1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include "opt_bhyve_snapshot.h" 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/sysctl.h> 37 #include <sys/malloc.h> 38 #include <sys/pcpu.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/proc.h> 42 #include <sys/rwlock.h> 43 #include <sys/sched.h> 44 #include <sys/smp.h> 45 #include <sys/sx.h> 46 #include <sys/vnode.h> 47 48 #include <vm/vm.h> 49 #include <vm/vm_param.h> 50 #include <vm/vm_extern.h> 51 #include <vm/vm_object.h> 52 #include <vm/vm_page.h> 53 #include <vm/pmap.h> 54 #include <vm/vm_map.h> 55 #include <vm/vm_pager.h> 56 #include <vm/vm_kern.h> 57 #include <vm/vnode_pager.h> 58 #include <vm/swap_pager.h> 59 #include <vm/uma.h> 60 61 #include <machine/cpu.h> 62 #include <machine/pcb.h> 63 #include <machine/smp.h> 64 #include <machine/md_var.h> 65 #include <x86/psl.h> 66 #include <x86/apicreg.h> 67 #include <x86/ifunc.h> 68 69 #include <machine/vmm.h> 70 #include <machine/vmm_dev.h> 71 #include <machine/vmm_instruction_emul.h> 72 #include <machine/vmm_snapshot.h> 73 74 #include "vmm_ioport.h" 75 #include "vmm_ktr.h" 76 #include "vmm_host.h" 77 #include "vmm_mem.h" 78 #include "vmm_util.h" 79 #include "vatpic.h" 80 #include "vatpit.h" 81 #include "vhpet.h" 82 #include "vioapic.h" 83 #include "vlapic.h" 84 #include "vpmtmr.h" 85 #include "vrtc.h" 86 #include "vmm_stat.h" 87 #include "vmm_lapic.h" 88 89 #include "io/ppt.h" 90 #include "io/iommu.h" 91 92 struct vlapic; 93 94 /* 95 * Initialization: 96 * (a) allocated when vcpu is created 97 * (i) initialized when vcpu is created and when it is reinitialized 98 * (o) initialized the first time the vcpu is created 99 * (x) initialized before use 100 */ 101 struct vcpu { 102 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 103 enum vcpu_state state; /* (o) vcpu state */ 104 int vcpuid; /* (o) */ 105 int hostcpu; /* (o) vcpu's host cpu */ 106 int reqidle; /* (i) request vcpu to idle */ 107 struct vm *vm; /* (o) */ 108 void *cookie; /* (i) cpu-specific data */ 109 struct vlapic *vlapic; /* (i) APIC device model */ 110 enum x2apic_state x2apic_state; /* (i) APIC mode */ 111 uint64_t exitintinfo; /* (i) events pending at VM exit */ 112 int nmi_pending; /* (i) NMI pending */ 113 int extint_pending; /* (i) INTR pending */ 114 int exception_pending; /* (i) exception pending */ 115 int exc_vector; /* (x) exception collateral */ 116 int exc_errcode_valid; 117 uint32_t exc_errcode; 118 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 119 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 120 void *stats; /* (a,i) statistics */ 121 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 122 cpuset_t exitinfo_cpuset; /* (x) storage for vmexit handlers */ 123 uint64_t nextrip; /* (x) next instruction to execute */ 124 uint64_t tsc_offset; /* (o) TSC offsetting */ 125 }; 126 127 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 128 #define vcpu_lock_destroy(v) mtx_destroy(&((v)->mtx)) 129 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 130 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 131 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 132 133 struct mem_seg { 134 size_t len; 135 bool sysmem; 136 struct vm_object *object; 137 }; 138 #define VM_MAX_MEMSEGS 4 139 140 struct mem_map { 141 vm_paddr_t gpa; 142 size_t len; 143 vm_ooffset_t segoff; 144 int segid; 145 int prot; 146 int flags; 147 }; 148 #define VM_MAX_MEMMAPS 8 149 150 /* 151 * Initialization: 152 * (o) initialized the first time the VM is created 153 * (i) initialized when VM is created and when it is reinitialized 154 * (x) initialized before use 155 * 156 * Locking: 157 * [m] mem_segs_lock 158 * [r] rendezvous_mtx 159 * [v] reads require one frozen vcpu, writes require freezing all vcpus 160 */ 161 struct vm { 162 void *cookie; /* (i) cpu-specific data */ 163 void *iommu; /* (x) iommu-specific data */ 164 struct vhpet *vhpet; /* (i) virtual HPET */ 165 struct vioapic *vioapic; /* (i) virtual ioapic */ 166 struct vatpic *vatpic; /* (i) virtual atpic */ 167 struct vatpit *vatpit; /* (i) virtual atpit */ 168 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ 169 struct vrtc *vrtc; /* (o) virtual RTC */ 170 volatile cpuset_t active_cpus; /* (i) active vcpus */ 171 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */ 172 cpuset_t startup_cpus; /* (i) [r] waiting for startup */ 173 int suspend; /* (i) stop VM execution */ 174 bool dying; /* (o) is dying */ 175 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 176 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 177 cpuset_t rendezvous_req_cpus; /* (x) [r] rendezvous requested */ 178 cpuset_t rendezvous_done_cpus; /* (x) [r] rendezvous finished */ 179 void *rendezvous_arg; /* (x) [r] rendezvous func/arg */ 180 vm_rendezvous_func_t rendezvous_func; 181 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 182 struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) [m+v] guest address space */ 183 struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) [m+v] guest memory regions */ 184 struct vmspace *vmspace; /* (o) guest's address space */ 185 char name[VM_MAX_NAMELEN+1]; /* (o) virtual machine name */ 186 struct vcpu **vcpu; /* (o) guest vcpus */ 187 /* The following describe the vm cpu topology */ 188 uint16_t sockets; /* (o) num of sockets */ 189 uint16_t cores; /* (o) num of cores/socket */ 190 uint16_t threads; /* (o) num of threads/core */ 191 uint16_t maxcpus; /* (o) max pluggable cpus */ 192 struct sx mem_segs_lock; /* (o) */ 193 struct sx vcpus_init_lock; /* (o) */ 194 }; 195 196 #define VMM_CTR0(vcpu, format) \ 197 VCPU_CTR0((vcpu)->vm, (vcpu)->vcpuid, format) 198 199 #define VMM_CTR1(vcpu, format, p1) \ 200 VCPU_CTR1((vcpu)->vm, (vcpu)->vcpuid, format, p1) 201 202 #define VMM_CTR2(vcpu, format, p1, p2) \ 203 VCPU_CTR2((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2) 204 205 #define VMM_CTR3(vcpu, format, p1, p2, p3) \ 206 VCPU_CTR3((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3) 207 208 #define VMM_CTR4(vcpu, format, p1, p2, p3, p4) \ 209 VCPU_CTR4((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3, p4) 210 211 static int vmm_initialized; 212 213 static void vmmops_panic(void); 214 215 static void 216 vmmops_panic(void) 217 { 218 panic("vmm_ops func called when !vmm_is_intel() && !vmm_is_svm()"); 219 } 220 221 #define DEFINE_VMMOPS_IFUNC(ret_type, opname, args) \ 222 DEFINE_IFUNC(static, ret_type, vmmops_##opname, args) \ 223 { \ 224 if (vmm_is_intel()) \ 225 return (vmm_ops_intel.opname); \ 226 else if (vmm_is_svm()) \ 227 return (vmm_ops_amd.opname); \ 228 else \ 229 return ((ret_type (*)args)vmmops_panic); \ 230 } 231 232 DEFINE_VMMOPS_IFUNC(int, modinit, (int ipinum)) 233 DEFINE_VMMOPS_IFUNC(int, modcleanup, (void)) 234 DEFINE_VMMOPS_IFUNC(void, modresume, (void)) 235 DEFINE_VMMOPS_IFUNC(void *, init, (struct vm *vm, struct pmap *pmap)) 236 DEFINE_VMMOPS_IFUNC(int, run, (void *vcpui, register_t rip, struct pmap *pmap, 237 struct vm_eventinfo *info)) 238 DEFINE_VMMOPS_IFUNC(void, cleanup, (void *vmi)) 239 DEFINE_VMMOPS_IFUNC(void *, vcpu_init, (void *vmi, struct vcpu *vcpu, 240 int vcpu_id)) 241 DEFINE_VMMOPS_IFUNC(void, vcpu_cleanup, (void *vcpui)) 242 DEFINE_VMMOPS_IFUNC(int, getreg, (void *vcpui, int num, uint64_t *retval)) 243 DEFINE_VMMOPS_IFUNC(int, setreg, (void *vcpui, int num, uint64_t val)) 244 DEFINE_VMMOPS_IFUNC(int, getdesc, (void *vcpui, int num, struct seg_desc *desc)) 245 DEFINE_VMMOPS_IFUNC(int, setdesc, (void *vcpui, int num, struct seg_desc *desc)) 246 DEFINE_VMMOPS_IFUNC(int, getcap, (void *vcpui, int num, int *retval)) 247 DEFINE_VMMOPS_IFUNC(int, setcap, (void *vcpui, int num, int val)) 248 DEFINE_VMMOPS_IFUNC(struct vmspace *, vmspace_alloc, (vm_offset_t min, 249 vm_offset_t max)) 250 DEFINE_VMMOPS_IFUNC(void, vmspace_free, (struct vmspace *vmspace)) 251 DEFINE_VMMOPS_IFUNC(struct vlapic *, vlapic_init, (void *vcpui)) 252 DEFINE_VMMOPS_IFUNC(void, vlapic_cleanup, (struct vlapic *vlapic)) 253 #ifdef BHYVE_SNAPSHOT 254 DEFINE_VMMOPS_IFUNC(int, vcpu_snapshot, (void *vcpui, 255 struct vm_snapshot_meta *meta)) 256 DEFINE_VMMOPS_IFUNC(int, restore_tsc, (void *vcpui, uint64_t now)) 257 #endif 258 259 SDT_PROVIDER_DEFINE(vmm); 260 261 static MALLOC_DEFINE(M_VM, "vm", "vm"); 262 263 /* statistics */ 264 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 265 266 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 267 NULL); 268 269 /* 270 * Halt the guest if all vcpus are executing a HLT instruction with 271 * interrupts disabled. 272 */ 273 static int halt_detection_enabled = 1; 274 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 275 &halt_detection_enabled, 0, 276 "Halt VM if all vcpus execute HLT with interrupts disabled"); 277 278 static int vmm_ipinum; 279 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 280 "IPI vector used for vcpu notifications"); 281 282 static int trace_guest_exceptions; 283 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN, 284 &trace_guest_exceptions, 0, 285 "Trap into hypervisor on all guest exceptions and reflect them back"); 286 287 static int trap_wbinvd; 288 SYSCTL_INT(_hw_vmm, OID_AUTO, trap_wbinvd, CTLFLAG_RDTUN, &trap_wbinvd, 0, 289 "WBINVD triggers a VM-exit"); 290 291 u_int vm_maxcpu; 292 SYSCTL_UINT(_hw_vmm, OID_AUTO, maxcpu, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 293 &vm_maxcpu, 0, "Maximum number of vCPUs"); 294 295 static void vm_free_memmap(struct vm *vm, int ident); 296 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm); 297 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr); 298 299 /* 300 * Upper limit on vm_maxcpu. Limited by use of uint16_t types for CPU 301 * counts as well as range of vpid values for VT-x and by the capacity 302 * of cpuset_t masks. The call to new_unrhdr() in vpid_init() in 303 * vmx.c requires 'vm_maxcpu + 1 <= 0xffff', hence the '- 1' below. 