1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include "opt_bhyve_snapshot.h" 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/sysctl.h> 37 #include <sys/malloc.h> 38 #include <sys/pcpu.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/proc.h> 42 #include <sys/rwlock.h> 43 #include <sys/sched.h> 44 #include <sys/smp.h> 45 #include <sys/sx.h> 46 #include <sys/vnode.h> 47 48 #include <vm/vm.h> 49 #include <vm/vm_param.h> 50 #include <vm/vm_extern.h> 51 #include <vm/vm_object.h> 52 #include <vm/vm_page.h> 53 #include <vm/pmap.h> 54 #include <vm/vm_map.h> 55 #include <vm/vm_pager.h> 56 #include <vm/vm_kern.h> 57 #include <vm/vnode_pager.h> 58 #include <vm/swap_pager.h> 59 #include <vm/uma.h> 60 61 #include <machine/cpu.h> 62 #include <machine/pcb.h> 63 #include <machine/smp.h> 64 #include <machine/md_var.h> 65 #include <x86/psl.h> 66 #include <x86/apicreg.h> 67 #include <x86/ifunc.h> 68 69 #include <machine/vmm.h> 70 #include <machine/vmm_instruction_emul.h> 71 #include <machine/vmm_snapshot.h> 72 73 #include <dev/vmm/vmm_dev.h> 74 #include <dev/vmm/vmm_ktr.h> 75 76 #include "vmm_ioport.h" 77 #include "vmm_host.h" 78 #include "vmm_mem.h" 79 #include "vmm_util.h" 80 #include "vatpic.h" 81 #include "vatpit.h" 82 #include "vhpet.h" 83 #include "vioapic.h" 84 #include "vlapic.h" 85 #include "vpmtmr.h" 86 #include "vrtc.h" 87 #include "vmm_stat.h" 88 #include "vmm_lapic.h" 89 90 #include "io/ppt.h" 91 #include "io/iommu.h" 92 93 struct vlapic; 94 95 /* 96 * Initialization: 97 * (a) allocated when vcpu is created 98 * (i) initialized when vcpu is created and when it is reinitialized 99 * (o) initialized the first time the vcpu is created 100 * (x) initialized before use 101 */ 102 struct vcpu { 103 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 104 enum vcpu_state state; /* (o) vcpu state */ 105 int vcpuid; /* (o) */ 106 int hostcpu; /* (o) vcpu's host cpu */ 107 int reqidle; /* (i) request vcpu to idle */ 108 struct vm *vm; /* (o) */ 109 void *cookie; /* (i) cpu-specific data */ 110 struct vlapic *vlapic; /* (i) APIC device model */ 111 enum x2apic_state x2apic_state; /* (i) APIC mode */ 112 uint64_t exitintinfo; /* (i) events pending at VM exit */ 113 int nmi_pending; /* (i) NMI pending */ 114 int extint_pending; /* (i) INTR pending */ 115 int exception_pending; /* (i) exception pending */ 116 int exc_vector; /* (x) exception collateral */ 117 int exc_errcode_valid; 118 uint32_t exc_errcode; 119 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 120 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 121 void *stats; /* (a,i) statistics */ 122 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 123 cpuset_t exitinfo_cpuset; /* (x) storage for vmexit handlers */ 124 uint64_t nextrip; /* (x) next instruction to execute */ 125 uint64_t tsc_offset; /* (o) TSC offsetting */ 126 }; 127 128 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 129 #define vcpu_lock_destroy(v) mtx_destroy(&((v)->mtx)) 130 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 131 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 132 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 133 134 struct mem_seg { 135 size_t len; 136 bool sysmem; 137 struct vm_object *object; 138 }; 139 #define VM_MAX_MEMSEGS 4 140 141 struct mem_map { 142 vm_paddr_t gpa; 143 size_t len; 144 vm_ooffset_t segoff; 145 int segid; 146 int prot; 147 int flags; 148 }; 149 #define VM_MAX_MEMMAPS 8 150 151 /* 152 * Initialization: 153 * (o) initialized the first time the VM is created 154 * (i) initialized when VM is created and when it is reinitialized 155 * (x) initialized before use 156 * 157 * Locking: 158 * [m] mem_segs_lock 159 * [r] rendezvous_mtx 160 * [v] reads require one frozen vcpu, writes require freezing all vcpus 161 */ 162 struct vm { 163 void *cookie; /* (i) cpu-specific data */ 164 void *iommu; /* (x) iommu-specific data */ 165 struct vhpet *vhpet; /* (i) virtual HPET */ 166 struct vioapic *vioapic; /* (i) virtual ioapic */ 167 struct vatpic *vatpic; /* (i) virtual atpic */ 168 struct vatpit *vatpit; /* (i) virtual atpit */ 169 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ 170 struct vrtc *vrtc; /* (o) virtual RTC */ 171 volatile cpuset_t active_cpus; /* (i) active vcpus */ 172 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */ 173 cpuset_t startup_cpus; /* (i) [r] waiting for startup */ 174 int suspend; /* (i) stop VM execution */ 175 bool dying; /* (o) is dying */ 176 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 177 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 178 cpuset_t rendezvous_req_cpus; /* (x) [r] rendezvous requested */ 179 cpuset_t rendezvous_done_cpus; /* (x) [r] rendezvous finished */ 180 void *rendezvous_arg; /* (x) [r] rendezvous func/arg */ 181 vm_rendezvous_func_t rendezvous_func; 182 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 183 struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) [m+v] guest address space */ 184 struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) [m+v] guest memory regions */ 185 struct vmspace *vmspace; /* (o) guest's address space */ 186 char name[VM_MAX_NAMELEN+1]; /* (o) virtual machine name */ 187 struct vcpu **vcpu; /* (o) guest vcpus */ 188 /* The following describe the vm cpu topology */ 189 uint16_t sockets; /* (o) num of sockets */ 190 uint16_t cores; /* (o) num of cores/socket */ 191 uint16_t threads; /* (o) num of threads/core */ 192 uint16_t maxcpus; /* (o) max pluggable cpus */ 193 struct sx mem_segs_lock; /* (o) */ 194 struct sx vcpus_init_lock; /* (o) */ 195 }; 196 197 #define VMM_CTR0(vcpu, format) \ 198 VCPU_CTR0((vcpu)->vm, (vcpu)->vcpuid, format) 199 200 #define VMM_CTR1(vcpu, format, p1) \ 201 VCPU_CTR1((vcpu)->vm, (vcpu)->vcpuid, format, p1) 202 203 #define VMM_CTR2(vcpu, format, p1, p2) \ 204 VCPU_CTR2((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2) 205 206 #define VMM_CTR3(vcpu, format, p1, p2, p3) \ 207 VCPU_CTR3((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3) 208 209 #define VMM_CTR4(vcpu, format, p1, p2, p3, p4) \ 210 VCPU_CTR4((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3, p4) 211 212 static int vmm_initialized; 213 214 static void vmmops_panic(void); 215 216 static void 217 vmmops_panic(void) 218 { 219 panic("vmm_ops func called when !vmm_is_intel() && !vmm_is_svm()"); 220 } 221 222 #define DEFINE_VMMOPS_IFUNC(ret_type, opname, args) \ 223 DEFINE_IFUNC(static, ret_type, vmmops_##opname, args) \ 224 { \ 225 if (vmm_is_intel()) \ 226 return (vmm_ops_intel.opname); \ 227 else if (vmm_is_svm()) \ 228 return (vmm_ops_amd.opname); \ 229 else \ 230 return ((ret_type (*)args)vmmops_panic); \ 231 } 232 233 DEFINE_VMMOPS_IFUNC(int, modinit, (int ipinum)) 234 DEFINE_VMMOPS_IFUNC(int, modcleanup, (void)) 235 DEFINE_VMMOPS_IFUNC(void, modresume, (void)) 236 DEFINE_VMMOPS_IFUNC(void *, init, (struct vm *vm, struct pmap *pmap)) 237 DEFINE_VMMOPS_IFUNC(int, run, (void *vcpui, register_t rip, struct pmap *pmap, 238 struct vm_eventinfo *info)) 239 DEFINE_VMMOPS_IFUNC(void, cleanup, (void *vmi)) 240 DEFINE_VMMOPS_IFUNC(void *, vcpu_init, (void *vmi, struct vcpu *vcpu, 241 int vcpu_id)) 242 DEFINE_VMMOPS_IFUNC(void, vcpu_cleanup, (void *vcpui)) 243 DEFINE_VMMOPS_IFUNC(int, getreg, (void *vcpui, int num, uint64_t *retval)) 244 DEFINE_VMMOPS_IFUNC(int, setreg, (void *vcpui, int num, uint64_t val)) 245 DEFINE_VMMOPS_IFUNC(int, getdesc, (void *vcpui, int num, struct seg_desc *desc)) 246 DEFINE_VMMOPS_IFUNC(int, setdesc, (void *vcpui, int num, struct seg_desc *desc)) 247 DEFINE_VMMOPS_IFUNC(int, getcap, (void *vcpui, int num, int *retval)) 248 DEFINE_VMMOPS_IFUNC(int, setcap, (void *vcpui, int num, int val)) 249 DEFINE_VMMOPS_IFUNC(struct vmspace *, vmspace_alloc, (vm_offset_t min, 250 vm_offset_t max)) 251 DEFINE_VMMOPS_IFUNC(void, vmspace_free, (struct vmspace *vmspace)) 252 DEFINE_VMMOPS_IFUNC(struct vlapic *, vlapic_init, (void *vcpui)) 253 DEFINE_VMMOPS_IFUNC(void, vlapic_cleanup, (struct vlapic *vlapic)) 254 #ifdef BHYVE_SNAPSHOT 255 DEFINE_VMMOPS_IFUNC(int, vcpu_snapshot, (void *vcpui, 256 struct vm_snapshot_meta *meta)) 257 DEFINE_VMMOPS_IFUNC(int, restore_tsc, (void *vcpui, uint64_t now)) 258 #endif 259 260 SDT_PROVIDER_DEFINE(vmm); 261 262 static MALLOC_DEFINE(M_VM, "vm", "vm"); 263 264 /* statistics */ 265 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 266 267 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 268 NULL); 269 270 /* 271 * Halt the guest if all vcpus are executing a HLT instruction with 272 * interrupts disabled. 273 */ 274 static int halt_detection_enabled = 1; 275 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 276 &halt_detection_enabled, 0, 277 "Halt VM if all vcpus execute HLT with interrupts disabled"); 278 279 static int vmm_ipinum; 280 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 281 "IPI vector used for vcpu notifications"); 282 283 static int trace_guest_exceptions; 284 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN, 285 &trace_guest_exceptions, 0, 286 "Trap into hypervisor on all guest exceptions and reflect them back"); 287 288 static int trap_wbinvd; 289 SYSCTL_INT(_hw_vmm, OID_AUTO, trap_wbinvd, CTLFLAG_RDTUN, &trap_wbinvd, 0, 290 "WBINVD triggers a VM-exit"); 291 292 u_int vm_maxcpu; 293 SYSCTL_UINT(_hw_vmm, OID_AUTO, maxcpu, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 294 &vm_maxcpu, 0, "Maximum number of vCPUs"); 295 296 static void vm_free_memmap(struct vm *vm, int ident); 297 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm); 298 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr); 299 300 /* global statistics */ 301 VMM_STAT(VCPU_MIGRATIONS, "vcpu migration across host cpus"); 302 VMM_STAT(VMEXIT_COUNT, "total number of vm exits"); 303 VMM_STAT(VMEXIT_EXTINT, "vm exits due to external interrupt"); 304 VMM_STAT(VMEXIT_HLT, "number of times hlt was intercepted"); 305 VMM_STAT(VMEXIT_CR_ACCESS, "number of times %cr access was intercepted"); 306 VMM_STAT(VMEXIT_RDMSR, "number of times rdmsr was intercepted"); 307 VMM_STAT(VMEXIT_WRMSR, "number of times wrmsr was intercepted"); 308 VMM_STAT(VMEXIT_MTRAP, "number of monitor trap exits"); 309 VMM_STAT(VMEXIT_PAUSE, "number of times pause was intercepted"); 310 VMM_STAT(VMEXIT_INTR_WINDOW, "vm exits due to interrupt window opening"); 311 VMM_STAT(VMEXIT_NMI_WINDOW, "vm exits due to nmi window opening"); 312 VMM_STAT(VMEXIT_INOUT, "number of times in/out was intercepted"); 313 VMM_STAT(VMEXIT_CPUID, "number of times cpuid was intercepted"); 314 VMM_STAT(VMEXIT_NESTED_FAULT, "vm exits due to nested page fault"); 315 VMM_STAT(VMEXIT_INST_EMUL, "vm exits for instruction emulation"); 316 VMM_STAT(VMEXIT_UNKNOWN, "number of vm exits for unknown reason"); 317 VMM_STAT(VMEXIT_ASTPENDING, "number of times astpending at exit"); 318 VMM_STAT(VMEXIT_REQIDLE, "number of times idle requested at exit"); 319 VMM_STAT(VMEXIT_USERSPACE, "number of vm exits handled in userspace"); 320 VMM_STAT(VMEXIT_RENDEZVOUS, "number of times rendezvous pending at exit"); 321 VMM_STAT(VMEXIT_EXCEPTION, "number of vm exits due to exceptions"); 322 323 /* 324 * Upper limit on vm_maxcpu. Limited by use of uint16_t types for CPU 325 * counts as well as range of vpid values for VT-x and by the capacity 326 * of cpuset_t masks. The call to new_unrhdr() in vpid_init() in 327 * vmx.c requires 'vm_maxcpu + 1 <= 0xffff', hence the '- 1' below. 