1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include "opt_bhyve_snapshot.h" 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/sysctl.h> 37 #include <sys/malloc.h> 38 #include <sys/pcpu.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/proc.h> 42 #include <sys/rwlock.h> 43 #include <sys/sched.h> 44 #include <sys/smp.h> 45 #include <sys/sx.h> 46 #include <sys/vnode.h> 47 48 #include <vm/vm.h> 49 #include <vm/vm_param.h> 50 #include <vm/vm_extern.h> 51 #include <vm/vm_object.h> 52 #include <vm/vm_page.h> 53 #include <vm/pmap.h> 54 #include <vm/vm_map.h> 55 #include <vm/vm_pager.h> 56 #include <vm/vm_kern.h> 57 #include <vm/vnode_pager.h> 58 #include <vm/swap_pager.h> 59 #include <vm/uma.h> 60 61 #include <machine/cpu.h> 62 #include <machine/pcb.h> 63 #include <machine/smp.h> 64 #include <machine/md_var.h> 65 #include <x86/psl.h> 66 #include <x86/apicreg.h> 67 #include <x86/ifunc.h> 68 69 #include <machine/vmm.h> 70 #include <machine/vmm_dev.h> 71 #include <machine/vmm_instruction_emul.h> 72 #include <machine/vmm_snapshot.h> 73 74 #include <dev/vmm/vmm_ktr.h> 75 76 #include "vmm_ioport.h" 77 #include "vmm_host.h" 78 #include "vmm_mem.h" 79 #include "vmm_util.h" 80 #include "vatpic.h" 81 #include "vatpit.h" 82 #include "vhpet.h" 83 #include "vioapic.h" 84 #include "vlapic.h" 85 #include "vpmtmr.h" 86 #include "vrtc.h" 87 #include "vmm_stat.h" 88 #include "vmm_lapic.h" 89 90 #include "io/ppt.h" 91 #include "io/iommu.h" 92 93 struct vlapic; 94 95 /* 96 * Initialization: 97 * (a) allocated when vcpu is created 98 * (i) initialized when vcpu is created and when it is reinitialized 99 * (o) initialized the first time the vcpu is created 100 * (x) initialized before use 101 */ 102 struct vcpu { 103 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 104 enum vcpu_state state; /* (o) vcpu state */ 105 int vcpuid; /* (o) */ 106 int hostcpu; /* (o) vcpu's host cpu */ 107 int reqidle; /* (i) request vcpu to idle */ 108 struct vm *vm; /* (o) */ 109 void *cookie; /* (i) cpu-specific data */ 110 struct vlapic *vlapic; /* (i) APIC device model */ 111 enum x2apic_state x2apic_state; /* (i) APIC mode */ 112 uint64_t exitintinfo; /* (i) events pending at VM exit */ 113 int nmi_pending; /* (i) NMI pending */ 114 int extint_pending; /* (i) INTR pending */ 115 int exception_pending; /* (i) exception pending */ 116 int exc_vector; /* (x) exception collateral */ 117 int exc_errcode_valid; 118 uint32_t exc_errcode; 119 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 120 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 121 void *stats; /* (a,i) statistics */ 122 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 123 cpuset_t exitinfo_cpuset; /* (x) storage for vmexit handlers */ 124 uint64_t nextrip; /* (x) next instruction to execute */ 125 uint64_t tsc_offset; /* (o) TSC offsetting */ 126 }; 127 128 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 129 #define vcpu_lock_destroy(v) mtx_destroy(&((v)->mtx)) 130 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 131 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 132 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 133 134 struct mem_seg { 135 size_t len; 136 bool sysmem; 137 struct vm_object *object; 138 }; 139 #define VM_MAX_MEMSEGS 4 140 141 struct mem_map { 142 vm_paddr_t gpa; 143 size_t len; 144 vm_ooffset_t segoff; 145 int segid; 146 int prot; 147 int flags; 148 }; 149 #define VM_MAX_MEMMAPS 8 150 151 /* 152 * Initialization: 153 * (o) initialized the first time the VM is created 154 * (i) initialized when VM is created and when it is reinitialized 155 * (x) initialized before use 156 * 157 * Locking: 158 * [m] mem_segs_lock 159 * [r] rendezvous_mtx 160 * [v] reads require one frozen vcpu, writes require freezing all vcpus 161 */ 162 struct vm { 163 void *cookie; /* (i) cpu-specific data */ 164 void *iommu; /* (x) iommu-specific data */ 165 struct vhpet *vhpet; /* (i) virtual HPET */ 166 struct vioapic *vioapic; /* (i) virtual ioapic */ 167 struct vatpic *vatpic; /* (i) virtual atpic */ 168 struct vatpit *vatpit; /* (i) virtual atpit */ 169 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ 170 struct vrtc *vrtc; /* (o) virtual RTC */ 171 volatile cpuset_t active_cpus; /* (i) active vcpus */ 172 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */ 173 cpuset_t startup_cpus; /* (i) [r] waiting for startup */ 174 int suspend; /* (i) stop VM execution */ 175 bool dying; /* (o) is dying */ 176 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 177 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 178 cpuset_t rendezvous_req_cpus; /* (x) [r] rendezvous requested */ 179 cpuset_t rendezvous_done_cpus; /* (x) [r] rendezvous finished */ 180 void *rendezvous_arg; /* (x) [r] rendezvous func/arg */ 181 vm_rendezvous_func_t rendezvous_func; 182 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 183 struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) [m+v] guest address space */ 184 struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) [m+v] guest memory regions */ 185 struct vmspace *vmspace; /* (o) guest's address space */ 186 char name[VM_MAX_NAMELEN+1]; /* (o) virtual machine name */ 187 struct vcpu **vcpu; /* (o) guest vcpus */ 188 /* The following describe the vm cpu topology */ 189 uint16_t sockets; /* (o) num of sockets */ 190 uint16_t cores; /* (o) num of cores/socket */ 191 uint16_t threads; /* (o) num of threads/core */ 192 uint16_t maxcpus; /* (o) max pluggable cpus */ 193 struct sx mem_segs_lock; /* (o) */ 194 struct sx vcpus_init_lock; /* (o) */ 195 }; 196 197 #define VMM_CTR0(vcpu, format) \ 198 VCPU_CTR0((vcpu)->vm, (vcpu)->vcpuid, format) 199 200 #define VMM_CTR1(vcpu, format, p1) \ 201 VCPU_CTR1((vcpu)->vm, (vcpu)->vcpuid, format, p1) 202 203 #define VMM_CTR2(vcpu, format, p1, p2) \ 204 VCPU_CTR2((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2) 205 206 #define VMM_CTR3(vcpu, format, p1, p2, p3) \ 207 VCPU_CTR3((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3) 208 209 #define VMM_CTR4(vcpu, format, p1, p2, p3, p4) \ 210 VCPU_CTR4((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3, p4) 211 212 static int vmm_initialized; 213 214 static void vmmops_panic(void); 215 216 static void 217 vmmops_panic(void) 218 { 219 panic("vmm_ops func called when !vmm_is_intel() && !vmm_is_svm()"); 220 } 221 222 #define DEFINE_VMMOPS_IFUNC(ret_type, opname, args) \ 223 DEFINE_IFUNC(static, ret_type, vmmops_##opname, args) \ 224 { \ 225 if (vmm_is_intel()) \ 226 return (vmm_ops_intel.opname); \ 227 else if (vmm_is_svm()) \ 228 return (vmm_ops_amd.opname); \ 229 else \ 230 return ((ret_type (*)args)vmmops_panic); \ 231 } 232 233 DEFINE_VMMOPS_IFUNC(int, modinit, (int ipinum)) 234 DEFINE_VMMOPS_IFUNC(int, modcleanup, (void)) 235 DEFINE_VMMOPS_IFUNC(void, modresume, (void)) 236 DEFINE_VMMOPS_IFUNC(void *, init, (struct vm *vm, struct pmap *pmap)) 237 DEFINE_VMMOPS_IFUNC(int, run, (void *vcpui, register_t rip, struct pmap *pmap, 238 struct vm_eventinfo *info)) 239 DEFINE_VMMOPS_IFUNC(void, cleanup, (void *vmi)) 240 DEFINE_VMMOPS_IFUNC(void *, vcpu_init, (void *vmi, struct vcpu *vcpu, 241 int vcpu_id)) 242 DEFINE_VMMOPS_IFUNC(void, vcpu_cleanup, (void *vcpui)) 243 DEFINE_VMMOPS_IFUNC(int, getreg, (void *vcpui, int num, uint64_t *retval)) 244 DEFINE_VMMOPS_IFUNC(int, setreg, (void *vcpui, int num, uint64_t val)) 245 DEFINE_VMMOPS_IFUNC(int, getdesc, (void *vcpui, int num, struct seg_desc *desc)) 246 DEFINE_VMMOPS_IFUNC(int, setdesc, (void *vcpui, int num, struct seg_desc *desc)) 247 DEFINE_VMMOPS_IFUNC(int, getcap, (void *vcpui, int num, int *retval)) 248 DEFINE_VMMOPS_IFUNC(int, setcap, (void *vcpui, int num, int val)) 249 DEFINE_VMMOPS_IFUNC(struct vmspace *, vmspace_alloc, (vm_offset_t min, 250 vm_offset_t max)) 251 DEFINE_VMMOPS_IFUNC(void, vmspace_free, (struct vmspace *vmspace)) 252 DEFINE_VMMOPS_IFUNC(struct vlapic *, vlapic_init, (void *vcpui)) 253 DEFINE_VMMOPS_IFUNC(void, vlapic_cleanup, (struct vlapic *vlapic)) 254 #ifdef BHYVE_SNAPSHOT 255 DEFINE_VMMOPS_IFUNC(int, vcpu_snapshot, (void *vcpui, 256 struct vm_snapshot_meta *meta)) 257 DEFINE_VMMOPS_IFUNC(int, restore_tsc, (void *vcpui, uint64_t now)) 258 #endif 259 260 SDT_PROVIDER_DEFINE(vmm); 261 262 static MALLOC_DEFINE(M_VM, "vm", "vm"); 263 264 /* statistics */ 265 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 266 267 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 268 NULL); 269 270 /* 271 * Halt the guest if all vcpus are executing a HLT instruction with 272 * interrupts disabled. 273 */ 274 static int halt_detection_enabled = 1; 275 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 276 &halt_detection_enabled, 0, 277 "Halt VM if all vcpus execute HLT with interrupts disabled"); 278 279 static int vmm_ipinum; 280 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 281 "IPI vector used for vcpu notifications"); 282 283 static int trace_guest_exceptions; 284 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN, 285 &trace_guest_exceptions, 0, 286 "Trap into hypervisor on all guest exceptions and reflect them back"); 287 288 static int trap_wbinvd; 289 SYSCTL_INT(_hw_vmm, OID_AUTO, trap_wbinvd, CTLFLAG_RDTUN, &trap_wbinvd, 0, 290 "WBINVD triggers a VM-exit"); 291 292 u_int vm_maxcpu; 293 SYSCTL_UINT(_hw_vmm, OID_AUTO, maxcpu, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 294 &vm_maxcpu, 0, "Maximum number of vCPUs"); 295 296 static void vm_free_memmap(struct vm *vm, int ident); 297 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm); 298 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr); 299 300 /* 301 * Upper limit on vm_maxcpu. Limited by use of uint16_t types for CPU 302 * counts as well as range of vpid values for VT-x and by the capacity 303 * of cpuset_t masks. The call to new_unrhdr() in vpid_init() in 304 * vmx.c requires 'vm_maxcpu + 1 <= 0xffff', hence the '- 1' below. 