1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include "opt_bhyve_snapshot.h" 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/sysctl.h> 37 #include <sys/malloc.h> 38 #include <sys/pcpu.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/proc.h> 42 #include <sys/rwlock.h> 43 #include <sys/sched.h> 44 #include <sys/smp.h> 45 #include <sys/sx.h> 46 #include <sys/vnode.h> 47 48 #include <vm/vm.h> 49 #include <vm/vm_param.h> 50 #include <vm/vm_extern.h> 51 #include <vm/vm_object.h> 52 #include <vm/vm_page.h> 53 #include <vm/pmap.h> 54 #include <vm/vm_map.h> 55 #include <vm/vm_pager.h> 56 #include <vm/vm_kern.h> 57 #include <vm/vnode_pager.h> 58 #include <vm/swap_pager.h> 59 #include <vm/uma.h> 60 61 #include <machine/cpu.h> 62 #include <machine/pcb.h> 63 #include <machine/smp.h> 64 #include <machine/md_var.h> 65 #include <x86/psl.h> 66 #include <x86/apicreg.h> 67 #include <x86/ifunc.h> 68 69 #include <machine/vmm.h> 70 #include <machine/vmm_dev.h> 71 #include <machine/vmm_instruction_emul.h> 72 #include <machine/vmm_snapshot.h> 73 74 #include "vmm_ioport.h" 75 #include "vmm_ktr.h" 76 #include "vmm_host.h" 77 #include "vmm_mem.h" 78 #include "vmm_util.h" 79 #include "vatpic.h" 80 #include "vatpit.h" 81 #include "vhpet.h" 82 #include "vioapic.h" 83 #include "vlapic.h" 84 #include "vpmtmr.h" 85 #include "vrtc.h" 86 #include "vmm_stat.h" 87 #include "vmm_lapic.h" 88 89 #include "io/ppt.h" 90 #include "io/iommu.h" 91 92 struct vlapic; 93 94 /* 95 * Initialization: 96 * (a) allocated when vcpu is created 97 * (i) initialized when vcpu is created and when it is reinitialized 98 * (o) initialized the first time the vcpu is created 99 * (x) initialized before use 100 */ 101 struct vcpu { 102 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 103 enum vcpu_state state; /* (o) vcpu state */ 104 int vcpuid; /* (o) */ 105 int hostcpu; /* (o) vcpu's host cpu */ 106 int reqidle; /* (i) request vcpu to idle */ 107 struct vm *vm; /* (o) */ 108 void *cookie; /* (i) cpu-specific data */ 109 struct vlapic *vlapic; /* (i) APIC device model */ 110 enum x2apic_state x2apic_state; /* (i) APIC mode */ 111 uint64_t exitintinfo; /* (i) events pending at VM exit */ 112 int nmi_pending; /* (i) NMI pending */ 113 int extint_pending; /* (i) INTR pending */ 114 int exception_pending; /* (i) exception pending */ 115 int exc_vector; /* (x) exception collateral */ 116 int exc_errcode_valid; 117 uint32_t exc_errcode; 118 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 119 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 120 void *stats; /* (a,i) statistics */ 121 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 122 cpuset_t exitinfo_cpuset; /* (x) storage for vmexit handlers */ 123 uint64_t nextrip; /* (x) next instruction to execute */ 124 uint64_t tsc_offset; /* (o) TSC offsetting */ 125 }; 126 127 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 128 #define vcpu_lock_destroy(v) mtx_destroy(&((v)->mtx)) 129 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 130 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 131 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 132 133 struct mem_seg { 134 size_t len; 135 bool sysmem; 136 struct vm_object *object; 137 }; 138 #define VM_MAX_MEMSEGS 4 139 140 struct mem_map { 141 vm_paddr_t gpa; 142 size_t len; 143 vm_ooffset_t segoff; 144 int segid; 145 int prot; 146 int flags; 147 }; 148 #define VM_MAX_MEMMAPS 8 149 150 /* 151 * Initialization: 152 * (o) initialized the first time the VM is created 153 * (i) initialized when VM is created and when it is reinitialized 154 * (x) initialized before use 155 * 156 * Locking: 157 * [m] mem_segs_lock 158 * [r] rendezvous_mtx 159 * [v] reads require one frozen vcpu, writes require freezing all vcpus 160 */ 161 struct vm { 162 void *cookie; /* (i) cpu-specific data */ 163 void *iommu; /* (x) iommu-specific data */ 164 struct vhpet *vhpet; /* (i) virtual HPET */ 165 struct vioapic *vioapic; /* (i) virtual ioapic */ 166 struct vatpic *vatpic; /* (i) virtual atpic */ 167 struct vatpit *vatpit; /* (i) virtual atpit */ 168 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ 169 struct vrtc *vrtc; /* (o) virtual RTC */ 170 volatile cpuset_t active_cpus; /* (i) active vcpus */ 171 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */ 172 cpuset_t startup_cpus; /* (i) [r] waiting for startup */ 173 int suspend; /* (i) stop VM execution */ 174 bool dying; /* (o) is dying */ 175 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 176 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 177 cpuset_t rendezvous_req_cpus; /* (x) [r] rendezvous requested */ 178 cpuset_t rendezvous_done_cpus; /* (x) [r] rendezvous finished */ 179 void *rendezvous_arg; /* (x) [r] rendezvous func/arg */ 180 vm_rendezvous_func_t rendezvous_func; 181 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 182 struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) [m+v] guest address space */ 183 struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) [m+v] guest memory regions */ 184 struct vmspace *vmspace; /* (o) guest's address space */ 185 char name[VM_MAX_NAMELEN+1]; /* (o) virtual machine name */ 186 struct vcpu **vcpu; /* (o) guest vcpus */ 187 /* The following describe the vm cpu topology */ 188 uint16_t sockets; /* (o) num of sockets */ 189 uint16_t cores; /* (o) num of cores/socket */ 190 uint16_t threads; /* (o) num of threads/core */ 191 uint16_t maxcpus; /* (o) max pluggable cpus */ 192 struct sx mem_segs_lock; /* (o) */ 193 struct sx vcpus_init_lock; /* (o) */ 194 }; 195 196 #define VMM_CTR0(vcpu, format) \ 197 VCPU_CTR0((vcpu)->vm, (vcpu)->vcpuid, format) 198 199 #define VMM_CTR1(vcpu, format, p1) \ 200 VCPU_CTR1((vcpu)->vm, (vcpu)->vcpuid, format, p1) 201 202 #define VMM_CTR2(vcpu, format, p1, p2) \ 203 VCPU_CTR2((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2) 204 205 #define VMM_CTR3(vcpu, format, p1, p2, p3) \ 206 VCPU_CTR3((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3) 207 208 #define VMM_CTR4(vcpu, format, p1, p2, p3, p4) \ 209 VCPU_CTR4((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3, p4) 210 211 static int vmm_initialized; 212 213 static void vmmops_panic(void); 214 215 static void 216 vmmops_panic(void) 217 { 218 panic("vmm_ops func called when !vmm_is_intel() && !vmm_is_svm()"); 219 } 220 221 #define DEFINE_VMMOPS_IFUNC(ret_type, opname, args) \ 222 DEFINE_IFUNC(static, ret_type, vmmops_##opname, args) \ 223 { \ 224 if (vmm_is_intel()) \ 225 return (vmm_ops_intel.opname); \ 226 else if (vmm_is_svm()) \ 227 return (vmm_ops_amd.opname); \ 228 else \ 229 return ((ret_type (*)args)vmmops_panic); \ 230 } 231 232 DEFINE_VMMOPS_IFUNC(int, modinit, (int ipinum)) 233 DEFINE_VMMOPS_IFUNC(int, modcleanup, (void)) 234 DEFINE_VMMOPS_IFUNC(void, modresume, (void)) 235 DEFINE_VMMOPS_IFUNC(void *, init, (struct vm *vm, struct pmap *pmap)) 236 DEFINE_VMMOPS_IFUNC(int, run, (void *vcpui, register_t rip, struct pmap *pmap, 237 struct vm_eventinfo *info)) 238 DEFINE_VMMOPS_IFUNC(void, cleanup, (void *vmi)) 239 DEFINE_VMMOPS_IFUNC(void *, vcpu_init, (void *vmi, struct vcpu *vcpu, 240 int vcpu_id)) 241 DEFINE_VMMOPS_IFUNC(void, vcpu_cleanup, (void *vcpui)) 242 DEFINE_VMMOPS_IFUNC(int, getreg, (void *vcpui, int num, uint64_t *retval)) 243 DEFINE_VMMOPS_IFUNC(int, setreg, (void *vcpui, int num, uint64_t val)) 244 DEFINE_VMMOPS_IFUNC(int, getdesc, (void *vcpui, int num, struct seg_desc *desc)) 245 DEFINE_VMMOPS_IFUNC(int, setdesc, (void *vcpui, int num, struct seg_desc *desc)) 246 DEFINE_VMMOPS_IFUNC(int, getcap, (void *vcpui, int num, int *retval)) 247 DEFINE_VMMOPS_IFUNC(int, setcap, (void *vcpui, int num, int val)) 248 DEFINE_VMMOPS_IFUNC(struct vmspace *, vmspace_alloc, (vm_offset_t min, 249 vm_offset_t max)) 250 DEFINE_VMMOPS_IFUNC(void, vmspace_free, (struct vmspace *vmspace)) 251 DEFINE_VMMOPS_IFUNC(struct vlapic *, vlapic_init, (void *vcpui)) 252 DEFINE_VMMOPS_IFUNC(void, vlapic_cleanup, (struct vlapic *vlapic)) 253 #ifdef BHYVE_SNAPSHOT 254 DEFINE_VMMOPS_IFUNC(int, vcpu_snapshot, (void *vcpui, 255 struct vm_snapshot_meta *meta)) 256 DEFINE_VMMOPS_IFUNC(int, restore_tsc, (void *vcpui, uint64_t now)) 257 #endif 258 259 SDT_PROVIDER_DEFINE(vmm); 260 261 static MALLOC_DEFINE(M_VM, "vm", "vm"); 262 263 /* statistics */ 264 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 265 266 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 267 NULL); 268 269 /* 270 * Halt the guest if all vcpus are executing a HLT instruction with 271 * interrupts disabled. 