1 /*- 2 * Copyright (c) 2011 NetApp, Inc. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD$ 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/sysctl.h> 37 #include <sys/malloc.h> 38 #include <sys/pcpu.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/proc.h> 42 #include <sys/rwlock.h> 43 #include <sys/sched.h> 44 #include <sys/smp.h> 45 #include <sys/systm.h> 46 47 #include <vm/vm.h> 48 #include <vm/vm_object.h> 49 #include <vm/vm_page.h> 50 #include <vm/pmap.h> 51 #include <vm/vm_map.h> 52 #include <vm/vm_extern.h> 53 #include <vm/vm_param.h> 54 55 #include <machine/cpu.h> 56 #include <machine/vm.h> 57 #include <machine/pcb.h> 58 #include <machine/smp.h> 59 #include <x86/psl.h> 60 #include <x86/apicreg.h> 61 #include <machine/vmparam.h> 62 63 #include <machine/vmm.h> 64 #include <machine/vmm_dev.h> 65 #include <machine/vmm_instruction_emul.h> 66 67 #include "vmm_ioport.h" 68 #include "vmm_ktr.h" 69 #include "vmm_host.h" 70 #include "vmm_mem.h" 71 #include "vmm_util.h" 72 #include "vatpic.h" 73 #include "vatpit.h" 74 #include "vhpet.h" 75 #include "vioapic.h" 76 #include "vlapic.h" 77 #include "vpmtmr.h" 78 #include "vrtc.h" 79 #include "vmm_stat.h" 80 #include "vmm_lapic.h" 81 82 #include "io/ppt.h" 83 #include "io/iommu.h" 84 85 struct vlapic; 86 87 /* 88 * Initialization: 89 * (a) allocated when vcpu is created 90 * (i) initialized when vcpu is created and when it is reinitialized 91 * (o) initialized the first time the vcpu is created 92 * (x) initialized before use 93 */ 94 struct vcpu { 95 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 96 enum vcpu_state state; /* (o) vcpu state */ 97 int hostcpu; /* (o) vcpu's host cpu */ 98 int reqidle; /* (i) request vcpu to idle */ 99 struct vlapic *vlapic; /* (i) APIC device model */ 100 enum x2apic_state x2apic_state; /* (i) APIC mode */ 101 uint64_t exitintinfo; /* (i) events pending at VM exit */ 102 int nmi_pending; /* (i) NMI pending */ 103 int extint_pending; /* (i) INTR pending */ 104 int exception_pending; /* (i) exception pending */ 105 int exc_vector; /* (x) exception collateral */ 106 int exc_errcode_valid; 107 uint32_t exc_errcode; 108 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 109 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 110 void *stats; /* (a,i) statistics */ 111 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 112 uint64_t nextrip; /* (x) next instruction to execute */ 113 }; 114 115 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx)) 116 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 117 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 118 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 119 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 120 121 struct mem_seg { 122 vm_paddr_t gpa; 123 size_t len; 124 boolean_t wired; 125 vm_object_t object; 126 }; 127 #define VM_MAX_MEMORY_SEGMENTS 2 128 129 /* 130 * Initialization: 131 * (o) initialized the first time the VM is created 132 * (i) initialized when VM is created and when it is reinitialized 133 * (x) initialized before use 134 */ 135 struct vm { 136 void *cookie; /* (i) cpu-specific data */ 137 void *iommu; /* (x) iommu-specific data */ 138 struct vhpet *vhpet; /* (i) virtual HPET */ 139 struct vioapic *vioapic; /* (i) virtual ioapic */ 140 struct vatpic *vatpic; /* (i) virtual atpic */ 141 struct vatpit *vatpit; /* (i) virtual atpit */ 142 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ 143 struct vrtc *vrtc; /* (o) virtual RTC */ 144 volatile cpuset_t active_cpus; /* (i) active vcpus */ 145 int suspend; /* (i) stop VM execution */ 146 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 147 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 148 cpuset_t rendezvous_req_cpus; /* (x) rendezvous requested */ 149 cpuset_t rendezvous_done_cpus; /* (x) rendezvous finished */ 150 void *rendezvous_arg; /* (x) rendezvous func/arg */ 151 vm_rendezvous_func_t rendezvous_func; 152 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 153 int num_mem_segs; /* (o) guest memory segments */ 154 struct mem_seg mem_segs[VM_MAX_MEMORY_SEGMENTS]; 155 struct vmspace *vmspace; /* (o) guest's address space */ 156 char name[VM_MAX_NAMELEN]; /* (o) virtual machine name */ 157 struct vcpu vcpu[VM_MAXCPU]; /* (i) guest vcpus */ 158 }; 159 160 static int vmm_initialized; 161 162 static struct vmm_ops *ops; 163 #define VMM_INIT(num) (ops != NULL ? (*ops->init)(num) : 0) 164 #define VMM_CLEANUP() (ops != NULL ? (*ops->cleanup)() : 0) 165 #define VMM_RESUME() (ops != NULL ? (*ops->resume)() : 0) 166 167 #define VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL) 168 #define VMRUN(vmi, vcpu, rip, pmap, evinfo) \ 169 (ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, evinfo) : ENXIO) 170 #define VMCLEANUP(vmi) (ops != NULL ? (*ops->vmcleanup)(vmi) : NULL) 171 #define VMSPACE_ALLOC(min, max) \ 172 (ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL) 173 #define VMSPACE_FREE(vmspace) \ 174 (ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO) 175 #define VMGETREG(vmi, vcpu, num, retval) \ 176 (ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO) 177 #define VMSETREG(vmi, vcpu, num, val) \ 178 (ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO) 179 #define VMGETDESC(vmi, vcpu, num, desc) \ 180 (ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO) 181 #define VMSETDESC(vmi, vcpu, num, desc) \ 182 (ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO) 183 #define VMGETCAP(vmi, vcpu, num, retval) \ 184 (ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO) 185 #define VMSETCAP(vmi, vcpu, num, val) \ 186 (ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO) 187 #define VLAPIC_INIT(vmi, vcpu) \ 188 (ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL) 189 #define VLAPIC_CLEANUP(vmi, vlapic) \ 190 (ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL) 191 192 #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS) 193 #define fpu_stop_emulating() clts() 194 195 static MALLOC_DEFINE(M_VM, "vm", "vm"); 196 197 /* statistics */ 198 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 199 200 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL); 201 202 /* 203 * Halt the guest if all vcpus are executing a HLT instruction with 204 * interrupts disabled. 205 */ 206 static int halt_detection_enabled = 1; 207 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 208 &halt_detection_enabled, 0, 209 "Halt VM if all vcpus execute HLT with interrupts disabled"); 210 211 static int vmm_ipinum; 212 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 213 "IPI vector used for vcpu notifications"); 214 215 static int trace_guest_exceptions; 216 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN, 217 &trace_guest_exceptions, 0, 218 "Trap into hypervisor on all guest exceptions and reflect them back"); 219 220 static int vmm_force_iommu = 0; 221 TUNABLE_INT("hw.vmm.force_iommu", &vmm_force_iommu); 222 SYSCTL_INT(_hw_vmm, OID_AUTO, force_iommu, CTLFLAG_RDTUN, &vmm_force_iommu, 0, 223 "Force use of I/O MMU even if no passthrough devices were found."); 224 225 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr); 226 227 #ifdef KTR 228 static const char * 229 vcpu_state2str(enum vcpu_state state) 230 { 231 232 switch (state) { 233 case VCPU_IDLE: 234 return ("idle"); 235 case VCPU_FROZEN: 236 return ("frozen"); 237 case VCPU_RUNNING: 238 return ("running"); 239 case VCPU_SLEEPING: 240 return ("sleeping"); 241 default: 242 return ("unknown"); 243 } 244 } 245 #endif 246 247 static void 248 vcpu_cleanup(struct vm *vm, int i, bool destroy) 249 { 250 struct vcpu *vcpu = &vm->vcpu[i]; 251 252 VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic); 253 if (destroy) { 254 vmm_stat_free(vcpu->stats); 255 fpu_save_area_free(vcpu->guestfpu); 256 } 257 } 258 259 static void 260 vcpu_init(struct vm *vm, int vcpu_id, bool create) 261 { 262 struct vcpu *vcpu; 263 264 KASSERT(vcpu_id >= 0 && vcpu_id < VM_MAXCPU, 265 ("vcpu_init: invalid vcpu %d", vcpu_id)); 266 267 vcpu = &vm->vcpu[vcpu_id]; 268 269 if (create) { 270 KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already " 271 "initialized", vcpu_id)); 272 vcpu_lock_init(vcpu); 273 vcpu->state = VCPU_IDLE; 274 vcpu->hostcpu = NOCPU; 275 vcpu->guestfpu = fpu_save_area_alloc(); 276 vcpu->stats = vmm_stat_alloc(); 277 } 278 279 vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id); 280 vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED); 281 vcpu->reqidle = 0; 282 vcpu->exitintinfo = 0; 283 vcpu->nmi_pending = 0; 284 vcpu->extint_pending = 0; 285 vcpu->exception_pending = 0; 286 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 287 fpu_save_area_reset(vcpu->guestfpu); 288 vmm_stat_init(vcpu->stats); 289 } 290 291 int 292 vcpu_trace_exceptions(struct vm *vm, int vcpuid) 293 { 294 295 return (trace_guest_exceptions); 296 } 297 298 struct vm_exit * 299 vm_exitinfo(struct vm *vm, int cpuid) 300 { 301 struct vcpu *vcpu; 302 303 if (cpuid < 0 || cpuid >= VM_MAXCPU) 304 panic("vm_exitinfo: invalid cpuid %d", cpuid); 305 306 vcpu = &vm->vcpu[cpuid]; 307 308 return (&vcpu->exitinfo); 309 } 310 311 static void 312 vmm_resume(void) 313 { 314 VMM_RESUME(); 315 } 316 317 static int 318 vmm_init(void) 319 { 320 int error; 321 322 vmm_host_state_init(); 323 324 vmm_ipinum = lapic_ipi_alloc(&IDTVEC(justreturn)); 325 if (vmm_ipinum < 0) 326 vmm_ipinum = IPI_AST; 327 328 error = vmm_mem_init(); 329 if (error) 330 return (error); 331 332 if (vmm_is_intel()) 333 ops = &vmm_ops_intel; 334 else if (vmm_is_amd()) 335 ops = &vmm_ops_amd; 336 else 337 return (ENXIO); 338 339 vmm_resume_p = vmm_resume; 340 341 return (VMM_INIT(vmm_ipinum)); 342 } 343 344 static int 345 vmm_handler(module_t mod, int what, void *arg) 346 { 347 int error; 348 349 switch (what) { 350 case MOD_LOAD: 351 vmmdev_init(); 352 if (vmm_force_iommu || ppt_avail_devices() > 0) 353 iommu_init(); 354 error = vmm_init(); 355 if (error == 0) 356 vmm_initialized = 1; 357 break; 358 case MOD_UNLOAD: 359 error = vmmdev_cleanup(); 360 if (error == 0) { 361 vmm_resume_p = NULL; 362 iommu_cleanup(); 363 if (vmm_ipinum != IPI_AST) 364 lapic_ipi_free(vmm_ipinum); 365 error = VMM_CLEANUP(); 366 /* 367 * Something bad happened - prevent new 368 * VMs from being created 369 */ 370 if (error) 371 vmm_initialized = 0; 372 } 373 break; 374 default: 375 error = 0; 376 break; 377 } 378 return (error); 379 } 380 381 static moduledata_t vmm_kmod = { 382 "vmm", 383 vmm_handler, 384 NULL 385 }; 386 387 /* 388 * vmm initialization has the following dependencies: 389 * 390 * - iommu initialization must happen after the pci passthru driver has had 391 * a chance to attach to any passthru devices (after SI_SUB_CONFIGURE). 392 * 393 * - VT-x initialization requires smp_rendezvous() and therefore must happen 394 * after SMP is fully functional (after SI_SUB_SMP). 395 */ 396 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 397 MODULE_VERSION(vmm, 1); 398 399 static void 400 vm_init(struct vm *vm, bool create) 401 { 402 int i; 403 404 vm->cookie = VMINIT(vm, vmspace_pmap(vm->vmspace)); 405 vm->iommu = NULL; 406 vm->vioapic = vioapic_init(vm); 407 vm->vhpet = vhpet_init(vm); 408 vm->vatpic = vatpic_init(vm); 409 vm->vatpit = vatpit_init(vm); 410 vm->vpmtmr = vpmtmr_init(vm); 411 if (create) 412 vm->vrtc = vrtc_init(vm); 413 414 CPU_ZERO(&vm->active_cpus); 415 416 vm->suspend = 0; 417 CPU_ZERO(&vm->suspended_cpus); 418 419 for (i = 0; i < VM_MAXCPU; i++) 420 vcpu_init(vm, i, create); 421 } 422 423 int 424 vm_create(const char *name, struct vm **retvm) 425 { 426 struct vm *vm; 427 struct vmspace *vmspace; 428 429 /* 430 * If vmm.ko could not be successfully initialized then don't attempt 431 * to create the virtual machine. 432 */ 433 if (!vmm_initialized) 434 return (ENXIO); 435 436 if (name == NULL || strlen(name) >= VM_MAX_NAMELEN) 437 return (EINVAL); 438 439 vmspace = VMSPACE_ALLOC(0, VM_MAXUSER_ADDRESS); 440 if (vmspace == NULL) 441 return (ENOMEM); 442 443 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 444 strcpy(vm->name, name); 445 vm->num_mem_segs = 0; 446 vm->vmspace = vmspace; 447 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 448 449 vm_init(vm, true); 450 451 *retvm = vm; 452 return (0); 453 } 454 455 static void 456 vm_free_mem_seg(struct vm *vm, struct mem_seg *seg) 457 { 458 459 if (seg->object != NULL) 460 vmm_mem_free(vm->vmspace, seg->gpa, seg->len); 461 462 bzero(seg, sizeof(*seg)); 463 } 464 465 static void 466 vm_cleanup(struct vm *vm, bool destroy) 467 { 468 int i; 469 470 ppt_unassign_all(vm); 471 472 if (vm->iommu != NULL) 473 iommu_destroy_domain(vm->iommu); 474 475 if (destroy) 476 vrtc_cleanup(vm->vrtc); 477 else 478 vrtc_reset(vm->vrtc); 479 vpmtmr_cleanup(vm->vpmtmr); 480 vatpit_cleanup(vm->vatpit); 481 vhpet_cleanup(vm->vhpet); 482 vatpic_cleanup(vm->vatpic); 483 vioapic_cleanup(vm->vioapic); 484 485 for (i = 0; i < VM_MAXCPU; i++) 486 vcpu_cleanup(vm, i, destroy); 487 488 VMCLEANUP(vm->cookie); 489 490 if (destroy) { 491 for (i = 0; i < vm->num_mem_segs; i++) 492 vm_free_mem_seg(vm, &vm->mem_segs[i]); 493 494 vm->num_mem_segs = 0; 495 496 VMSPACE_FREE(vm->vmspace); 497 vm->vmspace = NULL; 498 } 499 } 500 501 void 502 vm_destroy(struct vm *vm) 503 { 504 vm_cleanup(vm, true); 505 free(vm, M_VM); 506 } 507 508 int 509 vm_reinit(struct vm *vm) 510 { 511 int error; 512 513 /* 514 * A virtual machine can be reset only if all vcpus are suspended. 515 */ 516 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 517 vm_cleanup(vm, false); 518 vm_init(vm, false); 519 error = 0; 520 } else { 521 error = EBUSY; 522 } 523 524 return (error); 525 } 526 527 const char * 528 vm_name(struct vm *vm) 529 { 530 return (vm->name); 531 } 532 533 int 534 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 535 { 536 vm_object_t obj; 537 538 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 539 return (ENOMEM); 540 else 541 return (0); 542 } 543 544 int 545 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 546 { 547 548 vmm_mmio_free(vm->vmspace, gpa, len); 549 return (0); 550 } 551 552 boolean_t 553 vm_mem_allocated(struct vm *vm, vm_paddr_t gpa) 554 { 555 int i; 556 vm_paddr_t gpabase, gpalimit; 557 558 for (i = 0; i < vm->num_mem_segs; i++) { 559 gpabase = vm->mem_segs[i].gpa; 560 gpalimit = gpabase + vm->mem_segs[i].len; 561 if (gpa >= gpabase && gpa < gpalimit) 562 return (TRUE); /* 'gpa' is regular memory */ 563 } 564 565 if (ppt_is_mmio(vm, gpa)) 566 return (TRUE); /* 'gpa' is pci passthru mmio */ 567 568 return (FALSE); 569 } 570 571 int 572 vm_malloc(struct vm *vm, vm_paddr_t gpa, size_t len) 573 { 574 int available, allocated; 575 struct mem_seg *seg; 576 vm_object_t object; 577 vm_paddr_t g; 578 579 if ((gpa & PAGE_MASK) || (len & PAGE_MASK) || len == 0) 580 return (EINVAL); 581 582 available = allocated = 0; 583 g = gpa; 584 while (g < gpa + len) { 585 if (vm_mem_allocated(vm, g)) 586 allocated++; 587 else 588 available++; 589 590 g += PAGE_SIZE; 591 } 592 593 /* 594 * If there are some allocated and some available pages in the address 595 * range then it is an error. 596 */ 597 if (allocated && available) 598 return (EINVAL); 599 600 /* 601 * If the entire address range being requested has already been 602 * allocated then there isn't anything more to do. 603 */ 604 if (allocated && available == 0) 605 return (0); 606 607 if (vm->num_mem_segs >= VM_MAX_MEMORY_SEGMENTS) 608 return (E2BIG); 609 610 seg = &vm->mem_segs[vm->num_mem_segs]; 611 612 if ((object = vmm_mem_alloc(vm->vmspace, gpa, len)) == NULL) 613 return (ENOMEM); 614 615 seg->gpa = gpa; 616 seg->len = len; 617 seg->object = object; 618 seg->wired = FALSE; 619 620 vm->num_mem_segs++; 621 622 return (0); 623 } 624 625 static vm_paddr_t 626 vm_maxmem(struct vm *vm) 627 { 628 int i; 629 vm_paddr_t gpa, maxmem; 630 631 maxmem = 0; 632 for (i = 0; i < vm->num_mem_segs; i++) { 633 gpa = vm->mem_segs[i].gpa + vm->mem_segs[i].len; 634 if (gpa > maxmem) 635 maxmem = gpa; 636 } 637 return (maxmem); 638 } 639 640 static void 641 vm_gpa_unwire(struct vm *vm) 642 { 643 int i, rv; 644 struct mem_seg *seg; 645 646 for (i = 0; i < vm->num_mem_segs; i++) { 647 seg = &vm->mem_segs[i]; 648 if (!seg->wired) 649 continue; 650 651 rv = vm_map_unwire(&vm->vmspace->vm_map, 652 seg->gpa, seg->gpa + seg->len, 653 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 654 KASSERT(rv == KERN_SUCCESS, ("vm(%s) memory segment " 655 "%#lx/%ld could not be unwired: %d", 656 vm_name(vm), seg->gpa, seg->len, rv)); 657 658 seg->wired = FALSE; 659 } 660 } 661 662 static int 663 vm_gpa_wire(struct vm *vm) 664 { 665 int i, rv; 666 struct mem_seg *seg; 667 668 for (i = 0; i < vm->num_mem_segs; i++) { 669 seg = &vm->mem_segs[i]; 670 if (seg->wired) 671 continue; 672 673 /* XXX rlimits? */ 674 rv = vm_map_wire(&vm->vmspace->vm_map, 675 seg->gpa, seg->gpa + seg->len, 676 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 677 if (rv != KERN_SUCCESS) 678 break; 679 680 seg->wired = TRUE; 681 } 682 683 if (i < vm->num_mem_segs) { 684 /* 685 * Undo the wiring before returning an error. 