305 */ 306 #define VM_MAXCPU MIN(0xffff - 1, CPU_SETSIZE) 307 308 #ifdef KTR 309 static const char * 310 vcpu_state2str(enum vcpu_state state) 311 { 312 313 switch (state) { 314 case VCPU_IDLE: 315 return ("idle"); 316 case VCPU_FROZEN: 317 return ("frozen"); 318 case VCPU_RUNNING: 319 return ("running"); 320 case VCPU_SLEEPING: 321 return ("sleeping"); 322 default: 323 return ("unknown"); 324 } 325 } 326 #endif 327 328 static void 329 vcpu_cleanup(struct vcpu *vcpu, bool destroy) 330 { 331 vmmops_vlapic_cleanup(vcpu->vlapic); 332 vmmops_vcpu_cleanup(vcpu->cookie); 333 vcpu->cookie = NULL; 334 if (destroy) { 335 vmm_stat_free(vcpu->stats); 336 fpu_save_area_free(vcpu->guestfpu); 337 vcpu_lock_destroy(vcpu); 338 free(vcpu, M_VM); 339 } 340 } 341 342 static struct vcpu * 343 vcpu_alloc(struct vm *vm, int vcpu_id) 344 { 345 struct vcpu *vcpu; 346 347 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus, 348 ("vcpu_init: invalid vcpu %d", vcpu_id)); 349 350 vcpu = malloc(sizeof(*vcpu), M_VM, M_WAITOK | M_ZERO); 351 vcpu_lock_init(vcpu); 352 vcpu->state = VCPU_IDLE; 353 vcpu->hostcpu = NOCPU; 354 vcpu->vcpuid = vcpu_id; 355 vcpu->vm = vm; 356 vcpu->guestfpu = fpu_save_area_alloc(); 357 vcpu->stats = vmm_stat_alloc(); 358 vcpu->tsc_offset = 0; 359 return (vcpu); 360 } 361 362 static void 363 vcpu_init(struct vcpu *vcpu) 364 { 365 vcpu->cookie = vmmops_vcpu_init(vcpu->vm->cookie, vcpu, vcpu->vcpuid); 366 vcpu->vlapic = vmmops_vlapic_init(vcpu->cookie); 367 vm_set_x2apic_state(vcpu, X2APIC_DISABLED); 368 vcpu->reqidle = 0; 369 vcpu->exitintinfo = 0; 370 vcpu->nmi_pending = 0; 371 vcpu->extint_pending = 0; 372 vcpu->exception_pending = 0; 373 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 374 fpu_save_area_reset(vcpu->guestfpu); 375 vmm_stat_init(vcpu->stats); 376 } 377 378 int 379 vcpu_trace_exceptions(struct vcpu *vcpu) 380 { 381 382 return (trace_guest_exceptions); 383 } 384 385 int 386 vcpu_trap_wbinvd(struct vcpu *vcpu) 387 { 388 return (trap_wbinvd); 389 } 390 391 struct vm_exit * 392 vm_exitinfo(struct vcpu *vcpu) 393 { 394 return (&vcpu->exitinfo); 395 } 396 397 cpuset_t * 398 vm_exitinfo_cpuset(struct vcpu *vcpu) 399 { 400 return (&vcpu->exitinfo_cpuset); 401 } 402 403 static int 404 vmm_init(void) 405 { 406 int error; 407 408 if (!vmm_is_hw_supported()) 409 return (ENXIO); 410 411 vm_maxcpu = mp_ncpus; 412 TUNABLE_INT_FETCH("hw.vmm.maxcpu", &vm_maxcpu); 413 414 if (vm_maxcpu > VM_MAXCPU) { 415 printf("vmm: vm_maxcpu clamped to %u\n", VM_MAXCPU); 416 vm_maxcpu = VM_MAXCPU; 417 } 418 if (vm_maxcpu == 0) 419 vm_maxcpu = 1; 420 421 vmm_host_state_init(); 422 423 vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) : 424 &IDTVEC(justreturn)); 425 if (vmm_ipinum < 0) 426 vmm_ipinum = IPI_AST; 427 428 error = vmm_mem_init(); 429 if (error) 430 return (error); 431 432 vmm_resume_p = vmmops_modresume; 433 434 return (vmmops_modinit(vmm_ipinum)); 435 } 436 437 static int 438 vmm_handler(module_t mod, int what, void *arg) 439 { 440 int error; 441 442 switch (what) { 443 case MOD_LOAD: 444 if (vmm_is_hw_supported()) { 445 vmmdev_init(); 446 error = vmm_init(); 447 if (error == 0) 448 vmm_initialized = 1; 449 } else { 450 error = ENXIO; 451 } 452 break; 453 case MOD_UNLOAD: 454 if (vmm_is_hw_supported()) { 455 error = vmmdev_cleanup(); 456 if (error == 0) { 457 vmm_resume_p = NULL; 458 iommu_cleanup(); 459 if (vmm_ipinum != IPI_AST) 460 lapic_ipi_free(vmm_ipinum); 461 error = vmmops_modcleanup(); 462 /* 463 * Something bad happened - prevent new 464 * VMs from being created 465 */ 466 if (error) 467 vmm_initialized = 0; 468 } 469 } else { 470 error = 0; 471 } 472 break; 473 default: 474 error = 0; 475 break; 476 } 477 return (error); 478 } 479 480 static moduledata_t vmm_kmod = { 481 "vmm", 482 vmm_handler, 483 NULL 484 }; 485 486 /* 487 * vmm initialization has the following dependencies: 488 * 489 * - VT-x initialization requires smp_rendezvous() and therefore must happen 490 * after SMP is fully functional (after SI_SUB_SMP). 491 */ 492 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 493 MODULE_VERSION(vmm, 1); 494 495 static void 496 vm_init(struct vm *vm, bool create) 497 { 498 vm->cookie = vmmops_init(vm, vmspace_pmap(vm->vmspace)); 499 vm->iommu = NULL; 500 vm->vioapic = vioapic_init(vm); 501 vm->vhpet = vhpet_init(vm); 502 vm->vatpic = vatpic_init(vm); 503 vm->vatpit = vatpit_init(vm); 504 vm->vpmtmr = vpmtmr_init(vm); 505 if (create) 506 vm->vrtc = vrtc_init(vm); 507 508 CPU_ZERO(&vm->active_cpus); 509 CPU_ZERO(&vm->debug_cpus); 510 CPU_ZERO(&vm->startup_cpus); 511 512 vm->suspend = 0; 513 CPU_ZERO(&vm->suspended_cpus); 514 515 if (!create) { 516 for (int i = 0; i < vm->maxcpus; i++) { 517 if (vm->vcpu[i] != NULL) 518 vcpu_init(vm->vcpu[i]); 519 } 520 } 521 } 522 523 void 524 vm_disable_vcpu_creation(struct vm *vm) 525 { 526 sx_xlock(&vm->vcpus_init_lock); 527 vm->dying = true; 528 sx_xunlock(&vm->vcpus_init_lock); 529 } 530 531 struct vcpu * 532 vm_alloc_vcpu(struct vm *vm, int vcpuid) 533 { 534 struct vcpu *vcpu; 535 536 if (vcpuid < 0 || vcpuid >= vm_get_maxcpus(vm)) 537 return (NULL); 538 539 vcpu = atomic_load_ptr(&vm->vcpu[vcpuid]); 540 if (__predict_true(vcpu != NULL)) 541 return (vcpu); 542 543 sx_xlock(&vm->vcpus_init_lock); 544 vcpu = vm->vcpu[vcpuid]; 545 if (vcpu == NULL && !vm->dying) { 546 vcpu = vcpu_alloc(vm, vcpuid); 547 vcpu_init(vcpu); 548 549 /* 550 * Ensure vCPU is fully created before updating pointer 551 * to permit unlocked reads above. 552 */ 553 atomic_store_rel_ptr((uintptr_t *)&vm->vcpu[vcpuid], 554 (uintptr_t)vcpu); 555 } 556 sx_xunlock(&vm->vcpus_init_lock); 557 return (vcpu); 558 } 559 560 void 561 vm_slock_vcpus(struct vm *vm) 562 { 563 sx_slock(&vm->vcpus_init_lock); 564 } 565 566 void 567 vm_unlock_vcpus(struct vm *vm) 568 { 569 sx_unlock(&vm->vcpus_init_lock); 570 } 571 572 /* 573 * The default CPU topology is a single thread per package. 574 */ 575 u_int cores_per_package = 1; 576 u_int threads_per_core = 1; 577 578 int 579 vm_create(const char *name, struct vm **retvm) 580 { 581 struct vm *vm; 582 struct vmspace *vmspace; 583 584 /* 585 * If vmm.ko could not be successfully initialized then don't attempt 586 * to create the virtual machine. 587 */ 588 if (!vmm_initialized) 589 return (ENXIO); 590 591 if (name == NULL || strnlen(name, VM_MAX_NAMELEN + 1) == 592 VM_MAX_NAMELEN + 1) 593 return (EINVAL); 594 595 vmspace = vmmops_vmspace_alloc(0, VM_MAXUSER_ADDRESS_LA48); 596 if (vmspace == NULL) 597 return (ENOMEM); 598 599 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 600 strcpy(vm->name, name); 601 vm->vmspace = vmspace; 602 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 603 sx_init(&vm->mem_segs_lock, "vm mem_segs"); 604 sx_init(&vm->vcpus_init_lock, "vm vcpus"); 605 vm->vcpu = malloc(sizeof(*vm->vcpu) * vm_maxcpu, M_VM, M_WAITOK | 606 M_ZERO); 607 608 vm->sockets = 1; 609 vm->cores = cores_per_package; /* XXX backwards compatibility */ 610 vm->threads = threads_per_core; /* XXX backwards compatibility */ 611 vm->maxcpus = vm_maxcpu; 612 613 vm_init(vm, true); 614 615 *retvm = vm; 616 return (0); 617 } 618 619 void 620 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, 621 uint16_t *threads, uint16_t *maxcpus) 622 { 623 *sockets = vm->sockets; 624 *cores = vm->cores; 625 *threads = vm->threads; 626 *maxcpus = vm->maxcpus; 627 } 628 629 uint16_t 630 vm_get_maxcpus(struct vm *vm) 631 { 632 return (vm->maxcpus); 633 } 634 635 int 636 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, 637 uint16_t threads, uint16_t maxcpus __unused) 638 { 639 /* Ignore maxcpus. */ 640 if ((sockets * cores * threads) > vm->maxcpus) 641 return (EINVAL); 642 vm->sockets = sockets; 643 vm->cores = cores; 644 vm->threads = threads; 645 return(0); 646 } 647 648 static void 649 vm_cleanup(struct vm *vm, bool destroy) 650 { 651 struct mem_map *mm; 652 int i; 653 654 if (destroy) 655 vm_xlock_memsegs(vm); 656 657 ppt_unassign_all(vm); 658 659 if (vm->iommu != NULL) 660 iommu_destroy_domain(vm->iommu); 661 662 if (destroy) 663 vrtc_cleanup(vm->vrtc); 664 else 665 vrtc_reset(vm->vrtc); 666 vpmtmr_cleanup(vm->vpmtmr); 667 vatpit_cleanup(vm->vatpit); 668 vhpet_cleanup(vm->vhpet); 669 vatpic_cleanup(vm->vatpic); 670 vioapic_cleanup(vm->vioapic); 671 672 for (i = 0; i < vm->maxcpus; i++) { 673 if (vm->vcpu[i] != NULL) 674 vcpu_cleanup(vm->vcpu[i], destroy); 675 } 676 677 vmmops_cleanup(vm->cookie); 678 679 /* 680 * System memory is removed from the guest address space only when 681 * the VM is destroyed. This is because the mapping remains the same 682 * across VM reset. 683 * 684 * Device memory can be relocated by the guest (e.g. using PCI BARs) 685 * so those mappings are removed on a VM reset. 686 */ 687 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 688 mm = &vm->mem_maps[i]; 689 if (destroy || !sysmem_mapping(vm, mm)) 690 vm_free_memmap(vm, i); 691 } 692 693 if (destroy) { 694 for (i = 0; i < VM_MAX_MEMSEGS; i++) 695 vm_free_memseg(vm, i); 696 vm_unlock_memsegs(vm); 697 698 vmmops_vmspace_free(vm->vmspace); 699 vm->vmspace = NULL; 700 701 free(vm->vcpu, M_VM); 702 sx_destroy(&vm->vcpus_init_lock); 703 sx_destroy(&vm->mem_segs_lock); 704 mtx_destroy(&vm->rendezvous_mtx); 705 } 706 } 707 708 void 709 vm_destroy(struct vm *vm) 710 { 711 vm_cleanup(vm, true); 712 free(vm, M_VM); 713 } 714 715 int 716 vm_reinit(struct vm *vm) 717 { 718 int error; 719 720 /* 721 * A virtual machine can be reset only if all vcpus are suspended. 