi.h" 79 #include "vmm_stat.h" 80 #include "vmm_lapic.h" 81 82 #include "io/ppt.h" 83 #include "io/iommu.h" 84 85 struct vlapic; 86 87 /* 88 * Initialization: 89 * (a) allocated when vcpu is created 90 * (i) initialized when vcpu is created and when it is reinitialized 91 * (o) initialized the first time the vcpu is created 92 * (x) initialized before use 93 */ 94 struct vcpu { 95 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 96 enum vcpu_state state; /* (o) vcpu state */ 97 int hostcpu; /* (o) vcpu's host cpu */ 98 struct vlapic *vlapic; /* (i) APIC device model */ 99 enum x2apic_state x2apic_state; /* (i) APIC mode */ 100 uint64_t exitintinfo; /* (i) events pending at VM exit */ 101 int nmi_pending; /* (i) NMI pending */ 102 int extint_pending; /* (i) INTR pending */ 103 struct vm_exception exception; /* (x) exception collateral */ 104 int exception_pending; /* (i) exception pending */ 105 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 106 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 107 void *stats; /* (a,i) statistics */ 108 uint64_t guest_msrs[VMM_MSR_NUM]; /* (i) emulated MSRs */ 109 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 110 }; 111 112 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx)) 113 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 114 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 115 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 116 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 117 118 struct mem_seg { 119 vm_paddr_t gpa; 120 size_t len; 121 boolean_t wired; 122 vm_object_t object; 123 }; 124 #define VM_MAX_MEMORY_SEGMENTS 2 125 126 /* 127 * Initialization: 128 * (o) initialized the first time the VM is created 129 * (i) initialized when VM is created and when it is reinitialized 130 * (x) initialized before use 131 */ 132 struct vm { 133 void *cookie; /* (i) cpu-specific data */ 134 void *iommu; /* (x) iommu-specific data */ 135 struct vhpet *vhpet; /* (i) virtual HPET */ 136 struct vioapic *vioapic; /* (i) virtual ioapic */ 137 struct vatpic *vatpic; /* (i) virtual atpic */ 138 struct vatpit *vatpit; /* (i) virtual atpit */ 139 volatile cpuset_t active_cpus; /* (i) active vcpus */ 140 int suspend; /* (i) stop VM execution */ 141 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 142 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 143 cpuset_t rendezvous_req_cpus; /* (x) rendezvous requested */ 144 cpuset_t rendezvous_done_cpus; /* (x) rendezvous finished */ 145 void *rendezvous_arg; /* (x) rendezvous func/arg */ 146 vm_rendezvous_func_t rendezvous_func; 147 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 148 int num_mem_segs; /* (o) guest memory segments */ 149 struct mem_seg mem_segs[VM_MAX_MEMORY_SEGMENTS]; 150 struct vmspace *vmspace; /* (o) guest's address space */ 151 char name[VM_MAX_NAMELEN]; /* (o) virtual machine name */ 152 struct vcpu vcpu[VM_MAXCPU]; /* (i) guest vcpus */ 153 }; 154 155 static int vmm_initialized; 156 157 static struct vmm_ops *ops; 158 #define VMM_INIT(num) (ops != NULL ? (*ops->init)(num) : 0) 159 #define VMM_CLEANUP() (ops != NULL ? (*ops->cleanup)() : 0) 160 #define VMM_RESUME() (ops != NULL ? (*ops->resume)() : 0) 161 162 #define VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL) 163 #define VMRUN(vmi, vcpu, rip, pmap, rptr, sptr) \ 164 (ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, rptr, sptr) : ENXIO) 165 #define VMCLEANUP(vmi) (ops != NULL ? (*ops->vmcleanup)(vmi) : NULL) 166 #define VMSPACE_ALLOC(min, max) \ 167 (ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL) 168 #define VMSPACE_FREE(vmspace) \ 169 (ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO) 170 #define VMGETREG(vmi, vcpu, num, retval) \ 171 (ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO) 172 #define VMSETREG(vmi, vcpu, num, val) \ 173 (ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO) 174 #define VMGETDESC(vmi, vcpu, num, desc) \ 175 (ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO) 176 #define VMSETDESC(vmi, vcpu, num, desc) \ 177 (ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO) 178 #define VMGETCAP(vmi, vcpu, num, retval) \ 179 (ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO) 180 #define VMSETCAP(vmi, vcpu, num, val) \ 181 (ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO) 182 #define VLAPIC_INIT(vmi, vcpu) \ 183 (ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL) 184 #define VLAPIC_CLEANUP(vmi, vlapic) \ 185 (ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL) 186 187 #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS) 188 #define fpu_stop_emulating() clts() 189 190 static MALLOC_DEFINE(M_VM, "vm", "vm"); 191 CTASSERT(VMM_MSR_NUM <= 64); /* msr_mask can keep track of up to 64 msrs */ 192 193 /* statistics */ 194 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 195 196 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL); 197 198 /* 199 * Halt the guest if all vcpus are executing a HLT instruction with 200 * interrupts disabled. 201 */ 202 static int halt_detection_enabled = 1; 203 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 204 &halt_detection_enabled, 0, 205 "Halt VM if all vcpus execute HLT with interrupts disabled"); 206 207 static int vmm_ipinum; 208 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 209 "IPI vector used for vcpu notifications"); 210 211 static void 212 vcpu_cleanup(struct vm *vm, int i, bool destroy) 213 { 214 struct vcpu *vcpu = &vm->vcpu[i]; 215 216 VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic); 217 if (destroy) { 218 vmm_stat_free(vcpu->stats); 219 fpu_save_area_free(vcpu->guestfpu); 220 } 221 } 222 223 static void 224 vcpu_init(struct vm *vm, int vcpu_id, bool create) 225 { 226 struct vcpu *vcpu; 227 228 KASSERT(vcpu_id >= 0 && vcpu_id < VM_MAXCPU, 229 ("vcpu_init: invalid vcpu %d", vcpu_id)); 230 231 vcpu = &vm->vcpu[vcpu_id]; 232 233 if (create) { 234 KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already " 235 "initialized", vcpu_id)); 236 vcpu_lock_init(vcpu); 237 vcpu->state = VCPU_IDLE; 238 vcpu->hostcpu = NOCPU; 239 vcpu->guestfpu = fpu_save_area_alloc(); 240 vcpu->stats = vmm_stat_alloc(); 241 } 242 243 vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id); 244 vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED); 245 vcpu->exitintinfo = 0; 246 vcpu->nmi_pending = 0; 247 vcpu->extint_pending = 0; 248 vcpu->exception_pending = 0; 249 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 250 fpu_save_area_reset(vcpu->guestfpu); 251 vmm_stat_init(vcpu->stats); 252 guest_msrs_init(vm, vcpu_id); 253 } 254 255 struct vm_exit * 256 vm_exitinfo(struct vm *vm, int cpuid) 257 { 258 struct vcpu *vcpu; 259 260 if (cpuid < 0 || cpuid >= VM_MAXCPU) 261 panic("vm_exitinfo: invalid cpuid %d", cpuid); 262 263 vcpu = &vm->vcpu[cpuid]; 264 265 return (&vcpu->exitinfo); 266 } 267 268 static void 269 vmm_resume(void) 270 { 271 VMM_RESUME(); 272 } 273 274 static int 275 vmm_init(void) 276 { 277 int error; 278 279 vmm_host_state_init(); 280 281 vmm_ipinum = vmm_ipi_alloc(); 282 if (vmm_ipinum == 0) 283 vmm_ipinum = IPI_AST; 284 285 error = vmm_mem_init(); 286 if (error) 287 return (error); 288 289 if (vmm_is_intel()) 290 ops = &vmm_ops_intel; 291 else if (vmm_is_amd()) 292 ops = &vmm_ops_amd; 293 else 294 return (ENXIO); 295 296 vmm_msr_init(); 297 vmm_resume_p = vmm_resume; 298 299 return (VMM_INIT(vmm_ipinum)); 300 } 301 302 static int 303 vmm_handler(module_t mod, int what, void *arg) 304 { 305 int error; 306 307 switch (what) { 308 case MOD_LOAD: 309 vmmdev_init(); 310 if (ppt_avail_devices() > 0) 311 iommu_init(); 312 error = vmm_init(); 313 if (error == 0) 314 vmm_initialized = 1; 315 break; 316 case MOD_UNLOAD: 317 error = vmmdev_cleanup(); 318 if (error == 0) { 319 vmm_resume_p = NULL; 320 iommu_cleanup(); 321 if (vmm_ipinum != IPI_AST) 322 vmm_ipi_free(vmm_ipinum); 323 error = VMM_CLEANUP(); 324 /* 325 * Something bad happened - prevent new 326 * VMs from being created 327 */ 328 if (error) 329 vmm_initialized = 0; 330 } 331 break; 332 default: 333 error = 0; 334 break; 335 } 336 return (error); 337 } 338 339 static moduledata_t vmm_kmod = { 340 "vmm", 341 vmm_handler, 342 NULL 343 }; 344 345 /* 346 * vmm initialization has the following dependencies: 347 * 348 * - iommu initialization must happen after the pci passthru driver has had 349 * a chance to attach to any passthru devices (after SI_SUB_CONFIGURE). 350 * 351 * - VT-x initialization requires smp_rendezvous() and therefore must happen 352 * after SMP is fully functional (after SI_SUB_SMP). 353 */ 354 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 355 MODULE_VERSION(vmm, 1); 356 357 static void 358 vm_init(struct vm *vm, bool create) 359 { 360 int i; 361 362 vm->cookie = VMINIT(vm, vmspace_pmap(vm->vmspace)); 363 vm->iommu = NULL; 364 vm->vioapic = vioapic_init(vm); 365 vm->vhpet = vhpet_init(vm); 366 vm->vatpic = vatpic_init(vm); 367 vm->vatpit = vatpit_init(vm); 368 369 CPU_ZERO(&vm->active_cpus); 370 371 vm->suspend = 0; 372 CPU_ZERO(&vm->suspended_cpus); 373 374 for (i = 0; i < VM_MAXCPU; i++) 375 vcpu_init(vm, i, create); 376 } 377 378 int 379 vm_create(const char *name, struct vm **retvm) 380 { 381 struct vm *vm; 382 struct vmspace *vmspace; 383 384 /* 385 * If vmm.ko could not be successfully initialized then don't attempt 386 * to create the virtual machine. 387 */ 388 if (!vmm_initialized) 389 return (ENXIO); 390 391 if (name == NULL || strlen(name) >= VM_MAX_NAMELEN) 392 return (EINVAL); 393 394 vmspace = VMSPACE_ALLOC(VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS); 395 if (vmspace == NULL) 396 return (ENOMEM); 397 398 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 399 strcpy(vm->name, name); 400 vm->num_mem_segs = 0; 401 vm->vmspace = vmspace; 402 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 403 404 vm_init(vm, true); 405 406 *retvm = vm; 407 return (0); 408 } 409 410 static void 411 vm_free_mem_seg(struct vm *vm, struct mem_seg *seg) 412 { 413 414 if (seg->object != NULL) 415 vmm_mem_free(vm->vmspace, seg->gpa, seg->len); 416 417 bzero(seg, sizeof(*seg)); 418 } 419 420 static void 421 vm_cleanup(struct vm *vm, bool destroy) 422 { 423 int i; 424 425 ppt_unassign_all(vm); 426 427 if (vm->iommu != NULL) 428 iommu_destroy_domain(vm->iommu); 429 430 vatpit_cleanup(vm->vatpit); 431 vhpet_cleanup(vm->vhpet); 432 vatpic_cleanup(vm->vatpic); 433 vioapic_cleanup(vm->vioapic); 434 435 for (i = 0; i < VM_MAXCPU; i++) 436 vcpu_cleanup(vm, i, destroy); 437 438 VMCLEANUP(vm->cookie); 439 440 if (destroy) { 441 for (i = 0; i < vm->num_mem_segs; i++) 442 vm_free_mem_seg(vm, &vm->mem_segs[i]); 443 444 vm->num_mem_segs = 0; 445 446 VMSPACE_FREE(vm->vmspace); 447 vm->vmspace = NULL; 448 } 449 } 450 451 void 452 vm_destroy(struct vm *vm) 453 { 454 vm_cleanup(vm, true); 455 free(vm, M_VM); 456 } 457 458 int 459 vm_reinit(struct vm *vm) 460 { 461 int error; 462 463 /* 464 * A virtual machine can be reset only if all vcpus are suspended. 465 */ 466 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 467 vm_cleanup(vm, false); 468 vm_init(vm, false); 469 error = 0; 470 } else { 471 error = EBUSY; 472 } 473 474 return (error); 475 } 476 477 const char * 478 vm_name(struct vm *vm) 479 { 480 return (vm->name); 481 } 482 483 int 484 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 485 { 486 vm_object_t obj; 487 488 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 489 return (ENOMEM); 490 else 491 return (0); 492 } 493 494 int 495 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 496 { 497 498 vmm_mmio_free(vm->vmspace, gpa, len); 499 return (0); 500 } 501 502 boolean_t 503 vm_mem_allocated(struct vm *vm, vm_paddr_t gpa) 504 { 505 int i; 506 vm_paddr_t gpabase, gpalimit; 507 508 for (i = 0; i < vm->num_mem_segs; i++) { 509 gpabase = vm->mem_segs[i].gpa; 510 gpalimit = gpabase + vm->mem_segs[i].len; 511 if (gpa >= gpabase && gpa < gpalimit) 512 return (TRUE); /* 'gpa' is regular memory */ 513 } 514 515 if (ppt_is_mmio(vm, gpa)) 516 return (TRUE); /* 'gpa' is pci passthru mmio */ 517 518 return (FALSE); 519 } 520 521 int 522 vm_malloc(struct vm *vm, vm_paddr_t gpa, size_t len) 523 { 524 int available, allocated; 525 struct mem_seg *seg; 526 vm_object_t object; 527 vm_paddr_t g; 528 529 if ((gpa & PAGE_MASK) || (len & PAGE_MASK) || len == 0) 530 return (EINVAL); 531 532 available = allocated = 0; 533 g = gpa; 534 while (g < gpa + len) { 535 if (vm_mem_allocated(vm, g)) 536 allocated++; 537 else 538 available++; 539 540 g += PAGE_SIZE; 541 } 542 543 /* 544 * If there are some allocated and some available pages in the address 545 * range then it is an error. 546 */ 547 if (allocated && available) 548 return (EINVAL); 549 550 /* 551 * If the entire address range being requested has already been 552 * allocated then there isn't anything more to do. 553 */ 554 if (allocated && available == 0) 555 return (0); 556 557 if (vm->num_mem_segs >= VM_MAX_MEMORY_SEGMENTS) 558 return (E2BIG); 559 560 seg = &vm->mem_segs[vm->num_mem_segs]; 561 562 if ((object = vmm_mem_alloc(vm->vmspace, gpa, len)) == NULL) 563 return (ENOMEM); 564 565 seg->gpa = gpa; 566 seg->len = len; 567 seg->object = object; 568 seg->wired = FALSE; 569 570 vm->num_mem_segs++; 571 572 return (0); 573 } 574 575 static vm_paddr_t 576 vm_maxmem(struct vm *vm) 577 { 578 int i; 579 vm_paddr_t gpa, maxmem; 580 581 maxmem = 0; 582 for (i = 0; i < vm->num_mem_segs; i++) { 583 gpa = vm->mem_segs[i].gpa + vm->mem_segs[i].len; 584 if (gpa > maxmem) 585 maxmem = gpa; 586 } 587 return (maxmem); 588 } 589 590 static void 591 vm_gpa_unwire(struct vm *vm) 592 { 593 int i, rv; 594 struct mem_seg *seg; 595 596 for (i = 0; i < vm->num_mem_segs; i++) { 597 seg = &vm->mem_segs[i]; 598 if (!seg->wired) 599 continue; 600 601 rv = vm_map_unwire(&vm->vmspace->vm_map, 602 seg->gpa, seg->gpa + seg->len, 603 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 604 KASSERT(rv == KERN_SUCCESS, ("vm(%s) memory segment " 605 "%#lx/%ld could not be unwired: %d", 606 vm_name(vm), seg->gpa, seg->len, rv)); 607 608 seg->wired = FALSE; 609 } 610 } 611 612 static int 613 vm_gpa_wire(struct vm *vm) 614 { 615 int i, rv; 616 struct mem_seg *seg; 617 618 for (i = 0; i < vm->num_mem_segs; i++) { 619 seg = &vm->mem_segs[i]; 620 if (seg->wired) 621 continue; 622 623 /* XXX rlimits? */ 624 rv = vm_map_wire(&vm->vmspace->vm_map, 625 seg->gpa, seg->gpa + seg->len, 626 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 627 if (rv != KERN_SUCCESS) 628 break; 629 630 seg->wired = TRUE; 631 } 632 633 if (i < vm->num_mem_segs) { 634 /* 635 * Undo the wiring before returning an error. 