272 */ 273 static int halt_detection_enabled = 1; 274 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 275 &halt_detection_enabled, 0, 276 "Halt VM if all vcpus execute HLT with interrupts disabled"); 277 278 static int vmm_ipinum; 279 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 280 "IPI vector used for vcpu notifications"); 281 282 static int trace_guest_exceptions; 283 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN, 284 &trace_guest_exceptions, 0, 285 "Trap into hypervisor on all guest exceptions and reflect them back"); 286 287 static int trap_wbinvd; 288 SYSCTL_INT(_hw_vmm, OID_AUTO, trap_wbinvd, CTLFLAG_RDTUN, &trap_wbinvd, 0, 289 "WBINVD triggers a VM-exit"); 290 291 u_int vm_maxcpu; 292 SYSCTL_UINT(_hw_vmm, OID_AUTO, maxcpu, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 293 &vm_maxcpu, 0, "Maximum number of vCPUs"); 294 295 static void vm_free_memmap(struct vm *vm, int ident); 296 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm); 297 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr); 298 299 /* 300 * Upper limit on vm_maxcpu. Limited by use of uint16_t types for CPU 301 * counts as well as range of vpid values for VT-x and by the capacity 302 * of cpuset_t masks. The call to new_unrhdr() in vpid_init() in 303 * vmx.c requires 'vm_maxcpu + 1 <= 0xffff', hence the '- 1' below. 304 */ 305 #define VM_MAXCPU MIN(0xffff - 1, CPU_SETSIZE) 306 307 #ifdef KTR 308 static const char * 309 vcpu_state2str(enum vcpu_state state) 310 { 311 312 switch (state) { 313 case VCPU_IDLE: 314 return ("idle"); 315 case VCPU_FROZEN: 316 return ("frozen"); 317 case VCPU_RUNNING: 318 return ("running"); 319 case VCPU_SLEEPING: 320 return ("sleeping"); 321 default: 322 return ("unknown"); 323 } 324 } 325 #endif 326 327 static void 328 vcpu_cleanup(struct vcpu *vcpu, bool destroy) 329 { 330 vmmops_vlapic_cleanup(vcpu->vlapic); 331 vmmops_vcpu_cleanup(vcpu->cookie); 332 vcpu->cookie = NULL; 333 if (destroy) { 334 vmm_stat_free(vcpu->stats); 335 fpu_save_area_free(vcpu->guestfpu); 336 vcpu_lock_destroy(vcpu); 337 free(vcpu, M_VM); 338 } 339 } 340 341 static struct vcpu * 342 vcpu_alloc(struct vm *vm, int vcpu_id) 343 { 344 struct vcpu *vcpu; 345 346 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus, 347 ("vcpu_init: invalid vcpu %d", vcpu_id)); 348 349 vcpu = malloc(sizeof(*vcpu), M_VM, M_WAITOK | M_ZERO); 350 vcpu_lock_init(vcpu); 351 vcpu->state = VCPU_IDLE; 352 vcpu->hostcpu = NOCPU; 353 vcpu->vcpuid = vcpu_id; 354 vcpu->vm = vm; 355 vcpu->guestfpu = fpu_save_area_alloc(); 356 vcpu->stats = vmm_stat_alloc(); 357 vcpu->tsc_offset = 0; 358 return (vcpu); 359 } 360 361 static void 362 vcpu_init(struct vcpu *vcpu) 363 { 364 vcpu->cookie = vmmops_vcpu_init(vcpu->vm->cookie, vcpu, vcpu->vcpuid); 365 vcpu->vlapic = vmmops_vlapic_init(vcpu->cookie); 366 vm_set_x2apic_state(vcpu, X2APIC_DISABLED); 367 vcpu->reqidle = 0; 368 vcpu->exitintinfo = 0; 369 vcpu->nmi_pending = 0; 370 vcpu->extint_pending = 0; 371 vcpu->exception_pending = 0; 372 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 373 fpu_save_area_reset(vcpu->guestfpu); 374 vmm_stat_init(vcpu->stats); 375 } 376 377 int 378 vcpu_trace_exceptions(struct vcpu *vcpu) 379 { 380 381 return (trace_guest_exceptions); 382 } 383 384 int 385 vcpu_trap_wbinvd(struct vcpu *vcpu) 386 { 387 return (trap_wbinvd); 388 } 389 390 struct vm_exit * 391 vm_exitinfo(struct vcpu *vcpu) 392 { 393 return (&vcpu->exitinfo); 394 } 395 396 cpuset_t * 397 vm_exitinfo_cpuset(struct vcpu *vcpu) 398 { 399 return (&vcpu->exitinfo_cpuset); 400 } 401 402 static int 403 vmm_init(void) 404 { 405 int error; 406 407 if (!vmm_is_hw_supported()) 408 return (ENXIO); 409 410 vm_maxcpu = mp_ncpus; 411 TUNABLE_INT_FETCH("hw.vmm.maxcpu", &vm_maxcpu); 412 413 if (vm_maxcpu > VM_MAXCPU) { 414 printf("vmm: vm_maxcpu clamped to %u\n", VM_MAXCPU); 415 vm_maxcpu = VM_MAXCPU; 416 } 417 if (vm_maxcpu == 0) 418 vm_maxcpu = 1; 419 420 vmm_host_state_init(); 421 422 vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) : 423 &IDTVEC(justreturn)); 424 if (vmm_ipinum < 0) 425 vmm_ipinum = IPI_AST; 426 427 error = vmm_mem_init(); 428 if (error) 429 return (error); 430 431 vmm_resume_p = vmmops_modresume; 432 433 return (vmmops_modinit(vmm_ipinum)); 434 } 435 436 static int 437 vmm_handler(module_t mod, int what, void *arg) 438 { 439 int error; 440 441 switch (what) { 442 case MOD_LOAD: 443 if (vmm_is_hw_supported()) { 444 vmmdev_init(); 445 error = vmm_init(); 446 if (error == 0) 447 vmm_initialized = 1; 448 } else { 449 error = ENXIO; 450 } 451 break; 452 case MOD_UNLOAD: 453 if (vmm_is_hw_supported()) { 454 error = vmmdev_cleanup(); 455 if (error == 0) { 456 vmm_resume_p = NULL; 457 iommu_cleanup(); 458 if (vmm_ipinum != IPI_AST) 459 lapic_ipi_free(vmm_ipinum); 460 error = vmmops_modcleanup(); 461 /* 462 * Something bad happened - prevent new 463 * VMs from being created 464 */ 465 if (error) 466 vmm_initialized = 0; 467 } 468 } else { 469 error = 0; 470 } 471 break; 472 default: 473 error = 0; 474 break; 475 } 476 return (error); 477 } 478 479 static moduledata_t vmm_kmod = { 480 "vmm", 481 vmm_handler, 482 NULL 483 }; 484 485 /* 486 * vmm initialization has the following dependencies: 487 * 488 * - VT-x initialization requires smp_rendezvous() and therefore must happen 489 * after SMP is fully functional (after SI_SUB_SMP). 490 */ 491 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 492 MODULE_VERSION(vmm, 1); 493 494 static void 495 vm_init(struct vm *vm, bool create) 496 { 497 vm->cookie = vmmops_init(vm, vmspace_pmap(vm->vmspace)); 498 vm->iommu = NULL; 499 vm->vioapic = vioapic_init(vm); 500 vm->vhpet = vhpet_init(vm); 501 vm->vatpic = vatpic_init(vm); 502 vm->vatpit = vatpit_init(vm); 503 vm->vpmtmr = vpmtmr_init(vm); 504 if (create) 505 vm->vrtc = vrtc_init(vm); 506 507 CPU_ZERO(&vm->active_cpus); 508 CPU_ZERO(&vm->debug_cpus); 509 CPU_ZERO(&vm->startup_cpus); 510 511 vm->suspend = 0; 512 CPU_ZERO(&vm->suspended_cpus); 513 514 if (!create) { 515 for (int i = 0; i < vm->maxcpus; i++) { 516 if (vm->vcpu[i] != NULL) 517 vcpu_init(vm->vcpu[i]); 518 } 519 } 520 } 521 522 void 523 vm_disable_vcpu_creation(struct vm *vm) 524 { 525 sx_xlock(&vm->vcpus_init_lock); 526 vm->dying = true; 527 sx_xunlock(&vm->vcpus_init_lock); 528 } 529 530 struct vcpu * 531 vm_alloc_vcpu(struct vm *vm, int vcpuid) 532 { 533 struct vcpu *vcpu; 534 535 if (vcpuid < 0 || vcpuid >= vm_get_maxcpus(vm)) 536 return (NULL); 537 538 vcpu = atomic_load_ptr(&vm->vcpu[vcpuid]); 539 if (__predict_true(vcpu != NULL)) 540 return (vcpu); 541 542 sx_xlock(&vm->vcpus_init_lock); 543 vcpu = vm->vcpu[vcpuid]; 544 if (vcpu == NULL && !vm->dying) { 545 vcpu = vcpu_alloc(vm, vcpuid); 546 vcpu_init(vcpu); 547 548 /* 549 * Ensure vCPU is fully created before updating pointer 550 * to permit unlocked reads above. 551 */ 552 atomic_store_rel_ptr((uintptr_t *)&vm->vcpu[vcpuid], 553 (uintptr_t)vcpu); 554 } 555 sx_xunlock(&vm->vcpus_init_lock); 556 return (vcpu); 557 } 558 559 void 560 vm_slock_vcpus(struct vm *vm) 561 { 562 sx_slock(&vm->vcpus_init_lock); 563 } 564 565 void 566 vm_unlock_vcpus(struct vm *vm) 567 { 568 sx_unlock(&vm->vcpus_init_lock); 569 } 570 571 /* 572 * The default CPU topology is a single thread per package. 573 */ 574 u_int cores_per_package = 1; 575 u_int threads_per_core = 1; 576 577 int 578 vm_create(const char *name, struct vm **retvm) 579 { 580 struct vm *vm; 581 struct vmspace *vmspace; 582 583 /* 584 * If vmm.ko could not be successfully initialized then don't attempt 585 * to create the virtual machine. 586 */ 587 if (!vmm_initialized) 588 return (ENXIO); 589 590 if (name == NULL || strnlen(name, VM_MAX_NAMELEN + 1) == 591 VM_MAX_NAMELEN + 1) 592 return (EINVAL); 593 594 vmspace = vmmops_vmspace_alloc(0, VM_MAXUSER_ADDRESS_LA48); 595 if (vmspace == NULL) 596 return (ENOMEM); 597 598 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 599 strcpy(vm->name, name); 600 vm->vmspace = vmspace; 601 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 602 sx_init(&vm->mem_segs_lock, "vm mem_segs"); 603 sx_init(&vm->vcpus_init_lock, "vm vcpus"); 604 vm->vcpu = malloc(sizeof(*vm->vcpu) * vm_maxcpu, M_VM, M_WAITOK | 605 M_ZERO); 606 607 vm->sockets = 1; 608 vm->cores = cores_per_package; /* XXX backwards compatibility */ 609 vm->threads = threads_per_core; /* XXX backwards compatibility */ 610 vm->maxcpus = vm_maxcpu; 611 612 vm_init(vm, true); 613 614 *retvm = vm; 615 return (0); 616 } 617 618 void 619 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, 620 uint16_t *threads, uint16_t *maxcpus) 621 { 622 *sockets = vm->sockets; 623 *cores = vm->cores; 624 *threads = vm->threads; 625 *maxcpus = vm->maxcpus; 626 } 627 628 uint16_t 629 vm_get_maxcpus(struct vm *vm) 630 { 631 return (vm->maxcpus); 632 } 633 634 int 635 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, 636 uint16_t threads, uint16_t maxcpus __unused) 637 { 638 /* Ignore maxcpus. */ 639 if ((sockets * cores * threads) > vm->maxcpus) 640 return (EINVAL); 641 vm->sockets = sockets; 642 vm->cores = cores; 643 vm->threads = threads; 644 return(0); 645 } 646 647 static void 648 vm_cleanup(struct vm *vm, bool destroy) 649 { 650 struct mem_map *mm; 651 int i; 652 653 if (destroy) 654 vm_xlock_memsegs(vm); 655 656 ppt_unassign_all(vm); 657 658 if (vm->iommu != NULL) 659 iommu_destroy_domain(vm->iommu); 660 661 if (destroy) 662 vrtc_cleanup(vm->vrtc); 663 else 664 vrtc_reset(vm->vrtc); 665 vpmtmr_cleanup(vm->vpmtmr); 666 vatpit_cleanup(vm->vatpit); 667 vhpet_cleanup(vm->vhpet); 668 vatpic_cleanup(vm->vatpic); 669 vioapic_cleanup(vm->vioapic); 670 671 for (i = 0; i < vm->maxcpus; i++) { 672 if (vm->vcpu[i] != NULL) 673 vcpu_cleanup(vm->vcpu[i], destroy); 674 } 675 676 vmmops_cleanup(vm->cookie); 677 678 /* 679 * System memory is removed from the guest address space only when 680 * the VM is destroyed. This is because the mapping remains the same 681 * across VM reset. 