1 /*- 2 * Copyright (c) 2011 NetApp, Inc. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD$ 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/sysctl.h> 37 #include <sys/malloc.h> 38 #include <sys/pcpu.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/proc.h> 42 #include <sys/rwlock.h> 43 #include <sys/sched.h> 44 #include <sys/smp.h> 45 #include <sys/systm.h> 46 47 #include <vm/vm.h> 48 #include <vm/vm_object.h> 49 #include <vm/vm_page.h> 50 #include <vm/pmap.h> 51 #include <vm/vm_map.h> 52 #include <vm/vm_extern.h> 53 #include <vm/vm_param.h> 54 55 #include <machine/cpu.h> 56 #include <machine/vm.h> 57 #include <machine/pcb.h> 58 #include <machine/smp.h> 59 #include <x86/psl.h> 60 #include <x86/apicreg.h> 61 #include <machine/vmparam.h> 62 63 #include <machine/vmm.h> 64 #include <machine/vmm_dev.h> 65 #include <machine/vmm_instruction_emul.h> 66 67 #include "vmm_ioport.h" 68 #include "vmm_ktr.h" 69 #include "vmm_host.h" 70 #include "vmm_mem.h" 71 #include "vmm_util.h" 72 #include "vatpic.h" 73 #include "vatpit.h" 74 #include "vhpet.h" 75 #include "vioapic.h" 76 #include "vlapic.h" 77 #include "vmm_ipi.h" 78 #include "vmm_stat.h" 79 #include "vmm_lapic.h" 80 81 #include "io/ppt.h" 82 #include "io/iommu.h" 83 84 struct vlapic; 85 86 /* 87 * Initialization: 88 * (a) allocated when vcpu is created 89 * (i) initialized when vcpu is created and when it is reinitialized 90 * (o) initialized the first time the vcpu is created 91 * (x) initialized before use 92 */ 93 struct vcpu { 94 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 95 enum vcpu_state state; /* (o) vcpu state */ 96 int hostcpu; /* (o) vcpu's host cpu */ 97 struct vlapic *vlapic; /* (i) APIC device model */ 98 enum x2apic_state x2apic_state; /* (i) APIC mode */ 99 uint64_t exitintinfo; /* (i) events pending at VM exit */ 100 int nmi_pending; /* (i) NMI pending */ 101 int extint_pending; /* (i) INTR pending */ 102 struct vm_exception exception; /* (x) exception collateral */ 103 int exception_pending; /* (i) exception pending */ 104 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 105 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 106 void *stats; /* (a,i) statistics */ 107 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 108 }; 109 110 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx)) 111 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 112 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 113 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 114 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 115 116 struct mem_seg { 117 vm_paddr_t gpa; 118 size_t len; 119 boolean_t wired; 120 vm_object_t object; 121 }; 122 #define VM_MAX_MEMORY_SEGMENTS 2 123 124 /* 125 * Initialization: 126 * (o) initialized the first time the VM is created 127 * (i) initialized when VM is created and when it is reinitialized 128 * (x) initialized before use 129 */ 130 struct vm { 131 void *cookie; /* (i) cpu-specific data */ 132 void *iommu; /* (x) iommu-specific data */ 133 struct vhpet *vhpet; /* (i) virtual HPET */ 134 struct vioapic *vioapic; /* (i) virtual ioapic */ 135 struct vatpic *vatpic; /* (i) virtual atpic */ 136 struct vatpit *vatpit; /* (i) virtual atpit */ 137 volatile cpuset_t active_cpus; /* (i) active vcpus */ 138 int suspend; /* (i) stop VM execution */ 139 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 140 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 141 cpuset_t rendezvous_req_cpus; /* (x) rendezvous requested */ 142 cpuset_t rendezvous_done_cpus; /* (x) rendezvous finished */ 143 void *rendezvous_arg; /* (x) rendezvous func/arg */ 144 vm_rendezvous_func_t rendezvous_func; 145 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 146 int num_mem_segs; /* (o) guest memory segments */ 147 struct mem_seg mem_segs[VM_MAX_MEMORY_SEGMENTS]; 148 struct vmspace *vmspace; /* (o) guest's address space */ 149 char name[VM_MAX_NAMELEN]; /* (o) virtual machine name */ 150 struct vcpu vcpu[VM_MAXCPU]; /* (i) guest vcpus */ 151 }; 152 153 static int vmm_initialized; 154 155 static struct vmm_ops *ops; 156 #define VMM_INIT(num) (ops != NULL ? (*ops->init)(num) : 0) 157 #define VMM_CLEANUP() (ops != NULL ? (*ops->cleanup)() : 0) 158 #define VMM_RESUME() (ops != NULL ? (*ops->resume)() : 0) 159 160 #define VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL) 161 #define VMRUN(vmi, vcpu, rip, pmap, rptr, sptr) \ 162 (ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, rptr, sptr) : ENXIO) 163 #define VMCLEANUP(vmi) (ops != NULL ? (*ops->vmcleanup)(vmi) : NULL) 164 #define VMSPACE_ALLOC(min, max) \ 165 (ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL) 166 #define VMSPACE_FREE(vmspace) \ 167 (ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO) 168 #define VMGETREG(vmi, vcpu, num, retval) \ 169 (ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO) 170 #define VMSETREG(vmi, vcpu, num, val) \ 171 (ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO) 172 #define VMGETDESC(vmi, vcpu, num, desc) \ 173 (ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO) 174 #define VMSETDESC(vmi, vcpu, num, desc) \ 175 (ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO) 176 #define VMGETCAP(vmi, vcpu, num, retval) \ 177 (ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO) 178 #define VMSETCAP(vmi, vcpu, num, val) \ 179 (ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO) 180 #define VLAPIC_INIT(vmi, vcpu) \ 181 (ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL) 182 #define VLAPIC_CLEANUP(vmi, vlapic) \ 183 (ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL) 184 185 #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS) 186 #define fpu_stop_emulating() clts() 187 188 static MALLOC_DEFINE(M_VM, "vm", "vm"); 189 190 /* statistics */ 191 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 192 193 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL); 194 195 /* 196 * Halt the guest if all vcpus are executing a HLT instruction with 197 * interrupts disabled. 198 */ 199 static int halt_detection_enabled = 1; 200 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 201 &halt_detection_enabled, 0, 202 "Halt VM if all vcpus execute HLT with interrupts disabled"); 203 204 static int vmm_ipinum; 205 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 206 "IPI vector used for vcpu notifications"); 207 208 static void 209 vcpu_cleanup(struct vm *vm, int i, bool destroy) 210 { 211 struct vcpu *vcpu = &vm->vcpu[i]; 212 213 VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic); 214 if (destroy) { 215 vmm_stat_free(vcpu->stats); 216 fpu_save_area_free(vcpu->guestfpu); 217 } 218 } 219 220 static void 221 vcpu_init(struct vm *vm, int vcpu_id, bool create) 222 { 223 struct vcpu *vcpu; 224 225 KASSERT(vcpu_id >= 0 && vcpu_id < VM_MAXCPU, 226 ("vcpu_init: invalid vcpu %d", vcpu_id)); 227 228 vcpu = &vm->vcpu[vcpu_id]; 229 230 if (create) { 231 KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already " 232 "initialized", vcpu_id)); 233 vcpu_lock_init(vcpu); 234 vcpu->state = VCPU_IDLE; 235 vcpu->hostcpu = NOCPU; 236 vcpu->guestfpu = fpu_save_area_alloc(); 237 vcpu->stats = vmm_stat_alloc(); 238 } 239 240 vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id); 241 vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED); 242 vcpu->exitintinfo = 0; 243 vcpu->nmi_pending = 0; 244 vcpu->extint_pending = 0; 245 