636 */ 637 vm_gpa_unwire(vm); 638 return (EAGAIN); 639 } 640 641 return (0); 642 } 643 644 static void 645 vm_iommu_modify(struct vm *vm, boolean_t map) 646 { 647 int i, sz; 648 vm_paddr_t gpa, hpa; 649 struct mem_seg *seg; 650 void *vp, *cookie, *host_domain; 651 652 sz = PAGE_SIZE; 653 host_domain = iommu_host_domain(); 654 655 for (i = 0; i < vm->num_mem_segs; i++) { 656 seg = &vm->mem_segs[i]; 657 KASSERT(seg->wired, ("vm(%s) memory segment %#lx/%ld not wired", 658 vm_name(vm), seg->gpa, seg->len)); 659 660 gpa = seg->gpa; 661 while (gpa < seg->gpa + seg->len) { 662 vp = vm_gpa_hold(vm, gpa, PAGE_SIZE, VM_PROT_WRITE, 663 &cookie); 664 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", 665 vm_name(vm), gpa)); 666 667 vm_gpa_release(cookie); 668 669 hpa = DMAP_TO_PHYS((uintptr_t)vp); 670 if (map) { 671 iommu_create_mapping(vm->iommu, gpa, hpa, sz); 672 iommu_remove_mapping(host_domain, hpa, sz); 673 } else { 674 iommu_remove_mapping(vm->iommu, gpa, sz); 675 iommu_create_mapping(host_domain, hpa, hpa, sz); 676 } 677 678 gpa += PAGE_SIZE; 679 } 680 } 681 682 /* 683 * Invalidate the cached translations associated with the domain 684 * from which pages were removed. 685 */ 686 if (map) 687 iommu_invalidate_tlb(host_domain); 688 else 689 iommu_invalidate_tlb(vm->iommu); 690 } 691 692 #define vm_iommu_unmap(vm) vm_iommu_modify((vm), FALSE) 693 #define vm_iommu_map(vm) vm_iommu_modify((vm), TRUE) 694 695 int 696 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 697 { 698 int error; 699 700 error = ppt_unassign_device(vm, bus, slot, func); 701 if (error) 702 return (error); 703 704 if (ppt_assigned_devices(vm) == 0) { 705 vm_iommu_unmap(vm); 706 vm_gpa_unwire(vm); 707 } 708 return (0); 709 } 710 711 int 712 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 713 { 714 int error; 715 vm_paddr_t maxaddr; 716 717 /* 718 * Virtual machines with pci passthru devices get special treatment: 719 * - the guest physical memory is wired 720 * - the iommu is programmed to do the 'gpa' to 'hpa' translation 721 * 722 * We need to do this before the first pci passthru device is attached. 723 */ 724 if (ppt_assigned_devices(vm) == 0) { 725 KASSERT(vm->iommu == NULL, 726 ("vm_assign_pptdev: iommu must be NULL")); 727 maxaddr = vm_maxmem(vm); 728 vm->iommu = iommu_create_domain(maxaddr); 729 730 error = vm_gpa_wire(vm); 731 if (error) 732 return (error); 733 734 vm_iommu_map(vm); 735 } 736 737 error = ppt_assign_device(vm, bus, slot, func); 738 return (error); 739 } 740 741 void * 742 vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 743 void **cookie) 744 { 745 int count, pageoff; 746 vm_page_t m; 747 748 pageoff = gpa & PAGE_MASK; 749 if (len > PAGE_SIZE - pageoff) 750 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 751 752 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 753 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 754 755 if (count == 1) { 756 *cookie = m; 757 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 758 } else { 759 *cookie = NULL; 760 return (NULL); 761 } 762 } 763 764 void 765 vm_gpa_release(void *cookie) 766 { 767 vm_page_t m = cookie; 768 769 vm_page_lock(m); 770 vm_page_unhold(m); 771 vm_page_unlock(m); 772 } 773 774 int 775 vm_gpabase2memseg(struct vm *vm, vm_paddr_t gpabase, 776 struct vm_memory_segment *seg) 777 { 778 int i; 779 780 for (i = 0; i < vm->num_mem_segs; i++) { 781 if (gpabase == vm->mem_segs[i].gpa) { 782 seg->gpa = vm->mem_segs[i].gpa; 783 seg->len = vm->mem_segs[i].len; 784 seg->wired = vm->mem_segs[i].wired; 785 return (0); 786 } 787 } 788 return (-1); 789 } 790 791 int 792 vm_get_memobj(struct vm *vm, vm_paddr_t gpa, size_t len, 793 vm_offset_t *offset, struct vm_object **object) 794 { 795 int i; 796 size_t seg_len; 797 vm_paddr_t seg_gpa; 798 vm_object_t seg_obj; 799 800 for (i = 0; i < vm->num_mem_segs; i++) { 801 if ((seg_obj = vm->mem_segs[i].object) == NULL) 802 continue; 803 804 seg_gpa = vm->mem_segs[i].gpa; 805 seg_len = vm->mem_segs[i].len; 806 807 if (gpa >= seg_gpa && gpa < seg_gpa + seg_len) { 808 *offset = gpa - seg_gpa; 809 *object = seg_obj; 810 vm_object_reference(seg_obj); 811 return (0); 812 } 813 } 814 815 return (EINVAL); 816 } 817 818 int 819 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval) 820 { 821 822 if (vcpu < 0 || vcpu >= VM_MAXCPU) 823 return (EINVAL); 824 825 if (reg >= VM_REG_LAST) 826 return (EINVAL); 827 828 return (VMGETREG(vm->cookie, vcpu, reg, retval)); 829 } 830 831 int 832 vm_set_register(struct vm *vm, int vcpu, int reg, uint64_t val) 833 { 834 835 if (vcpu < 0 || vcpu >= VM_MAXCPU) 836 return (EINVAL); 837 838 if (reg >= VM_REG_LAST) 839 return (EINVAL); 840 841 return (VMSETREG(vm->cookie, vcpu, reg, val)); 842 } 843 844 static boolean_t 845 is_descriptor_table(int reg) 846 { 847 848 switch (reg) { 849 case VM_REG_GUEST_IDTR: 850 case VM_REG_GUEST_GDTR: 851 return (TRUE); 852 default: 853 return (FALSE); 854 } 855 } 856 857 static boolean_t 858 is_segment_register(int reg) 859 { 860 861 switch (reg) { 862 case VM_REG_GUEST_ES: 863 case VM_REG_GUEST_CS: 864 case VM_REG_GUEST_SS: 865 case VM_REG_GUEST_DS: 866 case VM_REG_GUEST_FS: 867 case VM_REG_GUEST_GS: 868 case VM_REG_GUEST_TR: 869 case VM_REG_GUEST_LDTR: 870 return (TRUE); 871 default: 872 return (FALSE); 873 } 874 } 875 876 int 877 vm_get_seg_desc(struct vm *vm, int vcpu, int reg, 878 struct seg_desc *desc) 879 { 880 881 if (vcpu < 0 || vcpu >= VM_MAXCPU) 882 return (EINVAL); 883 884 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 885 return (EINVAL); 886 887 return (VMGETDESC(vm->cookie, vcpu, reg, desc)); 888 } 889 890 int 891 vm_set_seg_desc(struct vm *vm, int vcpu, int reg, 892 struct seg_desc *desc) 893 { 894 if (vcpu < 0 || vcpu >= VM_MAXCPU) 895 return (EINVAL); 896 897 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 898 return (EINVAL); 899 900 return (VMSETDESC(vm->cookie, vcpu, reg, desc)); 901 } 902 903 static void 904 restore_guest_fpustate(struct vcpu *vcpu) 905 { 906 907 /* flush host state to the pcb */ 908 fpuexit(curthread); 909 910 /* restore guest FPU state */ 911 fpu_stop_emulating(); 912 fpurestore(vcpu->guestfpu); 913 914 /* restore guest XCR0 if XSAVE is enabled in the host */ 915 if (rcr4() & CR4_XSAVE) 916 load_xcr(0, vcpu->guest_xcr0); 917 918 /* 919 * The FPU is now "dirty" with the guest's state so turn on emulation 920 * to trap any access to the FPU by the host. 921 */ 922 fpu_start_emulating(); 923 } 924 925 static void 926 save_guest_fpustate(struct vcpu *vcpu) 927 { 928 929 if ((rcr0() & CR0_TS) == 0) 930 panic("fpu emulation not enabled in host!"); 931 932 /* save guest XCR0 and restore host XCR0 */ 933 if (rcr4() & CR4_XSAVE) { 934 vcpu->guest_xcr0 = rxcr(0); 935 load_xcr(0, vmm_get_host_xcr0()); 936 } 937 938 /* save guest FPU state */ 939 fpu_stop_emulating(); 940 fpusave(vcpu->guestfpu); 941 fpu_start_emulating(); 942 } 943 944 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 945 946 static int 947 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate, 948 bool from_idle) 949 { 950 int error; 951 952 vcpu_assert_locked(vcpu); 953 954 /* 955 * State transitions from the vmmdev_ioctl() must always begin from 956 * the VCPU_IDLE state. This guarantees that there is only a single 957 * ioctl() operating on a vcpu at any point. 