1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include "opt_bhyve_snapshot.h" 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/sysctl.h> 37 #include <sys/malloc.h> 38 #include <sys/pcpu.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/proc.h> 42 #include <sys/rwlock.h> 43 #include <sys/sched.h> 44 #include <sys/smp.h> 45 #include <sys/sx.h> 46 #include <sys/vnode.h> 47 48 #include <vm/vm.h> 49 #include <vm/vm_param.h> 50 #include <vm/vm_extern.h> 51 #include <vm/vm_object.h> 52 #include <vm/vm_page.h> 53 #include <vm/pmap.h> 54 #include <vm/vm_map.h> 55 #include <vm/vm_pager.h> 56 #include <vm/vm_kern.h> 57 #include <vm/vnode_pager.h> 58 #include <vm/swap_pager.h> 59 #include <vm/uma.h> 60 61 #include <machine/cpu.h> 62 #include <machine/pcb.h> 63 #include <machine/smp.h> 64 #include <machine/md_var.h> 65 #include <x86/psl.h> 66 #include <x86/apicreg.h> 67 #include <x86/ifunc.h> 68 69 #include <machine/vmm.h> 70 #include <machine/vmm_instruction_emul.h> 71 #include <machine/vmm_snapshot.h> 72 73 #include <dev/vmm/vmm_dev.h> 74 #include <dev/vmm/vmm_ktr.h> 75 76 #include "vmm_ioport.h" 77 #include "vmm_host.h" 78 #include "vmm_mem.h" 79 #include "vmm_util.h" 80 #include "vatpic.h" 81 #include "vatpit.h" 82 #include "vhpet.h" 83 #include "vioapic.h" 84 #include "vlapic.h" 85 #include "vpmtmr.h" 86 #include "vrtc.h" 87 #include "vmm_stat.h" 88 #include "vmm_lapic.h" 89 90 #include "io/ppt.h" 91 #include "io/iommu.h" 92 93 struct vlapic; 94 95 /* 96 * Initialization: 97 * (a) allocated when vcpu is created 98 * (i) initialized when vcpu is created and when it is reinitialized 99 * (o) initialized the first time the vcpu is created 100 * (x) initialized before use 101 */ 102 struct vcpu { 103 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 104 enum vcpu_state state; /* (o) vcpu state */ 105 int vcpuid; /* (o) */ 106 int hostcpu; /* (o) vcpu's host cpu */ 107 int reqidle; /* (i) request vcpu to idle */ 108 struct vm *vm; /* (o) */ 109 void *cookie; /* (i) cpu-specific data */ 110 struct vlapic *vlapic; /* (i) APIC device model */ 111 enum x2apic_state x2apic_state; /* (i) APIC mode */ 112 uint64_t exitintinfo; /* (i) events pending at VM exit */ 113 int nmi_pending; /* (i) NMI pending */ 114 int extint_pending; /* (i) INTR pending */ 115 int exception_pending; /* (i) exception pending */ 116 int exc_vector; /* (x) exception collateral */ 117 int exc_errcode_valid; 118 uint32_t exc_errcode; 119 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 120 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 121 void *stats; /* (a,i) statistics */ 122 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 123 cpuset_t exitinfo_cpuset; /* (x) storage for vmexit handlers */ 124 uint64_t nextrip; /* (x) next instruction to execute */ 125 uint64_t tsc_offset; /* (o) TSC offsetting */ 126 }; 127 128 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 129 #define vcpu_lock_destroy(v) mtx_destroy(&((v)->mtx)) 130 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 131 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 132 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 133 134 struct mem_seg { 135 size_t len; 136 bool sysmem; 137 struct vm_object *object; 138 }; 139 #define VM_MAX_MEMSEGS 4 140 141 struct mem_map { 142 vm_paddr_t gpa; 143 size_t len; 144 vm_ooffset_t segoff; 145 int segid; 146 int prot; 147 int flags; 148 }; 149 #define VM_MAX_MEMMAPS 8 150 151 /* 152 * Initialization: 153 * (o) initialized the first time the VM is created 154 * (i) initialized when VM is created and when it is reinitialized 155 * (x) initialized before use 156 * 157 * Locking: 158 * [m] mem_segs_lock 159 * [r] rendezvous_mtx 160 * [v] reads require one frozen vcpu, writes require freezing all vcpus 161 */ 162 struct vm { 163 void *cookie; /* (i) cpu-specific data */ 164 void *iommu; /* (x) iommu-specific data */ 165 struct vhpet *vhpet; /* (i) virtual HPET */ 166 struct vioapic *vioapic; /* (i) virtual ioapic */ 167 struct vatpic *vatpic; /* (i) virtual atpic */ 168 struct vatpit *vatpit; /* (i) virtual atpit */ 169 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ 170 struct vrtc *vrtc; /* (o) virtual RTC */ 171 volatile cpuset_t active_cpus; /* (i) active vcpus */ 172 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */ 173 cpuset_t startup_cpus; /* (i) [r] waiting for startup */ 174 int suspend; /* (i) stop VM execution */ 175 bool dying; /* (o) is dying */ 176 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 177 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 178 cpuset_t rendezvous_req_cpus; /* (x) [r] rendezvous requested */ 179 cpuset_t rendezvous_done_cpus; /* (x) [r] rendezvous finished */ 180 void *rendezvous_arg; /* (x) [r] rendezvous func/arg */ 181 vm_rendezvous_func_t rendezvous_func; 182 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 183 struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) [m+v] guest address space */ 184 struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) [m+v] guest memory regions */ 185 struct vmspace *vmspace; /* (o) guest's address space */ 186 char name[VM_MAX_NAMELEN+1]; /* (o) virtual machine name */ 187 struct vcpu **vcpu; /* (o) guest vcpus */ 188 /* The following describe the vm cpu topology */ 189 uint16_t sockets; /* (o) num of sockets */ 190 uint16_t cores; /* (o) num of cores/socket */ 191 uint16_t threads; /* (o) num of threads/core */ 192 uint16_t maxcpus; /* (o) max pluggable cpus */ 193 struct sx mem_segs_lock; /* (o) */ 194 struct sx vcpus_init_lock; /* (o) */ 195 }; 196 197 #define VMM_CTR0(vcpu, format) \ 198 VCPU_CTR0((vcpu)->vm, (vcpu)->vcpuid, format) 199 200 #define VMM_CTR1(vcpu, format, p1) \ 201 VCPU_CTR1((vcpu)->vm, (vcpu)->vcpuid, format, p1) 202 203 #define VMM_CTR2(vcpu, format, p1, p2) \ 204 VCPU_CTR2((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2) 205 206 #define VMM_CTR3(vcpu, format, p1, p2, p3) \ 207 VCPU_CTR3((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3) 208 209 #define VMM_CTR4(vcpu, format, p1, p2, p3, p4) \ 210 VCPU_CTR4((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3, p4) 211 212 static int vmm_initialized; 213 214 static void vmmops_panic(void); 215 216 static void 217 vmmops_panic(void) 218 { 219 panic("vmm_ops func called when !vmm_is_intel() && !vmm_is_svm()"); 220 } 221 222 #define DEFINE_VMMOPS_IFUNC(ret_type, opname, args) \ 223 DEFINE_IFUNC(static, ret_type, vmmops_##opname, args) \ 224 { \ 225 if (vmm_is_intel()) \ 226 return (vmm_ops_intel.opname); \ 227 else if (vmm_is_svm()) \ 228 return (vmm_ops_amd.opname); \ 229 else \ 230 return ((ret_type (*)args)vmmops_panic); \ 231 } 232 233 DEFINE_VMMOPS_IFUNC(int, modinit, (int ipinum)) 234 DEFINE_VMMOPS_IFUNC(int, modcleanup, (void)) 235 DEFINE_VMMOPS_IFUNC(void, modresume, (void)) 236 DEFINE_VMMOPS_IFUNC(void *, init, (struct vm *vm, struct pmap *pmap)) 237 DEFINE_VMMOPS_IFUNC(int, run, (void *vcpui, register_t rip, struct pmap *pmap, 238 struct vm_eventinfo *info)) 239 DEFINE_VMMOPS_IFUNC(void, cleanup, (void *vmi)) 240 DEFINE_VMMOPS_IFUNC(void *, vcpu_init, (void *vmi, struct vcpu *vcpu, 241 int vcpu_id)) 242 DEFINE_VMMOPS_IFUNC(void, vcpu_cleanup, (void *vcpui)) 243 DEFINE_VMMOPS_IFUNC(int, getreg, (void *vcpui, int num, uint64_t *retval)) 244 DEFINE_VMMOPS_IFUNC(int, setreg, (void *vcpui, int num, uint64_t val)) 245 DEFINE_VMMOPS_IFUNC(int, getdesc, (void *vcpui, int num, struct seg_desc *desc)) 246 DEFINE_VMMOPS_IFUNC(int, setdesc, (void *vcpui, int num, struct seg_desc *desc)) 247 DEFINE_VMMOPS_IFUNC(int, getcap, (void *vcpui, int num, int *retval)) 248 DEFINE_VMMOPS_IFUNC(int, setcap, (void *vcpui, int num, int val)) 249 DEFINE_VMMOPS_IFUNC(struct vmspace *, vmspace_alloc, (vm_offset_t min, 250 vm_offset_t max)) 251 DEFINE_VMMOPS_IFUNC(void, vmspace_free, (struct vmspace *vmspace)) 252 DEFINE_VMMOPS_IFUNC(struct vlapic *, vlapic_init, (void *vcpui)) 253 DEFINE_VMMOPS_IFUNC(void, vlapic_cleanup, (struct vlapic *vlapic)) 254 #ifdef BHYVE_SNAPSHOT 255 DEFINE_VMMOPS_IFUNC(int, vcpu_snapshot, (void *vcpui, 256 struct vm_snapshot_meta *meta)) 257 DEFINE_VMMOPS_IFUNC(int, restore_tsc, (void *vcpui, uint64_t now)) 258 #endif 259 260 SDT_PROVIDER_DEFINE(vmm); 261 262 static MALLOC_DEFINE(M_VM, "vm", "vm"); 263 264 /* statistics */ 265 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 266 267 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 268 NULL); 269 270 /* 271 * Halt the guest if all vcpus are executing a HLT instruction with 272 * interrupts disabled. 273 */ 274 static int halt_detection_enabled = 1; 275 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 276 &halt_detection_enabled, 0, 277 "Halt VM if all vcpus execute HLT with interrupts disabled"); 278 279 static int vmm_ipinum; 280 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 281 "IPI vector used for vcpu notifications"); 282 283 static int trace_guest_exceptions; 284 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN, 285 &trace_guest_exceptions, 0, 286 "Trap into hypervisor on all guest exceptions and reflect them back"); 287 288 static int trap_wbinvd; 289 SYSCTL_INT(_hw_vmm, OID_AUTO, trap_wbinvd, CTLFLAG_RDTUN, &trap_wbinvd, 0, 290 "WBINVD triggers a VM-exit"); 291 292 u_int vm_maxcpu; 293 SYSCTL_UINT(_hw_vmm, OID_AUTO, maxcpu, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 294 &vm_maxcpu, 0, "Maximum number of vCPUs"); 295 296 static void vm_free_memmap(struct vm *vm, int ident); 297 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm); 298 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr); 299 300 /* global statistics */ 301 VMM_STAT(VCPU_MIGRATIONS, "vcpu migration across host cpus"); 302 VMM_STAT(VMEXIT_COUNT, "total number of vm exits"); 303 VMM_STAT(VMEXIT_EXTINT, "vm exits due to external interrupt"); 304 VMM_STAT(VMEXIT_HLT, "number of times hlt was intercepted"); 305 VMM_STAT(VMEXIT_CR_ACCESS, "number of times %cr access was intercepted"); 306 VMM_STAT(VMEXIT_RDMSR, "number of times rdmsr was intercepted"); 307 VMM_STAT(VMEXIT_WRMSR, "number of times wrmsr was intercepted"); 308 VMM_STAT(VMEXIT_MTRAP, "number of monitor trap exits"); 309 VMM_STAT(VMEXIT_PAUSE, "number of times pause was intercepted"); 310 VMM_STAT(VMEXIT_INTR_WINDOW, "vm exits due to interrupt window opening"); 311 VMM_STAT(VMEXIT_NMI_WINDOW, "vm exits due to nmi window opening"); 312 VMM_STAT(VMEXIT_INOUT, "number of times in/out was intercepted"); 313 VMM_STAT(VMEXIT_CPUID, "number of times cpuid was intercepted"); 314 VMM_STAT(VMEXIT_NESTED_FAULT, "vm exits due to nested page fault"); 315 VMM_STAT(VMEXIT_INST_EMUL, "vm exits for instruction emulation"); 316 VMM_STAT(VMEXIT_UNKNOWN, "number of vm exits for unknown reason"); 317 VMM_STAT(VMEXIT_ASTPENDING, "number of times astpending at exit"); 318 VMM_STAT(VMEXIT_REQIDLE, "number of times idle requested at exit"); 319 VMM_STAT(VMEXIT_USERSPACE, "number of vm exits handled in userspace"); 320 VMM_STAT(VMEXIT_RENDEZVOUS, "number of times rendezvous pending at exit"); 321 VMM_STAT(VMEXIT_EXCEPTION, "number of vm exits due to exceptions"); 322 323 /* 324 * Upper limit on vm_maxcpu. Limited by use of uint16_t types for CPU 325 * counts as well as range of vpid values for VT-x and by the capacity 326 * of cpuset_t masks. The call to new_unrhdr() in vpid_init() in 327 * vmx.c requires 'vm_maxcpu + 1 <= 0xffff', hence the '- 1' below. 