304 */ 305 #define VM_MAXCPU MIN(0xffff - 1, CPU_SETSIZE) 306 307 #ifdef KTR 308 static const char * 309 vcpu_state2str(enum vcpu_state state) 310 { 311 312 switch (state) { 313 case VCPU_IDLE: 314 return ("idle"); 315 case VCPU_FROZEN: 316 return ("frozen"); 317 case VCPU_RUNNING: 318 return ("running"); 319 case VCPU_SLEEPING: 320 return ("sleeping"); 321 default: 322 return ("unknown"); 323 } 324 } 325 #endif 326 327 static void 328 vcpu_cleanup(struct vcpu *vcpu, bool destroy) 329 { 330 vmmops_vlapic_cleanup(vcpu->vlapic); 331 vmmops_vcpu_cleanup(vcpu->cookie); 332 vcpu->cookie = NULL; 333 if (destroy) { 334 vmm_stat_free(vcpu->stats); 335 fpu_save_area_free(vcpu->guestfpu); 336 vcpu_lock_destroy(vcpu); 337 free(vcpu, M_VM); 338 } 339 } 340 341 static struct vcpu * 342 vcpu_alloc(struct vm *vm, int vcpu_id) 343 { 344 struct vcpu *vcpu; 345 346 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus, 347 ("vcpu_init: invalid vcpu %d", vcpu_id)); 348 349 vcpu = malloc(sizeof(*vcpu), M_VM, M_WAITOK | M_ZERO); 350 vcpu_lock_init(vcpu); 351 vcpu->state = VCPU_IDLE; 352 vcpu->hostcpu = NOCPU; 353 vcpu->vcpuid = vcpu_id; 354 vcpu->vm = vm; 355 vcpu->guestfpu = fpu_save_area_alloc(); 356 vcpu->stats = vmm_stat_alloc(); 357 vcpu->tsc_offset = 0; 358 return (vcpu); 359 } 360 361 static void 362 vcpu_init(struct vcpu *vcpu) 363 { 364 vcpu->cookie = vmmops_vcpu_init(vcpu->vm->cookie, vcpu, vcpu->vcpuid); 365 vcpu->vlapic = vmmops_vlapic_init(vcpu->cookie); 366 vm_set_x2apic_state(vcpu, X2APIC_DISABLED); 367 vcpu->reqidle = 0; 368 vcpu->exitintinfo = 0; 369 vcpu->nmi_pending = 0; 370 vcpu->extint_pending = 0; 371 vcpu->exception_pending = 0; 372 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 373 fpu_save_area_reset(vcpu->guestfpu); 374 vmm_stat_init(vcpu->stats); 375 } 376 377 int 378 vcpu_trace_exceptions(struct vcpu *vcpu) 379 { 380 381 return (trace_guest_exceptions); 382 } 383 384 int 385 vcpu_trap_wbinvd(struct vcpu *vcpu) 386 { 387 return (trap_wbinvd); 388 } 389 390 struct vm_exit * 391 vm_exitinfo(struct vcpu *vcpu) 392 { 393 return (&vcpu->exitinfo); 394 } 395 396 cpuset_t * 397 vm_exitinfo_cpuset(struct vcpu *vcpu) 398 { 399 return (&vcpu->exitinfo_cpuset); 400 } 401 402 static int 403 vmm_init(void) 404 { 405 int error; 406 407 if (!vmm_is_hw_supported()) 408 return (ENXIO); 409 410 vm_maxcpu = mp_ncpus; 411 TUNABLE_INT_FETCH("hw.vmm.maxcpu", &vm_maxcpu); 412 413 if (vm_maxcpu > VM_MAXCPU) { 414 printf("vmm: vm_maxcpu clamped to %u\n", VM_MAXCPU); 415 vm_maxcpu = VM_MAXCPU; 416 } 417 if (vm_maxcpu == 0) 418 vm_maxcpu = 1; 419 420 vmm_host_state_init(); 421 422 vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) : 423 &IDTVEC(justreturn)); 424 if (vmm_ipinum < 0) 425 vmm_ipinum = IPI_AST; 426 427 error = vmm_mem_init(); 428 if (error) 429 return (error); 430 431 vmm_resume_p = vmmops_modresume; 432 433 return (vmmops_modinit(vmm_ipinum)); 434 } 435 436 static int 437 vmm_handler(module_t mod, int what, void *arg) 438 { 439 int error; 440 441 switch (what) { 442 case MOD_LOAD: 443 if (vmm_is_hw_supported()) { 444 vmmdev_init(); 445 error = vmm_init(); 446 if (error == 0) 447 vmm_initialized = 1; 448 } else { 449 error = ENXIO; 450 } 451 break; 452 case MOD_UNLOAD: 453 if (vmm_is_hw_supported()) { 454 error = vmmdev_cleanup(); 455 if (error == 0) { 456 vmm_resume_p = NULL; 457 iommu_cleanup(); 458 if (vmm_ipinum != IPI_AST) 459 lapic_ipi_free(vmm_ipinum); 460 error = vmmops_modcleanup(); 461 /* 462 * Something bad happened - prevent new 463 * VMs from being created 464 */ 465 if (error) 466 vmm_initialized = 0; 467 } 468 } else { 469 error = 0; 470 } 471 break; 472 default: 473 error = 0; 474 break; 475 } 476 return (error); 477 } 478 479 static moduledata_t vmm_kmod = { 480 "vmm", 481 vmm_handler, 482 NULL 483 }; 484 485 /* 486 * vmm initialization has the following dependencies: 487 * 488 * - VT-x initialization requires smp_rendezvous() and therefore must happen 489 * after SMP is fully functional (after SI_SUB_SMP). 490 */ 491 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 492 MODULE_VERSION(vmm, 1); 493 494 static void 495 vm_init(struct vm *vm, bool create) 496 { 497 vm->cookie = vmmops_init(vm, vmspace_pmap(vm->vmspace)); 498 vm->iommu = NULL; 499 vm->vioapic = vioapic_init(vm); 500 vm->vhpet = vhpet_init(vm); 501 vm->vatpic = vatpic_init(vm); 502 vm->vatpit = vatpit_init(vm); 503 vm->vpmtmr = vpmtmr_init(vm); 504 if (create) 505 vm->vrtc = vrtc_init(vm); 506 507 CPU_ZERO(&vm->active_cpus); 508 CPU_ZERO(&vm->debug_cpus); 509 CPU_ZERO(&vm->startup_cpus); 510 511 vm->suspend = 0; 512 CPU_ZERO(&vm->suspended_cpus); 513 514 if (!create) { 515 for (int i = 0; i < vm->maxcpus; i++) { 516 if (vm->vcpu[i] != NULL) 517 vcpu_init(vm->vcpu[i]); 518 } 519 } 520 } 521 522 void 523 vm_disable_vcpu_creation(struct vm *vm) 524 { 525 sx_xlock(&vm->vcpus_init_lock); 526 vm->dying = true; 527 sx_xunlock(&vm->vcpus_init_lock); 528 } 529 530 struct vcpu * 531 vm_alloc_vcpu(struct vm *vm, int vcpuid) 532 { 533 struct vcpu *vcpu; 534 535 if (vcpuid < 0 || vcpuid >= vm_get_maxcpus(vm)) 536 return (NULL); 537 538 vcpu = atomic_load_ptr(&vm->vcpu[vcpuid]); 539 if (__predict_true(vcpu != NULL)) 540 return (vcpu); 541 542 sx_xlock(&vm->vcpus_init_lock); 543 vcpu = vm->vcpu[vcpuid]; 544 if (vcpu == NULL && !vm->dying) { 545 vcpu = vcpu_alloc(vm, vcpuid); 546 vcpu_init(vcpu); 547 548 /* 549 * Ensure vCPU is fully created before updating pointer 550 * to permit unlocked reads above. 551 */ 552 atomic_store_rel_ptr((uintptr_t *)&vm->vcpu[vcpuid], 553 (uintptr_t)vcpu); 554 } 555 sx_xunlock(&vm->vcpus_init_lock); 556 return (vcpu); 557 } 558 559 void 560 vm_slock_vcpus(struct vm *vm) 561 { 562 sx_slock(&vm->vcpus_init_lock); 563 } 564 565 void 566 vm_unlock_vcpus(struct vm *vm) 567 { 568 sx_unlock(&vm->vcpus_init_lock); 569 } 570 571 /* 572 * The default CPU topology is a single thread per package. 573 */ 574 u_int cores_per_package = 1; 575 u_int threads_per_core = 1; 576 577 int 578 vm_create(const char *name, struct vm **retvm) 579 { 580 struct vm *vm; 581 struct vmspace *vmspace; 582 583 /* 584 * If vmm.ko could not be successfully initialized then don't attempt 585 * to create the virtual machine. 586 */ 587 if (!vmm_initialized) 588 return (ENXIO); 589 590 if (name == NULL || strnlen(name, VM_MAX_NAMELEN + 1) == 591 VM_MAX_NAMELEN + 1) 592 return (EINVAL); 593 594 vmspace = vmmops_vmspace_alloc(0, VM_MAXUSER_ADDRESS_LA48); 595 if (vmspace == NULL) 596 return (ENOMEM); 597 598 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 599 strcpy(vm->name, name); 600 vm->vmspace = vmspace; 601 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 602 sx_init(&vm->mem_segs_lock, "vm mem_segs"); 603 sx_init(&vm->vcpus_init_lock, "vm vcpus"); 604 vm->vcpu = malloc(sizeof(*vm->vcpu) * vm_maxcpu, M_VM, M_WAITOK | 605 M_ZERO); 606 607 vm->sockets = 1; 608 vm->cores = cores_per_package; /* XXX backwards compatibility */ 609 vm->threads = threads_per_core; /* XXX backwards compatibility */ 610 vm->maxcpus = vm_maxcpu; 611 612 vm_init(vm, true); 613 614 *retvm = vm; 615 return (0); 616 } 617 618 void 619 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, 620 uint16_t *threads, uint16_t *maxcpus) 621 { 622 *sockets = vm->sockets; 623 *cores = vm->cores; 624 *threads = vm->threads; 625 *maxcpus = vm->maxcpus; 626 } 627 628 uint16_t 629 vm_get_maxcpus(struct vm *vm) 630 { 631 return (vm->maxcpus); 632 } 633 634 int 635 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, 636 uint16_t threads, uint16_t maxcpus __unused) 637 { 638 /* Ignore maxcpus. */ 639 if ((sockets * cores * threads) > vm->maxcpus) 640 return (EINVAL); 641 vm->sockets = sockets; 642 vm->cores = cores; 643 vm->threads = threads; 644 return(0); 645 } 646 647 static void 648 vm_cleanup(struct vm *vm, bool destroy) 649 { 650 struct mem_map *mm; 651 int i; 652 653 if (destroy) 654 vm_xlock_memsegs(vm); 655 656 ppt_unassign_all(vm); 657 658 if (vm->iommu != NULL) 659 iommu_destroy_domain(vm->iommu); 660 661 if (destroy) 662 vrtc_cleanup(vm->vrtc); 663 else 664 vrtc_reset(vm->vrtc); 665 vpmtmr_cleanup(vm->vpmtmr); 666 vatpit_cleanup(vm->vatpit); 667 vhpet_cleanup(vm->vhpet); 668 vatpic_cleanup(vm->vatpic); 669 vioapic_cleanup(vm->vioapic); 670 671 for (i = 0; i < vm->maxcpus; i++) { 672 if (vm->vcpu[i] != NULL) 673 vcpu_cleanup(vm->vcpu[i], destroy); 674 } 675 676 vmmops_cleanup(vm->cookie); 677 678 /* 679 * System memory is removed from the guest address space only when 680 * the VM is destroyed. This is because the mapping remains the same 681 * across VM reset. 682 * 683 * Device memory can be relocated by the guest (e.g. using PCI BARs) 684 * so those mappings are removed on a VM reset. 685 */ 686 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 687 mm = &vm->mem_maps[i]; 688 if (destroy || !sysmem_mapping(vm, mm)) 689 vm_free_memmap(vm, i); 690 } 691 692 if (destroy) { 693 for (i = 0; i < VM_MAX_MEMSEGS; i++) 694 vm_free_memseg(vm, i); 695 vm_unlock_memsegs(vm); 696 697 vmmops_vmspace_free(vm->vmspace); 698 vm->vmspace = NULL; 699 700 free(vm->vcpu, M_VM); 701 sx_destroy(&vm->vcpus_init_lock); 702 sx_destroy(&vm->mem_segs_lock); 703 mtx_destroy(&vm->rendezvous_mtx); 704 } 705 } 706 707 void 708 vm_destroy(struct vm *vm) 709 { 710 vm_cleanup(vm, true); 711 free(vm, M_VM); 712 } 713 714 int 715 vm_reinit(struct vm *vm) 716 { 717 int error; 718 719 /* 720 * A virtual machine can be reset only if all vcpus are suspended. 