958 */ 959 if (from_idle) { 960 while (vcpu->state != VCPU_IDLE) 961 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 962 } else { 963 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 964 "vcpu idle state")); 965 } 966 967 if (vcpu->state == VCPU_RUNNING) { 968 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 969 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 970 } else { 971 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 972 "vcpu that is not running", vcpu->hostcpu)); 973 } 974 975 /* 976 * The following state transitions are allowed: 977 * IDLE -> FROZEN -> IDLE 978 * FROZEN -> RUNNING -> FROZEN 979 * FROZEN -> SLEEPING -> FROZEN 980 */ 981 switch (vcpu->state) { 982 case VCPU_IDLE: 983 case VCPU_RUNNING: 984 case VCPU_SLEEPING: 985 error = (newstate != VCPU_FROZEN); 986 break; 987 case VCPU_FROZEN: 988 error = (newstate == VCPU_FROZEN); 989 break; 990 default: 991 error = 1; 992 break; 993 } 994 995 if (error) 996 return (EBUSY); 997 998 vcpu->state = newstate; 999 if (newstate == VCPU_RUNNING) 1000 vcpu->hostcpu = curcpu; 1001 else 1002 vcpu->hostcpu = NOCPU; 1003 1004 if (newstate == VCPU_IDLE) 1005 wakeup(&vcpu->state); 1006 1007 return (0); 1008 } 1009 1010 static void 1011 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1012 { 1013 int error; 1014 1015 if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0) 1016 panic("Error %d setting state to %d\n", error, newstate); 1017 } 1018 1019 static void 1020 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate) 1021 { 1022 int error; 1023 1024 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0) 1025 panic("Error %d setting state to %d", error, newstate); 1026 } 1027 1028 static void 1029 vm_set_rendezvous_func(struct vm *vm, vm_rendezvous_func_t func) 1030 { 1031 1032 KASSERT(mtx_owned(&vm->rendezvous_mtx), ("rendezvous_mtx not locked")); 1033 1034 /* 1035 * Update 'rendezvous_func' and execute a write memory barrier to 1036 * ensure that it is visible across all host cpus. This is not needed 1037 * for correctness but it does ensure that all the vcpus will notice 1038 * that the rendezvous is requested immediately. 1039 */ 1040 vm->rendezvous_func = func; 1041 wmb(); 1042 } 1043 1044 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt) \ 1045 do { \ 1046 if (vcpuid >= 0) \ 1047 VCPU_CTR0(vm, vcpuid, fmt); \ 1048 else \ 1049 VM_CTR0(vm, fmt); \ 1050 } while (0) 1051 1052 static void 1053 vm_handle_rendezvous(struct vm *vm, int vcpuid) 1054 { 1055 1056 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU), 1057 ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid)); 1058 1059 mtx_lock(&vm->rendezvous_mtx); 1060 while (vm->rendezvous_func != NULL) { 1061 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1062 CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus); 1063 1064 if (vcpuid != -1 && 1065 CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1066 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1067 VCPU_CTR0(vm, vcpuid, "Calling rendezvous func"); 1068 (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg); 1069 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1070 } 1071 if (CPU_CMP(&vm->rendezvous_req_cpus, 1072 &vm->rendezvous_done_cpus) == 0) { 1073 VCPU_CTR0(vm, vcpuid, "Rendezvous completed"); 1074 vm_set_rendezvous_func(vm, NULL); 1075 wakeup(&vm->rendezvous_func); 1076 break; 1077 } 1078 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion"); 1079 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1080 "vmrndv", 0); 1081 } 1082 mtx_unlock(&vm->rendezvous_mtx); 1083 } 1084 1085 /* 1086 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1087 */ 1088 static int 1089 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu) 1090 { 1091 struct vcpu *vcpu; 1092 const char *wmesg; 1093 int error, t, vcpu_halted, vm_halted; 1094 1095 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1096 1097 vcpu = &vm->vcpu[vcpuid]; 1098 vcpu_halted = 0; 1099 vm_halted = 0; 1100 1101 /* 1102 * The typical way to halt a cpu is to execute: "sti; hlt" 1103 * 1104 * STI sets RFLAGS.IF to enable interrupts. However, the processor 1105 * remains in an "interrupt shadow" for an additional instruction 1106 * following the STI. This guarantees that "sti; hlt" sequence is 1107 * atomic and a pending interrupt will be recognized after the HLT. 1108 * 1109 * After the HLT emulation is done the vcpu is no longer in an 1110 * interrupt shadow and a pending interrupt can be injected on 1111 * the next entry into the guest. 1112 */ 1113 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0); 1114 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", 1115 __func__, error)); 1116 1117 vcpu_lock(vcpu); 1118 while (1) { 1119 /* 1120 * Do a final check for pending NMI or interrupts before 1121 * really putting this thread to sleep. Also check for 1122 * software events that would cause this vcpu to wakeup. 1123 * 1124 * These interrupts/events could have happened after the 1125 * vcpu returned from VMRUN() and before it acquired the 1126 * vcpu lock above. 1127 */ 1128 if (vm->rendezvous_func != NULL || vm->suspend) 1129 break; 1130 if (vm_nmi_pending(vm, vcpuid)) 1131 break; 1132 if (!intr_disabled) { 1133 if (vm_extint_pending(vm, vcpuid) || 1134 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1135 break; 1136 } 1137 } 1138 1139 /* Don't go to sleep if the vcpu thread needs to yield */ 1140 if (vcpu_should_yield(vm, vcpuid)) 1141 break; 1142 1143 /* 1144 * Some Linux guests implement "halt" by having all vcpus 1145 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1146 * track of the vcpus that have entered this state. When all 1147 * vcpus enter the halted state the virtual machine is halted. 1148 */ 1149 if (intr_disabled) { 1150 wmesg = "vmhalt"; 1151 VCPU_CTR0(vm, vcpuid, "Halted"); 1152 if (!vcpu_halted && halt_detection_enabled) { 1153 vcpu_halted = 1; 1154 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1155 } 1156 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1157 vm_halted = 1; 1158 break; 1159 } 1160 } else { 1161 wmesg = "vmidle"; 1162 } 1163 1164 t = ticks; 1165 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1166 /* 1167 * XXX msleep_spin() cannot be interrupted by signals so 1168 * wake up periodically to check pending signals. 