vcpu->exception_pending = 0; 246 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 247 fpu_save_area_reset(vcpu->guestfpu); 248 vmm_stat_init(vcpu->stats); 249 } 250 251 struct vm_exit * 252 vm_exitinfo(struct vm *vm, int cpuid) 253 { 254 struct vcpu *vcpu; 255 256 if (cpuid < 0 || cpuid >= VM_MAXCPU) 257 panic("vm_exitinfo: invalid cpuid %d", cpuid); 258 259 vcpu = &vm->vcpu[cpuid]; 260 261 return (&vcpu->exitinfo); 262 } 263 264 static void 265 vmm_resume(void) 266 { 267 VMM_RESUME(); 268 } 269 270 static int 271 vmm_init(void) 272 { 273 int error; 274 275 vmm_host_state_init(); 276 277 vmm_ipinum = vmm_ipi_alloc(); 278 if (vmm_ipinum == 0) 279 vmm_ipinum = IPI_AST; 280 281 error = vmm_mem_init(); 282 if (error) 283 return (error); 284 285 if (vmm_is_intel()) 286 ops = &vmm_ops_intel; 287 else if (vmm_is_amd()) 288 ops = &vmm_ops_amd; 289 else 290 return (ENXIO); 291 292 vmm_resume_p = vmm_resume; 293 294 return (VMM_INIT(vmm_ipinum)); 295 } 296 297 static int 298 vmm_handler(module_t mod, int what, void *arg) 299 { 300 int error; 301 302 switch (what) { 303 case MOD_LOAD: 304 vmmdev_init(); 305 if (ppt_avail_devices() > 0) 306 iommu_init(); 307 error = vmm_init(); 308 if (error == 0) 309 vmm_initialized = 1; 310 break; 311 case MOD_UNLOAD: 312 error = vmmdev_cleanup(); 313 if (error == 0) { 314 vmm_resume_p = NULL; 315 iommu_cleanup(); 316 if (vmm_ipinum != IPI_AST) 317 vmm_ipi_free(vmm_ipinum); 318 error = VMM_CLEANUP(); 319 /* 320 * Something bad happened - prevent new 321 * VMs from being created 322 */ 323 if (error) 324 vmm_initialized = 0; 325 } 326 break; 327 default: 328 error = 0; 329 break; 330 } 331 return (error); 332 } 333 334 static moduledata_t vmm_kmod = { 335 "vmm", 336 vmm_handler, 337 NULL 338 }; 339 340 /* 341 * vmm initialization has the following dependencies: 342 * 343 * - iommu initialization must happen after the pci passthru driver has had 344 * a chance to attach to any passthru devices (after SI_SUB_CONFIGURE). 345 * 346 * - VT-x initialization requires smp_rendezvous() and therefore must happen 347 * after SMP is fully functional (after SI_SUB_SMP). 348 */ 349 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 350 MODULE_VERSION(vmm, 1); 351 352 static void 353 vm_init(struct vm *vm, bool create) 354 { 355 int i; 356 357 vm->cookie = VMINIT(vm, vmspace_pmap(vm->vmspace)); 358 vm->iommu = NULL; 359 vm->vioapic = vioapic_init(vm); 360 vm->vhpet = vhpet_init(vm); 361 vm->vatpic = vatpic_init(vm); 362 vm->vatpit = vatpit_init(vm); 363 364 CPU_ZERO(&vm->active_cpus); 365 366 vm->suspend = 0; 367 CPU_ZERO(&vm->suspended_cpus); 368 369 for (i = 0; i < VM_MAXCPU; i++) 370 vcpu_init(vm, i, create); 371 } 372 373 int 374 vm_create(const char *name, struct vm **retvm) 375 { 376 struct vm *vm; 377 struct vmspace *vmspace; 378 379 /* 380 * If vmm.ko could not be successfully initialized then don't attempt 381 * to create the virtual machine. 382 */ 383 if (!vmm_initialized) 384 return (ENXIO); 385 386 if (name == NULL || strlen(name) >= VM_MAX_NAMELEN) 387 return (EINVAL); 388 389 vmspace = VMSPACE_ALLOC(VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS); 390 if (vmspace == NULL) 391 return (ENOMEM); 392 393 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 394 strcpy(vm->name, name); 395 vm->num_mem_segs = 0; 396 vm->vmspace = vmspace; 397 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 398 399 vm_init(vm, true); 400 401 *retvm = vm; 402 return (0); 403 } 404 405 static void 406 vm_free_mem_seg(struct vm *vm, struct mem_seg *seg) 407 { 408 409 if (seg->object != NULL) 410 vmm_mem_free(vm->vmspace, seg->gpa, seg->len); 411 412 bzero(seg, sizeof(*seg)); 413 } 414 415 static void 416 vm_cleanup(struct vm *vm, bool destroy) 417 { 418 int i; 419 420 ppt_unassign_all(vm); 421 422 if (vm->iommu != NULL) 423 iommu_destroy_domain(vm->iommu); 424 425 vatpit_cleanup(vm->vatpit); 426 vhpet_cleanup(vm->vhpet); 427 vatpic_cleanup(vm->vatpic); 428 vioapic_cleanup(vm->vioapic); 429 430 for (i = 0; i < VM_MAXCPU; i++) 431 vcpu_cleanup(vm, i, destroy); 432 433 VMCLEANUP(vm->cookie); 434 435 if (destroy) { 436 for (i = 0; i < vm->num_mem_segs; i++) 437 vm_free_mem_seg(vm, &vm->mem_segs[i]); 438 439 vm->num_mem_segs = 0; 440 441 VMSPACE_FREE(vm->vmspace); 442 vm->vmspace = NULL; 443 } 444 } 445 446 void 447 vm_destroy(struct vm *vm) 448 { 449 vm_cleanup(vm, true); 450 free(vm, M_VM); 451 } 452 453 int 454 vm_reinit(struct vm *vm) 455 { 456 int error; 457 458 /* 459 * A virtual machine can be reset only if all vcpus are suspended. 460 */ 461 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 462 vm_cleanup(vm, false); 463 vm_init(vm, false); 464 error = 0; 465 } else { 466 error = EBUSY; 467 } 468 469 return (error); 470 } 471 472 const char * 473 vm_name(struct vm *vm) 474 { 475 return (vm->name); 476 } 477 478 int 479 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 480 { 481 vm_object_t obj; 482 483 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 484 return (ENOMEM); 485 else 486 return (0); 487 } 488 489 int 490 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 491 { 492 493 vmm_mmio_free(vm->vmspace, gpa, len); 494 return (0); 495 } 496 497 boolean_t 498 vm_mem_allocated(struct vm *vm, vm_paddr_t gpa) 499 { 500 int i; 501 vm_paddr_t gpabase, gpalimit; 502 503 for (i = 0; i < vm->num_mem_segs; i++) { 504 gpabase = vm->mem_segs[i].gpa; 505 gpalimit = gpabase + vm->mem_segs[i].len; 506 if (gpa >= gpabase && gpa < gpalimit) 507 return (TRUE); /* 'gpa' is regular memory */ 508 } 509 510 if (ppt_is_mmio(vm, gpa)) 511 return (TRUE); /* 'gpa' is pci passthru mmio */ 512 513 return (FALSE); 514 } 515 516 int 517 vm_malloc(struct vm *vm, vm_paddr_t gpa, size_t len) 518 { 519 int available, allocated; 520 struct mem_seg *seg; 521 vm_object_t object; 522 vm_paddr_t g; 523 524 if ((gpa & PAGE_MASK) || (len & PAGE_MASK) || len == 0) 525 return (EINVAL); 526 527 available = allocated = 0; 528 g = gpa; 529 while (g < gpa + len) { 530 if (vm_mem_allocated(vm, g)) 531 allocated++; 532 else 533 available++; 534 535 g += PAGE_SIZE; 536 } 537 538 /* 539 * If there are some allocated and some available pages in the address 540 * range then it is an error. 541 */ 542 if (allocated && available) 543 return (EINVAL); 544 545 /* 546 * If the entire address range being requested has already been 547 * allocated then there isn't anything more to do. 548 */ 549 if (allocated && available == 0) 550 return (0); 551 552 if (vm->num_mem_segs >= VM_MAX_MEMORY_SEGMENTS) 553 return (E2BIG); 554 555 seg = &vm->mem_segs[vm->num_mem_segs]; 556 557 if ((object = vmm_mem_alloc(vm->vmspace, gpa, len)) == NULL) 558 return (ENOMEM); 559 560 seg->gpa = gpa; 561 seg->len = len; 562 seg->object = object; 563 seg->wired = FALSE; 564 565 vm->num_mem_segs++; 566 567 return (0); 568 } 569 570 static vm_paddr_t 571 vm_maxmem(struct vm *vm) 572 { 573 int i; 574 vm_paddr_t gpa, maxmem; 575 576 maxmem = 0; 577 for (i = 0; i < vm->num_mem_segs; i++) { 578 gpa = vm->mem_segs[i].gpa + vm->mem_segs[i].len; 579 if (gpa > maxmem) 580 maxmem = gpa; 581 } 582 return (maxmem); 583 } 584 585 static void 586 vm_gpa_unwire(struct vm *vm) 587 { 588 int i, rv; 589 struct mem_seg *seg; 590 591 for (i = 0; i < vm->num_mem_segs; i++) { 592 seg = &vm->mem_segs[i]; 593 if (!seg->wired) 594 continue; 595 596 rv = vm_map_unwire(&vm->vmspace->vm_map, 597 seg->gpa, seg->gpa + seg->len, 598 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 599 KASSERT(rv == KERN_SUCCESS, ("vm(%s) memory segment " 600 "%#lx/%ld could not be unwired: %d", 601 vm_name(vm), seg->gpa, seg->len, rv)); 602 603 seg->wired = FALSE; 604 } 605 } 606 607 static int 608 vm_gpa_wire(struct vm *vm) 609 { 610 int i, rv; 611 struct mem_seg *seg; 612 613 for (i = 0; i < vm->num_mem_segs; i++) { 614 seg = &vm->mem_segs[i]; 615 if (seg->wired) 616 continue; 617 618 /* XXX rlimits? */ 619 rv = vm_map_wire(&vm->vmspace->vm_map, 620 seg->gpa, seg->gpa + seg->len, 621 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 622 if (rv != KERN_SUCCESS) 623 break; 624 625 seg->wired = TRUE; 626 } 627 628 if (i < vm->num_mem_segs) { 629 /* 630 * Undo the wiring before returning an error. 