1 /*- 2 * Copyright (c) 2011 NetApp, Inc. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD$ 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/sysctl.h> 37 #include <sys/malloc.h> 38 #include <sys/pcpu.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/proc.h> 42 #include <sys/rwlock.h> 43 #include <sys/sched.h> 44 #include <sys/smp.h> 45 #include <sys/systm.h> 46 47 #include <vm/vm.h> 48 #include <vm/vm_object.h> 49 #include <vm/vm_page.h> 50 #include <vm/pmap.h> 51 #include <vm/vm_map.h> 52 #include <vm/vm_extern.h> 53 #include <vm/vm_param.h> 54 55 #include <machine/cpu.h> 56 #include <machine/vm.h> 57 #include <machine/pcb.h> 58 #include <machine/smp.h> 59 #include <x86/psl.h> 60 #include <x86/apicreg.h> 61 #include <machine/vmparam.h> 62 63 #include <machine/vmm.h> 64 #include <machine/vmm_dev.h> 65 #include <machine/vmm_instruction_emul.h> 66 67 #include "vmm_ioport.h" 68 #include "vmm_ktr.h" 69 #include "vmm_host.h" 70 #include "vmm_mem.h" 71 #include "vmm_util.h" 72 #include "vatpic.h" 73 #include "vatpit.h" 74 #include "vhpet.h" 75 #include "vioapic.h" 76 #include "vlapic.h" 77 #include "vpmtmr.h" 78 #include "vrtc.h" 79 #include "vmm_ipi.h" 80 #include "vmm_stat.h" 81 #include "vmm_lapic.h" 82 83 #include "io/ppt.h" 84 #include "io/iommu.h" 85 86 struct vlapic; 87 88 /* 89 * Initialization: 90 * (a) allocated when vcpu is created 91 * (i) initialized when vcpu is created and when it is reinitialized 92 * (o) initialized the first time the vcpu is created 93 * (x) initialized before use 94 */ 95 struct vcpu { 96 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 97 enum vcpu_state state; /* (o) vcpu state */ 98 int hostcpu; /* (o) vcpu's host cpu */ 99 struct vlapic *vlapic; /* (i) APIC device model */ 100 enum x2apic_state x2apic_state; /* (i) APIC mode */ 101 uint64_t exitintinfo; /* (i) events pending at VM exit */ 102 int nmi_pending; /* (i) NMI pending */ 103 int extint_pending; /* (i) INTR pending */ 104 int exception_pending; /* (i) exception pending */ 105 int exc_vector; /* (x) exception collateral */ 106 int exc_errcode_valid; 107 uint32_t exc_errcode; 108 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 109 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 110 void *stats; /* (a,i) statistics */ 111 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 112 uint64_t nextrip; /* (x) next instruction to execute */ 113 }; 114 115 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx)) 116 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 117 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 118 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 119 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 120 121 struct mem_seg { 122 vm_paddr_t gpa; 123 size_t len; 124 boolean_t wired; 125 vm_object_t object; 126 }; 127 #define VM_MAX_MEMORY_SEGMENTS 2 128 129 /* 130 * Initialization: 131 * (o) initialized the first time the VM is created 132 * (i) initialized when VM is created and when it is reinitialized 133 * (x) initialized before use 134 */ 135 struct vm { 136 void *cookie; /* (i) cpu-specific data */ 137 void *iommu; /* (x) iommu-specific data */ 138 struct vhpet *vhpet; /* (i) virtual HPET */ 139 struct vioapic *vioapic; /* (i) virtual ioapic */ 140 struct vatpic *vatpic; /* (i) virtual atpic */ 141 struct vatpit *vatpit; /* (i) virtual atpit */ 142 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ 143 struct vrtc *vrtc; /* (o) virtual RTC */ 144 volatile cpuset_t active_cpus; /* (i) active vcpus */ 145 int suspend; /* (i) stop VM execution */ 146 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 147 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 148 cpuset_t rendezvous_req_cpus; /* (x) rendezvous requested */ 149 cpuset_t rendezvous_done_cpus; /* (x) rendezvous finished */ 150 void *rendezvous_arg; /* (x) rendezvous func/arg */ 151 vm_rendezvous_func_t rendezvous_func; 152 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 153 int num_mem_segs; /* (o) guest memory segments */ 154 struct mem_seg mem_segs[VM_MAX_MEMORY_SEGMENTS]; 155 struct vmspace *vmspace; /* (o) guest's address space */ 156 char name[VM_MAX_NAMELEN]; /* (o) virtual machine name */ 157 struct vcpu vcpu[VM_MAXCPU]; /* (i) guest vcpus */ 158 }; 159 160 static int vmm_initialized; 161 162 static struct vmm_ops *ops; 163 #define VMM_INIT(num) (ops != NULL ? (*ops->init)(num) : 0) 164 #define VMM_CLEANUP() (ops != NULL ? (*ops->cleanup)() : 0) 165 #define VMM_RESUME() (ops != NULL ? (*ops->resume)() : 0) 166 167 #define VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL) 168 #define VMRUN(vmi, vcpu, rip, pmap, rptr, sptr) \ 169 (ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, rptr, sptr) : ENXIO) 170 #define VMCLEANUP(vmi) (ops != NULL ? (*ops->vmcleanup)(vmi) : NULL) 171 #define VMSPACE_ALLOC(min, max) \ 172 (ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL) 173 #define VMSPACE_FREE(vmspace) \ 174 (ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO) 175 #define VMGETREG(vmi, vcpu, num, retval) \ 176 (ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO) 177 #define VMSETREG(vmi, vcpu, num, val) \ 178 (ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO) 179 #define VMGETDESC(vmi, vcpu, num, desc) \ 180 (ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO) 181 #define VMSETDESC(vmi, vcpu, num, desc) \ 182 (ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO) 183 #define VMGETCAP(vmi, vcpu, num, retval) \ 184 (ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO) 185 #define VMSETCAP(vmi, vcpu, num, val) \ 186 (ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO) 187 #define VLAPIC_INIT(vmi, vcpu) \ 188 (ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL) 189 #define VLAPIC_CLEANUP(vmi, vlapic) \ 190 (ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL) 191 192 #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS) 193 #define fpu_stop_emulating() clts() 194 195 static MALLOC_DEFINE(M_VM, "vm", "vm"); 196 197 /* statistics */ 198 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 199 200 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL); 201 202 /* 203 * Halt the guest if all vcpus are executing a HLT instruction with 204 * interrupts disabled. 205 */ 206 static int halt_detection_enabled = 1; 207 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 208 &halt_detection_enabled, 0, 209 "Halt VM if all vcpus execute HLT with interrupts disabled"); 210 211 static int vmm_ipinum; 212 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 213 "IPI vector used for vcpu notifications"); 214 215 static int trace_guest_exceptions; 216 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN, 217 &trace_guest_exceptions, 0, 218 "Trap into hypervisor on all guest exceptions and reflect them back"); 219 220 static void 221 vcpu_cleanup(struct vm *vm, int i, bool destroy) 222 { 223 struct vcpu *vcpu = &vm->vcpu[i]; 224 225 VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic); 226 if (destroy) { 227 vmm_stat_free(vcpu->stats); 228 fpu_save_area_free(vcpu->guestfpu); 229 } 230 } 231 232 static void 233 vcpu_init(struct vm *vm, int vcpu_id, bool create) 234 { 235 struct vcpu *vcpu; 236 237 KASSERT(vcpu_id >= 0 && vcpu_id < VM_MAXCPU, 238 ("vcpu_init: invalid vcpu %d", vcpu_id)); 239 240 vcpu = &vm->vcpu[vcpu_id]; 241 242 if (create) { 243 KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already " 244 "initialized", vcpu_id)); 245 vcpu_lock_init(vcpu); 246 vcpu->state = VCPU_IDLE; 247 vcpu->hostcpu = NOCPU; 248 vcpu->guestfpu = fpu_save_area_alloc(); 249 vcpu->stats = vmm_stat_alloc(); 250 } 251 252 vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id); 253 vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED); 