1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include "opt_bhyve_snapshot.h" 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/kernel.h> 39 #include <sys/module.h> 40 #include <sys/sysctl.h> 41 #include <sys/malloc.h> 42 #include <sys/pcpu.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/proc.h> 46 #include <sys/rwlock.h> 47 #include <sys/sched.h> 48 #include <sys/smp.h> 49 #include <sys/vnode.h> 50 51 #include <vm/vm.h> 52 #include <vm/vm_param.h> 53 #include <vm/vm_extern.h> 54 #include <vm/vm_object.h> 55 #include <vm/vm_page.h> 56 #include <vm/pmap.h> 57 #include <vm/vm_map.h> 58 #include <vm/vm_pager.h> 59 #include <vm/vm_kern.h> 60 #include <vm/vnode_pager.h> 61 #include <vm/swap_pager.h> 62 #include <vm/uma.h> 63 64 #include <machine/cpu.h> 65 #include <machine/pcb.h> 66 #include <machine/smp.h> 67 #include <machine/md_var.h> 68 #include <x86/psl.h> 69 #include <x86/apicreg.h> 70 #include <x86/ifunc.h> 71 72 #include <machine/vmm.h> 73 #include <machine/vmm_dev.h> 74 #include <machine/vmm_instruction_emul.h> 75 #include <machine/vmm_snapshot.h> 76 77 #include "vmm_ioport.h" 78 #include "vmm_ktr.h" 79 #include "vmm_host.h" 80 #include "vmm_mem.h" 81 #include "vmm_util.h" 82 #include "vatpic.h" 83 #include "vatpit.h" 84 #include "vhpet.h" 85 #include "vioapic.h" 86 #include "vlapic.h" 87 #include "vpmtmr.h" 88 #include "vrtc.h" 89 #include "vmm_stat.h" 90 #include "vmm_lapic.h" 91 92 #include "io/ppt.h" 93 #include "io/iommu.h" 94 95 struct vlapic; 96 97 /* 98 * Initialization: 99 * (a) allocated when vcpu is created 100 * (i) initialized when vcpu is created and when it is reinitialized 101 * (o) initialized the first time the vcpu is created 102 * (x) initialized before use 103 */ 104 struct vcpu { 105 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 106 enum vcpu_state state; /* (o) vcpu state */ 107 int hostcpu; /* (o) vcpu's host cpu */ 108 int reqidle; /* (i) request vcpu to idle */ 109 struct vlapic *vlapic; /* (i) APIC device model */ 110 enum x2apic_state x2apic_state; /* (i) APIC mode */ 111 uint64_t exitintinfo; /* (i) events pending at VM exit */ 112 int nmi_pending; /* (i) NMI pending */ 113 int extint_pending; /* (i) INTR pending */ 114 int exception_pending; /* (i) exception pending */ 115 int exc_vector; /* (x) exception collateral */ 116 int exc_errcode_valid; 117 uint32_t exc_errcode; 118 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 119 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 120 void *stats; /* (a,i) statistics */ 121 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 122 uint64_t nextrip; /* (x) next instruction to execute */ 123 uint64_t tsc_offset; /* (o) TSC offsetting */ 124 }; 125 126 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx)) 127 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 128 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 129 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 130 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 131 132 struct mem_seg { 133 size_t len; 134 bool sysmem; 135 struct vm_object *object; 136 }; 137 #define VM_MAX_MEMSEGS 4 138 139 struct mem_map { 140 vm_paddr_t gpa; 141 size_t len; 142 vm_ooffset_t segoff; 143 int segid; 144 int prot; 145 int flags; 146 }; 147 #define VM_MAX_MEMMAPS 8 148 149 /* 150 * Initialization: 151 * (o) initialized the first time the VM is created 152 * (i) initialized when VM is created and when it is reinitialized 153 * (x) initialized before use 154 */ 155 struct vm { 156 void *cookie; /* (i) cpu-specific data */ 157 void *iommu; /* (x) iommu-specific data */ 158 struct vhpet *vhpet; /* (i) virtual HPET */ 159 struct vioapic *vioapic; /* (i) virtual ioapic */ 160 struct vatpic *vatpic; /* (i) virtual atpic */ 161 struct vatpit *vatpit; /* (i) virtual atpit */ 162 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ 163 struct vrtc *vrtc; /* (o) virtual RTC */ 164 volatile cpuset_t active_cpus; /* (i) active vcpus */ 165 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */ 166 int suspend; /* (i) stop VM execution */ 167 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 168 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 169 cpuset_t rendezvous_req_cpus; /* (x) rendezvous requested */ 170 cpuset_t rendezvous_done_cpus; /* (x) rendezvous finished */ 171 void *rendezvous_arg; /* (x) rendezvous func/arg */ 172 vm_rendezvous_func_t rendezvous_func; 173 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 174 struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */ 175 struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */ 176 struct vmspace *vmspace; /* (o) guest's address space */ 177 char name[VM_MAX_NAMELEN+1]; /* (o) virtual machine name */ 178 struct vcpu vcpu[VM_MAXCPU]; /* (i) guest vcpus */ 179 /* The following describe the vm cpu topology */ 180 uint16_t sockets; /* (o) num of sockets */ 181 uint16_t cores; /* (o) num of cores/socket */ 182 uint16_t threads; /* (o) num of threads/core */ 183 uint16_t maxcpus; /* (o) max pluggable cpus */ 184 }; 185 186 static int vmm_initialized; 187 188 static void vmmops_panic(void); 189 190 static void 191 vmmops_panic(void) 192 { 193 panic("vmm_ops func called when !vmm_is_intel() && !vmm_is_svm()"); 194 } 195 196 #define DEFINE_VMMOPS_IFUNC(ret_type, opname, args) \ 197 DEFINE_IFUNC(static, ret_type, vmmops_##opname, args) \ 198 { \ 199 if (vmm_is_intel()) \ 200 return (vmm_ops_intel.opname); \ 201 else if (vmm_is_svm()) \ 202 return (vmm_ops_amd.opname); \ 203 else \ 204 return ((ret_type (*)args)vmmops_panic); \ 205 } 206 207 DEFINE_VMMOPS_IFUNC(int, modinit, (int ipinum)) 208 DEFINE_VMMOPS_IFUNC(int, modcleanup, (void)) 209 DEFINE_VMMOPS_IFUNC(void, modresume, (void)) 210 DEFINE_VMMOPS_IFUNC(void *, init, (struct vm *vm, struct pmap *pmap)) 211 DEFINE_VMMOPS_IFUNC(int, run, (void *vmi, int vcpu, register_t rip, 212 struct pmap *pmap, struct vm_eventinfo *info)) 213 DEFINE_VMMOPS_IFUNC(void, cleanup, (void *vmi)) 214 DEFINE_VMMOPS_IFUNC(int, getreg, (void *vmi, int vcpu, int num, 215 uint64_t *retval)) 216 DEFINE_VMMOPS_IFUNC(int, setreg, (void *vmi, int vcpu, int num, 217 uint64_t val)) 218 DEFINE_VMMOPS_IFUNC(int, getdesc, (void *vmi, int vcpu, int num, 219 struct seg_desc *desc)) 220 DEFINE_VMMOPS_IFUNC(int, setdesc, (void *vmi, int vcpu, int num, 221 struct seg_desc *desc)) 222 DEFINE_VMMOPS_IFUNC(int, getcap, (void *vmi, int vcpu, int num, int *retval)) 223 DEFINE_VMMOPS_IFUNC(int, setcap, (void *vmi, int vcpu, int num, int val)) 224 DEFINE_VMMOPS_IFUNC(struct vmspace *, vmspace_alloc, (vm_offset_t min, 225 vm_offset_t max)) 226 DEFINE_VMMOPS_IFUNC(void, vmspace_free, (struct vmspace *vmspace)) 227 DEFINE_VMMOPS_IFUNC(struct vlapic *, vlapic_init, (void *vmi, int vcpu)) 228 DEFINE_VMMOPS_IFUNC(void, vlapic_cleanup, (void *vmi, struct vlapic *vlapic)) 229 #ifdef BHYVE_SNAPSHOT 230 DEFINE_VMMOPS_IFUNC(int, snapshot, (void *vmi, struct vm_snapshot_meta 231 *meta)) 232 DEFINE_VMMOPS_IFUNC(int, vmcx_snapshot, (void *vmi, struct vm_snapshot_meta 233 *meta, int vcpu)) 234 DEFINE_VMMOPS_IFUNC(int, restore_tsc, (void *vmi, int vcpuid, uint64_t now)) 235 #endif 236 237 #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS) 238 #define fpu_stop_emulating() clts() 239 240 SDT_PROVIDER_DEFINE(vmm); 241 242 static MALLOC_DEFINE(M_VM, "vm", "vm"); 243 244 /* statistics */ 245 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 246 247 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 248 NULL); 249 250 /* 251 * Halt the guest if all vcpus are executing a HLT instruction with 252 * interrupts disabled. 253 */ 254 static int halt_detection_enabled = 1; 255 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 256 &halt_detection_enabled, 0, 257 "Halt VM if all vcpus execute HLT with interrupts disabled"); 258 259 static int vmm_ipinum; 260 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 261 "IPI vector used for vcpu notifications"); 262 263 static int trace_guest_exceptions; 264 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN, 265 &trace_guest_exceptions, 0, 266 "Trap into hypervisor on all guest exceptions and reflect them back"); 267 268 static void vm_free_memmap(struct vm *vm, int ident); 269 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm); 270 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr); 271 272 #ifdef KTR 273 static const char * 274 vcpu_state2str(enum vcpu_state state) 275 { 276 277 switch (state) { 278 case VCPU_IDLE: 279 return ("idle"); 280 case VCPU_FROZEN: 281 return ("frozen"); 282 case VCPU_RUNNING: 283 return ("running"); 284 case VCPU_SLEEPING: 285 return ("sleeping"); 286 default: 287 return ("unknown"); 288 } 289 } 290 #endif 291 292 static void 293 vcpu_cleanup(struct vm *vm, int i, bool destroy) 294 { 295 struct vcpu *vcpu = &vm->vcpu[i]; 296 297 vmmops_vlapic_cleanup(vm->cookie, vcpu->vlapic); 298 if (destroy) { 299 vmm_stat_free(vcpu->stats); 300 fpu_save_area_free(vcpu->guestfpu); 301 } 302 } 303 304 static void 305 vcpu_init(struct vm *vm, int vcpu_id, bool create) 306 { 307 struct vcpu *vcpu; 308 309 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus, 310 ("vcpu_init: invalid vcpu %d", vcpu_id)); 311 312 vcpu = &vm->vcpu[vcpu_id]; 313 314 if (create) { 315 KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already " 316 "initialized", vcpu_id)); 317 vcpu_lock_init(vcpu); 318 vcpu->state = VCPU_IDLE; 319 vcpu->hostcpu = NOCPU; 320 vcpu->guestfpu = fpu_save_area_alloc(); 321 vcpu->stats = vmm_stat_alloc(); 322 vcpu->tsc_offset = 0; 323 } 324 325 vcpu->vlapic = vmmops_vlapic_init(vm->cookie, vcpu_id); 326 vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED); 327 vcpu->reqidle = 0; 328 vcpu->exitintinfo = 0; 329 vcpu->nmi_pending = 0; 330 vcpu->extint_pending = 0; 331 vcpu->exception_pending = 0; 332 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 333 fpu_save_area_reset(vcpu->guestfpu); 334 vmm_stat_init(vcpu->stats); 335 } 336 337 int 338 vcpu_trace_exceptions(struct vm *vm, int vcpuid) 339 { 340 341 return (trace_guest_exceptions); 342 } 343 344 struct vm_exit * 345 vm_exitinfo(struct vm *vm, int cpuid) 346 { 347 struct vcpu *vcpu; 348 349 if (cpuid < 0 || cpuid >= vm->maxcpus) 350 panic("vm_exitinfo: invalid cpuid %d", cpuid); 351 352 vcpu = &vm->vcpu[cpuid]; 353 354 return (&vcpu->exitinfo); 355 } 356 357 static int 358 vmm_init(void) 359 { 360 int error; 361 362 if (!vmm_is_hw_supported()) 363 return (ENXIO); 364 365 vmm_host_state_init(); 366 367 vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) : 368 &IDTVEC(justreturn)); 369 if (vmm_ipinum < 0) 370 vmm_ipinum = IPI_AST; 371 372 error = vmm_mem_init(); 373 if (error) 374 return (error); 375 376 vmm_resume_p = vmmops_modresume; 377 378 return (vmmops_modinit(vmm_ipinum)); 379 } 380 381 static int 382 vmm_handler(module_t mod, int what, void *arg) 383 { 384 int error; 385 386 switch (what) { 387 case MOD_LOAD: 388 if (vmm_is_hw_supported()) { 389 vmmdev_init(); 390 error = vmm_init(); 391 if (error == 0) 392 vmm_initialized = 1; 393 } else { 394 error = ENXIO; 395 } 396 break; 397 case MOD_UNLOAD: 398 if (vmm_is_hw_supported()) { 399 error = vmmdev_cleanup(); 400 if (error == 0) { 401 vmm_resume_p = NULL; 402 iommu_cleanup(); 403 if (vmm_ipinum != IPI_AST) 404 lapic_ipi_free(vmm_ipinum); 405 error = vmmops_modcleanup(); 406 /* 407 * Something bad happened - prevent new 408 * VMs from being created 409 */ 410 if (error) 411 vmm_initialized = 0; 412 } 413 } else { 414 error = 0; 415 } 416 break; 417 default: 418 error = 0; 419 break; 420 } 421 return (error); 422 } 423 424 static moduledata_t vmm_kmod = { 425 "vmm", 426 vmm_handler, 427 NULL 428 }; 429 430 /* 431 * vmm initialization has the following dependencies: 432 * 433 * - VT-x initialization requires smp_rendezvous() and therefore must happen 434 * after SMP is fully functional (after SI_SUB_SMP). 435 */ 436 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 437 MODULE_VERSION(vmm, 1); 438 439 static void 440 vm_init(struct vm *vm, bool create) 441 { 442 int i; 443 444 vm->cookie = vmmops_init(vm, vmspace_pmap(vm->vmspace)); 445 vm->iommu = NULL; 446 vm->vioapic = vioapic_init(vm); 447 vm->vhpet = vhpet_init(vm); 448 vm->vatpic = vatpic_init(vm); 449 vm->vatpit = vatpit_init(vm); 450 vm->vpmtmr = vpmtmr_init(vm); 451 if (create) 452 vm->vrtc = vrtc_init(vm); 453 454 CPU_ZERO(&vm->active_cpus); 455 CPU_ZERO(&vm->debug_cpus); 456 457 vm->suspend = 0; 458 CPU_ZERO(&vm->suspended_cpus); 459 460 for (i = 0; i < vm->maxcpus; i++) 461 vcpu_init(vm, i, create); 462 } 463 464 /* 465 * The default CPU topology is a single thread per package. 466 */ 467 u_int cores_per_package = 1; 468 u_int threads_per_core = 1; 469 470 int 471 vm_create(const char *name, struct vm **retvm) 472 { 473 struct vm *vm; 474 struct vmspace *vmspace; 475 476 /* 477 * If vmm.ko could not be successfully initialized then don't attempt 478 * to create the virtual machine. 479 */ 480 if (!vmm_initialized) 481 return (ENXIO); 482 483 if (name == NULL || strnlen(name, VM_MAX_NAMELEN + 1) == 484 VM_MAX_NAMELEN + 1) 485 return (EINVAL); 486 487 vmspace = vmmops_vmspace_alloc(0, VM_MAXUSER_ADDRESS_LA48); 488 if (vmspace == NULL) 489 return (ENOMEM); 490 491 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 492 strcpy(vm->name, name); 493 vm->vmspace = vmspace; 494 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 495 496 vm->sockets = 1; 497 vm->cores = cores_per_package; /* XXX backwards compatibility */ 498 vm->threads = threads_per_core; /* XXX backwards compatibility */ 499 vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */ 500 501 vm_init(vm, true); 502 503 *retvm = vm; 504 return (0); 505 } 506 507 void 508 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, 509 uint16_t *threads, uint16_t *maxcpus) 510 { 511 *sockets = vm->sockets; 512 *cores = vm->cores; 513 *threads = vm->threads; 514 *maxcpus = vm->maxcpus; 515 } 516 517 uint16_t 518 vm_get_maxcpus(struct vm *vm) 519 { 520 return (vm->maxcpus); 521 } 522 523 int 524 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, 525 uint16_t threads, uint16_t maxcpus) 526 { 527 if (maxcpus != 0) 528 return (EINVAL); /* XXX remove when supported */ 529 if ((sockets * cores * threads) > vm->maxcpus) 530 return (EINVAL); 531 /* XXX need to check sockets * cores * threads == vCPU, how? */ 532 vm->sockets = sockets; 533 vm->cores = cores; 534 vm->threads = threads; 535 vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */ 536 return(0); 537 } 538 539 static void 540 vm_cleanup(struct vm *vm, bool destroy) 541 { 542 struct mem_map *mm; 543 int i; 544 545 ppt_unassign_all(vm); 546 547 if (vm->iommu != NULL) 548 iommu_destroy_domain(vm->iommu); 549 550 if (destroy) 551 vrtc_cleanup(vm->vrtc); 552 else 553 vrtc_reset(vm->vrtc); 554 vpmtmr_cleanup(vm->vpmtmr); 555 vatpit_cleanup(vm->vatpit); 556 vhpet_cleanup(vm->vhpet); 557 vatpic_cleanup(vm->vatpic); 558 vioapic_cleanup(vm->vioapic); 559 560 for (i = 0; i < vm->maxcpus; i++) 561 vcpu_cleanup(vm, i, destroy); 562 563 vmmops_cleanup(vm->cookie); 564 565 /* 566 * System memory is removed from the guest address space only when 567 * the VM is destroyed. This is because the mapping remains the same 568 * across VM reset. 569 * 570 * Device memory can be relocated by the guest (e.g. using PCI BARs) 571 * so those mappings are removed on a VM reset. 572 */ 573 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 574 mm = &vm->mem_maps[i]; 575 if (destroy || !sysmem_mapping(vm, mm)) 576 vm_free_memmap(vm, i); 577 } 578 579 if (destroy) { 580 for (i = 0; i < VM_MAX_MEMSEGS; i++) 581 vm_free_memseg(vm, i); 582 583 vmmops_vmspace_free(vm->vmspace); 584 vm->vmspace = NULL; 585 } 586 } 587 588 void 589 vm_destroy(struct vm *vm) 590 { 591 vm_cleanup(vm, true); 592 free(vm, M_VM); 593 } 594 595 int 596 vm_reinit(struct vm *vm) 597 { 598 int error; 599 600 /* 601 * A virtual machine can be reset only if all vcpus are suspended. 602 */ 603 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 604 vm_cleanup(vm, false); 605 vm_init(vm, false); 606 error = 0; 607 } else { 608 error = EBUSY; 609 } 610 611 return (error); 612 } 613 614 const char * 615 vm_name(struct vm *vm) 616 { 617 return (vm->name); 618 } 619 620 int 621 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 622 { 623 vm_object_t obj; 624 625 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 626 return (ENOMEM); 627 else 628 return (0); 629 } 630 631 int 632 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 633 { 634 635 vmm_mmio_free(vm->vmspace, gpa, len); 636 return (0); 637 } 638 639 /* 640 * Return 'true' if 'gpa' is allocated in the guest address space. 641 * 642 * This function is called in the context of a running vcpu which acts as 643 * an implicit lock on 'vm->mem_maps[]'. 644 */ 645 bool 646 vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa) 647 { 648 struct mem_map *mm; 649 int i; 650 651 #ifdef INVARIANTS 652 int hostcpu, state; 653 state = vcpu_get_state(vm, vcpuid, &hostcpu); 654 KASSERT(state == VCPU_RUNNING && hostcpu == curcpu, 655 ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu)); 656 #endif 657 658 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 659 mm = &vm->mem_maps[i]; 660 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len) 661 return (true); /* 'gpa' is sysmem or devmem */ 662 } 663 664 if (ppt_is_mmio(vm, gpa)) 665 return (true); /* 'gpa' is pci passthru mmio */ 666 667 return (false); 668 } 669 670 int 671 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem) 672 { 673 struct mem_seg *seg; 674 vm_object_t obj; 675 676 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 677 return (EINVAL); 678 679 if (len == 0 || (len & PAGE_MASK)) 680 return (EINVAL); 681 682 seg = &vm->mem_segs[ident]; 683 if (seg->object != NULL) { 684 if (seg->len == len && seg->sysmem == sysmem) 685 return (EEXIST); 686 else 687 return (EINVAL); 688 } 689 690 obj = vm_object_allocate(OBJT_DEFAULT, len >> PAGE_SHIFT); 691 if (obj == NULL) 692 return (ENOMEM); 693 694 seg->len = len; 695 seg->object = obj; 696 seg->sysmem = sysmem; 697 return (0); 698 } 699 700 int 701 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, 702 vm_object_t *objptr) 703 { 704 struct mem_seg *seg; 705 706 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 707 return (EINVAL); 708 709 seg = &vm->mem_segs[ident]; 710 if (len) 711 *len = seg->len; 712 if (sysmem) 713 *sysmem = seg->sysmem; 714 if (objptr) 715 *objptr = seg->object; 716 return (0); 717 } 718 719 void 720 vm_free_memseg(struct vm *vm, int ident) 721 { 722 struct mem_seg *seg; 723 724 KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS, 725 ("%s: invalid memseg ident %d", __func__, ident)); 726 727 seg = &vm->mem_segs[ident]; 728 if (seg->object != NULL) { 729 vm_object_deallocate(seg->object); 730 bzero(seg, sizeof(struct mem_seg)); 731 } 732 } 733 734 int 735 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first, 736 size_t len, int prot, int flags) 737 { 738 struct mem_seg *seg; 739 struct mem_map *m, *map; 740 vm_ooffset_t last; 741 int i, error; 742 743 if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0) 