328 */ 329 #define VM_MAXCPU MIN(0xffff - 1, CPU_SETSIZE) 330 331 #ifdef KTR 332 static const char * 333 vcpu_state2str(enum vcpu_state state) 334 { 335 336 switch (state) { 337 case VCPU_IDLE: 338 return ("idle"); 339 case VCPU_FROZEN: 340 return ("frozen"); 341 case VCPU_RUNNING: 342 return ("running"); 343 case VCPU_SLEEPING: 344 return ("sleeping"); 345 default: 346 return ("unknown"); 347 } 348 } 349 #endif 350 351 static void 352 vcpu_cleanup(struct vcpu *vcpu, bool destroy) 353 { 354 vmmops_vlapic_cleanup(vcpu->vlapic); 355 vmmops_vcpu_cleanup(vcpu->cookie); 356 vcpu->cookie = NULL; 357 if (destroy) { 358 vmm_stat_free(vcpu->stats); 359 fpu_save_area_free(vcpu->guestfpu); 360 vcpu_lock_destroy(vcpu); 361 free(vcpu, M_VM); 362 } 363 } 364 365 static struct vcpu * 366 vcpu_alloc(struct vm *vm, int vcpu_id) 367 { 368 struct vcpu *vcpu; 369 370 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus, 371 ("vcpu_init: invalid vcpu %d", vcpu_id)); 372 373 vcpu = malloc(sizeof(*vcpu), M_VM, M_WAITOK | M_ZERO); 374 vcpu_lock_init(vcpu); 375 vcpu->state = VCPU_IDLE; 376 vcpu->hostcpu = NOCPU; 377 vcpu->vcpuid = vcpu_id; 378 vcpu->vm = vm; 379 vcpu->guestfpu = fpu_save_area_alloc(); 380 vcpu->stats = vmm_stat_alloc(); 381 vcpu->tsc_offset = 0; 382 return (vcpu); 383 } 384 385 static void 386 vcpu_init(struct vcpu *vcpu) 387 { 388 vcpu->cookie = vmmops_vcpu_init(vcpu->vm->cookie, vcpu, vcpu->vcpuid); 389 vcpu->vlapic = vmmops_vlapic_init(vcpu->cookie); 390 vm_set_x2apic_state(vcpu, X2APIC_DISABLED); 391 vcpu->reqidle = 0; 392 vcpu->exitintinfo = 0; 393 vcpu->nmi_pending = 0; 394 vcpu->extint_pending = 0; 395 vcpu->exception_pending = 0; 396 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 397 fpu_save_area_reset(vcpu->guestfpu); 398 vmm_stat_init(vcpu->stats); 399 } 400 401 int 402 vcpu_trace_exceptions(struct vcpu *vcpu) 403 { 404 405 return (trace_guest_exceptions); 406 } 407 408 int 409 vcpu_trap_wbinvd(struct vcpu *vcpu) 410 { 411 return (trap_wbinvd); 412 } 413 414 struct vm_exit * 415 vm_exitinfo(struct vcpu *vcpu) 416 { 417 return (&vcpu->exitinfo); 418 } 419 420 cpuset_t * 421 vm_exitinfo_cpuset(struct vcpu *vcpu) 422 { 423 return (&vcpu->exitinfo_cpuset); 424 } 425 426 static int 427 vmm_init(void) 428 { 429 int error; 430 431 if (!vmm_is_hw_supported()) 432 return (ENXIO); 433 434 vm_maxcpu = mp_ncpus; 435 TUNABLE_INT_FETCH("hw.vmm.maxcpu", &vm_maxcpu); 436 437 if (vm_maxcpu > VM_MAXCPU) { 438 printf("vmm: vm_maxcpu clamped to %u\n", VM_MAXCPU); 439 vm_maxcpu = VM_MAXCPU; 440 } 441 if (vm_maxcpu == 0) 442 vm_maxcpu = 1; 443 444 vmm_host_state_init(); 445 446 vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) : 447 &IDTVEC(justreturn)); 448 if (vmm_ipinum < 0) 449 vmm_ipinum = IPI_AST; 450 451 error = vmm_mem_init(); 452 if (error) 453 return (error); 454 455 vmm_resume_p = vmmops_modresume; 456 457 return (vmmops_modinit(vmm_ipinum)); 458 } 459 460 static int 461 vmm_handler(module_t mod, int what, void *arg) 462 { 463 int error; 464 465 switch (what) { 466 case MOD_LOAD: 467 if (vmm_is_hw_supported()) { 468 error = vmmdev_init(); 469 if (error != 0) 470 break; 471 error = vmm_init(); 472 if (error == 0) 473 vmm_initialized = 1; 474 } else { 475 error = ENXIO; 476 } 477 break; 478 case MOD_UNLOAD: 479 if (vmm_is_hw_supported()) { 480 error = vmmdev_cleanup(); 481 if (error == 0) { 482 vmm_resume_p = NULL; 483 iommu_cleanup(); 484 if (vmm_ipinum != IPI_AST) 485 lapic_ipi_free(vmm_ipinum); 486 error = vmmops_modcleanup(); 487 /* 488 * Something bad happened - prevent new 489 * VMs from being created 490 */ 491 if (error) 492 vmm_initialized = 0; 493 } 494 } else { 495 error = 0; 496 } 497 break; 498 default: 499 error = 0; 500 break; 501 } 502 return (error); 503 } 504 505 static moduledata_t vmm_kmod = { 506 "vmm", 507 vmm_handler, 508 NULL 509 }; 510 511 /* 512 * vmm initialization has the following dependencies: 513 * 514 * - VT-x initialization requires smp_rendezvous() and therefore must happen 515 * after SMP is fully functional (after SI_SUB_SMP). 516 */ 517 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 518 MODULE_VERSION(vmm, 1); 519 520 static void 521 vm_init(struct vm *vm, bool create) 522 { 523 vm->cookie = vmmops_init(vm, vmspace_pmap(vm->vmspace)); 524 vm->iommu = NULL; 525 vm->vioapic = vioapic_init(vm); 526 vm->vhpet = vhpet_init(vm); 527 vm->vatpic = vatpic_init(vm); 528 vm->vatpit = vatpit_init(vm); 529 vm->vpmtmr = vpmtmr_init(vm); 530 if (create) 531 vm->vrtc = vrtc_init(vm); 532 533 CPU_ZERO(&vm->active_cpus); 534 CPU_ZERO(&vm->debug_cpus); 535 CPU_ZERO(&vm->startup_cpus); 536 537 vm->suspend = 0; 538 CPU_ZERO(&vm->suspended_cpus); 539 540 if (!create) { 541 for (int i = 0; i < vm->maxcpus; i++) { 542 if (vm->vcpu[i] != NULL) 543 vcpu_init(vm->vcpu[i]); 544 } 545 } 546 } 547 548 void 549 vm_disable_vcpu_creation(struct vm *vm) 550 { 551 sx_xlock(&vm->vcpus_init_lock); 552 vm->dying = true; 553 sx_xunlock(&vm->vcpus_init_lock); 554 } 555 556 struct vcpu * 557 vm_alloc_vcpu(struct vm *vm, int vcpuid) 558 { 559 struct vcpu *vcpu; 560 561 if (vcpuid < 0 || vcpuid >= vm_get_maxcpus(vm)) 562 return (NULL); 563 564 vcpu = (struct vcpu *) 565 atomic_load_acq_ptr((uintptr_t *)&vm->vcpu[vcpuid]); 566 if (__predict_true(vcpu != NULL)) 567 return (vcpu); 568 569 sx_xlock(&vm->vcpus_init_lock); 570 vcpu = vm->vcpu[vcpuid]; 571 if (vcpu == NULL && !vm->dying) { 572 vcpu = vcpu_alloc(vm, vcpuid); 573 vcpu_init(vcpu); 574 575 /* 576 * Ensure vCPU is fully created before updating pointer 577 * to permit unlocked reads above. 578 */ 579 atomic_store_rel_ptr((uintptr_t *)&vm->vcpu[vcpuid], 580 (uintptr_t)vcpu); 581 } 582 sx_xunlock(&vm->vcpus_init_lock); 583 return (vcpu); 584 } 585 586 void 587 vm_slock_vcpus(struct vm *vm) 588 { 589 sx_slock(&vm->vcpus_init_lock); 590 } 591 592 void 593 vm_unlock_vcpus(struct vm *vm) 594 { 595 sx_unlock(&vm->vcpus_init_lock); 596 } 597 598 /* 599 * The default CPU topology is a single thread per package. 600 */ 601 u_int cores_per_package = 1; 602 u_int threads_per_core = 1; 603 604 int 605 vm_create(const char *name, struct vm **retvm) 606 { 607 struct vm *vm; 608 struct vmspace *vmspace; 609 610 /* 611 * If vmm.ko could not be successfully initialized then don't attempt 612 * to create the virtual machine. 613 */ 614 if (!vmm_initialized) 615 return (ENXIO); 616 617 if (name == NULL || strnlen(name, VM_MAX_NAMELEN + 1) == 618 VM_MAX_NAMELEN + 1) 619 return (EINVAL); 620 621 vmspace = vmmops_vmspace_alloc(0, VM_MAXUSER_ADDRESS_LA48); 622 if (vmspace == NULL) 623 return (ENOMEM); 624 625 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 626 strcpy(vm->name, name); 627 vm->vmspace = vmspace; 628 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 629 sx_init(&vm->mem_segs_lock, "vm mem_segs"); 630 sx_init(&vm->vcpus_init_lock, "vm vcpus"); 631 vm->vcpu = malloc(sizeof(*vm->vcpu) * vm_maxcpu, M_VM, M_WAITOK | 632 M_ZERO); 633 634 vm->sockets = 1; 635 vm->cores = cores_per_package; /* XXX backwards compatibility */ 636 vm->threads = threads_per_core; /* XXX backwards compatibility */ 637 vm->maxcpus = vm_maxcpu; 638 639 vm_init(vm, true); 640 641 *retvm = vm; 642 return (0); 643 } 644 645 void 646 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, 647 uint16_t *threads, uint16_t *maxcpus) 648 { 649 *sockets = vm->sockets; 650 *cores = vm->cores; 651 *threads = vm->threads; 652 *maxcpus = vm->maxcpus; 653 } 654 655 uint16_t 656 vm_get_maxcpus(struct vm *vm) 657 { 658 return (vm->maxcpus); 659 } 660 661 int 662 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, 663 uint16_t threads, uint16_t maxcpus __unused) 664 { 665 /* Ignore maxcpus. */ 666 if ((sockets * cores * threads) > vm->maxcpus) 667 return (EINVAL); 668 vm->sockets = sockets; 669 vm->cores = cores; 670 vm->threads = threads; 671 return(0); 672 } 673 674 static void 675 vm_cleanup(struct vm *vm, bool destroy) 676 { 677 struct mem_map *mm; 678 int i; 679 680 if (destroy) 681 vm_xlock_memsegs(vm); 682 683 ppt_unassign_all(vm); 684 685 if (vm->iommu != NULL) 686 iommu_destroy_domain(vm->iommu); 687 688 if (destroy) 689 vrtc_cleanup(vm->vrtc); 690 else 691 vrtc_reset(vm->vrtc); 692 vpmtmr_cleanup(vm->vpmtmr); 693 vatpit_cleanup(vm->vatpit); 694 vhpet_cleanup(vm->vhpet); 695 vatpic_cleanup(vm->vatpic); 696 vioapic_cleanup(vm->vioapic); 697 698 for (i = 0; i < vm->maxcpus; i++) { 699 if (vm->vcpu[i] != NULL) 700 vcpu_cleanup(vm->vcpu[i], destroy); 701 } 702 703 vmmops_cleanup(vm->cookie); 704 705 /* 706 * System memory is removed from the guest address space only when 707 * the VM is destroyed. This is because the mapping remains the same 708 * across VM reset. 