254 vcpu->exitintinfo = 0; 255 vcpu->nmi_pending = 0; 256 vcpu->extint_pending = 0; 257 vcpu->exception_pending = 0; 258 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 259 fpu_save_area_reset(vcpu->guestfpu); 260 vmm_stat_init(vcpu->stats); 261 } 262 263 int 264 vcpu_trace_exceptions(struct vm *vm, int vcpuid) 265 { 266 267 return (trace_guest_exceptions); 268 } 269 270 struct vm_exit * 271 vm_exitinfo(struct vm *vm, int cpuid) 272 { 273 struct vcpu *vcpu; 274 275 if (cpuid < 0 || cpuid >= VM_MAXCPU) 276 panic("vm_exitinfo: invalid cpuid %d", cpuid); 277 278 vcpu = &vm->vcpu[cpuid]; 279 280 return (&vcpu->exitinfo); 281 } 282 283 static void 284 vmm_resume(void) 285 { 286 VMM_RESUME(); 287 } 288 289 static int 290 vmm_init(void) 291 { 292 int error; 293 294 vmm_host_state_init(); 295 296 vmm_ipinum = vmm_ipi_alloc(); 297 if (vmm_ipinum == 0) 298 vmm_ipinum = IPI_AST; 299 300 error = vmm_mem_init(); 301 if (error) 302 return (error); 303 304 if (vmm_is_intel()) 305 ops = &vmm_ops_intel; 306 else if (vmm_is_amd()) 307 ops = &vmm_ops_amd; 308 else 309 return (ENXIO); 310 311 vmm_resume_p = vmm_resume; 312 313 return (VMM_INIT(vmm_ipinum)); 314 } 315 316 static int 317 vmm_handler(module_t mod, int what, void *arg) 318 { 319 int error; 320 321 switch (what) { 322 case MOD_LOAD: 323 vmmdev_init(); 324 if (ppt_avail_devices() > 0) 325 iommu_init(); 326 error = vmm_init(); 327 if (error == 0) 328 vmm_initialized = 1; 329 break; 330 case MOD_UNLOAD: 331 error = vmmdev_cleanup(); 332 if (error == 0) { 333 vmm_resume_p = NULL; 334 iommu_cleanup(); 335 if (vmm_ipinum != IPI_AST) 336 vmm_ipi_free(vmm_ipinum); 337 error = VMM_CLEANUP(); 338 /* 339 * Something bad happened - prevent new 340 * VMs from being created 341 */ 342 if (error) 343 vmm_initialized = 0; 344 } 345 break; 346 default: 347 error = 0; 348 break; 349 } 350 return (error); 351 } 352 353 static moduledata_t vmm_kmod = { 354 "vmm", 355 vmm_handler, 356 NULL 357 }; 358 359 /* 360 * vmm initialization has the following dependencies: 361 * 362 * - iommu initialization must happen after the pci passthru driver has had 363 * a chance to attach to any passthru devices (after SI_SUB_CONFIGURE). 364 * 365 * - VT-x initialization requires smp_rendezvous() and therefore must happen 366 * after SMP is fully functional (after SI_SUB_SMP). 367 */ 368 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 369 MODULE_VERSION(vmm, 1); 370 371 static void 372 vm_init(struct vm *vm, bool create) 373 { 374 int i; 375 376 vm->cookie = VMINIT(vm, vmspace_pmap(vm->vmspace)); 377 vm->iommu = NULL; 378 vm->vioapic = vioapic_init(vm); 379 vm->vhpet = vhpet_init(vm); 380 vm->vatpic = vatpic_init(vm); 381 vm->vatpit = vatpit_init(vm); 382 vm->vpmtmr = vpmtmr_init(vm); 383 if (create) 384 vm->vrtc = vrtc_init(vm); 385 386 CPU_ZERO(&vm->active_cpus); 387 388 vm->suspend = 0; 389 CPU_ZERO(&vm->suspended_cpus); 390 391 for (i = 0; i < VM_MAXCPU; i++) 392 vcpu_init(vm, i, create); 393 } 394 395 int 396 vm_create(const char *name, struct vm **retvm) 397 { 398 struct vm *vm; 399 struct vmspace *vmspace; 400 401 /* 402 * If vmm.ko could not be successfully initialized then don't attempt 403 * to create the virtual machine. 404 */ 405 if (!vmm_initialized) 406 return (ENXIO); 407 408 if (name == NULL || strlen(name) >= VM_MAX_NAMELEN) 409 return (EINVAL); 410 411 vmspace = VMSPACE_ALLOC(0, VM_MAXUSER_ADDRESS); 412 if (vmspace == NULL) 413 return (ENOMEM); 414 415 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 416 strcpy(vm->name, name); 417 vm->num_mem_segs = 0; 418 vm->vmspace = vmspace; 419 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 420 421 vm_init(vm, true); 422 423 *retvm = vm; 424 return (0); 425 } 426 427 static void 428 vm_free_mem_seg(struct vm *vm, struct mem_seg *seg) 429 { 430 431 if (seg->object != NULL) 432 vmm_mem_free(vm->vmspace, seg->gpa, seg->len); 433 434 bzero(seg, sizeof(*seg)); 435 } 436 437 static void 438 vm_cleanup(struct vm *vm, bool destroy) 439 { 440 int i; 441 442 ppt_unassign_all(vm); 443 444 if (vm->iommu != NULL) 445 iommu_destroy_domain(vm->iommu); 446 447 if (destroy) 448 vrtc_cleanup(vm->vrtc); 449 else 450 vrtc_reset(vm->vrtc); 451 vpmtmr_cleanup(vm->vpmtmr); 452 vatpit_cleanup(vm->vatpit); 453 vhpet_cleanup(vm->vhpet); 454 vatpic_cleanup(vm->vatpic); 455 vioapic_cleanup(vm->vioapic); 456 457 for (i = 0; i < VM_MAXCPU; i++) 458 vcpu_cleanup(vm, i, destroy); 459 460 VMCLEANUP(vm->cookie); 461 462 if (destroy) { 463 for (i = 0; i < vm->num_mem_segs; i++) 464 vm_free_mem_seg(vm, &vm->mem_segs[i]); 465 466 vm->num_mem_segs = 0; 467 468 VMSPACE_FREE(vm->vmspace); 469 vm->vmspace = NULL; 470 } 471 } 472 473 void 474 vm_destroy(struct vm *vm) 475 { 476 vm_cleanup(vm, true); 477 free(vm, M_VM); 478 } 479 480 int 481 vm_reinit(struct vm *vm) 482 { 483 int error; 484 485 /* 486 * A virtual machine can be reset only if all vcpus are suspended. 487 */ 488 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 489 vm_cleanup(vm, false); 490 vm_init(vm, false); 491 error = 0; 492 } else { 493 error = EBUSY; 494 } 495 496 return (error); 497 } 498 499 const char * 500 vm_name(struct vm *vm) 501 { 502 return (vm->name); 503 } 504 505 int 506 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 507 { 508 vm_object_t obj; 509 510 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 511 return (ENOMEM); 512 else 513 return (0); 514 } 515 516 int 517 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 518 { 519 520 vmm_mmio_free(vm->vmspace, gpa, len); 521 return (0); 522 } 523 524 boolean_t 525 vm_mem_allocated(struct vm *vm, vm_paddr_t gpa) 526 { 527 int i; 528 vm_paddr_t gpabase, gpalimit; 529 530 for (i = 0; i < vm->num_mem_segs; i++) { 531 gpabase = vm->mem_segs[i].gpa; 532 gpalimit = gpabase + vm->mem_segs[i].len; 533 if (gpa >= gpabase && gpa < gpalimit) 534 return (TRUE); /* 'gpa' is regular memory */ 535 } 536 537 if (ppt_is_mmio(vm, gpa)) 538 return (TRUE); /* 'gpa' is pci passthru mmio */ 539 540 return (FALSE); 541 } 542 543 int 544 vm_malloc(struct vm *vm, vm_paddr_t gpa, size_t len) 545 { 546 int available, allocated; 547 struct mem_seg *seg; 548 vm_object_t object; 549 vm_paddr_t g; 550 551 if ((gpa & PAGE_MASK) || (len & PAGE_MASK) || len == 0) 552 return (EINVAL); 553 554 available = allocated = 0; 555 g = gpa; 556 while (g < gpa + len) { 557 if (vm_mem_allocated(vm, g)) 558 allocated++; 559 else 560 available++; 561 562 g += PAGE_SIZE; 563 } 564 565 /* 566 * If there are some allocated and some available pages in the address 567 * range then it is an error. 568 */ 569 if (allocated && available) 570 return (EINVAL); 571 572 /* 573 * If the entire address range being requested has already been 574 * allocated then there isn't anything more to do. 575 */ 576 if (allocated && available == 0) 577 return (0); 578 579 if (vm->num_mem_segs >= VM_MAX_MEMORY_SEGMENTS) 580 return (E2BIG); 581 582 seg = &vm->mem_segs[vm->num_mem_segs]; 583 584 if ((object = vmm_mem_alloc(vm->vmspace, gpa, len)) == NULL) 585 return (ENOMEM); 586 587 seg->gpa = gpa; 588 seg->len = len; 589 seg->object = object; 590 seg->wired = FALSE; 591 592 vm->num_mem_segs++; 593 594 return (0); 595 } 596 597 static vm_paddr_t 598 vm_maxmem(struct vm *vm) 599 { 600 int i; 601 vm_paddr_t gpa, maxmem; 602 603 maxmem = 0; 604 for (i = 0; i < vm->num_mem_segs; i++) { 605 gpa = vm->mem_segs[i].gpa + vm->mem_segs[i].len; 606 if (gpa > maxmem) 607 maxmem = gpa; 608 } 609 return (maxmem); 610 } 611 612 static void 613 vm_gpa_unwire(struct vm *vm) 614 { 615 int i, rv; 616 struct mem_seg *seg; 617 618 for (i = 0; i < vm->num_mem_segs; i++) { 619 seg = &vm->mem_segs[i]; 620 if (!seg->wired) 621 continue; 622 623 rv = vm_map_unwire(&vm->vmspace->vm_map, 624 seg->gpa, seg->gpa + seg->len, 625 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 626 KASSERT(rv == KERN_SUCCESS, ("vm(%s) memory segment " 627 "%#lx/%ld could not be unwired: %d", 628 vm_name(vm), seg->gpa, seg->len, rv)); 629 630 seg->wired = FALSE; 631 } 632 } 633 634 static int 635 vm_gpa_wire(struct vm *vm) 636 { 637 int i, rv; 638 struct mem_seg *seg; 639 640 for (i = 0; i < vm->num_mem_segs; i++) { 641 seg = &vm->mem_segs[i]; 642 if (seg->wired) 643 continue; 644 645 /* XXX rlimits? */ 646 rv = vm_map_wire(&vm->vmspace->vm_map, 647 seg->gpa, seg->gpa + seg->len, 648 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 649 if (rv != KERN_SUCCESS) 650 break; 651 652 seg->wired = TRUE; 653 } 654 655 if (i < vm->num_mem_segs) { 656 /* 657 * Undo the wiring before returning an error. 