686 */ 687 vm_gpa_unwire(vm); 688 return (EAGAIN); 689 } 690 691 return (0); 692 } 693 694 static void 695 vm_iommu_modify(struct vm *vm, boolean_t map) 696 { 697 int i, sz; 698 vm_paddr_t gpa, hpa; 699 struct mem_seg *seg; 700 void *vp, *cookie, *host_domain; 701 702 sz = PAGE_SIZE; 703 host_domain = iommu_host_domain(); 704 705 for (i = 0; i < vm->num_mem_segs; i++) { 706 seg = &vm->mem_segs[i]; 707 KASSERT(seg->wired, ("vm(%s) memory segment %#lx/%ld not wired", 708 vm_name(vm), seg->gpa, seg->len)); 709 710 gpa = seg->gpa; 711 while (gpa < seg->gpa + seg->len) { 712 vp = vm_gpa_hold(vm, gpa, PAGE_SIZE, VM_PROT_WRITE, 713 &cookie); 714 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", 715 vm_name(vm), gpa)); 716 717 vm_gpa_release(cookie); 718 719 hpa = DMAP_TO_PHYS((uintptr_t)vp); 720 if (map) { 721 iommu_create_mapping(vm->iommu, gpa, hpa, sz); 722 iommu_remove_mapping(host_domain, hpa, sz); 723 } else { 724 iommu_remove_mapping(vm->iommu, gpa, sz); 725 iommu_create_mapping(host_domain, hpa, hpa, sz); 726 } 727 728 gpa += PAGE_SIZE; 729 } 730 } 731 732 /* 733 * Invalidate the cached translations associated with the domain 734 * from which pages were removed. 735 */ 736 if (map) 737 iommu_invalidate_tlb(host_domain); 738 else 739 iommu_invalidate_tlb(vm->iommu); 740 } 741 742 #define vm_iommu_unmap(vm) vm_iommu_modify((vm), FALSE) 743 #define vm_iommu_map(vm) vm_iommu_modify((vm), TRUE) 744 745 int 746 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 747 { 748 int error; 749 750 error = ppt_unassign_device(vm, bus, slot, func); 751 if (error) 752 return (error); 753 754 if (ppt_assigned_devices(vm) == 0) { 755 vm_iommu_unmap(vm); 756 vm_gpa_unwire(vm); 757 } 758 return (0); 759 } 760 761 int 762 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 763 { 764 int error; 765 vm_paddr_t maxaddr; 766 767 /* 768 * Virtual machines with pci passthru devices get special treatment: 769 * - the guest physical memory is wired 770 * - the iommu is programmed to do the 'gpa' to 'hpa' translation 771 * 772 * We need to do this before the first pci passthru device is attached. 773 */ 774 if (ppt_assigned_devices(vm) == 0) { 775 KASSERT(vm->iommu == NULL, 776 ("vm_assign_pptdev: iommu must be NULL")); 777 maxaddr = vm_maxmem(vm); 778 vm->iommu = iommu_create_domain(maxaddr); 779 780 error = vm_gpa_wire(vm); 781 if (error) 782 return (error); 783 784 vm_iommu_map(vm); 785 } 786 787 error = ppt_assign_device(vm, bus, slot, func); 788 return (error); 789 } 790 791 void * 792 vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 793 void **cookie) 794 { 795 int count, pageoff; 796 vm_page_t m; 797 798 pageoff = gpa & PAGE_MASK; 799 if (len > PAGE_SIZE - pageoff) 800 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 801 802 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 803 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 804 805 if (count == 1) { 806 *cookie = m; 807 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 808 } else { 809 *cookie = NULL; 810 return (NULL); 811 } 812 } 813 814 void 815 vm_gpa_release(void *cookie) 816 { 817 vm_page_t m = cookie; 818 819 vm_page_lock(m); 820 vm_page_unhold(m); 821 vm_page_unlock(m); 822 } 823 824 int 825 vm_gpabase2memseg(struct vm *vm, vm_paddr_t gpabase, 826 struct vm_memory_segment *seg) 827 { 828 int i; 829 830 for (i = 0; i < vm->num_mem_segs; i++) { 831 if (gpabase == vm->mem_segs[i].gpa) { 832 seg->gpa = vm->mem_segs[i].gpa; 833 seg->len = vm->mem_segs[i].len; 834 seg->wired = vm->mem_segs[i].wired; 835 return (0); 836 } 837 } 838 return (-1); 839 } 840 841 int 842 vm_get_memobj(struct vm *vm, vm_paddr_t gpa, size_t len, 843 vm_offset_t *offset, struct vm_object **object) 844 { 845 int i; 846 size_t seg_len; 847 vm_paddr_t seg_gpa; 848 vm_object_t seg_obj; 849 850 for (i = 0; i < vm->num_mem_segs; i++) { 851 if ((seg_obj = vm->mem_segs[i].object) == NULL) 852 continue; 853 854 seg_gpa = vm->mem_segs[i].gpa; 855 seg_len = vm->mem_segs[i].len; 856 857 if (gpa >= seg_gpa && gpa < seg_gpa + seg_len) { 858 *offset = gpa - seg_gpa; 859 *object = seg_obj; 860 vm_object_reference(seg_obj); 861 return (0); 862 } 863 } 864 865 return (EINVAL); 866 } 867 868 int 869 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval) 870 { 871 872 if (vcpu < 0 || vcpu >= VM_MAXCPU) 873 return (EINVAL); 874 875 if (reg >= VM_REG_LAST) 876 return (EINVAL); 877 878 return (VMGETREG(vm->cookie, vcpu, reg, retval)); 879 } 880 881 int 882 vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val) 883 { 884 struct vcpu *vcpu; 885 int error; 886 887 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 888 return (EINVAL); 889 890 if (reg >= VM_REG_LAST) 891 return (EINVAL); 892 893 error = VMSETREG(vm->cookie, vcpuid, reg, val); 894 if (error || reg != VM_REG_GUEST_RIP) 895 return (error); 896 897 /* Set 'nextrip' to match the value of %rip */ 898 VCPU_CTR1(vm, vcpuid, "Setting nextrip to %#lx", val); 899 vcpu = &vm->vcpu[vcpuid]; 900 vcpu->nextrip = val; 901 return (0); 902 } 903 904 static boolean_t 905 is_descriptor_table(int reg) 906 { 907 908 switch (reg) { 909 case VM_REG_GUEST_IDTR: 910 case VM_REG_GUEST_GDTR: 911 return (TRUE); 912 default: 913 return (FALSE); 914 } 915 } 916 917 static boolean_t 918 is_segment_register(int reg) 919 { 920 921 switch (reg) { 922 case VM_REG_GUEST_ES: 923 case VM_REG_GUEST_CS: 924 case VM_REG_GUEST_SS: 925 case VM_REG_GUEST_DS: 926 case VM_REG_GUEST_FS: 927 case VM_REG_GUEST_GS: 928 case VM_REG_GUEST_TR: 929 case VM_REG_GUEST_LDTR: 930 return (TRUE); 931 default: 932 return (FALSE); 933 } 934 } 935 936 int 937 vm_get_seg_desc(struct vm *vm, int vcpu, int reg, 938 struct seg_desc *desc) 939 { 940 941 if (vcpu < 0 || vcpu >= VM_MAXCPU) 942 return (EINVAL); 943 944 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 945 return (EINVAL); 946 947 return (VMGETDESC(vm->cookie, vcpu, reg, desc)); 948 } 949 950 int 951 vm_set_seg_desc(struct vm *vm, int vcpu, int reg, 952 struct seg_desc *desc) 953 { 954 if (vcpu < 0 || vcpu >= VM_MAXCPU) 955 return (EINVAL); 956 957 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 958 return (EINVAL); 959 960 return (VMSETDESC(vm->cookie, vcpu, reg, desc)); 961 } 962 963 static void 964 restore_guest_fpustate(struct vcpu *vcpu) 965 { 966 967 /* flush host state to the pcb */ 968 fpuexit(curthread); 969 970 /* restore guest FPU state */ 971 fpu_stop_emulating(); 972 fpurestore(vcpu->guestfpu); 973 974 /* restore guest XCR0 if XSAVE is enabled in the host */ 975 if (rcr4() & CR4_XSAVE) 976 load_xcr(0, vcpu->guest_xcr0); 977 978 /* 979 * The FPU is now "dirty" with the guest's state so turn on emulation 980 * to trap any access to the FPU by the host. 981 */ 982 fpu_start_emulating(); 983 } 984 985 static void 986 save_guest_fpustate(struct vcpu *vcpu) 987 { 988 989 if ((rcr0() & CR0_TS) == 0) 990 panic("fpu emulation not enabled in host!"); 991 992 /* save guest XCR0 and restore host XCR0 */ 993 if (rcr4() & CR4_XSAVE) { 994 vcpu->guest_xcr0 = rxcr(0); 995 load_xcr(0, vmm_get_host_xcr0()); 996 } 997 998 /* save guest FPU state */ 999 fpu_stop_emulating(); 1000 fpusave(vcpu->guestfpu); 1001 fpu_start_emulating(); 1002 } 1003 1004 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 1005 1006 static int 1007 vcpu_set_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate, 1008 bool from_idle) 1009 { 1010 struct vcpu *vcpu; 1011 int error; 1012 1013 vcpu = &vm->vcpu[vcpuid]; 1014 vcpu_assert_locked(vcpu); 1015 1016 /* 1017 * State transitions from the vmmdev_ioctl() must always begin from 1018 * the VCPU_IDLE state. This guarantees that there is only a single 1019 * ioctl() operating on a vcpu at any point. 