328 */ 329 #define VM_MAXCPU MIN(0xffff - 1, CPU_SETSIZE) 330 331 #ifdef KTR 332 static const char * 333 vcpu_state2str(enum vcpu_state state) 334 { 335 336 switch (state) { 337 case VCPU_IDLE: 338 return ("idle"); 339 case VCPU_FROZEN: 340 return ("frozen"); 341 case VCPU_RUNNING: 342 return ("running"); 343 case VCPU_SLEEPING: 344 return ("sleeping"); 345 default: 346 return ("unknown"); 347 } 348 } 349 #endif 350 351 static void 352 vcpu_cleanup(struct vcpu *vcpu, bool destroy) 353 { 354 vmmops_vlapic_cleanup(vcpu->vlapic); 355 vmmops_vcpu_cleanup(vcpu->cookie); 356 vcpu->cookie = NULL; 357 if (destroy) { 358 vmm_stat_free(vcpu->stats); 359 fpu_save_area_free(vcpu->guestfpu); 360 vcpu_lock_destroy(vcpu); 361 free(vcpu, M_VM); 362 } 363 } 364 365 static struct vcpu * 366 vcpu_alloc(struct vm *vm, int vcpu_id) 367 { 368 struct vcpu *vcpu; 369 370 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus, 371 ("vcpu_init: invalid vcpu %d", vcpu_id)); 372 373 vcpu = malloc(sizeof(*vcpu), M_VM, M_WAITOK | M_ZERO); 374 vcpu_lock_init(vcpu); 375 vcpu->state = VCPU_IDLE; 376 vcpu->hostcpu = NOCPU; 377 vcpu->vcpuid = vcpu_id; 378 vcpu->vm = vm; 379 vcpu->guestfpu = fpu_save_area_alloc(); 380 vcpu->stats = vmm_stat_alloc(); 381 vcpu->tsc_offset = 0; 382 return (vcpu); 383 } 384 385 static void 386 vcpu_init(struct vcpu *vcpu) 387 { 388 vcpu->cookie = vmmops_vcpu_init(vcpu->vm->cookie, vcpu, vcpu->vcpuid); 389 vcpu->vlapic = vmmops_vlapic_init(vcpu->cookie); 390 vm_set_x2apic_state(vcpu, X2APIC_DISABLED); 391 vcpu->reqidle = 0; 392 vcpu->exitintinfo = 0; 393 vcpu->nmi_pending = 0; 394 vcpu->extint_pending = 0; 395 vcpu->exception_pending = 0; 396 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 397 fpu_save_area_reset(vcpu->guestfpu); 398 vmm_stat_init(vcpu->stats); 399 } 400 401 int 402 vcpu_trace_exceptions(struct vcpu *vcpu) 403 { 404 405 return (trace_guest_exceptions); 406 } 407 408 int 409 vcpu_trap_wbinvd(struct vcpu *vcpu) 410 { 411 return (trap_wbinvd); 412 } 413 414 struct vm_exit * 415 vm_exitinfo(struct vcpu *vcpu) 416 { 417 return (&vcpu->exitinfo); 418 } 419 420 cpuset_t * 421 vm_exitinfo_cpuset(struct vcpu *vcpu) 422 { 423 return (&vcpu->exitinfo_cpuset); 424 } 425 426 static int 427 vmm_init(void) 428 { 429 int error; 430 431 if (!vmm_is_hw_supported()) 432 return (ENXIO); 433 434 vm_maxcpu = mp_ncpus; 435 TUNABLE_INT_FETCH("hw.vmm.maxcpu", &vm_maxcpu); 436 437 if (vm_maxcpu > VM_MAXCPU) { 438 printf("vmm: vm_maxcpu clamped to %u\n", VM_MAXCPU); 439 vm_maxcpu = VM_MAXCPU; 440 } 441 if (vm_maxcpu == 0) 442 vm_maxcpu = 1; 443 444 vmm_host_state_init(); 445 446 vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) : 447 &IDTVEC(justreturn)); 448 if (vmm_ipinum < 0) 449 vmm_ipinum = IPI_AST; 450 451 error = vmm_mem_init(); 452 if (error) 453 return (error); 454 455 vmm_resume_p = vmmops_modresume; 456 457 return (vmmops_modinit(vmm_ipinum)); 458 } 459 460 static int 461 vmm_handler(module_t mod, int what, void *arg) 462 { 463 int error; 464 465 switch (what) { 466 case MOD_LOAD: 467 if (vmm_is_hw_supported()) { 468 vmmdev_init(); 469 error = vmm_init(); 470 if (error == 0) 471 vmm_initialized = 1; 472 } else { 473 error = ENXIO; 474 } 475 break; 476 case MOD_UNLOAD: 477 if (vmm_is_hw_supported()) { 478 error = vmmdev_cleanup(); 479 if (error == 0) { 480 vmm_resume_p = NULL; 481 iommu_cleanup(); 482 if (vmm_ipinum != IPI_AST) 483 lapic_ipi_free(vmm_ipinum); 484 error = vmmops_modcleanup(); 485 /* 486 * Something bad happened - prevent new 487 * VMs from being created 488 */ 489 if (error) 490 vmm_initialized = 0; 491 } 492 } else { 493 error = 0; 494 } 495 break; 496 default: 497 error = 0; 498 break; 499 } 500 return (error); 501 } 502 503 static moduledata_t vmm_kmod = { 504 "vmm", 505 vmm_handler, 506 NULL 507 }; 508 509 /* 510 * vmm initialization has the following dependencies: 511 * 512 * - VT-x initialization requires smp_rendezvous() and therefore must happen 513 * after SMP is fully functional (after SI_SUB_SMP). 514 */ 515 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 516 MODULE_VERSION(vmm, 1); 517 518 static void 519 vm_init(struct vm *vm, bool create) 520 { 521 vm->cookie = vmmops_init(vm, vmspace_pmap(vm->vmspace)); 522 vm->iommu = NULL; 523 vm->vioapic = vioapic_init(vm); 524 vm->vhpet = vhpet_init(vm); 525 vm->vatpic = vatpic_init(vm); 526 vm->vatpit = vatpit_init(vm); 527 vm->vpmtmr = vpmtmr_init(vm); 528 if (create) 529 vm->vrtc = vrtc_init(vm); 530 531 CPU_ZERO(&vm->active_cpus); 532 CPU_ZERO(&vm->debug_cpus); 533 CPU_ZERO(&vm->startup_cpus); 534 535 vm->suspend = 0; 536 CPU_ZERO(&vm->suspended_cpus); 537 538 if (!create) { 539 for (int i = 0; i < vm->maxcpus; i++) { 540 if (vm->vcpu[i] != NULL) 541 vcpu_init(vm->vcpu[i]); 542 } 543 } 544 } 545 546 void 547 vm_disable_vcpu_creation(struct vm *vm) 548 { 549 sx_xlock(&vm->vcpus_init_lock); 550 vm->dying = true; 551 sx_xunlock(&vm->vcpus_init_lock); 552 } 553 554 struct vcpu * 555 vm_alloc_vcpu(struct vm *vm, int vcpuid) 556 { 557 struct vcpu *vcpu; 558 559 if (vcpuid < 0 || vcpuid >= vm_get_maxcpus(vm)) 560 return (NULL); 561 562 vcpu = (struct vcpu *) 563 atomic_load_acq_ptr((uintptr_t *)&vm->vcpu[vcpuid]); 564 if (__predict_true(vcpu != NULL)) 565 return (vcpu); 566 567 sx_xlock(&vm->vcpus_init_lock); 568 vcpu = vm->vcpu[vcpuid]; 569 if (vcpu == NULL && !vm->dying) { 570 vcpu = vcpu_alloc(vm, vcpuid); 571 vcpu_init(vcpu); 572 573 /* 574 * Ensure vCPU is fully created before updating pointer 575 * to permit unlocked reads above. 576 */ 577 atomic_store_rel_ptr((uintptr_t *)&vm->vcpu[vcpuid], 578 (uintptr_t)vcpu); 579 } 580 sx_xunlock(&vm->vcpus_init_lock); 581 return (vcpu); 582 } 583 584 void 585 vm_slock_vcpus(struct vm *vm) 586 { 587 sx_slock(&vm->vcpus_init_lock); 588 } 589 590 void 591 vm_unlock_vcpus(struct vm *vm) 592 { 593 sx_unlock(&vm->vcpus_init_lock); 594 } 595 596 /* 597 * The default CPU topology is a single thread per package. 598 */ 599 u_int cores_per_package = 1; 600 u_int threads_per_core = 1; 601 602 int 603 vm_create(const char *name, struct vm **retvm) 604 { 605 struct vm *vm; 606 struct vmspace *vmspace; 607 608 /* 609 * If vmm.ko could not be successfully initialized then don't attempt 610 * to create the virtual machine. 611 */ 612 if (!vmm_initialized) 613 return (ENXIO); 614 615 if (name == NULL || strnlen(name, VM_MAX_NAMELEN + 1) == 616 VM_MAX_NAMELEN + 1) 617 return (EINVAL); 618 619 vmspace = vmmops_vmspace_alloc(0, VM_MAXUSER_ADDRESS_LA48); 620 if (vmspace == NULL) 621 return (ENOMEM); 622 623 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 624 strcpy(vm->name, name); 625 vm->vmspace = vmspace; 626 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 627 sx_init(&vm->mem_segs_lock, "vm mem_segs"); 628 sx_init(&vm->vcpus_init_lock, "vm vcpus"); 629 vm->vcpu = malloc(sizeof(*vm->vcpu) * vm_maxcpu, M_VM, M_WAITOK | 630 M_ZERO); 631 632 vm->sockets = 1; 633 vm->cores = cores_per_package; /* XXX backwards compatibility */ 634 vm->threads = threads_per_core; /* XXX backwards compatibility */ 635 vm->maxcpus = vm_maxcpu; 636 637 vm_init(vm, true); 638 639 *retvm = vm; 640 return (0); 641 } 642 643 void 644 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, 645 uint16_t *threads, uint16_t *maxcpus) 646 { 647 *sockets = vm->sockets; 648 *cores = vm->cores; 649 *threads = vm->threads; 650 *maxcpus = vm->maxcpus; 651 } 652 653 uint16_t 654 vm_get_maxcpus(struct vm *vm) 655 { 656 return (vm->maxcpus); 657 } 658 659 int 660 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, 661 uint16_t threads, uint16_t maxcpus __unused) 662 { 663 /* Ignore maxcpus. */ 664 if ((sockets * cores * threads) > vm->maxcpus) 665 return (EINVAL); 666 vm->sockets = sockets; 667 vm->cores = cores; 668 vm->threads = threads; 669 return(0); 670 } 671 672 static void 673 vm_cleanup(struct vm *vm, bool destroy) 674 { 675 struct mem_map *mm; 676 int i; 677 678 if (destroy) 679 vm_xlock_memsegs(vm); 680 681 ppt_unassign_all(vm); 682 683 if (vm->iommu != NULL) 684 iommu_destroy_domain(vm->iommu); 685 686 if (destroy) 687 vrtc_cleanup(vm->vrtc); 688 else 689 vrtc_reset(vm->vrtc); 690 vpmtmr_cleanup(vm->vpmtmr); 691 vatpit_cleanup(vm->vatpit); 692 vhpet_cleanup(vm->vhpet); 693 vatpic_cleanup(vm->vatpic); 694 vioapic_cleanup(vm->vioapic); 695 696 for (i = 0; i < vm->maxcpus; i++) { 697 if (vm->vcpu[i] != NULL) 698 vcpu_cleanup(vm->vcpu[i], destroy); 699 } 700 701 vmmops_cleanup(vm->cookie); 702 703 /* 704 * System memory is removed from the guest address space only when 705 * the VM is destroyed. This is because the mapping remains the same 706 * across VM reset. 