658 */ 659 vm_gpa_unwire(vm); 660 return (EAGAIN); 661 } 662 663 return (0); 664 } 665 666 static void 667 vm_iommu_modify(struct vm *vm, boolean_t map) 668 { 669 int i, sz; 670 vm_paddr_t gpa, hpa; 671 struct mem_seg *seg; 672 void *vp, *cookie, *host_domain; 673 674 sz = PAGE_SIZE; 675 host_domain = iommu_host_domain(); 676 677 for (i = 0; i < vm->num_mem_segs; i++) { 678 seg = &vm->mem_segs[i]; 679 KASSERT(seg->wired, ("vm(%s) memory segment %#lx/%ld not wired", 680 vm_name(vm), seg->gpa, seg->len)); 681 682 gpa = seg->gpa; 683 while (gpa < seg->gpa + seg->len) { 684 vp = vm_gpa_hold(vm, gpa, PAGE_SIZE, VM_PROT_WRITE, 685 &cookie); 686 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", 687 vm_name(vm), gpa)); 688 689 vm_gpa_release(cookie); 690 691 hpa = DMAP_TO_PHYS((uintptr_t)vp); 692 if (map) { 693 iommu_create_mapping(vm->iommu, gpa, hpa, sz); 694 iommu_remove_mapping(host_domain, hpa, sz); 695 } else { 696 iommu_remove_mapping(vm->iommu, gpa, sz); 697 iommu_create_mapping(host_domain, hpa, hpa, sz); 698 } 699 700 gpa += PAGE_SIZE; 701 } 702 } 703 704 /* 705 * Invalidate the cached translations associated with the domain 706 * from which pages were removed. 707 */ 708 if (map) 709 iommu_invalidate_tlb(host_domain); 710 else 711 iommu_invalidate_tlb(vm->iommu); 712 } 713 714 #define vm_iommu_unmap(vm) vm_iommu_modify((vm), FALSE) 715 #define vm_iommu_map(vm) vm_iommu_modify((vm), TRUE) 716 717 int 718 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 719 { 720 int error; 721 722 error = ppt_unassign_device(vm, bus, slot, func); 723 if (error) 724 return (error); 725 726 if (ppt_assigned_devices(vm) == 0) { 727 vm_iommu_unmap(vm); 728 vm_gpa_unwire(vm); 729 } 730 return (0); 731 } 732 733 int 734 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 735 { 736 int error; 737 vm_paddr_t maxaddr; 738 739 /* 740 * Virtual machines with pci passthru devices get special treatment: 741 * - the guest physical memory is wired 742 * - the iommu is programmed to do the 'gpa' to 'hpa' translation 743 * 744 * We need to do this before the first pci passthru device is attached. 745 */ 746 if (ppt_assigned_devices(vm) == 0) { 747 KASSERT(vm->iommu == NULL, 748 ("vm_assign_pptdev: iommu must be NULL")); 749 maxaddr = vm_maxmem(vm); 750 vm->iommu = iommu_create_domain(maxaddr); 751 752 error = vm_gpa_wire(vm); 753 if (error) 754 return (error); 755 756 vm_iommu_map(vm); 757 } 758 759 error = ppt_assign_device(vm, bus, slot, func); 760 return (error); 761 } 762 763 void * 764 vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 765 void **cookie) 766 { 767 int count, pageoff; 768 vm_page_t m; 769 770 pageoff = gpa & PAGE_MASK; 771 if (len > PAGE_SIZE - pageoff) 772 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 773 774 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 775 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 776 777 if (count == 1) { 778 *cookie = m; 779 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 780 } else { 781 *cookie = NULL; 782 return (NULL); 783 } 784 } 785 786 void 787 vm_gpa_release(void *cookie) 788 { 789 vm_page_t m = cookie; 790 791 vm_page_lock(m); 792 vm_page_unhold(m); 793 vm_page_unlock(m); 794 } 795 796 int 797 vm_gpabase2memseg(struct vm *vm, vm_paddr_t gpabase, 798 struct vm_memory_segment *seg) 799 { 800 int i; 801 802 for (i = 0; i < vm->num_mem_segs; i++) { 803 if (gpabase == vm->mem_segs[i].gpa) { 804 seg->gpa = vm->mem_segs[i].gpa; 805 seg->len = vm->mem_segs[i].len; 806 seg->wired = vm->mem_segs[i].wired; 807 return (0); 808 } 809 } 810 return (-1); 811 } 812 813 int 814 vm_get_memobj(struct vm *vm, vm_paddr_t gpa, size_t len, 815 vm_offset_t *offset, struct vm_object **object) 816 { 817 int i; 818 size_t seg_len; 819 vm_paddr_t seg_gpa; 820 vm_object_t seg_obj; 821 822 for (i = 0; i < vm->num_mem_segs; i++) { 823 if ((seg_obj = vm->mem_segs[i].object) == NULL) 824 continue; 825 826 seg_gpa = vm->mem_segs[i].gpa; 827 seg_len = vm->mem_segs[i].len; 828 829 if (gpa >= seg_gpa && gpa < seg_gpa + seg_len) { 830 *offset = gpa - seg_gpa; 831 *object = seg_obj; 832 vm_object_reference(seg_obj); 833 return (0); 834 } 835 } 836 837 return (EINVAL); 838 } 839 840 int 841 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval) 842 { 843 844 if (vcpu < 0 || vcpu >= VM_MAXCPU) 845 return (EINVAL); 846 847 if (reg >= VM_REG_LAST) 848 return (EINVAL); 849 850 return (VMGETREG(vm->cookie, vcpu, reg, retval)); 851 } 852 853 int 854 vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val) 855 { 856 struct vcpu *vcpu; 857 int error; 858 859 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 860 return (EINVAL); 861 862 if (reg >= VM_REG_LAST) 863 return (EINVAL); 864 865 error = VMSETREG(vm->cookie, vcpuid, reg, val); 866 if (error || reg != VM_REG_GUEST_RIP) 867 return (error); 868 869 /* Set 'nextrip' to match the value of %rip */ 870 VCPU_CTR1(vm, vcpuid, "Setting nextrip to %#lx", val); 871 vcpu = &vm->vcpu[vcpuid]; 872 vcpu->nextrip = val; 873 return (0); 874 } 875 876 static boolean_t 877 is_descriptor_table(int reg) 878 { 879 880 switch (reg) { 881 case VM_REG_GUEST_IDTR: 882 case VM_REG_GUEST_GDTR: 883 return (TRUE); 884 default: 885 return (FALSE); 886 } 887 } 888 889 static boolean_t 890 is_segment_register(int reg) 891 { 892 893 switch (reg) { 894 case VM_REG_GUEST_ES: 895 case VM_REG_GUEST_CS: 896 case VM_REG_GUEST_SS: 897 case VM_REG_GUEST_DS: 898 case VM_REG_GUEST_FS: 899 case VM_REG_GUEST_GS: 900 case VM_REG_GUEST_TR: 901 case VM_REG_GUEST_LDTR: 902 return (TRUE); 903 default: 904 return (FALSE); 905 } 906 } 907 908 int 909 vm_get_seg_desc(struct vm *vm, int vcpu, int reg, 910 struct seg_desc *desc) 911 { 912 913 if (vcpu < 0 || vcpu >= VM_MAXCPU) 914 return (EINVAL); 915 916 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 917 return (EINVAL); 918 919 return (VMGETDESC(vm->cookie, vcpu, reg, desc)); 920 } 921 922 int 923 vm_set_seg_desc(struct vm *vm, int vcpu, int reg, 924 struct seg_desc *desc) 925 { 926 if (vcpu < 0 || vcpu >= VM_MAXCPU) 927 return (EINVAL); 928 929 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 930 return (EINVAL); 931 932 return (VMSETDESC(vm->cookie, vcpu, reg, desc)); 933 } 934 935 static void 936 restore_guest_fpustate(struct vcpu *vcpu) 937 { 938 939 /* flush host state to the pcb */ 940 fpuexit(curthread); 941 942 /* restore guest FPU state */ 943 fpu_stop_emulating(); 944 fpurestore(vcpu->guestfpu); 945 946 /* restore guest XCR0 if XSAVE is enabled in the host */ 947 if (rcr4() & CR4_XSAVE) 948 load_xcr(0, vcpu->guest_xcr0); 949 950 /* 951 * The FPU is now "dirty" with the guest's state so turn on emulation 952 * to trap any access to the FPU by the host. 953 */ 954 fpu_start_emulating(); 955 } 956 957 static void 958 save_guest_fpustate(struct vcpu *vcpu) 959 { 960 961 if ((rcr0() & CR0_TS) == 0) 962 panic("fpu emulation not enabled in host!"); 963 964 /* save guest XCR0 and restore host XCR0 */ 965 if (rcr4() & CR4_XSAVE) { 966 vcpu->guest_xcr0 = rxcr(0); 967 load_xcr(0, vmm_get_host_xcr0()); 968 } 969 970 /* save guest FPU state */ 971 fpu_stop_emulating(); 972 fpusave(vcpu->guestfpu); 973 fpu_start_emulating(); 974 } 975 976 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 977 978 static int 979 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate, 980 bool from_idle) 981 { 982 int error; 983 984 vcpu_assert_locked(vcpu); 985 986 /* 987 * State transitions from the vmmdev_ioctl() must always begin from 988 * the VCPU_IDLE state. This guarantees that there is only a single 989 * ioctl() operating on a vcpu at any point. 