631 */ 632 vm_gpa_unwire(vm); 633 return (EAGAIN); 634 } 635 636 return (0); 637 } 638 639 static void 640 vm_iommu_modify(struct vm *vm, boolean_t map) 641 { 642 int i, sz; 643 vm_paddr_t gpa, hpa; 644 struct mem_seg *seg; 645 void *vp, *cookie, *host_domain; 646 647 sz = PAGE_SIZE; 648 host_domain = iommu_host_domain(); 649 650 for (i = 0; i < vm->num_mem_segs; i++) { 651 seg = &vm->mem_segs[i]; 652 KASSERT(seg->wired, ("vm(%s) memory segment %#lx/%ld not wired", 653 vm_name(vm), seg->gpa, seg->len)); 654 655 gpa = seg->gpa; 656 while (gpa < seg->gpa + seg->len) { 657 vp = vm_gpa_hold(vm, gpa, PAGE_SIZE, VM_PROT_WRITE, 658 &cookie); 659 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", 660 vm_name(vm), gpa)); 661 662 vm_gpa_release(cookie); 663 664 hpa = DMAP_TO_PHYS((uintptr_t)vp); 665 if (map) { 666 iommu_create_mapping(vm->iommu, gpa, hpa, sz); 667 iommu_remove_mapping(host_domain, hpa, sz); 668 } else { 669 iommu_remove_mapping(vm->iommu, gpa, sz); 670 iommu_create_mapping(host_domain, hpa, hpa, sz); 671 } 672 673 gpa += PAGE_SIZE; 674 } 675 } 676 677 /* 678 * Invalidate the cached translations associated with the domain 679 * from which pages were removed. 680 */ 681 if (map) 682 iommu_invalidate_tlb(host_domain); 683 else 684 iommu_invalidate_tlb(vm->iommu); 685 } 686 687 #define vm_iommu_unmap(vm) vm_iommu_modify((vm), FALSE) 688 #define vm_iommu_map(vm) vm_iommu_modify((vm), TRUE) 689 690 int 691 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 692 { 693 int error; 694 695 error = ppt_unassign_device(vm, bus, slot, func); 696 if (error) 697 return (error); 698 699 if (ppt_assigned_devices(vm) == 0) { 700 vm_iommu_unmap(vm); 701 vm_gpa_unwire(vm); 702 } 703 return (0); 704 } 705 706 int 707 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 708 { 709 int error; 710 vm_paddr_t maxaddr; 711 712 /* 713 * Virtual machines with pci passthru devices get special treatment: 714 * - the guest physical memory is wired 715 * - the iommu is programmed to do the 'gpa' to 'hpa' translation 716 * 717 * We need to do this before the first pci passthru device is attached. 718 */ 719 if (ppt_assigned_devices(vm) == 0) { 720 KASSERT(vm->iommu == NULL, 721 ("vm_assign_pptdev: iommu must be NULL")); 722 maxaddr = vm_maxmem(vm); 723 vm->iommu = iommu_create_domain(maxaddr); 724 725 error = vm_gpa_wire(vm); 726 if (error) 727 return (error); 728 729 vm_iommu_map(vm); 730 } 731 732 error = ppt_assign_device(vm, bus, slot, func); 733 return (error); 734 } 735 736 void * 737 vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 738 void **cookie) 739 { 740 int count, pageoff; 741 vm_page_t m; 742 743 pageoff = gpa & PAGE_MASK; 744 if (len > PAGE_SIZE - pageoff) 745 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 746 747 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 748 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 749 750 if (count == 1) { 751 *cookie = m; 752 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 753 } else { 754 *cookie = NULL; 755 return (NULL); 756 } 757 } 758 759 void 760 vm_gpa_release(void *cookie) 761 { 762 vm_page_t m = cookie; 763 764 vm_page_lock(m); 765 vm_page_unhold(m); 766 vm_page_unlock(m); 767 } 768 769 int 770 vm_gpabase2memseg(struct vm *vm, vm_paddr_t gpabase, 771 struct vm_memory_segment *seg) 772 { 773 int i; 774 775 for (i = 0; i < vm->num_mem_segs; i++) { 776 if (gpabase == vm->mem_segs[i].gpa) { 777 seg->gpa = vm->mem_segs[i].gpa; 778 seg->len = vm->mem_segs[i].len; 779 seg->wired = vm->mem_segs[i].wired; 780 return (0); 781 } 782 } 783 return (-1); 784 } 785 786 int 787 vm_get_memobj(struct vm *vm, vm_paddr_t gpa, size_t len, 788 vm_offset_t *offset, struct vm_object **object) 789 { 790 int i; 791 size_t seg_len; 792 vm_paddr_t seg_gpa; 793 vm_object_t seg_obj; 794 795 for (i = 0; i < vm->num_mem_segs; i++) { 796 if ((seg_obj = vm->mem_segs[i].object) == NULL) 797 continue; 798 799 seg_gpa = vm->mem_segs[i].gpa; 800 seg_len = vm->mem_segs[i].len; 801 802 if (gpa >= seg_gpa && gpa < seg_gpa + seg_len) { 803 *offset = gpa - seg_gpa; 804 *object = seg_obj; 805 vm_object_reference(seg_obj); 806 return (0); 807 } 808 } 809 810 return (EINVAL); 811 } 812 813 int 814 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval) 815 { 816 817 if (vcpu < 0 || vcpu >= VM_MAXCPU) 818 return (EINVAL); 819 820 if (reg >= VM_REG_LAST) 821 return (EINVAL); 822 823 return (VMGETREG(vm->cookie, vcpu, reg, retval)); 824 } 825 826 int 827 vm_set_register(struct vm *vm, int vcpu, int reg, uint64_t val) 828 { 829 830 if (vcpu < 0 || vcpu >= VM_MAXCPU) 831 return (EINVAL); 832 833 if (reg >= VM_REG_LAST) 834 return (EINVAL); 835 836 return (VMSETREG(vm->cookie, vcpu, reg, val)); 837 } 838 839 static boolean_t 840 is_descriptor_table(int reg) 841 { 842 843 switch (reg) { 844 case VM_REG_GUEST_IDTR: 845 case VM_REG_GUEST_GDTR: 846 return (TRUE); 847 default: 848 return (FALSE); 849 } 850 } 851 852 static boolean_t 853 is_segment_register(int reg) 854 { 855 856 switch (reg) { 857 case VM_REG_GUEST_ES: 858 case VM_REG_GUEST_CS: 859 case VM_REG_GUEST_SS: 860 case VM_REG_GUEST_DS: 861 case VM_REG_GUEST_FS: 862 case VM_REG_GUEST_GS: 863 case VM_REG_GUEST_TR: 864 case VM_REG_GUEST_LDTR: 865 return (TRUE); 866 default: 867 return (FALSE); 868 } 869 } 870 871 int 872 vm_get_seg_desc(struct vm *vm, int vcpu, int reg, 873 struct seg_desc *desc) 874 { 875 876 if (vcpu < 0 || vcpu >= VM_MAXCPU) 877 return (EINVAL); 878 879 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 880 return (EINVAL); 881 882 return (VMGETDESC(vm->cookie, vcpu, reg, desc)); 883 } 884 885 int 886 vm_set_seg_desc(struct vm *vm, int vcpu, int reg, 887 struct seg_desc *desc) 888 { 889 if (vcpu < 0 || vcpu >= VM_MAXCPU) 890 return (EINVAL); 891 892 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 893 return (EINVAL); 894 895 return (VMSETDESC(vm->cookie, vcpu, reg, desc)); 896 } 897 898 static void 899 restore_guest_fpustate(struct vcpu *vcpu) 900 { 901 902 /* flush host state to the pcb */ 903 fpuexit(curthread); 904 905 /* restore guest FPU state */ 906 fpu_stop_emulating(); 907 fpurestore(vcpu->guestfpu); 908 909 /* restore guest XCR0 if XSAVE is enabled in the host */ 910 if (rcr4() & CR4_XSAVE) 911 load_xcr(0, vcpu->guest_xcr0); 912 913 /* 914 * The FPU is now "dirty" with the guest's state so turn on emulation 915 * to trap any access to the FPU by the host. 916 */ 917 fpu_start_emulating(); 918 } 919 920 static void 921 save_guest_fpustate(struct vcpu *vcpu) 922 { 923 924 if ((rcr0() & CR0_TS) == 0) 925 panic("fpu emulation not enabled in host!"); 926 927 /* save guest XCR0 and restore host XCR0 */ 928 if (rcr4() & CR4_XSAVE) { 929 vcpu->guest_xcr0 = rxcr(0); 930 load_xcr(0, vmm_get_host_xcr0()); 931 } 932 933 /* save guest FPU state */ 934 fpu_stop_emulating(); 935 fpusave(vcpu->guestfpu); 936 fpu_start_emulating(); 937 } 938 939 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 940 941 static int 942 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate, 943 bool from_idle) 944 { 945 int error; 946 947 vcpu_assert_locked(vcpu); 948 949 /* 950 * State transitions from the vmmdev_ioctl() must always begin from 951 * the VCPU_IDLE state. This guarantees that there is only a single 952 * ioctl() operating on a vcpu at any point. 