707 * 708 * Device memory can be relocated by the guest (e.g. using PCI BARs) 709 * so those mappings are removed on a VM reset. 710 */ 711 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 712 mm = &vm->mem_maps[i]; 713 if (destroy || !sysmem_mapping(vm, mm)) 714 vm_free_memmap(vm, i); 715 } 716 717 if (destroy) { 718 for (i = 0; i < VM_MAX_MEMSEGS; i++) 719 vm_free_memseg(vm, i); 720 vm_unlock_memsegs(vm); 721 722 vmmops_vmspace_free(vm->vmspace); 723 vm->vmspace = NULL; 724 725 free(vm->vcpu, M_VM); 726 sx_destroy(&vm->vcpus_init_lock); 727 sx_destroy(&vm->mem_segs_lock); 728 mtx_destroy(&vm->rendezvous_mtx); 729 } 730 } 731 732 void 733 vm_destroy(struct vm *vm) 734 { 735 vm_cleanup(vm, true); 736 free(vm, M_VM); 737 } 738 739 int 740 vm_reinit(struct vm *vm) 741 { 742 int error; 743 744 /* 745 * A virtual machine can be reset only if all vcpus are suspended. 746 */ 747 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 748 vm_cleanup(vm, false); 749 vm_init(vm, false); 750 error = 0; 751 } else { 752 error = EBUSY; 753 } 754 755 return (error); 756 } 757 758 const char * 759 vm_name(struct vm *vm) 760 { 761 return (vm->name); 762 } 763 764 void 765 vm_slock_memsegs(struct vm *vm) 766 { 767 sx_slock(&vm->mem_segs_lock); 768 } 769 770 void 771 vm_xlock_memsegs(struct vm *vm) 772 { 773 sx_xlock(&vm->mem_segs_lock); 774 } 775 776 void 777 vm_unlock_memsegs(struct vm *vm) 778 { 779 sx_unlock(&vm->mem_segs_lock); 780 } 781 782 int 783 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 784 { 785 vm_object_t obj; 786 787 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 788 return (ENOMEM); 789 else 790 return (0); 791 } 792 793 int 794 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 795 { 796 797 vmm_mmio_free(vm->vmspace, gpa, len); 798 return (0); 799 } 800 801 /* 802 * Return 'true' if 'gpa' is allocated in the guest address space. 803 * 804 * This function is called in the context of a running vcpu which acts as 805 * an implicit lock on 'vm->mem_maps[]'. 806 */ 807 bool 808 vm_mem_allocated(struct vcpu *vcpu, vm_paddr_t gpa) 809 { 810 struct vm *vm = vcpu->vm; 811 struct mem_map *mm; 812 int i; 813 814 #ifdef INVARIANTS 815 int hostcpu, state; 816 state = vcpu_get_state(vcpu, &hostcpu); 817 KASSERT(state == VCPU_RUNNING && hostcpu == curcpu, 818 ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu)); 819 #endif 820 821 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 822 mm = &vm->mem_maps[i]; 823 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len) 824 return (true); /* 'gpa' is sysmem or devmem */ 825 } 826 827 if (ppt_is_mmio(vm, gpa)) 828 return (true); /* 'gpa' is pci passthru mmio */ 829 830 return (false); 831 } 832 833 int 834 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem) 835 { 836 struct mem_seg *seg; 837 vm_object_t obj; 838 839 sx_assert(&vm->mem_segs_lock, SX_XLOCKED); 840 841 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 842 return (EINVAL); 843 844 if (len == 0 || (len & PAGE_MASK)) 845 return (EINVAL); 846 847 seg = &vm->mem_segs[ident]; 848 if (seg->object != NULL) { 849 if (seg->len == len && seg->sysmem == sysmem) 850 return (EEXIST); 851 else 852 return (EINVAL); 853 } 854 855 obj = vm_object_allocate(OBJT_SWAP, len >> PAGE_SHIFT); 856 if (obj == NULL) 857 return (ENOMEM); 858 859 seg->len = len; 860 seg->object = obj; 861 seg->sysmem = sysmem; 862 return (0); 863 } 864 865 int 866 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, 867 vm_object_t *objptr) 868 { 869 struct mem_seg *seg; 870 871 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 872 873 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 874 return (EINVAL); 875 876 seg = &vm->mem_segs[ident]; 877 if (len) 878 *len = seg->len; 879 if (sysmem) 880 *sysmem = seg->sysmem; 881 if (objptr) 882 *objptr = seg->object; 883 return (0); 884 } 885 886 void 887 vm_free_memseg(struct vm *vm, int ident) 888 { 889 struct mem_seg *seg; 890 891 KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS, 892 ("%s: invalid memseg ident %d", __func__, ident)); 893 894 seg = &vm->mem_segs[ident]; 895 if (seg->object != NULL) { 896 vm_object_deallocate(seg->object); 897 bzero(seg, sizeof(struct mem_seg)); 898 } 899 } 900 901 int 902 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first, 903 size_t len, int prot, int flags) 904 { 905 struct mem_seg *seg; 906 struct mem_map *m, *map; 907 vm_ooffset_t last; 908 int i, error; 909 910 if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0) 911 return (EINVAL); 912 913 if (flags & ~VM_MEMMAP_F_WIRED) 914 return (EINVAL); 915 916 if (segid < 0 || segid >= VM_MAX_MEMSEGS) 917 return (EINVAL); 918 919 seg = &vm->mem_segs[segid]; 920 if (seg->object == NULL) 921 return (EINVAL); 922 923 last = first + len; 924 if (first < 0 || first >= last || last > seg->len) 925 return (EINVAL); 926 927 if ((gpa | first | last) & PAGE_MASK) 928 return (EINVAL); 929 930 map = NULL; 931 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 932 m = &vm->mem_maps[i]; 933 if (m->len == 0) { 934 map = m; 935 break; 936 } 937 } 938 939 if (map == NULL) 940 return (ENOSPC); 941 942 error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa, 943 len, 0, VMFS_NO_SPACE, prot, prot, 0); 944 if (error != KERN_SUCCESS) 945 return (EFAULT); 946 947 vm_object_reference(seg->object); 948 949 if (flags & VM_MEMMAP_F_WIRED) { 950 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len, 951 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 952 if (error != KERN_SUCCESS) { 953 vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len); 954 return (error == KERN_RESOURCE_SHORTAGE ? ENOMEM : 955 EFAULT); 956 } 957 } 958 959 map->gpa = gpa; 960 map->len = len; 961 map->segoff = first; 962 map->segid = segid; 963 map->prot = prot; 964 map->flags = flags; 965 return (0); 966 } 967 968 int 969 vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len) 970 { 971 struct mem_map *m; 972 int i; 973 974 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 975 m = &vm->mem_maps[i]; 976 if (m->gpa == gpa && m->len == len && 977 (m->flags & VM_MEMMAP_F_IOMMU) == 0) { 978 vm_free_memmap(vm, i); 979 return (0); 980 } 981 } 982 983 return (EINVAL); 984 } 985 986 int 987 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, 988 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 989 { 990 struct mem_map *mm, *mmnext; 991 int i; 992 993 mmnext = NULL; 994 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 995 mm = &vm->mem_maps[i]; 996 if (mm->len == 0 || mm->gpa < *gpa) 997 continue; 998 if (mmnext == NULL || mm->gpa < mmnext->gpa) 999 mmnext = mm; 1000 } 1001 1002 if (mmnext != NULL) { 1003 *gpa = mmnext->gpa; 1004 if (segid) 1005 *segid = mmnext->segid; 1006 if (segoff) 1007 *segoff = mmnext->segoff; 1008 if (len) 1009 *len = mmnext->len; 1010 if (prot) 1011 *prot = mmnext->prot; 1012 if (flags) 1013 *flags = mmnext->flags; 1014 return (0); 1015 } else { 1016 return (ENOENT); 1017 } 1018 } 1019 1020 static void 1021 vm_free_memmap(struct vm *vm, int ident) 1022 { 1023 struct mem_map *mm; 1024 int error __diagused; 1025 1026 mm = &vm->mem_maps[ident]; 1027 if (mm->len) { 1028 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa, 1029 mm->gpa + mm->len); 1030 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d", 1031 __func__, error)); 1032 bzero(mm, sizeof(struct mem_map)); 1033 } 1034 } 1035 1036 static __inline bool 1037 sysmem_mapping(struct vm *vm, struct mem_map *mm) 1038 { 1039 1040 if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem) 1041 return (true); 1042 else 1043 return (false); 1044 } 1045 1046 vm_paddr_t 1047 vmm_sysmem_maxaddr(struct vm *vm) 1048 { 1049 struct mem_map *mm; 1050 vm_paddr_t maxaddr; 1051 int i; 1052 1053 maxaddr = 0; 1054 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1055 mm = &vm->mem_maps[i]; 1056 if (sysmem_mapping(vm, mm)) { 1057 if (maxaddr < mm->gpa + mm->len) 1058 maxaddr = mm->gpa + mm->len; 1059 } 1060 } 1061 return (maxaddr); 1062 } 1063 1064 static void 1065 vm_iommu_map(struct vm *vm) 1066 { 1067 vm_paddr_t gpa, hpa; 1068 struct mem_map *mm; 1069 int i; 1070 1071 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 1072 1073 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1074 mm = &vm->mem_maps[i]; 1075 if (!sysmem_mapping(vm, mm)) 1076 continue; 1077 1078 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0, 1079 ("iommu map found invalid memmap %#lx/%#lx/%#x", 1080 mm->gpa, mm->len, mm->flags)); 1081 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0) 1082 continue; 1083 mm->flags |= VM_MEMMAP_F_IOMMU; 1084 1085 for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) { 1086 hpa = pmap_extract(vmspace_pmap(vm->vmspace), gpa); 1087 1088 /* 1089 * All mappings in the vmm vmspace must be 1090 * present since they are managed by vmm in this way. 1091 * Because we are in pass-through mode, the 1092 * mappings must also be wired. This implies 1093 * that all pages must be mapped and wired, 1094 * allowing to use pmap_extract() and avoiding the 1095 * need to use vm_gpa_hold_global(). 1096 * 1097 * This could change if/when we start 1098 * supporting page faults on IOMMU maps. 1099 */ 1100 KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(hpa)), 1101 ("vm_iommu_map: vm %p gpa %jx hpa %jx not wired", 1102 vm, (uintmax_t)gpa, (uintmax_t)hpa)); 1103 1104 iommu_create_mapping(vm->iommu, gpa, hpa, PAGE_SIZE); 1105 } 1106 } 1107 1108 iommu_invalidate_tlb(iommu_host_domain()); 1109 } 1110 1111 static void 1112 vm_iommu_unmap(struct vm *vm) 1113 { 1114 vm_paddr_t gpa; 1115 struct mem_map *mm; 1116 int i; 1117 1118 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 1119 1120 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1121 mm = &vm->mem_maps[i]; 1122 if (!sysmem_mapping(vm, mm)) 1123 continue; 1124 1125 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0) 1126 continue; 1127 mm->flags &= ~VM_MEMMAP_F_IOMMU; 1128 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0, 1129 ("iommu unmap found invalid memmap %#lx/%#lx/%#x", 1130 mm->gpa, mm->len, mm->flags)); 1131 1132 for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) { 1133 KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(pmap_extract( 1134 vmspace_pmap(vm->vmspace), gpa))), 1135 ("vm_iommu_unmap: vm %p gpa %jx not wired", 1136 vm, (uintmax_t)gpa)); 1137 iommu_remove_mapping(vm->iommu, gpa, PAGE_SIZE); 1138 } 1139 } 1140 1141 /* 1142 * Invalidate the cached translations associated with the domain 1143 * from which pages were removed. 