744 return (EINVAL); 745 746 if (flags & ~VM_MEMMAP_F_WIRED) 747 return (EINVAL); 748 749 if (segid < 0 || segid >= VM_MAX_MEMSEGS) 750 return (EINVAL); 751 752 seg = &vm->mem_segs[segid]; 753 if (seg->object == NULL) 754 return (EINVAL); 755 756 last = first + len; 757 if (first < 0 || first >= last || last > seg->len) 758 return (EINVAL); 759 760 if ((gpa | first | last) & PAGE_MASK) 761 return (EINVAL); 762 763 map = NULL; 764 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 765 m = &vm->mem_maps[i]; 766 if (m->len == 0) { 767 map = m; 768 break; 769 } 770 } 771 772 if (map == NULL) 773 return (ENOSPC); 774 775 error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa, 776 len, 0, VMFS_NO_SPACE, prot, prot, 0); 777 if (error != KERN_SUCCESS) 778 return (EFAULT); 779 780 vm_object_reference(seg->object); 781 782 if (flags & VM_MEMMAP_F_WIRED) { 783 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len, 784 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 785 if (error != KERN_SUCCESS) { 786 vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len); 787 return (error == KERN_RESOURCE_SHORTAGE ? ENOMEM : 788 EFAULT); 789 } 790 } 791 792 map->gpa = gpa; 793 map->len = len; 794 map->segoff = first; 795 map->segid = segid; 796 map->prot = prot; 797 map->flags = flags; 798 return (0); 799 } 800 801 int 802 vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len) 803 { 804 struct mem_map *m; 805 int i; 806 807 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 808 m = &vm->mem_maps[i]; 809 if (m->gpa == gpa && m->len == len && 810 (m->flags & VM_MEMMAP_F_IOMMU) == 0) { 811 vm_free_memmap(vm, i); 812 return (0); 813 } 814 } 815 816 return (EINVAL); 817 } 818 819 int 820 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, 821 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 822 { 823 struct mem_map *mm, *mmnext; 824 int i; 825 826 mmnext = NULL; 827 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 828 mm = &vm->mem_maps[i]; 829 if (mm->len == 0 || mm->gpa < *gpa) 830 continue; 831 if (mmnext == NULL || mm->gpa < mmnext->gpa) 832 mmnext = mm; 833 } 834 835 if (mmnext != NULL) { 836 *gpa = mmnext->gpa; 837 if (segid) 838 *segid = mmnext->segid; 839 if (segoff) 840 *segoff = mmnext->segoff; 841 if (len) 842 *len = mmnext->len; 843 if (prot) 844 *prot = mmnext->prot; 845 if (flags) 846 *flags = mmnext->flags; 847 return (0); 848 } else { 849 return (ENOENT); 850 } 851 } 852 853 static void 854 vm_free_memmap(struct vm *vm, int ident) 855 { 856 struct mem_map *mm; 857 int error __diagused; 858 859 mm = &vm->mem_maps[ident]; 860 if (mm->len) { 861 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa, 862 mm->gpa + mm->len); 863 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d", 864 __func__, error)); 865 bzero(mm, sizeof(struct mem_map)); 866 } 867 } 868 869 static __inline bool 870 sysmem_mapping(struct vm *vm, struct mem_map *mm) 871 { 872 873 if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem) 874 return (true); 875 else 876 return (false); 877 } 878 879 vm_paddr_t 880 vmm_sysmem_maxaddr(struct vm *vm) 881 { 882 struct mem_map *mm; 883 vm_paddr_t maxaddr; 884 int i; 885 886 maxaddr = 0; 887 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 888 mm = &vm->mem_maps[i]; 889 if (sysmem_mapping(vm, mm)) { 890 if (maxaddr < mm->gpa + mm->len) 891 maxaddr = mm->gpa + mm->len; 892 } 893 } 894 return (maxaddr); 895 } 896 897 static void 898 vm_iommu_modify(struct vm *vm, bool map) 899 { 900 int i, sz; 901 vm_paddr_t gpa, hpa; 902 struct mem_map *mm; 903 void *vp, *cookie, *host_domain; 904 905 sz = PAGE_SIZE; 906 host_domain = iommu_host_domain(); 907 908 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 909 mm = &vm->mem_maps[i]; 910 if (!sysmem_mapping(vm, mm)) 911 continue; 912 913 if (map) { 914 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0, 915 ("iommu map found invalid memmap %#lx/%#lx/%#x", 916 mm->gpa, mm->len, mm->flags)); 917 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0) 918 continue; 919 mm->flags |= VM_MEMMAP_F_IOMMU; 920 } else { 921 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0) 922 continue; 923 mm->flags &= ~VM_MEMMAP_F_IOMMU; 924 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0, 925 ("iommu unmap found invalid memmap %#lx/%#lx/%#x", 926 mm->gpa, mm->len, mm->flags)); 927 } 928 929 gpa = mm->gpa; 930 while (gpa < mm->gpa + mm->len) { 931 vp = vm_gpa_hold(vm, -1, gpa, PAGE_SIZE, VM_PROT_WRITE, 932 &cookie); 933 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", 934 vm_name(vm), gpa)); 935 936 vm_gpa_release(cookie); 937 938 hpa = DMAP_TO_PHYS((uintptr_t)vp); 939 if (map) { 940 iommu_create_mapping(vm->iommu, gpa, hpa, sz); 941 } else { 942 iommu_remove_mapping(vm->iommu, gpa, sz); 943 } 944 945 gpa += PAGE_SIZE; 946 } 947 } 948 949 /* 950 * Invalidate the cached translations associated with the domain 951 * from which pages were removed. 952 */ 953 if (map) 954 iommu_invalidate_tlb(host_domain); 955 else 956 iommu_invalidate_tlb(vm->iommu); 957 } 958 959 #define vm_iommu_unmap(vm) vm_iommu_modify((vm), false) 960 #define vm_iommu_map(vm) vm_iommu_modify((vm), true) 961 962 int 963 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 964 { 965 int error; 966 967 error = ppt_unassign_device(vm, bus, slot, func); 968 if (error) 969 return (error); 970 971 if (ppt_assigned_devices(vm) == 0) 972 vm_iommu_unmap(vm); 973 974 return (0); 975 } 976 977 int 978 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 979 { 980 int error; 981 vm_paddr_t maxaddr; 982 983 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */ 984 if (ppt_assigned_devices(vm) == 0) { 985 KASSERT(vm->iommu == NULL, 986 ("vm_assign_pptdev: iommu must be NULL")); 987 maxaddr = vmm_sysmem_maxaddr(vm); 988 vm->iommu = iommu_create_domain(maxaddr); 989 if (vm->iommu == NULL) 990 return (ENXIO); 991 vm_iommu_map(vm); 992 } 993 994 error = ppt_assign_device(vm, bus, slot, func); 995 return (error); 996 } 997 998 void * 999 vm_gpa_hold(struct vm *vm, int vcpuid, vm_paddr_t gpa, size_t len, int reqprot, 1000 void **cookie) 1001 { 1002 int i, count, pageoff; 1003 struct mem_map *mm; 1004 vm_page_t m; 1005 #ifdef INVARIANTS 1006 /* 1007 * All vcpus are frozen by ioctls that modify the memory map 1008 * (e.g. VM_MMAP_MEMSEG). Therefore 'vm->memmap[]' stability is 1009 * guaranteed if at least one vcpu is in the VCPU_FROZEN state. 1010 */ 1011 int state; 1012 KASSERT(vcpuid >= -1 && vcpuid < vm->maxcpus, ("%s: invalid vcpuid %d", 1013 __func__, vcpuid)); 1014 for (i = 0; i < vm->maxcpus; i++) { 1015 if (vcpuid != -1 && vcpuid != i) 1016 continue; 1017 state = vcpu_get_state(vm, i, NULL); 1018 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d", 1019 __func__, state)); 1020 } 1021 #endif 1022 pageoff = gpa & PAGE_MASK; 1023 if (len > PAGE_SIZE - pageoff) 1024 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 1025 1026 count = 0; 1027 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1028 mm = &vm->mem_maps[i]; 1029 if (gpa >= mm->gpa && gpa < mm->gpa + mm->len) { 1030 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 1031 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 1032 break; 1033 } 1034 } 1035 1036 if (count == 1) { 1037 *cookie = m; 1038 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 1039 } else { 1040 *cookie = NULL; 1041 return (NULL); 1042 } 1043 } 1044 1045 void 1046 vm_gpa_release(void *cookie) 1047 { 1048 vm_page_t m = cookie; 1049 1050 vm_page_unwire(m, PQ_ACTIVE); 1051 } 1052 1053 int 1054 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval) 1055 { 1056 1057 if (vcpu < 0 || vcpu >= vm->maxcpus) 1058 return (EINVAL); 1059 1060 if (reg >= VM_REG_LAST) 1061 return (EINVAL); 1062 1063 return (vmmops_getreg(vm->cookie, vcpu, reg, retval)); 1064 } 1065 1066 int 1067 vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val) 1068 { 1069 struct vcpu *vcpu; 1070 int error; 1071 1072 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1073 return (EINVAL); 1074 1075 if (reg >= VM_REG_LAST) 1076 return (EINVAL); 1077 1078 error = vmmops_setreg(vm->cookie, vcpuid, reg, val); 1079 if (error || reg != VM_REG_GUEST_RIP) 1080 return (error); 1081 1082 /* Set 'nextrip' to match the value of %rip */ 1083 VCPU_CTR1(vm, vcpuid, "Setting nextrip to %#lx", val); 1084 vcpu = &vm->vcpu[vcpuid]; 1085 vcpu->nextrip = val; 1086 return (0); 1087 } 1088 1089 static bool 1090 is_descriptor_table(int reg) 1091 { 1092 1093 switch (reg) { 1094 case VM_REG_GUEST_IDTR: 1095 case VM_REG_GUEST_GDTR: 1096 return (true); 1097 default: 1098 return (false); 1099 } 1100 } 1101 1102 static bool 1103 is_segment_register(int reg) 1104 { 1105 1106 switch (reg) { 1107 case VM_REG_GUEST_ES: 1108 case VM_REG_GUEST_CS: 1109 case VM_REG_GUEST_SS: 1110 case VM_REG_GUEST_DS: 1111 case VM_REG_GUEST_FS: 1112 case VM_REG_GUEST_GS: 1113 case VM_REG_GUEST_TR: 1114 case VM_REG_GUEST_LDTR: 1115 return (true); 1116 default: 1117 return (false); 1118 } 1119 } 1120 1121 int 1122 vm_get_seg_desc(struct vm *vm, int vcpu, int reg, 1123 struct seg_desc *desc) 1124 { 1125 1126 if (vcpu < 0 || vcpu >= vm->maxcpus) 1127 return (EINVAL); 1128 1129 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1130 return (EINVAL); 1131 1132 return (vmmops_getdesc(vm->cookie, vcpu, reg, desc)); 1133 } 1134 1135 int 1136 vm_set_seg_desc(struct vm *vm, int vcpu, int reg, 1137 struct seg_desc *desc) 1138 { 1139 if (vcpu < 0 || vcpu >= vm->maxcpus) 1140 return (EINVAL); 1141 1142 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1143 