722 */ 723 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 724 vm_cleanup(vm, false); 725 vm_init(vm, false); 726 error = 0; 727 } else { 728 error = EBUSY; 729 } 730 731 return (error); 732 } 733 734 const char * 735 vm_name(struct vm *vm) 736 { 737 return (vm->name); 738 } 739 740 void 741 vm_slock_memsegs(struct vm *vm) 742 { 743 sx_slock(&vm->mem_segs_lock); 744 } 745 746 void 747 vm_xlock_memsegs(struct vm *vm) 748 { 749 sx_xlock(&vm->mem_segs_lock); 750 } 751 752 void 753 vm_unlock_memsegs(struct vm *vm) 754 { 755 sx_unlock(&vm->mem_segs_lock); 756 } 757 758 int 759 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 760 { 761 vm_object_t obj; 762 763 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 764 return (ENOMEM); 765 else 766 return (0); 767 } 768 769 int 770 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 771 { 772 773 vmm_mmio_free(vm->vmspace, gpa, len); 774 return (0); 775 } 776 777 /* 778 * Return 'true' if 'gpa' is allocated in the guest address space. 779 * 780 * This function is called in the context of a running vcpu which acts as 781 * an implicit lock on 'vm->mem_maps[]'. 782 */ 783 bool 784 vm_mem_allocated(struct vcpu *vcpu, vm_paddr_t gpa) 785 { 786 struct vm *vm = vcpu->vm; 787 struct mem_map *mm; 788 int i; 789 790 #ifdef INVARIANTS 791 int hostcpu, state; 792 state = vcpu_get_state(vcpu, &hostcpu); 793 KASSERT(state == VCPU_RUNNING && hostcpu == curcpu, 794 ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu)); 795 #endif 796 797 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 798 mm = &vm->mem_maps[i]; 799 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len) 800 return (true); /* 'gpa' is sysmem or devmem */ 801 } 802 803 if (ppt_is_mmio(vm, gpa)) 804 return (true); /* 'gpa' is pci passthru mmio */ 805 806 return (false); 807 } 808 809 int 810 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem) 811 { 812 struct mem_seg *seg; 813 vm_object_t obj; 814 815 sx_assert(&vm->mem_segs_lock, SX_XLOCKED); 816 817 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 818 return (EINVAL); 819 820 if (len == 0 || (len & PAGE_MASK)) 821 return (EINVAL); 822 823 seg = &vm->mem_segs[ident]; 824 if (seg->object != NULL) { 825 if (seg->len == len && seg->sysmem == sysmem) 826 return (EEXIST); 827 else 828 return (EINVAL); 829 } 830 831 obj = vm_object_allocate(OBJT_SWAP, len >> PAGE_SHIFT); 832 if (obj == NULL) 833 return (ENOMEM); 834 835 seg->len = len; 836 seg->object = obj; 837 seg->sysmem = sysmem; 838 return (0); 839 } 840 841 int 842 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, 843 vm_object_t *objptr) 844 { 845 struct mem_seg *seg; 846 847 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 848 849 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 850 return (EINVAL); 851 852 seg = &vm->mem_segs[ident]; 853 if (len) 854 *len = seg->len; 855 if (sysmem) 856 *sysmem = seg->sysmem; 857 if (objptr) 858 *objptr = seg->object; 859 return (0); 860 } 861 862 void 863 vm_free_memseg(struct vm *vm, int ident) 864 { 865 struct mem_seg *seg; 866 867 KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS, 868 ("%s: invalid memseg ident %d", __func__, ident)); 869 870 seg = &vm->mem_segs[ident]; 871 if (seg->object != NULL) { 872 vm_object_deallocate(seg->object); 873 bzero(seg, sizeof(struct mem_seg)); 874 } 875 } 876 877 int 878 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first, 879 size_t len, int prot, int flags) 880 { 881 struct mem_seg *seg; 882 struct mem_map *m, *map; 883 vm_ooffset_t last; 884 int i, error; 885 886 if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0) 887 return (EINVAL); 888 889 if (flags & ~VM_MEMMAP_F_WIRED) 890 return (EINVAL); 891 892 if (segid < 0 || segid >= VM_MAX_MEMSEGS) 893 return (EINVAL); 894 895 seg = &vm->mem_segs[segid]; 896 if (seg->object == NULL) 897 return (EINVAL); 898 899 last = first + len; 900 if (first < 0 || first >= last || last > seg->len) 901 return (EINVAL); 902 903 if ((gpa | first | last) & PAGE_MASK) 904 return (EINVAL); 905 906 map = NULL; 907 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 908 m = &vm->mem_maps[i]; 909 if (m->len == 0) { 910 map = m; 911 break; 912 } 913 } 914 915 if (map == NULL) 916 return (ENOSPC); 917 918 error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa, 919 len, 0, VMFS_NO_SPACE, prot, prot, 0); 920 if (error != KERN_SUCCESS) 921 return (EFAULT); 922 923 vm_object_reference(seg->object); 924 925 if (flags & VM_MEMMAP_F_WIRED) { 926 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len, 927 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 928 if (error != KERN_SUCCESS) { 929 vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len); 930 return (error == KERN_RESOURCE_SHORTAGE ? ENOMEM : 931 EFAULT); 932 } 933 } 934 935 map->gpa = gpa; 936 map->len = len; 937 map->segoff = first; 938 map->segid = segid; 939 map->prot = prot; 940 map->flags = flags; 941 return (0); 942 } 943 944 int 945 vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len) 946 { 947 struct mem_map *m; 948 int i; 949 950 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 951 m = &vm->mem_maps[i]; 952 if (m->gpa == gpa && m->len == len && 953 (m->flags & VM_MEMMAP_F_IOMMU) == 0) { 954 vm_free_memmap(vm, i); 955 return (0); 956 } 957 } 958 959 return (EINVAL); 960 } 961 962 int 963 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, 964 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 965 { 966 struct mem_map *mm, *mmnext; 967 int i; 968 969 mmnext = NULL; 970 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 971 mm = &vm->mem_maps[i]; 972 if (mm->len == 0 || mm->gpa < *gpa) 973 continue; 974 if (mmnext == NULL || mm->gpa < mmnext->gpa) 975 mmnext = mm; 976 } 977 978 if (mmnext != NULL) { 979 *gpa = mmnext->gpa; 980 if (segid) 981 *segid = mmnext->segid; 982 if (segoff) 983 *segoff = mmnext->segoff; 984 if (len) 985 *len = mmnext->len; 986 if (prot) 987 *prot = mmnext->prot; 988 if (flags) 989 *flags = mmnext->flags; 990 return (0); 991 } else { 992 return (ENOENT); 993 } 994 } 995 996 static void 997 vm_free_memmap(struct vm *vm, int ident) 998 { 999 struct mem_map *mm; 1000 int error __diagused; 1001 1002 mm = &vm->mem_maps[ident]; 1003 if (mm->len) { 1004 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa, 1005 mm->gpa + mm->len); 1006 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d", 1007 __func__, error)); 1008 bzero(mm, sizeof(struct mem_map)); 1009 } 1010 } 1011 1012 static __inline bool 1013 sysmem_mapping(struct vm *vm, struct mem_map *mm) 1014 { 1015 1016 if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem) 1017 return (true); 1018 else 1019 return (false); 1020 } 1021 1022 vm_paddr_t 1023 vmm_sysmem_maxaddr(struct vm *vm) 1024 { 1025 struct mem_map *mm; 1026 vm_paddr_t maxaddr; 1027 int i; 1028 1029 maxaddr = 0; 1030 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1031 mm = &vm->mem_maps[i]; 1032 if (sysmem_mapping(vm, mm)) { 1033 if (maxaddr < mm->gpa + mm->len) 1034 maxaddr = mm->gpa + mm->len; 1035 } 1036 } 1037 return (maxaddr); 1038 } 1039 1040 static void 1041 vm_iommu_map(struct vm *vm) 1042 { 1043 vm_paddr_t gpa, hpa; 1044 struct mem_map *mm; 1045 int i; 1046 1047 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 1048 1049 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1050 mm = &vm->mem_maps[i]; 1051 if (!sysmem_mapping(vm, mm)) 1052 continue; 1053 1054 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0, 1055 ("iommu map found invalid memmap %#lx/%#lx/%#x", 1056 mm->gpa, mm->len, mm->flags)); 1057 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0) 1058 continue; 1059 mm->flags |= VM_MEMMAP_F_IOMMU; 1060 1061 for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) { 1062 hpa = pmap_extract(vmspace_pmap(vm->vmspace), gpa); 1063 1064 /* 1065 * All mappings in the vmm vmspace must be 1066 * present since they are managed by vmm in this way. 1067 * Because we are in pass-through mode, the 1068 * mappings must also be wired. This implies 1069 * that all pages must be mapped and wired, 1070 * allowing to use pmap_extract() and avoiding the 1071 * need to use vm_gpa_hold_global(). 1072 * 1073 * This could change if/when we start 1074 * supporting page faults on IOMMU maps. 1075 */ 1076 KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(hpa)), 1077 ("vm_iommu_map: vm %p gpa %jx hpa %jx not wired", 1078 vm, (uintmax_t)gpa, (uintmax_t)hpa)); 1079 1080 iommu_create_mapping(vm->iommu, gpa, hpa, PAGE_SIZE); 1081 } 1082 } 1083 1084 iommu_invalidate_tlb(iommu_host_domain()); 1085 } 1086 1087 static void 1088 vm_iommu_unmap(struct vm *vm) 1089 { 1090 vm_paddr_t gpa; 1091 struct mem_map *mm; 1092 int i; 1093 1094 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 1095 1096 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1097 mm = &vm->mem_maps[i]; 1098 if (!sysmem_mapping(vm, mm)) 1099 continue; 1100 1101 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0) 1102 continue; 1103 mm->flags &= ~VM_MEMMAP_F_IOMMU; 1104 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0, 1105 ("iommu unmap found invalid memmap %#lx/%#lx/%#x", 1106 mm->gpa, mm->len, mm->flags)); 1107 1108 for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) { 1109 KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(pmap_extract( 1110 vmspace_pmap(vm->vmspace), gpa))), 1111 ("vm_iommu_unmap: vm %p gpa %jx not wired", 1112 vm, (uintmax_t)gpa)); 1113 iommu_remove_mapping(vm->iommu, gpa, PAGE_SIZE); 1114 } 1115 } 1116 1117 /* 1118 * Invalidate the cached translations associated with the domain 1119 * from which pages were removed. 