682 * 683 * Device memory can be relocated by the guest (e.g. using PCI BARs) 684 * so those mappings are removed on a VM reset. 685 */ 686 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 687 mm = &vm->mem_maps[i]; 688 if (destroy || !sysmem_mapping(vm, mm)) 689 vm_free_memmap(vm, i); 690 } 691 692 if (destroy) { 693 for (i = 0; i < VM_MAX_MEMSEGS; i++) 694 vm_free_memseg(vm, i); 695 vm_unlock_memsegs(vm); 696 697 vmmops_vmspace_free(vm->vmspace); 698 vm->vmspace = NULL; 699 700 free(vm->vcpu, M_VM); 701 sx_destroy(&vm->vcpus_init_lock); 702 sx_destroy(&vm->mem_segs_lock); 703 mtx_destroy(&vm->rendezvous_mtx); 704 } 705 } 706 707 void 708 vm_destroy(struct vm *vm) 709 { 710 vm_cleanup(vm, true); 711 free(vm, M_VM); 712 } 713 714 int 715 vm_reinit(struct vm *vm) 716 { 717 int error; 718 719 /* 720 * A virtual machine can be reset only if all vcpus are suspended. 721 */ 722 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 723 vm_cleanup(vm, false); 724 vm_init(vm, false); 725 error = 0; 726 } else { 727 error = EBUSY; 728 } 729 730 return (error); 731 } 732 733 const char * 734 vm_name(struct vm *vm) 735 { 736 return (vm->name); 737 } 738 739 void 740 vm_slock_memsegs(struct vm *vm) 741 { 742 sx_slock(&vm->mem_segs_lock); 743 } 744 745 void 746 vm_xlock_memsegs(struct vm *vm) 747 { 748 sx_xlock(&vm->mem_segs_lock); 749 } 750 751 void 752 vm_unlock_memsegs(struct vm *vm) 753 { 754 sx_unlock(&vm->mem_segs_lock); 755 } 756 757 int 758 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 759 { 760 vm_object_t obj; 761 762 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 763 return (ENOMEM); 764 else 765 return (0); 766 } 767 768 int 769 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 770 { 771 772 vmm_mmio_free(vm->vmspace, gpa, len); 773 return (0); 774 } 775 776 /* 777 * Return 'true' if 'gpa' is allocated in the guest address space. 778 * 779 * This function is called in the context of a running vcpu which acts as 780 * an implicit lock on 'vm->mem_maps[]'. 781 */ 782 bool 783 vm_mem_allocated(struct vcpu *vcpu, vm_paddr_t gpa) 784 { 785 struct vm *vm = vcpu->vm; 786 struct mem_map *mm; 787 int i; 788 789 #ifdef INVARIANTS 790 int hostcpu, state; 791 state = vcpu_get_state(vcpu, &hostcpu); 792 KASSERT(state == VCPU_RUNNING && hostcpu == curcpu, 793 ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu)); 794 #endif 795 796 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 797 mm = &vm->mem_maps[i]; 798 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len) 799 return (true); /* 'gpa' is sysmem or devmem */ 800 } 801 802 if (ppt_is_mmio(vm, gpa)) 803 return (true); /* 'gpa' is pci passthru mmio */ 804 805 return (false); 806 } 807 808 int 809 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem) 810 { 811 struct mem_seg *seg; 812 vm_object_t obj; 813 814 sx_assert(&vm->mem_segs_lock, SX_XLOCKED); 815 816 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 817 return (EINVAL); 818 819 if (len == 0 || (len & PAGE_MASK)) 820 return (EINVAL); 821 822 seg = &vm->mem_segs[ident]; 823 if (seg->object != NULL) { 824 if (seg->len == len && seg->sysmem == sysmem) 825 return (EEXIST); 826 else 827 return (EINVAL); 828 } 829 830 obj = vm_object_allocate(OBJT_SWAP, len >> PAGE_SHIFT); 831 if (obj == NULL) 832 return (ENOMEM); 833 834 seg->len = len; 835 seg->object = obj; 836 seg->sysmem = sysmem; 837 return (0); 838 } 839 840 int 841 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, 842 vm_object_t *objptr) 843 { 844 struct mem_seg *seg; 845 846 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 847 848 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 849 return (EINVAL); 850 851 seg = &vm->mem_segs[ident]; 852 if (len) 853 *len = seg->len; 854 if (sysmem) 855 *sysmem = seg->sysmem; 856 if (objptr) 857 *objptr = seg->object; 858 return (0); 859 } 860 861 void 862 vm_free_memseg(struct vm *vm, int ident) 863 { 864 struct mem_seg *seg; 865 866 KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS, 867 ("%s: invalid memseg ident %d", __func__, ident)); 868 869 seg = &vm->mem_segs[ident]; 870 if (seg->object != NULL) { 871 vm_object_deallocate(seg->object); 872 bzero(seg, sizeof(struct mem_seg)); 873 } 874 } 875 876 int 877 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first, 878 size_t len, int prot, int flags) 879 { 880 struct mem_seg *seg; 881 struct mem_map *m, *map; 882 vm_ooffset_t last; 883 int i, error; 884 885 if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0) 886 return (EINVAL); 887 888 if (flags & ~VM_MEMMAP_F_WIRED) 889 return (EINVAL); 890 891 if (segid < 0 || segid >= VM_MAX_MEMSEGS) 892 return (EINVAL); 893 894 seg = &vm->mem_segs[segid]; 895 if (seg->object == NULL) 896 return (EINVAL); 897 898 last = first + len; 899 if (first < 0 || first >= last || last > seg->len) 900 return (EINVAL); 901 902 if ((gpa | first | last) & PAGE_MASK) 903 return (EINVAL); 904 905 map = NULL; 906 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 907 m = &vm->mem_maps[i]; 908 if (m->len == 0) { 909 map = m; 910 break; 911 } 912 } 913 914 if (map == NULL) 915 return (ENOSPC); 916 917 error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa, 918 len, 0, VMFS_NO_SPACE, prot, prot, 0); 919 if (error != KERN_SUCCESS) 920 return (EFAULT); 921 922 vm_object_reference(seg->object); 923 924 if (flags & VM_MEMMAP_F_WIRED) { 925 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len, 926 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 927 if (error != KERN_SUCCESS) { 928 vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len); 929 return (error == KERN_RESOURCE_SHORTAGE ? ENOMEM : 930 EFAULT); 931 } 932 } 933 934 map->gpa = gpa; 935 map->len = len; 936 map->segoff = first; 937 map->segid = segid; 938 map->prot = prot; 939 map->flags = flags; 940 return (0); 941 } 942 943 int 944 vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len) 945 { 946 struct mem_map *m; 947 int i; 948 949 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 950 m = &vm->mem_maps[i]; 951 if (m->gpa == gpa && m->len == len && 952 (m->flags & VM_MEMMAP_F_IOMMU) == 0) { 953 vm_free_memmap(vm, i); 954 return (0); 955 } 956 } 957 958 return (EINVAL); 959 } 960 961 int 962 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, 963 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 964 { 965 struct mem_map *mm, *mmnext; 966 int i; 967 968 mmnext = NULL; 969 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 970 mm = &vm->mem_maps[i]; 971 if (mm->len == 0 || mm->gpa < *gpa) 972 continue; 973 if (mmnext == NULL || mm->gpa < mmnext->gpa) 974 mmnext = mm; 975 } 976 977 if (mmnext != NULL) { 978 *gpa = mmnext->gpa; 979 if (segid) 980 *segid = mmnext->segid; 981 if (segoff) 982 *segoff = mmnext->segoff; 983 if (len) 984 *len = mmnext->len; 985 if (prot) 986 *prot = mmnext->prot; 987 if (flags) 988 *flags = mmnext->flags; 989 return (0); 990 } else { 991 return (ENOENT); 992 } 993 } 994 995 static void 996 vm_free_memmap(struct vm *vm, int ident) 997 { 998 struct mem_map *mm; 999 int error __diagused; 1000 1001 mm = &vm->mem_maps[ident]; 1002 if (mm->len) { 1003 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa, 1004 mm->gpa + mm->len); 1005 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d", 1006 __func__, error)); 1007 bzero(mm, sizeof(struct mem_map)); 1008 } 1009 } 1010 1011 static __inline bool 1012 sysmem_mapping(struct vm *vm, struct mem_map *mm) 1013 { 1014 1015 if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem) 1016 return (true); 1017 else 1018 return (false); 1019 } 1020 1021 vm_paddr_t 1022 vmm_sysmem_maxaddr(struct vm *vm) 1023 { 1024 struct mem_map *mm; 1025 vm_paddr_t maxaddr; 1026 int i; 1027 1028 maxaddr = 0; 1029 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1030 mm = &vm->mem_maps[i]; 1031 if (sysmem_mapping(vm, mm)) { 1032 if (maxaddr < mm->gpa + mm->len) 1033 maxaddr = mm->gpa + mm->len; 1034 } 1035 } 1036 return (maxaddr); 1037 } 1038 1039 static void 1040 vm_iommu_map(struct vm *vm) 1041 { 1042 vm_paddr_t gpa, hpa; 1043 struct mem_map *mm; 1044 void *vp, *cookie; 1045 int i; 1046 1047 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1048 mm = &vm->mem_maps[i]; 1049 if (!sysmem_mapping(vm, mm)) 1050 continue; 1051 1052 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0, 1053 ("iommu map found invalid memmap %#lx/%#lx/%#x", 1054 mm->gpa, mm->len, mm->flags)); 1055 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0) 1056 continue; 1057 mm->flags |= VM_MEMMAP_F_IOMMU; 1058 1059 