1020 */ 1021 if (from_idle) { 1022 while (vcpu->state != VCPU_IDLE) { 1023 vcpu->reqidle = 1; 1024 vcpu_notify_event_locked(vcpu, false); 1025 VCPU_CTR1(vm, vcpuid, "vcpu state change from %s to " 1026 "idle requested", vcpu_state2str(vcpu->state)); 1027 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 1028 } 1029 } else { 1030 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 1031 "vcpu idle state")); 1032 } 1033 1034 if (vcpu->state == VCPU_RUNNING) { 1035 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 1036 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 1037 } else { 1038 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 1039 "vcpu that is not running", vcpu->hostcpu)); 1040 } 1041 1042 /* 1043 * The following state transitions are allowed: 1044 * IDLE -> FROZEN -> IDLE 1045 * FROZEN -> RUNNING -> FROZEN 1046 * FROZEN -> SLEEPING -> FROZEN 1047 */ 1048 switch (vcpu->state) { 1049 case VCPU_IDLE: 1050 case VCPU_RUNNING: 1051 case VCPU_SLEEPING: 1052 error = (newstate != VCPU_FROZEN); 1053 break; 1054 case VCPU_FROZEN: 1055 error = (newstate == VCPU_FROZEN); 1056 break; 1057 default: 1058 error = 1; 1059 break; 1060 } 1061 1062 if (error) 1063 return (EBUSY); 1064 1065 VCPU_CTR2(vm, vcpuid, "vcpu state changed from %s to %s", 1066 vcpu_state2str(vcpu->state), vcpu_state2str(newstate)); 1067 1068 vcpu->state = newstate; 1069 if (newstate == VCPU_RUNNING) 1070 vcpu->hostcpu = curcpu; 1071 else 1072 vcpu->hostcpu = NOCPU; 1073 1074 if (newstate == VCPU_IDLE) 1075 wakeup(&vcpu->state); 1076 1077 return (0); 1078 } 1079 1080 static void 1081 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1082 { 1083 int error; 1084 1085 if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0) 1086 panic("Error %d setting state to %d\n", error, newstate); 1087 } 1088 1089 static void 1090 vcpu_require_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1091 { 1092 int error; 1093 1094 if ((error = vcpu_set_state_locked(vm, vcpuid, newstate, false)) != 0) 1095 panic("Error %d setting state to %d", error, newstate); 1096 } 1097 1098 static void 1099 vm_set_rendezvous_func(struct vm *vm, vm_rendezvous_func_t func) 1100 { 1101 1102 KASSERT(mtx_owned(&vm->rendezvous_mtx), ("rendezvous_mtx not locked")); 1103 1104 /* 1105 * Update 'rendezvous_func' and execute a write memory barrier to 1106 * ensure that it is visible across all host cpus. This is not needed 1107 * for correctness but it does ensure that all the vcpus will notice 1108 * that the rendezvous is requested immediately. 1109 */ 1110 vm->rendezvous_func = func; 1111 wmb(); 1112 } 1113 1114 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt) \ 1115 do { \ 1116 if (vcpuid >= 0) \ 1117 VCPU_CTR0(vm, vcpuid, fmt); \ 1118 else \ 1119 VM_CTR0(vm, fmt); \ 1120 } while (0) 1121 1122 static void 1123 vm_handle_rendezvous(struct vm *vm, int vcpuid) 1124 { 1125 1126 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU), 1127 ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid)); 1128 1129 mtx_lock(&vm->rendezvous_mtx); 1130 while (vm->rendezvous_func != NULL) { 1131 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1132 CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus); 1133 1134 if (vcpuid != -1 && 1135 CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1136 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1137 VCPU_CTR0(vm, vcpuid, "Calling rendezvous func"); 1138 (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg); 1139 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1140 } 1141 if (CPU_CMP(&vm->rendezvous_req_cpus, 1142 &vm->rendezvous_done_cpus) == 0) { 1143 VCPU_CTR0(vm, vcpuid, "Rendezvous completed"); 1144 vm_set_rendezvous_func(vm, NULL); 1145 wakeup(&vm->rendezvous_func); 1146 break; 1147 } 1148 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion"); 1149 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1150 "vmrndv", 0); 1151 } 1152 mtx_unlock(&vm->rendezvous_mtx); 1153 } 1154 1155 /* 1156 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1157 */ 1158 static int 1159 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu) 1160 { 1161 struct vcpu *vcpu; 1162 const char *wmesg; 1163 int t, vcpu_halted, vm_halted; 1164 1165 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1166 1167 vcpu = &vm->vcpu[vcpuid]; 1168 vcpu_halted = 0; 1169 vm_halted = 0; 1170 1171 vcpu_lock(vcpu); 1172 while (1) { 1173 /* 1174 * Do a final check for pending NMI or interrupts before 1175 * really putting this thread to sleep. Also check for 1176 * software events that would cause this vcpu to wakeup. 1177 * 1178 * These interrupts/events could have happened after the 1179 * vcpu returned from VMRUN() and before it acquired the 1180 * vcpu lock above. 1181 */ 1182 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle) 1183 break; 1184 if (vm_nmi_pending(vm, vcpuid)) 1185 break; 1186 if (!intr_disabled) { 1187 if (vm_extint_pending(vm, vcpuid) || 1188 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1189 break; 1190 } 1191 } 1192 1193 /* Don't go to sleep if the vcpu thread needs to yield */ 1194 if (vcpu_should_yield(vm, vcpuid)) 1195 break; 1196 1197 /* 1198 * Some Linux guests implement "halt" by having all vcpus 1199 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1200 * track of the vcpus that have entered this state. When all 1201 * vcpus enter the halted state the virtual machine is halted. 1202 */ 1203 if (intr_disabled) { 1204 wmesg = "vmhalt"; 1205 VCPU_CTR0(vm, vcpuid, "Halted"); 1206 if (!vcpu_halted && halt_detection_enabled) { 1207 vcpu_halted = 1; 1208 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1209 } 1210 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1211 vm_halted = 1; 1212 break; 1213 } 1214 } else { 1215 wmesg = "vmidle"; 1216 } 1217 1218 t = ticks; 1219 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); 1220 /* 1221 * XXX msleep_spin() cannot be interrupted by signals so 1222 * wake up periodically to check pending signals. 1223 */ 1224 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1225 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); 1226 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t); 1227 } 1228 1229 if (vcpu_halted) 1230 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1231 1232 vcpu_unlock(vcpu); 1233 1234 if (vm_halted) 1235 vm_suspend(vm, VM_SUSPEND_HALT); 1236 1237 return (0); 1238 } 1239 1240 static int 1241 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu) 1242 { 1243 int rv, ftype; 1244 struct vm_map *map; 1245 struct vcpu *vcpu; 1246 struct vm_exit *vme; 1247 1248 vcpu = &vm->vcpu[vcpuid]; 1249 vme = &vcpu->exitinfo; 1250 1251 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1252 __func__, vme->inst_length)); 1253 1254 ftype = vme->u.paging.fault_type; 1255 KASSERT(ftype == VM_PROT_READ || 1256 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1257 ("vm_handle_paging: invalid fault_type %d", ftype)); 1258 1259 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1260 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1261 vme->u.paging.gpa, ftype); 1262 if (rv == 0) { 1263 VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx", 1264 ftype == VM_PROT_READ ? "accessed" : "dirty", 1265 vme->u.paging.gpa); 1266 goto done; 1267 } 1268 } 1269 1270 map = &vm->vmspace->vm_map; 1271 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL); 1272 1273 VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, " 1274 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1275 