709 * 710 * Device memory can be relocated by the guest (e.g. using PCI BARs) 711 * so those mappings are removed on a VM reset. 712 */ 713 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 714 mm = &vm->mem_maps[i]; 715 if (destroy || !sysmem_mapping(vm, mm)) 716 vm_free_memmap(vm, i); 717 } 718 719 if (destroy) { 720 for (i = 0; i < VM_MAX_MEMSEGS; i++) 721 vm_free_memseg(vm, i); 722 vm_unlock_memsegs(vm); 723 724 vmmops_vmspace_free(vm->vmspace); 725 vm->vmspace = NULL; 726 727 free(vm->vcpu, M_VM); 728 sx_destroy(&vm->vcpus_init_lock); 729 sx_destroy(&vm->mem_segs_lock); 730 mtx_destroy(&vm->rendezvous_mtx); 731 } 732 } 733 734 void 735 vm_destroy(struct vm *vm) 736 { 737 vm_cleanup(vm, true); 738 free(vm, M_VM); 739 } 740 741 int 742 vm_reinit(struct vm *vm) 743 { 744 int error; 745 746 /* 747 * A virtual machine can be reset only if all vcpus are suspended. 748 */ 749 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 750 vm_cleanup(vm, false); 751 vm_init(vm, false); 752 error = 0; 753 } else { 754 error = EBUSY; 755 } 756 757 return (error); 758 } 759 760 const char * 761 vm_name(struct vm *vm) 762 { 763 return (vm->name); 764 } 765 766 void 767 vm_slock_memsegs(struct vm *vm) 768 { 769 sx_slock(&vm->mem_segs_lock); 770 } 771 772 void 773 vm_xlock_memsegs(struct vm *vm) 774 { 775 sx_xlock(&vm->mem_segs_lock); 776 } 777 778 void 779 vm_unlock_memsegs(struct vm *vm) 780 { 781 sx_unlock(&vm->mem_segs_lock); 782 } 783 784 int 785 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 786 { 787 vm_object_t obj; 788 789 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 790 return (ENOMEM); 791 else 792 return (0); 793 } 794 795 int 796 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 797 { 798 799 vmm_mmio_free(vm->vmspace, gpa, len); 800 return (0); 801 } 802 803 /* 804 * Return 'true' if 'gpa' is allocated in the guest address space. 805 * 806 * This function is called in the context of a running vcpu which acts as 807 * an implicit lock on 'vm->mem_maps[]'. 808 */ 809 bool 810 vm_mem_allocated(struct vcpu *vcpu, vm_paddr_t gpa) 811 { 812 struct vm *vm = vcpu->vm; 813 struct mem_map *mm; 814 int i; 815 816 #ifdef INVARIANTS 817 int hostcpu, state; 818 state = vcpu_get_state(vcpu, &hostcpu); 819 KASSERT(state == VCPU_RUNNING && hostcpu == curcpu, 820 ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu)); 821 #endif 822 823 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 824 mm = &vm->mem_maps[i]; 825 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len) 826 return (true); /* 'gpa' is sysmem or devmem */ 827 } 828 829 if (ppt_is_mmio(vm, gpa)) 830 return (true); /* 'gpa' is pci passthru mmio */ 831 832 return (false); 833 } 834 835 int 836 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem) 837 { 838 struct mem_seg *seg; 839 vm_object_t obj; 840 841 sx_assert(&vm->mem_segs_lock, SX_XLOCKED); 842 843 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 844 return (EINVAL); 845 846 if (len == 0 || (len & PAGE_MASK)) 847 return (EINVAL); 848 849 seg = &vm->mem_segs[ident]; 850 if (seg->object != NULL) { 851 if (seg->len == len && seg->sysmem == sysmem) 852 return (EEXIST); 853 else 854 return (EINVAL); 855 } 856 857 obj = vm_object_allocate(OBJT_SWAP, len >> PAGE_SHIFT); 858 if (obj == NULL) 859 return (ENOMEM); 860 861 seg->len = len; 862 seg->object = obj; 863 seg->sysmem = sysmem; 864 return (0); 865 } 866 867 int 868 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, 869 vm_object_t *objptr) 870 { 871 struct mem_seg *seg; 872 873 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 874 875 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 876 return (EINVAL); 877 878 seg = &vm->mem_segs[ident]; 879 if (len) 880 *len = seg->len; 881 if (sysmem) 882 *sysmem = seg->sysmem; 883 if (objptr) 884 *objptr = seg->object; 885 return (0); 886 } 887 888 void 889 vm_free_memseg(struct vm *vm, int ident) 890 { 891 struct mem_seg *seg; 892 893 KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS, 894 ("%s: invalid memseg ident %d", __func__, ident)); 895 896 seg = &vm->mem_segs[ident]; 897 if (seg->object != NULL) { 898 vm_object_deallocate(seg->object); 899 bzero(seg, sizeof(struct mem_seg)); 900 } 901 } 902 903 int 904 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first, 905 size_t len, int prot, int flags) 906 { 907 struct mem_seg *seg; 908 struct mem_map *m, *map; 909 vm_ooffset_t last; 910 int i, error; 911 912 if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0) 913 return (EINVAL); 914 915 if (flags & ~VM_MEMMAP_F_WIRED) 916 return (EINVAL); 917 918 if (segid < 0 || segid >= VM_MAX_MEMSEGS) 919 return (EINVAL); 920 921 seg = &vm->mem_segs[segid]; 922 if (seg->object == NULL) 923 return (EINVAL); 924 925 last = first + len; 926 if (first < 0 || first >= last || last > seg->len) 927 return (EINVAL); 928 929 if ((gpa | first | last) & PAGE_MASK) 930 return (EINVAL); 931 932 map = NULL; 933 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 934 m = &vm->mem_maps[i]; 935 if (m->len == 0) { 936 map = m; 937 break; 938 } 939 } 940 941 if (map == NULL) 942 return (ENOSPC); 943 944 error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa, 945 len, 0, VMFS_NO_SPACE, prot, prot, 0); 946 if (error != KERN_SUCCESS) 947 return (EFAULT); 948 949 vm_object_reference(seg->object); 950 951 if (flags & VM_MEMMAP_F_WIRED) { 952 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len, 953 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 954 if (error != KERN_SUCCESS) { 955 vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len); 956 return (error == KERN_RESOURCE_SHORTAGE ? ENOMEM : 957 EFAULT); 958 } 959 } 960 961 map->gpa = gpa; 962 map->len = len; 963 map->segoff = first; 964 map->segid = segid; 965 map->prot = prot; 966 map->flags = flags; 967 return (0); 968 } 969 970 int 971 vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len) 972 { 973 struct mem_map *m; 974 int i; 975 976 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 977 m = &vm->mem_maps[i]; 978 if (m->gpa == gpa && m->len == len && 979 (m->flags & VM_MEMMAP_F_IOMMU) == 0) { 980 vm_free_memmap(vm, i); 981 return (0); 982 } 983 } 984 985 return (EINVAL); 986 } 987 988 int 989 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, 990 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 991 { 992 struct mem_map *mm, *mmnext; 993 int i; 994 995 mmnext = NULL; 996 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 997 mm = &vm->mem_maps[i]; 998 if (mm->len == 0 || mm->gpa < *gpa) 999 continue; 1000 if (mmnext == NULL || mm->gpa < mmnext->gpa) 1001 mmnext = mm; 1002 } 1003 1004 if (mmnext != NULL) { 1005 *gpa = mmnext->gpa; 1006 if (segid) 1007 *segid = mmnext->segid; 1008 if (segoff) 1009 *segoff = mmnext->segoff; 1010 if (len) 1011 *len = mmnext->len; 1012 if (prot) 1013 *prot = mmnext->prot; 1014 if (flags) 1015 *flags = mmnext->flags; 1016 return (0); 1017 } else { 1018 return (ENOENT); 1019 } 1020 } 1021 1022 static void 1023 vm_free_memmap(struct vm *vm, int ident) 1024 { 1025 struct mem_map *mm; 1026 int error __diagused; 1027 1028 mm = &vm->mem_maps[ident]; 1029 if (mm->len) { 1030 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa, 1031 mm->gpa + mm->len); 1032 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d", 1033 __func__, error)); 1034 bzero(mm, sizeof(struct mem_map)); 1035 } 1036 } 1037 1038 static __inline bool 1039 sysmem_mapping(struct vm *vm, struct mem_map *mm) 1040 { 1041 1042 if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem) 1043 return (true); 1044 else 1045 return (false); 1046 } 1047 1048 vm_paddr_t 1049 vmm_sysmem_maxaddr(struct vm *vm) 1050 { 1051 struct mem_map *mm; 1052 vm_paddr_t maxaddr; 1053 int i; 1054 1055 maxaddr = 0; 1056 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1057 mm = &vm->mem_maps[i]; 1058 if (sysmem_mapping(vm, mm)) { 1059 if (maxaddr < mm->gpa + mm->len) 1060 maxaddr = mm->gpa + mm->len; 1061 } 1062 } 1063 return (maxaddr); 1064 } 1065 1066 static void 1067 vm_iommu_map(struct vm *vm) 1068 { 1069 vm_paddr_t gpa, hpa; 1070 struct mem_map *mm; 1071 int i; 1072 1073 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 1074 1075 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1076 mm = &vm->mem_maps[i]; 1077 if (!sysmem_mapping(vm, mm)) 1078 continue; 1079 1080 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0, 1081 ("iommu map found invalid memmap %#lx/%#lx/%#x", 1082 mm->gpa, mm->len, mm->flags)); 1083 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0) 1084 continue; 1085 mm->flags |= VM_MEMMAP_F_IOMMU; 1086 1087 for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) { 1088 hpa = pmap_extract(vmspace_pmap(vm->vmspace), gpa); 1089 1090 /* 1091 * All mappings in the vmm vmspace must be 1092 * present since they are managed by vmm in this way. 1093 * Because we are in pass-through mode, the 1094 * mappings must also be wired. This implies 1095 * that all pages must be mapped and wired, 1096 * allowing to use pmap_extract() and avoiding the 1097 * need to use vm_gpa_hold_global(). 1098 * 1099 * This could change if/when we start 1100 * supporting page faults on IOMMU maps. 1101 */ 1102 KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(hpa)), 1103 ("vm_iommu_map: vm %p gpa %jx hpa %jx not wired", 1104 vm, (uintmax_t)gpa, (uintmax_t)hpa)); 1105 1106 iommu_create_mapping(vm->iommu, gpa, hpa, PAGE_SIZE); 1107 } 1108 } 1109 1110 iommu_invalidate_tlb(iommu_host_domain()); 1111 } 1112 1113 static void 1114 vm_iommu_unmap(struct vm *vm) 1115 { 1116 vm_paddr_t gpa; 1117 struct mem_map *mm; 1118 int i; 1119 1120 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 1121 1122 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1123 mm = &vm->mem_maps[i]; 1124 if (!sysmem_mapping(vm, mm)) 1125 continue; 1126 1127 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0) 1128 continue; 1129 mm->flags &= ~VM_MEMMAP_F_IOMMU; 1130 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0, 1131 ("iommu unmap found invalid memmap %#lx/%#lx/%#x", 1132 mm->gpa, mm->len, mm->flags)); 1133 1134 for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) { 1135 KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(pmap_extract( 1136 vmspace_pmap(vm->vmspace), gpa))), 1137 ("vm_iommu_unmap: vm %p gpa %jx not wired", 1138 vm, (uintmax_t)gpa)); 1139 iommu_remove_mapping(vm->iommu, gpa, PAGE_SIZE); 1140 } 1141 } 1142 1143 /* 1144 * Invalidate the cached translations associated with the domain 1145 * from which pages were removed. 