for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) { 1060 vp = vm_gpa_hold_global(vm, gpa, PAGE_SIZE, 1061 VM_PROT_WRITE, &cookie); 1062 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", 1063 vm_name(vm), gpa)); 1064 vm_gpa_release(cookie); 1065 1066 hpa = DMAP_TO_PHYS((uintptr_t)vp); 1067 iommu_create_mapping(vm->iommu, gpa, hpa, PAGE_SIZE); 1068 } 1069 } 1070 1071 iommu_invalidate_tlb(iommu_host_domain()); 1072 } 1073 1074 static void 1075 vm_iommu_unmap(struct vm *vm) 1076 { 1077 vm_paddr_t gpa; 1078 struct mem_map *mm; 1079 void *vp, *cookie; 1080 int i; 1081 1082 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1083 mm = &vm->mem_maps[i]; 1084 if (!sysmem_mapping(vm, mm)) 1085 continue; 1086 1087 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0) 1088 continue; 1089 mm->flags &= ~VM_MEMMAP_F_IOMMU; 1090 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0, 1091 ("iommu unmap found invalid memmap %#lx/%#lx/%#x", 1092 mm->gpa, mm->len, mm->flags)); 1093 1094 for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) { 1095 vp = vm_gpa_hold_global(vm, gpa, PAGE_SIZE, 1096 VM_PROT_WRITE, &cookie); 1097 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", 1098 vm_name(vm), gpa)); 1099 vm_gpa_release(cookie); 1100 1101 iommu_remove_mapping(vm->iommu, gpa, PAGE_SIZE); 1102 } 1103 } 1104 1105 /* 1106 * Invalidate the cached translations associated with the domain 1107 * from which pages were removed. 1108 */ 1109 iommu_invalidate_tlb(vm->iommu); 1110 } 1111 1112 int 1113 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 1114 { 1115 int error; 1116 1117 error = ppt_unassign_device(vm, bus, slot, func); 1118 if (error) 1119 return (error); 1120 1121 if (ppt_assigned_devices(vm) == 0) 1122 vm_iommu_unmap(vm); 1123 1124 return (0); 1125 } 1126 1127 int 1128 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 1129 { 1130 int error; 1131 vm_paddr_t maxaddr; 1132 1133 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */ 1134 if (ppt_assigned_devices(vm) == 0) { 1135 KASSERT(vm->iommu == NULL, 1136 ("vm_assign_pptdev: iommu must be NULL")); 1137 maxaddr = vmm_sysmem_maxaddr(vm); 1138 vm->iommu = iommu_create_domain(maxaddr); 1139 if (vm->iommu == NULL) 1140 return (ENXIO); 1141 vm_iommu_map(vm); 1142 } 1143 1144 error = ppt_assign_device(vm, bus, slot, func); 1145 return (error); 1146 } 1147 1148 static void * 1149 _vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 1150 void **cookie) 1151 { 1152 int i, count, pageoff; 1153 struct mem_map *mm; 1154 vm_page_t m; 1155 1156 pageoff = gpa & PAGE_MASK; 1157 if (len > PAGE_SIZE - pageoff) 1158 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 1159 1160 count = 0; 1161 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1162 mm = &vm->mem_maps[i]; 1163 if (gpa >= mm->gpa && gpa < mm->gpa + mm->len) { 1164 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 1165 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 1166 break; 1167 } 1168 } 1169 1170 if (count == 1) { 1171 *cookie = m; 1172 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 1173 } else { 1174 *cookie = NULL; 1175 return (NULL); 1176 } 1177 } 1178 1179 void * 1180 vm_gpa_hold(struct vcpu *vcpu, vm_paddr_t gpa, size_t len, int reqprot, 1181 void **cookie) 1182 { 1183 #ifdef INVARIANTS 1184 /* 1185 * The current vcpu should be frozen to ensure 'vm_memmap[]' 1186 * stability. 1187 */ 1188 int state = vcpu_get_state(vcpu, NULL); 1189 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d", 1190 __func__, state)); 1191 #endif 1192 return (_vm_gpa_hold(vcpu->vm, gpa, len, reqprot, cookie)); 1193 } 1194 1195 void * 1196 vm_gpa_hold_global(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 1197 void **cookie) 1198 { 1199 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 1200 return (_vm_gpa_hold(vm, gpa, len, reqprot, cookie)); 1201 } 1202 1203 void 1204 vm_gpa_release(void *cookie) 1205 { 1206 vm_page_t m = cookie; 1207 1208 vm_page_unwire(m, PQ_ACTIVE); 1209 } 1210 1211 int 1212 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval) 1213 { 1214 1215 if (reg >= VM_REG_LAST) 1216 return (EINVAL); 1217 1218 return (vmmops_getreg(vcpu->cookie, reg, retval)); 1219 } 1220 1221 int 1222 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val) 1223 { 1224 int error; 1225 1226 if (reg >= VM_REG_LAST) 1227 return (EINVAL); 1228 1229 error = vmmops_setreg(vcpu->cookie, reg, val); 1230 if (error || reg != VM_REG_GUEST_RIP) 1231 return (error); 1232 1233 /* Set 'nextrip' to match the value of %rip */ 1234 VMM_CTR1(vcpu, "Setting nextrip to %#lx", val); 1235 vcpu->nextrip = val; 1236 return (0); 1237 } 1238 1239 static bool 1240 is_descriptor_table(int reg) 1241 { 1242 1243 switch (reg) { 1244 case VM_REG_GUEST_IDTR: 1245 case VM_REG_GUEST_GDTR: 1246 return (true); 1247 default: 1248 return (false); 1249 } 1250 } 1251 1252 static bool 1253 is_segment_register(int reg) 1254 { 1255 1256 switch (reg) { 1257 case VM_REG_GUEST_ES: 1258 case VM_REG_GUEST_CS: 1259 case VM_REG_GUEST_SS: 1260 case VM_REG_GUEST_DS: 1261 case VM_REG_GUEST_FS: 1262 case VM_REG_GUEST_GS: 1263 case VM_REG_GUEST_TR: 1264 case VM_REG_GUEST_LDTR: 1265 return (true); 1266 default: 1267 return (false); 1268 } 1269 } 1270 1271 int 1272 vm_get_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc) 1273 { 1274 1275 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1276 return (EINVAL); 1277 1278 return (vmmops_getdesc(vcpu->cookie, reg, desc)); 1279 } 1280 1281 int 1282 vm_set_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc) 1283 { 1284 1285 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1286 return (EINVAL); 1287 1288 return (vmmops_setdesc(vcpu->cookie, reg, desc)); 1289 } 1290 1291 static void 1292 restore_guest_fpustate(struct vcpu *vcpu) 1293 { 1294 1295 /* flush host state to the pcb */ 1296 fpuexit(curthread); 1297 1298 /* restore guest FPU state */ 1299 fpu_enable(); 1300 fpurestore(vcpu->guestfpu); 1301 1302 /* restore guest XCR0 if XSAVE is enabled in the host */ 1303 if (rcr4() & CR4_XSAVE) 1304 load_xcr(0, vcpu->guest_xcr0); 1305 1306 /* 1307 * The FPU is now "dirty" with the guest's state so disable 1308 * the FPU to trap any access by the host. 1309 */ 1310 fpu_disable(); 1311 } 1312 1313 static void 1314 save_guest_fpustate(struct vcpu *vcpu) 1315 { 1316 1317 if ((rcr0() & CR0_TS) == 0) 1318 panic("fpu emulation not enabled in host!"); 1319 1320 /* save guest XCR0 and restore host XCR0 */ 1321 if (rcr4() & CR4_XSAVE) { 1322 vcpu->guest_xcr0 = rxcr(0); 1323 load_xcr(0, vmm_get_host_xcr0()); 1324 } 1325 1326 /* save guest FPU state */ 1327 fpu_enable(); 1328 fpusave(vcpu->guestfpu); 1329 fpu_disable(); 1330 } 1331 1332 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 1333 1334 static int 1335 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate, 1336 bool from_idle) 1337 { 1338 int error; 1339 1340 vcpu_assert_locked(vcpu); 1341 1342 /* 1343 * State transitions from the vmmdev_ioctl() must always begin from 1344 * the VCPU_IDLE state. This guarantees that there is only a single 1345 * ioctl() operating on a vcpu at any point. 1346 */ 1347 if (from_idle) { 1348 while (vcpu->state != VCPU_IDLE) { 1349 vcpu->reqidle = 1; 1350 vcpu_notify_event_locked(vcpu, false); 1351 VMM_CTR1(vcpu, "vcpu state change from %s to " 1352 "idle requested", vcpu_state2str(vcpu->state)); 1353 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 1354 } 1355 } else { 1356 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 1357 "vcpu idle state")); 1358 } 1359 1360 if (vcpu->state == VCPU_RUNNING) { 1361 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 1362 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 1363 } else { 1364 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 1365 "vcpu that is not running", vcpu->hostcpu)); 1366 } 1367 1368 /* 1369 * The following state transitions are allowed: 1370 * IDLE -> FROZEN -> IDLE 1371 * FROZEN -> RUNNING -> FROZEN 1372 * FROZEN -> SLEEPING -> FROZEN 1373 */ 1374 switch (vcpu->state) { 1375 case VCPU_IDLE: 1376 case VCPU_RUNNING: 1377 case VCPU_SLEEPING: 1378 error = (newstate != VCPU_FROZEN); 1379 break; 1380 case VCPU_FROZEN: 1381 error = (newstate == VCPU_FROZEN); 1382 break; 1383 default: 1384 error = 1; 1385 break; 1386 } 1387 1388 if (error) 1389 return (EBUSY); 1390 1391 VMM_CTR2(vcpu, "vcpu state changed from %s to %s", 1392 vcpu_state2str(vcpu->state), vcpu_state2str(newstate)); 1393 1394 vcpu->state = newstate; 1395 if (newstate == VCPU_RUNNING) 1396 vcpu->hostcpu = curcpu; 1397 else 1398 vcpu->hostcpu = NOCPU; 1399 1400 if (newstate == VCPU_IDLE) 1401 wakeup(&vcpu->state); 1402 1403 return (0); 1404 } 1405 1406 static void 1407 vcpu_require_state(struct vcpu *vcpu, enum vcpu_state newstate) 1408 { 1409 int error; 1410 1411 if ((error = vcpu_set_state(vcpu, newstate, false)) != 0) 1412 panic("Error %d setting state to %d\n", error, newstate); 1413 } 1414 1415 static void 1416 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate) 1417 { 1418 int error; 