1120 */ 1121 iommu_invalidate_tlb(vm->iommu); 1122 } 1123 1124 int 1125 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 1126 { 1127 int error; 1128 1129 error = ppt_unassign_device(vm, bus, slot, func); 1130 if (error) 1131 return (error); 1132 1133 if (ppt_assigned_devices(vm) == 0) 1134 vm_iommu_unmap(vm); 1135 1136 return (0); 1137 } 1138 1139 int 1140 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 1141 { 1142 int error; 1143 vm_paddr_t maxaddr; 1144 1145 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */ 1146 if (ppt_assigned_devices(vm) == 0) { 1147 KASSERT(vm->iommu == NULL, 1148 ("vm_assign_pptdev: iommu must be NULL")); 1149 maxaddr = vmm_sysmem_maxaddr(vm); 1150 vm->iommu = iommu_create_domain(maxaddr); 1151 if (vm->iommu == NULL) 1152 return (ENXIO); 1153 vm_iommu_map(vm); 1154 } 1155 1156 error = ppt_assign_device(vm, bus, slot, func); 1157 return (error); 1158 } 1159 1160 static void * 1161 _vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 1162 void **cookie) 1163 { 1164 int i, count, pageoff; 1165 struct mem_map *mm; 1166 vm_page_t m; 1167 1168 pageoff = gpa & PAGE_MASK; 1169 if (len > PAGE_SIZE - pageoff) 1170 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 1171 1172 count = 0; 1173 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1174 mm = &vm->mem_maps[i]; 1175 if (gpa >= mm->gpa && gpa < mm->gpa + mm->len) { 1176 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 1177 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 1178 break; 1179 } 1180 } 1181 1182 if (count == 1) { 1183 *cookie = m; 1184 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 1185 } else { 1186 *cookie = NULL; 1187 return (NULL); 1188 } 1189 } 1190 1191 void * 1192 vm_gpa_hold(struct vcpu *vcpu, vm_paddr_t gpa, size_t len, int reqprot, 1193 void **cookie) 1194 { 1195 #ifdef INVARIANTS 1196 /* 1197 * The current vcpu should be frozen to ensure 'vm_memmap[]' 1198 * stability. 1199 */ 1200 int state = vcpu_get_state(vcpu, NULL); 1201 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d", 1202 __func__, state)); 1203 #endif 1204 return (_vm_gpa_hold(vcpu->vm, gpa, len, reqprot, cookie)); 1205 } 1206 1207 void * 1208 vm_gpa_hold_global(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 1209 void **cookie) 1210 { 1211 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 1212 return (_vm_gpa_hold(vm, gpa, len, reqprot, cookie)); 1213 } 1214 1215 void 1216 vm_gpa_release(void *cookie) 1217 { 1218 vm_page_t m = cookie; 1219 1220 vm_page_unwire(m, PQ_ACTIVE); 1221 } 1222 1223 int 1224 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval) 1225 { 1226 1227 if (reg >= VM_REG_LAST) 1228 return (EINVAL); 1229 1230 return (vmmops_getreg(vcpu->cookie, reg, retval)); 1231 } 1232 1233 int 1234 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val) 1235 { 1236 int error; 1237 1238 if (reg >= VM_REG_LAST) 1239 return (EINVAL); 1240 1241 error = vmmops_setreg(vcpu->cookie, reg, val); 1242 if (error || reg != VM_REG_GUEST_RIP) 1243 return (error); 1244 1245 /* Set 'nextrip' to match the value of %rip */ 1246 VMM_CTR1(vcpu, "Setting nextrip to %#lx", val); 1247 vcpu->nextrip = val; 1248 return (0); 1249 } 1250 1251 static bool 1252 is_descriptor_table(int reg) 1253 { 1254 1255 switch (reg) { 1256 case VM_REG_GUEST_IDTR: 1257 case VM_REG_GUEST_GDTR: 1258 return (true); 1259 default: 1260 return (false); 1261 } 1262 } 1263 1264 static bool 1265 is_segment_register(int reg) 1266 { 1267 1268 switch (reg) { 1269 case VM_REG_GUEST_ES: 1270 case VM_REG_GUEST_CS: 1271 case VM_REG_GUEST_SS: 1272 case VM_REG_GUEST_DS: 1273 case VM_REG_GUEST_FS: 1274 case VM_REG_GUEST_GS: 1275 case VM_REG_GUEST_TR: 1276 case VM_REG_GUEST_LDTR: 1277 return (true); 1278 default: 1279 return (false); 1280 } 1281 } 1282 1283 int 1284 vm_get_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc) 1285 { 1286 1287 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1288 return (EINVAL); 1289 1290 return (vmmops_getdesc(vcpu->cookie, reg, desc)); 1291 } 1292 1293 int 1294 vm_set_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc) 1295 { 1296 1297 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1298 return (EINVAL); 1299 1300 return (vmmops_setdesc(vcpu->cookie, reg, desc)); 1301 } 1302 1303 static void 1304 restore_guest_fpustate(struct vcpu *vcpu) 1305 { 1306 1307 /* flush host state to the pcb */ 1308 fpuexit(curthread); 1309 1310 /* restore guest FPU state */ 1311 fpu_enable(); 1312 fpurestore(vcpu->guestfpu); 1313 1314 /* restore guest XCR0 if XSAVE is enabled in the host */ 1315 if (rcr4() & CR4_XSAVE) 1316 load_xcr(0, vcpu->guest_xcr0); 1317 1318 /* 1319 * The FPU is now "dirty" with the guest's state so disable 1320 * the FPU to trap any access by the host. 1321 */ 1322 fpu_disable(); 1323 } 1324 1325 static void 1326 save_guest_fpustate(struct vcpu *vcpu) 1327 { 1328 1329 if ((rcr0() & CR0_TS) == 0) 1330 panic("fpu emulation not enabled in host!"); 1331 1332 /* save guest XCR0 and restore host XCR0 */ 1333 if (rcr4() & CR4_XSAVE) { 1334 vcpu->guest_xcr0 = rxcr(0); 1335 load_xcr(0, vmm_get_host_xcr0()); 1336 } 1337 1338 /* save guest FPU state */ 1339 fpu_enable(); 1340 fpusave(vcpu->guestfpu); 1341 fpu_disable(); 1342 } 1343 1344 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 1345 1346 static int 1347 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate, 1348 bool from_idle) 1349 { 1350 int error; 1351 1352 vcpu_assert_locked(vcpu); 1353 1354 /* 1355 * State transitions from the vmmdev_ioctl() must always begin from 1356 * the VCPU_IDLE state. This guarantees that there is only a single 1357 * ioctl() operating on a vcpu at any point. 1358 */ 1359 if (from_idle) { 1360 while (vcpu->state != VCPU_IDLE) { 1361 vcpu->reqidle = 1; 1362 vcpu_notify_event_locked(vcpu, false); 1363 VMM_CTR1(vcpu, "vcpu state change from %s to " 1364 "idle requested", vcpu_state2str(vcpu->state)); 1365 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 1366 } 1367 } else { 1368 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 1369 "vcpu idle state")); 1370 } 1371 1372 if (vcpu->state == VCPU_RUNNING) { 1373 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 1374 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 1375 } else { 1376 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 1377 "vcpu that is not running", vcpu->hostcpu)); 1378 } 1379 1380 /* 1381 * The following state transitions are allowed: 1382 * IDLE -> FROZEN -> IDLE 1383 * FROZEN -> RUNNING -> FROZEN 1384 * FROZEN -> SLEEPING -> FROZEN 1385 */ 1386 switch (vcpu->state) { 1387 case VCPU_IDLE: 1388 case VCPU_RUNNING: 1389 case VCPU_SLEEPING: 1390 error = (newstate != VCPU_FROZEN); 1391 break; 1392 case VCPU_FROZEN: 1393 error = (newstate == VCPU_FROZEN); 1394 break; 1395 default: 1396 error = 1; 1397 break; 1398 } 1399 1400 if (error) 1401 return (EBUSY); 1402 1403 VMM_CTR2(vcpu, "vcpu state changed from %s to %s", 1404 vcpu_state2str(vcpu->state), vcpu_state2str(newstate)); 1405 1406 vcpu->state = newstate; 1407 if (newstate == VCPU_RUNNING) 1408 vcpu->hostcpu = curcpu; 1409 else 1410 vcpu->hostcpu = NOCPU; 1411 1412 if (newstate == VCPU_IDLE) 1413 wakeup(&vcpu->state); 1414 1415 return (0); 1416 } 1417 1418 static void 1419 vcpu_require_state(struct vcpu *vcpu, enum vcpu_state newstate) 1420 { 1421 int error; 1422 1423 if ((error = vcpu_set_state(vcpu, newstate, false)) != 0) 1424 panic("Error %d setting state to %d\n", error, newstate); 1425 } 1426 1427 static void 1428 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate) 1429 { 1430 int error; 1431 1432 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0) 1433 panic("Error %d setting state to %d", error, newstate); 1434 } 1435 1436 static int 1437 vm_handle_rendezvous(struct vcpu *vcpu) 1438 { 1439 struct vm *vm = vcpu->vm; 1440 struct thread *td; 1441 int error, vcpuid; 1442 1443 error = 0; 1444 vcpuid = vcpu->vcpuid; 1445 td = curthread; 1446 mtx_lock(&vm->rendezvous_mtx); 1447 while (vm->rendezvous_func != NULL) { 1448 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1449 CPU_AND(&vm->rendezvous_req_cpus, &vm->rendezvous_req_cpus, &vm->active_cpus); 1450 1451 if (CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1452 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1453 VMM_CTR0(vcpu, "Calling rendezvous func"); 1454 (*vm->rendezvous_func)(vcpu, vm->rendezvous_arg); 1455 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1456 } 1457 if (CPU_CMP(&vm->rendezvous_req_cpus, 1458 &vm->rendezvous_done_cpus) == 0) { 1459 VMM_CTR0(vcpu, "Rendezvous completed"); 1460 CPU_ZERO(&vm->rendezvous_req_cpus); 1461 vm->rendezvous_func = NULL; 1462 wakeup(&vm->rendezvous_func); 1463 break; 1464 } 1465 VMM_CTR0(vcpu, "Wait for rendezvous completion"); 1466 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1467 "vmrndv", hz); 1468 if (td_ast_pending(td, TDA_SUSPEND)) { 1469 mtx_unlock(&vm->rendezvous_mtx); 1470 error = thread_check_susp(td, true); 1471 if (error != 0) 1472 return (error); 1473 mtx_lock(&vm->rendezvous_mtx); 1474 } 1475 } 1476 mtx_unlock(&vm->rendezvous_mtx); 1477 return (0); 1478 } 1479 1480 /* 1481 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1482 */ 1483 static int 1484 vm_handle_hlt(struct vcpu *vcpu, bool intr_disabled, bool *retu) 1485 { 1486 struct vm *vm = vcpu->vm; 1487 const char *wmesg; 1488 struct thread *td; 1489 int error, t, vcpuid, vcpu_halted, vm_halted; 1490 1491 vcpuid = vcpu->vcpuid; 1492 vcpu_halted = 0; 1493 vm_halted = 0; 1494 error = 0; 1495 td = curthread; 1496 1497 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1498 1499 vcpu_lock(vcpu); 1500 while (1) { 1501 /* 1502 * Do a final check for pending NMI or interrupts before 1503 * really putting this thread to sleep. Also check for 1504 * software events that would cause this vcpu to wakeup. 1505 * 1506 * These interrupts/events could have happened after the 1507 * vcpu returned from vmmops_run() and before it acquired the 1508 * vcpu lock above. 