1146 */ 1147 iommu_invalidate_tlb(vm->iommu); 1148 } 1149 1150 int 1151 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 1152 { 1153 int error; 1154 1155 error = ppt_unassign_device(vm, bus, slot, func); 1156 if (error) 1157 return (error); 1158 1159 if (ppt_assigned_devices(vm) == 0) 1160 vm_iommu_unmap(vm); 1161 1162 return (0); 1163 } 1164 1165 int 1166 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 1167 { 1168 int error; 1169 vm_paddr_t maxaddr; 1170 1171 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */ 1172 if (ppt_assigned_devices(vm) == 0) { 1173 KASSERT(vm->iommu == NULL, 1174 ("vm_assign_pptdev: iommu must be NULL")); 1175 maxaddr = vmm_sysmem_maxaddr(vm); 1176 vm->iommu = iommu_create_domain(maxaddr); 1177 if (vm->iommu == NULL) 1178 return (ENXIO); 1179 vm_iommu_map(vm); 1180 } 1181 1182 error = ppt_assign_device(vm, bus, slot, func); 1183 return (error); 1184 } 1185 1186 static void * 1187 _vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 1188 void **cookie) 1189 { 1190 int i, count, pageoff; 1191 struct mem_map *mm; 1192 vm_page_t m; 1193 1194 pageoff = gpa & PAGE_MASK; 1195 if (len > PAGE_SIZE - pageoff) 1196 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 1197 1198 count = 0; 1199 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1200 mm = &vm->mem_maps[i]; 1201 if (gpa >= mm->gpa && gpa < mm->gpa + mm->len) { 1202 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 1203 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 1204 break; 1205 } 1206 } 1207 1208 if (count == 1) { 1209 *cookie = m; 1210 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 1211 } else { 1212 *cookie = NULL; 1213 return (NULL); 1214 } 1215 } 1216 1217 void * 1218 vm_gpa_hold(struct vcpu *vcpu, vm_paddr_t gpa, size_t len, int reqprot, 1219 void **cookie) 1220 { 1221 #ifdef INVARIANTS 1222 /* 1223 * The current vcpu should be frozen to ensure 'vm_memmap[]' 1224 * stability. 1225 */ 1226 int state = vcpu_get_state(vcpu, NULL); 1227 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d", 1228 __func__, state)); 1229 #endif 1230 return (_vm_gpa_hold(vcpu->vm, gpa, len, reqprot, cookie)); 1231 } 1232 1233 void * 1234 vm_gpa_hold_global(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 1235 void **cookie) 1236 { 1237 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 1238 return (_vm_gpa_hold(vm, gpa, len, reqprot, cookie)); 1239 } 1240 1241 void 1242 vm_gpa_release(void *cookie) 1243 { 1244 vm_page_t m = cookie; 1245 1246 vm_page_unwire(m, PQ_ACTIVE); 1247 } 1248 1249 int 1250 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval) 1251 { 1252 1253 if (reg >= VM_REG_LAST) 1254 return (EINVAL); 1255 1256 return (vmmops_getreg(vcpu->cookie, reg, retval)); 1257 } 1258 1259 int 1260 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val) 1261 { 1262 int error; 1263 1264 if (reg >= VM_REG_LAST) 1265 return (EINVAL); 1266 1267 error = vmmops_setreg(vcpu->cookie, reg, val); 1268 if (error || reg != VM_REG_GUEST_RIP) 1269 return (error); 1270 1271 /* Set 'nextrip' to match the value of %rip */ 1272 VMM_CTR1(vcpu, "Setting nextrip to %#lx", val); 1273 vcpu->nextrip = val; 1274 return (0); 1275 } 1276 1277 static bool 1278 is_descriptor_table(int reg) 1279 { 1280 1281 switch (reg) { 1282 case VM_REG_GUEST_IDTR: 1283 case VM_REG_GUEST_GDTR: 1284 return (true); 1285 default: 1286 return (false); 1287 } 1288 } 1289 1290 static bool 1291 is_segment_register(int reg) 1292 { 1293 1294 switch (reg) { 1295 case VM_REG_GUEST_ES: 1296 case VM_REG_GUEST_CS: 1297 case VM_REG_GUEST_SS: 1298 case VM_REG_GUEST_DS: 1299 case VM_REG_GUEST_FS: 1300 case VM_REG_GUEST_GS: 1301 case VM_REG_GUEST_TR: 1302 case VM_REG_GUEST_LDTR: 1303 return (true); 1304 default: 1305 return (false); 1306 } 1307 } 1308 1309 int 1310 vm_get_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc) 1311 { 1312 1313 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1314 return (EINVAL); 1315 1316 return (vmmops_getdesc(vcpu->cookie, reg, desc)); 1317 } 1318 1319 int 1320 vm_set_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc) 1321 { 1322 1323 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1324 return (EINVAL); 1325 1326 return (vmmops_setdesc(vcpu->cookie, reg, desc)); 1327 } 1328 1329 static void 1330 restore_guest_fpustate(struct vcpu *vcpu) 1331 { 1332 1333 /* flush host state to the pcb */ 1334 fpuexit(curthread); 1335 1336 /* restore guest FPU state */ 1337 fpu_enable(); 1338 fpurestore(vcpu->guestfpu); 1339 1340 /* restore guest XCR0 if XSAVE is enabled in the host */ 1341 if (rcr4() & CR4_XSAVE) 1342 load_xcr(0, vcpu->guest_xcr0); 1343 1344 /* 1345 * The FPU is now "dirty" with the guest's state so disable 1346 * the FPU to trap any access by the host. 1347 */ 1348 fpu_disable(); 1349 } 1350 1351 static void 1352 save_guest_fpustate(struct vcpu *vcpu) 1353 { 1354 1355 if ((rcr0() & CR0_TS) == 0) 1356 panic("fpu emulation not enabled in host!"); 1357 1358 /* save guest XCR0 and restore host XCR0 */ 1359 if (rcr4() & CR4_XSAVE) { 1360 vcpu->guest_xcr0 = rxcr(0); 1361 load_xcr(0, vmm_get_host_xcr0()); 1362 } 1363 1364 /* save guest FPU state */ 1365 fpu_enable(); 1366 fpusave(vcpu->guestfpu); 1367 fpu_disable(); 1368 } 1369 1370 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 1371 1372 static int 1373 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate, 1374 bool from_idle) 1375 { 1376 int error; 1377 1378 vcpu_assert_locked(vcpu); 1379 1380 /* 1381 * State transitions from the vmmdev_ioctl() must always begin from 1382 * the VCPU_IDLE state. This guarantees that there is only a single 1383 * ioctl() operating on a vcpu at any point. 1384 */ 1385 if (from_idle) { 1386 while (vcpu->state != VCPU_IDLE) { 1387 vcpu->reqidle = 1; 1388 vcpu_notify_event_locked(vcpu, false); 1389 VMM_CTR1(vcpu, "vcpu state change from %s to " 1390 "idle requested", vcpu_state2str(vcpu->state)); 1391 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 1392 } 1393 } else { 1394 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 1395 "vcpu idle state")); 1396 } 1397 1398 if (vcpu->state == VCPU_RUNNING) { 1399 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 1400 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 1401 } else { 1402 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 1403 "vcpu that is not running", vcpu->hostcpu)); 1404 } 1405 1406 /* 1407 * The following state transitions are allowed: 1408 * IDLE -> FROZEN -> IDLE 1409 * FROZEN -> RUNNING -> FROZEN 1410 * FROZEN -> SLEEPING -> FROZEN 1411 */ 1412 switch (vcpu->state) { 1413 case VCPU_IDLE: 1414 case VCPU_RUNNING: 1415 case VCPU_SLEEPING: 1416 error = (newstate != VCPU_FROZEN); 1417 break; 1418 case VCPU_FROZEN: 1419 error = (newstate == VCPU_FROZEN); 1420 break; 1421 default: 1422 error = 1; 1423 break; 1424 } 1425 1426 if (error) 1427 return (EBUSY); 1428 1429 VMM_CTR2(vcpu, "vcpu state changed from %s to %s", 1430 vcpu_state2str(vcpu->state), vcpu_state2str(newstate)); 1431 1432 vcpu->state = newstate; 1433 if (newstate == VCPU_RUNNING) 1434 vcpu->hostcpu = curcpu; 1435 else 1436 vcpu->hostcpu = NOCPU; 1437 1438 if (newstate == VCPU_IDLE) 1439 wakeup(&vcpu->state); 1440 1441 return (0); 1442 } 1443 1444 static void 1445 vcpu_require_state(struct vcpu *vcpu, enum vcpu_state newstate) 1446 { 1447 int error; 1448 1449 if ((error = vcpu_set_state(vcpu, newstate, false)) != 0) 1450 panic("Error %d setting state to %d\n", error, newstate); 1451 } 1452 1453 static void 1454 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate) 1455 { 1456 int error; 1457 1458 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0) 1459 panic("Error %d setting state to %d", error, newstate); 1460 } 1461 1462 static int 1463 vm_handle_rendezvous(struct vcpu *vcpu) 1464 { 1465 struct vm *vm = vcpu->vm; 1466 struct thread *td; 1467 int error, vcpuid; 1468 1469 error = 0; 1470 vcpuid = vcpu->vcpuid; 1471 td = curthread; 1472 mtx_lock(&vm->rendezvous_mtx); 1473 while (vm->rendezvous_func != NULL) { 1474 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1475 CPU_AND(&vm->rendezvous_req_cpus, &vm->rendezvous_req_cpus, &vm->active_cpus); 1476 1477 if (CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1478 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1479 VMM_CTR0(vcpu, "Calling rendezvous func"); 1480 (*vm->rendezvous_func)(vcpu, vm->rendezvous_arg); 1481 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1482 } 1483 if (CPU_CMP(&vm->rendezvous_req_cpus, 1484 &vm->rendezvous_done_cpus) == 0) { 1485 VMM_CTR0(vcpu, "Rendezvous completed"); 1486 CPU_ZERO(&vm->rendezvous_req_cpus); 1487 vm->rendezvous_func = NULL; 1488 wakeup(&vm->rendezvous_func); 1489 break; 1490 } 1491 VMM_CTR0(vcpu, "Wait for rendezvous completion"); 1492 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1493 "vmrndv", hz); 1494 if (td_ast_pending(td, TDA_SUSPEND)) { 1495 mtx_unlock(&vm->rendezvous_mtx); 1496 error = thread_check_susp(td, true); 1497 if (error != 0) 1498 return (error); 1499 mtx_lock(&vm->rendezvous_mtx); 1500 } 1501 } 1502 mtx_unlock(&vm->rendezvous_mtx); 1503 return (0); 1504 } 1505 1506 /* 1507 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1508 */ 1509 static int 1510 vm_handle_hlt(struct vcpu *vcpu, bool intr_disabled, bool *retu) 1511 { 1512 struct vm *vm = vcpu->vm; 1513 const char *wmesg; 1514 struct thread *td; 1515 int error, t, vcpuid, vcpu_halted, vm_halted; 1516 1517 vcpuid = vcpu->vcpuid; 1518 vcpu_halted = 0; 1519 vm_halted = 0; 1520 error = 0; 1521 td = curthread; 1522 1523 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1524 1525 vcpu_lock(vcpu); 1526 while (1) { 1527 /* 1528 * Do a final check for pending NMI or interrupts before 1529 * really putting this thread to sleep. Also check for 1530 * software events that would cause this vcpu to wakeup. 