953 */ 954 if (from_idle) { 955 while (vcpu->state != VCPU_IDLE) 956 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 957 } else { 958 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 959 "vcpu idle state")); 960 } 961 962 if (vcpu->state == VCPU_RUNNING) { 963 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 964 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 965 } else { 966 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 967 "vcpu that is not running", vcpu->hostcpu)); 968 } 969 970 /* 971 * The following state transitions are allowed: 972 * IDLE -> FROZEN -> IDLE 973 * FROZEN -> RUNNING -> FROZEN 974 * FROZEN -> SLEEPING -> FROZEN 975 */ 976 switch (vcpu->state) { 977 case VCPU_IDLE: 978 case VCPU_RUNNING: 979 case VCPU_SLEEPING: 980 error = (newstate != VCPU_FROZEN); 981 break; 982 case VCPU_FROZEN: 983 error = (newstate == VCPU_FROZEN); 984 break; 985 default: 986 error = 1; 987 break; 988 } 989 990 if (error) 991 return (EBUSY); 992 993 vcpu->state = newstate; 994 if (newstate == VCPU_RUNNING) 995 vcpu->hostcpu = curcpu; 996 else 997 vcpu->hostcpu = NOCPU; 998 999 if (newstate == VCPU_IDLE) 1000 wakeup(&vcpu->state); 1001 1002 return (0); 1003 } 1004 1005 static void 1006 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1007 { 1008 int error; 1009 1010 if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0) 1011 panic("Error %d setting state to %d\n", error, newstate); 1012 } 1013 1014 static void 1015 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate) 1016 { 1017 int error; 1018 1019 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0) 1020 panic("Error %d setting state to %d", error, newstate); 1021 } 1022 1023 static void 1024 vm_set_rendezvous_func(struct vm *vm, vm_rendezvous_func_t func) 1025 { 1026 1027 KASSERT(mtx_owned(&vm->rendezvous_mtx), ("rendezvous_mtx not locked")); 1028 1029 /* 1030 * Update 'rendezvous_func' and execute a write memory barrier to 1031 * ensure that it is visible across all host cpus. This is not needed 1032 * for correctness but it does ensure that all the vcpus will notice 1033 * that the rendezvous is requested immediately. 1034 */ 1035 vm->rendezvous_func = func; 1036 wmb(); 1037 } 1038 1039 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt) \ 1040 do { \ 1041 if (vcpuid >= 0) \ 1042 VCPU_CTR0(vm, vcpuid, fmt); \ 1043 else \ 1044 VM_CTR0(vm, fmt); \ 1045 } while (0) 1046 1047 static void 1048 vm_handle_rendezvous(struct vm *vm, int vcpuid) 1049 { 1050 1051 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU), 1052 ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid)); 1053 1054 mtx_lock(&vm->rendezvous_mtx); 1055 while (vm->rendezvous_func != NULL) { 1056 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1057 CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus); 1058 1059 if (vcpuid != -1 && 1060 CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1061 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1062 VCPU_CTR0(vm, vcpuid, "Calling rendezvous func"); 1063 (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg); 1064 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1065 } 1066 if (CPU_CMP(&vm->rendezvous_req_cpus, 1067 &vm->rendezvous_done_cpus) == 0) { 1068 VCPU_CTR0(vm, vcpuid, "Rendezvous completed"); 1069 vm_set_rendezvous_func(vm, NULL); 1070 wakeup(&vm->rendezvous_func); 1071 break; 1072 } 1073 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion"); 1074 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1075 "vmrndv", 0); 1076 } 1077 mtx_unlock(&vm->rendezvous_mtx); 1078 } 1079 1080 /* 1081 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1082 */ 1083 static int 1084 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu) 1085 { 1086 struct vcpu *vcpu; 1087 const char *wmesg; 1088 int error, t, vcpu_halted, vm_halted; 1089 1090 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1091 1092 vcpu = &vm->vcpu[vcpuid]; 1093 vcpu_halted = 0; 1094 vm_halted = 0; 1095 1096 /* 1097 * The typical way to halt a cpu is to execute: "sti; hlt" 1098 * 1099 * STI sets RFLAGS.IF to enable interrupts. However, the processor 1100 * remains in an "interrupt shadow" for an additional instruction 1101 * following the STI. This guarantees that "sti; hlt" sequence is 1102 * atomic and a pending interrupt will be recognized after the HLT. 1103 * 1104 * After the HLT emulation is done the vcpu is no longer in an 1105 * interrupt shadow and a pending interrupt can be injected on 1106 * the next entry into the guest. 1107 */ 1108 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0); 1109 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", 1110 __func__, error)); 1111 1112 vcpu_lock(vcpu); 1113 while (1) { 1114 /* 1115 * Do a final check for pending NMI or interrupts before 1116 * really putting this thread to sleep. Also check for 1117 * software events that would cause this vcpu to wakeup. 1118 * 1119 * These interrupts/events could have happened after the 1120 * vcpu returned from VMRUN() and before it acquired the 1121 * vcpu lock above. 1122 */ 1123 if (vm->rendezvous_func != NULL || vm->suspend) 1124 break; 1125 if (vm_nmi_pending(vm, vcpuid)) 1126 break; 1127 if (!intr_disabled) { 1128 if (vm_extint_pending(vm, vcpuid) || 1129 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1130 break; 1131 } 1132 } 1133 1134 /* Don't go to sleep if the vcpu thread needs to yield */ 1135 if (vcpu_should_yield(vm, vcpuid)) 1136 break; 1137 1138 /* 1139 * Some Linux guests implement "halt" by having all vcpus 1140 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1141 * track of the vcpus that have entered this state. When all 1142 * vcpus enter the halted state the virtual machine is halted. 1143 */ 1144 if (intr_disabled) { 1145 wmesg = "vmhalt"; 1146 VCPU_CTR0(vm, vcpuid, "Halted"); 1147 if (!vcpu_halted && halt_detection_enabled) { 1148 vcpu_halted = 1; 1149 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1150 } 1151 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1152 vm_halted = 1; 1153 break; 1154 } 1155 } else { 1156 wmesg = "vmidle"; 1157 } 1158 1159 t = ticks; 1160 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1161 /* 1162 * XXX msleep_spin() cannot be interrupted by signals so 1163 * wake up periodically to check pending signals. 