1144 */ 1145 iommu_invalidate_tlb(vm->iommu); 1146 } 1147 1148 int 1149 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 1150 { 1151 int error; 1152 1153 error = ppt_unassign_device(vm, bus, slot, func); 1154 if (error) 1155 return (error); 1156 1157 if (ppt_assigned_devices(vm) == 0) 1158 vm_iommu_unmap(vm); 1159 1160 return (0); 1161 } 1162 1163 int 1164 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 1165 { 1166 int error; 1167 vm_paddr_t maxaddr; 1168 1169 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */ 1170 if (ppt_assigned_devices(vm) == 0) { 1171 KASSERT(vm->iommu == NULL, 1172 ("vm_assign_pptdev: iommu must be NULL")); 1173 maxaddr = vmm_sysmem_maxaddr(vm); 1174 vm->iommu = iommu_create_domain(maxaddr); 1175 if (vm->iommu == NULL) 1176 return (ENXIO); 1177 vm_iommu_map(vm); 1178 } 1179 1180 error = ppt_assign_device(vm, bus, slot, func); 1181 return (error); 1182 } 1183 1184 static void * 1185 _vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 1186 void **cookie) 1187 { 1188 int i, count, pageoff; 1189 struct mem_map *mm; 1190 vm_page_t m; 1191 1192 pageoff = gpa & PAGE_MASK; 1193 if (len > PAGE_SIZE - pageoff) 1194 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 1195 1196 count = 0; 1197 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1198 mm = &vm->mem_maps[i]; 1199 if (gpa >= mm->gpa && gpa < mm->gpa + mm->len) { 1200 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 1201 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 1202 break; 1203 } 1204 } 1205 1206 if (count == 1) { 1207 *cookie = m; 1208 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 1209 } else { 1210 *cookie = NULL; 1211 return (NULL); 1212 } 1213 } 1214 1215 void * 1216 vm_gpa_hold(struct vcpu *vcpu, vm_paddr_t gpa, size_t len, int reqprot, 1217 void **cookie) 1218 { 1219 #ifdef INVARIANTS 1220 /* 1221 * The current vcpu should be frozen to ensure 'vm_memmap[]' 1222 * stability. 1223 */ 1224 int state = vcpu_get_state(vcpu, NULL); 1225 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d", 1226 __func__, state)); 1227 #endif 1228 return (_vm_gpa_hold(vcpu->vm, gpa, len, reqprot, cookie)); 1229 } 1230 1231 void * 1232 vm_gpa_hold_global(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 1233 void **cookie) 1234 { 1235 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 1236 return (_vm_gpa_hold(vm, gpa, len, reqprot, cookie)); 1237 } 1238 1239 void 1240 vm_gpa_release(void *cookie) 1241 { 1242 vm_page_t m = cookie; 1243 1244 vm_page_unwire(m, PQ_ACTIVE); 1245 } 1246 1247 int 1248 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval) 1249 { 1250 1251 if (reg >= VM_REG_LAST) 1252 return (EINVAL); 1253 1254 return (vmmops_getreg(vcpu->cookie, reg, retval)); 1255 } 1256 1257 int 1258 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val) 1259 { 1260 int error; 1261 1262 if (reg >= VM_REG_LAST) 1263 return (EINVAL); 1264 1265 error = vmmops_setreg(vcpu->cookie, reg, val); 1266 if (error || reg != VM_REG_GUEST_RIP) 1267 return (error); 1268 1269 /* Set 'nextrip' to match the value of %rip */ 1270 VMM_CTR1(vcpu, "Setting nextrip to %#lx", val); 1271 vcpu->nextrip = val; 1272 return (0); 1273 } 1274 1275 static bool 1276 is_descriptor_table(int reg) 1277 { 1278 1279 switch (reg) { 1280 case VM_REG_GUEST_IDTR: 1281 case VM_REG_GUEST_GDTR: 1282 return (true); 1283 default: 1284 return (false); 1285 } 1286 } 1287 1288 static bool 1289 is_segment_register(int reg) 1290 { 1291 1292 switch (reg) { 1293 case VM_REG_GUEST_ES: 1294 case VM_REG_GUEST_CS: 1295 case VM_REG_GUEST_SS: 1296 case VM_REG_GUEST_DS: 1297 case VM_REG_GUEST_FS: 1298 case VM_REG_GUEST_GS: 1299 case VM_REG_GUEST_TR: 1300 case VM_REG_GUEST_LDTR: 1301 return (true); 1302 default: 1303 return (false); 1304 } 1305 } 1306 1307 int 1308 vm_get_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc) 1309 { 1310 1311 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1312 return (EINVAL); 1313 1314 return (vmmops_getdesc(vcpu->cookie, reg, desc)); 1315 } 1316 1317 int 1318 vm_set_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc) 1319 { 1320 1321 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1322 return (EINVAL); 1323 1324 return (vmmops_setdesc(vcpu->cookie, reg, desc)); 1325 } 1326 1327 static void 1328 restore_guest_fpustate(struct vcpu *vcpu) 1329 { 1330 1331 /* flush host state to the pcb */ 1332 fpuexit(curthread); 1333 1334 /* restore guest FPU state */ 1335 fpu_enable(); 1336 fpurestore(vcpu->guestfpu); 1337 1338 /* restore guest XCR0 if XSAVE is enabled in the host */ 1339 if (rcr4() & CR4_XSAVE) 1340 load_xcr(0, vcpu->guest_xcr0); 1341 1342 /* 1343 * The FPU is now "dirty" with the guest's state so disable 1344 * the FPU to trap any access by the host. 1345 */ 1346 fpu_disable(); 1347 } 1348 1349 static void 1350 save_guest_fpustate(struct vcpu *vcpu) 1351 { 1352 1353 if ((rcr0() & CR0_TS) == 0) 1354 panic("fpu emulation not enabled in host!"); 1355 1356 /* save guest XCR0 and restore host XCR0 */ 1357 if (rcr4() & CR4_XSAVE) { 1358 vcpu->guest_xcr0 = rxcr(0); 1359 load_xcr(0, vmm_get_host_xcr0()); 1360 } 1361 1362 /* save guest FPU state */ 1363 fpu_enable(); 1364 fpusave(vcpu->guestfpu); 1365 fpu_disable(); 1366 } 1367 1368 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 1369 1370 static int 1371 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate, 1372 bool from_idle) 1373 { 1374 int error; 1375 1376 vcpu_assert_locked(vcpu); 1377 1378 /* 1379 * State transitions from the vmmdev_ioctl() must always begin from 1380 * the VCPU_IDLE state. This guarantees that there is only a single 1381 * ioctl() operating on a vcpu at any point. 1382 */ 1383 if (from_idle) { 1384 while (vcpu->state != VCPU_IDLE) { 1385 vcpu->reqidle = 1; 1386 vcpu_notify_event_locked(vcpu, false); 1387 VMM_CTR1(vcpu, "vcpu state change from %s to " 1388 "idle requested", vcpu_state2str(vcpu->state)); 1389 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 1390 } 1391 } else { 1392 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 1393 "vcpu idle state")); 1394 } 1395 1396 if (vcpu->state == VCPU_RUNNING) { 1397 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 1398 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 1399 } else { 1400 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 1401 "vcpu that is not running", vcpu->hostcpu)); 1402 } 1403 1404 /* 1405 * The following state transitions are allowed: 1406 * IDLE -> FROZEN -> IDLE 1407 * FROZEN -> RUNNING -> FROZEN 1408 * FROZEN -> SLEEPING -> FROZEN 1409 */ 1410 switch (vcpu->state) { 1411 case VCPU_IDLE: 1412 case VCPU_RUNNING: 1413 case VCPU_SLEEPING: 1414 error = (newstate != VCPU_FROZEN); 1415 break; 1416 case VCPU_FROZEN: 1417 error = (newstate == VCPU_FROZEN); 1418 break; 1419 default: 1420 error = 1; 1421 break; 1422 } 1423 1424 if (error) 1425 return (EBUSY); 1426 1427 VMM_CTR2(vcpu, "vcpu state changed from %s to %s", 1428 vcpu_state2str(vcpu->state), vcpu_state2str(newstate)); 1429 1430 vcpu->state = newstate; 1431 if (newstate == VCPU_RUNNING) 1432 vcpu->hostcpu = curcpu; 1433 else 1434 vcpu->hostcpu = NOCPU; 1435 1436 if (newstate == VCPU_IDLE) 1437 wakeup(&vcpu->state); 1438 1439 return (0); 1440 } 1441 1442 static void 1443 vcpu_require_state(struct vcpu *vcpu, enum vcpu_state newstate) 1444 { 1445 int error; 1446 1447 if ((error = vcpu_set_state(vcpu, newstate, false)) != 0) 1448 panic("Error %d setting state to %d\n", error, newstate); 1449 } 1450 1451 static void 1452 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate) 1453 { 1454 int error; 1455 1456 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0) 1457 panic("Error %d setting state to %d", error, newstate); 1458 } 1459 1460 static int 1461 vm_handle_rendezvous(struct vcpu *vcpu) 1462 { 1463 struct vm *vm = vcpu->vm; 1464 struct thread *td; 1465 int error, vcpuid; 1466 1467 error = 0; 1468 vcpuid = vcpu->vcpuid; 1469 td = curthread; 1470 mtx_lock(&vm->rendezvous_mtx); 1471 while (vm->rendezvous_func != NULL) { 1472 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1473 CPU_AND(&vm->rendezvous_req_cpus, &vm->rendezvous_req_cpus, &vm->active_cpus); 1474 1475 if (CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1476 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1477 VMM_CTR0(vcpu, "Calling rendezvous func"); 1478 (*vm->rendezvous_func)(vcpu, vm->rendezvous_arg); 1479 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1480 } 1481 if (CPU_CMP(&vm->rendezvous_req_cpus, 1482 &vm->rendezvous_done_cpus) == 0) { 1483 VMM_CTR0(vcpu, "Rendezvous completed"); 1484 CPU_ZERO(&vm->rendezvous_req_cpus); 1485 vm->rendezvous_func = NULL; 1486 wakeup(&vm->rendezvous_func); 1487 break; 1488 } 1489 VMM_CTR0(vcpu, "Wait for rendezvous completion"); 1490 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1491 "vmrndv", hz); 1492 if (td_ast_pending(td, TDA_SUSPEND)) { 1493 mtx_unlock(&vm->rendezvous_mtx); 1494 error = thread_check_susp(td, true); 1495 if (error != 0) 1496 return (error); 1497 mtx_lock(&vm->rendezvous_mtx); 1498 } 1499 } 1500 mtx_unlock(&vm->rendezvous_mtx); 1501 return (0); 1502 } 1503 1504 /* 1505 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1506 */ 1507 static int 1508 vm_handle_hlt(struct vcpu *vcpu, bool intr_disabled, bool *retu) 1509 { 1510 struct vm *vm = vcpu->vm; 1511 const char *wmesg; 1512 struct thread *td; 1513 int error, t, vcpuid, vcpu_halted, vm_halted; 1514 1515 vcpuid = vcpu->vcpuid; 1516 vcpu_halted = 0; 1517 vm_halted = 0; 1518 error = 0; 1519 td = curthread; 1520 1521 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1522 1523 vcpu_lock(vcpu); 1524 while (1) { 1525 /* 1526 * Do a final check for pending NMI or interrupts before 1527 * really putting this thread to sleep. Also check for 1528 * software events that would cause this vcpu to wakeup. 