return (EINVAL); 1144 1145 return (vmmops_setdesc(vm->cookie, vcpu, reg, desc)); 1146 } 1147 1148 static void 1149 restore_guest_fpustate(struct vcpu *vcpu) 1150 { 1151 1152 /* flush host state to the pcb */ 1153 fpuexit(curthread); 1154 1155 /* restore guest FPU state */ 1156 fpu_stop_emulating(); 1157 fpurestore(vcpu->guestfpu); 1158 1159 /* restore guest XCR0 if XSAVE is enabled in the host */ 1160 if (rcr4() & CR4_XSAVE) 1161 load_xcr(0, vcpu->guest_xcr0); 1162 1163 /* 1164 * The FPU is now "dirty" with the guest's state so turn on emulation 1165 * to trap any access to the FPU by the host. 1166 */ 1167 fpu_start_emulating(); 1168 } 1169 1170 static void 1171 save_guest_fpustate(struct vcpu *vcpu) 1172 { 1173 1174 if ((rcr0() & CR0_TS) == 0) 1175 panic("fpu emulation not enabled in host!"); 1176 1177 /* save guest XCR0 and restore host XCR0 */ 1178 if (rcr4() & CR4_XSAVE) { 1179 vcpu->guest_xcr0 = rxcr(0); 1180 load_xcr(0, vmm_get_host_xcr0()); 1181 } 1182 1183 /* save guest FPU state */ 1184 fpu_stop_emulating(); 1185 fpusave(vcpu->guestfpu); 1186 fpu_start_emulating(); 1187 } 1188 1189 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 1190 1191 static int 1192 vcpu_set_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate, 1193 bool from_idle) 1194 { 1195 struct vcpu *vcpu; 1196 int error; 1197 1198 vcpu = &vm->vcpu[vcpuid]; 1199 vcpu_assert_locked(vcpu); 1200 1201 /* 1202 * State transitions from the vmmdev_ioctl() must always begin from 1203 * the VCPU_IDLE state. This guarantees that there is only a single 1204 * ioctl() operating on a vcpu at any point. 1205 */ 1206 if (from_idle) { 1207 while (vcpu->state != VCPU_IDLE) { 1208 vcpu->reqidle = 1; 1209 vcpu_notify_event_locked(vcpu, false); 1210 VCPU_CTR1(vm, vcpuid, "vcpu state change from %s to " 1211 "idle requested", vcpu_state2str(vcpu->state)); 1212 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 1213 } 1214 } else { 1215 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 1216 "vcpu idle state")); 1217 } 1218 1219 if (vcpu->state == VCPU_RUNNING) { 1220 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 1221 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 1222 } else { 1223 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 1224 "vcpu that is not running", vcpu->hostcpu)); 1225 } 1226 1227 /* 1228 * The following state transitions are allowed: 1229 * IDLE -> FROZEN -> IDLE 1230 * FROZEN -> RUNNING -> FROZEN 1231 * FROZEN -> SLEEPING -> FROZEN 1232 */ 1233 switch (vcpu->state) { 1234 case VCPU_IDLE: 1235 case VCPU_RUNNING: 1236 case VCPU_SLEEPING: 1237 error = (newstate != VCPU_FROZEN); 1238 break; 1239 case VCPU_FROZEN: 1240 error = (newstate == VCPU_FROZEN); 1241 break; 1242 default: 1243 error = 1; 1244 break; 1245 } 1246 1247 if (error) 1248 return (EBUSY); 1249 1250 VCPU_CTR2(vm, vcpuid, "vcpu state changed from %s to %s", 1251 vcpu_state2str(vcpu->state), vcpu_state2str(newstate)); 1252 1253 vcpu->state = newstate; 1254 if (newstate == VCPU_RUNNING) 1255 vcpu->hostcpu = curcpu; 1256 else 1257 vcpu->hostcpu = NOCPU; 1258 1259 if (newstate == VCPU_IDLE) 1260 wakeup(&vcpu->state); 1261 1262 return (0); 1263 } 1264 1265 static void 1266 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1267 { 1268 int error; 1269 1270 if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0) 1271 panic("Error %d setting state to %d\n", error, newstate); 1272 } 1273 1274 static void 1275 vcpu_require_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1276 { 1277 int error; 1278 1279 if ((error = vcpu_set_state_locked(vm, vcpuid, newstate, false)) != 0) 1280 panic("Error %d setting state to %d", error, newstate); 1281 } 1282 1283 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt) \ 1284 do { \ 1285 if (vcpuid >= 0) \ 1286 VCPU_CTR0(vm, vcpuid, fmt); \ 1287 else \ 1288 VM_CTR0(vm, fmt); \ 1289 } while (0) 1290 1291 static int 1292 vm_handle_rendezvous(struct vm *vm, int vcpuid) 1293 { 1294 struct thread *td; 1295 int error; 1296 1297 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus), 1298 ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid)); 1299 1300 error = 0; 1301 td = curthread; 1302 mtx_lock(&vm->rendezvous_mtx); 1303 while (vm->rendezvous_func != NULL) { 1304 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1305 CPU_AND(&vm->rendezvous_req_cpus, &vm->rendezvous_req_cpus, &vm->active_cpus); 1306 1307 if (vcpuid != -1 && 1308 CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1309 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1310 VCPU_CTR0(vm, vcpuid, "Calling rendezvous func"); 1311 (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg); 1312 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1313 } 1314 if (CPU_CMP(&vm->rendezvous_req_cpus, 1315 &vm->rendezvous_done_cpus) == 0) { 1316 VCPU_CTR0(vm, vcpuid, "Rendezvous completed"); 1317 vm->rendezvous_func = NULL; 1318 wakeup(&vm->rendezvous_func); 1319 break; 1320 } 1321 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion"); 1322 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1323 "vmrndv", hz); 1324 if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) { 1325 mtx_unlock(&vm->rendezvous_mtx); 1326 error = thread_check_susp(td, true); 1327 if (error != 0) 1328 return (error); 1329 mtx_lock(&vm->rendezvous_mtx); 1330 } 1331 } 1332 mtx_unlock(&vm->rendezvous_mtx); 1333 return (0); 1334 } 1335 1336 /* 1337 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1338 */ 1339 static int 1340 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu) 1341 { 1342 struct vcpu *vcpu; 1343 const char *wmesg; 1344 struct thread *td; 1345 int error, t, vcpu_halted, vm_halted; 1346 1347 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1348 1349 vcpu = &vm->vcpu[vcpuid]; 1350 vcpu_halted = 0; 1351 vm_halted = 0; 1352 error = 0; 1353 td = curthread; 1354 1355 vcpu_lock(vcpu); 1356 while (1) { 1357 /* 1358 * Do a final check for pending NMI or interrupts before 1359 * really putting this thread to sleep. Also check for 1360 * software events that would cause this vcpu to wakeup. 1361 * 1362 * These interrupts/events could have happened after the 1363 * vcpu returned from vmmops_run() and before it acquired the 1364 * vcpu lock above. 1365 */ 1366 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle) 1367 break; 1368 if (vm_nmi_pending(vm, vcpuid)) 1369 break; 1370 if (!intr_disabled) { 1371 if (vm_extint_pending(vm, vcpuid) || 1372 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1373 break; 1374 } 1375 } 1376 1377 /* Don't go to sleep if the vcpu thread needs to yield */ 1378 if (vcpu_should_yield(vm, vcpuid)) 1379 break; 1380 1381 if (vcpu_debugged(vm, vcpuid)) 1382 break; 1383 1384 /* 1385 * Some Linux guests implement "halt" by having all vcpus 1386 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1387 * track of the vcpus that have entered this state. When all 1388 * vcpus enter the halted state the virtual machine is halted. 1389 */ 1390 if (intr_disabled) { 1391 wmesg = "vmhalt"; 1392 VCPU_CTR0(vm, vcpuid, "Halted"); 1393 if (!vcpu_halted && halt_detection_enabled) { 1394 vcpu_halted = 1; 1395 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1396 } 1397 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1398 vm_halted = 1; 1399 break; 1400 } 1401 } else { 1402 wmesg = "vmidle"; 1403 } 1404 1405 t = ticks; 1406 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); 1407 /* 1408 * XXX msleep_spin() cannot be interrupted by signals so 1409 * wake up periodically to check pending signals. 1410 */ 1411 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1412 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); 1413 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t); 1414 if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) { 1415 vcpu_unlock(vcpu); 1416 error = thread_check_susp(td, false); 1417 if (error != 0) 1418 return (error); 1419 vcpu_lock(vcpu); 1420 } 1421 } 1422 1423 if (vcpu_halted) 1424 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1425 1426 vcpu_unlock(vcpu); 1427 1428 if (vm_halted) 1429 vm_suspend(vm, VM_SUSPEND_HALT); 1430 1431 return (0); 1432 } 1433 1434 static int 1435 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu) 1436 { 1437 int rv, ftype; 1438 struct vm_map *map; 1439 struct vcpu *vcpu; 1440 struct vm_exit *vme; 1441 1442 vcpu = &vm->vcpu[vcpuid]; 1443 vme = &vcpu->exitinfo; 1444 1445 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1446 __func__, vme->inst_length)); 1447 1448 ftype = vme->u.paging.fault_type; 1449 KASSERT(ftype == VM_PROT_READ || 1450 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1451 ("vm_handle_paging: invalid fault_type %d", ftype)); 1452 1453 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1454 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1455 vme->u.paging.gpa, ftype); 1456 if (rv == 0) { 1457 VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx", 1458 ftype == VM_PROT_READ ? "accessed" : "dirty", 1459 vme->u.paging.gpa); 1460 goto done; 1461 } 1462 } 1463 1464 map = &vm->vmspace->vm_map; 1465 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL); 1466 1467 VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, " 1468 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1469 1470 if (rv != KERN_SUCCESS) 1471 return (EFAULT); 1472 done: 1473 return (0); 1474 } 1475 1476 static int 1477 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu) 1478 { 1479 struct vie *vie; 1480 struct vcpu *vcpu; 1481 struct vm_exit *vme; 1482 uint64_t gla, gpa, cs_base; 1483 struct vm_guest_paging *paging; 1484 mem_region_read_t mread; 1485 mem_region_write_t mwrite; 1486 enum vm_cpu_mode cpu_mode; 1487 int cs_d, error, fault; 1488 1489 vcpu = &vm->vcpu[vcpuid]; 1490 vme = &vcpu->exitinfo; 1491 1492 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1493 __func__, vme->inst_length)); 1494 1495 gla = vme->u.inst_emul.gla; 1496 gpa = vme->u.inst_emul.gpa; 1497 cs_base = vme->u.inst_emul.cs_base; 1498 cs_d = vme->u.inst_emul.cs_d; 1499 vie = &vme->u.inst_emul.vie; 1500 paging = &vme->u.inst_emul.paging; 1501 cpu_mode = paging->cpu_mode; 1502 1503 VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa); 1504 1505 /* Fetch, decode and emulate the faulting instruction */ 1506 if (vie->num_valid == 0) { 1507 error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip + 1508 cs_base, VIE_INST_SIZE, vie, &fault); 1509 } else { 1510 /* 1511 * The instruction bytes have already been copied into 'vie' 1512 */ 1513 error = fault = 0; 1514 } 1515 if (error || fault) 1516 return (error); 1517 1518 if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) { 1519 VCPU_CTR1(vm, vcpuid, "Error decoding instruction at %#lx", 1520 vme->rip + cs_base); 1521 *retu = true; /* dump instruction bytes in userspace */ 1522 return (0); 1523 } 1524 1525 /* 1526 * Update 'nextrip' based on the length of the emulated instruction. 