1169 */ 1170 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1171 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1172 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t); 1173 } 1174 1175 if (vcpu_halted) 1176 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1177 1178 vcpu_unlock(vcpu); 1179 1180 if (vm_halted) 1181 vm_suspend(vm, VM_SUSPEND_HALT); 1182 1183 return (0); 1184 } 1185 1186 static int 1187 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu) 1188 { 1189 int rv, ftype; 1190 struct vm_map *map; 1191 struct vcpu *vcpu; 1192 struct vm_exit *vme; 1193 1194 vcpu = &vm->vcpu[vcpuid]; 1195 vme = &vcpu->exitinfo; 1196 1197 ftype = vme->u.paging.fault_type; 1198 KASSERT(ftype == VM_PROT_READ || 1199 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1200 ("vm_handle_paging: invalid fault_type %d", ftype)); 1201 1202 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1203 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1204 vme->u.paging.gpa, ftype); 1205 if (rv == 0) 1206 goto done; 1207 } 1208 1209 map = &vm->vmspace->vm_map; 1210 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL); 1211 1212 VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, " 1213 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1214 1215 if (rv != KERN_SUCCESS) 1216 return (EFAULT); 1217 done: 1218 /* restart execution at the faulting instruction */ 1219 vme->inst_length = 0; 1220 1221 return (0); 1222 } 1223 1224 static int 1225 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu) 1226 { 1227 struct vie *vie; 1228 struct vcpu *vcpu; 1229 struct vm_exit *vme; 1230 uint64_t gla, gpa; 1231 struct vm_guest_paging *paging; 1232 mem_region_read_t mread; 1233 mem_region_write_t mwrite; 1234 enum vm_cpu_mode cpu_mode; 1235 int cs_d, error; 1236 1237 vcpu = &vm->vcpu[vcpuid]; 1238 vme = &vcpu->exitinfo; 1239 1240 gla = vme->u.inst_emul.gla; 1241 gpa = vme->u.inst_emul.gpa; 1242 cs_d = vme->u.inst_emul.cs_d; 1243 vie = &vme->u.inst_emul.vie; 1244 paging = &vme->u.inst_emul.paging; 1245 cpu_mode = paging->cpu_mode; 1246 1247 vie_init(vie); 1248 1249 /* Fetch, decode and emulate the faulting instruction */ 1250 error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip, 1251 vme->inst_length, vie); 1252 if (error == 1) 1253 return (0); /* Resume guest to handle page fault */ 1254 else if (error == -1) 1255 return (EFAULT); 1256 else if (error != 0) 1257 panic("%s: vmm_fetch_instruction error %d", __func__, error); 1258 1259 if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) 1260 return (EFAULT); 1261 1262 /* return to userland unless this is an in-kernel emulated device */ 1263 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1264 mread = lapic_mmio_read; 1265 mwrite = lapic_mmio_write; 1266 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1267 mread = vioapic_mmio_read; 1268 mwrite = vioapic_mmio_write; 1269 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1270 mread = vhpet_mmio_read; 1271 mwrite = vhpet_mmio_write; 1272 } else { 1273 *retu = true; 1274 return (0); 1275 } 1276 1277 error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging, 1278 mread, mwrite, retu); 1279 1280 return (error); 1281 } 1282 1283 static int 1284 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu) 1285 { 1286 int i, done; 1287 struct vcpu *vcpu; 1288 1289 done = 0; 1290 vcpu = &vm->vcpu[vcpuid]; 1291 1292 CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus); 1293 1294 /* 1295 * Wait until all 'active_cpus' have suspended themselves. 1296 * 1297 * Since a VM may be suspended at any time including when one or 1298 * more vcpus are doing a rendezvous we need to call the rendezvous 1299 * handler while we are waiting to prevent a deadlock. 1300 */ 1301 vcpu_lock(vcpu); 1302 while (1) { 1303 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1304 VCPU_CTR0(vm, vcpuid, "All vcpus suspended"); 1305 break; 1306 } 1307 1308 if (vm->rendezvous_func == NULL) { 1309 VCPU_CTR0(vm, vcpuid, "Sleeping during suspend"); 1310 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1311 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1312 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1313 } else { 1314 VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend"); 1315 vcpu_unlock(vcpu); 1316 vm_handle_rendezvous(vm, vcpuid); 1317 vcpu_lock(vcpu); 1318 } 1319 } 1320 vcpu_unlock(vcpu); 1321 1322 /* 1323 * Wakeup the other sleeping vcpus and return to userspace. 1324 */ 1325 for (i = 0; i < VM_MAXCPU; i++) { 1326 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1327 vcpu_notify_event(vm, i, false); 1328 } 1329 } 1330 1331 *retu = true; 1332 return (0); 1333 } 1334 1335 int 1336 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1337 { 1338 int i; 1339 1340 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1341 return (EINVAL); 1342 1343 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1344 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1345 vm->suspend, how); 1346 return (EALREADY); 1347 } 1348 1349 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1350 1351 /* 1352 * Notify all active vcpus that they are now suspended. 1353 */ 1354 for (i = 0; i < VM_MAXCPU; i++) { 1355 if (CPU_ISSET(i, &vm->active_cpus)) 1356 vcpu_notify_event(vm, i, false); 1357 } 1358 1359 return (0); 1360 } 1361 1362 void 1363 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip) 1364 { 1365 struct vm_exit *vmexit; 1366 1367 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1368 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1369 1370 vmexit = vm_exitinfo(vm, vcpuid); 1371 vmexit->rip = rip; 1372 vmexit->inst_length = 0; 1373 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1374 vmexit->u.suspended.how = vm->suspend; 1375 } 1376 1377 void 1378 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip) 1379 { 1380 struct vm_exit *vmexit; 1381 1382 KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress")); 1383 1384 vmexit = vm_exitinfo(vm, vcpuid); 1385 vmexit->rip = rip; 1386 vmexit->inst_length = 0; 1387 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1388 vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1); 1389 } 1390 1391 void 1392 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip) 1393 { 1394 struct vm_exit *vmexit; 1395 1396 vmexit = vm_exitinfo(vm, vcpuid); 1397 vmexit->rip = rip; 1398 vmexit->inst_length = 0; 1399 vmexit->exitcode = VM_EXITCODE_BOGUS; 1400 vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1); 1401 } 1402 1403 int 1404 vm_run(struct vm *vm, struct vm_run *vmrun) 1405 { 1406 int error, vcpuid; 1407 struct vcpu *vcpu; 1408 struct pcb *pcb; 1409 uint64_t tscval, rip; 1410 struct vm_exit *vme; 1411 bool retu, intr_disabled; 1412 pmap_t pmap; 1413 void *rptr, *sptr; 1414 1415 vcpuid = vmrun->cpuid; 1416 1417 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1418 return (EINVAL); 1419 1420 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1421 return (EINVAL); 1422 1423 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1424 return (EINVAL); 1425 1426 rptr = &vm->rendezvous_func; 1427 sptr = &vm->suspend; 1428 pmap = vmspace_pmap(vm->vmspace); 1429 vcpu = &vm->vcpu[vcpuid]; 1430 vme = &vcpu->exitinfo; 1431 rip = vmrun->rip; 1432 restart: 1433 critical_enter(); 1434 1435 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1436 ("vm_run: absurd pm_active")); 1437 1438 tscval = rdtsc(); 1439 1440 pcb = PCPU_GET(curpcb); 1441 set_pcb_flags(pcb, PCB_FULL_IRET); 1442 1443 restore_guest_msrs(vm, vcpuid); 1444 restore_guest_fpustate(vcpu); 1445 1446 vcpu_require_state(vm, vcpuid, VCPU_RUNNING); 1447 error = VMRUN(vm->cookie, vcpuid, rip, pmap, rptr, sptr); 1448 vcpu_require_state(vm, vcpuid, VCPU_FROZEN); 1449 1450 save_guest_fpustate(vcpu); 1451 restore_host_msrs(vm, vcpuid); 1452 1453 vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1454 1455 critical_exit(); 1456 1457 if (error == 0) { 1458 retu = false; 1459 switch (vme->exitcode) { 1460 case VM_EXITCODE_SUSPENDED: 1461 error = vm_handle_suspend(vm, vcpuid, &retu); 1462 break; 1463 case VM_EXITCODE_IOAPIC_EOI: 1464 vioapic_process_eoi(vm, vcpuid, 1465 