1419 1420 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0) 1421 panic("Error %d setting state to %d", error, newstate); 1422 } 1423 1424 static int 1425 vm_handle_rendezvous(struct vcpu *vcpu) 1426 { 1427 struct vm *vm = vcpu->vm; 1428 struct thread *td; 1429 int error, vcpuid; 1430 1431 error = 0; 1432 vcpuid = vcpu->vcpuid; 1433 td = curthread; 1434 mtx_lock(&vm->rendezvous_mtx); 1435 while (vm->rendezvous_func != NULL) { 1436 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1437 CPU_AND(&vm->rendezvous_req_cpus, &vm->rendezvous_req_cpus, &vm->active_cpus); 1438 1439 if (CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1440 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1441 VMM_CTR0(vcpu, "Calling rendezvous func"); 1442 (*vm->rendezvous_func)(vcpu, vm->rendezvous_arg); 1443 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1444 } 1445 if (CPU_CMP(&vm->rendezvous_req_cpus, 1446 &vm->rendezvous_done_cpus) == 0) { 1447 VMM_CTR0(vcpu, "Rendezvous completed"); 1448 CPU_ZERO(&vm->rendezvous_req_cpus); 1449 vm->rendezvous_func = NULL; 1450 wakeup(&vm->rendezvous_func); 1451 break; 1452 } 1453 VMM_CTR0(vcpu, "Wait for rendezvous completion"); 1454 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1455 "vmrndv", hz); 1456 if (td_ast_pending(td, TDA_SUSPEND)) { 1457 mtx_unlock(&vm->rendezvous_mtx); 1458 error = thread_check_susp(td, true); 1459 if (error != 0) 1460 return (error); 1461 mtx_lock(&vm->rendezvous_mtx); 1462 } 1463 } 1464 mtx_unlock(&vm->rendezvous_mtx); 1465 return (0); 1466 } 1467 1468 /* 1469 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1470 */ 1471 static int 1472 vm_handle_hlt(struct vcpu *vcpu, bool intr_disabled, bool *retu) 1473 { 1474 struct vm *vm = vcpu->vm; 1475 const char *wmesg; 1476 struct thread *td; 1477 int error, t, vcpuid, vcpu_halted, vm_halted; 1478 1479 vcpuid = vcpu->vcpuid; 1480 vcpu_halted = 0; 1481 vm_halted = 0; 1482 error = 0; 1483 td = curthread; 1484 1485 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1486 1487 vcpu_lock(vcpu); 1488 while (1) { 1489 /* 1490 * Do a final check for pending NMI or interrupts before 1491 * really putting this thread to sleep. Also check for 1492 * software events that would cause this vcpu to wakeup. 1493 * 1494 * These interrupts/events could have happened after the 1495 * vcpu returned from vmmops_run() and before it acquired the 1496 * vcpu lock above. 1497 */ 1498 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle) 1499 break; 1500 if (vm_nmi_pending(vcpu)) 1501 break; 1502 if (!intr_disabled) { 1503 if (vm_extint_pending(vcpu) || 1504 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1505 break; 1506 } 1507 } 1508 1509 /* Don't go to sleep if the vcpu thread needs to yield */ 1510 if (vcpu_should_yield(vcpu)) 1511 break; 1512 1513 if (vcpu_debugged(vcpu)) 1514 break; 1515 1516 /* 1517 * Some Linux guests implement "halt" by having all vcpus 1518 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1519 * track of the vcpus that have entered this state. When all 1520 * vcpus enter the halted state the virtual machine is halted. 1521 */ 1522 if (intr_disabled) { 1523 wmesg = "vmhalt"; 1524 VMM_CTR0(vcpu, "Halted"); 1525 if (!vcpu_halted && halt_detection_enabled) { 1526 vcpu_halted = 1; 1527 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1528 } 1529 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1530 vm_halted = 1; 1531 break; 1532 } 1533 } else { 1534 wmesg = "vmidle"; 1535 } 1536 1537 t = ticks; 1538 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1539 /* 1540 * XXX msleep_spin() cannot be interrupted by signals so 1541 * wake up periodically to check pending signals. 1542 */ 1543 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1544 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1545 vmm_stat_incr(vcpu, VCPU_IDLE_TICKS, ticks - t); 1546 if (td_ast_pending(td, TDA_SUSPEND)) { 1547 vcpu_unlock(vcpu); 1548 error = thread_check_susp(td, false); 1549 if (error != 0) { 1550 if (vcpu_halted) { 1551 CPU_CLR_ATOMIC(vcpuid, 1552 &vm->halted_cpus); 1553 } 1554 return (error); 1555 } 1556 vcpu_lock(vcpu); 1557 } 1558 } 1559 1560 if (vcpu_halted) 1561 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1562 1563 vcpu_unlock(vcpu); 1564 1565 if (vm_halted) 1566 vm_suspend(vm, VM_SUSPEND_HALT); 1567 1568 return (0); 1569 } 1570 1571 static int 1572 vm_handle_paging(struct vcpu *vcpu, bool *retu) 1573 { 1574 struct vm *vm = vcpu->vm; 1575 int rv, ftype; 1576 struct vm_map *map; 1577 struct vm_exit *vme; 1578 1579 vme = &vcpu->exitinfo; 1580 1581 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1582 __func__, vme->inst_length)); 1583 1584 ftype = vme->u.paging.fault_type; 1585 KASSERT(ftype == VM_PROT_READ || 1586 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1587 ("vm_handle_paging: invalid fault_type %d", ftype)); 1588 1589 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1590 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1591 vme->u.paging.gpa, ftype); 1592 if (rv == 0) { 1593 VMM_CTR2(vcpu, "%s bit emulation for gpa %#lx", 1594 ftype == VM_PROT_READ ? "accessed" : "dirty", 1595 vme->u.paging.gpa); 1596 goto done; 1597 } 1598 } 1599 1600 map = &vm->vmspace->vm_map; 1601 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL); 1602 1603 VMM_CTR3(vcpu, "vm_handle_paging rv = %d, gpa = %#lx, " 1604 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1605 1606 if (rv != KERN_SUCCESS) 1607 return (EFAULT); 1608 done: 1609 return (0); 1610 } 1611 1612 static int 1613 vm_handle_inst_emul(struct vcpu *vcpu, bool *retu) 1614 { 1615 struct vie *vie; 1616 struct vm_exit *vme; 1617 uint64_t gla, gpa, cs_base; 1618 struct vm_guest_paging *paging; 1619 mem_region_read_t mread; 1620 mem_region_write_t mwrite; 1621 enum vm_cpu_mode cpu_mode; 1622 int cs_d, error, fault; 1623 1624 vme = &vcpu->exitinfo; 1625 1626 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1627 __func__, vme->inst_length)); 1628 1629 gla = vme->u.inst_emul.gla; 1630 gpa = vme->u.inst_emul.gpa; 1631 cs_base = vme->u.inst_emul.cs_base; 1632 cs_d = vme->u.inst_emul.cs_d; 1633 vie = &vme->u.inst_emul.vie; 1634 paging = &vme->u.inst_emul.paging; 1635 cpu_mode = paging->cpu_mode; 1636 1637 VMM_CTR1(vcpu, "inst_emul fault accessing gpa %#lx", gpa); 1638 1639 /* Fetch, decode and emulate the faulting instruction */ 1640 if (vie->num_valid == 0) { 1641 error = vmm_fetch_instruction(vcpu, paging, vme->rip + cs_base, 1642 VIE_INST_SIZE, vie, &fault); 1643 } else { 1644 /* 1645 * The instruction bytes have already been copied into 'vie' 1646 */ 1647 error = fault = 0; 1648 } 1649 if (error || fault) 1650 return (error); 1651 1652 if (vmm_decode_instruction(vcpu, gla, cpu_mode, cs_d, vie) != 0) { 1653 VMM_CTR1(vcpu, "Error decoding instruction at %#lx", 1654 vme->rip + cs_base); 1655 *retu = true; /* dump instruction bytes in userspace */ 1656 return (0); 1657 } 1658 1659 /* 1660 * Update 'nextrip' based on the length of the emulated instruction. 1661 */ 1662 vme->inst_length = vie->num_processed; 1663 vcpu->nextrip += vie->num_processed; 1664 VMM_CTR1(vcpu, "nextrip updated to %#lx after instruction decoding", 1665 vcpu->nextrip); 1666 1667 /* return to userland unless this is an in-kernel emulated device */ 1668 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1669 mread = lapic_mmio_read; 1670 mwrite = lapic_mmio_write; 1671 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1672 mread = vioapic_mmio_read; 1673 mwrite = vioapic_mmio_write; 1674 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1675 mread = vhpet_mmio_read; 1676 mwrite = vhpet_mmio_write; 1677 } else { 1678 *retu = true; 1679 return (0); 1680 } 1681 1682 error = vmm_emulate_instruction(vcpu, gpa, vie, paging, mread, mwrite, 1683 retu); 1684 1685 return (error); 1686 } 1687 1688 static int 1689 vm_handle_suspend(struct vcpu *vcpu, bool *retu) 1690 { 1691 struct vm *vm = vcpu->vm; 1692 int error, i; 1693 struct thread *td; 1694 1695 error = 0; 1696 td = curthread; 1697 1698 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->suspended_cpus); 1699 1700 /* 1701 * Wait until all 'active_cpus' have suspended themselves. 1702 * 1703 * Since a VM may be suspended at any time including when one or 1704 * more vcpus are doing a rendezvous we need to call the rendezvous 1705 * handler while we are waiting to prevent a deadlock. 1706 */ 1707 vcpu_lock(vcpu); 1708 while (error == 0) { 1709 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1710 VMM_CTR0(vcpu, "All vcpus suspended"); 1711 break; 1712 } 1713 1714 if (vm->rendezvous_func == NULL) { 1715 VMM_CTR0(vcpu, "Sleeping during suspend"); 1716 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1717 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1718 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1719 if (td_ast_pending(td, TDA_SUSPEND)) { 1720 vcpu_unlock(vcpu); 1721 error = thread_check_susp(td, false); 1722 vcpu_lock(vcpu); 1723 } 1724 } else { 1725 VMM_CTR0(vcpu, "Rendezvous during suspend"); 1726 vcpu_unlock(vcpu); 1727 error = vm_handle_rendezvous(vcpu); 1728 vcpu_lock(vcpu); 1729 } 1730 } 1731 vcpu_unlock(vcpu); 1732 1733 /* 1734 * Wakeup the other sleeping vcpus and return to userspace. 