990 */ 991 if (from_idle) { 992 while (vcpu->state != VCPU_IDLE) 993 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 994 } else { 995 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 996 "vcpu idle state")); 997 } 998 999 if (vcpu->state == VCPU_RUNNING) { 1000 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 1001 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 1002 } else { 1003 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 1004 "vcpu that is not running", vcpu->hostcpu)); 1005 } 1006 1007 /* 1008 * The following state transitions are allowed: 1009 * IDLE -> FROZEN -> IDLE 1010 * FROZEN -> RUNNING -> FROZEN 1011 * FROZEN -> SLEEPING -> FROZEN 1012 */ 1013 switch (vcpu->state) { 1014 case VCPU_IDLE: 1015 case VCPU_RUNNING: 1016 case VCPU_SLEEPING: 1017 error = (newstate != VCPU_FROZEN); 1018 break; 1019 case VCPU_FROZEN: 1020 error = (newstate == VCPU_FROZEN); 1021 break; 1022 default: 1023 error = 1; 1024 break; 1025 } 1026 1027 if (error) 1028 return (EBUSY); 1029 1030 vcpu->state = newstate; 1031 if (newstate == VCPU_RUNNING) 1032 vcpu->hostcpu = curcpu; 1033 else 1034 vcpu->hostcpu = NOCPU; 1035 1036 if (newstate == VCPU_IDLE) 1037 wakeup(&vcpu->state); 1038 1039 return (0); 1040 } 1041 1042 static void 1043 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1044 { 1045 int error; 1046 1047 if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0) 1048 panic("Error %d setting state to %d\n", error, newstate); 1049 } 1050 1051 static void 1052 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate) 1053 { 1054 int error; 1055 1056 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0) 1057 panic("Error %d setting state to %d", error, newstate); 1058 } 1059 1060 static void 1061 vm_set_rendezvous_func(struct vm *vm, vm_rendezvous_func_t func) 1062 { 1063 1064 KASSERT(mtx_owned(&vm->rendezvous_mtx), ("rendezvous_mtx not locked")); 1065 1066 /* 1067 * Update 'rendezvous_func' and execute a write memory barrier to 1068 * ensure that it is visible across all host cpus. This is not needed 1069 * for correctness but it does ensure that all the vcpus will notice 1070 * that the rendezvous is requested immediately. 1071 */ 1072 vm->rendezvous_func = func; 1073 wmb(); 1074 } 1075 1076 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt) \ 1077 do { \ 1078 if (vcpuid >= 0) \ 1079 VCPU_CTR0(vm, vcpuid, fmt); \ 1080 else \ 1081 VM_CTR0(vm, fmt); \ 1082 } while (0) 1083 1084 static void 1085 vm_handle_rendezvous(struct vm *vm, int vcpuid) 1086 { 1087 1088 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU), 1089 ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid)); 1090 1091 mtx_lock(&vm->rendezvous_mtx); 1092 while (vm->rendezvous_func != NULL) { 1093 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1094 CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus); 1095 1096 if (vcpuid != -1 && 1097 CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1098 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1099 VCPU_CTR0(vm, vcpuid, "Calling rendezvous func"); 1100 (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg); 1101 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1102 } 1103 if (CPU_CMP(&vm->rendezvous_req_cpus, 1104 &vm->rendezvous_done_cpus) == 0) { 1105 VCPU_CTR0(vm, vcpuid, "Rendezvous completed"); 1106 vm_set_rendezvous_func(vm, NULL); 1107 wakeup(&vm->rendezvous_func); 1108 break; 1109 } 1110 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion"); 1111 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1112 "vmrndv", 0); 1113 } 1114 mtx_unlock(&vm->rendezvous_mtx); 1115 } 1116 1117 /* 1118 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1119 */ 1120 static int 1121 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu) 1122 { 1123 struct vcpu *vcpu; 1124 const char *wmesg; 1125 int t, vcpu_halted, vm_halted; 1126 1127 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1128 1129 vcpu = &vm->vcpu[vcpuid]; 1130 vcpu_halted = 0; 1131 vm_halted = 0; 1132 1133 vcpu_lock(vcpu); 1134 while (1) { 1135 /* 1136 * Do a final check for pending NMI or interrupts before 1137 * really putting this thread to sleep. Also check for 1138 * software events that would cause this vcpu to wakeup. 1139 * 1140 * These interrupts/events could have happened after the 1141 * vcpu returned from VMRUN() and before it acquired the 1142 * vcpu lock above. 1143 */ 1144 if (vm->rendezvous_func != NULL || vm->suspend) 1145 break; 1146 if (vm_nmi_pending(vm, vcpuid)) 1147 break; 1148 if (!intr_disabled) { 1149 if (vm_extint_pending(vm, vcpuid) || 1150 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1151 break; 1152 } 1153 } 1154 1155 /* Don't go to sleep if the vcpu thread needs to yield */ 1156 if (vcpu_should_yield(vm, vcpuid)) 1157 break; 1158 1159 /* 1160 * Some Linux guests implement "halt" by having all vcpus 1161 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1162 * track of the vcpus that have entered this state. When all 1163 * vcpus enter the halted state the virtual machine is halted. 1164 */ 1165 if (intr_disabled) { 1166 wmesg = "vmhalt"; 1167 VCPU_CTR0(vm, vcpuid, "Halted"); 1168 if (!vcpu_halted && halt_detection_enabled) { 1169 vcpu_halted = 1; 1170 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1171 } 1172 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1173 vm_halted = 1; 1174 break; 1175 } 1176 } else { 1177 wmesg = "vmidle"; 1178 } 1179 1180 t = ticks; 1181 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1182 /* 1183 * XXX msleep_spin() cannot be interrupted by signals so 1184 * wake up periodically to check pending signals. 1185 */ 1186 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1187 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1188 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t); 1189 } 1190 1191 if (vcpu_halted) 1192 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1193 1194 vcpu_unlock(vcpu); 1195 1196 if (vm_halted) 1197 vm_suspend(vm, VM_SUSPEND_HALT); 1198 1199 return (0); 1200 } 1201 1202 static int 1203 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu) 1204 { 1205 int rv, ftype; 1206 struct vm_map *map; 1207 struct vcpu *vcpu; 1208 struct vm_exit *vme; 1209 1210 vcpu = &vm->vcpu[vcpuid]; 1211 vme = &vcpu->exitinfo; 1212 1213 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1214 __func__, vme->inst_length)); 1215 1216 ftype = vme->u.paging.fault_type; 1217 KASSERT(ftype == VM_PROT_READ || 1218 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1219 ("vm_handle_paging: invalid fault_type %d", ftype)); 1220 1221 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1222 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1223 vme->u.paging.gpa, ftype); 1224 if (rv == 0) { 1225 VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx", 1226 ftype == VM_PROT_READ ? "accessed" : "dirty", 1227 vme->u.paging.gpa); 1228 goto done; 1229 } 1230 } 1231 1232 map = &vm->vmspace->vm_map; 1233 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL); 1234 1235 VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, " 1236 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1237 1238 if (rv != KERN_SUCCESS) 1239 return (EFAULT); 1240 done: 1241 return (0); 1242 } 1243 1244 static int 1245 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu) 1246 { 1247 struct vie *vie; 1248 struct vcpu *vcpu; 1249 struct vm_exit *vme; 1250 uint64_t gla, gpa; 1251 struct vm_guest_paging *paging; 1252 mem_region_read_t mread; 1253 mem_region_write_t mwrite; 1254 enum vm_cpu_mode cpu_mode; 1255 int cs_d, error, length; 1256 1257 vcpu = &vm->vcpu[vcpuid]; 1258 vme = &vcpu->exitinfo; 1259 1260 gla = vme->u.inst_emul.gla; 1261 gpa = vme->u.inst_emul.gpa; 1262 cs_d = vme->u.inst_emul.cs_d; 1263 vie = &vme->u.inst_emul.vie; 1264 paging = &vme->u.inst_emul.paging; 1265 cpu_mode = paging->cpu_mode; 1266 1267 VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa); 1268 1269 /* Fetch, decode and emulate the faulting instruction */ 1270 if (vie->num_valid == 0) { 1271 /* 1272 * If the instruction length is not known then assume a 1273 * maximum size instruction. 