1529 * 1530 * These interrupts/events could have happened after the 1531 * vcpu returned from vmmops_run() and before it acquired the 1532 * vcpu lock above. 1533 */ 1534 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle) 1535 break; 1536 if (vm_nmi_pending(vcpu)) 1537 break; 1538 if (!intr_disabled) { 1539 if (vm_extint_pending(vcpu) || 1540 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1541 break; 1542 } 1543 } 1544 1545 /* Don't go to sleep if the vcpu thread needs to yield */ 1546 if (vcpu_should_yield(vcpu)) 1547 break; 1548 1549 if (vcpu_debugged(vcpu)) 1550 break; 1551 1552 /* 1553 * Some Linux guests implement "halt" by having all vcpus 1554 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1555 * track of the vcpus that have entered this state. When all 1556 * vcpus enter the halted state the virtual machine is halted. 1557 */ 1558 if (intr_disabled) { 1559 wmesg = "vmhalt"; 1560 VMM_CTR0(vcpu, "Halted"); 1561 if (!vcpu_halted && halt_detection_enabled) { 1562 vcpu_halted = 1; 1563 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1564 } 1565 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1566 vm_halted = 1; 1567 break; 1568 } 1569 } else { 1570 wmesg = "vmidle"; 1571 } 1572 1573 t = ticks; 1574 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1575 /* 1576 * XXX msleep_spin() cannot be interrupted by signals so 1577 * wake up periodically to check pending signals. 1578 */ 1579 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1580 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1581 vmm_stat_incr(vcpu, VCPU_IDLE_TICKS, ticks - t); 1582 if (td_ast_pending(td, TDA_SUSPEND)) { 1583 vcpu_unlock(vcpu); 1584 error = thread_check_susp(td, false); 1585 if (error != 0) { 1586 if (vcpu_halted) { 1587 CPU_CLR_ATOMIC(vcpuid, 1588 &vm->halted_cpus); 1589 } 1590 return (error); 1591 } 1592 vcpu_lock(vcpu); 1593 } 1594 } 1595 1596 if (vcpu_halted) 1597 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1598 1599 vcpu_unlock(vcpu); 1600 1601 if (vm_halted) 1602 vm_suspend(vm, VM_SUSPEND_HALT); 1603 1604 return (0); 1605 } 1606 1607 static int 1608 vm_handle_paging(struct vcpu *vcpu, bool *retu) 1609 { 1610 struct vm *vm = vcpu->vm; 1611 int rv, ftype; 1612 struct vm_map *map; 1613 struct vm_exit *vme; 1614 1615 vme = &vcpu->exitinfo; 1616 1617 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1618 __func__, vme->inst_length)); 1619 1620 ftype = vme->u.paging.fault_type; 1621 KASSERT(ftype == VM_PROT_READ || 1622 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1623 ("vm_handle_paging: invalid fault_type %d", ftype)); 1624 1625 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1626 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1627 vme->u.paging.gpa, ftype); 1628 if (rv == 0) { 1629 VMM_CTR2(vcpu, "%s bit emulation for gpa %#lx", 1630 ftype == VM_PROT_READ ? "accessed" : "dirty", 1631 vme->u.paging.gpa); 1632 goto done; 1633 } 1634 } 1635 1636 map = &vm->vmspace->vm_map; 1637 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL); 1638 1639 VMM_CTR3(vcpu, "vm_handle_paging rv = %d, gpa = %#lx, " 1640 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1641 1642 if (rv != KERN_SUCCESS) 1643 return (EFAULT); 1644 done: 1645 return (0); 1646 } 1647 1648 static int 1649 vm_handle_inst_emul(struct vcpu *vcpu, bool *retu) 1650 { 1651 struct vie *vie; 1652 struct vm_exit *vme; 1653 uint64_t gla, gpa, cs_base; 1654 struct vm_guest_paging *paging; 1655 mem_region_read_t mread; 1656 mem_region_write_t mwrite; 1657 enum vm_cpu_mode cpu_mode; 1658 int cs_d, error, fault; 1659 1660 vme = &vcpu->exitinfo; 1661 1662 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1663 __func__, vme->inst_length)); 1664 1665 gla = vme->u.inst_emul.gla; 1666 gpa = vme->u.inst_emul.gpa; 1667 cs_base = vme->u.inst_emul.cs_base; 1668 cs_d = vme->u.inst_emul.cs_d; 1669 vie = &vme->u.inst_emul.vie; 1670 paging = &vme->u.inst_emul.paging; 1671 cpu_mode = paging->cpu_mode; 1672 1673 VMM_CTR1(vcpu, "inst_emul fault accessing gpa %#lx", gpa); 1674 1675 /* Fetch, decode and emulate the faulting instruction */ 1676 if (vie->num_valid == 0) { 1677 error = vmm_fetch_instruction(vcpu, paging, vme->rip + cs_base, 1678 VIE_INST_SIZE, vie, &fault); 1679 } else { 1680 /* 1681 * The instruction bytes have already been copied into 'vie' 1682 */ 1683 error = fault = 0; 1684 } 1685 if (error || fault) 1686 return (error); 1687 1688 if (vmm_decode_instruction(vcpu, gla, cpu_mode, cs_d, vie) != 0) { 1689 VMM_CTR1(vcpu, "Error decoding instruction at %#lx", 1690 vme->rip + cs_base); 1691 *retu = true; /* dump instruction bytes in userspace */ 1692 return (0); 1693 } 1694 1695 /* 1696 * Update 'nextrip' based on the length of the emulated instruction. 1697 */ 1698 vme->inst_length = vie->num_processed; 1699 vcpu->nextrip += vie->num_processed; 1700 VMM_CTR1(vcpu, "nextrip updated to %#lx after instruction decoding", 1701 vcpu->nextrip); 1702 1703 /* return to userland unless this is an in-kernel emulated device */ 1704 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1705 mread = lapic_mmio_read; 1706 mwrite = lapic_mmio_write; 1707 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1708 mread = vioapic_mmio_read; 1709 mwrite = vioapic_mmio_write; 1710 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1711 mread = vhpet_mmio_read; 1712 mwrite = vhpet_mmio_write; 1713 } else { 1714 *retu = true; 1715 return (0); 1716 } 1717 1718 error = vmm_emulate_instruction(vcpu, gpa, vie, paging, mread, mwrite, 1719 retu); 1720 1721 return (error); 1722 } 1723 1724 static int 1725 vm_handle_suspend(struct vcpu *vcpu, bool *retu) 1726 { 1727 struct vm *vm = vcpu->vm; 1728 int error, i; 1729 struct thread *td; 1730 1731 error = 0; 1732 td = curthread; 1733 1734 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->suspended_cpus); 1735 1736 /* 1737 * Wait until all 'active_cpus' have suspended themselves. 1738 * 1739 * Since a VM may be suspended at any time including when one or 1740 * more vcpus are doing a rendezvous we need to call the rendezvous 1741 * handler while we are waiting to prevent a deadlock. 1742 */ 1743 vcpu_lock(vcpu); 1744 while (error == 0) { 1745 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1746 VMM_CTR0(vcpu, "All vcpus suspended"); 1747 break; 1748 } 1749 1750 if (vm->rendezvous_func == NULL) { 1751 VMM_CTR0(vcpu, "Sleeping during suspend"); 1752 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1753 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1754 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1755 if (td_ast_pending(td, TDA_SUSPEND)) { 1756 vcpu_unlock(vcpu); 1757 error = thread_check_susp(td, false); 1758 vcpu_lock(vcpu); 1759 } 1760 } else { 1761 VMM_CTR0(vcpu, "Rendezvous during suspend"); 1762 vcpu_unlock(vcpu); 1763 error = vm_handle_rendezvous(vcpu); 1764 vcpu_lock(vcpu); 1765 } 1766 } 1767 vcpu_unlock(vcpu); 1768 1769 /* 1770 * Wakeup the other sleeping vcpus and return to userspace. 1771 */ 1772 for (i = 0; i < vm->maxcpus; i++) { 1773 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1774 vcpu_notify_event(vm_vcpu(vm, i), false); 1775 } 1776 } 1777 1778 *retu = true; 1779 return (error); 1780 } 1781 1782 static int 1783 vm_handle_reqidle(struct vcpu *vcpu, bool *retu) 1784 { 1785 vcpu_lock(vcpu); 1786 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle)); 1787 vcpu->reqidle = 0; 1788 vcpu_unlock(vcpu); 1789 *retu = true; 1790 return (0); 1791 } 1792 1793 static int 1794 vm_handle_db(struct vcpu *vcpu, struct vm_exit *vme, bool *retu) 1795 { 1796 int error, fault; 1797 uint64_t rsp; 1798 uint64_t rflags; 1799 struct vm_copyinfo copyinfo[2]; 1800 1801 *retu = true; 1802 if (!vme->u.dbg.pushf_intercept || vme->u.dbg.tf_shadow_val != 0) { 1803 return (0); 1804 } 1805 1806 vm_get_register(vcpu, VM_REG_GUEST_RSP, &rsp); 1807 error = vm_copy_setup(vcpu, &vme->u.dbg.paging, rsp, sizeof(uint64_t), 1808 VM_PROT_RW, copyinfo, nitems(copyinfo), &fault); 1809 if (error != 0 || fault != 0) { 1810 *retu = false; 1811 return (EINVAL); 1812 } 1813 1814 /* Read pushed rflags value from top of stack. */ 1815 vm_copyin(copyinfo, &rflags, sizeof(uint64_t)); 1816 1817 /* Clear TF bit. */ 1818 rflags &= ~(PSL_T); 1819 1820 /* Write updated value back to memory. */ 1821 vm_copyout(&rflags, copyinfo, sizeof(uint64_t)); 1822 vm_copy_teardown(copyinfo, nitems(copyinfo)); 1823 1824 return (0); 1825 } 1826 1827 int 1828 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1829 { 1830 int i; 1831 1832 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1833 return (EINVAL); 1834 1835 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1836 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1837 vm->suspend, how); 1838 return (EALREADY); 1839 } 1840 1841 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1842 1843 /* 1844 * Notify all active vcpus that they are now suspended. 