1735 */ 1736 for (i = 0; i < vm->maxcpus; i++) { 1737 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1738 vcpu_notify_event(vm_vcpu(vm, i), false); 1739 } 1740 } 1741 1742 *retu = true; 1743 return (error); 1744 } 1745 1746 static int 1747 vm_handle_reqidle(struct vcpu *vcpu, bool *retu) 1748 { 1749 vcpu_lock(vcpu); 1750 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle)); 1751 vcpu->reqidle = 0; 1752 vcpu_unlock(vcpu); 1753 *retu = true; 1754 return (0); 1755 } 1756 1757 static int 1758 vm_handle_db(struct vcpu *vcpu, struct vm_exit *vme, bool *retu) 1759 { 1760 int error, fault; 1761 uint64_t rsp; 1762 uint64_t rflags; 1763 struct vm_copyinfo copyinfo; 1764 1765 *retu = true; 1766 if (!vme->u.dbg.pushf_intercept || vme->u.dbg.tf_shadow_val != 0) { 1767 return (0); 1768 } 1769 1770 vm_get_register(vcpu, VM_REG_GUEST_RSP, &rsp); 1771 error = vm_copy_setup(vcpu, &vme->u.dbg.paging, rsp, sizeof(uint64_t), 1772 VM_PROT_RW, ©info, 1, &fault); 1773 if (error != 0 || fault != 0) { 1774 *retu = false; 1775 return (EINVAL); 1776 } 1777 1778 /* Read pushed rflags value from top of stack. */ 1779 vm_copyin(©info, &rflags, sizeof(uint64_t)); 1780 1781 /* Clear TF bit. */ 1782 rflags &= ~(PSL_T); 1783 1784 /* Write updated value back to memory. */ 1785 vm_copyout(&rflags, ©info, sizeof(uint64_t)); 1786 vm_copy_teardown(©info, 1); 1787 1788 return (0); 1789 } 1790 1791 int 1792 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1793 { 1794 int i; 1795 1796 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1797 return (EINVAL); 1798 1799 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1800 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1801 vm->suspend, how); 1802 return (EALREADY); 1803 } 1804 1805 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1806 1807 /* 1808 * Notify all active vcpus that they are now suspended. 1809 */ 1810 for (i = 0; i < vm->maxcpus; i++) { 1811 if (CPU_ISSET(i, &vm->active_cpus)) 1812 vcpu_notify_event(vm_vcpu(vm, i), false); 1813 } 1814 1815 return (0); 1816 } 1817 1818 void 1819 vm_exit_suspended(struct vcpu *vcpu, uint64_t rip) 1820 { 1821 struct vm *vm = vcpu->vm; 1822 struct vm_exit *vmexit; 1823 1824 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1825 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1826 1827 vmexit = vm_exitinfo(vcpu); 1828 vmexit->rip = rip; 1829 vmexit->inst_length = 0; 1830 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1831 vmexit->u.suspended.how = vm->suspend; 1832 } 1833 1834 void 1835 vm_exit_debug(struct vcpu *vcpu, uint64_t rip) 1836 { 1837 struct vm_exit *vmexit; 1838 1839 vmexit = vm_exitinfo(vcpu); 1840 vmexit->rip = rip; 1841 vmexit->inst_length = 0; 1842 vmexit->exitcode = VM_EXITCODE_DEBUG; 1843 } 1844 1845 void 1846 vm_exit_rendezvous(struct vcpu *vcpu, uint64_t rip) 1847 { 1848 struct vm_exit *vmexit; 1849 1850 vmexit = vm_exitinfo(vcpu); 1851 vmexit->rip = rip; 1852 vmexit->inst_length = 0; 1853 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1854 vmm_stat_incr(vcpu, VMEXIT_RENDEZVOUS, 1); 1855 } 1856 1857 void 1858 vm_exit_reqidle(struct vcpu *vcpu, uint64_t rip) 1859 { 1860 struct vm_exit *vmexit; 1861 1862 vmexit = vm_exitinfo(vcpu); 1863 vmexit->rip = rip; 1864 vmexit->inst_length = 0; 1865 vmexit->exitcode = VM_EXITCODE_REQIDLE; 1866 vmm_stat_incr(vcpu, VMEXIT_REQIDLE, 1); 1867 } 1868 1869 void 1870 vm_exit_astpending(struct vcpu *vcpu, uint64_t rip) 1871 { 1872 struct vm_exit *vmexit; 1873 1874 vmexit = vm_exitinfo(vcpu); 1875 vmexit->rip = rip; 1876 vmexit->inst_length = 0; 1877 vmexit->exitcode = VM_EXITCODE_BOGUS; 1878 vmm_stat_incr(vcpu, VMEXIT_ASTPENDING, 1); 1879 } 1880 1881 int 1882 vm_run(struct vcpu *vcpu) 1883 { 1884 struct vm *vm = vcpu->vm; 1885 struct vm_eventinfo evinfo; 1886 int error, vcpuid; 1887 struct pcb *pcb; 1888 uint64_t tscval; 1889 struct vm_exit *vme; 1890 bool retu, intr_disabled; 1891 pmap_t pmap; 1892 1893 vcpuid = vcpu->vcpuid; 1894 1895 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1896 return (EINVAL); 1897 1898 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1899 return (EINVAL); 1900 1901 pmap = vmspace_pmap(vm->vmspace); 1902 vme = &vcpu->exitinfo; 1903 evinfo.rptr = &vm->rendezvous_req_cpus; 1904 evinfo.sptr = &vm->suspend; 1905 evinfo.iptr = &vcpu->reqidle; 1906 restart: 1907 critical_enter(); 1908 1909 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1910 ("vm_run: absurd pm_active")); 1911 1912 tscval = rdtsc(); 1913 1914 pcb = PCPU_GET(curpcb); 1915 set_pcb_flags(pcb, PCB_FULL_IRET); 1916 1917 restore_guest_fpustate(vcpu); 1918 1919 vcpu_require_state(vcpu, VCPU_RUNNING); 1920 error = vmmops_run(vcpu->cookie, vcpu->nextrip, pmap, &evinfo); 1921 vcpu_require_state(vcpu, VCPU_FROZEN); 1922 1923 save_guest_fpustate(vcpu); 1924 1925 vmm_stat_incr(vcpu, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1926 1927 critical_exit(); 1928 1929 if (error == 0) { 1930 retu = false; 1931 vcpu->nextrip = vme->rip + vme->inst_length; 1932 switch (vme->exitcode) { 1933 case VM_EXITCODE_REQIDLE: 1934 error = vm_handle_reqidle(vcpu, &retu); 1935 break; 1936 case VM_EXITCODE_SUSPENDED: 1937 error = vm_handle_suspend(vcpu, &retu); 1938 break; 1939 case VM_EXITCODE_IOAPIC_EOI: 1940 vioapic_process_eoi(vm, vme->u.ioapic_eoi.vector); 1941 break; 1942 case VM_EXITCODE_RENDEZVOUS: 1943 error = vm_handle_rendezvous(vcpu); 1944 break; 1945 case VM_EXITCODE_HLT: 1946 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1947 error = vm_handle_hlt(vcpu, intr_disabled, &retu); 1948 break; 1949 case VM_EXITCODE_PAGING: 1950 error = vm_handle_paging(vcpu, &retu); 1951 break; 1952 case VM_EXITCODE_INST_EMUL: 1953 error = vm_handle_inst_emul(vcpu, &retu); 1954 break; 1955 case VM_EXITCODE_INOUT: 1956 case VM_EXITCODE_INOUT_STR: 1957 error = vm_handle_inout(vcpu, vme, &retu); 1958 break; 1959 case VM_EXITCODE_DB: 1960 error = vm_handle_db(vcpu, vme, &retu); 1961 break; 1962 case VM_EXITCODE_MONITOR: 1963 case VM_EXITCODE_MWAIT: 1964 case VM_EXITCODE_VMINSN: 1965 vm_inject_ud(vcpu); 1966 break; 1967 default: 1968 retu = true; /* handled in userland */ 1969 break; 1970 } 1971 } 1972 1973 /* 1974 * VM_EXITCODE_INST_EMUL could access the apic which could transform the 1975 * exit code into VM_EXITCODE_IPI. 1976 */ 1977 if (error == 0 && vme->exitcode == VM_EXITCODE_IPI) 1978 error = vm_handle_ipi(vcpu, vme, &retu); 1979 1980 if (error == 0 && retu == false) 1981 goto restart; 1982 1983 vmm_stat_incr(vcpu, VMEXIT_USERSPACE, 1); 1984 VMM_CTR2(vcpu, "retu %d/%d", error, vme->exitcode); 1985 1986 return (error); 1987 } 1988 1989 int 1990 vm_restart_instruction(struct vcpu *vcpu) 1991 { 1992 enum vcpu_state state; 1993 uint64_t rip; 1994 int error __diagused; 1995 1996 state = vcpu_get_state(vcpu, NULL); 1997 if (state == VCPU_RUNNING) { 1998 /* 1999 * When a vcpu is "running" the next instruction is determined 2000 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'. 2001 * Thus setting 'inst_length' to zero will cause the current 2002 * instruction to be restarted. 2003 */ 2004 vcpu->exitinfo.inst_length = 0; 2005 VMM_CTR1(vcpu, "restarting instruction at %#lx by " 2006 "setting inst_length to zero", vcpu->exitinfo.rip); 2007 } else if (state == VCPU_FROZEN) { 2008 /* 2009 * When a vcpu is "frozen" it is outside the critical section 2010 * around vmmops_run() and 'nextrip' points to the next 2011 * instruction. Thus instruction restart is achieved by setting 2012 * 'nextrip' to the vcpu's %rip. 2013 */ 2014 error = vm_get_register(vcpu, VM_REG_GUEST_RIP, &rip); 2015 KASSERT(!error, ("%s: error %d getting rip", __func__, error)); 2016 VMM_CTR2(vcpu, "restarting instruction by updating " 2017 "nextrip from %#lx to %#lx", vcpu->nextrip, rip); 2018 vcpu->nextrip = rip; 2019 } else { 2020 panic("%s: invalid state %d", __func__, state); 2021 } 2022 return (0); 2023 } 2024 2025 int 2026 vm_exit_intinfo(struct vcpu *vcpu, uint64_t info) 2027 { 2028 int type, vector; 2029 2030 if (info & VM_INTINFO_VALID) { 2031 type = info & VM_INTINFO_TYPE; 2032 vector = info & 0xff; 2033 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 2034 return (EINVAL); 2035 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 2036 return (EINVAL); 2037 if (info & VM_INTINFO_RSVD) 2038 return (EINVAL); 2039 } else { 2040 info = 0; 2041 } 2042 VMM_CTR2(vcpu, "%s: info1(%#lx)", __func__, info); 2043 vcpu->exitintinfo = info; 2044 return (0); 2045 } 2046 2047 enum exc_class { 2048 EXC_BENIGN, 2049 EXC_CONTRIBUTORY, 2050 EXC_PAGEFAULT 2051 }; 2052 2053 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 2054 2055 static enum exc_class 2056 exception_class(uint64_t info) 2057 { 2058 int type, vector; 2059 2060 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 2061 type = info & VM_INTINFO_TYPE; 2062 vector = info & 0xff; 2063 2064 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 2065 switch (type) { 2066 case VM_INTINFO_HWINTR: 2067 case VM_INTINFO_SWINTR: 2068 case VM_INTINFO_NMI: 2069 return (EXC_BENIGN); 2070 default: 2071 /* 2072 * Hardware exception. 