vme->u.ioapic_eoi.vector); 1466 break; 1467 case VM_EXITCODE_RENDEZVOUS: 1468 vm_handle_rendezvous(vm, vcpuid); 1469 error = 0; 1470 break; 1471 case VM_EXITCODE_HLT: 1472 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1473 error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu); 1474 break; 1475 case VM_EXITCODE_PAGING: 1476 error = vm_handle_paging(vm, vcpuid, &retu); 1477 break; 1478 case VM_EXITCODE_INST_EMUL: 1479 error = vm_handle_inst_emul(vm, vcpuid, &retu); 1480 break; 1481 case VM_EXITCODE_INOUT: 1482 case VM_EXITCODE_INOUT_STR: 1483 error = vm_handle_inout(vm, vcpuid, vme, &retu); 1484 break; 1485 default: 1486 retu = true; /* handled in userland */ 1487 break; 1488 } 1489 } 1490 1491 if (error == 0 && retu == false) { 1492 rip = vme->rip + vme->inst_length; 1493 goto restart; 1494 } 1495 1496 /* copy the exit information */ 1497 bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit)); 1498 return (error); 1499 } 1500 1501 int 1502 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info) 1503 { 1504 struct vcpu *vcpu; 1505 int type, vector; 1506 1507 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1508 return (EINVAL); 1509 1510 vcpu = &vm->vcpu[vcpuid]; 1511 1512 if (info & VM_INTINFO_VALID) { 1513 type = info & VM_INTINFO_TYPE; 1514 vector = info & 0xff; 1515 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 1516 return (EINVAL); 1517 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 1518 return (EINVAL); 1519 if (info & VM_INTINFO_RSVD) 1520 return (EINVAL); 1521 } else { 1522 info = 0; 1523 } 1524 VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info); 1525 vcpu->exitintinfo = info; 1526 return (0); 1527 } 1528 1529 enum exc_class { 1530 EXC_BENIGN, 1531 EXC_CONTRIBUTORY, 1532 EXC_PAGEFAULT 1533 }; 1534 1535 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 1536 1537 static enum exc_class 1538 exception_class(uint64_t info) 1539 { 1540 int type, vector; 1541 1542 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 1543 type = info & VM_INTINFO_TYPE; 1544 vector = info & 0xff; 1545 1546 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 1547 switch (type) { 1548 case VM_INTINFO_HWINTR: 1549 case VM_INTINFO_SWINTR: 1550 case VM_INTINFO_NMI: 1551 return (EXC_BENIGN); 1552 default: 1553 /* 1554 * Hardware exception. 1555 * 1556 * SVM and VT-x use identical type values to represent NMI, 1557 * hardware interrupt and software interrupt. 1558 * 1559 * SVM uses type '3' for all exceptions. VT-x uses type '3' 1560 * for exceptions except #BP and #OF. #BP and #OF use a type 1561 * value of '5' or '6'. Therefore we don't check for explicit 1562 * values of 'type' to classify 'intinfo' into a hardware 1563 * exception. 1564 */ 1565 break; 1566 } 1567 1568 switch (vector) { 1569 case IDT_PF: 1570 case IDT_VE: 1571 return (EXC_PAGEFAULT); 1572 case IDT_DE: 1573 case IDT_TS: 1574 case IDT_NP: 1575 case IDT_SS: 1576 case IDT_GP: 1577 return (EXC_CONTRIBUTORY); 1578 default: 1579 return (EXC_BENIGN); 1580 } 1581 } 1582 1583 static int 1584 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2, 1585 uint64_t *retinfo) 1586 { 1587 enum exc_class exc1, exc2; 1588 int type1, vector1; 1589 1590 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 1591 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 1592 1593 /* 1594 * If an exception occurs while attempting to call the double-fault 1595 * handler the processor enters shutdown mode (aka triple fault). 1596 */ 1597 type1 = info1 & VM_INTINFO_TYPE; 1598 vector1 = info1 & 0xff; 1599 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 1600 VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)", 1601 info1, info2); 1602 vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT); 1603 *retinfo = 0; 1604 return (0); 1605 } 1606 1607 /* 1608 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 1609 */ 1610 exc1 = exception_class(info1); 1611 exc2 = exception_class(info2); 1612 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 1613 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 1614 /* Convert nested fault into a double fault. */ 1615 *retinfo = IDT_DF; 1616 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1617 *retinfo |= VM_INTINFO_DEL_ERRCODE; 1618 } else { 1619 /* Handle exceptions serially */ 1620 *retinfo = info2; 1621 } 1622 return (1); 1623 } 1624 1625 static uint64_t 1626 vcpu_exception_intinfo(struct vcpu *vcpu) 1627 { 1628 uint64_t info = 0; 1629 1630 if (vcpu->exception_pending) { 1631 info = vcpu->exception.vector & 0xff; 1632 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1633 if (vcpu->exception.error_code_valid) { 1634 info |= VM_INTINFO_DEL_ERRCODE; 1635 info |= (uint64_t)vcpu->exception.error_code << 32; 1636 } 1637 } 1638 return (info); 1639 } 1640 1641 int 1642 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo) 1643 { 1644 struct vcpu *vcpu; 1645 uint64_t info1, info2; 1646 int valid; 1647 1648 KASSERT(vcpuid >= 0 && vcpuid < VM_MAXCPU, ("invalid vcpu %d", vcpuid)); 1649 1650 vcpu = &vm->vcpu[vcpuid]; 1651 1652 info1 = vcpu->exitintinfo; 1653 vcpu->exitintinfo = 0; 1654 1655 info2 = 0; 1656 if (vcpu->exception_pending) { 1657 info2 = vcpu_exception_intinfo(vcpu); 1658 vcpu->exception_pending = 0; 1659 VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx", 1660 vcpu->exception.vector, info2); 1661 } 1662 1663 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 1664 valid = nested_fault(vm, vcpuid, info1, info2, retinfo); 1665 } else if (info1 & VM_INTINFO_VALID) { 1666 *retinfo = info1; 1667 valid = 1; 1668 } else if (info2 & VM_INTINFO_VALID) { 1669 *retinfo = info2; 1670 valid = 1; 1671 } else { 1672 valid = 0; 1673 } 1674 1675 if (valid) { 1676 VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), " 1677 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 1678 } 1679 1680 return (valid); 1681 } 1682 1683 int 1684 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2) 1685 { 1686 struct vcpu *vcpu; 1687 1688 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1689 return (EINVAL); 1690 1691 vcpu = &vm->vcpu[vcpuid]; 1692 *info1 = vcpu->exitintinfo; 1693 *info2 = vcpu_exception_intinfo(vcpu); 1694 return (0); 1695 } 1696 1697 int 1698 vm_inject_exception(struct vm *vm, int vcpuid, struct vm_exception *exception) 1699 { 1700 struct vcpu *vcpu; 1701 1702 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1703 return (EINVAL); 1704 1705 if (exception->vector < 0 || exception->vector >= 32) 1706 return (EINVAL); 1707 1708 /* 1709 * A double fault exception should never be injected directly into 1710 * the guest. It is a derived exception that results from specific 1711 * combinations of nested faults. 1712 */ 1713 if (exception->vector == IDT_DF) 1714 return (EINVAL); 1715 1716 vcpu = &vm->vcpu[vcpuid]; 1717 1718 if (vcpu->exception_pending) { 1719 VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to " 1720 "pending exception %d", exception->vector, 1721 vcpu->exception.vector); 1722 return (EBUSY); 1723 } 1724 1725 vcpu->exception_pending = 1; 1726 vcpu->exception = *exception; 1727 VCPU_CTR1(vm, vcpuid, "Exception %d pending", exception->vector); 1728 return (0); 1729 } 1730 1731 void 1732 vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid, 1733 int errcode) 1734 { 1735 struct vm_exception exception; 1736 struct vm_exit *vmexit; 1737 struct vm *vm; 1738 int error; 1739 1740 vm = vmarg; 1741 1742 exception.vector = vector; 1743 exception.error_code = errcode; 1744 exception.error_code_valid = errcode_valid; 1745 error = vm_inject_exception(vm, vcpuid, &exception); 1746 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 1747 1748 /* 1749 * A fault-like exception allows the instruction to be restarted 1750 * after the exception handler returns. 