721 */ 722 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 723 vm_cleanup(vm, false); 724 vm_init(vm, false); 725 error = 0; 726 } else { 727 error = EBUSY; 728 } 729 730 return (error); 731 } 732 733 const char * 734 vm_name(struct vm *vm) 735 { 736 return (vm->name); 737 } 738 739 void 740 vm_slock_memsegs(struct vm *vm) 741 { 742 sx_slock(&vm->mem_segs_lock); 743 } 744 745 void 746 vm_xlock_memsegs(struct vm *vm) 747 { 748 sx_xlock(&vm->mem_segs_lock); 749 } 750 751 void 752 vm_unlock_memsegs(struct vm *vm) 753 { 754 sx_unlock(&vm->mem_segs_lock); 755 } 756 757 int 758 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 759 { 760 vm_object_t obj; 761 762 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 763 return (ENOMEM); 764 else 765 return (0); 766 } 767 768 int 769 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 770 { 771 772 vmm_mmio_free(vm->vmspace, gpa, len); 773 return (0); 774 } 775 776 /* 777 * Return 'true' if 'gpa' is allocated in the guest address space. 778 * 779 * This function is called in the context of a running vcpu which acts as 780 * an implicit lock on 'vm->mem_maps[]'. 781 */ 782 bool 783 vm_mem_allocated(struct vcpu *vcpu, vm_paddr_t gpa) 784 { 785 struct vm *vm = vcpu->vm; 786 struct mem_map *mm; 787 int i; 788 789 #ifdef INVARIANTS 790 int hostcpu, state; 791 state = vcpu_get_state(vcpu, &hostcpu); 792 KASSERT(state == VCPU_RUNNING && hostcpu == curcpu, 793 ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu)); 794 #endif 795 796 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 797 mm = &vm->mem_maps[i]; 798 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len) 799 return (true); /* 'gpa' is sysmem or devmem */ 800 } 801 802 if (ppt_is_mmio(vm, gpa)) 803 return (true); /* 'gpa' is pci passthru mmio */ 804 805 return (false); 806 } 807 808 int 809 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem) 810 { 811 struct mem_seg *seg; 812 vm_object_t obj; 813 814 sx_assert(&vm->mem_segs_lock, SX_XLOCKED); 815 816 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 817 return (EINVAL); 818 819 if (len == 0 || (len & PAGE_MASK)) 820 return (EINVAL); 821 822 seg = &vm->mem_segs[ident]; 823 if (seg->object != NULL) { 824 if (seg->len == len && seg->sysmem == sysmem) 825 return (EEXIST); 826 else 827 return (EINVAL); 828 } 829 830 obj = vm_object_allocate(OBJT_SWAP, len >> PAGE_SHIFT); 831 if (obj == NULL) 832 return (ENOMEM); 833 834 seg->len = len; 835 seg->object = obj; 836 seg->sysmem = sysmem; 837 return (0); 838 } 839 840 int 841 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, 842 vm_object_t *objptr) 843 { 844 struct mem_seg *seg; 845 846 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 847 848 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 849 return (EINVAL); 850 851 seg = &vm->mem_segs[ident]; 852 if (len) 853 *len = seg->len; 854 if (sysmem) 855 *sysmem = seg->sysmem; 856 if (objptr) 857 *objptr = seg->object; 858 return (0); 859 } 860 861 void 862 vm_free_memseg(struct vm *vm, int ident) 863 { 864 struct mem_seg *seg; 865 866 KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS, 867 ("%s: invalid memseg ident %d", __func__, ident)); 868 869 seg = &vm->mem_segs[ident]; 870 if (seg->object != NULL) { 871 vm_object_deallocate(seg->object); 872 bzero(seg, sizeof(struct mem_seg)); 873 } 874 } 875 876 int 877 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first, 878 size_t len, int prot, int flags) 879 { 880 struct mem_seg *seg; 881 struct mem_map *m, *map; 882 vm_ooffset_t last; 883 int i, error; 884 885 if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0) 886 return (EINVAL); 887 888 if (flags & ~VM_MEMMAP_F_WIRED) 889 return (EINVAL); 890 891 if (segid < 0 || segid >= VM_MAX_MEMSEGS) 892 return (EINVAL); 893 894 seg = &vm->mem_segs[segid]; 895 if (seg->object == NULL) 896 return (EINVAL); 897 898 last = first + len; 899 if (first < 0 || first >= last || last > seg->len) 900 return (EINVAL); 901 902 if ((gpa | first | last) & PAGE_MASK) 903 return (EINVAL); 904 905 map = NULL; 906 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 907 m = &vm->mem_maps[i]; 908 if (m->len == 0) { 909 map = m; 910 break; 911 } 912 } 913 914 if (map == NULL) 915 return (ENOSPC); 916 917 error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa, 918 len, 0, VMFS_NO_SPACE, prot, prot, 0); 919 if (error != KERN_SUCCESS) 920 return (EFAULT); 921 922 vm_object_reference(seg->object); 923 924 if (flags & VM_MEMMAP_F_WIRED) { 925 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len, 926 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 927 if (error != KERN_SUCCESS) { 928 vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len); 929 return (error == KERN_RESOURCE_SHORTAGE ? ENOMEM : 930 EFAULT); 931 } 932 } 933 934 map->gpa = gpa; 935 map->len = len; 936 map->segoff = first; 937 map->segid = segid; 938 map->prot = prot; 939 map->flags = flags; 940 return (0); 941 } 942 943 int 944 vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len) 945 { 946 struct mem_map *m; 947 int i; 948 949 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 950 m = &vm->mem_maps[i]; 951 if (m->gpa == gpa && m->len == len && 952 (m->flags & VM_MEMMAP_F_IOMMU) == 0) { 953 vm_free_memmap(vm, i); 954 return (0); 955 } 956 } 957 958 return (EINVAL); 959 } 960 961 int 962 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, 963 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 964 { 965 struct mem_map *mm, *mmnext; 966 int i; 967 968 mmnext = NULL; 969 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 970 mm = &vm->mem_maps[i]; 971 if (mm->len == 0 || mm->gpa < *gpa) 972 continue; 973 if (mmnext == NULL || mm->gpa < mmnext->gpa) 974 mmnext = mm; 975 } 976 977 if (mmnext != NULL) { 978 *gpa = mmnext->gpa; 979 if (segid) 980 *segid = mmnext->segid; 981 if (segoff) 982 *segoff = mmnext->segoff; 983 if (len) 984 *len = mmnext->len; 985 if (prot) 986 *prot = mmnext->prot; 987 if (flags) 988 *flags = mmnext->flags; 989 return (0); 990 } else { 991 return (ENOENT); 992 } 993 } 994 995 static void 996 vm_free_memmap(struct vm *vm, int ident) 997 { 998 struct mem_map *mm; 999 int error __diagused; 1000 1001 mm = &vm->mem_maps[ident]; 1002 if (mm->len) { 1003 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa, 1004 mm->gpa + mm->len); 1005 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d", 1006 __func__, error)); 1007 bzero(mm, sizeof(struct mem_map)); 1008 } 1009 } 1010 1011 static __inline bool 1012 sysmem_mapping(struct vm *vm, struct mem_map *mm) 1013 { 1014 1015 if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem) 1016 return (true); 1017 else 1018 return (false); 1019 } 1020 1021 vm_paddr_t 1022 vmm_sysmem_maxaddr(struct vm *vm) 1023 { 1024 struct mem_map *mm; 1025 vm_paddr_t maxaddr; 1026 int i; 1027 1028 maxaddr = 0; 1029 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1030 mm = &vm->mem_maps[i]; 1031 if (sysmem_mapping(vm, mm)) { 1032 if (maxaddr < mm->gpa + mm->len) 1033 maxaddr = mm->gpa + mm->len; 1034 } 1035 } 1036 return (maxaddr); 1037 } 1038 1039 static void 1040 vm_iommu_modify(struct vm *vm, bool map) 1041 { 1042 int i, sz; 1043 vm_paddr_t gpa, hpa; 1044 struct mem_map *mm; 1045 void *vp, *cookie, *host_domain; 1046 1047 sz = PAGE_SIZE; 1048 host_domain = iommu_host_domain(); 1049 1050 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1051 mm = &vm->mem_maps[i]; 1052 if (!sysmem_mapping(vm, mm)) 1053 continue; 1054 1055 if (map) { 1056 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0, 1057 ("iommu map found invalid memmap %#lx/%#lx/%#x", 1058 mm->gpa, mm->len, mm->flags)); 1059 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0) 1060 continue; 1061 mm->flags |= VM_MEMMAP_F_IOMMU; 1062 } else { 1063 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0) 1064 continue; 1065 mm->flags &= ~VM_MEMMAP_F_IOMMU; 1066 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0, 1067 ("iommu unmap found invalid memmap %#lx/%#lx/%#x", 1068 mm->gpa, mm->len, mm->flags)); 1069 } 1070 1071 gpa = mm->gpa; 1072 while (gpa < mm->gpa + mm->len) { 1073 vp = vm_gpa_hold_global(vm, gpa, PAGE_SIZE, 1074 VM_PROT_WRITE, &cookie); 1075 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", 1076 vm_name(vm), gpa)); 1077 1078 vm_gpa_release(cookie); 1079 1080 hpa = DMAP_TO_PHYS((uintptr_t)vp); 1081 if (map) { 1082 iommu_create_mapping(vm->iommu, gpa, hpa, sz); 1083 } else { 1084 iommu_remove_mapping(vm->iommu, gpa, sz); 1085 } 1086 1087 gpa += PAGE_SIZE; 1088 } 1089 } 1090 1091 /* 1092 * Invalidate the cached translations associated with the domain 1093 * from which pages were removed. 