1274 */ 1275 length = vme->inst_length ? vme->inst_length : VIE_INST_SIZE; 1276 error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip, 1277 length, vie); 1278 } else { 1279 /* 1280 * The instruction bytes have already been copied into 'vie' 1281 */ 1282 error = 0; 1283 } 1284 if (error == 1) 1285 return (0); /* Resume guest to handle page fault */ 1286 else if (error == -1) 1287 return (EFAULT); 1288 else if (error != 0) 1289 panic("%s: vmm_fetch_instruction error %d", __func__, error); 1290 1291 if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) 1292 return (EFAULT); 1293 1294 /* 1295 * If the instruction length was not specified then update it now 1296 * along with 'nextrip'. 1297 */ 1298 if (vme->inst_length == 0) { 1299 vme->inst_length = vie->num_processed; 1300 vcpu->nextrip += vie->num_processed; 1301 } 1302 1303 /* return to userland unless this is an in-kernel emulated device */ 1304 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1305 mread = lapic_mmio_read; 1306 mwrite = lapic_mmio_write; 1307 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1308 mread = vioapic_mmio_read; 1309 mwrite = vioapic_mmio_write; 1310 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1311 mread = vhpet_mmio_read; 1312 mwrite = vhpet_mmio_write; 1313 } else { 1314 *retu = true; 1315 return (0); 1316 } 1317 1318 error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging, 1319 mread, mwrite, retu); 1320 1321 return (error); 1322 } 1323 1324 static int 1325 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu) 1326 { 1327 int i, done; 1328 struct vcpu *vcpu; 1329 1330 done = 0; 1331 vcpu = &vm->vcpu[vcpuid]; 1332 1333 CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus); 1334 1335 /* 1336 * Wait until all 'active_cpus' have suspended themselves. 1337 * 1338 * Since a VM may be suspended at any time including when one or 1339 * more vcpus are doing a rendezvous we need to call the rendezvous 1340 * handler while we are waiting to prevent a deadlock. 1341 */ 1342 vcpu_lock(vcpu); 1343 while (1) { 1344 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1345 VCPU_CTR0(vm, vcpuid, "All vcpus suspended"); 1346 break; 1347 } 1348 1349 if (vm->rendezvous_func == NULL) { 1350 VCPU_CTR0(vm, vcpuid, "Sleeping during suspend"); 1351 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1352 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1353 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1354 } else { 1355 VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend"); 1356 vcpu_unlock(vcpu); 1357 vm_handle_rendezvous(vm, vcpuid); 1358 vcpu_lock(vcpu); 1359 } 1360 } 1361 vcpu_unlock(vcpu); 1362 1363 /* 1364 * Wakeup the other sleeping vcpus and return to userspace. 1365 */ 1366 for (i = 0; i < VM_MAXCPU; i++) { 1367 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1368 vcpu_notify_event(vm, i, false); 1369 } 1370 } 1371 1372 *retu = true; 1373 return (0); 1374 } 1375 1376 int 1377 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1378 { 1379 int i; 1380 1381 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1382 return (EINVAL); 1383 1384 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1385 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1386 vm->suspend, how); 1387 return (EALREADY); 1388 } 1389 1390 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1391 1392 /* 1393 * Notify all active vcpus that they are now suspended. 1394 */ 1395 for (i = 0; i < VM_MAXCPU; i++) { 1396 if (CPU_ISSET(i, &vm->active_cpus)) 1397 vcpu_notify_event(vm, i, false); 1398 } 1399 1400 return (0); 1401 } 1402 1403 void 1404 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip) 1405 { 1406 struct vm_exit *vmexit; 1407 1408 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1409 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1410 1411 vmexit = vm_exitinfo(vm, vcpuid); 1412 vmexit->rip = rip; 1413 vmexit->inst_length = 0; 1414 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1415 vmexit->u.suspended.how = vm->suspend; 1416 } 1417 1418 void 1419 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip) 1420 { 1421 struct vm_exit *vmexit; 1422 1423 KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress")); 1424 1425 vmexit = vm_exitinfo(vm, vcpuid); 1426 vmexit->rip = rip; 1427 vmexit->inst_length = 0; 1428 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1429 vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1); 1430 } 1431 1432 void 1433 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip) 1434 { 1435 struct vm_exit *vmexit; 1436 1437 vmexit = vm_exitinfo(vm, vcpuid); 1438 vmexit->rip = rip; 1439 vmexit->inst_length = 0; 1440 vmexit->exitcode = VM_EXITCODE_BOGUS; 1441 vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1); 1442 } 1443 1444 int 1445 vm_run(struct vm *vm, struct vm_run *vmrun) 1446 { 1447 int error, vcpuid; 1448 struct vcpu *vcpu; 1449 struct pcb *pcb; 1450 uint64_t tscval; 1451 struct vm_exit *vme; 1452 bool retu, intr_disabled; 1453 pmap_t pmap; 1454 void *rptr, *sptr; 1455 1456 vcpuid = vmrun->cpuid; 1457 1458 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1459 return (EINVAL); 1460 1461 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1462 return (EINVAL); 1463 1464 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1465 return (EINVAL); 1466 1467 rptr = &vm->rendezvous_func; 1468 sptr = &vm->suspend; 1469 pmap = vmspace_pmap(vm->vmspace); 1470 vcpu = &vm->vcpu[vcpuid]; 1471 vme = &vcpu->exitinfo; 1472 restart: 1473 critical_enter(); 1474 1475 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1476 ("vm_run: absurd pm_active")); 1477 1478 tscval = rdtsc(); 1479 1480 pcb = PCPU_GET(curpcb); 1481 set_pcb_flags(pcb, PCB_FULL_IRET); 1482 1483 restore_guest_fpustate(vcpu); 1484 1485 vcpu_require_state(vm, vcpuid, VCPU_RUNNING); 1486 error = VMRUN(vm->cookie, vcpuid, vcpu->nextrip, pmap, rptr, sptr); 1487 vcpu_require_state(vm, vcpuid, VCPU_FROZEN); 1488 1489 save_guest_fpustate(vcpu); 1490 1491 vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1492 1493 critical_exit(); 1494 1495 if (error == 0) { 1496 retu = false; 1497 vcpu->nextrip = vme->rip + vme->inst_length; 1498 switch (vme->exitcode) { 1499 case VM_EXITCODE_SUSPENDED: 1500 error = vm_handle_suspend(vm, vcpuid, &retu); 1501 break; 1502 case VM_EXITCODE_IOAPIC_EOI: 1503 vioapic_process_eoi(vm, vcpuid, 1504 vme->u.ioapic_eoi.vector); 1505 break; 1506 case VM_EXITCODE_RENDEZVOUS: 1507 vm_handle_rendezvous(vm, vcpuid); 1508 error = 0; 1509 break; 1510 case VM_EXITCODE_HLT: 1511 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1512 error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu); 