1527 */ 1528 vme->inst_length = vie->num_processed; 1529 vcpu->nextrip += vie->num_processed; 1530 VCPU_CTR1(vm, vcpuid, "nextrip updated to %#lx after instruction " 1531 "decoding", vcpu->nextrip); 1532 1533 /* return to userland unless this is an in-kernel emulated device */ 1534 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1535 mread = lapic_mmio_read; 1536 mwrite = lapic_mmio_write; 1537 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1538 mread = vioapic_mmio_read; 1539 mwrite = vioapic_mmio_write; 1540 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1541 mread = vhpet_mmio_read; 1542 mwrite = vhpet_mmio_write; 1543 } else { 1544 *retu = true; 1545 return (0); 1546 } 1547 1548 error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging, 1549 mread, mwrite, retu); 1550 1551 return (error); 1552 } 1553 1554 static int 1555 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu) 1556 { 1557 int error, i; 1558 struct vcpu *vcpu; 1559 struct thread *td; 1560 1561 error = 0; 1562 vcpu = &vm->vcpu[vcpuid]; 1563 td = curthread; 1564 1565 CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus); 1566 1567 /* 1568 * Wait until all 'active_cpus' have suspended themselves. 1569 * 1570 * Since a VM may be suspended at any time including when one or 1571 * more vcpus are doing a rendezvous we need to call the rendezvous 1572 * handler while we are waiting to prevent a deadlock. 1573 */ 1574 vcpu_lock(vcpu); 1575 while (error == 0) { 1576 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1577 VCPU_CTR0(vm, vcpuid, "All vcpus suspended"); 1578 break; 1579 } 1580 1581 if (vm->rendezvous_func == NULL) { 1582 VCPU_CTR0(vm, vcpuid, "Sleeping during suspend"); 1583 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); 1584 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1585 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); 1586 if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) { 1587 vcpu_unlock(vcpu); 1588 error = thread_check_susp(td, false); 1589 vcpu_lock(vcpu); 1590 } 1591 } else { 1592 VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend"); 1593 vcpu_unlock(vcpu); 1594 error = vm_handle_rendezvous(vm, vcpuid); 1595 vcpu_lock(vcpu); 1596 } 1597 } 1598 vcpu_unlock(vcpu); 1599 1600 /* 1601 * Wakeup the other sleeping vcpus and return to userspace. 1602 */ 1603 for (i = 0; i < vm->maxcpus; i++) { 1604 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1605 vcpu_notify_event(vm, i, false); 1606 } 1607 } 1608 1609 *retu = true; 1610 return (error); 1611 } 1612 1613 static int 1614 vm_handle_reqidle(struct vm *vm, int vcpuid, bool *retu) 1615 { 1616 struct vcpu *vcpu = &vm->vcpu[vcpuid]; 1617 1618 vcpu_lock(vcpu); 1619 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle)); 1620 vcpu->reqidle = 0; 1621 vcpu_unlock(vcpu); 1622 *retu = true; 1623 return (0); 1624 } 1625 1626 int 1627 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1628 { 1629 int i; 1630 1631 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1632 return (EINVAL); 1633 1634 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1635 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1636 vm->suspend, how); 1637 return (EALREADY); 1638 } 1639 1640 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1641 1642 /* 1643 * Notify all active vcpus that they are now suspended. 1644 */ 1645 for (i = 0; i < vm->maxcpus; i++) { 1646 if (CPU_ISSET(i, &vm->active_cpus)) 1647 vcpu_notify_event(vm, i, false); 1648 } 1649 1650 return (0); 1651 } 1652 1653 void 1654 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip) 1655 { 1656 struct vm_exit *vmexit; 1657 1658 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1659 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1660 1661 vmexit = vm_exitinfo(vm, vcpuid); 1662 vmexit->rip = rip; 1663 vmexit->inst_length = 0; 1664 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1665 vmexit->u.suspended.how = vm->suspend; 1666 } 1667 1668 void 1669 vm_exit_debug(struct vm *vm, int vcpuid, uint64_t rip) 1670 { 1671 struct vm_exit *vmexit; 1672 1673 vmexit = vm_exitinfo(vm, vcpuid); 1674 vmexit->rip = rip; 1675 vmexit->inst_length = 0; 1676 vmexit->exitcode = VM_EXITCODE_DEBUG; 1677 } 1678 1679 void 1680 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip) 1681 { 1682 struct vm_exit *vmexit; 1683 1684 KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress")); 1685 1686 vmexit = vm_exitinfo(vm, vcpuid); 1687 vmexit->rip = rip; 1688 vmexit->inst_length = 0; 1689 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1690 vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1); 1691 } 1692 1693 void 1694 vm_exit_reqidle(struct vm *vm, int vcpuid, uint64_t rip) 1695 { 1696 struct vm_exit *vmexit; 1697 1698 vmexit = vm_exitinfo(vm, vcpuid); 1699 vmexit->rip = rip; 1700 vmexit->inst_length = 0; 1701 vmexit->exitcode = VM_EXITCODE_REQIDLE; 1702 vmm_stat_incr(vm, vcpuid, VMEXIT_REQIDLE, 1); 1703 } 1704 1705 void 1706 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip) 1707 { 1708 struct vm_exit *vmexit; 1709 1710 vmexit = vm_exitinfo(vm, vcpuid); 1711 vmexit->rip = rip; 1712 vmexit->inst_length = 0; 1713 vmexit->exitcode = VM_EXITCODE_BOGUS; 1714 vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1); 1715 } 1716 1717 int 1718 vm_run(struct vm *vm, struct vm_run *vmrun) 1719 { 1720 struct vm_eventinfo evinfo; 1721 int error, vcpuid; 1722 struct vcpu *vcpu; 1723 struct pcb *pcb; 1724 uint64_t tscval; 1725 struct vm_exit *vme; 1726 bool retu, intr_disabled; 1727 pmap_t pmap; 1728 1729 vcpuid = vmrun->cpuid; 1730 1731 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1732 return (EINVAL); 1733 1734 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1735 return (EINVAL); 1736 1737 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1738 return (EINVAL); 1739 1740 pmap = vmspace_pmap(vm->vmspace); 1741 vcpu = &vm->vcpu[vcpuid]; 1742 vme = &vcpu->exitinfo; 1743 evinfo.rptr = &vm->rendezvous_func; 1744 evinfo.sptr = &vm->suspend; 1745 evinfo.iptr = &vcpu->reqidle; 1746 restart: 1747 critical_enter(); 1748 1749 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1750 ("vm_run: absurd pm_active")); 1751 1752 tscval = rdtsc(); 1753 1754 pcb = PCPU_GET(curpcb); 1755 set_pcb_flags(pcb, PCB_FULL_IRET); 1756 1757 restore_guest_fpustate(vcpu); 1758 1759 vcpu_require_state(vm, vcpuid, VCPU_RUNNING); 1760 error = vmmops_run(vm->cookie, vcpuid, vcpu->nextrip, pmap, &evinfo); 1761 vcpu_require_state(vm, vcpuid, VCPU_FROZEN); 1762 1763 save_guest_fpustate(vcpu); 1764 1765 vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1766 1767 critical_exit(); 1768 1769 if (error == 0) { 1770 retu = false; 1771 vcpu->nextrip = vme->rip + vme->inst_length; 1772 switch (vme->exitcode) { 1773 case VM_EXITCODE_REQIDLE: 1774 error = vm_handle_reqidle(vm, vcpuid, &retu); 1775 break; 1776 case VM_EXITCODE_SUSPENDED: 1777 error = vm_handle_suspend(vm, vcpuid, &retu); 1778 break; 1779 case VM_EXITCODE_IOAPIC_EOI: 1780 vioapic_process_eoi(vm, vcpuid, 1781 vme->u.ioapic_eoi.vector); 1782 break; 1783 case VM_EXITCODE_RENDEZVOUS: 1784 error = vm_handle_rendezvous(vm, vcpuid); 1785 break; 1786 case VM_EXITCODE_HLT: 1787 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1788 error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu); 1789 break; 1790 case VM_EXITCODE_PAGING: 1791 error = vm_handle_paging(vm, vcpuid, &retu); 1792 break; 1793 case VM_EXITCODE_INST_EMUL: 1794 error = vm_handle_inst_emul(vm, vcpuid, &retu); 1795 break; 1796 case VM_EXITCODE_INOUT: 1797 case VM_EXITCODE_INOUT_STR: 1798 error = vm_handle_inout(vm, vcpuid, vme, &retu); 1799 break; 1800 case VM_EXITCODE_MONITOR: 1801 case VM_EXITCODE_MWAIT: 1802 case VM_EXITCODE_VMINSN: 1803 vm_inject_ud(vm, vcpuid); 1804 break; 1805 default: 1806 retu = true; /* handled in userland */ 1807 break; 1808 } 1809 } 1810 1811 if (error == 0 && retu == false) 1812 goto restart; 1813 1814 VCPU_CTR2(vm, vcpuid, "retu %d/%d", error, vme->exitcode); 1815 1816 /* copy the exit information */ 1817 bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit)); 1818 return (error); 1819 } 1820 1821 int 1822 vm_restart_instruction(void *arg, int vcpuid) 1823 { 1824 struct vm *vm; 1825 struct vcpu *vcpu; 1826 enum vcpu_state state; 1827 uint64_t rip; 1828 int error __diagused; 1829 1830 vm = arg; 1831 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1832 return (EINVAL); 1833 1834 vcpu = &vm->vcpu[vcpuid]; 1835 state = vcpu_get_state(vm, vcpuid, NULL); 1836 if (state == VCPU_RUNNING) { 1837 /* 1838 * When a vcpu is "running" the next instruction is determined 1839 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'. 