1094 */ 1095 if (map) 1096 iommu_invalidate_tlb(host_domain); 1097 else 1098 iommu_invalidate_tlb(vm->iommu); 1099 } 1100 1101 #define vm_iommu_unmap(vm) vm_iommu_modify((vm), false) 1102 #define vm_iommu_map(vm) vm_iommu_modify((vm), true) 1103 1104 int 1105 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 1106 { 1107 int error; 1108 1109 error = ppt_unassign_device(vm, bus, slot, func); 1110 if (error) 1111 return (error); 1112 1113 if (ppt_assigned_devices(vm) == 0) 1114 vm_iommu_unmap(vm); 1115 1116 return (0); 1117 } 1118 1119 int 1120 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 1121 { 1122 int error; 1123 vm_paddr_t maxaddr; 1124 1125 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */ 1126 if (ppt_assigned_devices(vm) == 0) { 1127 KASSERT(vm->iommu == NULL, 1128 ("vm_assign_pptdev: iommu must be NULL")); 1129 maxaddr = vmm_sysmem_maxaddr(vm); 1130 vm->iommu = iommu_create_domain(maxaddr); 1131 if (vm->iommu == NULL) 1132 return (ENXIO); 1133 vm_iommu_map(vm); 1134 } 1135 1136 error = ppt_assign_device(vm, bus, slot, func); 1137 return (error); 1138 } 1139 1140 static void * 1141 _vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 1142 void **cookie) 1143 { 1144 int i, count, pageoff; 1145 struct mem_map *mm; 1146 vm_page_t m; 1147 1148 pageoff = gpa & PAGE_MASK; 1149 if (len > PAGE_SIZE - pageoff) 1150 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 1151 1152 count = 0; 1153 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1154 mm = &vm->mem_maps[i]; 1155 if (gpa >= mm->gpa && gpa < mm->gpa + mm->len) { 1156 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 1157 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 1158 break; 1159 } 1160 } 1161 1162 if (count == 1) { 1163 *cookie = m; 1164 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 1165 } else { 1166 *cookie = NULL; 1167 return (NULL); 1168 } 1169 } 1170 1171 void * 1172 vm_gpa_hold(struct vcpu *vcpu, vm_paddr_t gpa, size_t len, int reqprot, 1173 void **cookie) 1174 { 1175 #ifdef INVARIANTS 1176 /* 1177 * The current vcpu should be frozen to ensure 'vm_memmap[]' 1178 * stability. 1179 */ 1180 int state = vcpu_get_state(vcpu, NULL); 1181 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d", 1182 __func__, state)); 1183 #endif 1184 return (_vm_gpa_hold(vcpu->vm, gpa, len, reqprot, cookie)); 1185 } 1186 1187 void * 1188 vm_gpa_hold_global(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 1189 void **cookie) 1190 { 1191 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 1192 return (_vm_gpa_hold(vm, gpa, len, reqprot, cookie)); 1193 } 1194 1195 void 1196 vm_gpa_release(void *cookie) 1197 { 1198 vm_page_t m = cookie; 1199 1200 vm_page_unwire(m, PQ_ACTIVE); 1201 } 1202 1203 int 1204 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval) 1205 { 1206 1207 if (reg >= VM_REG_LAST) 1208 return (EINVAL); 1209 1210 return (vmmops_getreg(vcpu->cookie, reg, retval)); 1211 } 1212 1213 int 1214 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val) 1215 { 1216 int error; 1217 1218 if (reg >= VM_REG_LAST) 1219 return (EINVAL); 1220 1221 error = vmmops_setreg(vcpu->cookie, reg, val); 1222 if (error || reg != VM_REG_GUEST_RIP) 1223 return (error); 1224 1225 /* Set 'nextrip' to match the value of %rip */ 1226 VMM_CTR1(vcpu, "Setting nextrip to %#lx", val); 1227 vcpu->nextrip = val; 1228 return (0); 1229 } 1230 1231 static bool 1232 is_descriptor_table(int reg) 1233 { 1234 1235 switch (reg) { 1236 case VM_REG_GUEST_IDTR: 1237 case VM_REG_GUEST_GDTR: 1238 return (true); 1239 default: 1240 return (false); 1241 } 1242 } 1243 1244 static bool 1245 is_segment_register(int reg) 1246 { 1247 1248 switch (reg) { 1249 case VM_REG_GUEST_ES: 1250 case VM_REG_GUEST_CS: 1251 case VM_REG_GUEST_SS: 1252 case VM_REG_GUEST_DS: 1253 case VM_REG_GUEST_FS: 1254 case VM_REG_GUEST_GS: 1255 case VM_REG_GUEST_TR: 1256 case VM_REG_GUEST_LDTR: 1257 return (true); 1258 default: 1259 return (false); 1260 } 1261 } 1262 1263 int 1264 vm_get_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc) 1265 { 1266 1267 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1268 return (EINVAL); 1269 1270 return (vmmops_getdesc(vcpu->cookie, reg, desc)); 1271 } 1272 1273 int 1274 vm_set_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc) 1275 { 1276 1277 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1278 return (EINVAL); 1279 1280 return (vmmops_setdesc(vcpu->cookie, reg, desc)); 1281 } 1282 1283 static void 1284 restore_guest_fpustate(struct vcpu *vcpu) 1285 { 1286 1287 /* flush host state to the pcb */ 1288 fpuexit(curthread); 1289 1290 /* restore guest FPU state */ 1291 fpu_enable(); 1292 fpurestore(vcpu->guestfpu); 1293 1294 /* restore guest XCR0 if XSAVE is enabled in the host */ 1295 if (rcr4() & CR4_XSAVE) 1296 load_xcr(0, vcpu->guest_xcr0); 1297 1298 /* 1299 * The FPU is now "dirty" with the guest's state so disable 1300 * the FPU to trap any access by the host. 1301 */ 1302 fpu_disable(); 1303 } 1304 1305 static void 1306 save_guest_fpustate(struct vcpu *vcpu) 1307 { 1308 1309 if ((rcr0() & CR0_TS) == 0) 1310 panic("fpu emulation not enabled in host!"); 1311 1312 /* save guest XCR0 and restore host XCR0 */ 1313 if (rcr4() & CR4_XSAVE) { 1314 vcpu->guest_xcr0 = rxcr(0); 1315 load_xcr(0, vmm_get_host_xcr0()); 1316 } 1317 1318 /* save guest FPU state */ 1319 fpu_enable(); 1320 fpusave(vcpu->guestfpu); 1321 fpu_disable(); 1322 } 1323 1324 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 1325 1326 static int 1327 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate, 1328 bool from_idle) 1329 { 1330 int error; 1331 1332 vcpu_assert_locked(vcpu); 1333 1334 /* 1335 * State transitions from the vmmdev_ioctl() must always begin from 1336 * the VCPU_IDLE state. This guarantees that there is only a single 1337 * ioctl() operating on a vcpu at any point. 1338 */ 1339 if (from_idle) { 1340 while (vcpu->state != VCPU_IDLE) { 1341 vcpu->reqidle = 1; 1342 vcpu_notify_event_locked(vcpu, false); 1343 VMM_CTR1(vcpu, "vcpu state change from %s to " 1344 "idle requested", vcpu_state2str(vcpu->state)); 1345 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 1346 } 1347 } else { 1348 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 1349 "vcpu idle state")); 1350 } 1351 1352 if (vcpu->state == VCPU_RUNNING) { 1353 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 1354 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 1355 } else { 1356 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 1357 "vcpu that is not running", vcpu->hostcpu)); 1358 } 1359 1360 /* 1361 * The following state transitions are allowed: 1362 * IDLE -> FROZEN -> IDLE 1363 * FROZEN -> RUNNING -> FROZEN 1364 * FROZEN -> SLEEPING -> FROZEN 1365 */ 1366 switch (vcpu->state) { 1367 case VCPU_IDLE: 1368 case VCPU_RUNNING: 1369 case VCPU_SLEEPING: 1370 error = (newstate != VCPU_FROZEN); 1371 break; 1372 case VCPU_FROZEN: 1373 error = (newstate == VCPU_FROZEN); 1374 break; 1375 default: 1376 error = 1; 1377 break; 1378 } 1379 1380 if (error) 1381 return (EBUSY); 1382 1383 VMM_CTR2(vcpu, "vcpu state changed from %s to %s", 1384 vcpu_state2str(vcpu->state), vcpu_state2str(newstate)); 1385 1386 vcpu->state = newstate; 1387 if (newstate == VCPU_RUNNING) 1388 vcpu->hostcpu = curcpu; 1389 else 1390 vcpu->hostcpu = NOCPU; 1391 1392 if (newstate == VCPU_IDLE) 1393 wakeup(&vcpu->state); 1394 1395 return (0); 1396 } 1397 1398 static void 1399 vcpu_require_state(struct vcpu *vcpu, enum vcpu_state newstate) 1400 { 1401 int error; 1402 1403 if ((error = vcpu_set_state(vcpu, newstate, false)) != 0) 1404 panic("Error %d setting state to %d\n", error, newstate); 1405 } 1406 1407 static void 1408 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate) 1409 { 1410 int error; 1411 1412 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0) 1413 panic("Error %d setting state to %d", error, newstate); 1414 } 1415 1416 static int 1417 vm_handle_rendezvous(struct vcpu *vcpu) 1418 { 1419 struct vm *vm = vcpu->vm; 1420 struct thread *td; 1421 int error, vcpuid; 1422 1423 error = 0; 1424 vcpuid = vcpu->vcpuid; 1425 td = curthread; 1426 mtx_lock(&vm->rendezvous_mtx); 1427 while (vm->rendezvous_func != NULL) { 1428 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1429 CPU_AND(&vm->rendezvous_req_cpus, &vm->rendezvous_req_cpus, &vm->active_cpus); 1430 1431 if (CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1432 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1433 VMM_CTR0(vcpu, "Calling rendezvous func"); 1434 (*vm->rendezvous_func)(vcpu, vm->rendezvous_arg); 1435 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1436 } 1437 if (CPU_CMP(&vm->rendezvous_req_cpus, 1438 &vm->rendezvous_done_cpus) == 0) { 1439 VMM_CTR0(vcpu, "Rendezvous completed"); 1440 CPU_ZERO(&vm->rendezvous_req_cpus); 1441 vm->rendezvous_func = NULL; 1442 wakeup(&vm->rendezvous_func); 1443 break; 1444 } 1445 VMM_CTR0(vcpu, "Wait for rendezvous completion"); 1446 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1447 "vmrndv", hz); 1448 if (td_ast_pending(td, TDA_SUSPEND)) { 1449 mtx_unlock(&vm->rendezvous_mtx); 1450 error = thread_check_susp(td, true); 1451 if (error != 0) 1452 return (error); 1453 mtx_lock(&vm->rendezvous_mtx); 1454 } 1455 } 1456 mtx_unlock(&vm->rendezvous_mtx); 1457 return (0); 1458 } 1459 1460 /* 1461 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1462 */ 1463 static int 1464 vm_handle_hlt(struct vcpu *vcpu, bool intr_disabled, bool *retu) 1465 { 1466 struct vm *vm = vcpu->vm; 1467 const char *wmesg; 1468 struct thread *td; 1469 int error, t, vcpuid, vcpu_halted, vm_halted; 1470 1471 vcpuid = vcpu->vcpuid; 1472 vcpu_halted = 0; 1473 vm_halted = 0; 1474 error = 0; 1475 td = curthread; 1476 1477 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1478 1479 vcpu_lock(vcpu); 1480 while (1) { 1481 /* 1482 * Do a final check for pending NMI or interrupts before 1483 * really putting this thread to sleep. Also check for 1484 * software events that would cause this vcpu to wakeup. 1485 * 1486 * These interrupts/events could have happened after the 1487 * vcpu returned from vmmops_run() and before it acquired the 1488 * vcpu lock above. 