1513 break; 1514 case VM_EXITCODE_PAGING: 1515 error = vm_handle_paging(vm, vcpuid, &retu); 1516 break; 1517 case VM_EXITCODE_INST_EMUL: 1518 error = vm_handle_inst_emul(vm, vcpuid, &retu); 1519 break; 1520 case VM_EXITCODE_INOUT: 1521 case VM_EXITCODE_INOUT_STR: 1522 error = vm_handle_inout(vm, vcpuid, vme, &retu); 1523 break; 1524 case VM_EXITCODE_MONITOR: 1525 case VM_EXITCODE_MWAIT: 1526 vm_inject_ud(vm, vcpuid); 1527 break; 1528 default: 1529 retu = true; /* handled in userland */ 1530 break; 1531 } 1532 } 1533 1534 if (error == 0 && retu == false) 1535 goto restart; 1536 1537 /* copy the exit information */ 1538 bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit)); 1539 return (error); 1540 } 1541 1542 int 1543 vm_restart_instruction(void *arg, int vcpuid) 1544 { 1545 struct vm *vm; 1546 struct vcpu *vcpu; 1547 enum vcpu_state state; 1548 uint64_t rip; 1549 int error; 1550 1551 vm = arg; 1552 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1553 return (EINVAL); 1554 1555 vcpu = &vm->vcpu[vcpuid]; 1556 state = vcpu_get_state(vm, vcpuid, NULL); 1557 if (state == VCPU_RUNNING) { 1558 /* 1559 * When a vcpu is "running" the next instruction is determined 1560 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'. 1561 * Thus setting 'inst_length' to zero will cause the current 1562 * instruction to be restarted. 1563 */ 1564 vcpu->exitinfo.inst_length = 0; 1565 VCPU_CTR1(vm, vcpuid, "restarting instruction at %#lx by " 1566 "setting inst_length to zero", vcpu->exitinfo.rip); 1567 } else if (state == VCPU_FROZEN) { 1568 /* 1569 * When a vcpu is "frozen" it is outside the critical section 1570 * around VMRUN() and 'nextrip' points to the next instruction. 1571 * Thus instruction restart is achieved by setting 'nextrip' 1572 * to the vcpu's %rip. 1573 */ 1574 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip); 1575 KASSERT(!error, ("%s: error %d getting rip", __func__, error)); 1576 VCPU_CTR2(vm, vcpuid, "restarting instruction by updating " 1577 "nextrip from %#lx to %#lx", vcpu->nextrip, rip); 1578 vcpu->nextrip = rip; 1579 } else { 1580 panic("%s: invalid state %d", __func__, state); 1581 } 1582 return (0); 1583 } 1584 1585 int 1586 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info) 1587 { 1588 struct vcpu *vcpu; 1589 int type, vector; 1590 1591 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1592 return (EINVAL); 1593 1594 vcpu = &vm->vcpu[vcpuid]; 1595 1596 if (info & VM_INTINFO_VALID) { 1597 type = info & VM_INTINFO_TYPE; 1598 vector = info & 0xff; 1599 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 1600 return (EINVAL); 1601 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 1602 return (EINVAL); 1603 if (info & VM_INTINFO_RSVD) 1604 return (EINVAL); 1605 } else { 1606 info = 0; 1607 } 1608 VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info); 1609 vcpu->exitintinfo = info; 1610 return (0); 1611 } 1612 1613 enum exc_class { 1614 EXC_BENIGN, 1615 EXC_CONTRIBUTORY, 1616 EXC_PAGEFAULT 1617 }; 1618 1619 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 1620 1621 static enum exc_class 1622 exception_class(uint64_t info) 1623 { 1624 int type, vector; 1625 1626 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 1627 type = info & VM_INTINFO_TYPE; 1628 vector = info & 0xff; 1629 1630 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 1631 switch (type) { 1632 case VM_INTINFO_HWINTR: 1633 case VM_INTINFO_SWINTR: 1634 case VM_INTINFO_NMI: 1635 return (EXC_BENIGN); 1636 default: 1637 /* 1638 * Hardware exception. 1639 * 1640 * SVM and VT-x use identical type values to represent NMI, 1641 * hardware interrupt and software interrupt. 1642 * 1643 * SVM uses type '3' for all exceptions. VT-x uses type '3' 1644 * for exceptions except #BP and #OF. #BP and #OF use a type 1645 * value of '5' or '6'. Therefore we don't check for explicit 1646 * values of 'type' to classify 'intinfo' into a hardware 1647 * exception. 1648 */ 1649 break; 1650 } 1651 1652 switch (vector) { 1653 case IDT_PF: 1654 case IDT_VE: 1655 return (EXC_PAGEFAULT); 1656 case IDT_DE: 1657 case IDT_TS: 1658 case IDT_NP: 1659 case IDT_SS: 1660 case IDT_GP: 1661 return (EXC_CONTRIBUTORY); 1662 default: 1663 return (EXC_BENIGN); 1664 } 1665 } 1666 1667 static int 1668 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2, 1669 uint64_t *retinfo) 1670 { 1671 enum exc_class exc1, exc2; 1672 int type1, vector1; 1673 1674 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 1675 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 1676 1677 /* 1678 * If an exception occurs while attempting to call the double-fault 1679 * handler the processor enters shutdown mode (aka triple fault). 1680 */ 1681 type1 = info1 & VM_INTINFO_TYPE; 1682 vector1 = info1 & 0xff; 1683 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 1684 VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)", 1685 info1, info2); 1686 vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT); 1687 *retinfo = 0; 1688 return (0); 1689 } 1690 1691 /* 1692 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 1693 */ 1694 exc1 = exception_class(info1); 1695 exc2 = exception_class(info2); 1696 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 1697 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 1698 /* Convert nested fault into a double fault. */ 1699 *retinfo = IDT_DF; 1700 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1701 *retinfo |= VM_INTINFO_DEL_ERRCODE; 1702 } else { 1703 /* Handle exceptions serially */ 1704 *retinfo = info2; 1705 } 1706 return (1); 1707 } 1708 1709 static uint64_t 1710 vcpu_exception_intinfo(struct vcpu *vcpu) 1711 { 1712 uint64_t info = 0; 1713 1714 if (vcpu->exception_pending) { 1715 info = vcpu->exc_vector & 0xff; 1716 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1717 if (vcpu->exc_errcode_valid) { 1718 info |= VM_INTINFO_DEL_ERRCODE; 1719 info |= (uint64_t)vcpu->exc_errcode << 32; 1720 } 1721 } 1722 return (info); 1723 } 1724 1725 int 1726 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo) 1727 { 1728 struct vcpu *vcpu; 1729 uint64_t info1, info2; 1730 int valid; 1731 1732 KASSERT(vcpuid >= 0 && vcpuid < VM_MAXCPU, ("invalid vcpu %d", vcpuid)); 1733 1734 vcpu = &vm->vcpu[vcpuid]; 1735 1736 info1 = vcpu->exitintinfo; 1737 vcpu->exitintinfo = 0; 1738 1739 info2 = 0; 1740 if (vcpu->exception_pending) { 1741 info2 = vcpu_exception_intinfo(vcpu); 1742 vcpu->exception_pending = 0; 1743 VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx", 1744 vcpu->exc_vector, info2); 1745 } 1746 1747 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 1748 valid = nested_fault(vm, vcpuid, info1, info2, retinfo); 1749 } else if (info1 & VM_INTINFO_VALID) { 1750 *retinfo = info1; 1751 valid = 1; 1752 } else if (info2 & VM_INTINFO_VALID) { 1753 *retinfo = info2; 1754 valid = 1; 1755 } else { 1756 valid = 0; 1757 } 1758 1759 if (valid) { 1760 VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), " 1761 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 1762 } 1763 1764 return (valid); 1765 } 1766 1767 int 1768 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2) 1769 { 1770 struct vcpu *vcpu; 1771 1772 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1773 return (EINVAL); 1774 1775 vcpu = &vm->vcpu[vcpuid]; 1776 *info1 = vcpu->exitintinfo; 1777 *info2 = vcpu_exception_intinfo(vcpu); 1778 return (0); 1779 } 1780 1781 int 1782 vm_inject_exception(struct vm *vm, int vcpuid, int vector, int errcode_valid, 1783 uint32_t errcode, int restart_instruction) 1784 { 1785 struct vcpu *vcpu; 1786 int error; 1787 1788 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1789 return (EINVAL); 1790 1791 if (vector < 0 || vector >= 32) 1792 return (EINVAL); 1793 1794 /* 1795 * A double fault exception should never be injected directly into 1796 * the guest. It is a derived exception that results from specific 1797 * combinations of nested faults. 