1276 if (rv != KERN_SUCCESS) 1277 return (EFAULT); 1278 done: 1279 return (0); 1280 } 1281 1282 static int 1283 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu) 1284 { 1285 struct vie *vie; 1286 struct vcpu *vcpu; 1287 struct vm_exit *vme; 1288 uint64_t gla, gpa, cs_base; 1289 struct vm_guest_paging *paging; 1290 mem_region_read_t mread; 1291 mem_region_write_t mwrite; 1292 enum vm_cpu_mode cpu_mode; 1293 int cs_d, error, fault; 1294 1295 vcpu = &vm->vcpu[vcpuid]; 1296 vme = &vcpu->exitinfo; 1297 1298 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1299 __func__, vme->inst_length)); 1300 1301 gla = vme->u.inst_emul.gla; 1302 gpa = vme->u.inst_emul.gpa; 1303 cs_base = vme->u.inst_emul.cs_base; 1304 cs_d = vme->u.inst_emul.cs_d; 1305 vie = &vme->u.inst_emul.vie; 1306 paging = &vme->u.inst_emul.paging; 1307 cpu_mode = paging->cpu_mode; 1308 1309 VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa); 1310 1311 /* Fetch, decode and emulate the faulting instruction */ 1312 if (vie->num_valid == 0) { 1313 error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip + 1314 cs_base, VIE_INST_SIZE, vie, &fault); 1315 } else { 1316 /* 1317 * The instruction bytes have already been copied into 'vie' 1318 */ 1319 error = fault = 0; 1320 } 1321 if (error || fault) 1322 return (error); 1323 1324 if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) { 1325 VCPU_CTR1(vm, vcpuid, "Error decoding instruction at %#lx", 1326 vme->rip + cs_base); 1327 *retu = true; /* dump instruction bytes in userspace */ 1328 return (0); 1329 } 1330 1331 /* 1332 * Update 'nextrip' based on the length of the emulated instruction. 1333 */ 1334 vme->inst_length = vie->num_processed; 1335 vcpu->nextrip += vie->num_processed; 1336 VCPU_CTR1(vm, vcpuid, "nextrip updated to %#lx after instruction " 1337 "decoding", vcpu->nextrip); 1338 1339 /* return to userland unless this is an in-kernel emulated device */ 1340 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1341 mread = lapic_mmio_read; 1342 mwrite = lapic_mmio_write; 1343 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1344 mread = vioapic_mmio_read; 1345 mwrite = vioapic_mmio_write; 1346 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1347 mread = vhpet_mmio_read; 1348 mwrite = vhpet_mmio_write; 1349 } else { 1350 *retu = true; 1351 return (0); 1352 } 1353 1354 error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging, 1355 mread, mwrite, retu); 1356 1357 return (error); 1358 } 1359 1360 static int 1361 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu) 1362 { 1363 int i, done; 1364 struct vcpu *vcpu; 1365 1366 done = 0; 1367 vcpu = &vm->vcpu[vcpuid]; 1368 1369 CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus); 1370 1371 /* 1372 * Wait until all 'active_cpus' have suspended themselves. 1373 * 1374 * Since a VM may be suspended at any time including when one or 1375 * more vcpus are doing a rendezvous we need to call the rendezvous 1376 * handler while we are waiting to prevent a deadlock. 1377 */ 1378 vcpu_lock(vcpu); 1379 while (1) { 1380 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1381 VCPU_CTR0(vm, vcpuid, "All vcpus suspended"); 1382 break; 1383 } 1384 1385 if (vm->rendezvous_func == NULL) { 1386 VCPU_CTR0(vm, vcpuid, "Sleeping during suspend"); 1387 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); 1388 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1389 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); 1390 } else { 1391 VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend"); 1392 vcpu_unlock(vcpu); 1393 vm_handle_rendezvous(vm, vcpuid); 1394 vcpu_lock(vcpu); 1395 } 1396 } 1397 vcpu_unlock(vcpu); 1398 1399 /* 1400 * Wakeup the other sleeping vcpus and return to userspace. 1401 */ 1402 for (i = 0; i < VM_MAXCPU; i++) { 1403 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1404 vcpu_notify_event(vm, i, false); 1405 } 1406 } 1407 1408 *retu = true; 1409 return (0); 1410 } 1411 1412 static int 1413 vm_handle_reqidle(struct vm *vm, int vcpuid, bool *retu) 1414 { 1415 struct vcpu *vcpu = &vm->vcpu[vcpuid]; 1416 1417 vcpu_lock(vcpu); 1418 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle)); 1419 vcpu->reqidle = 0; 1420 vcpu_unlock(vcpu); 1421 *retu = true; 1422 return (0); 1423 } 1424 1425 int 1426 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1427 { 1428 int i; 1429 1430 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1431 return (EINVAL); 1432 1433 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1434 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1435 vm->suspend, how); 1436 return (EALREADY); 1437 } 1438 1439 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1440 1441 /* 1442 * Notify all active vcpus that they are now suspended. 1443 */ 1444 for (i = 0; i < VM_MAXCPU; i++) { 1445 if (CPU_ISSET(i, &vm->active_cpus)) 1446 vcpu_notify_event(vm, i, false); 1447 } 1448 1449 return (0); 1450 } 1451 1452 void 1453 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip) 1454 { 1455 struct vm_exit *vmexit; 1456 1457 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1458 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1459 1460 vmexit = vm_exitinfo(vm, vcpuid); 1461 vmexit->rip = rip; 1462 vmexit->inst_length = 0; 1463 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1464 vmexit->u.suspended.how = vm->suspend; 1465 } 1466 1467 void 1468 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip) 1469 { 1470 struct vm_exit *vmexit; 1471 1472 KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress")); 1473 1474 vmexit = vm_exitinfo(vm, vcpuid); 1475 vmexit->rip = rip; 1476 vmexit->inst_length = 0; 1477 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1478 vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1); 1479 } 1480 1481 void 1482 vm_exit_reqidle(struct vm *vm, int vcpuid, uint64_t rip) 1483 { 1484 struct vm_exit *vmexit; 1485 1486 vmexit = vm_exitinfo(vm, vcpuid); 1487 vmexit->rip = rip; 1488 vmexit->inst_length = 0; 1489 vmexit->exitcode = VM_EXITCODE_REQIDLE; 1490 vmm_stat_incr(vm, vcpuid, VMEXIT_REQIDLE, 1); 1491 } 1492 1493 void 1494 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip) 1495 { 1496 struct vm_exit *vmexit; 1497 1498 vmexit = vm_exitinfo(vm, vcpuid); 1499 vmexit->rip = rip; 1500 vmexit->inst_length = 0; 1501 vmexit->exitcode = VM_EXITCODE_BOGUS; 1502 vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1); 1503 } 1504 1505 int 1506 vm_run(struct vm *vm, struct vm_run *vmrun) 1507 { 1508 struct vm_eventinfo evinfo; 1509 int error, vcpuid; 1510 struct vcpu *vcpu; 1511 struct pcb *pcb; 1512 uint64_t tscval; 1513 struct vm_exit *vme; 1514 bool retu, intr_disabled; 1515 pmap_t pmap; 1516 1517 vcpuid = vmrun->cpuid; 1518 1519 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1520 return (EINVAL); 1521 1522 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1523 return (EINVAL); 1524 1525 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1526 return (EINVAL); 1527 1528 pmap = vmspace_pmap(vm->vmspace); 1529 vcpu = &vm->vcpu[vcpuid]; 1530 vme = &vcpu->exitinfo; 1531 evinfo.rptr = &vm->rendezvous_func; 1532 evinfo.sptr = &vm->suspend; 1533 evinfo.iptr = &vcpu->reqidle; 1534 restart: 1535 critical_enter(); 1536 1537 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1538 ("vm_run: absurd pm_active")); 1539 1540 tscval = rdtsc(); 1541 1542 pcb = PCPU_GET(curpcb); 1543 set_pcb_flags(pcb, PCB_FULL_IRET); 1544 1545 restore_guest_fpustate(vcpu); 1546 1547 vcpu_require_state(vm, vcpuid, VCPU_RUNNING); 1548 error = VMRUN(vm->cookie, vcpuid, vcpu->nextrip, pmap, &evinfo); 1549 vcpu_require_state(vm, vcpuid, VCPU_FROZEN); 1550 1551 save_guest_fpustate(vcpu); 1552 1553 vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1554 1555 critical_exit(); 1556 1557 if (error == 0) { 1558 retu = false; 1559 vcpu->nextrip = vme->rip + vme->inst_length; 1560 switch (vme->exitcode) { 1561 case VM_EXITCODE_REQIDLE: 1562 error = vm_handle_reqidle(vm, vcpuid, &retu); 1563 break; 1564 case VM_EXITCODE_SUSPENDED: 1565 error = vm_handle_suspend(vm, vcpuid, &retu); 