1489 */ 1490 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle) 1491 break; 1492 if (vm_nmi_pending(vcpu)) 1493 break; 1494 if (!intr_disabled) { 1495 if (vm_extint_pending(vcpu) || 1496 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1497 break; 1498 } 1499 } 1500 1501 /* Don't go to sleep if the vcpu thread needs to yield */ 1502 if (vcpu_should_yield(vcpu)) 1503 break; 1504 1505 if (vcpu_debugged(vcpu)) 1506 break; 1507 1508 /* 1509 * Some Linux guests implement "halt" by having all vcpus 1510 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1511 * track of the vcpus that have entered this state. When all 1512 * vcpus enter the halted state the virtual machine is halted. 1513 */ 1514 if (intr_disabled) { 1515 wmesg = "vmhalt"; 1516 VMM_CTR0(vcpu, "Halted"); 1517 if (!vcpu_halted && halt_detection_enabled) { 1518 vcpu_halted = 1; 1519 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1520 } 1521 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1522 vm_halted = 1; 1523 break; 1524 } 1525 } else { 1526 wmesg = "vmidle"; 1527 } 1528 1529 t = ticks; 1530 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1531 /* 1532 * XXX msleep_spin() cannot be interrupted by signals so 1533 * wake up periodically to check pending signals. 1534 */ 1535 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1536 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1537 vmm_stat_incr(vcpu, VCPU_IDLE_TICKS, ticks - t); 1538 if (td_ast_pending(td, TDA_SUSPEND)) { 1539 vcpu_unlock(vcpu); 1540 error = thread_check_susp(td, false); 1541 if (error != 0) { 1542 if (vcpu_halted) { 1543 CPU_CLR_ATOMIC(vcpuid, 1544 &vm->halted_cpus); 1545 } 1546 return (error); 1547 } 1548 vcpu_lock(vcpu); 1549 } 1550 } 1551 1552 if (vcpu_halted) 1553 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1554 1555 vcpu_unlock(vcpu); 1556 1557 if (vm_halted) 1558 vm_suspend(vm, VM_SUSPEND_HALT); 1559 1560 return (0); 1561 } 1562 1563 static int 1564 vm_handle_paging(struct vcpu *vcpu, bool *retu) 1565 { 1566 struct vm *vm = vcpu->vm; 1567 int rv, ftype; 1568 struct vm_map *map; 1569 struct vm_exit *vme; 1570 1571 vme = &vcpu->exitinfo; 1572 1573 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1574 __func__, vme->inst_length)); 1575 1576 ftype = vme->u.paging.fault_type; 1577 KASSERT(ftype == VM_PROT_READ || 1578 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1579 ("vm_handle_paging: invalid fault_type %d", ftype)); 1580 1581 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1582 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1583 vme->u.paging.gpa, ftype); 1584 if (rv == 0) { 1585 VMM_CTR2(vcpu, "%s bit emulation for gpa %#lx", 1586 ftype == VM_PROT_READ ? "accessed" : "dirty", 1587 vme->u.paging.gpa); 1588 goto done; 1589 } 1590 } 1591 1592 map = &vm->vmspace->vm_map; 1593 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL); 1594 1595 VMM_CTR3(vcpu, "vm_handle_paging rv = %d, gpa = %#lx, " 1596 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1597 1598 if (rv != KERN_SUCCESS) 1599 return (EFAULT); 1600 done: 1601 return (0); 1602 } 1603 1604 static int 1605 vm_handle_inst_emul(struct vcpu *vcpu, bool *retu) 1606 { 1607 struct vie *vie; 1608 struct vm_exit *vme; 1609 uint64_t gla, gpa, cs_base; 1610 struct vm_guest_paging *paging; 1611 mem_region_read_t mread; 1612 mem_region_write_t mwrite; 1613 enum vm_cpu_mode cpu_mode; 1614 int cs_d, error, fault; 1615 1616 vme = &vcpu->exitinfo; 1617 1618 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1619 __func__, vme->inst_length)); 1620 1621 gla = vme->u.inst_emul.gla; 1622 gpa = vme->u.inst_emul.gpa; 1623 cs_base = vme->u.inst_emul.cs_base; 1624 cs_d = vme->u.inst_emul.cs_d; 1625 vie = &vme->u.inst_emul.vie; 1626 paging = &vme->u.inst_emul.paging; 1627 cpu_mode = paging->cpu_mode; 1628 1629 VMM_CTR1(vcpu, "inst_emul fault accessing gpa %#lx", gpa); 1630 1631 /* Fetch, decode and emulate the faulting instruction */ 1632 if (vie->num_valid == 0) { 1633 error = vmm_fetch_instruction(vcpu, paging, vme->rip + cs_base, 1634 VIE_INST_SIZE, vie, &fault); 1635 } else { 1636 /* 1637 * The instruction bytes have already been copied into 'vie' 1638 */ 1639 error = fault = 0; 1640 } 1641 if (error || fault) 1642 return (error); 1643 1644 if (vmm_decode_instruction(vcpu, gla, cpu_mode, cs_d, vie) != 0) { 1645 VMM_CTR1(vcpu, "Error decoding instruction at %#lx", 1646 vme->rip + cs_base); 1647 *retu = true; /* dump instruction bytes in userspace */ 1648 return (0); 1649 } 1650 1651 /* 1652 * Update 'nextrip' based on the length of the emulated instruction. 1653 */ 1654 vme->inst_length = vie->num_processed; 1655 vcpu->nextrip += vie->num_processed; 1656 VMM_CTR1(vcpu, "nextrip updated to %#lx after instruction decoding", 1657 vcpu->nextrip); 1658 1659 /* return to userland unless this is an in-kernel emulated device */ 1660 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1661 mread = lapic_mmio_read; 1662 mwrite = lapic_mmio_write; 1663 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1664 mread = vioapic_mmio_read; 1665 mwrite = vioapic_mmio_write; 1666 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1667 mread = vhpet_mmio_read; 1668 mwrite = vhpet_mmio_write; 1669 } else { 1670 *retu = true; 1671 return (0); 1672 } 1673 1674 error = vmm_emulate_instruction(vcpu, gpa, vie, paging, mread, mwrite, 1675 retu); 1676 1677 return (error); 1678 } 1679 1680 static int 1681 vm_handle_suspend(struct vcpu *vcpu, bool *retu) 1682 { 1683 struct vm *vm = vcpu->vm; 1684 int error, i; 1685 struct thread *td; 1686 1687 error = 0; 1688 td = curthread; 1689 1690 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->suspended_cpus); 1691 1692 /* 1693 * Wait until all 'active_cpus' have suspended themselves. 1694 * 1695 * Since a VM may be suspended at any time including when one or 1696 * more vcpus are doing a rendezvous we need to call the rendezvous 1697 * handler while we are waiting to prevent a deadlock. 1698 */ 1699 vcpu_lock(vcpu); 1700 while (error == 0) { 1701 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1702 VMM_CTR0(vcpu, "All vcpus suspended"); 1703 break; 1704 } 1705 1706 if (vm->rendezvous_func == NULL) { 1707 VMM_CTR0(vcpu, "Sleeping during suspend"); 1708 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1709 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1710 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1711 if (td_ast_pending(td, TDA_SUSPEND)) { 1712 vcpu_unlock(vcpu); 1713 error = thread_check_susp(td, false); 1714 vcpu_lock(vcpu); 1715 } 1716 } else { 1717 VMM_CTR0(vcpu, "Rendezvous during suspend"); 1718 vcpu_unlock(vcpu); 1719 error = vm_handle_rendezvous(vcpu); 1720 vcpu_lock(vcpu); 1721 } 1722 } 1723 vcpu_unlock(vcpu); 1724 1725 /* 1726 * Wakeup the other sleeping vcpus and return to userspace. 1727 */ 1728 for (i = 0; i < vm->maxcpus; i++) { 1729 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1730 vcpu_notify_event(vm_vcpu(vm, i), false); 1731 } 1732 } 1733 1734 *retu = true; 1735 return (error); 1736 } 1737 1738 static int 1739 vm_handle_reqidle(struct vcpu *vcpu, bool *retu) 1740 { 1741 vcpu_lock(vcpu); 1742 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle)); 1743 vcpu->reqidle = 0; 1744 vcpu_unlock(vcpu); 1745 *retu = true; 1746 return (0); 1747 } 1748 1749 int 1750 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1751 { 1752 int i; 1753 1754 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1755 return (EINVAL); 1756 1757 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1758 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1759 vm->suspend, how); 1760 return (EALREADY); 1761 } 1762 1763 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1764 1765 /* 1766 * Notify all active vcpus that they are now suspended. 1767 */ 1768 for (i = 0; i < vm->maxcpus; i++) { 1769 if (CPU_ISSET(i, &vm->active_cpus)) 1770 vcpu_notify_event(vm_vcpu(vm, i), false); 1771 } 1772 1773 return (0); 1774 } 1775 1776 void 1777 vm_exit_suspended(struct vcpu *vcpu, uint64_t rip) 1778 { 1779 struct vm *vm = vcpu->vm; 1780 struct vm_exit *vmexit; 1781 1782 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1783 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1784 1785 vmexit = vm_exitinfo(vcpu); 1786 vmexit->rip = rip; 1787 vmexit->inst_length = 0; 1788 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1789 vmexit->u.suspended.how = vm->suspend; 1790 } 1791 1792 void 1793 vm_exit_debug(struct vcpu *vcpu, uint64_t rip) 1794 { 1795 struct vm_exit *vmexit; 1796 1797 vmexit = vm_exitinfo(vcpu); 1798 vmexit->rip = rip; 1799 vmexit->inst_length = 0; 1800 vmexit->exitcode = VM_EXITCODE_DEBUG; 1801 } 1802 1803 void 1804 vm_exit_rendezvous(struct vcpu *vcpu, uint64_t rip) 1805 { 1806 struct vm_exit *vmexit; 1807 1808 vmexit = vm_exitinfo(vcpu); 1809 vmexit->rip = rip; 1810 vmexit->inst_length = 0; 1811 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1812 vmm_stat_incr(vcpu, VMEXIT_RENDEZVOUS, 1); 1813 } 1814 1815 void 1816 vm_exit_reqidle(struct vcpu *vcpu, uint64_t rip) 1817 { 1818 struct vm_exit *vmexit; 1819 1820 vmexit = vm_exitinfo(vcpu); 1821 vmexit->rip = rip; 1822 vmexit->inst_length = 0; 1823 vmexit->exitcode = VM_EXITCODE_REQIDLE; 1824 vmm_stat_incr(vcpu, VMEXIT_REQIDLE, 1); 1825 } 1826 1827 void 1828 vm_exit_astpending(struct vcpu *vcpu, uint64_t rip) 1829 { 1830 struct vm_exit *vmexit; 1831 1832 vmexit = vm_exitinfo(vcpu); 1833 vmexit->rip = rip; 1834 vmexit->inst_length = 0; 1835 vmexit->exitcode = VM_EXITCODE_BOGUS; 1836 vmm_stat_incr(vcpu, VMEXIT_ASTPENDING, 1); 1837 } 1838 1839 int 1840 vm_run(struct vcpu *vcpu) 1841 { 1842 struct vm *vm = vcpu->vm; 1843 struct vm_eventinfo evinfo; 1844 int error, vcpuid; 1845 struct pcb *pcb; 1846 uint64_t tscval; 1847 struct vm_exit *vme; 1848 bool