1845 */ 1846 for (i = 0; i < vm->maxcpus; i++) { 1847 if (CPU_ISSET(i, &vm->active_cpus)) 1848 vcpu_notify_event(vm_vcpu(vm, i), false); 1849 } 1850 1851 return (0); 1852 } 1853 1854 void 1855 vm_exit_suspended(struct vcpu *vcpu, uint64_t rip) 1856 { 1857 struct vm *vm = vcpu->vm; 1858 struct vm_exit *vmexit; 1859 1860 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1861 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1862 1863 vmexit = vm_exitinfo(vcpu); 1864 vmexit->rip = rip; 1865 vmexit->inst_length = 0; 1866 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1867 vmexit->u.suspended.how = vm->suspend; 1868 } 1869 1870 void 1871 vm_exit_debug(struct vcpu *vcpu, uint64_t rip) 1872 { 1873 struct vm_exit *vmexit; 1874 1875 vmexit = vm_exitinfo(vcpu); 1876 vmexit->rip = rip; 1877 vmexit->inst_length = 0; 1878 vmexit->exitcode = VM_EXITCODE_DEBUG; 1879 } 1880 1881 void 1882 vm_exit_rendezvous(struct vcpu *vcpu, uint64_t rip) 1883 { 1884 struct vm_exit *vmexit; 1885 1886 vmexit = vm_exitinfo(vcpu); 1887 vmexit->rip = rip; 1888 vmexit->inst_length = 0; 1889 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1890 vmm_stat_incr(vcpu, VMEXIT_RENDEZVOUS, 1); 1891 } 1892 1893 void 1894 vm_exit_reqidle(struct vcpu *vcpu, uint64_t rip) 1895 { 1896 struct vm_exit *vmexit; 1897 1898 vmexit = vm_exitinfo(vcpu); 1899 vmexit->rip = rip; 1900 vmexit->inst_length = 0; 1901 vmexit->exitcode = VM_EXITCODE_REQIDLE; 1902 vmm_stat_incr(vcpu, VMEXIT_REQIDLE, 1); 1903 } 1904 1905 void 1906 vm_exit_astpending(struct vcpu *vcpu, uint64_t rip) 1907 { 1908 struct vm_exit *vmexit; 1909 1910 vmexit = vm_exitinfo(vcpu); 1911 vmexit->rip = rip; 1912 vmexit->inst_length = 0; 1913 vmexit->exitcode = VM_EXITCODE_BOGUS; 1914 vmm_stat_incr(vcpu, VMEXIT_ASTPENDING, 1); 1915 } 1916 1917 int 1918 vm_run(struct vcpu *vcpu) 1919 { 1920 struct vm *vm = vcpu->vm; 1921 struct vm_eventinfo evinfo; 1922 int error, vcpuid; 1923 struct pcb *pcb; 1924 uint64_t tscval; 1925 struct vm_exit *vme; 1926 bool retu, intr_disabled; 1927 pmap_t pmap; 1928 1929 vcpuid = vcpu->vcpuid; 1930 1931 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1932 return (EINVAL); 1933 1934 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1935 return (EINVAL); 1936 1937 pmap = vmspace_pmap(vm->vmspace); 1938 vme = &vcpu->exitinfo; 1939 evinfo.rptr = &vm->rendezvous_req_cpus; 1940 evinfo.sptr = &vm->suspend; 1941 evinfo.iptr = &vcpu->reqidle; 1942 restart: 1943 critical_enter(); 1944 1945 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1946 ("vm_run: absurd pm_active")); 1947 1948 tscval = rdtsc(); 1949 1950 pcb = PCPU_GET(curpcb); 1951 set_pcb_flags(pcb, PCB_FULL_IRET); 1952 1953 restore_guest_fpustate(vcpu); 1954 1955 vcpu_require_state(vcpu, VCPU_RUNNING); 1956 error = vmmops_run(vcpu->cookie, vcpu->nextrip, pmap, &evinfo); 1957 vcpu_require_state(vcpu, VCPU_FROZEN); 1958 1959 save_guest_fpustate(vcpu); 1960 1961 vmm_stat_incr(vcpu, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1962 1963 critical_exit(); 1964 1965 if (error == 0) { 1966 retu = false; 1967 vcpu->nextrip = vme->rip + vme->inst_length; 1968 switch (vme->exitcode) { 1969 case VM_EXITCODE_REQIDLE: 1970 error = vm_handle_reqidle(vcpu, &retu); 1971 break; 1972 case VM_EXITCODE_SUSPENDED: 1973 error = vm_handle_suspend(vcpu, &retu); 1974 break; 1975 case VM_EXITCODE_IOAPIC_EOI: 1976 vioapic_process_eoi(vm, vme->u.ioapic_eoi.vector); 1977 break; 1978 case VM_EXITCODE_RENDEZVOUS: 1979 error = vm_handle_rendezvous(vcpu); 1980 break; 1981 case VM_EXITCODE_HLT: 1982 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1983 error = vm_handle_hlt(vcpu, intr_disabled, &retu); 1984 break; 1985 case VM_EXITCODE_PAGING: 1986 error = vm_handle_paging(vcpu, &retu); 1987 break; 1988 case VM_EXITCODE_INST_EMUL: 1989 error = vm_handle_inst_emul(vcpu, &retu); 1990 break; 1991 case VM_EXITCODE_INOUT: 1992 case VM_EXITCODE_INOUT_STR: 1993 error = vm_handle_inout(vcpu, vme, &retu); 1994 break; 1995 case VM_EXITCODE_DB: 1996 error = vm_handle_db(vcpu, vme, &retu); 1997 break; 1998 case VM_EXITCODE_MONITOR: 1999 case VM_EXITCODE_MWAIT: 2000 case VM_EXITCODE_VMINSN: 2001 vm_inject_ud(vcpu); 2002 break; 2003 default: 2004 retu = true; /* handled in userland */ 2005 break; 2006 } 2007 } 2008 2009 /* 2010 * VM_EXITCODE_INST_EMUL could access the apic which could transform the 2011 * exit code into VM_EXITCODE_IPI. 2012 */ 2013 if (error == 0 && vme->exitcode == VM_EXITCODE_IPI) 2014 error = vm_handle_ipi(vcpu, vme, &retu); 2015 2016 if (error == 0 && retu == false) 2017 goto restart; 2018 2019 vmm_stat_incr(vcpu, VMEXIT_USERSPACE, 1); 2020 VMM_CTR2(vcpu, "retu %d/%d", error, vme->exitcode); 2021 2022 return (error); 2023 } 2024 2025 int 2026 vm_restart_instruction(struct vcpu *vcpu) 2027 { 2028 enum vcpu_state state; 2029 uint64_t rip; 2030 int error __diagused; 2031 2032 state = vcpu_get_state(vcpu, NULL); 2033 if (state == VCPU_RUNNING) { 2034 /* 2035 * When a vcpu is "running" the next instruction is determined 2036 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'. 2037 * Thus setting 'inst_length' to zero will cause the current 2038 * instruction to be restarted. 2039 */ 2040 vcpu->exitinfo.inst_length = 0; 2041 VMM_CTR1(vcpu, "restarting instruction at %#lx by " 2042 "setting inst_length to zero", vcpu->exitinfo.rip); 2043 } else if (state == VCPU_FROZEN) { 2044 /* 2045 * When a vcpu is "frozen" it is outside the critical section 2046 * around vmmops_run() and 'nextrip' points to the next 2047 * instruction. Thus instruction restart is achieved by setting 2048 * 'nextrip' to the vcpu's %rip. 2049 */ 2050 error = vm_get_register(vcpu, VM_REG_GUEST_RIP, &rip); 2051 KASSERT(!error, ("%s: error %d getting rip", __func__, error)); 2052 VMM_CTR2(vcpu, "restarting instruction by updating " 2053 "nextrip from %#lx to %#lx", vcpu->nextrip, rip); 2054 vcpu->nextrip = rip; 2055 } else { 2056 panic("%s: invalid state %d", __func__, state); 2057 } 2058 return (0); 2059 } 2060 2061 int 2062 vm_exit_intinfo(struct vcpu *vcpu, uint64_t info) 2063 { 2064 int type, vector; 2065 2066 if (info & VM_INTINFO_VALID) { 2067 type = info & VM_INTINFO_TYPE; 2068 vector = info & 0xff; 2069 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 2070 return (EINVAL); 2071 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 2072 return (EINVAL); 2073 if (info & VM_INTINFO_RSVD) 2074 return (EINVAL); 2075 } else { 2076 info = 0; 2077 } 2078 VMM_CTR2(vcpu, "%s: info1(%#lx)", __func__, info); 2079 vcpu->exitintinfo = info; 2080 return (0); 2081 } 2082 2083 enum exc_class { 2084 EXC_BENIGN, 2085 EXC_CONTRIBUTORY, 2086 EXC_PAGEFAULT 2087 }; 2088 2089 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 2090 2091 static enum exc_class 2092 exception_class(uint64_t info) 2093 { 2094 int type, vector; 2095 2096 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 2097 type = info & VM_INTINFO_TYPE; 2098 vector = info & 0xff; 2099 2100 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 2101 switch (type) { 2102 case VM_INTINFO_HWINTR: 2103 case VM_INTINFO_SWINTR: 2104 case VM_INTINFO_NMI: 2105 return (EXC_BENIGN); 2106 default: 2107 /* 2108 * Hardware exception. 2109 * 2110 * SVM and VT-x use identical type values to represent NMI, 2111 * hardware interrupt and software interrupt. 2112 * 2113 * SVM uses type '3' for all exceptions. VT-x uses type '3' 2114 * for exceptions except #BP and #OF. #BP and #OF use a type 2115 * value of '5' or '6'. Therefore we don't check for explicit 2116 * values of 'type' to classify 'intinfo' into a hardware 2117 * exception. 2118 */ 2119 break; 2120 } 2121 2122 switch (vector) { 2123 case IDT_PF: 2124 case IDT_VE: 2125 return (EXC_PAGEFAULT); 2126 case IDT_DE: 2127 case IDT_TS: 2128 case IDT_NP: 2129 case IDT_SS: 2130 case IDT_GP: 2131 return (EXC_CONTRIBUTORY); 2132 default: 2133 return (EXC_BENIGN); 2134 } 2135 } 2136 2137 static int 2138 nested_fault(struct vcpu *vcpu, uint64_t info1, uint64_t info2, 2139 uint64_t *retinfo) 2140 { 2141 enum exc_class exc1, exc2; 2142 int type1, vector1; 2143 2144 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 2145 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 2146 2147 /* 2148 * If an exception occurs while attempting to call the double-fault 2149 * handler the processor enters shutdown mode (aka triple fault). 2150 */ 2151 type1 = info1 & VM_INTINFO_TYPE; 2152 vector1 = info1 & 0xff; 2153 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 2154 VMM_CTR2(vcpu, "triple fault: info1(%#lx), info2(%#lx)", 2155 info1, info2); 2156 vm_suspend(vcpu->vm, VM_SUSPEND_TRIPLEFAULT); 2157 *retinfo = 0; 2158 return (0); 2159 } 2160 2161 /* 2162 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 2163 */ 2164 exc1 = exception_class(info1); 2165 exc2 = exception_class(info2); 2166 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 2167 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 2168 /* Convert nested fault into a double fault. */ 2169 *retinfo = IDT_DF; 2170 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 2171 *retinfo |= VM_INTINFO_DEL_ERRCODE; 2172 } else { 2173 /* Handle exceptions serially */ 2174 *retinfo = info2; 2175 } 2176 return (1); 2177 } 2178 2179 static uint64_t 2180 vcpu_exception_intinfo(struct vcpu *vcpu) 2181 { 2182 uint64_t info = 0; 2183 2184 if (vcpu->exception_pending) { 2185 info = vcpu->exc_vector & 0xff; 2186 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 2187 if (vcpu->exc_errcode_valid) { 2188 info |= VM_INTINFO_DEL_ERRCODE; 2189 info |= (uint64_t)vcpu->exc_errcode << 32; 2190 } 2191 } 2192 return (info); 2193 } 2194 2195 int 2196 vm_entry_intinfo(struct vcpu *vcpu, uint64_t *retinfo) 2197 { 2198 uint64_t info1, info2; 2199 int valid; 2200 2201 info1 = vcpu->exitintinfo; 2202 vcpu->exitintinfo = 0; 2203 2204 info2 = 0; 2205 if (vcpu->exception_pending) { 2206 info2 = vcpu_exception_intinfo(vcpu); 2207 vcpu->exception_pending = 0; 2208 VMM_CTR2(vcpu, "Exception %d delivered: %#lx", 2209 vcpu->exc_vector, info2); 2210 } 2211 2212 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 2213 valid = nested_fault(vcpu, info1, info2, retinfo); 2214 } else if (info1 & VM_INTINFO_VALID) { 2215 *retinfo = info1; 2216 valid = 1; 2217 } else if (info2 & VM_INTINFO_VALID) { 2218 *retinfo = info2; 2219 valid = 1; 2220 } else { 2221 valid = 0; 2222 } 2223 2224 if (valid) { 2225 VMM_CTR4(vcpu, "%s: info1(%#lx), info2(%#lx), " 2226 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 2227 } 2228 2229 return (valid); 2230 } 2231 2232 int 2233 vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2) 2234 { 2235 *info1 = vcpu->exitintinfo; 2236 *info2 = vcpu_exception_intinfo(vcpu); 2237 return (0); 2238 } 2239 2240 int 2241 vm_inject_exception(struct vcpu *vcpu, int vector, int errcode_valid, 2242 uint32_t errcode, int restart_instruction) 2243 { 2244 uint64_t regval; 2245 int error __diagused; 2246 2247 if (vector < 0 || vector >= 32) 2248 return (EINVAL); 2249 2250 /* 2251 * A double fault exception should never be injected directly into 2252 * the guest. It is a derived exception that results from specific 2253 * combinations of nested faults. 