1566 break; 1567 case VM_EXITCODE_IOAPIC_EOI: 1568 vioapic_process_eoi(vm, vcpuid, 1569 vme->u.ioapic_eoi.vector); 1570 break; 1571 case VM_EXITCODE_RENDEZVOUS: 1572 vm_handle_rendezvous(vm, vcpuid); 1573 error = 0; 1574 break; 1575 case VM_EXITCODE_HLT: 1576 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1577 error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu); 1578 break; 1579 case VM_EXITCODE_PAGING: 1580 error = vm_handle_paging(vm, vcpuid, &retu); 1581 break; 1582 case VM_EXITCODE_INST_EMUL: 1583 error = vm_handle_inst_emul(vm, vcpuid, &retu); 1584 break; 1585 case VM_EXITCODE_INOUT: 1586 case VM_EXITCODE_INOUT_STR: 1587 error = vm_handle_inout(vm, vcpuid, vme, &retu); 1588 break; 1589 case VM_EXITCODE_MONITOR: 1590 case VM_EXITCODE_MWAIT: 1591 vm_inject_ud(vm, vcpuid); 1592 break; 1593 default: 1594 retu = true; /* handled in userland */ 1595 break; 1596 } 1597 } 1598 1599 if (error == 0 && retu == false) 1600 goto restart; 1601 1602 VCPU_CTR2(vm, vcpuid, "retu %d/%d", error, vme->exitcode); 1603 1604 /* copy the exit information */ 1605 bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit)); 1606 return (error); 1607 } 1608 1609 int 1610 vm_restart_instruction(void *arg, int vcpuid) 1611 { 1612 struct vm *vm; 1613 struct vcpu *vcpu; 1614 enum vcpu_state state; 1615 uint64_t rip; 1616 int error; 1617 1618 vm = arg; 1619 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1620 return (EINVAL); 1621 1622 vcpu = &vm->vcpu[vcpuid]; 1623 state = vcpu_get_state(vm, vcpuid, NULL); 1624 if (state == VCPU_RUNNING) { 1625 /* 1626 * When a vcpu is "running" the next instruction is determined 1627 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'. 1628 * Thus setting 'inst_length' to zero will cause the current 1629 * instruction to be restarted. 1630 */ 1631 vcpu->exitinfo.inst_length = 0; 1632 VCPU_CTR1(vm, vcpuid, "restarting instruction at %#lx by " 1633 "setting inst_length to zero", vcpu->exitinfo.rip); 1634 } else if (state == VCPU_FROZEN) { 1635 /* 1636 * When a vcpu is "frozen" it is outside the critical section 1637 * around VMRUN() and 'nextrip' points to the next instruction. 1638 * Thus instruction restart is achieved by setting 'nextrip' 1639 * to the vcpu's %rip. 1640 */ 1641 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip); 1642 KASSERT(!error, ("%s: error %d getting rip", __func__, error)); 1643 VCPU_CTR2(vm, vcpuid, "restarting instruction by updating " 1644 "nextrip from %#lx to %#lx", vcpu->nextrip, rip); 1645 vcpu->nextrip = rip; 1646 } else { 1647 panic("%s: invalid state %d", __func__, state); 1648 } 1649 return (0); 1650 } 1651 1652 int 1653 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info) 1654 { 1655 struct vcpu *vcpu; 1656 int type, vector; 1657 1658 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1659 return (EINVAL); 1660 1661 vcpu = &vm->vcpu[vcpuid]; 1662 1663 if (info & VM_INTINFO_VALID) { 1664 type = info & VM_INTINFO_TYPE; 1665 vector = info & 0xff; 1666 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 1667 return (EINVAL); 1668 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 1669 return (EINVAL); 1670 if (info & VM_INTINFO_RSVD) 1671 return (EINVAL); 1672 } else { 1673 info = 0; 1674 } 1675 VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info); 1676 vcpu->exitintinfo = info; 1677 return (0); 1678 } 1679 1680 enum exc_class { 1681 EXC_BENIGN, 1682 EXC_CONTRIBUTORY, 1683 EXC_PAGEFAULT 1684 }; 1685 1686 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 1687 1688 static enum exc_class 1689 exception_class(uint64_t info) 1690 { 1691 int type, vector; 1692 1693 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 1694 type = info & VM_INTINFO_TYPE; 1695 vector = info & 0xff; 1696 1697 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 1698 switch (type) { 1699 case VM_INTINFO_HWINTR: 1700 case VM_INTINFO_SWINTR: 1701 case VM_INTINFO_NMI: 1702 return (EXC_BENIGN); 1703 default: 1704 /* 1705 * Hardware exception. 1706 * 1707 * SVM and VT-x use identical type values to represent NMI, 1708 * hardware interrupt and software interrupt. 1709 * 1710 * SVM uses type '3' for all exceptions. VT-x uses type '3' 1711 * for exceptions except #BP and #OF. #BP and #OF use a type 1712 * value of '5' or '6'. Therefore we don't check for explicit 1713 * values of 'type' to classify 'intinfo' into a hardware 1714 * exception. 1715 */ 1716 break; 1717 } 1718 1719 switch (vector) { 1720 case IDT_PF: 1721 case IDT_VE: 1722 return (EXC_PAGEFAULT); 1723 case IDT_DE: 1724 case IDT_TS: 1725 case IDT_NP: 1726 case IDT_SS: 1727 case IDT_GP: 1728 return (EXC_CONTRIBUTORY); 1729 default: 1730 return (EXC_BENIGN); 1731 } 1732 } 1733 1734 static int 1735 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2, 1736 uint64_t *retinfo) 1737 { 1738 enum exc_class exc1, exc2; 1739 int type1, vector1; 1740 1741 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 1742 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 1743 1744 /* 1745 * If an exception occurs while attempting to call the double-fault 1746 * handler the processor enters shutdown mode (aka triple fault). 1747 */ 1748 type1 = info1 & VM_INTINFO_TYPE; 1749 vector1 = info1 & 0xff; 1750 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 1751 VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)", 1752 info1, info2); 1753 vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT); 1754 *retinfo = 0; 1755 return (0); 1756 } 1757 1758 /* 1759 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 1760 */ 1761 exc1 = exception_class(info1); 1762 exc2 = exception_class(info2); 1763 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 1764 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 1765 /* Convert nested fault into a double fault. */ 1766 *retinfo = IDT_DF; 1767 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1768 *retinfo |= VM_INTINFO_DEL_ERRCODE; 1769 } else { 1770 /* Handle exceptions serially */ 1771 *retinfo = info2; 1772 } 1773 return (1); 1774 } 1775 1776 static uint64_t 1777 vcpu_exception_intinfo(struct vcpu *vcpu) 1778 { 1779 uint64_t info = 0; 1780 1781 if (vcpu->exception_pending) { 1782 info = vcpu->exc_vector & 0xff; 1783 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1784 if (vcpu->exc_errcode_valid) { 1785 info |= VM_INTINFO_DEL_ERRCODE; 1786 info |= (uint64_t)vcpu->exc_errcode << 32; 1787 } 1788 } 1789 return (info); 1790 } 1791 1792 int 1793 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo) 1794 { 1795 struct vcpu *vcpu; 1796 uint64_t info1, info2; 1797 int valid; 1798 1799 KASSERT(vcpuid >= 0 && vcpuid < VM_MAXCPU, ("invalid vcpu %d", vcpuid)); 1800 1801 vcpu = &vm->vcpu[vcpuid]; 1802 1803 info1 = vcpu->exitintinfo; 1804 vcpu->exitintinfo = 0; 1805 1806 info2 = 0; 1807 if (vcpu->exception_pending) { 1808 info2 = vcpu_exception_intinfo(vcpu); 1809 vcpu->exception_pending = 0; 1810 VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx", 1811 vcpu->exc_vector, info2); 1812 } 1813 1814 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 1815 valid = nested_fault(vm, vcpuid, info1, info2, retinfo); 1816 } else if (info1 & VM_INTINFO_VALID) { 1817 *retinfo = info1; 1818 valid = 1; 1819 } else if (info2 & VM_INTINFO_VALID) { 1820 *retinfo = info2; 1821 valid = 1; 1822 } else { 1823 valid = 0; 1824 } 1825 1826 if (valid) { 1827 VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), " 1828 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 1829 } 1830 1831 return (valid); 1832 } 1833 1834 int 1835 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2) 1836 { 1837 struct vcpu *vcpu; 1838 1839 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1840 return (EINVAL); 1841 1842 vcpu = &vm->vcpu[vcpuid]; 1843 *info1 = vcpu->exitintinfo; 1844 *info2 = vcpu_exception_intinfo(vcpu); 1845 return (0); 1846 } 1847 1848 int 1849 vm_inject_exception(struct vm *vm, int vcpuid, int vector, int errcode_valid, 1850 uint32_t errcode, int restart_instruction) 1851 { 1852 struct vcpu *vcpu; 1853 uint64_t regval; 1854 int error; 1855 1856 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1857 return (EINVAL); 1858 1859 if (vector < 0 || vector >= 32) 1860 return (EINVAL); 1861 1862 /* 1863 * A double fault exception should never be injected directly into 1864 * the guest. It is a derived exception that results from specific 1865 * combinations of nested faults. 