2073 * 2074 * SVM and VT-x use identical type values to represent NMI, 2075 * hardware interrupt and software interrupt. 2076 * 2077 * SVM uses type '3' for all exceptions. VT-x uses type '3' 2078 * for exceptions except #BP and #OF. #BP and #OF use a type 2079 * value of '5' or '6'. Therefore we don't check for explicit 2080 * values of 'type' to classify 'intinfo' into a hardware 2081 * exception. 2082 */ 2083 break; 2084 } 2085 2086 switch (vector) { 2087 case IDT_PF: 2088 case IDT_VE: 2089 return (EXC_PAGEFAULT); 2090 case IDT_DE: 2091 case IDT_TS: 2092 case IDT_NP: 2093 case IDT_SS: 2094 case IDT_GP: 2095 return (EXC_CONTRIBUTORY); 2096 default: 2097 return (EXC_BENIGN); 2098 } 2099 } 2100 2101 static int 2102 nested_fault(struct vcpu *vcpu, uint64_t info1, uint64_t info2, 2103 uint64_t *retinfo) 2104 { 2105 enum exc_class exc1, exc2; 2106 int type1, vector1; 2107 2108 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 2109 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 2110 2111 /* 2112 * If an exception occurs while attempting to call the double-fault 2113 * handler the processor enters shutdown mode (aka triple fault). 2114 */ 2115 type1 = info1 & VM_INTINFO_TYPE; 2116 vector1 = info1 & 0xff; 2117 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 2118 VMM_CTR2(vcpu, "triple fault: info1(%#lx), info2(%#lx)", 2119 info1, info2); 2120 vm_suspend(vcpu->vm, VM_SUSPEND_TRIPLEFAULT); 2121 *retinfo = 0; 2122 return (0); 2123 } 2124 2125 /* 2126 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 2127 */ 2128 exc1 = exception_class(info1); 2129 exc2 = exception_class(info2); 2130 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 2131 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 2132 /* Convert nested fault into a double fault. */ 2133 *retinfo = IDT_DF; 2134 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 2135 *retinfo |= VM_INTINFO_DEL_ERRCODE; 2136 } else { 2137 /* Handle exceptions serially */ 2138 *retinfo = info2; 2139 } 2140 return (1); 2141 } 2142 2143 static uint64_t 2144 vcpu_exception_intinfo(struct vcpu *vcpu) 2145 { 2146 uint64_t info = 0; 2147 2148 if (vcpu->exception_pending) { 2149 info = vcpu->exc_vector & 0xff; 2150 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 2151 if (vcpu->exc_errcode_valid) { 2152 info |= VM_INTINFO_DEL_ERRCODE; 2153 info |= (uint64_t)vcpu->exc_errcode << 32; 2154 } 2155 } 2156 return (info); 2157 } 2158 2159 int 2160 vm_entry_intinfo(struct vcpu *vcpu, uint64_t *retinfo) 2161 { 2162 uint64_t info1, info2; 2163 int valid; 2164 2165 info1 = vcpu->exitintinfo; 2166 vcpu->exitintinfo = 0; 2167 2168 info2 = 0; 2169 if (vcpu->exception_pending) { 2170 info2 = vcpu_exception_intinfo(vcpu); 2171 vcpu->exception_pending = 0; 2172 VMM_CTR2(vcpu, "Exception %d delivered: %#lx", 2173 vcpu->exc_vector, info2); 2174 } 2175 2176 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 2177 valid = nested_fault(vcpu, info1, info2, retinfo); 2178 } else if (info1 & VM_INTINFO_VALID) { 2179 *retinfo = info1; 2180 valid = 1; 2181 } else if (info2 & VM_INTINFO_VALID) { 2182 *retinfo = info2; 2183 valid = 1; 2184 } else { 2185 valid = 0; 2186 } 2187 2188 if (valid) { 2189 VMM_CTR4(vcpu, "%s: info1(%#lx), info2(%#lx), " 2190 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 2191 } 2192 2193 return (valid); 2194 } 2195 2196 int 2197 vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2) 2198 { 2199 *info1 = vcpu->exitintinfo; 2200 *info2 = vcpu_exception_intinfo(vcpu); 2201 return (0); 2202 } 2203 2204 int 2205 vm_inject_exception(struct vcpu *vcpu, int vector, int errcode_valid, 2206 uint32_t errcode, int restart_instruction) 2207 { 2208 uint64_t regval; 2209 int error __diagused; 2210 2211 if (vector < 0 || vector >= 32) 2212 return (EINVAL); 2213 2214 /* 2215 * A double fault exception should never be injected directly into 2216 * the guest. It is a derived exception that results from specific 2217 * combinations of nested faults. 2218 */ 2219 if (vector == IDT_DF) 2220 return (EINVAL); 2221 2222 if (vcpu->exception_pending) { 2223 VMM_CTR2(vcpu, "Unable to inject exception %d due to " 2224 "pending exception %d", vector, vcpu->exc_vector); 2225 return (EBUSY); 2226 } 2227 2228 if (errcode_valid) { 2229 /* 2230 * Exceptions don't deliver an error code in real mode. 2231 */ 2232 error = vm_get_register(vcpu, VM_REG_GUEST_CR0, ®val); 2233 KASSERT(!error, ("%s: error %d getting CR0", __func__, error)); 2234 if (!(regval & CR0_PE)) 2235 errcode_valid = 0; 2236 } 2237 2238 /* 2239 * From section 26.6.1 "Interruptibility State" in Intel SDM: 2240 * 2241 * Event blocking by "STI" or "MOV SS" is cleared after guest executes 2242 * one instruction or incurs an exception. 2243 */ 2244 error = vm_set_register(vcpu, VM_REG_GUEST_INTR_SHADOW, 0); 2245 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", 2246 __func__, error)); 2247 2248 if (restart_instruction) 2249 vm_restart_instruction(vcpu); 2250 2251 vcpu->exception_pending = 1; 2252 vcpu->exc_vector = vector; 2253 vcpu->exc_errcode = errcode; 2254 vcpu->exc_errcode_valid = errcode_valid; 2255 VMM_CTR1(vcpu, "Exception %d pending", vector); 2256 return (0); 2257 } 2258 2259 void 2260 vm_inject_fault(struct vcpu *vcpu, int vector, int errcode_valid, int errcode) 2261 { 2262 int error __diagused, restart_instruction; 2263 2264 restart_instruction = 1; 2265 2266 error = vm_inject_exception(vcpu, vector, errcode_valid, 2267 errcode, restart_instruction); 2268 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 2269 } 2270 2271 void 2272 vm_inject_pf(struct vcpu *vcpu, int error_code, uint64_t cr2) 2273 { 2274 int error __diagused; 2275 2276 VMM_CTR2(vcpu, "Injecting page fault: error_code %#x, cr2 %#lx", 2277 error_code, cr2); 2278 2279 error = vm_set_register(vcpu, VM_REG_GUEST_CR2, cr2); 2280 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 2281 2282 vm_inject_fault(vcpu, IDT_PF, 1, error_code); 2283 } 2284 2285 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 2286 2287 int 2288 vm_inject_nmi(struct vcpu *vcpu) 2289 { 2290 2291 vcpu->nmi_pending = 1; 2292 vcpu_notify_event(vcpu, false); 2293 return (0); 2294 } 2295 2296 int 2297 vm_nmi_pending(struct vcpu *vcpu) 2298 { 2299 return (vcpu->nmi_pending); 2300 } 2301 2302 void 2303 vm_nmi_clear(struct vcpu *vcpu) 2304 { 2305 if (vcpu->nmi_pending == 0) 2306 panic("vm_nmi_clear: inconsistent nmi_pending state"); 2307 2308 vcpu->nmi_pending = 0; 2309 vmm_stat_incr(vcpu, VCPU_NMI_COUNT, 1); 2310 } 2311 2312 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 2313 2314 int 2315 vm_inject_extint(struct vcpu *vcpu) 2316 { 2317 2318 vcpu->extint_pending = 1; 2319 vcpu_notify_event(vcpu, false); 2320 return (0); 2321 } 2322 2323 int 2324 vm_extint_pending(struct vcpu *vcpu) 2325 { 2326 return (vcpu->extint_pending); 2327 } 2328 2329 void 2330 vm_extint_clear(struct vcpu *vcpu) 2331 { 2332 if (vcpu->extint_pending == 0) 2333 panic("vm_extint_clear: inconsistent extint_pending state"); 2334 2335 vcpu->extint_pending = 0; 2336 vmm_stat_incr(vcpu, VCPU_EXTINT_COUNT, 1); 2337 } 2338 2339 int 2340 vm_get_capability(struct vcpu *vcpu, int type, int *retval) 2341 { 2342 if (type < 0 || type >= VM_CAP_MAX) 2343 return (EINVAL); 2344 2345 return (vmmops_getcap(vcpu->cookie, type, retval)); 2346 } 2347 2348 int 2349 vm_set_capability(struct vcpu *vcpu, int type, int val) 2350 { 2351 if (type < 0 || type >= VM_CAP_MAX) 2352 return (EINVAL); 2353 2354 return (vmmops_setcap(vcpu->cookie, type, val)); 2355 } 2356 2357 struct vm * 2358 vcpu_vm(struct vcpu *vcpu) 2359 { 2360 return (vcpu->vm); 2361 } 2362 2363 int 2364 vcpu_vcpuid(struct vcpu *vcpu) 2365 { 2366 return (vcpu->vcpuid); 2367 } 2368 2369 struct vcpu * 2370 vm_vcpu(struct vm *vm, int vcpuid) 2371 { 2372 return (vm->vcpu[vcpuid]); 2373 } 2374 2375 struct vlapic * 2376 vm_lapic(struct vcpu *vcpu) 2377 { 2378 return (vcpu->vlapic); 2379 } 2380 2381 struct vioapic * 2382 vm_ioapic(struct vm *vm) 2383 { 2384 2385 return (vm->vioapic); 2386 } 2387 2388 struct vhpet * 2389 vm_hpet(struct vm *vm) 2390 { 2391 2392 return (vm->vhpet); 2393 } 2394 2395 bool 2396 vmm_is_pptdev(int bus, int slot, int func) 2397 { 2398 int b, f, i, n, s; 2399 char *val, *cp, *cp2; 2400 bool found; 2401 2402 /* 2403 * XXX 2404 * The length of an environment variable is limited to 128 bytes which 2405 * puts an upper limit on the number of passthru devices that may be 2406 * specified using a single environment variable. 