2254 */ 2255 if (vector == IDT_DF) 2256 return (EINVAL); 2257 2258 if (vcpu->exception_pending) { 2259 VMM_CTR2(vcpu, "Unable to inject exception %d due to " 2260 "pending exception %d", vector, vcpu->exc_vector); 2261 return (EBUSY); 2262 } 2263 2264 if (errcode_valid) { 2265 /* 2266 * Exceptions don't deliver an error code in real mode. 2267 */ 2268 error = vm_get_register(vcpu, VM_REG_GUEST_CR0, ®val); 2269 KASSERT(!error, ("%s: error %d getting CR0", __func__, error)); 2270 if (!(regval & CR0_PE)) 2271 errcode_valid = 0; 2272 } 2273 2274 /* 2275 * From section 26.6.1 "Interruptibility State" in Intel SDM: 2276 * 2277 * Event blocking by "STI" or "MOV SS" is cleared after guest executes 2278 * one instruction or incurs an exception. 2279 */ 2280 error = vm_set_register(vcpu, VM_REG_GUEST_INTR_SHADOW, 0); 2281 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", 2282 __func__, error)); 2283 2284 if (restart_instruction) 2285 vm_restart_instruction(vcpu); 2286 2287 vcpu->exception_pending = 1; 2288 vcpu->exc_vector = vector; 2289 vcpu->exc_errcode = errcode; 2290 vcpu->exc_errcode_valid = errcode_valid; 2291 VMM_CTR1(vcpu, "Exception %d pending", vector); 2292 return (0); 2293 } 2294 2295 void 2296 vm_inject_fault(struct vcpu *vcpu, int vector, int errcode_valid, int errcode) 2297 { 2298 int error __diagused, restart_instruction; 2299 2300 restart_instruction = 1; 2301 2302 error = vm_inject_exception(vcpu, vector, errcode_valid, 2303 errcode, restart_instruction); 2304 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 2305 } 2306 2307 void 2308 vm_inject_pf(struct vcpu *vcpu, int error_code, uint64_t cr2) 2309 { 2310 int error __diagused; 2311 2312 VMM_CTR2(vcpu, "Injecting page fault: error_code %#x, cr2 %#lx", 2313 error_code, cr2); 2314 2315 error = vm_set_register(vcpu, VM_REG_GUEST_CR2, cr2); 2316 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 2317 2318 vm_inject_fault(vcpu, IDT_PF, 1, error_code); 2319 } 2320 2321 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 2322 2323 int 2324 vm_inject_nmi(struct vcpu *vcpu) 2325 { 2326 2327 vcpu->nmi_pending = 1; 2328 vcpu_notify_event(vcpu, false); 2329 return (0); 2330 } 2331 2332 int 2333 vm_nmi_pending(struct vcpu *vcpu) 2334 { 2335 return (vcpu->nmi_pending); 2336 } 2337 2338 void 2339 vm_nmi_clear(struct vcpu *vcpu) 2340 { 2341 if (vcpu->nmi_pending == 0) 2342 panic("vm_nmi_clear: inconsistent nmi_pending state"); 2343 2344 vcpu->nmi_pending = 0; 2345 vmm_stat_incr(vcpu, VCPU_NMI_COUNT, 1); 2346 } 2347 2348 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 2349 2350 int 2351 vm_inject_extint(struct vcpu *vcpu) 2352 { 2353 2354 vcpu->extint_pending = 1; 2355 vcpu_notify_event(vcpu, false); 2356 return (0); 2357 } 2358 2359 int 2360 vm_extint_pending(struct vcpu *vcpu) 2361 { 2362 return (vcpu->extint_pending); 2363 } 2364 2365 void 2366 vm_extint_clear(struct vcpu *vcpu) 2367 { 2368 if (vcpu->extint_pending == 0) 2369 panic("vm_extint_clear: inconsistent extint_pending state"); 2370 2371 vcpu->extint_pending = 0; 2372 vmm_stat_incr(vcpu, VCPU_EXTINT_COUNT, 1); 2373 } 2374 2375 int 2376 vm_get_capability(struct vcpu *vcpu, int type, int *retval) 2377 { 2378 if (type < 0 || type >= VM_CAP_MAX) 2379 return (EINVAL); 2380 2381 return (vmmops_getcap(vcpu->cookie, type, retval)); 2382 } 2383 2384 int 2385 vm_set_capability(struct vcpu *vcpu, int type, int val) 2386 { 2387 if (type < 0 || type >= VM_CAP_MAX) 2388 return (EINVAL); 2389 2390 return (vmmops_setcap(vcpu->cookie, type, val)); 2391 } 2392 2393 struct vm * 2394 vcpu_vm(struct vcpu *vcpu) 2395 { 2396 return (vcpu->vm); 2397 } 2398 2399 int 2400 vcpu_vcpuid(struct vcpu *vcpu) 2401 { 2402 return (vcpu->vcpuid); 2403 } 2404 2405 struct vcpu * 2406 vm_vcpu(struct vm *vm, int vcpuid) 2407 { 2408 return (vm->vcpu[vcpuid]); 2409 } 2410 2411 struct vlapic * 2412 vm_lapic(struct vcpu *vcpu) 2413 { 2414 return (vcpu->vlapic); 2415 } 2416 2417 struct vioapic * 2418 vm_ioapic(struct vm *vm) 2419 { 2420 2421 return (vm->vioapic); 2422 } 2423 2424 struct vhpet * 2425 vm_hpet(struct vm *vm) 2426 { 2427 2428 return (vm->vhpet); 2429 } 2430 2431 bool 2432 vmm_is_pptdev(int bus, int slot, int func) 2433 { 2434 int b, f, i, n, s; 2435 char *val, *cp, *cp2; 2436 bool found; 2437 2438 /* 2439 * XXX 2440 * The length of an environment variable is limited to 128 bytes which 2441 * puts an upper limit on the number of passthru devices that may be 2442 * specified using a single environment variable. 2443 * 2444 * Work around this by scanning multiple environment variable 2445 * names instead of a single one - yuck! 2446 */ 2447 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 2448 2449 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 2450 found = false; 2451 for (i = 0; names[i] != NULL && !found; i++) { 2452 cp = val = kern_getenv(names[i]); 2453 while (cp != NULL && *cp != '\0') { 2454 if ((cp2 = strchr(cp, ' ')) != NULL) 2455 *cp2 = '\0'; 2456 2457 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 2458 if (n == 3 && bus == b && slot == s && func == f) { 2459 found = true; 2460 break; 2461 } 2462 2463 if (cp2 != NULL) 2464 *cp2++ = ' '; 2465 2466 cp = cp2; 2467 } 2468 freeenv(val); 2469 } 2470 return (found); 2471 } 2472 2473 void * 2474 vm_iommu_domain(struct vm *vm) 2475 { 2476 2477 return (vm->iommu); 2478 } 2479 2480 int 2481 vcpu_set_state(struct vcpu *vcpu, enum vcpu_state newstate, bool from_idle) 2482 { 2483 int error; 2484 2485 vcpu_lock(vcpu); 2486 error = vcpu_set_state_locked(vcpu, newstate, from_idle); 2487 vcpu_unlock(vcpu); 2488 2489 return (error); 2490 } 2491 2492 enum vcpu_state 2493 vcpu_get_state(struct vcpu *vcpu, int *hostcpu) 2494 { 2495 enum vcpu_state state; 2496 2497 vcpu_lock(vcpu); 2498 state = vcpu->state; 2499 if (hostcpu != NULL) 2500 *hostcpu = vcpu->hostcpu; 2501 vcpu_unlock(vcpu); 2502 2503 return (state); 2504 } 2505 2506 int 2507 vm_activate_cpu(struct vcpu *vcpu) 2508 { 2509 struct vm *vm = vcpu->vm; 2510 2511 if (CPU_ISSET(vcpu->vcpuid, &vm->active_cpus)) 2512 return (EBUSY); 2513 2514 VMM_CTR0(vcpu, "activated"); 2515 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->active_cpus); 2516 return (0); 2517 } 2518 2519 int 2520 vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu) 2521 { 2522 if (vcpu == NULL) { 2523 vm->debug_cpus = vm->active_cpus; 2524 for (int i = 0; i < vm->maxcpus; i++) { 2525 if (CPU_ISSET(i, &vm->active_cpus)) 2526 vcpu_notify_event(vm_vcpu(vm, i), false); 2527 } 2528 } else { 2529 if (!CPU_ISSET(vcpu->vcpuid, &vm->active_cpus)) 2530 return (EINVAL); 2531 2532 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->debug_cpus); 2533 vcpu_notify_event(vcpu, false); 2534 } 2535 return (0); 2536 } 2537 2538 int 2539 vm_resume_cpu(struct vm *vm, struct vcpu *vcpu) 2540 { 2541 2542 if (vcpu == NULL) { 2543 CPU_ZERO(&vm->debug_cpus); 2544 } else { 2545 if (!CPU_ISSET(vcpu->vcpuid, &vm->debug_cpus)) 2546 return (EINVAL); 2547 2548 CPU_CLR_ATOMIC(vcpu->vcpuid, &vm->debug_cpus); 2549 } 2550 return (0); 2551 } 2552 2553 int 2554 vcpu_debugged(struct vcpu *vcpu) 2555 { 2556 2557 return (CPU_ISSET(vcpu->vcpuid, &vcpu->vm->debug_cpus)); 2558 } 2559 2560 cpuset_t 2561 vm_active_cpus(struct vm *vm) 2562 { 2563 2564 return (vm->active_cpus); 2565 } 2566 2567 cpuset_t 2568 vm_debug_cpus(struct vm *vm) 2569 { 2570 2571 return (vm->debug_cpus); 2572 } 2573 2574 cpuset_t 2575 vm_suspended_cpus(struct vm *vm) 2576 { 2577 2578 return (vm->suspended_cpus); 2579 } 2580 2581 /* 2582 * Returns the subset of vCPUs in tostart that are awaiting startup. 2583 * These vCPUs are also marked as no longer awaiting startup. 2584 */ 2585 cpuset_t 2586 vm_start_cpus(struct vm *vm, const cpuset_t *tostart) 2587 { 2588 cpuset_t set; 2589 2590 mtx_lock(&vm->rendezvous_mtx); 2591 CPU_AND(&set, &vm->startup_cpus, tostart); 2592 CPU_ANDNOT(&vm->startup_cpus, &vm->startup_cpus, &set); 2593 mtx_unlock(&vm->rendezvous_mtx); 2594 return (set); 2595 } 2596 2597 void 2598 vm_await_start(struct vm *vm, const cpuset_t *waiting) 2599 { 2600 mtx_lock(&vm->rendezvous_mtx); 2601 CPU_OR(&vm->startup_cpus, &vm->startup_cpus, waiting); 2602 mtx_unlock(&vm->rendezvous_mtx); 2603 } 2604 2605 void * 2606 vcpu_stats(struct vcpu *vcpu) 2607 { 2608 2609 return (vcpu->stats); 2610 } 2611 2612 int 2613 vm_get_x2apic_state(struct vcpu *vcpu, enum x2apic_state *state) 2614 { 2615 *state = vcpu->x2apic_state; 2616 2617 return (0); 2618 } 2619 2620 int 2621 vm_set_x2apic_state(struct vcpu *vcpu, enum x2apic_state state) 2622 { 2623 if (state >= X2APIC_STATE_LAST) 2624 return (EINVAL); 2625 2626 vcpu->x2apic_state = state; 2627 2628 vlapic_set_x2apic_state(vcpu, state); 2629 2630 return (0); 2631 } 2632 2633 /* 2634 * This function is called to ensure that a vcpu "sees" a pending event 2635 * as soon as possible: 2636 * - If the vcpu thread is sleeping then it is woken up. 2637 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2638 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2639 */ 2640 static void 2641 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr) 2642 { 2643 int hostcpu; 2644 2645 hostcpu = vcpu->hostcpu; 2646 if (vcpu->state == VCPU_RUNNING) { 2647 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2648 if (hostcpu != curcpu) { 2649 if (lapic_intr) { 2650 vlapic_post_intr(vcpu->vlapic, hostcpu, 2651 vmm_ipinum); 2652 } else { 2653 ipi_cpu(hostcpu, vmm_ipinum); 2654 } 2655 } else { 2656 /* 2657 * If the 'vcpu' is running on 'curcpu' then it must 2658 * be sending a notification to itself (e.g. SELF_IPI). 2659 * The pending event will be picked up when the vcpu 2660 * transitions back to guest context. 