retu, intr_disabled; 1849 pmap_t pmap; 1850 1851 vcpuid = vcpu->vcpuid; 1852 1853 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1854 return (EINVAL); 1855 1856 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1857 return (EINVAL); 1858 1859 pmap = vmspace_pmap(vm->vmspace); 1860 vme = &vcpu->exitinfo; 1861 evinfo.rptr = &vm->rendezvous_req_cpus; 1862 evinfo.sptr = &vm->suspend; 1863 evinfo.iptr = &vcpu->reqidle; 1864 restart: 1865 critical_enter(); 1866 1867 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1868 ("vm_run: absurd pm_active")); 1869 1870 tscval = rdtsc(); 1871 1872 pcb = PCPU_GET(curpcb); 1873 set_pcb_flags(pcb, PCB_FULL_IRET); 1874 1875 restore_guest_fpustate(vcpu); 1876 1877 vcpu_require_state(vcpu, VCPU_RUNNING); 1878 error = vmmops_run(vcpu->cookie, vcpu->nextrip, pmap, &evinfo); 1879 vcpu_require_state(vcpu, VCPU_FROZEN); 1880 1881 save_guest_fpustate(vcpu); 1882 1883 vmm_stat_incr(vcpu, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1884 1885 critical_exit(); 1886 1887 if (error == 0) { 1888 retu = false; 1889 vcpu->nextrip = vme->rip + vme->inst_length; 1890 switch (vme->exitcode) { 1891 case VM_EXITCODE_REQIDLE: 1892 error = vm_handle_reqidle(vcpu, &retu); 1893 break; 1894 case VM_EXITCODE_SUSPENDED: 1895 error = vm_handle_suspend(vcpu, &retu); 1896 break; 1897 case VM_EXITCODE_IOAPIC_EOI: 1898 vioapic_process_eoi(vm, vme->u.ioapic_eoi.vector); 1899 break; 1900 case VM_EXITCODE_RENDEZVOUS: 1901 error = vm_handle_rendezvous(vcpu); 1902 break; 1903 case VM_EXITCODE_HLT: 1904 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1905 error = vm_handle_hlt(vcpu, intr_disabled, &retu); 1906 break; 1907 case VM_EXITCODE_PAGING: 1908 error = vm_handle_paging(vcpu, &retu); 1909 break; 1910 case VM_EXITCODE_INST_EMUL: 1911 error = vm_handle_inst_emul(vcpu, &retu); 1912 break; 1913 case VM_EXITCODE_INOUT: 1914 case VM_EXITCODE_INOUT_STR: 1915 error = vm_handle_inout(vcpu, vme, &retu); 1916 break; 1917 case VM_EXITCODE_MONITOR: 1918 case VM_EXITCODE_MWAIT: 1919 case VM_EXITCODE_VMINSN: 1920 vm_inject_ud(vcpu); 1921 break; 1922 default: 1923 retu = true; /* handled in userland */ 1924 break; 1925 } 1926 } 1927 1928 /* 1929 * VM_EXITCODE_INST_EMUL could access the apic which could transform the 1930 * exit code into VM_EXITCODE_IPI. 1931 */ 1932 if (error == 0 && vme->exitcode == VM_EXITCODE_IPI) 1933 error = vm_handle_ipi(vcpu, vme, &retu); 1934 1935 if (error == 0 && retu == false) 1936 goto restart; 1937 1938 vmm_stat_incr(vcpu, VMEXIT_USERSPACE, 1); 1939 VMM_CTR2(vcpu, "retu %d/%d", error, vme->exitcode); 1940 1941 return (error); 1942 } 1943 1944 int 1945 vm_restart_instruction(struct vcpu *vcpu) 1946 { 1947 enum vcpu_state state; 1948 uint64_t rip; 1949 int error __diagused; 1950 1951 state = vcpu_get_state(vcpu, NULL); 1952 if (state == VCPU_RUNNING) { 1953 /* 1954 * When a vcpu is "running" the next instruction is determined 1955 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'. 1956 * Thus setting 'inst_length' to zero will cause the current 1957 * instruction to be restarted. 1958 */ 1959 vcpu->exitinfo.inst_length = 0; 1960 VMM_CTR1(vcpu, "restarting instruction at %#lx by " 1961 "setting inst_length to zero", vcpu->exitinfo.rip); 1962 } else if (state == VCPU_FROZEN) { 1963 /* 1964 * When a vcpu is "frozen" it is outside the critical section 1965 * around vmmops_run() and 'nextrip' points to the next 1966 * instruction. Thus instruction restart is achieved by setting 1967 * 'nextrip' to the vcpu's %rip. 1968 */ 1969 error = vm_get_register(vcpu, VM_REG_GUEST_RIP, &rip); 1970 KASSERT(!error, ("%s: error %d getting rip", __func__, error)); 1971 VMM_CTR2(vcpu, "restarting instruction by updating " 1972 "nextrip from %#lx to %#lx", vcpu->nextrip, rip); 1973 vcpu->nextrip = rip; 1974 } else { 1975 panic("%s: invalid state %d", __func__, state); 1976 } 1977 return (0); 1978 } 1979 1980 int 1981 vm_exit_intinfo(struct vcpu *vcpu, uint64_t info) 1982 { 1983 int type, vector; 1984 1985 if (info & VM_INTINFO_VALID) { 1986 type = info & VM_INTINFO_TYPE; 1987 vector = info & 0xff; 1988 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 1989 return (EINVAL); 1990 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 1991 return (EINVAL); 1992 if (info & VM_INTINFO_RSVD) 1993 return (EINVAL); 1994 } else { 1995 info = 0; 1996 } 1997 VMM_CTR2(vcpu, "%s: info1(%#lx)", __func__, info); 1998 vcpu->exitintinfo = info; 1999 return (0); 2000 } 2001 2002 enum exc_class { 2003 EXC_BENIGN, 2004 EXC_CONTRIBUTORY, 2005 EXC_PAGEFAULT 2006 }; 2007 2008 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 2009 2010 static enum exc_class 2011 exception_class(uint64_t info) 2012 { 2013 int type, vector; 2014 2015 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 2016 type = info & VM_INTINFO_TYPE; 2017 vector = info & 0xff; 2018 2019 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 2020 switch (type) { 2021 case VM_INTINFO_HWINTR: 2022 case VM_INTINFO_SWINTR: 2023 case VM_INTINFO_NMI: 2024 return (EXC_BENIGN); 2025 default: 2026 /* 2027 * Hardware exception. 2028 * 2029 * SVM and VT-x use identical type values to represent NMI, 2030 * hardware interrupt and software interrupt. 2031 * 2032 * SVM uses type '3' for all exceptions. VT-x uses type '3' 2033 * for exceptions except #BP and #OF. #BP and #OF use a type 2034 * value of '5' or '6'. Therefore we don't check for explicit 2035 * values of 'type' to classify 'intinfo' into a hardware 2036 * exception. 2037 */ 2038 break; 2039 } 2040 2041 switch (vector) { 2042 case IDT_PF: 2043 case IDT_VE: 2044 return (EXC_PAGEFAULT); 2045 case IDT_DE: 2046 case IDT_TS: 2047 case IDT_NP: 2048 case IDT_SS: 2049 case IDT_GP: 2050 return (EXC_CONTRIBUTORY); 2051 default: 2052 return (EXC_BENIGN); 2053 } 2054 } 2055 2056 static int 2057 nested_fault(struct vcpu *vcpu, uint64_t info1, uint64_t info2, 2058 uint64_t *retinfo) 2059 { 2060 enum exc_class exc1, exc2; 2061 int type1, vector1; 2062 2063 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 2064 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 2065 2066 /* 2067 * If an exception occurs while attempting to call the double-fault 2068 * handler the processor enters shutdown mode (aka triple fault). 2069 */ 2070 type1 = info1 & VM_INTINFO_TYPE; 2071 vector1 = info1 & 0xff; 2072 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 2073 VMM_CTR2(vcpu, "triple fault: info1(%#lx), info2(%#lx)", 2074 info1, info2); 2075 vm_suspend(vcpu->vm, VM_SUSPEND_TRIPLEFAULT); 2076 *retinfo = 0; 2077 return (0); 2078 } 2079 2080 /* 2081 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 2082 */ 2083 exc1 = exception_class(info1); 2084 exc2 = exception_class(info2); 2085 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 2086 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 2087 /* Convert nested fault into a double fault. */ 2088 *retinfo = IDT_DF; 2089 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 2090 *retinfo |= VM_INTINFO_DEL_ERRCODE; 2091 } else { 2092 /* Handle exceptions serially */ 2093 *retinfo = info2; 2094 } 2095 return (1); 2096 } 2097 2098 static uint64_t 2099 vcpu_exception_intinfo(struct vcpu *vcpu) 2100 { 2101 uint64_t info = 0; 2102 2103 if (vcpu->exception_pending) { 2104 info = vcpu->exc_vector & 0xff; 2105 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 2106 if (vcpu->exc_errcode_valid) { 2107 info |= VM_INTINFO_DEL_ERRCODE; 2108 info |= (uint64_t)vcpu->exc_errcode << 32; 2109 } 2110 } 2111 return (info); 2112 } 2113 2114 int 2115 vm_entry_intinfo(struct vcpu *vcpu, uint64_t *retinfo) 2116 { 2117 uint64_t info1, info2; 2118 int valid; 2119 2120 info1 = vcpu->exitintinfo; 2121 vcpu->exitintinfo = 0; 2122 2123 info2 = 0; 2124 if (vcpu->exception_pending) { 2125 info2 = vcpu_exception_intinfo(vcpu); 2126 vcpu->exception_pending = 0; 2127 VMM_CTR2(vcpu, "Exception %d delivered: %#lx", 2128 vcpu->exc_vector, info2); 2129 } 2130 2131 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 2132 valid = nested_fault(vcpu, info1, info2, retinfo); 2133 } else if (info1 & VM_INTINFO_VALID) { 2134 *retinfo = info1; 2135 valid = 1; 2136 } else if (info2 & VM_INTINFO_VALID) { 2137 *retinfo = info2; 2138 valid = 1; 2139 } else { 2140 valid = 0; 2141 } 2142 2143 if (valid) { 2144 VMM_CTR4(vcpu, "%s: info1(%#lx), info2(%#lx), " 2145 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 2146 } 2147 2148 return (valid); 2149 } 2150 2151 int 2152 vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2) 2153 { 2154 *info1 = vcpu->exitintinfo; 2155 *info2 = vcpu_exception_intinfo(vcpu); 2156 return (0); 2157 } 2158 2159 int 2160 vm_inject_exception(struct vcpu *vcpu, int vector, int errcode_valid, 2161 uint32_t errcode, int restart_instruction) 2162 { 2163 uint64_t regval; 2164 int error __diagused; 2165 2166 if (vector < 0 || vector >= 32) 2167 return (EINVAL); 2168 2169 /* 2170 * A double fault exception should never be injected directly into 2171 * the guest. It is a derived exception that results from specific 2172 * combinations of nested faults. 2173 */ 2174 if (vector == IDT_DF) 2175 return (EINVAL); 2176 2177 if (vcpu->exception_pending) { 2178 VMM_CTR2(vcpu, "Unable to inject exception %d due to " 2179 "pending exception %d", vector, vcpu->exc_vector); 2180 return (EBUSY); 2181 } 2182 2183 if (errcode_valid) { 2184 /* 2185 * Exceptions don't deliver an error code in real mode. 2186 */ 2187 error = vm_get_register(vcpu, VM_REG_GUEST_CR0, ®val); 2188 KASSERT(!error, ("%s: error %d getting CR0", __func__, error)); 2189 if (!