1531 * 1532 * These interrupts/events could have happened after the 1533 * vcpu returned from vmmops_run() and before it acquired the 1534 * vcpu lock above. 1535 */ 1536 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle) 1537 break; 1538 if (vm_nmi_pending(vcpu)) 1539 break; 1540 if (!intr_disabled) { 1541 if (vm_extint_pending(vcpu) || 1542 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1543 break; 1544 } 1545 } 1546 1547 /* Don't go to sleep if the vcpu thread needs to yield */ 1548 if (vcpu_should_yield(vcpu)) 1549 break; 1550 1551 if (vcpu_debugged(vcpu)) 1552 break; 1553 1554 /* 1555 * Some Linux guests implement "halt" by having all vcpus 1556 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1557 * track of the vcpus that have entered this state. When all 1558 * vcpus enter the halted state the virtual machine is halted. 1559 */ 1560 if (intr_disabled) { 1561 wmesg = "vmhalt"; 1562 VMM_CTR0(vcpu, "Halted"); 1563 if (!vcpu_halted && halt_detection_enabled) { 1564 vcpu_halted = 1; 1565 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1566 } 1567 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1568 vm_halted = 1; 1569 break; 1570 } 1571 } else { 1572 wmesg = "vmidle"; 1573 } 1574 1575 t = ticks; 1576 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1577 /* 1578 * XXX msleep_spin() cannot be interrupted by signals so 1579 * wake up periodically to check pending signals. 1580 */ 1581 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1582 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1583 vmm_stat_incr(vcpu, VCPU_IDLE_TICKS, ticks - t); 1584 if (td_ast_pending(td, TDA_SUSPEND)) { 1585 vcpu_unlock(vcpu); 1586 error = thread_check_susp(td, false); 1587 if (error != 0) { 1588 if (vcpu_halted) { 1589 CPU_CLR_ATOMIC(vcpuid, 1590 &vm->halted_cpus); 1591 } 1592 return (error); 1593 } 1594 vcpu_lock(vcpu); 1595 } 1596 } 1597 1598 if (vcpu_halted) 1599 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1600 1601 vcpu_unlock(vcpu); 1602 1603 if (vm_halted) 1604 vm_suspend(vm, VM_SUSPEND_HALT); 1605 1606 return (0); 1607 } 1608 1609 static int 1610 vm_handle_paging(struct vcpu *vcpu, bool *retu) 1611 { 1612 struct vm *vm = vcpu->vm; 1613 int rv, ftype; 1614 struct vm_map *map; 1615 struct vm_exit *vme; 1616 1617 vme = &vcpu->exitinfo; 1618 1619 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1620 __func__, vme->inst_length)); 1621 1622 ftype = vme->u.paging.fault_type; 1623 KASSERT(ftype == VM_PROT_READ || 1624 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1625 ("vm_handle_paging: invalid fault_type %d", ftype)); 1626 1627 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1628 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1629 vme->u.paging.gpa, ftype); 1630 if (rv == 0) { 1631 VMM_CTR2(vcpu, "%s bit emulation for gpa %#lx", 1632 ftype == VM_PROT_READ ? "accessed" : "dirty", 1633 vme->u.paging.gpa); 1634 goto done; 1635 } 1636 } 1637 1638 map = &vm->vmspace->vm_map; 1639 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL); 1640 1641 VMM_CTR3(vcpu, "vm_handle_paging rv = %d, gpa = %#lx, " 1642 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1643 1644 if (rv != KERN_SUCCESS) 1645 return (EFAULT); 1646 done: 1647 return (0); 1648 } 1649 1650 static int 1651 vm_handle_inst_emul(struct vcpu *vcpu, bool *retu) 1652 { 1653 struct vie *vie; 1654 struct vm_exit *vme; 1655 uint64_t gla, gpa, cs_base; 1656 struct vm_guest_paging *paging; 1657 mem_region_read_t mread; 1658 mem_region_write_t mwrite; 1659 enum vm_cpu_mode cpu_mode; 1660 int cs_d, error, fault; 1661 1662 vme = &vcpu->exitinfo; 1663 1664 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1665 __func__, vme->inst_length)); 1666 1667 gla = vme->u.inst_emul.gla; 1668 gpa = vme->u.inst_emul.gpa; 1669 cs_base = vme->u.inst_emul.cs_base; 1670 cs_d = vme->u.inst_emul.cs_d; 1671 vie = &vme->u.inst_emul.vie; 1672 paging = &vme->u.inst_emul.paging; 1673 cpu_mode = paging->cpu_mode; 1674 1675 VMM_CTR1(vcpu, "inst_emul fault accessing gpa %#lx", gpa); 1676 1677 /* Fetch, decode and emulate the faulting instruction */ 1678 if (vie->num_valid == 0) { 1679 error = vmm_fetch_instruction(vcpu, paging, vme->rip + cs_base, 1680 VIE_INST_SIZE, vie, &fault); 1681 } else { 1682 /* 1683 * The instruction bytes have already been copied into 'vie' 1684 */ 1685 error = fault = 0; 1686 } 1687 if (error || fault) 1688 return (error); 1689 1690 if (vmm_decode_instruction(vcpu, gla, cpu_mode, cs_d, vie) != 0) { 1691 VMM_CTR1(vcpu, "Error decoding instruction at %#lx", 1692 vme->rip + cs_base); 1693 *retu = true; /* dump instruction bytes in userspace */ 1694 return (0); 1695 } 1696 1697 /* 1698 * Update 'nextrip' based on the length of the emulated instruction. 1699 */ 1700 vme->inst_length = vie->num_processed; 1701 vcpu->nextrip += vie->num_processed; 1702 VMM_CTR1(vcpu, "nextrip updated to %#lx after instruction decoding", 1703 vcpu->nextrip); 1704 1705 /* return to userland unless this is an in-kernel emulated device */ 1706 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1707 mread = lapic_mmio_read; 1708 mwrite = lapic_mmio_write; 1709 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1710 mread = vioapic_mmio_read; 1711 mwrite = vioapic_mmio_write; 1712 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1713 mread = vhpet_mmio_read; 1714 mwrite = vhpet_mmio_write; 1715 } else { 1716 *retu = true; 1717 return (0); 1718 } 1719 1720 error = vmm_emulate_instruction(vcpu, gpa, vie, paging, mread, mwrite, 1721 retu); 1722 1723 return (error); 1724 } 1725 1726 static int 1727 vm_handle_suspend(struct vcpu *vcpu, bool *retu) 1728 { 1729 struct vm *vm = vcpu->vm; 1730 int error, i; 1731 struct thread *td; 1732 1733 error = 0; 1734 td = curthread; 1735 1736 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->suspended_cpus); 1737 1738 /* 1739 * Wait until all 'active_cpus' have suspended themselves. 1740 * 1741 * Since a VM may be suspended at any time including when one or 1742 * more vcpus are doing a rendezvous we need to call the rendezvous 1743 * handler while we are waiting to prevent a deadlock. 1744 */ 1745 vcpu_lock(vcpu); 1746 while (error == 0) { 1747 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1748 VMM_CTR0(vcpu, "All vcpus suspended"); 1749 break; 1750 } 1751 1752 if (vm->rendezvous_func == NULL) { 1753 VMM_CTR0(vcpu, "Sleeping during suspend"); 1754 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1755 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1756 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1757 if (td_ast_pending(td, TDA_SUSPEND)) { 1758 vcpu_unlock(vcpu); 1759 error = thread_check_susp(td, false); 1760 vcpu_lock(vcpu); 1761 } 1762 } else { 1763 VMM_CTR0(vcpu, "Rendezvous during suspend"); 1764 vcpu_unlock(vcpu); 1765 error = vm_handle_rendezvous(vcpu); 1766 vcpu_lock(vcpu); 1767 } 1768 } 1769 vcpu_unlock(vcpu); 1770 1771 /* 1772 * Wakeup the other sleeping vcpus and return to userspace. 1773 */ 1774 for (i = 0; i < vm->maxcpus; i++) { 1775 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1776 vcpu_notify_event(vm_vcpu(vm, i), false); 1777 } 1778 } 1779 1780 *retu = true; 1781 return (error); 1782 } 1783 1784 static int 1785 vm_handle_reqidle(struct vcpu *vcpu, bool *retu) 1786 { 1787 vcpu_lock(vcpu); 1788 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle)); 1789 vcpu->reqidle = 0; 1790 vcpu_unlock(vcpu); 1791 *retu = true; 1792 return (0); 1793 } 1794 1795 static int 1796 vm_handle_db(struct vcpu *vcpu, struct vm_exit *vme, bool *retu) 1797 { 1798 int error, fault; 1799 uint64_t rsp; 1800 uint64_t rflags; 1801 struct vm_copyinfo copyinfo[2]; 1802 1803 *retu = true; 1804 if (!vme->u.dbg.pushf_intercept || vme->u.dbg.tf_shadow_val != 0) { 1805 return (0); 1806 } 1807 1808 vm_get_register(vcpu, VM_REG_GUEST_RSP, &rsp); 1809 error = vm_copy_setup(vcpu, &vme->u.dbg.paging, rsp, sizeof(uint64_t), 1810 VM_PROT_RW, copyinfo, nitems(copyinfo), &fault); 1811 if (error != 0 || fault != 0) { 1812 *retu = false; 1813 return (EINVAL); 1814 } 1815 1816 /* Read pushed rflags value from top of stack. */ 1817 vm_copyin(copyinfo, &rflags, sizeof(uint64_t)); 1818 1819 /* Clear TF bit. */ 1820 rflags &= ~(PSL_T); 1821 1822 /* Write updated value back to memory. */ 1823 vm_copyout(&rflags, copyinfo, sizeof(uint64_t)); 1824 vm_copy_teardown(copyinfo, nitems(copyinfo)); 1825 1826 return (0); 1827 } 1828 1829 int 1830 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1831 { 1832 int i; 1833 1834 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1835 return (EINVAL); 1836 1837 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1838 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1839 vm->suspend, how); 1840 return (EALREADY); 1841 } 1842 1843 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1844 1845 /* 1846 * Notify all active vcpus that they are now suspended. 