2661 */ 2662 } 2663 } else { 2664 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2665 "with hostcpu %d", vcpu->state, hostcpu)); 2666 if (vcpu->state == VCPU_SLEEPING) 2667 wakeup_one(vcpu); 2668 } 2669 } 2670 2671 void 2672 vcpu_notify_event(struct vcpu *vcpu, bool lapic_intr) 2673 { 2674 vcpu_lock(vcpu); 2675 vcpu_notify_event_locked(vcpu, lapic_intr); 2676 vcpu_unlock(vcpu); 2677 } 2678 2679 struct vmspace * 2680 vm_get_vmspace(struct vm *vm) 2681 { 2682 2683 return (vm->vmspace); 2684 } 2685 2686 int 2687 vm_apicid2vcpuid(struct vm *vm, int apicid) 2688 { 2689 /* 2690 * XXX apic id is assumed to be numerically identical to vcpu id 2691 */ 2692 return (apicid); 2693 } 2694 2695 int 2696 vm_smp_rendezvous(struct vcpu *vcpu, cpuset_t dest, 2697 vm_rendezvous_func_t func, void *arg) 2698 { 2699 struct vm *vm = vcpu->vm; 2700 int error, i; 2701 2702 /* 2703 * Enforce that this function is called without any locks 2704 */ 2705 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2706 2707 restart: 2708 mtx_lock(&vm->rendezvous_mtx); 2709 if (vm->rendezvous_func != NULL) { 2710 /* 2711 * If a rendezvous is already in progress then we need to 2712 * call the rendezvous handler in case this 'vcpu' is one 2713 * of the targets of the rendezvous. 2714 */ 2715 VMM_CTR0(vcpu, "Rendezvous already in progress"); 2716 mtx_unlock(&vm->rendezvous_mtx); 2717 error = vm_handle_rendezvous(vcpu); 2718 if (error != 0) 2719 return (error); 2720 goto restart; 2721 } 2722 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2723 "rendezvous is still in progress")); 2724 2725 VMM_CTR0(vcpu, "Initiating rendezvous"); 2726 vm->rendezvous_req_cpus = dest; 2727 CPU_ZERO(&vm->rendezvous_done_cpus); 2728 vm->rendezvous_arg = arg; 2729 vm->rendezvous_func = func; 2730 mtx_unlock(&vm->rendezvous_mtx); 2731 2732 /* 2733 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2734 * vcpus so they handle the rendezvous as soon as possible. 2735 */ 2736 for (i = 0; i < vm->maxcpus; i++) { 2737 if (CPU_ISSET(i, &dest)) 2738 vcpu_notify_event(vm_vcpu(vm, i), false); 2739 } 2740 2741 return (vm_handle_rendezvous(vcpu)); 2742 } 2743 2744 struct vatpic * 2745 vm_atpic(struct vm *vm) 2746 { 2747 return (vm->vatpic); 2748 } 2749 2750 struct vatpit * 2751 vm_atpit(struct vm *vm) 2752 { 2753 return (vm->vatpit); 2754 } 2755 2756 struct vpmtmr * 2757 vm_pmtmr(struct vm *vm) 2758 { 2759 2760 return (vm->vpmtmr); 2761 } 2762 2763 struct vrtc * 2764 vm_rtc(struct vm *vm) 2765 { 2766 2767 return (vm->vrtc); 2768 } 2769 2770 enum vm_reg_name 2771 vm_segment_name(int seg) 2772 { 2773 static enum vm_reg_name seg_names[] = { 2774 VM_REG_GUEST_ES, 2775 VM_REG_GUEST_CS, 2776 VM_REG_GUEST_SS, 2777 VM_REG_GUEST_DS, 2778 VM_REG_GUEST_FS, 2779 VM_REG_GUEST_GS 2780 }; 2781 2782 KASSERT(seg >= 0 && seg < nitems(seg_names), 2783 ("%s: invalid segment encoding %d", __func__, seg)); 2784 return (seg_names[seg]); 2785 } 2786 2787 void 2788 vm_copy_teardown(struct vm_copyinfo *copyinfo, int num_copyinfo) 2789 { 2790 int idx; 2791 2792 for (idx = 0; idx < num_copyinfo; idx++) { 2793 if (copyinfo[idx].cookie != NULL) 2794 vm_gpa_release(copyinfo[idx].cookie); 2795 } 2796 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2797 } 2798 2799 int 2800 vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging, 2801 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2802 int num_copyinfo, int *fault) 2803 { 2804 int error, idx, nused; 2805 size_t n, off, remaining; 2806 void *hva, *cookie; 2807 uint64_t gpa; 2808 2809 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2810 2811 nused = 0; 2812 remaining = len; 2813 while (remaining > 0) { 2814 if (nused >= num_copyinfo) 2815 return (EFAULT); 2816 error = vm_gla2gpa(vcpu, paging, gla, prot, &gpa, fault); 2817 if (error || *fault) 2818 return (error); 2819 off = gpa & PAGE_MASK; 2820 n = min(remaining, PAGE_SIZE - off); 2821 copyinfo[nused].gpa = gpa; 2822 copyinfo[nused].len = n; 2823 remaining -= n; 2824 gla += n; 2825 nused++; 2826 } 2827 2828 for (idx = 0; idx < nused; idx++) { 2829 hva = vm_gpa_hold(vcpu, copyinfo[idx].gpa, 2830 copyinfo[idx].len, prot, &cookie); 2831 if (hva == NULL) 2832 break; 2833 copyinfo[idx].hva = hva; 2834 copyinfo[idx].cookie = cookie; 2835 } 2836 2837 if (idx != nused) { 2838 vm_copy_teardown(copyinfo, num_copyinfo); 2839 return (EFAULT); 2840 } else { 2841 *fault = 0; 2842 return (0); 2843 } 2844 } 2845 2846 void 2847 vm_copyin(struct vm_copyinfo *copyinfo, void *kaddr, size_t len) 2848 { 2849 char *dst; 2850 int idx; 2851 2852 dst = kaddr; 2853 idx = 0; 2854 while (len > 0) { 2855 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2856 len -= copyinfo[idx].len; 2857 dst += copyinfo[idx].len; 2858 idx++; 2859 } 2860 } 2861 2862 void 2863 vm_copyout(const void *kaddr, struct vm_copyinfo *copyinfo, size_t len) 2864 { 2865 const char *src; 2866 int idx; 2867 2868 src = kaddr; 2869 idx = 0; 2870 while (len > 0) { 2871 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2872 len -= copyinfo[idx].len; 2873 src += copyinfo[idx].len; 2874 idx++; 2875 } 2876 } 2877 2878 /* 2879 * Return the amount of in-use and wired memory for the VM. Since 2880 * these are global stats, only return the values with for vCPU 0 2881 */ 2882 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2883 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2884 2885 static void 2886 vm_get_rescnt(struct vcpu *vcpu, struct vmm_stat_type *stat) 2887 { 2888 2889 if (vcpu->vcpuid == 0) { 2890 vmm_stat_set(vcpu, VMM_MEM_RESIDENT, PAGE_SIZE * 2891 vmspace_resident_count(vcpu->vm->vmspace)); 2892 } 2893 } 2894 2895 static void 2896 vm_get_wiredcnt(struct vcpu *vcpu, struct vmm_stat_type *stat) 2897 { 2898 2899 if (vcpu->vcpuid == 0) { 2900 vmm_stat_set(vcpu, VMM_MEM_WIRED, PAGE_SIZE * 2901 pmap_wired_count(vmspace_pmap(vcpu->vm->vmspace))); 2902 } 2903 } 2904 2905 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2906 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2907 2908 #ifdef BHYVE_SNAPSHOT 2909 static int 2910 vm_snapshot_vcpus(struct vm *vm, struct vm_snapshot_meta *meta) 2911 { 2912 uint64_t tsc, now; 2913 int ret; 2914 struct vcpu *vcpu; 2915 uint16_t i, maxcpus; 2916 2917 now = rdtsc(); 2918 maxcpus = vm_get_maxcpus(vm); 2919 for (i = 0; i < maxcpus; i++) { 2920 vcpu = vm->vcpu[i]; 2921 if (vcpu == NULL) 2922 continue; 2923 2924 SNAPSHOT_VAR_OR_LEAVE(vcpu->x2apic_state, meta, ret, done); 2925 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitintinfo, meta, ret, done); 2926 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_vector, meta, ret, done); 2927 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode_valid, meta, ret, done); 2928 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode, meta, ret, done); 2929 SNAPSHOT_VAR_OR_LEAVE(vcpu->guest_xcr0, meta, ret, done); 2930 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitinfo, meta, ret, done); 2931 SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, ret, done); 2932 2933 /* 2934 * Save the absolute TSC value by adding now to tsc_offset. 2935 * 2936 * It will be turned turned back into an actual offset when the 2937 * TSC restore function is called 2938 */ 2939 tsc = now + vcpu->tsc_offset; 2940 SNAPSHOT_VAR_OR_LEAVE(tsc, meta, ret, done); 2941 if (meta->op == VM_SNAPSHOT_RESTORE) 2942 vcpu->tsc_offset = tsc; 2943 } 2944 2945 done: 2946 return (ret); 2947 } 2948 2949 static int 2950 vm_snapshot_vm(struct vm *vm, struct vm_snapshot_meta *meta) 2951 { 2952 int ret; 2953 2954 ret = vm_snapshot_vcpus(vm, meta); 2955 if (ret != 0) 2956 goto done; 2957 2958 SNAPSHOT_VAR_OR_LEAVE(vm->startup_cpus, meta, ret, done); 2959 done: 2960 return (ret); 2961 } 2962 2963 static int 2964 vm_snapshot_vcpu(struct vm *vm, struct vm_snapshot_meta *meta) 2965 { 2966 int error; 2967 struct vcpu *vcpu; 2968 uint16_t i, maxcpus; 2969 2970 error = 0; 2971 2972 maxcpus = vm_get_maxcpus(vm); 2973 for (i = 0; i < maxcpus; i++) { 2974 vcpu = vm->vcpu[i]; 2975 if (vcpu == NULL) 2976 continue; 2977 2978 error = vmmops_vcpu_snapshot(vcpu->cookie, meta); 2979 if (error != 0) { 2980 printf("%s: failed to snapshot vmcs/vmcb data for " 2981 "vCPU: %d; error: %d\n", __func__, i, error); 2982 goto done; 2983 } 2984 } 2985 2986 done: 2987 return (error); 2988 } 2989 2990 /* 2991 * Save kernel-side structures to user-space for snapshotting. 2992 */ 2993 int 2994 vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta) 2995 { 2996 int ret = 0; 2997 2998 switch (meta->dev_req) { 2999 case STRUCT_VMCX: 3000 ret = vm_snapshot_vcpu(vm, meta); 3001 break; 3002 case STRUCT_VM: 3003 ret = vm_snapshot_vm(vm, meta); 3004 break; 3005 case STRUCT_VIOAPIC: 3006 ret = vioapic_snapshot(vm_ioapic(vm), meta); 3007 break; 3008 case STRUCT_VLAPIC: 3009 ret = vlapic_snapshot(vm, meta); 3010 break; 3011 case STRUCT_VHPET: 3012 ret = vhpet_snapshot(vm_hpet(vm), meta); 3013 break; 3014 case STRUCT_VATPIC: 3015 ret = vatpic_snapshot(vm_atpic(vm), meta); 3016 break; 3017 case STRUCT_VATPIT: 3018 ret = vatpit_snapshot(vm_atpit(vm), meta); 3019 break; 3020 case STRUCT_VPMTMR: 3021 ret = vpmtmr_snapshot(vm_pmtmr(vm), meta); 3022 break; 3023 case STRUCT_VRTC: 3024 ret = vrtc_snapshot(vm_rtc(vm), meta); 3025 break; 3026 default: 3027 printf("%s: failed to find the requested type %#x\n", 3028 __func__, meta->dev_req); 3029 ret = (EINVAL); 3030 } 3031 return (ret); 3032 } 3033 3034 void 3035 vm_set_tsc_offset(struct vcpu *vcpu, uint64_t offset) 3036 { 3037 vcpu->tsc_offset = offset; 3038 } 3039 3040 int 3041 vm_restore_time(struct vm *vm) 3042 { 3043 int error; 3044 uint64_t now; 3045 struct vcpu *vcpu; 3046 uint16_t i, maxcpus; 3047 3048 now = rdtsc(); 3049 3050 error = vhpet_restore_time(vm_hpet(vm)); 3051 if (error) 3052 return (error); 3053 3054 maxcpus = vm_get_maxcpus(vm); 3055 for (i = 0; i < maxcpus; i++) { 3056 vcpu = vm->vcpu[i]; 3057 if (vcpu == NULL) 3058 continue; 3059 3060 error = vmmops_restore_tsc(vcpu->cookie, 3061 vcpu->tsc_offset - now); 3062 if (error) 3063 return (error); 3064 } 3065 3066 return (0); 3067 } 3068 #endif 3069