(regval & CR0_PE)) 2190 errcode_valid = 0; 2191 } 2192 2193 /* 2194 * From section 26.6.1 "Interruptibility State" in Intel SDM: 2195 * 2196 * Event blocking by "STI" or "MOV SS" is cleared after guest executes 2197 * one instruction or incurs an exception. 2198 */ 2199 error = vm_set_register(vcpu, VM_REG_GUEST_INTR_SHADOW, 0); 2200 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", 2201 __func__, error)); 2202 2203 if (restart_instruction) 2204 vm_restart_instruction(vcpu); 2205 2206 vcpu->exception_pending = 1; 2207 vcpu->exc_vector = vector; 2208 vcpu->exc_errcode = errcode; 2209 vcpu->exc_errcode_valid = errcode_valid; 2210 VMM_CTR1(vcpu, "Exception %d pending", vector); 2211 return (0); 2212 } 2213 2214 void 2215 vm_inject_fault(struct vcpu *vcpu, int vector, int errcode_valid, int errcode) 2216 { 2217 int error __diagused, restart_instruction; 2218 2219 restart_instruction = 1; 2220 2221 error = vm_inject_exception(vcpu, vector, errcode_valid, 2222 errcode, restart_instruction); 2223 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 2224 } 2225 2226 void 2227 vm_inject_pf(struct vcpu *vcpu, int error_code, uint64_t cr2) 2228 { 2229 int error __diagused; 2230 2231 VMM_CTR2(vcpu, "Injecting page fault: error_code %#x, cr2 %#lx", 2232 error_code, cr2); 2233 2234 error = vm_set_register(vcpu, VM_REG_GUEST_CR2, cr2); 2235 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 2236 2237 vm_inject_fault(vcpu, IDT_PF, 1, error_code); 2238 } 2239 2240 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 2241 2242 int 2243 vm_inject_nmi(struct vcpu *vcpu) 2244 { 2245 2246 vcpu->nmi_pending = 1; 2247 vcpu_notify_event(vcpu, false); 2248 return (0); 2249 } 2250 2251 int 2252 vm_nmi_pending(struct vcpu *vcpu) 2253 { 2254 return (vcpu->nmi_pending); 2255 } 2256 2257 void 2258 vm_nmi_clear(struct vcpu *vcpu) 2259 { 2260 if (vcpu->nmi_pending == 0) 2261 panic("vm_nmi_clear: inconsistent nmi_pending state"); 2262 2263 vcpu->nmi_pending = 0; 2264 vmm_stat_incr(vcpu, VCPU_NMI_COUNT, 1); 2265 } 2266 2267 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 2268 2269 int 2270 vm_inject_extint(struct vcpu *vcpu) 2271 { 2272 2273 vcpu->extint_pending = 1; 2274 vcpu_notify_event(vcpu, false); 2275 return (0); 2276 } 2277 2278 int 2279 vm_extint_pending(struct vcpu *vcpu) 2280 { 2281 return (vcpu->extint_pending); 2282 } 2283 2284 void 2285 vm_extint_clear(struct vcpu *vcpu) 2286 { 2287 if (vcpu->extint_pending == 0) 2288 panic("vm_extint_clear: inconsistent extint_pending state"); 2289 2290 vcpu->extint_pending = 0; 2291 vmm_stat_incr(vcpu, VCPU_EXTINT_COUNT, 1); 2292 } 2293 2294 int 2295 vm_get_capability(struct vcpu *vcpu, int type, int *retval) 2296 { 2297 if (type < 0 || type >= VM_CAP_MAX) 2298 return (EINVAL); 2299 2300 return (vmmops_getcap(vcpu->cookie, type, retval)); 2301 } 2302 2303 int 2304 vm_set_capability(struct vcpu *vcpu, int type, int val) 2305 { 2306 if (type < 0 || type >= VM_CAP_MAX) 2307 return (EINVAL); 2308 2309 return (vmmops_setcap(vcpu->cookie, type, val)); 2310 } 2311 2312 struct vm * 2313 vcpu_vm(struct vcpu *vcpu) 2314 { 2315 return (vcpu->vm); 2316 } 2317 2318 int 2319 vcpu_vcpuid(struct vcpu *vcpu) 2320 { 2321 return (vcpu->vcpuid); 2322 } 2323 2324 struct vcpu * 2325 vm_vcpu(struct vm *vm, int vcpuid) 2326 { 2327 return (vm->vcpu[vcpuid]); 2328 } 2329 2330 struct vlapic * 2331 vm_lapic(struct vcpu *vcpu) 2332 { 2333 return (vcpu->vlapic); 2334 } 2335 2336 struct vioapic * 2337 vm_ioapic(struct vm *vm) 2338 { 2339 2340 return (vm->vioapic); 2341 } 2342 2343 struct vhpet * 2344 vm_hpet(struct vm *vm) 2345 { 2346 2347 return (vm->vhpet); 2348 } 2349 2350 bool 2351 vmm_is_pptdev(int bus, int slot, int func) 2352 { 2353 int b, f, i, n, s; 2354 char *val, *cp, *cp2; 2355 bool found; 2356 2357 /* 2358 * XXX 2359 * The length of an environment variable is limited to 128 bytes which 2360 * puts an upper limit on the number of passthru devices that may be 2361 * specified using a single environment variable. 2362 * 2363 * Work around this by scanning multiple environment variable 2364 * names instead of a single one - yuck! 2365 */ 2366 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 2367 2368 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 2369 found = false; 2370 for (i = 0; names[i] != NULL && !found; i++) { 2371 cp = val = kern_getenv(names[i]); 2372 while (cp != NULL && *cp != '\0') { 2373 if ((cp2 = strchr(cp, ' ')) != NULL) 2374 *cp2 = '\0'; 2375 2376 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 2377 if (n == 3 && bus == b && slot == s && func == f) { 2378 found = true; 2379 break; 2380 } 2381 2382 if (cp2 != NULL) 2383 *cp2++ = ' '; 2384 2385 cp = cp2; 2386 } 2387 freeenv(val); 2388 } 2389 return (found); 2390 } 2391 2392 void * 2393 vm_iommu_domain(struct vm *vm) 2394 { 2395 2396 return (vm->iommu); 2397 } 2398 2399 int 2400 vcpu_set_state(struct vcpu *vcpu, enum vcpu_state newstate, bool from_idle) 2401 { 2402 int error; 2403 2404 vcpu_lock(vcpu); 2405 error = vcpu_set_state_locked(vcpu, newstate, from_idle); 2406 vcpu_unlock(vcpu); 2407 2408 return (error); 2409 } 2410 2411 enum vcpu_state 2412 vcpu_get_state(struct vcpu *vcpu, int *hostcpu) 2413 { 2414 enum vcpu_state state; 2415 2416 vcpu_lock(vcpu); 2417 state = vcpu->state; 2418 if (hostcpu != NULL) 2419 *hostcpu = vcpu->hostcpu; 2420 vcpu_unlock(vcpu); 2421 2422 return (state); 2423 } 2424 2425 int 2426 vm_activate_cpu(struct vcpu *vcpu) 2427 { 2428 struct vm *vm = vcpu->vm; 2429 2430 if (CPU_ISSET(vcpu->vcpuid, &vm->active_cpus)) 2431 return (EBUSY); 2432 2433 VMM_CTR0(vcpu, "activated"); 2434 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->active_cpus); 2435 return (0); 2436 } 2437 2438 int 2439 vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu) 2440 { 2441 if (vcpu == NULL) { 2442 vm->debug_cpus = vm->active_cpus; 2443 for (int i = 0; i < vm->maxcpus; i++) { 2444 if (CPU_ISSET(i, &vm->active_cpus)) 2445 vcpu_notify_event(vm_vcpu(vm, i), false); 2446 } 2447 } else { 2448 if (!CPU_ISSET(vcpu->vcpuid, &vm->active_cpus)) 2449 return (EINVAL); 2450 2451 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->debug_cpus); 2452 vcpu_notify_event(vcpu, false); 2453 } 2454 return (0); 2455 } 2456 2457 int 2458 vm_resume_cpu(struct vm *vm, struct vcpu *vcpu) 2459 { 2460 2461 if (vcpu == NULL) { 2462 CPU_ZERO(&vm->debug_cpus); 2463 } else { 2464 if (!CPU_ISSET(vcpu->vcpuid, &vm->debug_cpus)) 2465 return (EINVAL); 2466 2467 CPU_CLR_ATOMIC(vcpu->vcpuid, &vm->debug_cpus); 2468 } 2469 return (0); 2470 } 2471 2472 int 2473 vcpu_debugged(struct vcpu *vcpu) 2474 { 2475 2476 return (CPU_ISSET(vcpu->vcpuid, &vcpu->vm->debug_cpus)); 2477 } 2478 2479 cpuset_t 2480 vm_active_cpus(struct vm *vm) 2481 { 2482 2483 return (vm->active_cpus); 2484 } 2485 2486 cpuset_t 2487 vm_debug_cpus(struct vm *vm) 2488 { 2489 2490 return (vm->debug_cpus); 2491 } 2492 2493 cpuset_t 2494 vm_suspended_cpus(struct vm *vm) 2495 { 2496 2497 return (vm->suspended_cpus); 2498 } 2499 2500 /* 2501 * Returns the subset of vCPUs in tostart that are awaiting startup. 2502 * These vCPUs are also marked as no longer awaiting startup. 2503 */ 2504 cpuset_t 2505 vm_start_cpus(struct vm *vm, const cpuset_t *tostart) 2506 { 2507 cpuset_t set; 2508 2509 mtx_lock(&vm->rendezvous_mtx); 2510 CPU_AND(&set, &vm->startup_cpus, tostart); 2511 CPU_ANDNOT(&vm->startup_cpus, &vm->startup_cpus, &set); 2512 mtx_unlock(&vm->rendezvous_mtx); 2513 return (set); 2514 } 2515 2516 void 2517 vm_await_start(struct vm *vm, const cpuset_t *waiting) 2518 { 2519 mtx_lock(&vm->rendezvous_mtx); 2520 CPU_OR(&vm->startup_cpus, &vm->startup_cpus, waiting); 2521 mtx_unlock(&vm->rendezvous_mtx); 2522 } 2523 2524 void * 2525 vcpu_stats(struct vcpu *vcpu) 2526 { 2527 2528 return (vcpu->stats); 2529 } 2530 2531 int 2532 vm_get_x2apic_state(struct vcpu *vcpu, enum x2apic_state *state) 2533 { 2534 *state = vcpu->x2apic_state; 2535 2536 return (0); 2537 } 2538 2539 int 2540 vm_set_x2apic_state(struct vcpu *vcpu, enum x2apic_state state) 2541 { 2542 if (state >= X2APIC_STATE_LAST) 2543 return (EINVAL); 2544 2545 vcpu->x2apic_state = state; 2546 2547 vlapic_set_x2apic_state(vcpu, state); 2548 2549 return (0); 2550 } 2551 2552 /* 2553 * This function is called to ensure that a vcpu "sees" a pending event 2554 * as soon as possible: 2555 * - If the vcpu thread is sleeping then it is woken up. 2556 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2557 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2558 */ 2559 static void 2560 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr) 2561 { 2562 int hostcpu; 2563 2564 hostcpu = vcpu->hostcpu; 2565 if (vcpu->state == VCPU_RUNNING) { 2566 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2567 if (hostcpu != curcpu) { 2568 if (lapic_intr) { 2569 vlapic_post_intr(vcpu->vlapic, hostcpu, 2570 vmm_ipinum); 2571 } else { 2572 ipi_cpu(hostcpu, vmm_ipinum); 2573 } 2574 } else { 2575 /* 2576 * If the 'vcpu' is running on 'curcpu' then it must 2577 * be sending a notification to itself (e.g. SELF_IPI). 2578 * The pending event will be picked up when the vcpu 2579 * transitions back to guest context. 