1840 * Thus setting 'inst_length' to zero will cause the current 1841 * instruction to be restarted. 1842 */ 1843 vcpu->exitinfo.inst_length = 0; 1844 VCPU_CTR1(vm, vcpuid, "restarting instruction at %#lx by " 1845 "setting inst_length to zero", vcpu->exitinfo.rip); 1846 } else if (state == VCPU_FROZEN) { 1847 /* 1848 * When a vcpu is "frozen" it is outside the critical section 1849 * around vmmops_run() and 'nextrip' points to the next 1850 * instruction. Thus instruction restart is achieved by setting 1851 * 'nextrip' to the vcpu's %rip. 1852 */ 1853 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip); 1854 KASSERT(!error, ("%s: error %d getting rip", __func__, error)); 1855 VCPU_CTR2(vm, vcpuid, "restarting instruction by updating " 1856 "nextrip from %#lx to %#lx", vcpu->nextrip, rip); 1857 vcpu->nextrip = rip; 1858 } else { 1859 panic("%s: invalid state %d", __func__, state); 1860 } 1861 return (0); 1862 } 1863 1864 int 1865 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info) 1866 { 1867 struct vcpu *vcpu; 1868 int type, vector; 1869 1870 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1871 return (EINVAL); 1872 1873 vcpu = &vm->vcpu[vcpuid]; 1874 1875 if (info & VM_INTINFO_VALID) { 1876 type = info & VM_INTINFO_TYPE; 1877 vector = info & 0xff; 1878 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 1879 return (EINVAL); 1880 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 1881 return (EINVAL); 1882 if (info & VM_INTINFO_RSVD) 1883 return (EINVAL); 1884 } else { 1885 info = 0; 1886 } 1887 VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info); 1888 vcpu->exitintinfo = info; 1889 return (0); 1890 } 1891 1892 enum exc_class { 1893 EXC_BENIGN, 1894 EXC_CONTRIBUTORY, 1895 EXC_PAGEFAULT 1896 }; 1897 1898 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 1899 1900 static enum exc_class 1901 exception_class(uint64_t info) 1902 { 1903 int type, vector; 1904 1905 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 1906 type = info & VM_INTINFO_TYPE; 1907 vector = info & 0xff; 1908 1909 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 1910 switch (type) { 1911 case VM_INTINFO_HWINTR: 1912 case VM_INTINFO_SWINTR: 1913 case VM_INTINFO_NMI: 1914 return (EXC_BENIGN); 1915 default: 1916 /* 1917 * Hardware exception. 1918 * 1919 * SVM and VT-x use identical type values to represent NMI, 1920 * hardware interrupt and software interrupt. 1921 * 1922 * SVM uses type '3' for all exceptions. VT-x uses type '3' 1923 * for exceptions except #BP and #OF. #BP and #OF use a type 1924 * value of '5' or '6'. Therefore we don't check for explicit 1925 * values of 'type' to classify 'intinfo' into a hardware 1926 * exception. 1927 */ 1928 break; 1929 } 1930 1931 switch (vector) { 1932 case IDT_PF: 1933 case IDT_VE: 1934 return (EXC_PAGEFAULT); 1935 case IDT_DE: 1936 case IDT_TS: 1937 case IDT_NP: 1938 case IDT_SS: 1939 case IDT_GP: 1940 return (EXC_CONTRIBUTORY); 1941 default: 1942 return (EXC_BENIGN); 1943 } 1944 } 1945 1946 static int 1947 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2, 1948 uint64_t *retinfo) 1949 { 1950 enum exc_class exc1, exc2; 1951 int type1, vector1; 1952 1953 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 1954 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 1955 1956 /* 1957 * If an exception occurs while attempting to call the double-fault 1958 * handler the processor enters shutdown mode (aka triple fault). 1959 */ 1960 type1 = info1 & VM_INTINFO_TYPE; 1961 vector1 = info1 & 0xff; 1962 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 1963 VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)", 1964 info1, info2); 1965 vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT); 1966 *retinfo = 0; 1967 return (0); 1968 } 1969 1970 /* 1971 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 1972 */ 1973 exc1 = exception_class(info1); 1974 exc2 = exception_class(info2); 1975 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 1976 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 1977 /* Convert nested fault into a double fault. */ 1978 *retinfo = IDT_DF; 1979 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1980 *retinfo |= VM_INTINFO_DEL_ERRCODE; 1981 } else { 1982 /* Handle exceptions serially */ 1983 *retinfo = info2; 1984 } 1985 return (1); 1986 } 1987 1988 static uint64_t 1989 vcpu_exception_intinfo(struct vcpu *vcpu) 1990 { 1991 uint64_t info = 0; 1992 1993 if (vcpu->exception_pending) { 1994 info = vcpu->exc_vector & 0xff; 1995 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1996 if (vcpu->exc_errcode_valid) { 1997 info |= VM_INTINFO_DEL_ERRCODE; 1998 info |= (uint64_t)vcpu->exc_errcode << 32; 1999 } 2000 } 2001 return (info); 2002 } 2003 2004 int 2005 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo) 2006 { 2007 struct vcpu *vcpu; 2008 uint64_t info1, info2; 2009 int valid; 2010 2011 KASSERT(vcpuid >= 0 && 2012 vcpuid < vm->maxcpus, ("invalid vcpu %d", vcpuid)); 2013 2014 vcpu = &vm->vcpu[vcpuid]; 2015 2016 info1 = vcpu->exitintinfo; 2017 vcpu->exitintinfo = 0; 2018 2019 info2 = 0; 2020 if (vcpu->exception_pending) { 2021 info2 = vcpu_exception_intinfo(vcpu); 2022 vcpu->exception_pending = 0; 2023 VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx", 2024 vcpu->exc_vector, info2); 2025 } 2026 2027 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 2028 valid = nested_fault(vm, vcpuid, info1, info2, retinfo); 2029 } else if (info1 & VM_INTINFO_VALID) { 2030 *retinfo = info1; 2031 valid = 1; 2032 } else if (info2 & VM_INTINFO_VALID) { 2033 *retinfo = info2; 2034 valid = 1; 2035 } else { 2036 valid = 0; 2037 } 2038 2039 if (valid) { 2040 VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), " 2041 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 2042 } 2043 2044 return (valid); 2045 } 2046 2047 int 2048 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2) 2049 { 2050 struct vcpu *vcpu; 2051 2052 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2053 return (EINVAL); 2054 2055 vcpu = &vm->vcpu[vcpuid]; 2056 *info1 = vcpu->exitintinfo; 2057 *info2 = vcpu_exception_intinfo(vcpu); 2058 return (0); 2059 } 2060 2061 int 2062 vm_inject_exception(struct vm *vm, int vcpuid, int vector, int errcode_valid, 2063 uint32_t errcode, int restart_instruction) 2064 { 2065 struct vcpu *vcpu; 2066 uint64_t regval; 2067 int error __diagused; 2068 2069 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2070 return (EINVAL); 2071 2072 if (vector < 0 || vector >= 32) 2073 return (EINVAL); 2074 2075 /* 2076 * A double fault exception should never be injected directly into 2077 * the guest. It is a derived exception that results from specific 2078 * combinations of nested faults. 2079 */ 2080 if (vector == IDT_DF) 2081 return (EINVAL); 2082 2083 vcpu = &vm->vcpu[vcpuid]; 2084 2085 if (vcpu->exception_pending) { 2086 VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to " 2087 "pending exception %d", vector, vcpu->exc_vector); 2088 return (EBUSY); 2089 } 2090 2091 if (errcode_valid) { 2092 /* 2093 * Exceptions don't deliver an error code in real mode. 2094 */ 2095 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_CR0, ®val); 2096 KASSERT(!error, ("%s: error %d getting CR0", __func__, error)); 2097 if (!(regval & CR0_PE)) 2098 errcode_valid = 0; 2099 } 2100 2101 /* 2102 * From section 26.6.1 "Interruptibility State" in Intel SDM: 2103 * 2104 * Event blocking by "STI" or "MOV SS" is cleared after guest executes 2105 * one instruction or incurs an exception. 2106 */ 2107 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0); 2108 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", 2109 __func__, error)); 2110 2111 if (restart_instruction) 2112 vm_restart_instruction(vm, vcpuid); 2113 2114 vcpu->exception_pending = 1; 2115 vcpu->exc_vector = vector; 2116 vcpu->exc_errcode = errcode; 2117 vcpu->exc_errcode_valid = errcode_valid; 2118 VCPU_CTR1(vm, vcpuid, "Exception %d pending", vector); 2119 return (0); 2120 } 2121 2122 void 2123 vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid, 2124 int errcode) 2125 { 2126 struct vm *vm; 2127 int error __diagused, restart_instruction; 2128 2129 vm = vmarg; 2130 restart_instruction = 1; 2131 2132 error = vm_inject_exception(vm, vcpuid, vector, errcode_valid, 2133 errcode, restart_instruction); 2134 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 2135 } 2136 2137 void 2138 vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2) 2139 { 2140 struct vm *vm; 2141 int error __diagused; 2142 2143 vm = vmarg; 2144 VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx", 2145 error_code, cr2); 2146 2147 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2); 2148 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 2149 2150 vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code); 2151 } 2152 2153 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 2154 2155 int 2156 vm_inject_nmi(struct vm *vm, int vcpuid) 2157 { 2158 struct vcpu *vcpu; 2159 2160 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2161 return (EINVAL); 2162 2163 vcpu = &vm->vcpu[vcpuid]; 2164 2165 vcpu->nmi_pending = 1; 2166 