1847 */ 1848 for (i = 0; i < vm->maxcpus; i++) { 1849 if (CPU_ISSET(i, &vm->active_cpus)) 1850 vcpu_notify_event(vm_vcpu(vm, i), false); 1851 } 1852 1853 return (0); 1854 } 1855 1856 void 1857 vm_exit_suspended(struct vcpu *vcpu, uint64_t rip) 1858 { 1859 struct vm *vm = vcpu->vm; 1860 struct vm_exit *vmexit; 1861 1862 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1863 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1864 1865 vmexit = vm_exitinfo(vcpu); 1866 vmexit->rip = rip; 1867 vmexit->inst_length = 0; 1868 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1869 vmexit->u.suspended.how = vm->suspend; 1870 } 1871 1872 void 1873 vm_exit_debug(struct vcpu *vcpu, uint64_t rip) 1874 { 1875 struct vm_exit *vmexit; 1876 1877 vmexit = vm_exitinfo(vcpu); 1878 vmexit->rip = rip; 1879 vmexit->inst_length = 0; 1880 vmexit->exitcode = VM_EXITCODE_DEBUG; 1881 } 1882 1883 void 1884 vm_exit_rendezvous(struct vcpu *vcpu, uint64_t rip) 1885 { 1886 struct vm_exit *vmexit; 1887 1888 vmexit = vm_exitinfo(vcpu); 1889 vmexit->rip = rip; 1890 vmexit->inst_length = 0; 1891 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1892 vmm_stat_incr(vcpu, VMEXIT_RENDEZVOUS, 1); 1893 } 1894 1895 void 1896 vm_exit_reqidle(struct vcpu *vcpu, uint64_t rip) 1897 { 1898 struct vm_exit *vmexit; 1899 1900 vmexit = vm_exitinfo(vcpu); 1901 vmexit->rip = rip; 1902 vmexit->inst_length = 0; 1903 vmexit->exitcode = VM_EXITCODE_REQIDLE; 1904 vmm_stat_incr(vcpu, VMEXIT_REQIDLE, 1); 1905 } 1906 1907 void 1908 vm_exit_astpending(struct vcpu *vcpu, uint64_t rip) 1909 { 1910 struct vm_exit *vmexit; 1911 1912 vmexit = vm_exitinfo(vcpu); 1913 vmexit->rip = rip; 1914 vmexit->inst_length = 0; 1915 vmexit->exitcode = VM_EXITCODE_BOGUS; 1916 vmm_stat_incr(vcpu, VMEXIT_ASTPENDING, 1); 1917 } 1918 1919 int 1920 vm_run(struct vcpu *vcpu) 1921 { 1922 struct vm *vm = vcpu->vm; 1923 struct vm_eventinfo evinfo; 1924 int error, vcpuid; 1925 struct pcb *pcb; 1926 uint64_t tscval; 1927 struct vm_exit *vme; 1928 bool retu, intr_disabled; 1929 pmap_t pmap; 1930 1931 vcpuid = vcpu->vcpuid; 1932 1933 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1934 return (EINVAL); 1935 1936 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1937 return (EINVAL); 1938 1939 pmap = vmspace_pmap(vm->vmspace); 1940 vme = &vcpu->exitinfo; 1941 evinfo.rptr = &vm->rendezvous_req_cpus; 1942 evinfo.sptr = &vm->suspend; 1943 evinfo.iptr = &vcpu->reqidle; 1944 restart: 1945 critical_enter(); 1946 1947 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1948 ("vm_run: absurd pm_active")); 1949 1950 tscval = rdtsc(); 1951 1952 pcb = PCPU_GET(curpcb); 1953 set_pcb_flags(pcb, PCB_FULL_IRET); 1954 1955 restore_guest_fpustate(vcpu); 1956 1957 vcpu_require_state(vcpu, VCPU_RUNNING); 1958 error = vmmops_run(vcpu->cookie, vcpu->nextrip, pmap, &evinfo); 1959 vcpu_require_state(vcpu, VCPU_FROZEN); 1960 1961 save_guest_fpustate(vcpu); 1962 1963 vmm_stat_incr(vcpu, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1964 1965 critical_exit(); 1966 1967 if (error == 0) { 1968 retu = false; 1969 vcpu->nextrip = vme->rip + vme->inst_length; 1970 switch (vme->exitcode) { 1971 case VM_EXITCODE_REQIDLE: 1972 error = vm_handle_reqidle(vcpu, &retu); 1973 break; 1974 case VM_EXITCODE_SUSPENDED: 1975 error = vm_handle_suspend(vcpu, &retu); 1976 break; 1977 case VM_EXITCODE_IOAPIC_EOI: 1978 vioapic_process_eoi(vm, vme->u.ioapic_eoi.vector); 1979 break; 1980 case VM_EXITCODE_RENDEZVOUS: 1981 error = vm_handle_rendezvous(vcpu); 1982 break; 1983 case VM_EXITCODE_HLT: 1984 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1985 error = vm_handle_hlt(vcpu, intr_disabled, &retu); 1986 break; 1987 case VM_EXITCODE_PAGING: 1988 error = vm_handle_paging(vcpu, &retu); 1989 break; 1990 case VM_EXITCODE_INST_EMUL: 1991 error = vm_handle_inst_emul(vcpu, &retu); 1992 break; 1993 case VM_EXITCODE_INOUT: 1994 case VM_EXITCODE_INOUT_STR: 1995 error = vm_handle_inout(vcpu, vme, &retu); 1996 break; 1997 case VM_EXITCODE_DB: 1998 error = vm_handle_db(vcpu, vme, &retu); 1999 break; 2000 case VM_EXITCODE_MONITOR: 2001 case VM_EXITCODE_MWAIT: 2002 case VM_EXITCODE_VMINSN: 2003 vm_inject_ud(vcpu); 2004 break; 2005 default: 2006 retu = true; /* handled in userland */ 2007 break; 2008 } 2009 } 2010 2011 /* 2012 * VM_EXITCODE_INST_EMUL could access the apic which could transform the 2013 * exit code into VM_EXITCODE_IPI. 2014 */ 2015 if (error == 0 && vme->exitcode == VM_EXITCODE_IPI) 2016 error = vm_handle_ipi(vcpu, vme, &retu); 2017 2018 if (error == 0 && retu == false) 2019 goto restart; 2020 2021 vmm_stat_incr(vcpu, VMEXIT_USERSPACE, 1); 2022 VMM_CTR2(vcpu, "retu %d/%d", error, vme->exitcode); 2023 2024 return (error); 2025 } 2026 2027 int 2028 vm_restart_instruction(struct vcpu *vcpu) 2029 { 2030 enum vcpu_state state; 2031 uint64_t rip; 2032 int error __diagused; 2033 2034 state = vcpu_get_state(vcpu, NULL); 2035 if (state == VCPU_RUNNING) { 2036 /* 2037 * When a vcpu is "running" the next instruction is determined 2038 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'. 2039 * Thus setting 'inst_length' to zero will cause the current 2040 * instruction to be restarted. 2041 */ 2042 vcpu->exitinfo.inst_length = 0; 2043 VMM_CTR1(vcpu, "restarting instruction at %#lx by " 2044 "setting inst_length to zero", vcpu->exitinfo.rip); 2045 } else if (state == VCPU_FROZEN) { 2046 /* 2047 * When a vcpu is "frozen" it is outside the critical section 2048 * around vmmops_run() and 'nextrip' points to the next 2049 * instruction. Thus instruction restart is achieved by setting 2050 * 'nextrip' to the vcpu's %rip. 2051 */ 2052 error = vm_get_register(vcpu, VM_REG_GUEST_RIP, &rip); 2053 KASSERT(!error, ("%s: error %d getting rip", __func__, error)); 2054 VMM_CTR2(vcpu, "restarting instruction by updating " 2055 "nextrip from %#lx to %#lx", vcpu->nextrip, rip); 2056 vcpu->nextrip = rip; 2057 } else { 2058 panic("%s: invalid state %d", __func__, state); 2059 } 2060 return (0); 2061 } 2062 2063 int 2064 vm_exit_intinfo(struct vcpu *vcpu, uint64_t info) 2065 { 2066 int type, vector; 2067 2068 if (info & VM_INTINFO_VALID) { 2069 type = info & VM_INTINFO_TYPE; 2070 vector = info & 0xff; 2071 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 2072 return (EINVAL); 2073 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 2074 return (EINVAL); 2075 if (info & VM_INTINFO_RSVD) 2076 return (EINVAL); 2077 } else { 2078 info = 0; 2079 } 2080 VMM_CTR2(vcpu, "%s: info1(%#lx)", __func__, info); 2081 vcpu->exitintinfo = info; 2082 return (0); 2083 } 2084 2085 enum exc_class { 2086 EXC_BENIGN, 2087 EXC_CONTRIBUTORY, 2088 EXC_PAGEFAULT 2089 }; 2090 2091 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 2092 2093 static enum exc_class 2094 exception_class(uint64_t info) 2095 { 2096 int type, vector; 2097 2098 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 2099 type = info & VM_INTINFO_TYPE; 2100 vector = info & 0xff; 2101 2102 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 2103 switch (type) { 2104 case VM_INTINFO_HWINTR: 2105 case VM_INTINFO_SWINTR: 2106 case VM_INTINFO_NMI: 2107 return (EXC_BENIGN); 2108 default: 2109 /* 2110 * Hardware exception. 2111 * 2112 * SVM and VT-x use identical type values to represent NMI, 2113 * hardware interrupt and software interrupt. 2114 * 2115 * SVM uses type '3' for all exceptions. VT-x uses type '3' 2116 * for exceptions except #BP and #OF. #BP and #OF use a type 2117 * value of '5' or '6'. Therefore we don't check for explicit 2118 * values of 'type' to classify 'intinfo' into a hardware 2119 * exception. 2120 */ 2121 break; 2122 } 2123 2124 switch (vector) { 2125 case IDT_PF: 2126 case IDT_VE: 2127 return (EXC_PAGEFAULT); 2128 case IDT_DE: 2129 case IDT_TS: 2130 case IDT_NP: 2131 case IDT_SS: 2132 case IDT_GP: 2133 return (EXC_CONTRIBUTORY); 2134 default: 2135 return (EXC_BENIGN); 2136 } 2137 } 2138 2139 static int 2140 nested_fault(struct vcpu *vcpu, uint64_t info1, uint64_t info2, 2141 uint64_t *retinfo) 2142 { 2143 enum exc_class exc1, exc2; 2144 int type1, vector1; 2145 2146 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 2147 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 2148 2149 /* 2150 * If an exception occurs while attempting to call the double-fault 2151 * handler the processor enters shutdown mode (aka triple fault). 2152 */ 2153 type1 = info1 & VM_INTINFO_TYPE; 2154 vector1 = info1 & 0xff; 2155 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 2156 VMM_CTR2(vcpu, "triple fault: info1(%#lx), info2(%#lx)", 2157 info1, info2); 2158 vm_suspend(vcpu->vm, VM_SUSPEND_TRIPLEFAULT); 2159 *retinfo = 0; 2160 return (0); 2161 } 2162 2163 /* 2164 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 2165 */ 2166 exc1 = exception_class(info1); 2167 exc2 = exception_class(info2); 2168 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 2169 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 2170 /* Convert nested fault into a double fault. */ 2171 *retinfo = IDT_DF; 2172 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 2173 *retinfo |= VM_INTINFO_DEL_ERRCODE; 2174 } else { 2175 /* Handle exceptions serially */ 2176 *retinfo = info2; 2177 } 2178 return (1); 2179 } 2180 2181 static uint64_t 2182 vcpu_exception_intinfo(struct vcpu *vcpu) 2183 { 2184 uint64_t info = 0; 2185 2186 if (vcpu->exception_pending) { 2187 info = vcpu->exc_vector & 0xff; 2188 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 2189 if (vcpu->exc_errcode_valid) { 2190 info |= VM_INTINFO_DEL_ERRCODE; 2191 info |= (uint64_t)vcpu->exc_errcode << 32; 2192 } 2193 } 2194 return (info); 2195 } 2196 2197 int 2198 vm_entry_intinfo(struct vcpu *vcpu, uint64_t *retinfo) 2199 { 2200 uint64_t info1, info2; 2201 int valid; 2202 2203 info1 = vcpu->exitintinfo; 2204 vcpu->exitintinfo = 0; 2205 2206 info2 = 0; 2207 if (vcpu->exception_pending) { 2208 info2 = vcpu_exception_intinfo(vcpu); 2209 vcpu->exception_pending = 0; 2210 VMM_CTR2(vcpu, "Exception %d delivered: %#lx", 2211 vcpu->exc_vector, info2); 2212 } 2213 2214 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 2215 valid = nested_fault(vcpu, info1, info2, retinfo); 2216 } else if (info1 & VM_INTINFO_VALID) { 2217 *retinfo = info1; 2218 valid = 1; 2219 } else if (info2 & VM_INTINFO_VALID) { 2220 *retinfo = info2; 2221 valid = 1; 2222 } else { 2223 valid = 0; 2224 } 2225 2226 if (valid) { 2227 VMM_CTR4(vcpu, "%s: info1(%#lx), info2(%#lx), " 2228 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 2229 } 2230 2231 return (valid); 2232 } 2233 2234 int 2235 vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2) 2236 { 2237 *info1 = vcpu->exitintinfo; 2238 *info2 = vcpu_exception_intinfo(vcpu); 2239 return (0); 2240 } 2241 2242 int 2243 vm_inject_exception(struct vcpu *vcpu, int vector, int errcode_valid, 2244 uint32_t errcode, int restart_instruction) 2245 { 2246 uint64_t regval; 2247 int error __diagused; 2248 2249 if (vector < 0 || vector >= 32) 2250 return (EINVAL); 2251 2252 /* 2253 * A double fault exception should never be injected directly into 2254 * the guest. It is a derived exception that results from specific 2255 * combinations of nested faults. 