1866 */ 1867 if (vector == IDT_DF) 1868 return (EINVAL); 1869 1870 vcpu = &vm->vcpu[vcpuid]; 1871 1872 if (vcpu->exception_pending) { 1873 VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to " 1874 "pending exception %d", vector, vcpu->exc_vector); 1875 return (EBUSY); 1876 } 1877 1878 if (errcode_valid) { 1879 /* 1880 * Exceptions don't deliver an error code in real mode. 1881 */ 1882 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_CR0, ®val); 1883 KASSERT(!error, ("%s: error %d getting CR0", __func__, error)); 1884 if (!(regval & CR0_PE)) 1885 errcode_valid = 0; 1886 } 1887 1888 /* 1889 * From section 26.6.1 "Interruptibility State" in Intel SDM: 1890 * 1891 * Event blocking by "STI" or "MOV SS" is cleared after guest executes 1892 * one instruction or incurs an exception. 1893 */ 1894 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0); 1895 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", 1896 __func__, error)); 1897 1898 if (restart_instruction) 1899 vm_restart_instruction(vm, vcpuid); 1900 1901 vcpu->exception_pending = 1; 1902 vcpu->exc_vector = vector; 1903 vcpu->exc_errcode = errcode; 1904 vcpu->exc_errcode_valid = errcode_valid; 1905 VCPU_CTR1(vm, vcpuid, "Exception %d pending", vector); 1906 return (0); 1907 } 1908 1909 void 1910 vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid, 1911 int errcode) 1912 { 1913 struct vm *vm; 1914 int error, restart_instruction; 1915 1916 vm = vmarg; 1917 restart_instruction = 1; 1918 1919 error = vm_inject_exception(vm, vcpuid, vector, errcode_valid, 1920 errcode, restart_instruction); 1921 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 1922 } 1923 1924 void 1925 vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2) 1926 { 1927 struct vm *vm; 1928 int error; 1929 1930 vm = vmarg; 1931 VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx", 1932 error_code, cr2); 1933 1934 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2); 1935 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 1936 1937 vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code); 1938 } 1939 1940 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 1941 1942 int 1943 vm_inject_nmi(struct vm *vm, int vcpuid) 1944 { 1945 struct vcpu *vcpu; 1946 1947 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1948 return (EINVAL); 1949 1950 vcpu = &vm->vcpu[vcpuid]; 1951 1952 vcpu->nmi_pending = 1; 1953 vcpu_notify_event(vm, vcpuid, false); 1954 return (0); 1955 } 1956 1957 int 1958 vm_nmi_pending(struct vm *vm, int vcpuid) 1959 { 1960 struct vcpu *vcpu; 1961 1962 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1963 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 1964 1965 vcpu = &vm->vcpu[vcpuid]; 1966 1967 return (vcpu->nmi_pending); 1968 } 1969 1970 void 1971 vm_nmi_clear(struct vm *vm, int vcpuid) 1972 { 1973 struct vcpu *vcpu; 1974 1975 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1976 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 1977 1978 vcpu = &vm->vcpu[vcpuid]; 1979 1980 if (vcpu->nmi_pending == 0) 1981 panic("vm_nmi_clear: inconsistent nmi_pending state"); 1982 1983 vcpu->nmi_pending = 0; 1984 vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1); 1985 } 1986 1987 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 1988 1989 int 1990 vm_inject_extint(struct vm *vm, int vcpuid) 1991 { 1992 struct vcpu *vcpu; 1993 1994 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1995 return (EINVAL); 1996 1997 vcpu = &vm->vcpu[vcpuid]; 1998 1999 vcpu->extint_pending = 1; 2000 vcpu_notify_event(vm, vcpuid, false); 2001 return (0); 2002 } 2003 2004 int 2005 vm_extint_pending(struct vm *vm, int vcpuid) 2006 { 2007 struct vcpu *vcpu; 2008 2009 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2010 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 2011 2012 vcpu = &vm->vcpu[vcpuid]; 2013 2014 return (vcpu->extint_pending); 2015 } 2016 2017 void 2018 vm_extint_clear(struct vm *vm, int vcpuid) 2019 { 2020 struct vcpu *vcpu; 2021 2022 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2023 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 2024 2025 vcpu = &vm->vcpu[vcpuid]; 2026 2027 if (vcpu->extint_pending == 0) 2028 panic("vm_extint_clear: inconsistent extint_pending state"); 2029 2030 vcpu->extint_pending = 0; 2031 vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1); 2032 } 2033 2034 int 2035 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval) 2036 { 2037 if (vcpu < 0 || vcpu >= VM_MAXCPU) 2038 return (EINVAL); 2039 2040 if (type < 0 || type >= VM_CAP_MAX) 2041 return (EINVAL); 2042 2043 return (VMGETCAP(vm->cookie, vcpu, type, retval)); 2044 } 2045 2046 int 2047 vm_set_capability(struct vm *vm, int vcpu, int type, int val) 2048 { 2049 if (vcpu < 0 || vcpu >= VM_MAXCPU) 2050 return (EINVAL); 2051 2052 if (type < 0 || type >= VM_CAP_MAX) 2053 return (EINVAL); 2054 2055 return (VMSETCAP(vm->cookie, vcpu, type, val)); 2056 } 2057 2058 struct vlapic * 2059 vm_lapic(struct vm *vm, int cpu) 2060 { 2061 return (vm->vcpu[cpu].vlapic); 2062 } 2063 2064 struct vioapic * 2065 vm_ioapic(struct vm *vm) 2066 { 2067 2068 return (vm->vioapic); 2069 } 2070 2071 struct vhpet * 2072 vm_hpet(struct vm *vm) 2073 { 2074 2075 return (vm->vhpet); 2076 } 2077 2078 boolean_t 2079 vmm_is_pptdev(int bus, int slot, int func) 2080 { 2081 int found, i, n; 2082 int b, s, f; 2083 char *val, *cp, *cp2; 2084 2085 /* 2086 * XXX 2087 * The length of an environment variable is limited to 128 bytes which 2088 * puts an upper limit on the number of passthru devices that may be 2089 * specified using a single environment variable. 2090 * 2091 * Work around this by scanning multiple environment variable 2092 * names instead of a single one - yuck! 2093 */ 2094 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 2095 2096 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 2097 found = 0; 2098 for (i = 0; names[i] != NULL && !found; i++) { 2099 cp = val = kern_getenv(names[i]); 2100 while (cp != NULL && *cp != '\0') { 2101 if ((cp2 = strchr(cp, ' ')) != NULL) 2102 *cp2 = '\0'; 2103 2104 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 2105 if (n == 3 && bus == b && slot == s && func == f) { 2106 found = 1; 2107 break; 2108 } 2109 2110 if (cp2 != NULL) 2111 *cp2++ = ' '; 2112 2113 cp = cp2; 2114 } 2115 freeenv(val); 2116 } 2117 return (found); 2118 } 2119 2120 void * 2121 vm_iommu_domain(struct vm *vm) 2122 { 2123 2124 return (vm->iommu); 2125 } 2126 2127 int 2128 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate, 2129 bool from_idle) 2130 { 2131 int error; 2132 struct vcpu *vcpu; 2133 2134 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2135 panic("vm_set_run_state: invalid vcpuid %d", vcpuid); 2136 2137 vcpu = &vm->vcpu[vcpuid]; 2138 2139 vcpu_lock(vcpu); 2140 error = vcpu_set_state_locked(vm, vcpuid, newstate, from_idle); 2141 vcpu_unlock(vcpu); 2142 2143 return (error); 2144 } 2145 2146 enum vcpu_state 2147 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu) 2148 { 2149 struct vcpu *vcpu; 2150 enum vcpu_state state; 2151 2152 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2153 panic("vm_get_run_state: invalid vcpuid %d", vcpuid); 2154 2155 vcpu = &vm->vcpu[vcpuid]; 2156 2157 vcpu_lock(vcpu); 2158 state = vcpu->state; 2159 if (hostcpu != NULL) 2160 *hostcpu = vcpu->hostcpu; 2161 vcpu_unlock(vcpu); 2162 2163 return (state); 2164 } 2165 2166 int 2167 vm_activate_cpu(struct vm *vm, int vcpuid) 2168 { 2169 2170 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2171 return (EINVAL); 2172 2173 if (CPU_ISSET(vcpuid, &vm->active_cpus)) 2174 return (EBUSY); 2175 2176 VCPU_CTR0(vm, vcpuid, "activated"); 2177 CPU_SET_ATOMIC(vcpuid, &vm->active_cpus); 2178 return (0); 2179 } 2180 