1798 */ 1799 if (vector == IDT_DF) 1800 return (EINVAL); 1801 1802 vcpu = &vm->vcpu[vcpuid]; 1803 1804 if (vcpu->exception_pending) { 1805 VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to " 1806 "pending exception %d", vector, vcpu->exc_vector); 1807 return (EBUSY); 1808 } 1809 1810 /* 1811 * From section 26.6.1 "Interruptibility State" in Intel SDM: 1812 * 1813 * Event blocking by "STI" or "MOV SS" is cleared after guest executes 1814 * one instruction or incurs an exception. 1815 */ 1816 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0); 1817 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", 1818 __func__, error)); 1819 1820 if (restart_instruction) 1821 vm_restart_instruction(vm, vcpuid); 1822 1823 vcpu->exception_pending = 1; 1824 vcpu->exc_vector = vector; 1825 vcpu->exc_errcode = errcode; 1826 vcpu->exc_errcode_valid = errcode_valid; 1827 VCPU_CTR1(vm, vcpuid, "Exception %d pending", vector); 1828 return (0); 1829 } 1830 1831 void 1832 vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid, 1833 int errcode) 1834 { 1835 struct vm *vm; 1836 int error, restart_instruction; 1837 1838 vm = vmarg; 1839 restart_instruction = 1; 1840 1841 error = vm_inject_exception(vm, vcpuid, vector, errcode_valid, 1842 errcode, restart_instruction); 1843 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 1844 } 1845 1846 void 1847 vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2) 1848 { 1849 struct vm *vm; 1850 int error; 1851 1852 vm = vmarg; 1853 VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx", 1854 error_code, cr2); 1855 1856 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2); 1857 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 1858 1859 vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code); 1860 } 1861 1862 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 1863 1864 int 1865 vm_inject_nmi(struct vm *vm, int vcpuid) 1866 { 1867 struct vcpu *vcpu; 1868 1869 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1870 return (EINVAL); 1871 1872 vcpu = &vm->vcpu[vcpuid]; 1873 1874 vcpu->nmi_pending = 1; 1875 vcpu_notify_event(vm, vcpuid, false); 1876 return (0); 1877 } 1878 1879 int 1880 vm_nmi_pending(struct vm *vm, int vcpuid) 1881 { 1882 struct vcpu *vcpu; 1883 1884 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1885 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 1886 1887 vcpu = &vm->vcpu[vcpuid]; 1888 1889 return (vcpu->nmi_pending); 1890 } 1891 1892 void 1893 vm_nmi_clear(struct vm *vm, int vcpuid) 1894 { 1895 struct vcpu *vcpu; 1896 1897 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1898 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 1899 1900 vcpu = &vm->vcpu[vcpuid]; 1901 1902 if (vcpu->nmi_pending == 0) 1903 panic("vm_nmi_clear: inconsistent nmi_pending state"); 1904 1905 vcpu->nmi_pending = 0; 1906 vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1); 1907 } 1908 1909 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 1910 1911 int 1912 vm_inject_extint(struct vm *vm, int vcpuid) 1913 { 1914 struct vcpu *vcpu; 1915 1916 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1917 return (EINVAL); 1918 1919 vcpu = &vm->vcpu[vcpuid]; 1920 1921 vcpu->extint_pending = 1; 1922 vcpu_notify_event(vm, vcpuid, false); 1923 return (0); 1924 } 1925 1926 int 1927 vm_extint_pending(struct vm *vm, int vcpuid) 1928 { 1929 struct vcpu *vcpu; 1930 1931 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1932 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 1933 1934 vcpu = &vm->vcpu[vcpuid]; 1935 1936 return (vcpu->extint_pending); 1937 } 1938 1939 void 1940 vm_extint_clear(struct vm *vm, int vcpuid) 1941 { 1942 struct vcpu *vcpu; 1943 1944 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1945 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 1946 1947 vcpu = &vm->vcpu[vcpuid]; 1948 1949 if (vcpu->extint_pending == 0) 1950 panic("vm_extint_clear: inconsistent extint_pending state"); 1951 1952 vcpu->extint_pending = 0; 1953 vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1); 1954 } 1955 1956 int 1957 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval) 1958 { 1959 if (vcpu < 0 || vcpu >= VM_MAXCPU) 1960 return (EINVAL); 1961 1962 if (type < 0 || type >= VM_CAP_MAX) 1963 return (EINVAL); 1964 1965 return (VMGETCAP(vm->cookie, vcpu, type, retval)); 1966 } 1967 1968 int 1969 vm_set_capability(struct vm *vm, int vcpu, int type, int val) 1970 { 1971 if (vcpu < 0 || vcpu >= VM_MAXCPU) 1972 return (EINVAL); 1973 1974 if (type < 0 || type >= VM_CAP_MAX) 1975 return (EINVAL); 1976 1977 return (VMSETCAP(vm->cookie, vcpu, type, val)); 1978 } 1979 1980 struct vlapic * 1981 vm_lapic(struct vm *vm, int cpu) 1982 { 1983 return (vm->vcpu[cpu].vlapic); 1984 } 1985 1986 struct vioapic * 1987 vm_ioapic(struct vm *vm) 1988 { 1989 1990 return (vm->vioapic); 1991 } 1992 1993 struct vhpet * 1994 vm_hpet(struct vm *vm) 1995 { 1996 1997 return (vm->vhpet); 1998 } 1999 2000 boolean_t 2001 vmm_is_pptdev(int bus, int slot, int func) 2002 { 2003 int found, i, n; 2004 int b, s, f; 2005 char *val, *cp, *cp2; 2006 2007 /* 2008 * XXX 2009 * The length of an environment variable is limited to 128 bytes which 2010 * puts an upper limit on the number of passthru devices that may be 2011 * specified using a single environment variable. 2012 * 2013 * Work around this by scanning multiple environment variable 2014 * names instead of a single one - yuck! 2015 */ 2016 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 2017 2018 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 2019 found = 0; 2020 for (i = 0; names[i] != NULL && !found; i++) { 2021 cp = val = kern_getenv(names[i]); 2022 while (cp != NULL && *cp != '\0') { 2023 if ((cp2 = strchr(cp, ' ')) != NULL) 2024 *cp2 = '\0'; 2025 2026 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 2027 if (n == 3 && bus == b && slot == s && func == f) { 2028 found = 1; 2029 break; 2030 } 2031 2032 if (cp2 != NULL) 2033 *cp2++ = ' '; 2034 2035 cp = cp2; 2036 } 2037 freeenv(val); 2038 } 2039 return (found); 2040 } 2041 2042 void * 2043 vm_iommu_domain(struct vm *vm) 2044 { 2045 2046 return (vm->iommu); 2047 } 2048 2049 int 2050 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate, 2051 bool from_idle) 2052 { 2053 int error; 2054 struct vcpu *vcpu; 2055 2056 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2057 panic("vm_set_run_state: invalid vcpuid %d", vcpuid); 2058 2059 vcpu = &vm->vcpu[vcpuid]; 2060 2061 vcpu_lock(vcpu); 2062 error = vcpu_set_state_locked(vcpu, newstate, from_idle); 2063 vcpu_unlock(vcpu); 2064 2065 return (error); 2066 } 2067 2068 enum vcpu_state 2069 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu) 2070 { 2071 struct vcpu *vcpu; 2072 enum vcpu_state state; 2073 2074 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2075 panic("vm_get_run_state: invalid vcpuid %d", vcpuid); 2076 2077 vcpu = &vm->vcpu[vcpuid]; 2078 2079 vcpu_lock(vcpu); 2080 state = vcpu->state; 2081 if (hostcpu != NULL) 2082 *hostcpu = vcpu->hostcpu; 2083 vcpu_unlock(vcpu); 2084 2085 return (state); 2086 } 2087 2088 int 2089 vm_activate_cpu(struct vm *vm, int vcpuid) 2090 { 2091 2092 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2093 return (EINVAL); 2094 2095 if (CPU_ISSET(vcpuid, &vm->active_cpus)) 2096 return (EBUSY); 2097 2098 VCPU_CTR0(vm, vcpuid, "activated"); 2099 CPU_SET_ATOMIC(vcpuid, &vm->active_cpus); 2100 return (0); 2101 } 2102 2103 cpuset_t 2104 vm_active_cpus(struct vm *vm) 2105 { 2106 2107 return (vm->active_cpus); 2108 } 2109 2110 cpuset_t 2111 vm_suspended_cpus(struct