1509 */ 1510 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle) 1511 break; 1512 if (vm_nmi_pending(vcpu)) 1513 break; 1514 if (!intr_disabled) { 1515 if (vm_extint_pending(vcpu) || 1516 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1517 break; 1518 } 1519 } 1520 1521 /* Don't go to sleep if the vcpu thread needs to yield */ 1522 if (vcpu_should_yield(vcpu)) 1523 break; 1524 1525 if (vcpu_debugged(vcpu)) 1526 break; 1527 1528 /* 1529 * Some Linux guests implement "halt" by having all vcpus 1530 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1531 * track of the vcpus that have entered this state. When all 1532 * vcpus enter the halted state the virtual machine is halted. 1533 */ 1534 if (intr_disabled) { 1535 wmesg = "vmhalt"; 1536 VMM_CTR0(vcpu, "Halted"); 1537 if (!vcpu_halted && halt_detection_enabled) { 1538 vcpu_halted = 1; 1539 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1540 } 1541 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1542 vm_halted = 1; 1543 break; 1544 } 1545 } else { 1546 wmesg = "vmidle"; 1547 } 1548 1549 t = ticks; 1550 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1551 /* 1552 * XXX msleep_spin() cannot be interrupted by signals so 1553 * wake up periodically to check pending signals. 1554 */ 1555 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1556 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1557 vmm_stat_incr(vcpu, VCPU_IDLE_TICKS, ticks - t); 1558 if (td_ast_pending(td, TDA_SUSPEND)) { 1559 vcpu_unlock(vcpu); 1560 error = thread_check_susp(td, false); 1561 if (error != 0) { 1562 if (vcpu_halted) { 1563 CPU_CLR_ATOMIC(vcpuid, 1564 &vm->halted_cpus); 1565 } 1566 return (error); 1567 } 1568 vcpu_lock(vcpu); 1569 } 1570 } 1571 1572 if (vcpu_halted) 1573 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1574 1575 vcpu_unlock(vcpu); 1576 1577 if (vm_halted) 1578 vm_suspend(vm, VM_SUSPEND_HALT); 1579 1580 return (0); 1581 } 1582 1583 static int 1584 vm_handle_paging(struct vcpu *vcpu, bool *retu) 1585 { 1586 struct vm *vm = vcpu->vm; 1587 int rv, ftype; 1588 struct vm_map *map; 1589 struct vm_exit *vme; 1590 1591 vme = &vcpu->exitinfo; 1592 1593 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1594 __func__, vme->inst_length)); 1595 1596 ftype = vme->u.paging.fault_type; 1597 KASSERT(ftype == VM_PROT_READ || 1598 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1599 ("vm_handle_paging: invalid fault_type %d", ftype)); 1600 1601 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1602 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1603 vme->u.paging.gpa, ftype); 1604 if (rv == 0) { 1605 VMM_CTR2(vcpu, "%s bit emulation for gpa %#lx", 1606 ftype == VM_PROT_READ ? "accessed" : "dirty", 1607 vme->u.paging.gpa); 1608 goto done; 1609 } 1610 } 1611 1612 map = &vm->vmspace->vm_map; 1613 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL); 1614 1615 VMM_CTR3(vcpu, "vm_handle_paging rv = %d, gpa = %#lx, " 1616 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1617 1618 if (rv != KERN_SUCCESS) 1619 return (EFAULT); 1620 done: 1621 return (0); 1622 } 1623 1624 static int 1625 vm_handle_inst_emul(struct vcpu *vcpu, bool *retu) 1626 { 1627 struct vie *vie; 1628 struct vm_exit *vme; 1629 uint64_t gla, gpa, cs_base; 1630 struct vm_guest_paging *paging; 1631 mem_region_read_t mread; 1632 mem_region_write_t mwrite; 1633 enum vm_cpu_mode cpu_mode; 1634 int cs_d, error, fault; 1635 1636 vme = &vcpu->exitinfo; 1637 1638 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1639 __func__, vme->inst_length)); 1640 1641 gla = vme->u.inst_emul.gla; 1642 gpa = vme->u.inst_emul.gpa; 1643 cs_base = vme->u.inst_emul.cs_base; 1644 cs_d = vme->u.inst_emul.cs_d; 1645 vie = &vme->u.inst_emul.vie; 1646 paging = &vme->u.inst_emul.paging; 1647 cpu_mode = paging->cpu_mode; 1648 1649 VMM_CTR1(vcpu, "inst_emul fault accessing gpa %#lx", gpa); 1650 1651 /* Fetch, decode and emulate the faulting instruction */ 1652 if (vie->num_valid == 0) { 1653 error = vmm_fetch_instruction(vcpu, paging, vme->rip + cs_base, 1654 VIE_INST_SIZE, vie, &fault); 1655 } else { 1656 /* 1657 * The instruction bytes have already been copied into 'vie' 1658 */ 1659 error = fault = 0; 1660 } 1661 if (error || fault) 1662 return (error); 1663 1664 if (vmm_decode_instruction(vcpu, gla, cpu_mode, cs_d, vie) != 0) { 1665 VMM_CTR1(vcpu, "Error decoding instruction at %#lx", 1666 vme->rip + cs_base); 1667 *retu = true; /* dump instruction bytes in userspace */ 1668 return (0); 1669 } 1670 1671 /* 1672 * Update 'nextrip' based on the length of the emulated instruction. 1673 */ 1674 vme->inst_length = vie->num_processed; 1675 vcpu->nextrip += vie->num_processed; 1676 VMM_CTR1(vcpu, "nextrip updated to %#lx after instruction decoding", 1677 vcpu->nextrip); 1678 1679 /* return to userland unless this is an in-kernel emulated device */ 1680 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1681 mread = lapic_mmio_read; 1682 mwrite = lapic_mmio_write; 1683 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1684 mread = vioapic_mmio_read; 1685 mwrite = vioapic_mmio_write; 1686 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1687 mread = vhpet_mmio_read; 1688 mwrite = vhpet_mmio_write; 1689 } else { 1690 *retu = true; 1691 return (0); 1692 } 1693 1694 error = vmm_emulate_instruction(vcpu, gpa, vie, paging, mread, mwrite, 1695 retu); 1696 1697 return (error); 1698 } 1699 1700 static int 1701 vm_handle_suspend(struct vcpu *vcpu, bool *retu) 1702 { 1703 struct vm *vm = vcpu->vm; 1704 int error, i; 1705 struct thread *td; 1706 1707 error = 0; 1708 td = curthread; 1709 1710 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->suspended_cpus); 1711 1712 /* 1713 * Wait until all 'active_cpus' have suspended themselves. 1714 * 1715 * Since a VM may be suspended at any time including when one or 1716 * more vcpus are doing a rendezvous we need to call the rendezvous 1717 * handler while we are waiting to prevent a deadlock. 1718 */ 1719 vcpu_lock(vcpu); 1720 while (error == 0) { 1721 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1722 VMM_CTR0(vcpu, "All vcpus suspended"); 1723 break; 1724 } 1725 1726 if (vm->rendezvous_func == NULL) { 1727 VMM_CTR0(vcpu, "Sleeping during suspend"); 1728 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1729 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1730 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1731 if (td_ast_pending(td, TDA_SUSPEND)) { 1732 vcpu_unlock(vcpu); 1733 error = thread_check_susp(td, false); 1734 vcpu_lock(vcpu); 1735 } 1736 } else { 1737 VMM_CTR0(vcpu, "Rendezvous during suspend"); 1738 vcpu_unlock(vcpu); 1739 error = vm_handle_rendezvous(vcpu); 1740 vcpu_lock(vcpu); 1741 } 1742 } 1743 vcpu_unlock(vcpu); 1744 1745 /* 1746 * Wakeup the other sleeping vcpus and return to userspace. 1747 */ 1748 for (i = 0; i < vm->maxcpus; i++) { 1749 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1750 vcpu_notify_event(vm_vcpu(vm, i), false); 1751 } 1752 } 1753 1754 *retu = true; 1755 return (error); 1756 } 1757 1758 static int 1759 vm_handle_reqidle(struct vcpu *vcpu, bool *retu) 1760 { 1761 vcpu_lock(vcpu); 1762 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle)); 1763 vcpu->reqidle = 0; 1764 vcpu_unlock(vcpu); 1765 *retu = true; 1766 return (0); 1767 } 1768 1769 static int 1770 vm_handle_db(struct vcpu *vcpu, struct vm_exit *vme, bool *retu) 1771 { 1772 int error, fault; 1773 uint64_t rsp; 1774 uint64_t rflags; 1775 struct vm_copyinfo copyinfo; 1776 1777 *retu = true; 1778 if (!vme->u.dbg.pushf_intercept || vme->u.dbg.tf_shadow_val != 0) { 1779 return (0); 1780 } 1781 1782 vm_get_register(vcpu, VM_REG_GUEST_RSP, &rsp); 1783 error = vm_copy_setup(vcpu, &vme->u.dbg.paging, rsp, sizeof(uint64_t), 1784 VM_PROT_RW, ©info, 1, &fault); 1785 if (error != 0 || fault != 0) { 1786 *retu = false; 1787 return (EINVAL); 1788 } 1789 1790 /* Read pushed rflags value from top of stack. */ 1791 vm_copyin(©info, &rflags, sizeof(uint64_t)); 1792 1793 /* Clear TF bit. */ 1794 rflags &= ~(PSL_T); 1795 1796 /* Write updated value back to memory. */ 1797 vm_copyout(&rflags, ©info, sizeof(uint64_t)); 1798 vm_copy_teardown(©info, 1); 1799 1800 return (0); 1801 } 1802 1803 int 1804 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1805 { 1806 int i; 1807 1808 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1809 return (EINVAL); 1810 1811 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1812 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1813 vm->suspend, how); 1814 return (EALREADY); 1815 } 1816 1817 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1818 1819 /* 1820 * Notify all active vcpus that they are now suspended. 