2256 */ 2257 if (vector == IDT_DF) 2258 return (EINVAL); 2259 2260 if (vcpu->exception_pending) { 2261 VMM_CTR2(vcpu, "Unable to inject exception %d due to " 2262 "pending exception %d", vector, vcpu->exc_vector); 2263 return (EBUSY); 2264 } 2265 2266 if (errcode_valid) { 2267 /* 2268 * Exceptions don't deliver an error code in real mode. 2269 */ 2270 error = vm_get_register(vcpu, VM_REG_GUEST_CR0, ®val); 2271 KASSERT(!error, ("%s: error %d getting CR0", __func__, error)); 2272 if (!(regval & CR0_PE)) 2273 errcode_valid = 0; 2274 } 2275 2276 /* 2277 * From section 26.6.1 "Interruptibility State" in Intel SDM: 2278 * 2279 * Event blocking by "STI" or "MOV SS" is cleared after guest executes 2280 * one instruction or incurs an exception. 2281 */ 2282 error = vm_set_register(vcpu, VM_REG_GUEST_INTR_SHADOW, 0); 2283 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", 2284 __func__, error)); 2285 2286 if (restart_instruction) 2287 vm_restart_instruction(vcpu); 2288 2289 vcpu->exception_pending = 1; 2290 vcpu->exc_vector = vector; 2291 vcpu->exc_errcode = errcode; 2292 vcpu->exc_errcode_valid = errcode_valid; 2293 VMM_CTR1(vcpu, "Exception %d pending", vector); 2294 return (0); 2295 } 2296 2297 void 2298 vm_inject_fault(struct vcpu *vcpu, int vector, int errcode_valid, int errcode) 2299 { 2300 int error __diagused, restart_instruction; 2301 2302 restart_instruction = 1; 2303 2304 error = vm_inject_exception(vcpu, vector, errcode_valid, 2305 errcode, restart_instruction); 2306 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 2307 } 2308 2309 void 2310 vm_inject_pf(struct vcpu *vcpu, int error_code, uint64_t cr2) 2311 { 2312 int error __diagused; 2313 2314 VMM_CTR2(vcpu, "Injecting page fault: error_code %#x, cr2 %#lx", 2315 error_code, cr2); 2316 2317 error = vm_set_register(vcpu, VM_REG_GUEST_CR2, cr2); 2318 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 2319 2320 vm_inject_fault(vcpu, IDT_PF, 1, error_code); 2321 } 2322 2323 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 2324 2325 int 2326 vm_inject_nmi(struct vcpu *vcpu) 2327 { 2328 2329 vcpu->nmi_pending = 1; 2330 vcpu_notify_event(vcpu, false); 2331 return (0); 2332 } 2333 2334 int 2335 vm_nmi_pending(struct vcpu *vcpu) 2336 { 2337 return (vcpu->nmi_pending); 2338 } 2339 2340 void 2341 vm_nmi_clear(struct vcpu *vcpu) 2342 { 2343 if (vcpu->nmi_pending == 0) 2344 panic("vm_nmi_clear: inconsistent nmi_pending state"); 2345 2346 vcpu->nmi_pending = 0; 2347 vmm_stat_incr(vcpu, VCPU_NMI_COUNT, 1); 2348 } 2349 2350 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 2351 2352 int 2353 vm_inject_extint(struct vcpu *vcpu) 2354 { 2355 2356 vcpu->extint_pending = 1; 2357 vcpu_notify_event(vcpu, false); 2358 return (0); 2359 } 2360 2361 int 2362 vm_extint_pending(struct vcpu *vcpu) 2363 { 2364 return (vcpu->extint_pending); 2365 } 2366 2367 void 2368 vm_extint_clear(struct vcpu *vcpu) 2369 { 2370 if (vcpu->extint_pending == 0) 2371 panic("vm_extint_clear: inconsistent extint_pending state"); 2372 2373 vcpu->extint_pending = 0; 2374 vmm_stat_incr(vcpu, VCPU_EXTINT_COUNT, 1); 2375 } 2376 2377 int 2378 vm_get_capability(struct vcpu *vcpu, int type, int *retval) 2379 { 2380 if (type < 0 || type >= VM_CAP_MAX) 2381 return (EINVAL); 2382 2383 return (vmmops_getcap(vcpu->cookie, type, retval)); 2384 } 2385 2386 int 2387 vm_set_capability(struct vcpu *vcpu, int type, int val) 2388 { 2389 if (type < 0 || type >= VM_CAP_MAX) 2390 return (EINVAL); 2391 2392 return (vmmops_setcap(vcpu->cookie, type, val)); 2393 } 2394 2395 struct vm * 2396 vcpu_vm(struct vcpu *vcpu) 2397 { 2398 return (vcpu->vm); 2399 } 2400 2401 int 2402 vcpu_vcpuid(struct vcpu *vcpu) 2403 { 2404 return (vcpu->vcpuid); 2405 } 2406 2407 struct vcpu * 2408 vm_vcpu(struct vm *vm, int vcpuid) 2409 { 2410 return (vm->vcpu[vcpuid]); 2411 } 2412 2413 struct vlapic * 2414 vm_lapic(struct vcpu *vcpu) 2415 { 2416 return (vcpu->vlapic); 2417 } 2418 2419 struct vioapic * 2420 vm_ioapic(struct vm *vm) 2421 { 2422 2423 return (vm->vioapic); 2424 } 2425 2426 struct vhpet * 2427 vm_hpet(struct vm *vm) 2428 { 2429 2430 return (vm->vhpet); 2431 } 2432 2433 bool 2434 vmm_is_pptdev(int bus, int slot, int func) 2435 { 2436 int b, f, i, n, s; 2437 char *val, *cp, *cp2; 2438 bool found; 2439 2440 /* 2441 * XXX 2442 * The length of an environment variable is limited to 128 bytes which 2443 * puts an upper limit on the number of passthru devices that may be 2444 * specified using a single environment variable. 2445 * 2446 * Work around this by scanning multiple environment variable 2447 * names instead of a single one - yuck! 2448 */ 2449 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 2450 2451 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 2452 found = false; 2453 for (i = 0; names[i] != NULL && !found; i++) { 2454 cp = val = kern_getenv(names[i]); 2455 while (cp != NULL && *cp != '\0') { 2456 if ((cp2 = strchr(cp, ' ')) != NULL) 2457 *cp2 = '\0'; 2458 2459 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 2460 if (n == 3 && bus == b && slot == s && func == f) { 2461 found = true; 2462 break; 2463 } 2464 2465 if (cp2 != NULL) 2466 *cp2++ = ' '; 2467 2468 cp = cp2; 2469 } 2470 freeenv(val); 2471 } 2472 return (found); 2473 } 2474 2475 void * 2476 vm_iommu_domain(struct vm *vm) 2477 { 2478 2479 return (vm->iommu); 2480 } 2481 2482 int 2483 vcpu_set_state(struct vcpu *vcpu, enum vcpu_state newstate, bool from_idle) 2484 { 2485 int error; 2486 2487 vcpu_lock(vcpu); 2488 error = vcpu_set_state_locked(vcpu, newstate, from_idle); 2489 vcpu_unlock(vcpu); 2490 2491 return (error); 2492 } 2493 2494 enum vcpu_state 2495 vcpu_get_state(struct vcpu *vcpu, int *hostcpu) 2496 { 2497 enum vcpu_state state; 2498 2499 vcpu_lock(vcpu); 2500 state = vcpu->state; 2501 if (hostcpu != NULL) 2502 *hostcpu = vcpu->hostcpu; 2503 vcpu_unlock(vcpu); 2504 2505 return (state); 2506 } 2507 2508 int 2509 vm_activate_cpu(struct vcpu *vcpu) 2510 { 2511 struct vm *vm = vcpu->vm; 2512 2513 if (CPU_ISSET(vcpu->vcpuid, &vm->active_cpus)) 2514 return (EBUSY); 2515 2516 VMM_CTR0(vcpu, "activated"); 2517 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->active_cpus); 2518 return (0); 2519 } 2520 2521 int 2522 vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu) 2523 { 2524 if (vcpu == NULL) { 2525 vm->debug_cpus = vm->active_cpus; 2526 for (int i = 0; i < vm->maxcpus; i++) { 2527 if (CPU_ISSET(i, &vm->active_cpus)) 2528 vcpu_notify_event(vm_vcpu(vm, i), false); 2529 } 2530 } else { 2531 if (!CPU_ISSET(vcpu->vcpuid, &vm->active_cpus)) 2532 return (EINVAL); 2533 2534 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->debug_cpus); 2535 vcpu_notify_event(vcpu, false); 2536 } 2537 return (0); 2538 } 2539 2540 int 2541 vm_resume_cpu(struct vm *vm, struct vcpu *vcpu) 2542 { 2543 2544 if (vcpu == NULL) { 2545 CPU_ZERO(&vm->debug_cpus); 2546 } else { 2547 if (!CPU_ISSET(vcpu->vcpuid, &vm->debug_cpus)) 2548 return (EINVAL); 2549 2550 CPU_CLR_ATOMIC(vcpu->vcpuid, &vm->debug_cpus); 2551 } 2552 return (0); 2553 } 2554 2555 int 2556 vcpu_debugged(struct vcpu *vcpu) 2557 { 2558 2559 return (CPU_ISSET(vcpu->vcpuid, &vcpu->vm->debug_cpus)); 2560 } 2561 2562 cpuset_t 2563 vm_active_cpus(struct vm *vm) 2564 { 2565 2566 return (vm->active_cpus); 2567 } 2568 2569 cpuset_t 2570 vm_debug_cpus(struct vm *vm) 2571 { 2572 2573 return (vm->debug_cpus); 2574 } 2575 2576 cpuset_t 2577 vm_suspended_cpus(struct vm *vm) 2578 { 2579 2580 return (vm->suspended_cpus); 2581 } 2582 2583 /* 2584 * Returns the subset of vCPUs in tostart that are awaiting startup. 2585 * These vCPUs are also marked as no longer awaiting startup. 2586 */ 2587 cpuset_t 2588 vm_start_cpus(struct vm *vm, const cpuset_t *tostart) 2589 { 2590 cpuset_t set; 2591 2592 mtx_lock(&vm->rendezvous_mtx); 2593 CPU_AND(&set, &vm->startup_cpus, tostart); 2594 CPU_ANDNOT(&vm->startup_cpus, &vm->startup_cpus, &set); 2595 mtx_unlock(&vm->rendezvous_mtx); 2596 return (set); 2597 } 2598 2599 void 2600 vm_await_start(struct vm *vm, const cpuset_t *waiting) 2601 { 2602 mtx_lock(&vm->rendezvous_mtx); 2603 CPU_OR(&vm->startup_cpus, &vm->startup_cpus, waiting); 2604 mtx_unlock(&vm->rendezvous_mtx); 2605 } 2606 2607 void * 2608 vcpu_stats(struct vcpu *vcpu) 2609 { 2610 2611 return (vcpu->stats); 2612 } 2613 2614 int 2615 vm_get_x2apic_state(struct vcpu *vcpu, enum x2apic_state *state) 2616 { 2617 *state = vcpu->x2apic_state; 2618 2619 return (0); 2620 } 2621 2622 int 2623 vm_set_x2apic_state(struct vcpu *vcpu, enum x2apic_state state) 2624 { 2625 if (state >= X2APIC_STATE_LAST) 2626 return (EINVAL); 2627 2628 vcpu->x2apic_state = state; 2629 2630 vlapic_set_x2apic_state(vcpu, state); 2631 2632 return (0); 2633 } 2634 2635 /* 2636 * This function is called to ensure that a vcpu "sees" a pending event 2637 * as soon as possible: 2638 * - If the vcpu thread is sleeping then it is woken up. 2639 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2640 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2641 */ 2642 static void 2643 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr) 2644 { 2645 int hostcpu; 2646 2647 hostcpu = vcpu->hostcpu; 2648 if (vcpu->state == VCPU_RUNNING) { 2649 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2650 if (hostcpu != curcpu) { 2651 if (lapic_intr) { 2652 vlapic_post_intr(vcpu->vlapic, hostcpu, 2653 vmm_ipinum); 2654 } else { 2655 ipi_cpu(hostcpu, vmm_ipinum); 2656 } 2657 } else { 2658 /* 2659 * If the 'vcpu' is running on 'curcpu' then it must 2660 * be sending a notification to itself (e.g. SELF_IPI). 2661 * The pending event will be picked up when the vcpu 2662 * transitions back to guest context. 