vm *vm) 2112 { 2113 2114 return (vm->suspended_cpus); 2115 } 2116 2117 void * 2118 vcpu_stats(struct vm *vm, int vcpuid) 2119 { 2120 2121 return (vm->vcpu[vcpuid].stats); 2122 } 2123 2124 int 2125 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state) 2126 { 2127 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2128 return (EINVAL); 2129 2130 *state = vm->vcpu[vcpuid].x2apic_state; 2131 2132 return (0); 2133 } 2134 2135 int 2136 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state) 2137 { 2138 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2139 return (EINVAL); 2140 2141 if (state >= X2APIC_STATE_LAST) 2142 return (EINVAL); 2143 2144 vm->vcpu[vcpuid].x2apic_state = state; 2145 2146 vlapic_set_x2apic_state(vm, vcpuid, state); 2147 2148 return (0); 2149 } 2150 2151 /* 2152 * This function is called to ensure that a vcpu "sees" a pending event 2153 * as soon as possible: 2154 * - If the vcpu thread is sleeping then it is woken up. 2155 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2156 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2157 */ 2158 void 2159 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr) 2160 { 2161 int hostcpu; 2162 struct vcpu *vcpu; 2163 2164 vcpu = &vm->vcpu[vcpuid]; 2165 2166 vcpu_lock(vcpu); 2167 hostcpu = vcpu->hostcpu; 2168 if (vcpu->state == VCPU_RUNNING) { 2169 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2170 if (hostcpu != curcpu) { 2171 if (lapic_intr) { 2172 vlapic_post_intr(vcpu->vlapic, hostcpu, 2173 vmm_ipinum); 2174 } else { 2175 ipi_cpu(hostcpu, vmm_ipinum); 2176 } 2177 } else { 2178 /* 2179 * If the 'vcpu' is running on 'curcpu' then it must 2180 * be sending a notification to itself (e.g. SELF_IPI). 2181 * The pending event will be picked up when the vcpu 2182 * transitions back to guest context. 2183 */ 2184 } 2185 } else { 2186 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2187 "with hostcpu %d", vcpu->state, hostcpu)); 2188 if (vcpu->state == VCPU_SLEEPING) 2189 wakeup_one(vcpu); 2190 } 2191 vcpu_unlock(vcpu); 2192 } 2193 2194 struct vmspace * 2195 vm_get_vmspace(struct vm *vm) 2196 { 2197 2198 return (vm->vmspace); 2199 } 2200 2201 int 2202 vm_apicid2vcpuid(struct vm *vm, int apicid) 2203 { 2204 /* 2205 * XXX apic id is assumed to be numerically identical to vcpu id 2206 */ 2207 return (apicid); 2208 } 2209 2210 void 2211 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest, 2212 vm_rendezvous_func_t func, void *arg) 2213 { 2214 int i; 2215 2216 /* 2217 * Enforce that this function is called without any locks 2218 */ 2219 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2220 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU), 2221 ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid)); 2222 2223 restart: 2224 mtx_lock(&vm->rendezvous_mtx); 2225 if (vm->rendezvous_func != NULL) { 2226 /* 2227 * If a rendezvous is already in progress then we need to 2228 * call the rendezvous handler in case this 'vcpuid' is one 2229 * of the targets of the rendezvous. 2230 */ 2231 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress"); 2232 mtx_unlock(&vm->rendezvous_mtx); 2233 vm_handle_rendezvous(vm, vcpuid); 2234 goto restart; 2235 } 2236 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2237 "rendezvous is still in progress")); 2238 2239 RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous"); 2240 vm->rendezvous_req_cpus = dest; 2241 CPU_ZERO(&vm->rendezvous_done_cpus); 2242 vm->rendezvous_arg = arg; 2243 vm_set_rendezvous_func(vm, func); 2244 mtx_unlock(&vm->rendezvous_mtx); 2245 2246 /* 2247 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2248 * vcpus so they handle the rendezvous as soon as possible. 2249 */ 2250 for (i = 0; i < VM_MAXCPU; i++) { 2251 if (CPU_ISSET(i, &dest)) 2252 vcpu_notify_event(vm, i, false); 2253 } 2254 2255 vm_handle_rendezvous(vm, vcpuid); 2256 } 2257 2258 struct vatpic * 2259 vm_atpic(struct vm *vm) 2260 { 2261 return (vm->vatpic); 2262 } 2263 2264 struct vatpit * 2265 vm_atpit(struct vm *vm) 2266 { 2267 return (vm->vatpit); 2268 } 2269 2270 struct vpmtmr * 2271 vm_pmtmr(struct vm *vm) 2272 { 2273 2274 return (vm->vpmtmr); 2275 } 2276 2277 struct vrtc * 2278 vm_rtc(struct vm *vm) 2279 { 2280 2281 return (vm->vrtc); 2282 } 2283 2284 enum vm_reg_name 2285 vm_segment_name(int seg) 2286 { 2287 static enum vm_reg_name seg_names[] = { 2288 VM_REG_GUEST_ES, 2289 VM_REG_GUEST_CS, 2290 VM_REG_GUEST_SS, 2291 VM_REG_GUEST_DS, 2292 VM_REG_GUEST_FS, 2293 VM_REG_GUEST_GS 2294 }; 2295 2296 KASSERT(seg >= 0 && seg < nitems(seg_names), 2297 ("%s: invalid segment encoding %d", __func__, seg)); 2298 return (seg_names[seg]); 2299 } 2300 2301 void 2302 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, 2303 int num_copyinfo) 2304 { 2305 int idx; 2306 2307 for (idx = 0; idx < num_copyinfo; idx++) { 2308 if (copyinfo[idx].cookie != NULL) 2309 vm_gpa_release(copyinfo[idx].cookie); 2310 } 2311 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2312 } 2313 2314 int 2315 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging, 2316 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2317 int num_copyinfo) 2318 { 2319 int error, idx, nused; 2320 size_t n, off, remaining; 2321 void *hva, *cookie; 2322 uint64_t gpa; 2323 2324 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2325 2326 nused = 0; 2327 remaining = len; 2328 while (remaining > 0) { 2329 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo")); 2330 error = vmm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa); 2331 if (error) 2332 return (error); 2333 off = gpa & PAGE_MASK; 2334 n = min(remaining, PAGE_SIZE - off); 2335 copyinfo[nused].gpa = gpa; 2336 copyinfo[nused].len = n; 2337 remaining -= n; 2338 gla += n; 2339 nused++; 2340 } 2341 2342 for (idx = 0; idx < nused; idx++) { 2343 hva = vm_gpa_hold(vm, copyinfo[idx].gpa, copyinfo[idx].len, 2344 prot, &cookie); 2345 if (hva == NULL) 2346 break; 2347 copyinfo[idx].hva = hva; 2348 copyinfo[idx].cookie = cookie; 2349 } 2350 2351 if (idx != nused) { 2352 vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo); 2353 return (-1); 2354 } else { 2355 return (0); 2356 } 2357 } 2358 2359 void 2360 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr, 2361 size_t len) 2362 { 2363 char *dst; 2364 int idx; 2365 2366 dst = kaddr; 2367 idx = 0; 2368 while (len > 0) { 2369 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2370 len -= copyinfo[idx].len; 2371 dst += copyinfo[idx].len; 2372 idx++; 2373 } 2374 } 2375 2376 void 2377 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr, 2378 struct vm_copyinfo *copyinfo, size_t len) 2379 { 2380 const char *src; 2381 int idx; 2382 2383 src = kaddr; 2384 idx = 0; 2385 while (len > 0) { 2386 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2387 len -= copyinfo[idx].len; 2388 src += copyinfo[idx].len; 2389 idx++; 2390 } 2391 } 2392 2393 /* 2394 * Return the amount of in-use and wired memory for the VM. Since 2395 * these are global stats, only return the values with for vCPU 0 2396 */ 2397 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2398 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2399 2400 static void 2401 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2402 { 2403 2404 if (vcpu == 0) { 2405 vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT, 2406 PAGE_SIZE * vmspace_resident_count(vm->vmspace)); 2407 } 2408 } 2409 2410 static void 2411 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2412 { 2413 2414 if (vcpu == 0) { 2415 vmm_stat_set(vm, vcpu, VMM_MEM_WIRED, 2416 PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace))); 2417 } 2418 } 2419 2420 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2421 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2422