1821 */ 1822 for (i = 0; i < vm->maxcpus; i++) { 1823 if (CPU_ISSET(i, &vm->active_cpus)) 1824 vcpu_notify_event(vm_vcpu(vm, i), false); 1825 } 1826 1827 return (0); 1828 } 1829 1830 void 1831 vm_exit_suspended(struct vcpu *vcpu, uint64_t rip) 1832 { 1833 struct vm *vm = vcpu->vm; 1834 struct vm_exit *vmexit; 1835 1836 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1837 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1838 1839 vmexit = vm_exitinfo(vcpu); 1840 vmexit->rip = rip; 1841 vmexit->inst_length = 0; 1842 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1843 vmexit->u.suspended.how = vm->suspend; 1844 } 1845 1846 void 1847 vm_exit_debug(struct vcpu *vcpu, uint64_t rip) 1848 { 1849 struct vm_exit *vmexit; 1850 1851 vmexit = vm_exitinfo(vcpu); 1852 vmexit->rip = rip; 1853 vmexit->inst_length = 0; 1854 vmexit->exitcode = VM_EXITCODE_DEBUG; 1855 } 1856 1857 void 1858 vm_exit_rendezvous(struct vcpu *vcpu, uint64_t rip) 1859 { 1860 struct vm_exit *vmexit; 1861 1862 vmexit = vm_exitinfo(vcpu); 1863 vmexit->rip = rip; 1864 vmexit->inst_length = 0; 1865 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1866 vmm_stat_incr(vcpu, VMEXIT_RENDEZVOUS, 1); 1867 } 1868 1869 void 1870 vm_exit_reqidle(struct vcpu *vcpu, uint64_t rip) 1871 { 1872 struct vm_exit *vmexit; 1873 1874 vmexit = vm_exitinfo(vcpu); 1875 vmexit->rip = rip; 1876 vmexit->inst_length = 0; 1877 vmexit->exitcode = VM_EXITCODE_REQIDLE; 1878 vmm_stat_incr(vcpu, VMEXIT_REQIDLE, 1); 1879 } 1880 1881 void 1882 vm_exit_astpending(struct vcpu *vcpu, uint64_t rip) 1883 { 1884 struct vm_exit *vmexit; 1885 1886 vmexit = vm_exitinfo(vcpu); 1887 vmexit->rip = rip; 1888 vmexit->inst_length = 0; 1889 vmexit->exitcode = VM_EXITCODE_BOGUS; 1890 vmm_stat_incr(vcpu, VMEXIT_ASTPENDING, 1); 1891 } 1892 1893 int 1894 vm_run(struct vcpu *vcpu) 1895 { 1896 struct vm *vm = vcpu->vm; 1897 struct vm_eventinfo evinfo; 1898 int error, vcpuid; 1899 struct pcb *pcb; 1900 uint64_t tscval; 1901 struct vm_exit *vme; 1902 bool retu, intr_disabled; 1903 pmap_t pmap; 1904 1905 vcpuid = vcpu->vcpuid; 1906 1907 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1908 return (EINVAL); 1909 1910 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1911 return (EINVAL); 1912 1913 pmap = vmspace_pmap(vm->vmspace); 1914 vme = &vcpu->exitinfo; 1915 evinfo.rptr = &vm->rendezvous_req_cpus; 1916 evinfo.sptr = &vm->suspend; 1917 evinfo.iptr = &vcpu->reqidle; 1918 restart: 1919 critical_enter(); 1920 1921 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1922 ("vm_run: absurd pm_active")); 1923 1924 tscval = rdtsc(); 1925 1926 pcb = PCPU_GET(curpcb); 1927 set_pcb_flags(pcb, PCB_FULL_IRET); 1928 1929 restore_guest_fpustate(vcpu); 1930 1931 vcpu_require_state(vcpu, VCPU_RUNNING); 1932 error = vmmops_run(vcpu->cookie, vcpu->nextrip, pmap, &evinfo); 1933 vcpu_require_state(vcpu, VCPU_FROZEN); 1934 1935 save_guest_fpustate(vcpu); 1936 1937 vmm_stat_incr(vcpu, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1938 1939 critical_exit(); 1940 1941 if (error == 0) { 1942 retu = false; 1943 vcpu->nextrip = vme->rip + vme->inst_length; 1944 switch (vme->exitcode) { 1945 case VM_EXITCODE_REQIDLE: 1946 error = vm_handle_reqidle(vcpu, &retu); 1947 break; 1948 case VM_EXITCODE_SUSPENDED: 1949 error = vm_handle_suspend(vcpu, &retu); 1950 break; 1951 case VM_EXITCODE_IOAPIC_EOI: 1952 vioapic_process_eoi(vm, vme->u.ioapic_eoi.vector); 1953 break; 1954 case VM_EXITCODE_RENDEZVOUS: 1955 error = vm_handle_rendezvous(vcpu); 1956 break; 1957 case VM_EXITCODE_HLT: 1958 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1959 error = vm_handle_hlt(vcpu, intr_disabled, &retu); 1960 break; 1961 case VM_EXITCODE_PAGING: 1962 error = vm_handle_paging(vcpu, &retu); 1963 break; 1964 case VM_EXITCODE_INST_EMUL: 1965 error = vm_handle_inst_emul(vcpu, &retu); 1966 break; 1967 case VM_EXITCODE_INOUT: 1968 case VM_EXITCODE_INOUT_STR: 1969 error = vm_handle_inout(vcpu, vme, &retu); 1970 break; 1971 case VM_EXITCODE_DB: 1972 error = vm_handle_db(vcpu, vme, &retu); 1973 break; 1974 case VM_EXITCODE_MONITOR: 1975 case VM_EXITCODE_MWAIT: 1976 case VM_EXITCODE_VMINSN: 1977 vm_inject_ud(vcpu); 1978 break; 1979 default: 1980 retu = true; /* handled in userland */ 1981 break; 1982 } 1983 } 1984 1985 /* 1986 * VM_EXITCODE_INST_EMUL could access the apic which could transform the 1987 * exit code into VM_EXITCODE_IPI. 1988 */ 1989 if (error == 0 && vme->exitcode == VM_EXITCODE_IPI) 1990 error = vm_handle_ipi(vcpu, vme, &retu); 1991 1992 if (error == 0 && retu == false) 1993 goto restart; 1994 1995 vmm_stat_incr(vcpu, VMEXIT_USERSPACE, 1); 1996 VMM_CTR2(vcpu, "retu %d/%d", error, vme->exitcode); 1997 1998 return (error); 1999 } 2000 2001 int 2002 vm_restart_instruction(struct vcpu *vcpu) 2003 { 2004 enum vcpu_state state; 2005 uint64_t rip; 2006 int error __diagused; 2007 2008 state = vcpu_get_state(vcpu, NULL); 2009 if (state == VCPU_RUNNING) { 2010 /* 2011 * When a vcpu is "running" the next instruction is determined 2012 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'. 2013 * Thus setting 'inst_length' to zero will cause the current 2014 * instruction to be restarted. 2015 */ 2016 vcpu->exitinfo.inst_length = 0; 2017 VMM_CTR1(vcpu, "restarting instruction at %#lx by " 2018 "setting inst_length to zero", vcpu->exitinfo.rip); 2019 } else if (state == VCPU_FROZEN) { 2020 /* 2021 * When a vcpu is "frozen" it is outside the critical section 2022 * around vmmops_run() and 'nextrip' points to the next 2023 * instruction. Thus instruction restart is achieved by setting 2024 * 'nextrip' to the vcpu's %rip. 2025 */ 2026 error = vm_get_register(vcpu, VM_REG_GUEST_RIP, &rip); 2027 KASSERT(!error, ("%s: error %d getting rip", __func__, error)); 2028 VMM_CTR2(vcpu, "restarting instruction by updating " 2029 "nextrip from %#lx to %#lx", vcpu->nextrip, rip); 2030 vcpu->nextrip = rip; 2031 } else { 2032 panic("%s: invalid state %d", __func__, state); 2033 } 2034 return (0); 2035 } 2036 2037 int 2038 vm_exit_intinfo(struct vcpu *vcpu, uint64_t info) 2039 { 2040 int type, vector; 2041 2042 if (info & VM_INTINFO_VALID) { 2043 type = info & VM_INTINFO_TYPE; 2044 vector = info & 0xff; 2045 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 2046 return (EINVAL); 2047 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 2048 return (EINVAL); 2049 if (info & VM_INTINFO_RSVD) 2050 return (EINVAL); 2051 } else { 2052 info = 0; 2053 } 2054 VMM_CTR2(vcpu, "%s: info1(%#lx)", __func__, info); 2055 vcpu->exitintinfo = info; 2056 return (0); 2057 } 2058 2059 enum exc_class { 2060 EXC_BENIGN, 2061 EXC_CONTRIBUTORY, 2062 EXC_PAGEFAULT 2063 }; 2064 2065 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 2066 2067 static enum exc_class 2068 exception_class(uint64_t info) 2069 { 2070 int type, vector; 2071 2072 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 2073 type = info & VM_INTINFO_TYPE; 2074 vector = info & 0xff; 2075 2076 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 2077 switch (type) { 2078 case VM_INTINFO_HWINTR: 2079 case VM_INTINFO_SWINTR: 2080 case VM_INTINFO_NMI: 2081 return (EXC_BENIGN); 2082 default: 2083 /* 2084 * Hardware exception. 2085 * 2086 * SVM and VT-x use identical type values to represent NMI, 2087 * hardware interrupt and software interrupt. 2088 * 2089 * SVM uses type '3' for all exceptions. VT-x uses type '3' 2090 * for exceptions except #BP and #OF. #BP and #OF use a type 2091 * value of '5' or '6'. Therefore we don't check for explicit 2092 * values of 'type' to classify 'intinfo' into a hardware 2093 * exception. 2094 */ 2095 break; 2096 } 2097 2098 switch (vector) { 2099 case IDT_PF: 2100 case IDT_VE: 2101 return (EXC_PAGEFAULT); 2102 case IDT_DE: 2103 case IDT_TS: 2104 case IDT_NP: 2105 case IDT_SS: 2106 case IDT_GP: 2107 return (EXC_CONTRIBUTORY); 2108 default: 2109 return (EXC_BENIGN); 2110 } 2111 } 2112 2113 static int 2114 nested_fault(struct vcpu *vcpu, uint64_t info1, uint64_t info2, 2115 uint64_t *retinfo) 2116 { 2117 enum exc_class exc1, exc2; 2118 int type1, vector1; 2119 2120 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 2121 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 2122 2123 /* 2124 * If an exception occurs while attempting to call the double-fault 2125 * handler the processor enters shutdown mode (aka triple fault). 2126 */ 2127 type1 = info1 & VM_INTINFO_TYPE; 2128 vector1 = info1 & 0xff; 2129 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 2130 VMM_CTR2(vcpu, "triple fault: info1(%#lx), info2(%#lx)", 2131 info1, info2); 2132 vm_suspend(vcpu->vm, VM_SUSPEND_TRIPLEFAULT); 2133 *retinfo = 0; 2134 return (0); 2135 } 2136 2137 /* 2138 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 2139 */ 2140 exc1 = exception_class(info1); 2141 exc2 = exception_class(info2); 2142 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 2143 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 2144 /* Convert nested fault into a double fault. */ 2145 *retinfo = IDT_DF; 2146 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 2147 *retinfo |= VM_INTINFO_DEL_ERRCODE; 2148 } else { 2149 /* Handle exceptions serially */ 2150 *retinfo = info2; 2151 } 2152 return (1); 2153 } 2154 2155 static uint64_t 2156 vcpu_exception_intinfo(struct vcpu *vcpu) 2157 { 2158 uint64_t info = 0; 2159 2160 if (vcpu->exception_pending) { 2161 info = vcpu->exc_vector & 0xff; 2162 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 2163 if (vcpu->exc_errcode_valid) { 2164 info |= VM_INTINFO_DEL_ERRCODE; 2165 info |= (uint64_t)vcpu->exc_errcode << 32; 2166 } 2167 } 2168 return (info); 2169 } 2170 2171 int 2172 vm_entry_intinfo(struct vcpu *vcpu, uint64_t *retinfo) 2173 { 2174 uint64_t info1, info2; 2175 int valid; 2176 2177 info1 = vcpu->exitintinfo; 2178 vcpu->exitintinfo = 0; 2179 2180 info2 = 0; 2181 if (vcpu->exception_pending) { 2182 info2 = vcpu_exception_intinfo(vcpu); 2183 vcpu->exception_pending = 0; 2184 VMM_CTR2(vcpu, "Exception %d delivered: %#lx", 2185 vcpu->exc_vector, info2); 2186 } 2187 2188 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 2189 valid = nested_fault(vcpu, info1, info2, retinfo); 2190 } else if (info1 & VM_INTINFO_VALID) { 2191 *retinfo = info1; 2192 valid = 1; 2193 } else if (info2 & VM_INTINFO_VALID) { 2194 *retinfo = info2; 2195 valid = 1; 2196 } else { 2197 valid = 0; 2198 } 2199 2200 if (valid) { 2201 VMM_CTR4(vcpu, "%s: info1(%#lx), info2(%#lx), " 2202 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 2203 } 2204 2205 return (valid); 2206 } 2207 2208 int 2209 vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2) 2210 { 2211 *info1 = vcpu->exitintinfo; 2212 *info2 = vcpu_exception_intinfo(vcpu); 2213 return (0); 2214 } 2215 2216 int 2217 vm_inject_exception(struct vcpu *vcpu, int vector, int errcode_valid, 2218 uint32_t errcode, int restart_instruction) 2219 { 2220 uint64_t regval; 2221 int error __diagused; 2222 2223 if (vector < 0 || vector >= 32) 2224 return (EINVAL); 2225 2226 /* 2227 * A double fault exception should never be injected directly into 2228 * the guest. It is a derived exception that results from specific 2229 * combinations of nested faults. 