1164 */ 1165 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1166 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1167 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t); 1168 } 1169 1170 if (vcpu_halted) 1171 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1172 1173 vcpu_unlock(vcpu); 1174 1175 if (vm_halted) 1176 vm_suspend(vm, VM_SUSPEND_HALT); 1177 1178 return (0); 1179 } 1180 1181 static int 1182 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu) 1183 { 1184 int rv, ftype; 1185 struct vm_map *map; 1186 struct vcpu *vcpu; 1187 struct vm_exit *vme; 1188 1189 vcpu = &vm->vcpu[vcpuid]; 1190 vme = &vcpu->exitinfo; 1191 1192 ftype = vme->u.paging.fault_type; 1193 KASSERT(ftype == VM_PROT_READ || 1194 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1195 ("vm_handle_paging: invalid fault_type %d", ftype)); 1196 1197 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1198 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1199 vme->u.paging.gpa, ftype); 1200 if (rv == 0) { 1201 VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx", 1202 ftype == VM_PROT_READ ? "accessed" : "dirty", 1203 vme->u.paging.gpa); 1204 goto done; 1205 } 1206 } 1207 1208 map = &vm->vmspace->vm_map; 1209 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL); 1210 1211 VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, " 1212 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1213 1214 if (rv != KERN_SUCCESS) 1215 return (EFAULT); 1216 done: 1217 /* restart execution at the faulting instruction */ 1218 vme->inst_length = 0; 1219 1220 return (0); 1221 } 1222 1223 static int 1224 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu) 1225 { 1226 struct vie *vie; 1227 struct vcpu *vcpu; 1228 struct vm_exit *vme; 1229 uint64_t gla, gpa; 1230 struct vm_guest_paging *paging; 1231 mem_region_read_t mread; 1232 mem_region_write_t mwrite; 1233 enum vm_cpu_mode cpu_mode; 1234 int cs_d, error; 1235 1236 vcpu = &vm->vcpu[vcpuid]; 1237 vme = &vcpu->exitinfo; 1238 1239 gla = vme->u.inst_emul.gla; 1240 gpa = vme->u.inst_emul.gpa; 1241 cs_d = vme->u.inst_emul.cs_d; 1242 vie = &vme->u.inst_emul.vie; 1243 paging = &vme->u.inst_emul.paging; 1244 cpu_mode = paging->cpu_mode; 1245 1246 VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa); 1247 1248 vie_init(vie); 1249 1250 /* Fetch, decode and emulate the faulting instruction */ 1251 error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip, 1252 vme->inst_length, vie); 1253 if (error == 1) 1254 return (0); /* Resume guest to handle page fault */ 1255 else if (error == -1) 1256 return (EFAULT); 1257 else if (error != 0) 1258 panic("%s: vmm_fetch_instruction error %d", __func__, error); 1259 1260 if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) 1261 return (EFAULT); 1262 1263 /* return to userland unless this is an in-kernel emulated device */ 1264 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1265 mread = lapic_mmio_read; 1266 mwrite = lapic_mmio_write; 1267 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1268 mread = vioapic_mmio_read; 1269 mwrite = vioapic_mmio_write; 1270 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1271 mread = vhpet_mmio_read; 1272 mwrite = vhpet_mmio_write; 1273 } else { 1274 *retu = true; 1275 return (0); 1276 } 1277 1278 error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging, 1279 mread, mwrite, retu); 1280 1281 return (error); 1282 } 1283 1284 static int 1285 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu) 1286 { 1287 int i, done; 1288 struct vcpu *vcpu; 1289 1290 done = 0; 1291 vcpu = &vm->vcpu[vcpuid]; 1292 1293 CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus); 1294 1295 /* 1296 * Wait until all 'active_cpus' have suspended themselves. 1297 * 1298 * Since a VM may be suspended at any time including when one or 1299 * more vcpus are doing a rendezvous we need to call the rendezvous 1300 * handler while we are waiting to prevent a deadlock. 1301 */ 1302 vcpu_lock(vcpu); 1303 while (1) { 1304 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1305 VCPU_CTR0(vm, vcpuid, "All vcpus suspended"); 1306 break; 1307 } 1308 1309 if (vm->rendezvous_func == NULL) { 1310 VCPU_CTR0(vm, vcpuid, "Sleeping during suspend"); 1311 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1312 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1313 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1314 } else { 1315 VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend"); 1316 vcpu_unlock(vcpu); 1317 vm_handle_rendezvous(vm, vcpuid); 1318 vcpu_lock(vcpu); 1319 } 1320 } 1321 vcpu_unlock(vcpu); 1322 1323 /* 1324 * Wakeup the other sleeping vcpus and return to userspace. 1325 */ 1326 for (i = 0; i < VM_MAXCPU; i++) { 1327 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1328 vcpu_notify_event(vm, i, false); 1329 } 1330 } 1331 1332 *retu = true; 1333 return (0); 1334 } 1335 1336 int 1337 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1338 { 1339 int i; 1340 1341 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1342 return (EINVAL); 1343 1344 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1345 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1346 vm->suspend, how); 1347 return (EALREADY); 1348 } 1349 1350 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1351 1352 /* 1353 * Notify all active vcpus that they are now suspended. 1354 */ 1355 for (i = 0; i < VM_MAXCPU; i++) { 1356 if (CPU_ISSET(i, &vm->active_cpus)) 1357 vcpu_notify_event(vm, i, false); 1358 } 1359 1360 return (0); 1361 } 1362 1363 void 1364 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip) 1365 { 1366 struct vm_exit *vmexit; 1367 1368 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1369 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1370 1371 vmexit = vm_exitinfo(vm, vcpuid); 1372 vmexit->rip = rip; 1373 vmexit->inst_length = 0; 1374 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1375 vmexit->u.suspended.how = vm->suspend; 1376 } 1377 1378 void 1379 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip) 1380 { 1381 struct vm_exit *vmexit; 1382 1383 KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress")); 1384 1385 vmexit = vm_exitinfo(vm, vcpuid); 1386 vmexit->rip = rip; 1387 vmexit->inst_length = 0; 1388 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1389 vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1); 1390 } 1391 1392 void 1393 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip) 1394 { 1395 struct vm_exit *vmexit; 1396 1397 vmexit = vm_exitinfo(vm, vcpuid); 1398 vmexit->rip = rip; 1399 vmexit->inst_length = 0; 1400 vmexit->exitcode = VM_EXITCODE_BOGUS; 1401 vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1); 1402 } 1403 1404 int 1405 vm_run(struct vm *vm, struct vm_run *vmrun) 1406 { 1407 int error, vcpuid; 1408 struct vcpu *vcpu; 1409 struct pcb *pcb; 1410 uint64_t tscval, rip; 1411 struct vm_exit *vme; 1412 bool retu, intr_disabled; 1413 pmap_t pmap; 1414 void *rptr, *sptr; 1415 1416 vcpuid = vmrun->cpuid; 1417 1418 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1419 return (EINVAL); 1420 1421 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1422 return (EINVAL); 1423 1424 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1425 return (EINVAL); 1426 1427 rptr = &vm->rendezvous_func; 1428 sptr = &vm->suspend; 1429 pmap = vmspace_pmap(vm->vmspace); 1430 vcpu = &vm->vcpu[vcpuid]; 1431 vme = &vcpu->exitinfo; 1432 rip = vmrun->rip; 1433 restart: 1434 critical_enter(); 1435 1436 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1437 ("vm_run: absurd pm_active")); 1438 1439 tscval = rdtsc(); 1440 1441 pcb = PCPU_GET(curpcb); 1442 set_pcb_flags(pcb, PCB_FULL_IRET); 1443 1444 restore_guest_fpustate(vcpu); 1445 1446 vcpu_require_state(vm, vcpuid, VCPU_RUNNING); 1447 error = VMRUN(vm->cookie, vcpuid, rip, pmap, rptr, sptr); 1448 vcpu_require_state(vm, vcpuid, VCPU_FROZEN); 1449 1450 save_guest_fpustate(vcpu); 1451 1452 vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1453 1454 critical_exit(); 1455 1456 if (error == 0) { 1457 retu = false; 1458 switch (vme->exitcode) { 1459 case VM_EXITCODE_SUSPENDED: 1460 error = vm_handle_suspend(vm, vcpuid, &retu); 1461 break; 1462 case VM_EXITCODE_IOAPIC_EOI: 1463 vioapic_process_eoi(vm, vcpuid, 1464 vme->u.ioapic_eoi.vector); 1465 break; 1466 case VM_EXITCODE_RENDEZVOUS: 1467 vm_handle_rendezvous(vm, vcpuid); 1468 error = 0; 1469 break; 1470 case VM_EXITCODE_HLT: 1471 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1472 error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu); 1473 break; 1474 case VM_EXITCODE_PAGING: 1475 error = vm_handle_paging(vm, vcpuid, &retu); 1476 break; 1477 case VM_EXITCODE_INST_EMUL: 1478 error = vm_handle_inst_emul(vm, vcpuid, &retu); 1479 break; 1480 case VM_EXITCODE_INOUT: 1481 case VM_EXITCODE_INOUT_STR: 1482 error = vm_handle_inout(vm, vcpuid, vme, &retu); 1483 break; 1484 default: 1485 retu = true; /* handled in userland */ 1486 break; 1487 } 1488 } 1489 1490 if (error == 0 && retu == false) { 1491 rip = vme->rip + vme->inst_length; 1492 goto restart; 1493 } 1494 1495 /* copy the exit information */ 1496 bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit)); 1497 return (error); 1498 } 1499 1500 int 1501 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info) 1502 { 1503 struct vcpu *vcpu; 1504 int type, vector; 1505 1506 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1507 return (EINVAL); 1508 1509 vcpu = &vm->vcpu[vcpuid]; 1510 1511 if (info & VM_INTINFO_VALID) { 1512 type = info & VM_INTINFO_TYPE; 1513 vector = info & 0xff; 1514 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 1515 return (EINVAL); 1516 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 1517 return (EINVAL); 1518 if (info & VM_INTINFO_RSVD) 1519 return (EINVAL); 1520 } else { 1521 info = 0; 1522 } 1523 VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info); 1524 vcpu->exitintinfo = info; 1525 return (0); 1526 } 1527 1528 enum exc_class { 1529 EXC_BENIGN, 1530 EXC_CONTRIBUTORY, 1531 EXC_PAGEFAULT 1532 }; 1533 1534 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 1535 1536 static enum exc_class 1537 exception_class(uint64_t info) 1538 { 1539 int type, vector; 1540 1541 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 1542 type = info & VM_INTINFO_TYPE; 1543 vector = info & 0xff; 1544 1545 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 1546 switch (type) { 1547 case VM_INTINFO_HWINTR: 1548 case VM_INTINFO_SWINTR: 1549 case VM_INTINFO_NMI: 1550 return (EXC_BENIGN); 1551 default: 1552 /* 1553 * Hardware exception. 1554 * 1555 * SVM and VT-x use identical type values to represent NMI, 1556 * hardware interrupt and software interrupt. 1557 * 1558 * SVM uses type '3' for all exceptions. VT-x uses type '3' 1559 * for exceptions except #BP and #OF. #BP and #OF use a type 1560 * value of '5' or '6'. Therefore we don't check for explicit 1561 * values of 'type' to classify 'intinfo' into a hardware 1562 * exception. 1563 */ 1564 break; 1565 } 1566 1567 switch (vector) { 1568 case IDT_PF: 1569 case IDT_VE: 1570 return (EXC_PAGEFAULT); 1571 case IDT_DE: 1572 case IDT_TS: 1573 case IDT_NP: 1574 case IDT_SS: 1575 case IDT_GP: 1576 return (EXC_CONTRIBUTORY); 1577 default: 1578 return (EXC_BENIGN); 1579 } 1580 } 1581 1582 static int 1583 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2, 1584 uint64_t *retinfo) 1585 { 1586 enum exc_class exc1, exc2; 1587 int type1, vector1; 1588 1589 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 1590 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 1591 1592 /* 1593 * If an exception occurs while attempting to call the double-fault 1594 * handler the processor enters shutdown mode (aka triple fault). 1595 */ 1596 type1 = info1 & VM_INTINFO_TYPE; 1597 vector1 = info1 & 0xff; 1598 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 1599 VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)", 1600 info1, info2); 1601 vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT); 1602 *retinfo = 0; 1603 return (0); 1604 } 1605 1606 /* 1607 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 1608 */ 1609 exc1 = exception_class(info1); 1610 exc2 = exception_class(info2); 1611 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 1612 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 1613 /* Convert nested fault into a double fault. */ 1614 *retinfo = IDT_DF; 1615 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1616 *retinfo |= VM_INTINFO_DEL_ERRCODE; 1617 } else { 1618 /* Handle exceptions serially */ 1619 *retinfo = info2; 1620 } 1621 return (1); 1622 } 1623 1624 static uint64_t 1625 vcpu_exception_intinfo(struct vcpu *vcpu) 1626 { 1627 uint64_t info = 0; 1628 1629 if (vcpu->exception_pending) { 1630 info = vcpu->exception.vector & 0xff; 1631 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1632 if (vcpu->exception.error_code_valid) { 1633 info |= VM_INTINFO_DEL_ERRCODE; 1634 info |= (uint64_t)vcpu->exception.error_code << 32; 1635 } 1636 } 1637 return (info); 1638 } 1639 1640 int 1641 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo) 1642 { 1643 struct vcpu *vcpu; 1644 uint64_t info1, info2; 1645 int valid; 1646 1647 KASSERT(vcpuid >= 0 && vcpuid < VM_MAXCPU, ("invalid vcpu %d", vcpuid)); 1648 1649 vcpu = &vm->vcpu[vcpuid]; 1650 1651 info1 = vcpu->exitintinfo; 1652 vcpu->exitintinfo = 0; 1653 1654 info2 = 0; 1655 if (vcpu->exception_pending) { 1656 info2 = vcpu_exception_intinfo(vcpu); 1657 vcpu->exception_pending = 0; 1658 VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx", 1659 vcpu->exception.vector, info2); 1660 } 1661 1662 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 1663 valid = nested_fault(vm, vcpuid, info1, info2, retinfo); 1664 } else if (info1 & VM_INTINFO_VALID) { 1665 *retinfo = info1; 1666 valid = 1; 1667 } else if (info2 & VM_INTINFO_VALID) { 1668 *retinfo = info2; 1669 valid = 1; 1670 } else { 1671 valid = 0; 1672 } 1673 1674 if (valid) { 1675 VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), " 1676 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 1677 } 1678 1679 return (valid); 1680 } 1681 1682 int 1683 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2) 1684 { 1685 struct vcpu *vcpu; 1686 1687 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1688 return (EINVAL); 1689 1690 vcpu = &vm->vcpu[vcpuid]; 1691 *info1 = vcpu->exitintinfo; 1692 *info2 = vcpu_exception_intinfo(vcpu); 1693 return (0); 1694 } 1695 1696 int 1697 vm_inject_exception(struct vm *vm, int vcpuid, struct vm_exception *exception) 1698 { 1699 struct vcpu *vcpu; 1700 1701 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1702 return (EINVAL); 1703 1704 if (exception->vector < 0 || exception->vector >= 32) 1705 return (EINVAL); 1706 1707 /* 1708 * A double fault exception should never be injected directly into 1709 * the guest. It is a derived exception that results from specific 1710 * combinations of nested faults. 