1751 * 1752 * By setting the inst_length to 0 we ensure that the instruction 1753 * pointer remains at the faulting instruction. 1754 */ 1755 vmexit = vm_exitinfo(vm, vcpuid); 1756 vmexit->inst_length = 0; 1757 } 1758 1759 void 1760 vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2) 1761 { 1762 struct vm *vm; 1763 int error; 1764 1765 vm = vmarg; 1766 VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx", 1767 error_code, cr2); 1768 1769 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2); 1770 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 1771 1772 vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code); 1773 } 1774 1775 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 1776 1777 int 1778 vm_inject_nmi(struct vm *vm, int vcpuid) 1779 { 1780 struct vcpu *vcpu; 1781 1782 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1783 return (EINVAL); 1784 1785 vcpu = &vm->vcpu[vcpuid]; 1786 1787 vcpu->nmi_pending = 1; 1788 vcpu_notify_event(vm, vcpuid, false); 1789 return (0); 1790 } 1791 1792 int 1793 vm_nmi_pending(struct vm *vm, int vcpuid) 1794 { 1795 struct vcpu *vcpu; 1796 1797 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1798 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 1799 1800 vcpu = &vm->vcpu[vcpuid]; 1801 1802 return (vcpu->nmi_pending); 1803 } 1804 1805 void 1806 vm_nmi_clear(struct vm *vm, int vcpuid) 1807 { 1808 struct vcpu *vcpu; 1809 1810 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1811 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 1812 1813 vcpu = &vm->vcpu[vcpuid]; 1814 1815 if (vcpu->nmi_pending == 0) 1816 panic("vm_nmi_clear: inconsistent nmi_pending state"); 1817 1818 vcpu->nmi_pending = 0; 1819 vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1); 1820 } 1821 1822 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 1823 1824 int 1825 vm_inject_extint(struct vm *vm, int vcpuid) 1826 { 1827 struct vcpu *vcpu; 1828 1829 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1830 return (EINVAL); 1831 1832 vcpu = &vm->vcpu[vcpuid]; 1833 1834 vcpu->extint_pending = 1; 1835 vcpu_notify_event(vm, vcpuid, false); 1836 return (0); 1837 } 1838 1839 int 1840 vm_extint_pending(struct vm *vm, int vcpuid) 1841 { 1842 struct vcpu *vcpu; 1843 1844 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1845 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 1846 1847 vcpu = &vm->vcpu[vcpuid]; 1848 1849 return (vcpu->extint_pending); 1850 } 1851 1852 void 1853 vm_extint_clear(struct vm *vm, int vcpuid) 1854 { 1855 struct vcpu *vcpu; 1856 1857 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1858 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 1859 1860 vcpu = &vm->vcpu[vcpuid]; 1861 1862 if (vcpu->extint_pending == 0) 1863 panic("vm_extint_clear: inconsistent extint_pending state"); 1864 1865 vcpu->extint_pending = 0; 1866 vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1); 1867 } 1868 1869 int 1870 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval) 1871 { 1872 if (vcpu < 0 || vcpu >= VM_MAXCPU) 1873 return (EINVAL); 1874 1875 if (type < 0 || type >= VM_CAP_MAX) 1876 return (EINVAL); 1877 1878 return (VMGETCAP(vm->cookie, vcpu, type, retval)); 1879 } 1880 1881 int 1882 vm_set_capability(struct vm *vm, int vcpu, int type, int val) 1883 { 1884 if (vcpu < 0 || vcpu >= VM_MAXCPU) 1885 return (EINVAL); 1886 1887 if (type < 0 || type >= VM_CAP_MAX) 1888 return (EINVAL); 1889 1890 return (VMSETCAP(vm->cookie, vcpu, type, val)); 1891 } 1892 1893 uint64_t * 1894 vm_guest_msrs(struct vm *vm, int cpu) 1895 { 1896 return (vm->vcpu[cpu].guest_msrs); 1897 } 1898 1899 struct vlapic * 1900 vm_lapic(struct vm *vm, int cpu) 1901 { 1902 return (vm->vcpu[cpu].vlapic); 1903 } 1904 1905 struct vioapic * 1906 vm_ioapic(struct vm *vm) 1907 { 1908 1909 return (vm->vioapic); 1910 } 1911 1912 struct vhpet * 1913 vm_hpet(struct vm *vm) 1914 { 1915 1916 return (vm->vhpet); 1917 } 1918 1919 boolean_t 1920 vmm_is_pptdev(int bus, int slot, int func) 1921 { 1922 int found, i, n; 1923 int b, s, f; 1924 char *val, *cp, *cp2; 1925 1926 /* 1927 * XXX 1928 * The length of an environment variable is limited to 128 bytes which 1929 * puts an upper limit on the number of passthru devices that may be 1930 * specified using a single environment variable. 1931 * 1932 * Work around this by scanning multiple environment variable 1933 * names instead of a single one - yuck! 1934 */ 1935 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 1936 1937 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 1938 found = 0; 1939 for (i = 0; names[i] != NULL && !found; i++) { 1940 cp = val = getenv(names[i]); 1941 while (cp != NULL && *cp != '\0') { 1942 if ((cp2 = strchr(cp, ' ')) != NULL) 1943 *cp2 = '\0'; 1944 1945 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 1946 if (n == 3 && bus == b && slot == s && func == f) { 1947 found = 1; 1948 break; 1949 } 1950 1951 if (cp2 != NULL) 1952 *cp2++ = ' '; 1953 1954 cp = cp2; 1955 } 1956 freeenv(val); 1957 } 1958 return (found); 1959 } 1960 1961 void * 1962 vm_iommu_domain(struct vm *vm) 1963 { 1964 1965 return (vm->iommu); 1966 } 1967 1968 int 1969 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate, 1970 bool from_idle) 1971 { 1972 int error; 1973 struct vcpu *vcpu; 1974 1975 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1976 panic("vm_set_run_state: invalid vcpuid %d", vcpuid); 1977 1978 vcpu = &vm->vcpu[vcpuid]; 1979 1980 vcpu_lock(vcpu); 1981 error = vcpu_set_state_locked(vcpu, newstate, from_idle); 1982 vcpu_unlock(vcpu); 1983 1984 return (error); 1985 } 1986 1987 enum vcpu_state 1988 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu) 1989 { 1990 struct vcpu *vcpu; 1991 enum vcpu_state state; 1992 1993 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1994 panic("vm_get_run_state: invalid vcpuid %d", vcpuid); 1995 1996 vcpu = &vm->vcpu[vcpuid]; 1997 1998 vcpu_lock(vcpu); 1999 state = vcpu->state; 2000 if (hostcpu != NULL) 2001 *hostcpu = vcpu->hostcpu; 2002 vcpu_unlock(vcpu); 2003 2004 return (state); 2005 } 2006 2007 int 2008 vm_activate_cpu(struct vm *vm, int vcpuid) 2009 { 2010 2011 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2012 return (EINVAL); 2013 2014 if (CPU_ISSET(vcpuid, &vm->active_cpus)) 2015 return (EBUSY); 2016 2017 VCPU_CTR0(vm, vcpuid, "activated"); 2018 CPU_SET_ATOMIC(vcpuid, &vm->active_cpus); 2019 return (0); 2020 } 2021 2022 cpuset_t 2023 vm_active_cpus(struct vm *vm) 2024 { 2025 2026 return (vm->active_cpus); 2027 } 2028 2029 cpuset_t 2030 vm_suspended_cpus(struct vm *vm) 2031 { 2032 2033 return (vm->suspended_cpus); 2034 } 2035 2036 void * 2037 vcpu_stats(struct vm *vm, int vcpuid) 2038 { 2039 2040 return (vm->vcpu[vcpuid].stats); 2041 } 2042 2043 int 2044 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state) 2045 { 2046 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2047 return (EINVAL); 2048 2049 *state = vm->vcpu[vcpuid].x2apic_state; 2050 2051 return (0); 2052 } 2053 2054 int 2055 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state) 2056 { 2057 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2058 return (EINVAL); 2059 2060 if (state >= X2APIC_STATE_LAST) 2061 return (EINVAL); 2062 2063 vm->vcpu[vcpuid].x2apic_state = state; 2064 2065 vlapic_set_x2apic_state(vm, vcpuid, state); 2066 2067 return (0); 2068 } 2069 2070 /* 2071 * This function is called to ensure that a vcpu "sees" a pending event 2072 * as soon as possible: 2073 * - If the vcpu thread is sleeping then it is woken up. 2074 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2075 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2076 */ 2077 void 2078 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr) 2079 { 2080 int hostcpu; 2081 struct vcpu *vcpu; 2082 2083 vcpu = &vm->vcpu[vcpuid]; 2084 2085 vcpu_lock(vcpu); 2086 hostcpu = vcpu->hostcpu; 2087 if (vcpu->state == VCPU_RUNNING) { 2088 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2089 if (hostcpu != curcpu) { 2090 if (lapic_intr) { 2091 vlapic_post_intr(vcpu->vlapic, hostcpu, 2092 vmm_ipinum); 2093 } else { 2094 ipi_cpu(hostcpu, vmm_ipinum); 2095 } 2096 } else { 2097 /* 2098 * If the 'vcpu' is running on 'curcpu' then it must 2099 * be sending a notification to itself (e.g. SELF_IPI). 2100 * The pending event will be picked up when the vcpu 2101 * transitions back to guest context. 2102 */ 2103 } 2104 } else { 2105 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2106 "with hostcpu %d", vcpu->state, hostcpu)); 2107 if (vcpu->state == VCPU_SLEEPING) 2108 wakeup_one(vcpu); 2109 } 2110 vcpu_unlock(vcpu); 2111 } 2112 2113 struct vmspace * 2114 vm_get_vmspace(struct vm *vm) 2115 { 2116 2117 return (vm->vmspace); 2118 } 2119 2120 int 2121 vm_apicid2vcpuid(struct vm *vm, int apicid) 2122 { 2123 /* 2124 * XXX apic id is assumed to be numerically identical to vcpu id 2125 */ 2126 return (apicid); 2127 } 2128 2129 void 2130 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest, 2131 vm_rendezvous_func_t func, void *arg) 2132 { 2133 int i; 2134 2135 /* 2136 * Enforce that this function is called without any locks 2137 */ 2138 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2139 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU), 2140 ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid)); 2141 2142 restart: 2143 mtx_lock(&vm->rendezvous_mtx); 2144 if (vm->rendezvous_func != NULL) { 2145 /* 2146 * If a rendezvous is already in progress then we need to 2147 * call the rendezvous handler in case this 'vcpuid' is one 2148 * of the targets of the rendezvous. 2149 */ 2150 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress"); 2151 mtx_unlock(&vm->rendezvous_mtx); 2152 vm_handle_rendezvous(vm, vcpuid); 2153 goto restart; 2154 } 2155 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2156 "rendezvous is still in progress")); 2157 2158 RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous"); 2159 vm->rendezvous_req_cpus = dest; 2160 CPU_ZERO(&vm->rendezvous_done_cpus); 2161 vm->rendezvous_arg = arg; 2162 vm_set_rendezvous_func(vm, func); 2163 mtx_unlock(&vm->rendezvous_mtx); 2164 2165 /* 2166 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2167 * vcpus so they handle the rendezvous as soon as possible. 2168 */ 2169 for (i = 0; i < VM_MAXCPU; i++) { 2170 if (CPU_ISSET(i, &dest)) 2171 vcpu_notify_event(vm, i, false); 2172 } 2173 2174 vm_handle_rendezvous(vm, vcpuid); 2175 } 2176 2177 struct vatpic * 2178 vm_atpic(struct vm *vm) 2179 { 2180 return (vm->vatpic); 2181 } 2182 2183 struct vatpit * 2184 vm_atpit(struct vm *vm) 2185 { 2186 return (vm->vatpit); 2187 } 2188 2189 enum vm_reg_name 2190 vm_segment_name(int seg) 2191 { 2192 static enum vm_reg_name seg_names[] = { 2193 VM_REG_GUEST_ES, 2194 VM_REG_GUEST_CS, 2195 VM_REG_GUEST_SS, 2196 VM_REG_GUEST_DS, 2197 VM_REG_GUEST_FS, 2198 VM_REG_GUEST_GS 2199 }; 2200 2201 KASSERT(seg >= 0 && seg < nitems(seg_names), 2202 ("%s: invalid segment encoding %d", __func__, seg)); 2203 return (seg_names[seg]); 2204 } 2205 2206 void 2207 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, 2208 int num_copyinfo) 2209 { 2210 int idx; 2211 2212 for (idx = 0; idx < num_copyinfo; idx++) { 2213 if (copyinfo[idx].cookie != NULL) 2214 vm_gpa_release(copyinfo[idx].cookie); 2215 } 2216 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2217 } 2218 2219 int 2220 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging, 2221 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2222 int num_copyinfo) 2223 { 2224 int error, idx, nused; 2225 size_t n, off, remaining; 2226 void *hva, *cookie; 2227 uint64_t gpa; 2228 2229 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2230 2231 nused = 0; 2232 remaining = len; 2233 while (remaining > 0) { 2234 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo")); 2235 error = vmm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa); 2236 if (error) 2237 return (error); 2238 off = gpa & PAGE_MASK; 2239 n = min(remaining, PAGE_SIZE - off); 2240 copyinfo[nused].gpa = gpa; 2241 copyinfo[nused].len = n; 2242 remaining -= n; 2243 gla += n; 2244 nused++; 2245 } 2246 2247 for (idx = 0; idx < nused; idx++) { 2248 hva = vm_gpa_hold(vm, copyinfo[idx].gpa, copyinfo[idx].len, 2249 prot, &cookie); 2250 if (hva == NULL) 2251 break; 2252 copyinfo[idx].hva = hva; 2253 copyinfo[idx].cookie = cookie; 2254 } 2255 2256 if (idx != nused) { 2257 vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo); 2258 return (-1); 2259 } else { 2260 return (0); 2261 } 2262 } 2263 2264 void 2265 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr, 2266 size_t len) 2267 { 2268 char *dst; 2269 int idx; 2270 2271 dst = kaddr; 2272 idx = 0; 2273 while (len > 0) { 2274 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2275 len -= copyinfo[idx].len; 2276 dst += copyinfo[idx].len; 2277 idx++; 2278 } 2279 } 2280 2281 void 2282 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr, 2283 struct vm_copyinfo *copyinfo, size_t len) 2284 { 2285 const char *src; 2286 int idx; 2287 2288 src = kaddr; 2289 idx = 0; 2290 while (len > 0) { 2291 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2292 len -= copyinfo[idx].len; 2293 src += copyinfo[idx].len; 2294 idx++; 2295 } 2296 } 2297 2298 /* 2299 * Return the amount of in-use and wired memory for the VM. Since 2300 * these are global stats, only return the values with for vCPU 0 2301 */ 2302 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2303 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2304 2305 static void 2306 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2307 { 2308 2309 if (vcpu == 0) { 2310 vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT, 2311 PAGE_SIZE * vmspace_resident_count(vm->vmspace)); 2312 } 2313 } 2314 2315 static void 2316 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2317 { 2318 2319 if (vcpu == 0) { 2320 vmm_stat_set(vm, vcpu, VMM_MEM_WIRED, 2321 PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace))); 2322 } 2323 } 2324 2325 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2326 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2327