vcpu_notify_event(vm, vcpuid, false); 2167 return (0); 2168 } 2169 2170 int 2171 vm_nmi_pending(struct vm *vm, int vcpuid) 2172 { 2173 struct vcpu *vcpu; 2174 2175 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2176 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 2177 2178 vcpu = &vm->vcpu[vcpuid]; 2179 2180 return (vcpu->nmi_pending); 2181 } 2182 2183 void 2184 vm_nmi_clear(struct vm *vm, int vcpuid) 2185 { 2186 struct vcpu *vcpu; 2187 2188 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2189 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 2190 2191 vcpu = &vm->vcpu[vcpuid]; 2192 2193 if (vcpu->nmi_pending == 0) 2194 panic("vm_nmi_clear: inconsistent nmi_pending state"); 2195 2196 vcpu->nmi_pending = 0; 2197 vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1); 2198 } 2199 2200 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 2201 2202 int 2203 vm_inject_extint(struct vm *vm, int vcpuid) 2204 { 2205 struct vcpu *vcpu; 2206 2207 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2208 return (EINVAL); 2209 2210 vcpu = &vm->vcpu[vcpuid]; 2211 2212 vcpu->extint_pending = 1; 2213 vcpu_notify_event(vm, vcpuid, false); 2214 return (0); 2215 } 2216 2217 int 2218 vm_extint_pending(struct vm *vm, int vcpuid) 2219 { 2220 struct vcpu *vcpu; 2221 2222 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2223 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 2224 2225 vcpu = &vm->vcpu[vcpuid]; 2226 2227 return (vcpu->extint_pending); 2228 } 2229 2230 void 2231 vm_extint_clear(struct vm *vm, int vcpuid) 2232 { 2233 struct vcpu *vcpu; 2234 2235 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2236 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 2237 2238 vcpu = &vm->vcpu[vcpuid]; 2239 2240 if (vcpu->extint_pending == 0) 2241 panic("vm_extint_clear: inconsistent extint_pending state"); 2242 2243 vcpu->extint_pending = 0; 2244 vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1); 2245 } 2246 2247 int 2248 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval) 2249 { 2250 if (vcpu < 0 || vcpu >= vm->maxcpus) 2251 return (EINVAL); 2252 2253 if (type < 0 || type >= VM_CAP_MAX) 2254 return (EINVAL); 2255 2256 return (vmmops_getcap(vm->cookie, vcpu, type, retval)); 2257 } 2258 2259 int 2260 vm_set_capability(struct vm *vm, int vcpu, int type, int val) 2261 { 2262 if (vcpu < 0 || vcpu >= vm->maxcpus) 2263 return (EINVAL); 2264 2265 if (type < 0 || type >= VM_CAP_MAX) 2266 return (EINVAL); 2267 2268 return (vmmops_setcap(vm->cookie, vcpu, type, val)); 2269 } 2270 2271 struct vlapic * 2272 vm_lapic(struct vm *vm, int cpu) 2273 { 2274 return (vm->vcpu[cpu].vlapic); 2275 } 2276 2277 struct vioapic * 2278 vm_ioapic(struct vm *vm) 2279 { 2280 2281 return (vm->vioapic); 2282 } 2283 2284 struct vhpet * 2285 vm_hpet(struct vm *vm) 2286 { 2287 2288 return (vm->vhpet); 2289 } 2290 2291 bool 2292 vmm_is_pptdev(int bus, int slot, int func) 2293 { 2294 int b, f, i, n, s; 2295 char *val, *cp, *cp2; 2296 bool found; 2297 2298 /* 2299 * XXX 2300 * The length of an environment variable is limited to 128 bytes which 2301 * puts an upper limit on the number of passthru devices that may be 2302 * specified using a single environment variable. 2303 * 2304 * Work around this by scanning multiple environment variable 2305 * names instead of a single one - yuck! 2306 */ 2307 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 2308 2309 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 2310 found = false; 2311 for (i = 0; names[i] != NULL && !found; i++) { 2312 cp = val = kern_getenv(names[i]); 2313 while (cp != NULL && *cp != '\0') { 2314 if ((cp2 = strchr(cp, ' ')) != NULL) 2315 *cp2 = '\0'; 2316 2317 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 2318 if (n == 3 && bus == b && slot == s && func == f) { 2319 found = true; 2320 break; 2321 } 2322 2323 if (cp2 != NULL) 2324 *cp2++ = ' '; 2325 2326 cp = cp2; 2327 } 2328 freeenv(val); 2329 } 2330 return (found); 2331 } 2332 2333 void * 2334 vm_iommu_domain(struct vm *vm) 2335 { 2336 2337 return (vm->iommu); 2338 } 2339 2340 int 2341 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate, 2342 bool from_idle) 2343 { 2344 int error; 2345 struct vcpu *vcpu; 2346 2347 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2348 panic("vm_set_run_state: invalid vcpuid %d", vcpuid); 2349 2350 vcpu = &vm->vcpu[vcpuid]; 2351 2352 vcpu_lock(vcpu); 2353 error = vcpu_set_state_locked(vm, vcpuid, newstate, from_idle); 2354 vcpu_unlock(vcpu); 2355 2356 return (error); 2357 } 2358 2359 enum vcpu_state 2360 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu) 2361 { 2362 struct vcpu *vcpu; 2363 enum vcpu_state state; 2364 2365 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2366 panic("vm_get_run_state: invalid vcpuid %d", vcpuid); 2367 2368 vcpu = &vm->vcpu[vcpuid]; 2369 2370 vcpu_lock(vcpu); 2371 state = vcpu->state; 2372 if (hostcpu != NULL) 2373 *hostcpu = vcpu->hostcpu; 2374 vcpu_unlock(vcpu); 2375 2376 return (state); 2377 } 2378 2379 int 2380 vm_activate_cpu(struct vm *vm, int vcpuid) 2381 { 2382 2383 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2384 return (EINVAL); 2385 2386 if (CPU_ISSET(vcpuid, &vm->active_cpus)) 2387 return (EBUSY); 2388 2389 VCPU_CTR0(vm, vcpuid, "activated"); 2390 CPU_SET_ATOMIC(vcpuid, &vm->active_cpus); 2391 return (0); 2392 } 2393 2394 int 2395 vm_suspend_cpu(struct vm *vm, int vcpuid) 2396 { 2397 int i; 2398 2399 if (vcpuid < -1 || vcpuid >= vm->maxcpus) 2400 return (EINVAL); 2401 2402 if (vcpuid == -1) { 2403 vm->debug_cpus = vm->active_cpus; 2404 for (i = 0; i < vm->maxcpus; i++) { 2405 if (CPU_ISSET(i, &vm->active_cpus)) 2406 vcpu_notify_event(vm, i, false); 2407 } 2408 } else { 2409 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 2410 return (EINVAL); 2411 2412 CPU_SET_ATOMIC(vcpuid, &vm->debug_cpus); 2413 vcpu_notify_event(vm, vcpuid, false); 2414 } 2415 return (0); 2416 } 2417 2418 int 2419 vm_resume_cpu(struct vm *vm, int vcpuid) 2420 { 2421 2422 if (vcpuid < -1 || vcpuid >= vm->maxcpus) 2423 return (EINVAL); 2424 2425 if (vcpuid == -1) { 2426 CPU_ZERO(&vm->debug_cpus); 2427 } else { 2428 if (!CPU_ISSET(vcpuid, &vm->debug_cpus)) 2429 return (EINVAL); 2430 2431 CPU_CLR_ATOMIC(vcpuid, &vm->debug_cpus); 2432 } 2433 return (0); 2434 } 2435 2436 int 2437 vcpu_debugged(struct vm *vm, int vcpuid) 2438 { 2439 2440 return (CPU_ISSET(vcpuid, &vm->debug_cpus)); 2441 } 2442 2443 cpuset_t 2444 vm_active_cpus(struct vm *vm) 2445 { 2446 2447 return (vm->active_cpus); 2448 } 2449 2450 cpuset_t 2451 vm_debug_cpus(struct vm *vm) 2452 { 2453 2454 return (vm->debug_cpus); 2455 } 2456 2457 cpuset_t 2458 vm_suspended_cpus(struct vm *vm) 2459 { 2460 2461 return (vm->suspended_cpus); 2462 } 2463 2464 void * 2465 vcpu_stats(struct vm *vm, int vcpuid) 2466 { 2467 2468 return (vm->vcpu[vcpuid].stats); 2469 } 2470 2471 int 2472 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state) 2473 { 2474 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2475 return (EINVAL); 2476 2477 *state = vm->vcpu[vcpuid].x2apic_state; 2478 2479 return (0); 2480 } 2481 2482 int 2483 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state) 2484 { 2485 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2486 return (EINVAL); 2487 2488 if (state >= X2APIC_STATE_LAST) 2489 return (EINVAL); 2490 2491 vm->vcpu[vcpuid].x2apic_state = state; 2492 2493 vlapic_set_x2apic_state(vm, vcpuid, state); 2494 2495 return (0); 2496 } 2497 2498 /* 2499 * This function is called to ensure that a vcpu "sees" a pending event 2500 * as soon as possible: 2501 * - If the vcpu thread is sleeping then it is woken up. 2502 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2503 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2504 */ 2505 static void 2506 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr) 2507 { 2508 int hostcpu; 2509 2510 hostcpu = vcpu->hostcpu; 2511 if (vcpu->state == VCPU_RUNNING) { 2512 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2513 if (hostcpu != curcpu) { 2514 if (lapic_intr) { 2515 vlapic_post_intr(vcpu->vlapic, hostcpu, 2516 vmm_ipinum); 2517 } else { 2518 ipi_cpu(hostcpu, vmm_ipinum); 2519 } 2520 } else { 2521 /* 2522 * If the 'vcpu' is running on 'curcpu' then it must 2523 * be sending a notification to itself (e.g. SELF_IPI). 2524 * The pending event will be picked up when the vcpu 2525 * transitions back to guest context. 2526 */ 2527 } 2528 } else { 2529 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2530 "with hostcpu %d", vcpu->state, hostcpu)); 2531 if (vcpu->state == VCPU_SLEEPING) 2532 wakeup_one(vcpu); 2533 } 2534 } 2535 2536 void 2537 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr) 2538 { 2539 struct vcpu *vcpu = &vm->vcpu[vcpuid]; 2540 2541 vcpu_lock(vcpu); 2542 vcpu_notify_event_locked(vcpu, lapic_intr); 2543 vcpu_unlock(vcpu); 2544 } 2545 2546 struct vmspace * 2547 vm_get_vmspace(struct vm *vm) 2548 { 2549 2550 return (vm->vmspace); 2551 } 2552 2553 int 2554 vm_apicid2vcpuid(struct vm *vm, int apicid) 2555 { 2556 /* 2557 * XXX apic id is assumed to be numerically identical to vcpu id 2558 */ 2559 return (apicid); 2560 } 2561 2562 int 2563 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest, 2564 vm_rendezvous_func_t func, void *arg) 2565 { 2566 int error, i; 2567 2568 /* 2569 * Enforce that this function is called without any locks 2570 */ 2571 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2572 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus), 2573 ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid)); 2574 2575 restart: 2576 mtx_lock(&vm->rendezvous_mtx); 2577 if (vm->rendezvous_func != NULL) { 2578 /* 2579 * If a rendezvous is already in progress then we need to 2580 * call the rendezvous handler in case this 'vcpuid' is one 2581 * of the targets of the rendezvous. 