1711 */ 1712 if (exception->vector == IDT_DF) 1713 return (EINVAL); 1714 1715 vcpu = &vm->vcpu[vcpuid]; 1716 1717 if (vcpu->exception_pending) { 1718 VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to " 1719 "pending exception %d", exception->vector, 1720 vcpu->exception.vector); 1721 return (EBUSY); 1722 } 1723 1724 vcpu->exception_pending = 1; 1725 vcpu->exception = *exception; 1726 VCPU_CTR1(vm, vcpuid, "Exception %d pending", exception->vector); 1727 return (0); 1728 } 1729 1730 void 1731 vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid, 1732 int errcode) 1733 { 1734 struct vm_exception exception; 1735 struct vm_exit *vmexit; 1736 struct vm *vm; 1737 int error; 1738 1739 vm = vmarg; 1740 1741 exception.vector = vector; 1742 exception.error_code = errcode; 1743 exception.error_code_valid = errcode_valid; 1744 error = vm_inject_exception(vm, vcpuid, &exception); 1745 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 1746 1747 /* 1748 * A fault-like exception allows the instruction to be restarted 1749 * after the exception handler returns. 1750 * 1751 * By setting the inst_length to 0 we ensure that the instruction 1752 * pointer remains at the faulting instruction. 1753 */ 1754 vmexit = vm_exitinfo(vm, vcpuid); 1755 vmexit->inst_length = 0; 1756 } 1757 1758 void 1759 vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2) 1760 { 1761 struct vm *vm; 1762 int error; 1763 1764 vm = vmarg; 1765 VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx", 1766 error_code, cr2); 1767 1768 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2); 1769 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 1770 1771 vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code); 1772 } 1773 1774 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 1775 1776 int 1777 vm_inject_nmi(struct vm *vm, int vcpuid) 1778 { 1779 struct vcpu *vcpu; 1780 1781 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1782 return (EINVAL); 1783 1784 vcpu = &vm->vcpu[vcpuid]; 1785 1786 vcpu->nmi_pending = 1; 1787 vcpu_notify_event(vm, vcpuid, false); 1788 return (0); 1789 } 1790 1791 int 1792 vm_nmi_pending(struct vm *vm, int vcpuid) 1793 { 1794 struct vcpu *vcpu; 1795 1796 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1797 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 1798 1799 vcpu = &vm->vcpu[vcpuid]; 1800 1801 return (vcpu->nmi_pending); 1802 } 1803 1804 void 1805 vm_nmi_clear(struct vm *vm, int vcpuid) 1806 { 1807 struct vcpu *vcpu; 1808 1809 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1810 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 1811 1812 vcpu = &vm->vcpu[vcpuid]; 1813 1814 if (vcpu->nmi_pending == 0) 1815 panic("vm_nmi_clear: inconsistent nmi_pending state"); 1816 1817 vcpu->nmi_pending = 0; 1818 vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1); 1819 } 1820 1821 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 1822 1823 int 1824 vm_inject_extint(struct vm *vm, int vcpuid) 1825 { 1826 struct vcpu *vcpu; 1827 1828 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1829 return (EINVAL); 1830 1831 vcpu = &vm->vcpu[vcpuid]; 1832 1833 vcpu->extint_pending = 1; 1834 vcpu_notify_event(vm, vcpuid, false); 1835 return (0); 1836 } 1837 1838 int 1839 vm_extint_pending(struct vm *vm, int vcpuid) 1840 { 1841 struct vcpu *vcpu; 1842 1843 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1844 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 1845 1846 vcpu = &vm->vcpu[vcpuid]; 1847 1848 return (vcpu->extint_pending); 1849 } 1850 1851 void 1852 vm_extint_clear(struct vm *vm, int vcpuid) 1853 { 1854 struct vcpu *vcpu; 1855 1856 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1857 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 1858 1859 vcpu = &vm->vcpu[vcpuid]; 1860 1861 if (vcpu->extint_pending == 0) 1862 panic("vm_extint_clear: inconsistent extint_pending state"); 1863 1864 vcpu->extint_pending = 0; 1865 vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1); 1866 } 1867 1868 int 1869 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval) 1870 { 1871 if (vcpu < 0 || vcpu >= VM_MAXCPU) 1872 return (EINVAL); 1873 1874 if (type < 0 || type >= VM_CAP_MAX) 1875 return (EINVAL); 1876 1877 return (VMGETCAP(vm->cookie, vcpu, type, retval)); 1878 } 1879 1880 int 1881 vm_set_capability(struct vm *vm, int vcpu, int type, int val) 1882 { 1883 if (vcpu < 0 || vcpu >= VM_MAXCPU) 1884 return (EINVAL); 1885 1886 if (type < 0 || type >= VM_CAP_MAX) 1887 return (EINVAL); 1888 1889 return (VMSETCAP(vm->cookie, vcpu, type, val)); 1890 } 1891 1892 struct vlapic * 1893 vm_lapic(struct vm *vm, int cpu) 1894 { 1895 return (vm->vcpu[cpu].vlapic); 1896 } 1897 1898 struct vioapic * 1899 vm_ioapic(struct vm *vm) 1900 { 1901 1902 return (vm->vioapic); 1903 } 1904 1905 struct vhpet * 1906 vm_hpet(struct vm *vm) 1907 { 1908 1909 return (vm->vhpet); 1910 } 1911 1912 boolean_t 1913 vmm_is_pptdev(int bus, int slot, int func) 1914 { 1915 int found, i, n; 1916 int b, s, f; 1917 char *val, *cp, *cp2; 1918 1919 /* 1920 * XXX 1921 * The length of an environment variable is limited to 128 bytes which 1922 * puts an upper limit on the number of passthru devices that may be 1923 * specified using a single environment variable. 1924 * 1925 * Work around this by scanning multiple environment variable 1926 * names instead of a single one - yuck! 1927 */ 1928 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 1929 1930 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 1931 found = 0; 1932 for (i = 0; names[i] != NULL && !found; i++) { 1933 cp = val = getenv(names[i]); 1934 while (cp != NULL && *cp != '\0') { 1935 if ((cp2 = strchr(cp, ' ')) != NULL) 1936 *cp2 = '\0'; 1937 1938 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 1939 if (n == 3 && bus == b && slot == s && func == f) { 1940 found = 1; 1941 break; 1942 } 1943 1944 if (cp2 != NULL) 1945 *cp2++ = ' '; 1946 1947 cp = cp2; 1948 } 1949 freeenv(val); 1950 } 1951 return (found); 1952 } 1953 1954 void * 1955 vm_iommu_domain(struct vm *vm) 1956 { 1957 1958 return (vm->iommu); 1959 } 1960 1961 int 1962 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate, 1963 bool from_idle) 1964 { 1965 int error; 1966 struct vcpu *vcpu; 1967 1968 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1969 panic("vm_set_run_state: invalid vcpuid %d", vcpuid); 1970 1971 vcpu = &vm->vcpu[vcpuid]; 1972 1973 vcpu_lock(vcpu); 1974 error = vcpu_set_state_locked(vcpu, newstate, from_idle); 1975 vcpu_unlock(vcpu); 1976 1977 return (error); 1978 } 1979 1980 enum vcpu_state 1981 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu) 1982 { 1983 struct vcpu *vcpu; 1984 enum vcpu_state state; 1985 1986 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1987 panic("vm_get_run_state: invalid vcpuid %d", vcpuid); 1988 1989 vcpu = &vm->vcpu[vcpuid]; 1990 1991 vcpu_lock(vcpu); 1992 state = vcpu->state; 1993 if (hostcpu != NULL) 1994 *hostcpu = vcpu->hostcpu; 1995 vcpu_unlock(vcpu); 1996 1997 return (state); 1998 } 1999 2000 int 2001 vm_activate_cpu(struct vm *vm, int vcpuid) 2002 { 2003 2004 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2005 return (EINVAL); 2006 2007 if (CPU_ISSET(vcpuid, &vm->active_cpus)) 2008 return (EBUSY); 2009 2010 VCPU_CTR0(vm, vcpuid, "activated"); 2011 CPU_SET_ATOMIC(vcpuid, &vm->active_cpus); 2012 return (0); 2013 } 2014 2015 cpuset_t 2016 vm_active_cpus(struct vm *vm) 2017 { 2018 2019 return (vm->active_cpus); 2020 } 2021 2022 cpuset_t 2023 vm_suspended_cpus(struct vm *vm) 2024 { 2025 2026 return (vm->suspended_cpus); 2027 } 2028 2029 void * 2030 vcpu_stats(struct vm *vm, int vcpuid) 2031 { 2032 2033 return (vm->vcpu[vcpuid].stats); 2034 } 2035 2036 int 2037 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state) 2038 { 2039 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2040 return (EINVAL); 2041 2042 *state = vm->vcpu[vcpuid].x2apic_state; 2043 2044 return (0); 2045 } 2046 2047 int 2048 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state) 2049 { 2050 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2051 return (EINVAL); 2052 2053 if (state >= X2APIC_STATE_LAST) 2054 return (EINVAL); 2055 2056 vm->vcpu[vcpuid].x2apic_state = state; 2057 2058 vlapic_set_x2apic_state(vm, vcpuid, state); 2059 2060 return (0); 2061 } 2062 2063 /* 2064 * This function is called to ensure that a vcpu "sees" a pending event 2065 * as soon as possible: 2066 * - If the vcpu thread is sleeping then it is woken up. 2067 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2068 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2069 */ 2070 void 2071 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr) 2072 { 2073 int hostcpu; 2074 struct vcpu *vcpu; 2075 2076 vcpu = &vm->vcpu[vcpuid]; 2077 2078 vcpu_lock(vcpu); 2079 hostcpu = vcpu->hostcpu; 2080 if (vcpu->state == VCPU_RUNNING) { 2081 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2082 if (hostcpu != curcpu) { 2083 if (lapic_intr) { 2084 vlapic_post_intr(vcpu->vlapic, hostcpu, 2085 vmm_ipinum); 2086 } else { 2087 ipi_cpu(hostcpu, vmm_ipinum); 2088 } 2089 } else { 2090 /* 2091 * If the 'vcpu' is running on 'curcpu' then it must 2092 * be sending a notification to itself (e.g. SELF_IPI). 2093 * The pending event will be picked up when the vcpu 2094 * transitions back to guest context. 2095 */ 2096 } 2097 } else { 2098 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2099 "with hostcpu %d", vcpu->state, hostcpu)); 2100 if (vcpu->state == VCPU_SLEEPING) 2101 wakeup_one(vcpu); 2102 } 2103 vcpu_unlock(vcpu); 2104 } 2105 2106 struct vmspace * 2107 vm_get_vmspace(struct vm *vm) 2108 { 2109 2110 return (vm->vmspace); 2111 } 2112 2113 int 2114 vm_apicid2vcpuid(struct vm *vm, int apicid) 2115 { 2116 /* 2117 * XXX apic id is assumed to be numerically identical to vcpu id 2118 */ 2119 return (apicid); 2120 } 2121 2122 void 2123 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest, 2124 vm_rendezvous_func_t func, void *arg) 2125 { 2126 int i; 2127 2128 /* 2129 * Enforce that this function is called without any locks 2130 */ 2131 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2132 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU), 2133 ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid)); 2134 2135 restart: 2136 mtx_lock(&vm->rendezvous_mtx); 2137 if (vm->rendezvous_func != NULL) { 2138 /* 2139 * If a rendezvous is already in progress then we need to 2140 * call the rendezvous handler in case this 'vcpuid' is one 2141 * of the targets of the rendezvous. 2142 */ 2143 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress"); 2144 mtx_unlock(&vm->rendezvous_mtx); 2145 vm_handle_rendezvous(vm, vcpuid); 2146 goto restart; 2147 } 2148 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2149 "rendezvous is still in progress")); 2150 2151 RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous"); 2152 vm->rendezvous_req_cpus = dest; 2153 CPU_ZERO(&vm->rendezvous_done_cpus); 2154 vm->rendezvous_arg = arg; 2155 vm_set_rendezvous_func(vm, func); 2156 mtx_unlock(&vm->rendezvous_mtx); 2157 2158 /* 2159 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2160 * vcpus so they handle the rendezvous as soon as possible. 2161 */ 2162 for (i = 0; i < VM_MAXCPU; i++) { 2163 if (CPU_ISSET(i, &dest)) 2164 vcpu_notify_event(vm, i, false); 2165 } 2166 2167 vm_handle_rendezvous(vm, vcpuid); 2168 } 2169 2170 struct vatpic * 2171 vm_atpic(struct vm *vm) 2172 { 2173 return (vm->vatpic); 2174 } 2175 2176 struct vatpit * 2177 vm_atpit(struct vm *vm) 2178 { 2179 return (vm->vatpit); 2180 } 2181 2182 enum vm_reg_name 2183 vm_segment_name(int seg) 2184 { 2185 static enum vm_reg_name seg_names[] = { 2186 VM_REG_GUEST_ES, 2187 VM_REG_GUEST_CS, 2188 VM_REG_GUEST_SS, 2189 VM_REG_GUEST_DS, 2190 VM_REG_GUEST_FS, 2191 VM_REG_GUEST_GS 2192 }; 2193 2194 KASSERT(seg >= 0 && seg < nitems(seg_names), 2195 ("%s: invalid segment encoding %d", __func__, seg)); 2196 return (seg_names[seg]); 2197 } 2198 2199 void 2200 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, 2201 int num_copyinfo) 2202 { 2203 int idx; 2204 2205 for (idx = 0; idx < num_copyinfo; idx++) { 2206 if (copyinfo[idx].cookie != NULL) 2207 vm_gpa_release(copyinfo[idx].cookie); 2208 } 2209 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2210 } 2211 2212 int 2213 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging, 2214 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2215 int num_copyinfo) 2216 { 2217 int error, idx, nused; 2218 size_t n, off, remaining; 2219 void *hva, *cookie; 2220 uint64_t gpa; 2221 2222 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2223 2224 nused = 0; 2225 remaining = len; 2226 while (remaining > 0) { 2227 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo")); 2228 error = vmm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa); 2229 if (error) 2230 return (error); 2231 off = gpa & PAGE_MASK; 2232 n = min(remaining, PAGE_SIZE - off); 2233 copyinfo[nused].gpa = gpa; 2234 copyinfo[nused].len = n; 2235 remaining -= n; 2236 gla += n; 2237 nused++; 2238 } 2239 2240 for (idx = 0; idx < nused; idx++) { 2241 hva = vm_gpa_hold(vm, copyinfo[idx].gpa, copyinfo[idx].len, 2242 prot, &cookie); 2243 if (hva == NULL) 2244 break; 2245 copyinfo[idx].hva = hva; 2246 copyinfo[idx].cookie = cookie; 2247 } 2248 2249 if (idx != nused) { 2250 vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo); 2251 return (-1); 2252 } else { 2253 return (0); 2254 } 2255 } 2256 2257 void 2258 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr, 2259 size_t len) 2260 { 2261 char *dst; 2262 int idx; 2263 2264 dst = kaddr; 2265 idx = 0; 2266 while (len > 0) { 2267 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2268 len -= copyinfo[idx].len; 2269 dst += copyinfo[idx].len; 2270 idx++; 2271 } 2272 } 2273 2274 void 2275 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr, 2276 struct vm_copyinfo *copyinfo, size_t len) 2277 { 2278 const char *src; 2279 int idx; 2280 2281 src = kaddr; 2282 idx = 0; 2283 while (len > 0) { 2284 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2285 len -= copyinfo[idx].len; 2286 src += copyinfo[idx].len; 2287 idx++; 2288 } 2289 } 2290 2291 /* 2292 * Return the amount of in-use and wired memory for the VM. Since 2293 * these are global stats, only return the values with for vCPU 0 2294 */ 2295 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2296 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2297 2298 static void 2299 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2300 { 2301 2302 if (vcpu == 0) { 2303 vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT, 2304 PAGE_SIZE * vmspace_resident_count(vm->vmspace)); 2305 } 2306 } 2307 2308 static void 2309 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2310 { 2311 2312 if (vcpu == 0) { 2313 vmm_stat_set(vm, vcpu, VMM_MEM_WIRED, 2314 PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace))); 2315 } 2316 } 2317 2318 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2319 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2320