2230 */ 2231 if (vector == IDT_DF) 2232 return (EINVAL); 2233 2234 if (vcpu->exception_pending) { 2235 VMM_CTR2(vcpu, "Unable to inject exception %d due to " 2236 "pending exception %d", vector, vcpu->exc_vector); 2237 return (EBUSY); 2238 } 2239 2240 if (errcode_valid) { 2241 /* 2242 * Exceptions don't deliver an error code in real mode. 2243 */ 2244 error = vm_get_register(vcpu, VM_REG_GUEST_CR0, ®val); 2245 KASSERT(!error, ("%s: error %d getting CR0", __func__, error)); 2246 if (!(regval & CR0_PE)) 2247 errcode_valid = 0; 2248 } 2249 2250 /* 2251 * From section 26.6.1 "Interruptibility State" in Intel SDM: 2252 * 2253 * Event blocking by "STI" or "MOV SS" is cleared after guest executes 2254 * one instruction or incurs an exception. 2255 */ 2256 error = vm_set_register(vcpu, VM_REG_GUEST_INTR_SHADOW, 0); 2257 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", 2258 __func__, error)); 2259 2260 if (restart_instruction) 2261 vm_restart_instruction(vcpu); 2262 2263 vcpu->exception_pending = 1; 2264 vcpu->exc_vector = vector; 2265 vcpu->exc_errcode = errcode; 2266 vcpu->exc_errcode_valid = errcode_valid; 2267 VMM_CTR1(vcpu, "Exception %d pending", vector); 2268 return (0); 2269 } 2270 2271 void 2272 vm_inject_fault(struct vcpu *vcpu, int vector, int errcode_valid, int errcode) 2273 { 2274 int error __diagused, restart_instruction; 2275 2276 restart_instruction = 1; 2277 2278 error = vm_inject_exception(vcpu, vector, errcode_valid, 2279 errcode, restart_instruction); 2280 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 2281 } 2282 2283 void 2284 vm_inject_pf(struct vcpu *vcpu, int error_code, uint64_t cr2) 2285 { 2286 int error __diagused; 2287 2288 VMM_CTR2(vcpu, "Injecting page fault: error_code %#x, cr2 %#lx", 2289 error_code, cr2); 2290 2291 error = vm_set_register(vcpu, VM_REG_GUEST_CR2, cr2); 2292 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 2293 2294 vm_inject_fault(vcpu, IDT_PF, 1, error_code); 2295 } 2296 2297 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 2298 2299 int 2300 vm_inject_nmi(struct vcpu *vcpu) 2301 { 2302 2303 vcpu->nmi_pending = 1; 2304 vcpu_notify_event(vcpu, false); 2305 return (0); 2306 } 2307 2308 int 2309 vm_nmi_pending(struct vcpu *vcpu) 2310 { 2311 return (vcpu->nmi_pending); 2312 } 2313 2314 void 2315 vm_nmi_clear(struct vcpu *vcpu) 2316 { 2317 if (vcpu->nmi_pending == 0) 2318 panic("vm_nmi_clear: inconsistent nmi_pending state"); 2319 2320 vcpu->nmi_pending = 0; 2321 vmm_stat_incr(vcpu, VCPU_NMI_COUNT, 1); 2322 } 2323 2324 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 2325 2326 int 2327 vm_inject_extint(struct vcpu *vcpu) 2328 { 2329 2330 vcpu->extint_pending = 1; 2331 vcpu_notify_event(vcpu, false); 2332 return (0); 2333 } 2334 2335 int 2336 vm_extint_pending(struct vcpu *vcpu) 2337 { 2338 return (vcpu->extint_pending); 2339 } 2340 2341 void 2342 vm_extint_clear(struct vcpu *vcpu) 2343 { 2344 if (vcpu->extint_pending == 0) 2345 panic("vm_extint_clear: inconsistent extint_pending state"); 2346 2347 vcpu->extint_pending = 0; 2348 vmm_stat_incr(vcpu, VCPU_EXTINT_COUNT, 1); 2349 } 2350 2351 int 2352 vm_get_capability(struct vcpu *vcpu, int type, int *retval) 2353 { 2354 if (type < 0 || type >= VM_CAP_MAX) 2355 return (EINVAL); 2356 2357 return (vmmops_getcap(vcpu->cookie, type, retval)); 2358 } 2359 2360 int 2361 vm_set_capability(struct vcpu *vcpu, int type, int val) 2362 { 2363 if (type < 0 || type >= VM_CAP_MAX) 2364 return (EINVAL); 2365 2366 return (vmmops_setcap(vcpu->cookie, type, val)); 2367 } 2368 2369 struct vm * 2370 vcpu_vm(struct vcpu *vcpu) 2371 { 2372 return (vcpu->vm); 2373 } 2374 2375 int 2376 vcpu_vcpuid(struct vcpu *vcpu) 2377 { 2378 return (vcpu->vcpuid); 2379 } 2380 2381 struct vcpu * 2382 vm_vcpu(struct vm *vm, int vcpuid) 2383 { 2384 return (vm->vcpu[vcpuid]); 2385 } 2386 2387 struct vlapic * 2388 vm_lapic(struct vcpu *vcpu) 2389 { 2390 return (vcpu->vlapic); 2391 } 2392 2393 struct vioapic * 2394 vm_ioapic(struct vm *vm) 2395 { 2396 2397 return (vm->vioapic); 2398 } 2399 2400 struct vhpet * 2401 vm_hpet(struct vm *vm) 2402 { 2403 2404 return (vm->vhpet); 2405 } 2406 2407 bool 2408 vmm_is_pptdev(int bus, int slot, int func) 2409 { 2410 int b, f, i, n, s; 2411 char *val, *cp, *cp2; 2412 bool found; 2413 2414 /* 2415 * XXX 2416 * The length of an environment variable is limited to 128 bytes which 2417 * puts an upper limit on the number of passthru devices that may be 2418 * specified using a single environment variable. 2419 * 2420 * Work around this by scanning multiple environment variable 2421 * names instead of a single one - yuck! 2422 */ 2423 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 2424 2425 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 2426 found = false; 2427 for (i = 0; names[i] != NULL && !found; i++) { 2428 cp = val = kern_getenv(names[i]); 2429 while (cp != NULL && *cp != '\0') { 2430 if ((cp2 = strchr(cp, ' ')) != NULL) 2431 *cp2 = '\0'; 2432 2433 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 2434 if (n == 3 && bus == b && slot == s && func == f) { 2435 found = true; 2436 break; 2437 } 2438 2439 if (cp2 != NULL) 2440 *cp2++ = ' '; 2441 2442 cp = cp2; 2443 } 2444 freeenv(val); 2445 } 2446 return (found); 2447 } 2448 2449 void * 2450 vm_iommu_domain(struct vm *vm) 2451 { 2452 2453 return (vm->iommu); 2454 } 2455 2456 int 2457 vcpu_set_state(struct vcpu *vcpu, enum vcpu_state newstate, bool from_idle) 2458 { 2459 int error; 2460 2461 vcpu_lock(vcpu); 2462 error = vcpu_set_state_locked(vcpu, newstate, from_idle); 2463 vcpu_unlock(vcpu); 2464 2465 return (error); 2466 } 2467 2468 enum vcpu_state 2469 vcpu_get_state(struct vcpu *vcpu, int *hostcpu) 2470 { 2471 enum vcpu_state state; 2472 2473 vcpu_lock(vcpu); 2474 state = vcpu->state; 2475 if (hostcpu != NULL) 2476 *hostcpu = vcpu->hostcpu; 2477 vcpu_unlock(vcpu); 2478 2479 return (state); 2480 } 2481 2482 int 2483 vm_activate_cpu(struct vcpu *vcpu) 2484 { 2485 struct vm *vm = vcpu->vm; 2486 2487 if (CPU_ISSET(vcpu->vcpuid, &vm->active_cpus)) 2488 return (EBUSY); 2489 2490 VMM_CTR0(vcpu, "activated"); 2491 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->active_cpus); 2492 return (0); 2493 } 2494 2495 int 2496 vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu) 2497 { 2498 if (vcpu == NULL) { 2499 vm->debug_cpus = vm->active_cpus; 2500 for (int i = 0; i < vm->maxcpus; i++) { 2501 if (CPU_ISSET(i, &vm->active_cpus)) 2502 vcpu_notify_event(vm_vcpu(vm, i), false); 2503 } 2504 } else { 2505 if (!CPU_ISSET(vcpu->vcpuid, &vm->active_cpus)) 2506 return (EINVAL); 2507 2508 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->debug_cpus); 2509 vcpu_notify_event(vcpu, false); 2510 } 2511 return (0); 2512 } 2513 2514 int 2515 vm_resume_cpu(struct vm *vm, struct vcpu *vcpu) 2516 { 2517 2518 if (vcpu == NULL) { 2519 CPU_ZERO(&vm->debug_cpus); 2520 } else { 2521 if (!CPU_ISSET(vcpu->vcpuid, &vm->debug_cpus)) 2522 return (EINVAL); 2523 2524 CPU_CLR_ATOMIC(vcpu->vcpuid, &vm->debug_cpus); 2525 } 2526 return (0); 2527 } 2528 2529 int 2530 vcpu_debugged(struct vcpu *vcpu) 2531 { 2532 2533 return (CPU_ISSET(vcpu->vcpuid, &vcpu->vm->debug_cpus)); 2534 } 2535 2536 cpuset_t 2537 vm_active_cpus(struct vm *vm) 2538 { 2539 2540 return (vm->active_cpus); 2541 } 2542 2543 cpuset_t 2544 vm_debug_cpus(struct vm *vm) 2545 { 2546 2547 return (vm->debug_cpus); 2548 } 2549 2550 cpuset_t 2551 vm_suspended_cpus(struct vm *vm) 2552 { 2553 2554 return (vm->suspended_cpus); 2555 } 2556 2557 /* 2558 * Returns the subset of vCPUs in tostart that are awaiting startup. 2559 * These vCPUs are also marked as no longer awaiting startup. 2560 */ 2561 cpuset_t 2562 vm_start_cpus(struct vm *vm, const cpuset_t *tostart) 2563 { 2564 cpuset_t set; 2565 2566 mtx_lock(&vm->rendezvous_mtx); 2567 CPU_AND(&set, &vm->startup_cpus, tostart); 2568 CPU_ANDNOT(&vm->startup_cpus, &vm->startup_cpus, &set); 2569 mtx_unlock(&vm->rendezvous_mtx); 2570 return (set); 2571 } 2572 2573 void 2574 vm_await_start(struct vm *vm, const cpuset_t *waiting) 2575 { 2576 mtx_lock(&vm->rendezvous_mtx); 2577 CPU_OR(&vm->startup_cpus, &vm->startup_cpus, waiting); 2578 mtx_unlock(&vm->rendezvous_mtx); 2579 } 2580 2581 void * 2582 vcpu_stats(struct vcpu *vcpu) 2583 { 2584 2585 return (vcpu->stats); 2586 } 2587 2588 int 2589 vm_get_x2apic_state(struct vcpu *vcpu, enum x2apic_state *state) 2590 { 2591 *state = vcpu->x2apic_state; 2592 2593 return (0); 2594 } 2595 2596 int 2597 vm_set_x2apic_state(struct vcpu *vcpu, enum x2apic_state state) 2598 { 2599 if (state >= X2APIC_STATE_LAST) 2600 return (EINVAL); 2601 2602 vcpu->x2apic_state = state; 2603 2604 vlapic_set_x2apic_state(vcpu, state); 2605 2606 return (0); 2607 } 2608 2609 /* 2610 * This function is called to ensure that a vcpu "sees" a pending event 2611 * as soon as possible: 2612 * - If the vcpu thread is sleeping then it is woken up. 2613 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2614 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2615 */ 2616 static void 2617 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr) 2618 { 2619 int hostcpu; 2620 2621 hostcpu = vcpu->hostcpu; 2622 if (vcpu->state == VCPU_RUNNING) { 2623 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2624 if (hostcpu != curcpu) { 2625 if (lapic_intr) { 2626 vlapic_post_intr(vcpu->vlapic, hostcpu, 2627 vmm_ipinum); 2628 } else { 2629 ipi_cpu(hostcpu, vmm_ipinum); 2630 } 2631 } else { 2632 /* 2633 * If the 'vcpu' is running on 'curcpu' then it must 2634 * be sending a notification to itself (e.g. SELF_IPI). 2635 * The pending event will be picked up when the vcpu 2636 * transitions back to guest context. 