2580 */ 2581 } 2582 } else { 2583 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2584 "with hostcpu %d", vcpu->state, hostcpu)); 2585 if (vcpu->state == VCPU_SLEEPING) 2586 wakeup_one(vcpu); 2587 } 2588 } 2589 2590 void 2591 vcpu_notify_event(struct vcpu *vcpu, bool lapic_intr) 2592 { 2593 vcpu_lock(vcpu); 2594 vcpu_notify_event_locked(vcpu, lapic_intr); 2595 vcpu_unlock(vcpu); 2596 } 2597 2598 struct vmspace * 2599 vm_get_vmspace(struct vm *vm) 2600 { 2601 2602 return (vm->vmspace); 2603 } 2604 2605 int 2606 vm_apicid2vcpuid(struct vm *vm, int apicid) 2607 { 2608 /* 2609 * XXX apic id is assumed to be numerically identical to vcpu id 2610 */ 2611 return (apicid); 2612 } 2613 2614 int 2615 vm_smp_rendezvous(struct vcpu *vcpu, cpuset_t dest, 2616 vm_rendezvous_func_t func, void *arg) 2617 { 2618 struct vm *vm = vcpu->vm; 2619 int error, i; 2620 2621 /* 2622 * Enforce that this function is called without any locks 2623 */ 2624 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2625 2626 restart: 2627 mtx_lock(&vm->rendezvous_mtx); 2628 if (vm->rendezvous_func != NULL) { 2629 /* 2630 * If a rendezvous is already in progress then we need to 2631 * call the rendezvous handler in case this 'vcpu' is one 2632 * of the targets of the rendezvous. 2633 */ 2634 VMM_CTR0(vcpu, "Rendezvous already in progress"); 2635 mtx_unlock(&vm->rendezvous_mtx); 2636 error = vm_handle_rendezvous(vcpu); 2637 if (error != 0) 2638 return (error); 2639 goto restart; 2640 } 2641 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2642 "rendezvous is still in progress")); 2643 2644 VMM_CTR0(vcpu, "Initiating rendezvous"); 2645 vm->rendezvous_req_cpus = dest; 2646 CPU_ZERO(&vm->rendezvous_done_cpus); 2647 vm->rendezvous_arg = arg; 2648 vm->rendezvous_func = func; 2649 mtx_unlock(&vm->rendezvous_mtx); 2650 2651 /* 2652 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2653 * vcpus so they handle the rendezvous as soon as possible. 2654 */ 2655 for (i = 0; i < vm->maxcpus; i++) { 2656 if (CPU_ISSET(i, &dest)) 2657 vcpu_notify_event(vm_vcpu(vm, i), false); 2658 } 2659 2660 return (vm_handle_rendezvous(vcpu)); 2661 } 2662 2663 struct vatpic * 2664 vm_atpic(struct vm *vm) 2665 { 2666 return (vm->vatpic); 2667 } 2668 2669 struct vatpit * 2670 vm_atpit(struct vm *vm) 2671 { 2672 return (vm->vatpit); 2673 } 2674 2675 struct vpmtmr * 2676 vm_pmtmr(struct vm *vm) 2677 { 2678 2679 return (vm->vpmtmr); 2680 } 2681 2682 struct vrtc * 2683 vm_rtc(struct vm *vm) 2684 { 2685 2686 return (vm->vrtc); 2687 } 2688 2689 enum vm_reg_name 2690 vm_segment_name(int seg) 2691 { 2692 static enum vm_reg_name seg_names[] = { 2693 VM_REG_GUEST_ES, 2694 VM_REG_GUEST_CS, 2695 VM_REG_GUEST_SS, 2696 VM_REG_GUEST_DS, 2697 VM_REG_GUEST_FS, 2698 VM_REG_GUEST_GS 2699 }; 2700 2701 KASSERT(seg >= 0 && seg < nitems(seg_names), 2702 ("%s: invalid segment encoding %d", __func__, seg)); 2703 return (seg_names[seg]); 2704 } 2705 2706 void 2707 vm_copy_teardown(struct vm_copyinfo *copyinfo, int num_copyinfo) 2708 { 2709 int idx; 2710 2711 for (idx = 0; idx < num_copyinfo; idx++) { 2712 if (copyinfo[idx].cookie != NULL) 2713 vm_gpa_release(copyinfo[idx].cookie); 2714 } 2715 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2716 } 2717 2718 int 2719 vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging, 2720 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2721 int num_copyinfo, int *fault) 2722 { 2723 int error, idx, nused; 2724 size_t n, off, remaining; 2725 void *hva, *cookie; 2726 uint64_t gpa; 2727 2728 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2729 2730 nused = 0; 2731 remaining = len; 2732 while (remaining > 0) { 2733 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo")); 2734 error = vm_gla2gpa(vcpu, paging, gla, prot, &gpa, fault); 2735 if (error || *fault) 2736 return (error); 2737 off = gpa & PAGE_MASK; 2738 n = min(remaining, PAGE_SIZE - off); 2739 copyinfo[nused].gpa = gpa; 2740 copyinfo[nused].len = n; 2741 remaining -= n; 2742 gla += n; 2743 nused++; 2744 } 2745 2746 for (idx = 0; idx < nused; idx++) { 2747 hva = vm_gpa_hold(vcpu, copyinfo[idx].gpa, 2748 copyinfo[idx].len, prot, &cookie); 2749 if (hva == NULL) 2750 break; 2751 copyinfo[idx].hva = hva; 2752 copyinfo[idx].cookie = cookie; 2753 } 2754 2755 if (idx != nused) { 2756 vm_copy_teardown(copyinfo, num_copyinfo); 2757 return (EFAULT); 2758 } else { 2759 *fault = 0; 2760 return (0); 2761 } 2762 } 2763 2764 void 2765 vm_copyin(struct vm_copyinfo *copyinfo, void *kaddr, size_t len) 2766 { 2767 char *dst; 2768 int idx; 2769 2770 dst = kaddr; 2771 idx = 0; 2772 while (len > 0) { 2773 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2774 len -= copyinfo[idx].len; 2775 dst += copyinfo[idx].len; 2776 idx++; 2777 } 2778 } 2779 2780 void 2781 vm_copyout(const void *kaddr, struct vm_copyinfo *copyinfo, size_t len) 2782 { 2783 const char *src; 2784 int idx; 2785 2786 src = kaddr; 2787 idx = 0; 2788 while (len > 0) { 2789 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2790 len -= copyinfo[idx].len; 2791 src += copyinfo[idx].len; 2792 idx++; 2793 } 2794 } 2795 2796 /* 2797 * Return the amount of in-use and wired memory for the VM. Since 2798 * these are global stats, only return the values with for vCPU 0 2799 */ 2800 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2801 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2802 2803 static void 2804 vm_get_rescnt(struct vcpu *vcpu, struct vmm_stat_type *stat) 2805 { 2806 2807 if (vcpu->vcpuid == 0) { 2808 vmm_stat_set(vcpu, VMM_MEM_RESIDENT, PAGE_SIZE * 2809 vmspace_resident_count(vcpu->vm->vmspace)); 2810 } 2811 } 2812 2813 static void 2814 vm_get_wiredcnt(struct vcpu *vcpu, struct vmm_stat_type *stat) 2815 { 2816 2817 if (vcpu->vcpuid == 0) { 2818 vmm_stat_set(vcpu, VMM_MEM_WIRED, PAGE_SIZE * 2819 pmap_wired_count(vmspace_pmap(vcpu->vm->vmspace))); 2820 } 2821 } 2822 2823 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2824 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2825 2826 #ifdef BHYVE_SNAPSHOT 2827 static int 2828 vm_snapshot_vcpus(struct vm *vm, struct vm_snapshot_meta *meta) 2829 { 2830 uint64_t tsc, now; 2831 int ret; 2832 struct vcpu *vcpu; 2833 uint16_t i, maxcpus; 2834 2835 now = rdtsc(); 2836 maxcpus = vm_get_maxcpus(vm); 2837 for (i = 0; i < maxcpus; i++) { 2838 vcpu = vm->vcpu[i]; 2839 if (vcpu == NULL) 2840 continue; 2841 2842 SNAPSHOT_VAR_OR_LEAVE(vcpu->x2apic_state, meta, ret, done); 2843 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitintinfo, meta, ret, done); 2844 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_vector, meta, ret, done); 2845 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode_valid, meta, ret, done); 2846 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode, meta, ret, done); 2847 SNAPSHOT_VAR_OR_LEAVE(vcpu->guest_xcr0, meta, ret, done); 2848 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitinfo, meta, ret, done); 2849 SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, ret, done); 2850 2851 /* 2852 * Save the absolute TSC value by adding now to tsc_offset. 2853 * 2854 * It will be turned turned back into an actual offset when the 2855 * TSC restore function is called 2856 */ 2857 tsc = now + vcpu->tsc_offset; 2858 SNAPSHOT_VAR_OR_LEAVE(tsc, meta, ret, done); 2859 if (meta->op == VM_SNAPSHOT_RESTORE) 2860 vcpu->tsc_offset = tsc; 2861 } 2862 2863 done: 2864 return (ret); 2865 } 2866 2867 static int 2868 vm_snapshot_vm(struct vm *vm, struct vm_snapshot_meta *meta) 2869 { 2870 int ret; 2871 2872 ret = vm_snapshot_vcpus(vm, meta); 2873 if (ret != 0) 2874 goto done; 2875 2876 SNAPSHOT_VAR_OR_LEAVE(vm->startup_cpus, meta, ret, done); 2877 done: 2878 return (ret); 2879 } 2880 2881 static int 2882 vm_snapshot_vcpu(struct vm *vm, struct vm_snapshot_meta *meta) 2883 { 2884 int error; 2885 struct vcpu *vcpu; 2886 uint16_t i, maxcpus; 2887 2888 error = 0; 2889 2890 maxcpus = vm_get_maxcpus(vm); 2891 for (i = 0; i < maxcpus; i++) { 2892 vcpu = vm->vcpu[i]; 2893 if (vcpu == NULL) 2894 continue; 2895 2896 error = vmmops_vcpu_snapshot(vcpu->cookie, meta); 2897 if (error != 0) { 2898 printf("%s: failed to snapshot vmcs/vmcb data for " 2899 "vCPU: %d; error: %d\n", __func__, i, error); 2900 goto done; 2901 } 2902 } 2903 2904 done: 2905 return (error); 2906 } 2907 2908 /* 2909 * Save kernel-side structures to user-space for snapshotting. 2910 */ 2911 int 2912 vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta) 2913 { 2914 int ret = 0; 2915 2916 switch (meta->dev_req) { 2917 case STRUCT_VMCX: 2918 ret = vm_snapshot_vcpu(vm, meta); 2919 break; 2920 case STRUCT_VM: 2921 ret = vm_snapshot_vm(vm, meta); 2922 break; 2923 case STRUCT_VIOAPIC: 2924 ret = vioapic_snapshot(vm_ioapic(vm), meta); 2925 break; 2926 case STRUCT_VLAPIC: 2927 ret = vlapic_snapshot(vm, meta); 2928 break; 2929 case STRUCT_VHPET: 2930 ret = vhpet_snapshot(vm_hpet(vm), meta); 2931 break; 2932 case STRUCT_VATPIC: 2933 ret = vatpic_snapshot(vm_atpic(vm), meta); 2934 break; 2935 case STRUCT_VATPIT: 2936 ret = vatpit_snapshot(vm_atpit(vm), meta); 2937 break; 2938 case STRUCT_VPMTMR: 2939 ret = vpmtmr_snapshot(vm_pmtmr(vm), meta); 2940 break; 2941 case STRUCT_VRTC: 2942 ret = vrtc_snapshot(vm_rtc(vm), meta); 2943 break; 2944 default: 2945 printf("%s: failed to find the requested type %#x\n", 2946 __func__, meta->dev_req); 2947 ret = (EINVAL); 2948 } 2949 return (ret); 2950 } 2951 2952 void 2953 vm_set_tsc_offset(struct vcpu *vcpu, uint64_t offset) 2954 { 2955 vcpu->tsc_offset = offset; 2956 } 2957 2958 int 2959 vm_restore_time(struct vm *vm) 2960 { 2961 int error; 2962 uint64_t now; 2963 struct vcpu *vcpu; 2964 uint16_t i, maxcpus; 2965 2966 now = rdtsc(); 2967 2968 error = vhpet_restore_time(vm_hpet(vm)); 2969 if (error) 2970 return (error); 2971 2972 maxcpus = vm_get_maxcpus(vm); 2973 for (i = 0; i < maxcpus; i++) { 2974 vcpu = vm->vcpu[i]; 2975 if (vcpu == NULL) 2976 continue; 2977 2978 error = vmmops_restore_tsc(vcpu->cookie, 2979 vcpu->tsc_offset - now); 2980 if (error) 2981 return (error); 2982 } 2983 2984 return (0); 2985 } 2986 #endif 2987