2181 cpuset_t 2182 vm_active_cpus(struct vm *vm) 2183 { 2184 2185 return (vm->active_cpus); 2186 } 2187 2188 cpuset_t 2189 vm_suspended_cpus(struct vm *vm) 2190 { 2191 2192 return (vm->suspended_cpus); 2193 } 2194 2195 void * 2196 vcpu_stats(struct vm *vm, int vcpuid) 2197 { 2198 2199 return (vm->vcpu[vcpuid].stats); 2200 } 2201 2202 int 2203 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state) 2204 { 2205 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2206 return (EINVAL); 2207 2208 *state = vm->vcpu[vcpuid].x2apic_state; 2209 2210 return (0); 2211 } 2212 2213 int 2214 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state) 2215 { 2216 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2217 return (EINVAL); 2218 2219 if (state >= X2APIC_STATE_LAST) 2220 return (EINVAL); 2221 2222 vm->vcpu[vcpuid].x2apic_state = state; 2223 2224 vlapic_set_x2apic_state(vm, vcpuid, state); 2225 2226 return (0); 2227 } 2228 2229 /* 2230 * This function is called to ensure that a vcpu "sees" a pending event 2231 * as soon as possible: 2232 * - If the vcpu thread is sleeping then it is woken up. 2233 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2234 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2235 */ 2236 static void 2237 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr) 2238 { 2239 int hostcpu; 2240 2241 hostcpu = vcpu->hostcpu; 2242 if (vcpu->state == VCPU_RUNNING) { 2243 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2244 if (hostcpu != curcpu) { 2245 if (lapic_intr) { 2246 vlapic_post_intr(vcpu->vlapic, hostcpu, 2247 vmm_ipinum); 2248 } else { 2249 ipi_cpu(hostcpu, vmm_ipinum); 2250 } 2251 } else { 2252 /* 2253 * If the 'vcpu' is running on 'curcpu' then it must 2254 * be sending a notification to itself (e.g. SELF_IPI). 2255 * The pending event will be picked up when the vcpu 2256 * transitions back to guest context. 2257 */ 2258 } 2259 } else { 2260 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2261 "with hostcpu %d", vcpu->state, hostcpu)); 2262 if (vcpu->state == VCPU_SLEEPING) 2263 wakeup_one(vcpu); 2264 } 2265 } 2266 2267 void 2268 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr) 2269 { 2270 struct vcpu *vcpu = &vm->vcpu[vcpuid]; 2271 2272 vcpu_lock(vcpu); 2273 vcpu_notify_event_locked(vcpu, lapic_intr); 2274 vcpu_unlock(vcpu); 2275 } 2276 2277 struct vmspace * 2278 vm_get_vmspace(struct vm *vm) 2279 { 2280 2281 return (vm->vmspace); 2282 } 2283 2284 int 2285 vm_apicid2vcpuid(struct vm *vm, int apicid) 2286 { 2287 /* 2288 * XXX apic id is assumed to be numerically identical to vcpu id 2289 */ 2290 return (apicid); 2291 } 2292 2293 void 2294 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest, 2295 vm_rendezvous_func_t func, void *arg) 2296 { 2297 int i; 2298 2299 /* 2300 * Enforce that this function is called without any locks 2301 */ 2302 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2303 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU), 2304 ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid)); 2305 2306 restart: 2307 mtx_lock(&vm->rendezvous_mtx); 2308 if (vm->rendezvous_func != NULL) { 2309 /* 2310 * If a rendezvous is already in progress then we need to 2311 * call the rendezvous handler in case this 'vcpuid' is one 2312 * of the targets of the rendezvous. 2313 */ 2314 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress"); 2315 mtx_unlock(&vm->rendezvous_mtx); 2316 vm_handle_rendezvous(vm, vcpuid); 2317 goto restart; 2318 } 2319 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2320 "rendezvous is still in progress")); 2321 2322 RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous"); 2323 vm->rendezvous_req_cpus = dest; 2324 CPU_ZERO(&vm->rendezvous_done_cpus); 2325 vm->rendezvous_arg = arg; 2326 vm_set_rendezvous_func(vm, func); 2327 mtx_unlock(&vm->rendezvous_mtx); 2328 2329 /* 2330 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2331 * vcpus so they handle the rendezvous as soon as possible. 2332 */ 2333 for (i = 0; i < VM_MAXCPU; i++) { 2334 if (CPU_ISSET(i, &dest)) 2335 vcpu_notify_event(vm, i, false); 2336 } 2337 2338 vm_handle_rendezvous(vm, vcpuid); 2339 } 2340 2341 struct vatpic * 2342 vm_atpic(struct vm *vm) 2343 { 2344 return (vm->vatpic); 2345 } 2346 2347 struct vatpit * 2348 vm_atpit(struct vm *vm) 2349 { 2350 return (vm->vatpit); 2351 } 2352 2353 struct vpmtmr * 2354 vm_pmtmr(struct vm *vm) 2355 { 2356 2357 return (vm->vpmtmr); 2358 } 2359 2360 struct vrtc * 2361 vm_rtc(struct vm *vm) 2362 { 2363 2364 return (vm->vrtc); 2365 } 2366 2367 enum vm_reg_name 2368 vm_segment_name(int seg) 2369 { 2370 static enum vm_reg_name seg_names[] = { 2371 VM_REG_GUEST_ES, 2372 VM_REG_GUEST_CS, 2373 VM_REG_GUEST_SS, 2374 VM_REG_GUEST_DS, 2375 VM_REG_GUEST_FS, 2376 VM_REG_GUEST_GS 2377 }; 2378 2379 KASSERT(seg >= 0 && seg < nitems(seg_names), 2380 ("%s: invalid segment encoding %d", __func__, seg)); 2381 return (seg_names[seg]); 2382 } 2383 2384 void 2385 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, 2386 int num_copyinfo) 2387 { 2388 int idx; 2389 2390 for (idx = 0; idx < num_copyinfo; idx++) { 2391 if (copyinfo[idx].cookie != NULL) 2392 vm_gpa_release(copyinfo[idx].cookie); 2393 } 2394 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2395 } 2396 2397 int 2398 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging, 2399 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2400 int num_copyinfo, int *fault) 2401 { 2402 int error, idx, nused; 2403 size_t n, off, remaining; 2404 void *hva, *cookie; 2405 uint64_t gpa; 2406 2407 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2408 2409 nused = 0; 2410 remaining = len; 2411 while (remaining > 0) { 2412 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo")); 2413 error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa, fault); 2414 if (error || *fault) 2415 return (error); 2416 off = gpa & PAGE_MASK; 2417 n = min(remaining, PAGE_SIZE - off); 2418 copyinfo[nused].gpa = gpa; 2419 copyinfo[nused].len = n; 2420 remaining -= n; 2421 gla += n; 2422 nused++; 2423 } 2424 2425 for (idx = 0; idx < nused; idx++) { 2426 hva = vm_gpa_hold(vm, copyinfo[idx].gpa, copyinfo[idx].len, 2427 prot, &cookie); 2428 if (hva == NULL) 2429 break; 2430 copyinfo[idx].hva = hva; 2431 copyinfo[idx].cookie = cookie; 2432 } 2433 2434 if (idx != nused) { 2435 vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo); 2436 return (EFAULT); 2437 } else { 2438 *fault = 0; 2439 return (0); 2440 } 2441 } 2442 2443 void 2444 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr, 2445 size_t len) 2446 { 2447 char *dst; 2448 int idx; 2449 2450 dst = kaddr; 2451 idx = 0; 2452 while (len > 0) { 2453 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2454 len -= copyinfo[idx].len; 2455 dst += copyinfo[idx].len; 2456 idx++; 2457 } 2458 } 2459 2460 void 2461 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr, 2462 struct vm_copyinfo *copyinfo, size_t len) 2463 { 2464 const char *src; 2465 int idx; 2466 2467 src = kaddr; 2468 idx = 0; 2469 while (len > 0) { 2470 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2471 len -= copyinfo[idx].len; 2472 src += copyinfo[idx].len; 2473 idx++; 2474 } 2475 } 2476 2477 /* 2478 * Return the amount of in-use and wired memory for the VM. Since 2479 * these are global stats, only return the values with for vCPU 0 2480 */ 2481 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2482 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2483 2484 static void 2485 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2486 { 2487 2488 if (vcpu == 0) { 2489 vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT, 2490 PAGE_SIZE * vmspace_resident_count(vm->vmspace)); 2491 } 2492 } 2493 2494 static void 2495 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2496 { 2497 2498 if (vcpu == 0) { 2499 vmm_stat_set(vm, vcpu, VMM_MEM_WIRED, 2500 PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace))); 2501 } 2502 } 2503 2504 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2505 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2506