2663 */ 2664 } 2665 } else { 2666 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2667 "with hostcpu %d", vcpu->state, hostcpu)); 2668 if (vcpu->state == VCPU_SLEEPING) 2669 wakeup_one(vcpu); 2670 } 2671 } 2672 2673 void 2674 vcpu_notify_event(struct vcpu *vcpu, bool lapic_intr) 2675 { 2676 vcpu_lock(vcpu); 2677 vcpu_notify_event_locked(vcpu, lapic_intr); 2678 vcpu_unlock(vcpu); 2679 } 2680 2681 struct vmspace * 2682 vm_get_vmspace(struct vm *vm) 2683 { 2684 2685 return (vm->vmspace); 2686 } 2687 2688 int 2689 vm_apicid2vcpuid(struct vm *vm, int apicid) 2690 { 2691 /* 2692 * XXX apic id is assumed to be numerically identical to vcpu id 2693 */ 2694 return (apicid); 2695 } 2696 2697 int 2698 vm_smp_rendezvous(struct vcpu *vcpu, cpuset_t dest, 2699 vm_rendezvous_func_t func, void *arg) 2700 { 2701 struct vm *vm = vcpu->vm; 2702 int error, i; 2703 2704 /* 2705 * Enforce that this function is called without any locks 2706 */ 2707 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2708 2709 restart: 2710 mtx_lock(&vm->rendezvous_mtx); 2711 if (vm->rendezvous_func != NULL) { 2712 /* 2713 * If a rendezvous is already in progress then we need to 2714 * call the rendezvous handler in case this 'vcpu' is one 2715 * of the targets of the rendezvous. 2716 */ 2717 VMM_CTR0(vcpu, "Rendezvous already in progress"); 2718 mtx_unlock(&vm->rendezvous_mtx); 2719 error = vm_handle_rendezvous(vcpu); 2720 if (error != 0) 2721 return (error); 2722 goto restart; 2723 } 2724 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2725 "rendezvous is still in progress")); 2726 2727 VMM_CTR0(vcpu, "Initiating rendezvous"); 2728 vm->rendezvous_req_cpus = dest; 2729 CPU_ZERO(&vm->rendezvous_done_cpus); 2730 vm->rendezvous_arg = arg; 2731 vm->rendezvous_func = func; 2732 mtx_unlock(&vm->rendezvous_mtx); 2733 2734 /* 2735 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2736 * vcpus so they handle the rendezvous as soon as possible. 2737 */ 2738 for (i = 0; i < vm->maxcpus; i++) { 2739 if (CPU_ISSET(i, &dest)) 2740 vcpu_notify_event(vm_vcpu(vm, i), false); 2741 } 2742 2743 return (vm_handle_rendezvous(vcpu)); 2744 } 2745 2746 struct vatpic * 2747 vm_atpic(struct vm *vm) 2748 { 2749 return (vm->vatpic); 2750 } 2751 2752 struct vatpit * 2753 vm_atpit(struct vm *vm) 2754 { 2755 return (vm->vatpit); 2756 } 2757 2758 struct vpmtmr * 2759 vm_pmtmr(struct vm *vm) 2760 { 2761 2762 return (vm->vpmtmr); 2763 } 2764 2765 struct vrtc * 2766 vm_rtc(struct vm *vm) 2767 { 2768 2769 return (vm->vrtc); 2770 } 2771 2772 enum vm_reg_name 2773 vm_segment_name(int seg) 2774 { 2775 static enum vm_reg_name seg_names[] = { 2776 VM_REG_GUEST_ES, 2777 VM_REG_GUEST_CS, 2778 VM_REG_GUEST_SS, 2779 VM_REG_GUEST_DS, 2780 VM_REG_GUEST_FS, 2781 VM_REG_GUEST_GS 2782 }; 2783 2784 KASSERT(seg >= 0 && seg < nitems(seg_names), 2785 ("%s: invalid segment encoding %d", __func__, seg)); 2786 return (seg_names[seg]); 2787 } 2788 2789 void 2790 vm_copy_teardown(struct vm_copyinfo *copyinfo, int num_copyinfo) 2791 { 2792 int idx; 2793 2794 for (idx = 0; idx < num_copyinfo; idx++) { 2795 if (copyinfo[idx].cookie != NULL) 2796 vm_gpa_release(copyinfo[idx].cookie); 2797 } 2798 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2799 } 2800 2801 int 2802 vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging, 2803 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2804 int num_copyinfo, int *fault) 2805 { 2806 int error, idx, nused; 2807 size_t n, off, remaining; 2808 void *hva, *cookie; 2809 uint64_t gpa; 2810 2811 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2812 2813 nused = 0; 2814 remaining = len; 2815 while (remaining > 0) { 2816 if (nused >= num_copyinfo) 2817 return (EFAULT); 2818 error = vm_gla2gpa(vcpu, paging, gla, prot, &gpa, fault); 2819 if (error || *fault) 2820 return (error); 2821 off = gpa & PAGE_MASK; 2822 n = min(remaining, PAGE_SIZE - off); 2823 copyinfo[nused].gpa = gpa; 2824 copyinfo[nused].len = n; 2825 remaining -= n; 2826 gla += n; 2827 nused++; 2828 } 2829 2830 for (idx = 0; idx < nused; idx++) { 2831 hva = vm_gpa_hold(vcpu, copyinfo[idx].gpa, 2832 copyinfo[idx].len, prot, &cookie); 2833 if (hva == NULL) 2834 break; 2835 copyinfo[idx].hva = hva; 2836 copyinfo[idx].cookie = cookie; 2837 } 2838 2839 if (idx != nused) { 2840 vm_copy_teardown(copyinfo, num_copyinfo); 2841 return (EFAULT); 2842 } else { 2843 *fault = 0; 2844 return (0); 2845 } 2846 } 2847 2848 void 2849 vm_copyin(struct vm_copyinfo *copyinfo, void *kaddr, size_t len) 2850 { 2851 char *dst; 2852 int idx; 2853 2854 dst = kaddr; 2855 idx = 0; 2856 while (len > 0) { 2857 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2858 len -= copyinfo[idx].len; 2859 dst += copyinfo[idx].len; 2860 idx++; 2861 } 2862 } 2863 2864 void 2865 vm_copyout(const void *kaddr, struct vm_copyinfo *copyinfo, size_t len) 2866 { 2867 const char *src; 2868 int idx; 2869 2870 src = kaddr; 2871 idx = 0; 2872 while (len > 0) { 2873 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2874 len -= copyinfo[idx].len; 2875 src += copyinfo[idx].len; 2876 idx++; 2877 } 2878 } 2879 2880 /* 2881 * Return the amount of in-use and wired memory for the VM. Since 2882 * these are global stats, only return the values with for vCPU 0 2883 */ 2884 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2885 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2886 2887 static void 2888 vm_get_rescnt(struct vcpu *vcpu, struct vmm_stat_type *stat) 2889 { 2890 2891 if (vcpu->vcpuid == 0) { 2892 vmm_stat_set(vcpu, VMM_MEM_RESIDENT, PAGE_SIZE * 2893 vmspace_resident_count(vcpu->vm->vmspace)); 2894 } 2895 } 2896 2897 static void 2898 vm_get_wiredcnt(struct vcpu *vcpu, struct vmm_stat_type *stat) 2899 { 2900 2901 if (vcpu->vcpuid == 0) { 2902 vmm_stat_set(vcpu, VMM_MEM_WIRED, PAGE_SIZE * 2903 pmap_wired_count(vmspace_pmap(vcpu->vm->vmspace))); 2904 } 2905 } 2906 2907 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2908 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2909 2910 #ifdef BHYVE_SNAPSHOT 2911 static int 2912 vm_snapshot_vcpus(struct vm *vm, struct vm_snapshot_meta *meta) 2913 { 2914 uint64_t tsc, now; 2915 int ret; 2916 struct vcpu *vcpu; 2917 uint16_t i, maxcpus; 2918 2919 now = rdtsc(); 2920 maxcpus = vm_get_maxcpus(vm); 2921 for (i = 0; i < maxcpus; i++) { 2922 vcpu = vm->vcpu[i]; 2923 if (vcpu == NULL) 2924 continue; 2925 2926 SNAPSHOT_VAR_OR_LEAVE(vcpu->x2apic_state, meta, ret, done); 2927 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitintinfo, meta, ret, done); 2928 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_vector, meta, ret, done); 2929 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode_valid, meta, ret, done); 2930 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode, meta, ret, done); 2931 SNAPSHOT_VAR_OR_LEAVE(vcpu->guest_xcr0, meta, ret, done); 2932 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitinfo, meta, ret, done); 2933 SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, ret, done); 2934 2935 /* 2936 * Save the absolute TSC value by adding now to tsc_offset. 2937 * 2938 * It will be turned turned back into an actual offset when the 2939 * TSC restore function is called 2940 */ 2941 tsc = now + vcpu->tsc_offset; 2942 SNAPSHOT_VAR_OR_LEAVE(tsc, meta, ret, done); 2943 if (meta->op == VM_SNAPSHOT_RESTORE) 2944 vcpu->tsc_offset = tsc; 2945 } 2946 2947 done: 2948 return (ret); 2949 } 2950 2951 static int 2952 vm_snapshot_vm(struct vm *vm, struct vm_snapshot_meta *meta) 2953 { 2954 int ret; 2955 2956 ret = vm_snapshot_vcpus(vm, meta); 2957 if (ret != 0) 2958 goto done; 2959 2960 SNAPSHOT_VAR_OR_LEAVE(vm->startup_cpus, meta, ret, done); 2961 done: 2962 return (ret); 2963 } 2964 2965 static int 2966 vm_snapshot_vcpu(struct vm *vm, struct vm_snapshot_meta *meta) 2967 { 2968 int error; 2969 struct vcpu *vcpu; 2970 uint16_t i, maxcpus; 2971 2972 error = 0; 2973 2974 maxcpus = vm_get_maxcpus(vm); 2975 for (i = 0; i < maxcpus; i++) { 2976 vcpu = vm->vcpu[i]; 2977 if (vcpu == NULL) 2978 continue; 2979 2980 error = vmmops_vcpu_snapshot(vcpu->cookie, meta); 2981 if (error != 0) { 2982 printf("%s: failed to snapshot vmcs/vmcb data for " 2983 "vCPU: %d; error: %d\n", __func__, i, error); 2984 goto done; 2985 } 2986 } 2987 2988 done: 2989 return (error); 2990 } 2991 2992 /* 2993 * Save kernel-side structures to user-space for snapshotting. 2994 */ 2995 int 2996 vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta) 2997 { 2998 int ret = 0; 2999 3000 switch (meta->dev_req) { 3001 case STRUCT_VMCX: 3002 ret = vm_snapshot_vcpu(vm, meta); 3003 break; 3004 case STRUCT_VM: 3005 ret = vm_snapshot_vm(vm, meta); 3006 break; 3007 case STRUCT_VIOAPIC: 3008 ret = vioapic_snapshot(vm_ioapic(vm), meta); 3009 break; 3010 case STRUCT_VLAPIC: 3011 ret = vlapic_snapshot(vm, meta); 3012 break; 3013 case STRUCT_VHPET: 3014 ret = vhpet_snapshot(vm_hpet(vm), meta); 3015 break; 3016 case STRUCT_VATPIC: 3017 ret = vatpic_snapshot(vm_atpic(vm), meta); 3018 break; 3019 case STRUCT_VATPIT: 3020 ret = vatpit_snapshot(vm_atpit(vm), meta); 3021 break; 3022 case STRUCT_VPMTMR: 3023 ret = vpmtmr_snapshot(vm_pmtmr(vm), meta); 3024 break; 3025 case STRUCT_VRTC: 3026 ret = vrtc_snapshot(vm_rtc(vm), meta); 3027 break; 3028 default: 3029 printf("%s: failed to find the requested type %#x\n", 3030 __func__, meta->dev_req); 3031 ret = (EINVAL); 3032 } 3033 return (ret); 3034 } 3035 3036 void 3037 vm_set_tsc_offset(struct vcpu *vcpu, uint64_t offset) 3038 { 3039 vcpu->tsc_offset = offset; 3040 } 3041 3042 int 3043 vm_restore_time(struct vm *vm) 3044 { 3045 int error; 3046 uint64_t now; 3047 struct vcpu *vcpu; 3048 uint16_t i, maxcpus; 3049 3050 now = rdtsc(); 3051 3052 error = vhpet_restore_time(vm_hpet(vm)); 3053 if (error) 3054 return (error); 3055 3056 maxcpus = vm_get_maxcpus(vm); 3057 for (i = 0; i < maxcpus; i++) { 3058 vcpu = vm->vcpu[i]; 3059 if (vcpu == NULL) 3060 continue; 3061 3062 error = vmmops_restore_tsc(vcpu->cookie, 3063 vcpu->tsc_offset - now); 3064 if (error) 3065 return (error); 3066 } 3067 3068 return (0); 3069 } 3070 #endif 3071