2637 */ 2638 } 2639 } else { 2640 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2641 "with hostcpu %d", vcpu->state, hostcpu)); 2642 if (vcpu->state == VCPU_SLEEPING) 2643 wakeup_one(vcpu); 2644 } 2645 } 2646 2647 void 2648 vcpu_notify_event(struct vcpu *vcpu, bool lapic_intr) 2649 { 2650 vcpu_lock(vcpu); 2651 vcpu_notify_event_locked(vcpu, lapic_intr); 2652 vcpu_unlock(vcpu); 2653 } 2654 2655 struct vmspace * 2656 vm_get_vmspace(struct vm *vm) 2657 { 2658 2659 return (vm->vmspace); 2660 } 2661 2662 int 2663 vm_apicid2vcpuid(struct vm *vm, int apicid) 2664 { 2665 /* 2666 * XXX apic id is assumed to be numerically identical to vcpu id 2667 */ 2668 return (apicid); 2669 } 2670 2671 int 2672 vm_smp_rendezvous(struct vcpu *vcpu, cpuset_t dest, 2673 vm_rendezvous_func_t func, void *arg) 2674 { 2675 struct vm *vm = vcpu->vm; 2676 int error, i; 2677 2678 /* 2679 * Enforce that this function is called without any locks 2680 */ 2681 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2682 2683 restart: 2684 mtx_lock(&vm->rendezvous_mtx); 2685 if (vm->rendezvous_func != NULL) { 2686 /* 2687 * If a rendezvous is already in progress then we need to 2688 * call the rendezvous handler in case this 'vcpu' is one 2689 * of the targets of the rendezvous. 2690 */ 2691 VMM_CTR0(vcpu, "Rendezvous already in progress"); 2692 mtx_unlock(&vm->rendezvous_mtx); 2693 error = vm_handle_rendezvous(vcpu); 2694 if (error != 0) 2695 return (error); 2696 goto restart; 2697 } 2698 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2699 "rendezvous is still in progress")); 2700 2701 VMM_CTR0(vcpu, "Initiating rendezvous"); 2702 vm->rendezvous_req_cpus = dest; 2703 CPU_ZERO(&vm->rendezvous_done_cpus); 2704 vm->rendezvous_arg = arg; 2705 vm->rendezvous_func = func; 2706 mtx_unlock(&vm->rendezvous_mtx); 2707 2708 /* 2709 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2710 * vcpus so they handle the rendezvous as soon as possible. 2711 */ 2712 for (i = 0; i < vm->maxcpus; i++) { 2713 if (CPU_ISSET(i, &dest)) 2714 vcpu_notify_event(vm_vcpu(vm, i), false); 2715 } 2716 2717 return (vm_handle_rendezvous(vcpu)); 2718 } 2719 2720 struct vatpic * 2721 vm_atpic(struct vm *vm) 2722 { 2723 return (vm->vatpic); 2724 } 2725 2726 struct vatpit * 2727 vm_atpit(struct vm *vm) 2728 { 2729 return (vm->vatpit); 2730 } 2731 2732 struct vpmtmr * 2733 vm_pmtmr(struct vm *vm) 2734 { 2735 2736 return (vm->vpmtmr); 2737 } 2738 2739 struct vrtc * 2740 vm_rtc(struct vm *vm) 2741 { 2742 2743 return (vm->vrtc); 2744 } 2745 2746 enum vm_reg_name 2747 vm_segment_name(int seg) 2748 { 2749 static enum vm_reg_name seg_names[] = { 2750 VM_REG_GUEST_ES, 2751 VM_REG_GUEST_CS, 2752 VM_REG_GUEST_SS, 2753 VM_REG_GUEST_DS, 2754 VM_REG_GUEST_FS, 2755 VM_REG_GUEST_GS 2756 }; 2757 2758 KASSERT(seg >= 0 && seg < nitems(seg_names), 2759 ("%s: invalid segment encoding %d", __func__, seg)); 2760 return (seg_names[seg]); 2761 } 2762 2763 void 2764 vm_copy_teardown(struct vm_copyinfo *copyinfo, int num_copyinfo) 2765 { 2766 int idx; 2767 2768 for (idx = 0; idx < num_copyinfo; idx++) { 2769 if (copyinfo[idx].cookie != NULL) 2770 vm_gpa_release(copyinfo[idx].cookie); 2771 } 2772 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2773 } 2774 2775 int 2776 vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging, 2777 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2778 int num_copyinfo, int *fault) 2779 { 2780 int error, idx, nused; 2781 size_t n, off, remaining; 2782 void *hva, *cookie; 2783 uint64_t gpa; 2784 2785 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2786 2787 nused = 0; 2788 remaining = len; 2789 while (remaining > 0) { 2790 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo")); 2791 error = vm_gla2gpa(vcpu, paging, gla, prot, &gpa, fault); 2792 if (error || *fault) 2793 return (error); 2794 off = gpa & PAGE_MASK; 2795 n = min(remaining, PAGE_SIZE - off); 2796 copyinfo[nused].gpa = gpa; 2797 copyinfo[nused].len = n; 2798 remaining -= n; 2799 gla += n; 2800 nused++; 2801 } 2802 2803 for (idx = 0; idx < nused; idx++) { 2804 hva = vm_gpa_hold(vcpu, copyinfo[idx].gpa, 2805 copyinfo[idx].len, prot, &cookie); 2806 if (hva == NULL) 2807 break; 2808 copyinfo[idx].hva = hva; 2809 copyinfo[idx].cookie = cookie; 2810 } 2811 2812 if (idx != nused) { 2813 vm_copy_teardown(copyinfo, num_copyinfo); 2814 return (EFAULT); 2815 } else { 2816 *fault = 0; 2817 return (0); 2818 } 2819 } 2820 2821 void 2822 vm_copyin(struct vm_copyinfo *copyinfo, void *kaddr, size_t len) 2823 { 2824 char *dst; 2825 int idx; 2826 2827 dst = kaddr; 2828 idx = 0; 2829 while (len > 0) { 2830 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2831 len -= copyinfo[idx].len; 2832 dst += copyinfo[idx].len; 2833 idx++; 2834 } 2835 } 2836 2837 void 2838 vm_copyout(const void *kaddr, struct vm_copyinfo *copyinfo, size_t len) 2839 { 2840 const char *src; 2841 int idx; 2842 2843 src = kaddr; 2844 idx = 0; 2845 while (len > 0) { 2846 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2847 len -= copyinfo[idx].len; 2848 src += copyinfo[idx].len; 2849 idx++; 2850 } 2851 } 2852 2853 /* 2854 * Return the amount of in-use and wired memory for the VM. Since 2855 * these are global stats, only return the values with for vCPU 0 2856 */ 2857 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2858 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2859 2860 static void 2861 vm_get_rescnt(struct vcpu *vcpu, struct vmm_stat_type *stat) 2862 { 2863 2864 if (vcpu->vcpuid == 0) { 2865 vmm_stat_set(vcpu, VMM_MEM_RESIDENT, PAGE_SIZE * 2866 vmspace_resident_count(vcpu->vm->vmspace)); 2867 } 2868 } 2869 2870 static void 2871 vm_get_wiredcnt(struct vcpu *vcpu, struct vmm_stat_type *stat) 2872 { 2873 2874 if (vcpu->vcpuid == 0) { 2875 vmm_stat_set(vcpu, VMM_MEM_WIRED, PAGE_SIZE * 2876 pmap_wired_count(vmspace_pmap(vcpu->vm->vmspace))); 2877 } 2878 } 2879 2880 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2881 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2882 2883 #ifdef BHYVE_SNAPSHOT 2884 static int 2885 vm_snapshot_vcpus(struct vm *vm, struct vm_snapshot_meta *meta) 2886 { 2887 uint64_t tsc, now; 2888 int ret; 2889 struct vcpu *vcpu; 2890 uint16_t i, maxcpus; 2891 2892 now = rdtsc(); 2893 maxcpus = vm_get_maxcpus(vm); 2894 for (i = 0; i < maxcpus; i++) { 2895 vcpu = vm->vcpu[i]; 2896 if (vcpu == NULL) 2897 continue; 2898 2899 SNAPSHOT_VAR_OR_LEAVE(vcpu->x2apic_state, meta, ret, done); 2900 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitintinfo, meta, ret, done); 2901 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_vector, meta, ret, done); 2902 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode_valid, meta, ret, done); 2903 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode, meta, ret, done); 2904 SNAPSHOT_VAR_OR_LEAVE(vcpu->guest_xcr0, meta, ret, done); 2905 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitinfo, meta, ret, done); 2906 SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, ret, done); 2907 2908 /* 2909 * Save the absolute TSC value by adding now to tsc_offset. 2910 * 2911 * It will be turned turned back into an actual offset when the 2912 * TSC restore function is called 2913 */ 2914 tsc = now + vcpu->tsc_offset; 2915 SNAPSHOT_VAR_OR_LEAVE(tsc, meta, ret, done); 2916 if (meta->op == VM_SNAPSHOT_RESTORE) 2917 vcpu->tsc_offset = tsc; 2918 } 2919 2920 done: 2921 return (ret); 2922 } 2923 2924 static int 2925 vm_snapshot_vm(struct vm *vm, struct vm_snapshot_meta *meta) 2926 { 2927 int ret; 2928 2929 ret = vm_snapshot_vcpus(vm, meta); 2930 if (ret != 0) 2931 goto done; 2932 2933 SNAPSHOT_VAR_OR_LEAVE(vm->startup_cpus, meta, ret, done); 2934 done: 2935 return (ret); 2936 } 2937 2938 static int 2939 vm_snapshot_vcpu(struct vm *vm, struct vm_snapshot_meta *meta) 2940 { 2941 int error; 2942 struct vcpu *vcpu; 2943 uint16_t i, maxcpus; 2944 2945 error = 0; 2946 2947 maxcpus = vm_get_maxcpus(vm); 2948 for (i = 0; i < maxcpus; i++) { 2949 vcpu = vm->vcpu[i]; 2950 if (vcpu == NULL) 2951 continue; 2952 2953 error = vmmops_vcpu_snapshot(vcpu->cookie, meta); 2954 if (error != 0) { 2955 printf("%s: failed to snapshot vmcs/vmcb data for " 2956 "vCPU: %d; error: %d\n", __func__, i, error); 2957 goto done; 2958 } 2959 } 2960 2961 done: 2962 return (error); 2963 } 2964 2965 /* 2966 * Save kernel-side structures to user-space for snapshotting. 2967 */ 2968 int 2969 vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta) 2970 { 2971 int ret = 0; 2972 2973 switch (meta->dev_req) { 2974 case STRUCT_VMCX: 2975 ret = vm_snapshot_vcpu(vm, meta); 2976 break; 2977 case STRUCT_VM: 2978 ret = vm_snapshot_vm(vm, meta); 2979 break; 2980 case STRUCT_VIOAPIC: 2981 ret = vioapic_snapshot(vm_ioapic(vm), meta); 2982 break; 2983 case STRUCT_VLAPIC: 2984 ret = vlapic_snapshot(vm, meta); 2985 break; 2986 case STRUCT_VHPET: 2987 ret = vhpet_snapshot(vm_hpet(vm), meta); 2988 break; 2989 case STRUCT_VATPIC: 2990 ret = vatpic_snapshot(vm_atpic(vm), meta); 2991 break; 2992 case STRUCT_VATPIT: 2993 ret = vatpit_snapshot(vm_atpit(vm), meta); 2994 break; 2995 case STRUCT_VPMTMR: 2996 ret = vpmtmr_snapshot(vm_pmtmr(vm), meta); 2997 break; 2998 case STRUCT_VRTC: 2999 ret = vrtc_snapshot(vm_rtc(vm), meta); 3000 break; 3001 default: 3002 printf("%s: failed to find the requested type %#x\n", 3003 __func__, meta->dev_req); 3004 ret = (EINVAL); 3005 } 3006 return (ret); 3007 } 3008 3009 void 3010 vm_set_tsc_offset(struct vcpu *vcpu, uint64_t offset) 3011 { 3012 vcpu->tsc_offset = offset; 3013 } 3014 3015 int 3016 vm_restore_time(struct vm *vm) 3017 { 3018 int error; 3019 uint64_t now; 3020 struct vcpu *vcpu; 3021 uint16_t i, maxcpus; 3022 3023 now = rdtsc(); 3024 3025 error = vhpet_restore_time(vm_hpet(vm)); 3026 if (error) 3027 return (error); 3028 3029 maxcpus = vm_get_maxcpus(vm); 3030 for (i = 0; i < maxcpus; i++) { 3031 vcpu = vm->vcpu[i]; 3032 if (vcpu == NULL) 3033 continue; 3034 3035 error = vmmops_restore_tsc(vcpu->cookie, 3036 vcpu->tsc_offset - now); 3037 if (error) 3038 return (error); 3039 } 3040 3041 return (0); 3042 } 3043 #endif 3044