2582 */ 2583 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress"); 2584 mtx_unlock(&vm->rendezvous_mtx); 2585 error = vm_handle_rendezvous(vm, vcpuid); 2586 if (error != 0) 2587 return (error); 2588 goto restart; 2589 } 2590 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2591 "rendezvous is still in progress")); 2592 2593 RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous"); 2594 vm->rendezvous_req_cpus = dest; 2595 CPU_ZERO(&vm->rendezvous_done_cpus); 2596 vm->rendezvous_arg = arg; 2597 vm->rendezvous_func = func; 2598 mtx_unlock(&vm->rendezvous_mtx); 2599 2600 /* 2601 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2602 * vcpus so they handle the rendezvous as soon as possible. 2603 */ 2604 for (i = 0; i < vm->maxcpus; i++) { 2605 if (CPU_ISSET(i, &dest)) 2606 vcpu_notify_event(vm, i, false); 2607 } 2608 2609 return (vm_handle_rendezvous(vm, vcpuid)); 2610 } 2611 2612 struct vatpic * 2613 vm_atpic(struct vm *vm) 2614 { 2615 return (vm->vatpic); 2616 } 2617 2618 struct vatpit * 2619 vm_atpit(struct vm *vm) 2620 { 2621 return (vm->vatpit); 2622 } 2623 2624 struct vpmtmr * 2625 vm_pmtmr(struct vm *vm) 2626 { 2627 2628 return (vm->vpmtmr); 2629 } 2630 2631 struct vrtc * 2632 vm_rtc(struct vm *vm) 2633 { 2634 2635 return (vm->vrtc); 2636 } 2637 2638 enum vm_reg_name 2639 vm_segment_name(int seg) 2640 { 2641 static enum vm_reg_name seg_names[] = { 2642 VM_REG_GUEST_ES, 2643 VM_REG_GUEST_CS, 2644 VM_REG_GUEST_SS, 2645 VM_REG_GUEST_DS, 2646 VM_REG_GUEST_FS, 2647 VM_REG_GUEST_GS 2648 }; 2649 2650 KASSERT(seg >= 0 && seg < nitems(seg_names), 2651 ("%s: invalid segment encoding %d", __func__, seg)); 2652 return (seg_names[seg]); 2653 } 2654 2655 void 2656 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, 2657 int num_copyinfo) 2658 { 2659 int idx; 2660 2661 for (idx = 0; idx < num_copyinfo; idx++) { 2662 if (copyinfo[idx].cookie != NULL) 2663 vm_gpa_release(copyinfo[idx].cookie); 2664 } 2665 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2666 } 2667 2668 int 2669 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging, 2670 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2671 int num_copyinfo, int *fault) 2672 { 2673 int error, idx, nused; 2674 size_t n, off, remaining; 2675 void *hva, *cookie; 2676 uint64_t gpa; 2677 2678 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2679 2680 nused = 0; 2681 remaining = len; 2682 while (remaining > 0) { 2683 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo")); 2684 error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa, fault); 2685 if (error || *fault) 2686 return (error); 2687 off = gpa & PAGE_MASK; 2688 n = min(remaining, PAGE_SIZE - off); 2689 copyinfo[nused].gpa = gpa; 2690 copyinfo[nused].len = n; 2691 remaining -= n; 2692 gla += n; 2693 nused++; 2694 } 2695 2696 for (idx = 0; idx < nused; idx++) { 2697 hva = vm_gpa_hold(vm, vcpuid, copyinfo[idx].gpa, 2698 copyinfo[idx].len, prot, &cookie); 2699 if (hva == NULL) 2700 break; 2701 copyinfo[idx].hva = hva; 2702 copyinfo[idx].cookie = cookie; 2703 } 2704 2705 if (idx != nused) { 2706 vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo); 2707 return (EFAULT); 2708 } else { 2709 *fault = 0; 2710 return (0); 2711 } 2712 } 2713 2714 void 2715 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr, 2716 size_t len) 2717 { 2718 char *dst; 2719 int idx; 2720 2721 dst = kaddr; 2722 idx = 0; 2723 while (len > 0) { 2724 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2725 len -= copyinfo[idx].len; 2726 dst += copyinfo[idx].len; 2727 idx++; 2728 } 2729 } 2730 2731 void 2732 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr, 2733 struct vm_copyinfo *copyinfo, size_t len) 2734 { 2735 const char *src; 2736 int idx; 2737 2738 src = kaddr; 2739 idx = 0; 2740 while (len > 0) { 2741 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2742 len -= copyinfo[idx].len; 2743 src += copyinfo[idx].len; 2744 idx++; 2745 } 2746 } 2747 2748 /* 2749 * Return the amount of in-use and wired memory for the VM. Since 2750 * these are global stats, only return the values with for vCPU 0 2751 */ 2752 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2753 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2754 2755 static void 2756 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2757 { 2758 2759 if (vcpu == 0) { 2760 vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT, 2761 PAGE_SIZE * vmspace_resident_count(vm->vmspace)); 2762 } 2763 } 2764 2765 static void 2766 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2767 { 2768 2769 if (vcpu == 0) { 2770 vmm_stat_set(vm, vcpu, VMM_MEM_WIRED, 2771 PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace))); 2772 } 2773 } 2774 2775 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2776 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2777 2778 #ifdef BHYVE_SNAPSHOT 2779 static int 2780 vm_snapshot_vcpus(struct vm *vm, struct vm_snapshot_meta *meta) 2781 { 2782 int ret; 2783 int i; 2784 struct vcpu *vcpu; 2785 2786 for (i = 0; i < VM_MAXCPU; i++) { 2787 vcpu = &vm->vcpu[i]; 2788 2789 SNAPSHOT_VAR_OR_LEAVE(vcpu->x2apic_state, meta, ret, done); 2790 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitintinfo, meta, ret, done); 2791 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_vector, meta, ret, done); 2792 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode_valid, meta, ret, done); 2793 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode, meta, ret, done); 2794 SNAPSHOT_VAR_OR_LEAVE(vcpu->guest_xcr0, meta, ret, done); 2795 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitinfo, meta, ret, done); 2796 SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, ret, done); 2797 /* XXX we're cheating here, since the value of tsc_offset as 2798 * saved here is actually the value of the guest's TSC value. 2799 * 2800 * It will be turned turned back into an actual offset when the 2801 * TSC restore function is called 2802 */ 2803 SNAPSHOT_VAR_OR_LEAVE(vcpu->tsc_offset, meta, ret, done); 2804 } 2805 2806 done: 2807 return (ret); 2808 } 2809 2810 static int 2811 vm_snapshot_vm(struct vm *vm, struct vm_snapshot_meta *meta) 2812 { 2813 int ret; 2814 int i; 2815 uint64_t now; 2816 2817 ret = 0; 2818 now = rdtsc(); 2819 2820 if (meta->op == VM_SNAPSHOT_SAVE) { 2821 /* XXX make tsc_offset take the value TSC proper as seen by the 2822 * guest 2823 */ 2824 for (i = 0; i < VM_MAXCPU; i++) 2825 vm->vcpu[i].tsc_offset += now; 2826 } 2827 2828 ret = vm_snapshot_vcpus(vm, meta); 2829 if (ret != 0) { 2830 printf("%s: failed to copy vm data to user buffer", __func__); 2831 goto done; 2832 } 2833 2834 if (meta->op == VM_SNAPSHOT_SAVE) { 2835 /* XXX turn tsc_offset back into an offset; actual value is only 2836 * required for restore; using it otherwise would be wrong 2837 */ 2838 for (i = 0; i < VM_MAXCPU; i++) 2839 vm->vcpu[i].tsc_offset -= now; 2840 } 2841 2842 done: 2843 return (ret); 2844 } 2845 2846 static int 2847 vm_snapshot_vmcx(struct vm *vm, struct vm_snapshot_meta *meta) 2848 { 2849 int i, error; 2850 2851 error = 0; 2852 2853 for (i = 0; i < VM_MAXCPU; i++) { 2854 error = vmmops_vmcx_snapshot(vm->cookie, meta, i); 2855 if (error != 0) { 2856 printf("%s: failed to snapshot vmcs/vmcb data for " 2857 "vCPU: %d; error: %d\n", __func__, i, error); 2858 goto done; 2859 } 2860 } 2861 2862 done: 2863 return (error); 2864 } 2865 2866 /* 2867 * Save kernel-side structures to user-space for snapshotting. 2868 */ 2869 int 2870 vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta) 2871 { 2872 int ret = 0; 2873 2874 switch (meta->dev_req) { 2875 case STRUCT_VMX: 2876 ret = vmmops_snapshot(vm->cookie, meta); 2877 break; 2878 case STRUCT_VMCX: 2879 ret = vm_snapshot_vmcx(vm, meta); 2880 break; 2881 case STRUCT_VM: 2882 ret = vm_snapshot_vm(vm, meta); 2883 break; 2884 case STRUCT_VIOAPIC: 2885 ret = vioapic_snapshot(vm_ioapic(vm), meta); 2886 break; 2887 case STRUCT_VLAPIC: 2888 ret = vlapic_snapshot(vm, meta); 2889 break; 2890 case STRUCT_VHPET: 2891 ret = vhpet_snapshot(vm_hpet(vm), meta); 2892 break; 2893 case STRUCT_VATPIC: 2894 ret = vatpic_snapshot(vm_atpic(vm), meta); 2895 break; 2896 case STRUCT_VATPIT: 2897 ret = vatpit_snapshot(vm_atpit(vm), meta); 2898 break; 2899 case STRUCT_VPMTMR: 2900 ret = vpmtmr_snapshot(vm_pmtmr(vm), meta); 2901 break; 2902 case STRUCT_VRTC: 2903 ret = vrtc_snapshot(vm_rtc(vm), meta); 2904 break; 2905 default: 2906 printf("%s: failed to find the requested type %#x\n", 2907 __func__, meta->dev_req); 2908 ret = (EINVAL); 2909 } 2910 return (ret); 2911 } 2912 2913 int 2914 vm_set_tsc_offset(struct vm *vm, int vcpuid, uint64_t offset) 2915 { 2916 struct vcpu *vcpu; 2917 2918 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2919 return (EINVAL); 2920 2921 vcpu = &vm->vcpu[vcpuid]; 2922 vcpu->tsc_offset = offset; 2923 2924 return (0); 2925 } 2926 2927 int 2928 vm_restore_time(struct vm *vm) 2929 { 2930 int error, i; 2931 uint64_t now; 2932 struct vcpu *vcpu; 2933 2934 now = rdtsc(); 2935 2936 error = vhpet_restore_time(vm_hpet(vm)); 2937 if (error) 2938 return (error); 2939 2940 for (i = 0; i < nitems(vm->vcpu); i++) { 2941 vcpu = &vm->vcpu[i]; 2942 2943 error = vmmops_restore_tsc(vm->cookie, i, vcpu->tsc_offset - 2944 now); 2945 if (error) 2946 return (error); 2947 } 2948 2949 return (0); 2950 } 2951 #endif 2952