2407 * 2408 * Work around this by scanning multiple environment variable 2409 * names instead of a single one - yuck! 2410 */ 2411 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 2412 2413 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 2414 found = false; 2415 for (i = 0; names[i] != NULL && !found; i++) { 2416 cp = val = kern_getenv(names[i]); 2417 while (cp != NULL && *cp != '\0') { 2418 if ((cp2 = strchr(cp, ' ')) != NULL) 2419 *cp2 = '\0'; 2420 2421 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 2422 if (n == 3 && bus == b && slot == s && func == f) { 2423 found = true; 2424 break; 2425 } 2426 2427 if (cp2 != NULL) 2428 *cp2++ = ' '; 2429 2430 cp = cp2; 2431 } 2432 freeenv(val); 2433 } 2434 return (found); 2435 } 2436 2437 void * 2438 vm_iommu_domain(struct vm *vm) 2439 { 2440 2441 return (vm->iommu); 2442 } 2443 2444 int 2445 vcpu_set_state(struct vcpu *vcpu, enum vcpu_state newstate, bool from_idle) 2446 { 2447 int error; 2448 2449 vcpu_lock(vcpu); 2450 error = vcpu_set_state_locked(vcpu, newstate, from_idle); 2451 vcpu_unlock(vcpu); 2452 2453 return (error); 2454 } 2455 2456 enum vcpu_state 2457 vcpu_get_state(struct vcpu *vcpu, int *hostcpu) 2458 { 2459 enum vcpu_state state; 2460 2461 vcpu_lock(vcpu); 2462 state = vcpu->state; 2463 if (hostcpu != NULL) 2464 *hostcpu = vcpu->hostcpu; 2465 vcpu_unlock(vcpu); 2466 2467 return (state); 2468 } 2469 2470 int 2471 vm_activate_cpu(struct vcpu *vcpu) 2472 { 2473 struct vm *vm = vcpu->vm; 2474 2475 if (CPU_ISSET(vcpu->vcpuid, &vm->active_cpus)) 2476 return (EBUSY); 2477 2478 VMM_CTR0(vcpu, "activated"); 2479 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->active_cpus); 2480 return (0); 2481 } 2482 2483 int 2484 vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu) 2485 { 2486 if (vcpu == NULL) { 2487 vm->debug_cpus = vm->active_cpus; 2488 for (int i = 0; i < vm->maxcpus; i++) { 2489 if (CPU_ISSET(i, &vm->active_cpus)) 2490 vcpu_notify_event(vm_vcpu(vm, i), false); 2491 } 2492 } else { 2493 if (!CPU_ISSET(vcpu->vcpuid, &vm->active_cpus)) 2494 return (EINVAL); 2495 2496 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->debug_cpus); 2497 vcpu_notify_event(vcpu, false); 2498 } 2499 return (0); 2500 } 2501 2502 int 2503 vm_resume_cpu(struct vm *vm, struct vcpu *vcpu) 2504 { 2505 2506 if (vcpu == NULL) { 2507 CPU_ZERO(&vm->debug_cpus); 2508 } else { 2509 if (!CPU_ISSET(vcpu->vcpuid, &vm->debug_cpus)) 2510 return (EINVAL); 2511 2512 CPU_CLR_ATOMIC(vcpu->vcpuid, &vm->debug_cpus); 2513 } 2514 return (0); 2515 } 2516 2517 int 2518 vcpu_debugged(struct vcpu *vcpu) 2519 { 2520 2521 return (CPU_ISSET(vcpu->vcpuid, &vcpu->vm->debug_cpus)); 2522 } 2523 2524 cpuset_t 2525 vm_active_cpus(struct vm *vm) 2526 { 2527 2528 return (vm->active_cpus); 2529 } 2530 2531 cpuset_t 2532 vm_debug_cpus(struct vm *vm) 2533 { 2534 2535 return (vm->debug_cpus); 2536 } 2537 2538 cpuset_t 2539 vm_suspended_cpus(struct vm *vm) 2540 { 2541 2542 return (vm->suspended_cpus); 2543 } 2544 2545 /* 2546 * Returns the subset of vCPUs in tostart that are awaiting startup. 2547 * These vCPUs are also marked as no longer awaiting startup. 2548 */ 2549 cpuset_t 2550 vm_start_cpus(struct vm *vm, const cpuset_t *tostart) 2551 { 2552 cpuset_t set; 2553 2554 mtx_lock(&vm->rendezvous_mtx); 2555 CPU_AND(&set, &vm->startup_cpus, tostart); 2556 CPU_ANDNOT(&vm->startup_cpus, &vm->startup_cpus, &set); 2557 mtx_unlock(&vm->rendezvous_mtx); 2558 return (set); 2559 } 2560 2561 void 2562 vm_await_start(struct vm *vm, const cpuset_t *waiting) 2563 { 2564 mtx_lock(&vm->rendezvous_mtx); 2565 CPU_OR(&vm->startup_cpus, &vm->startup_cpus, waiting); 2566 mtx_unlock(&vm->rendezvous_mtx); 2567 } 2568 2569 void * 2570 vcpu_stats(struct vcpu *vcpu) 2571 { 2572 2573 return (vcpu->stats); 2574 } 2575 2576 int 2577 vm_get_x2apic_state(struct vcpu *vcpu, enum x2apic_state *state) 2578 { 2579 *state = vcpu->x2apic_state; 2580 2581 return (0); 2582 } 2583 2584 int 2585 vm_set_x2apic_state(struct vcpu *vcpu, enum x2apic_state state) 2586 { 2587 if (state >= X2APIC_STATE_LAST) 2588 return (EINVAL); 2589 2590 vcpu->x2apic_state = state; 2591 2592 vlapic_set_x2apic_state(vcpu, state); 2593 2594 return (0); 2595 } 2596 2597 /* 2598 * This function is called to ensure that a vcpu "sees" a pending event 2599 * as soon as possible: 2600 * - If the vcpu thread is sleeping then it is woken up. 2601 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2602 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2603 */ 2604 static void 2605 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr) 2606 { 2607 int hostcpu; 2608 2609 hostcpu = vcpu->hostcpu; 2610 if (vcpu->state == VCPU_RUNNING) { 2611 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2612 if (hostcpu != curcpu) { 2613 if (lapic_intr) { 2614 vlapic_post_intr(vcpu->vlapic, hostcpu, 2615 vmm_ipinum); 2616 } else { 2617 ipi_cpu(hostcpu, vmm_ipinum); 2618 } 2619 } else { 2620 /* 2621 * If the 'vcpu' is running on 'curcpu' then it must 2622 * be sending a notification to itself (e.g. SELF_IPI). 2623 * The pending event will be picked up when the vcpu 2624 * transitions back to guest context. 2625 */ 2626 } 2627 } else { 2628 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2629 "with hostcpu %d", vcpu->state, hostcpu)); 2630 if (vcpu->state == VCPU_SLEEPING) 2631 wakeup_one(vcpu); 2632 } 2633 } 2634 2635 void 2636 vcpu_notify_event(struct vcpu *vcpu, bool lapic_intr) 2637 { 2638 vcpu_lock(vcpu); 2639 vcpu_notify_event_locked(vcpu, lapic_intr); 2640 vcpu_unlock(vcpu); 2641 } 2642 2643 struct vmspace * 2644 vm_get_vmspace(struct vm *vm) 2645 { 2646 2647 return (vm->vmspace); 2648 } 2649 2650 int 2651 vm_apicid2vcpuid(struct vm *vm, int apicid) 2652 { 2653 /* 2654 * XXX apic id is assumed to be numerically identical to vcpu id 2655 */ 2656 return (apicid); 2657 } 2658 2659 int 2660 vm_smp_rendezvous(struct vcpu *vcpu, cpuset_t dest, 2661 vm_rendezvous_func_t func, void *arg) 2662 { 2663 struct vm *vm = vcpu->vm; 2664 int error, i; 2665 2666 /* 2667 * Enforce that this function is called without any locks 2668 */ 2669 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2670 2671 restart: 2672 mtx_lock(&vm->rendezvous_mtx); 2673 if (vm->rendezvous_func != NULL) { 2674 /* 2675 * If a rendezvous is already in progress then we need to 2676 * call the rendezvous handler in case this 'vcpu' is one 2677 * of the targets of the rendezvous. 2678 */ 2679 VMM_CTR0(vcpu, "Rendezvous already in progress"); 2680 mtx_unlock(&vm->rendezvous_mtx); 2681 error = vm_handle_rendezvous(vcpu); 2682 if (error != 0) 2683 return (error); 2684 goto restart; 2685 } 2686 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2687 "rendezvous is still in progress")); 2688 2689 VMM_CTR0(vcpu, "Initiating rendezvous"); 2690 vm->rendezvous_req_cpus = dest; 2691 CPU_ZERO(&vm->rendezvous_done_cpus); 2692 vm->rendezvous_arg = arg; 2693 vm->rendezvous_func = func; 2694 mtx_unlock(&vm->rendezvous_mtx); 2695 2696 /* 2697 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2698 * vcpus so they handle the rendezvous as soon as possible. 2699 */ 2700 for (i = 0; i < vm->maxcpus; i++) { 2701 if (CPU_ISSET(i, &dest)) 2702 vcpu_notify_event(vm_vcpu(vm, i), false); 2703 } 2704 2705 return (vm_handle_rendezvous(vcpu)); 2706 } 2707 2708 struct vatpic * 2709 vm_atpic(struct vm *vm) 2710 { 2711 return (vm->vatpic); 2712 } 2713 2714 struct vatpit * 2715 vm_atpit(struct vm *vm) 2716 { 2717 return (vm->vatpit); 2718 } 2719 2720 struct vpmtmr * 2721 vm_pmtmr(struct vm *vm) 2722 { 2723 2724 return (vm->vpmtmr); 2725 } 2726 2727 struct vrtc * 2728 vm_rtc(struct vm *vm) 2729 { 2730 2731 return (vm->vrtc); 2732 } 2733 2734 enum vm_reg_name 2735 vm_segment_name(int seg) 2736 { 2737 static enum vm_reg_name seg_names[] = { 2738 VM_REG_GUEST_ES, 2739 VM_REG_GUEST_CS, 2740 VM_REG_GUEST_SS, 2741 VM_REG_GUEST_DS, 2742 VM_REG_GUEST_FS, 2743 VM_REG_GUEST_GS 2744 }; 2745 2746 KASSERT(seg >= 0 && seg < nitems(seg_names), 2747 ("%s: invalid segment encoding %d", __func__, seg)); 2748 return (seg_names[seg]); 2749 } 2750 2751 void 2752 vm_copy_teardown(struct vm_copyinfo *copyinfo, int num_copyinfo) 2753 { 2754 int idx; 2755 2756 for (idx = 0; idx < num_copyinfo; idx++) { 2757 if (copyinfo[idx].cookie != NULL) 2758 vm_gpa_release(copyinfo[idx].cookie); 2759 } 2760 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2761 } 2762 2763 int 2764 vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging, 2765 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2766 int num_copyinfo, int *fault) 2767 { 2768 int error, idx, nused; 2769 size_t n, off, remaining; 2770 void *hva, *cookie; 2771 uint64_t gpa; 2772 2773 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2774 2775 nused = 0; 2776 remaining = len; 2777 while (remaining > 0) { 2778 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo")); 2779 error = vm_gla2gpa(vcpu, paging, gla, prot, &gpa, fault); 2780 if (error || *fault) 2781 return (error); 2782 off = gpa & PAGE_MASK; 2783 n = min(remaining, PAGE_SIZE - off); 2784 copyinfo[nused].gpa = gpa; 2785 copyinfo[nused].len = n; 2786 remaining -= n; 2787 gla += n; 2788 nused++; 2789 } 2790 2791 for (idx = 0; idx < nused; idx++) { 2792 hva = vm_gpa_hold(vcpu, copyinfo[idx].gpa, 2793 copyinfo[idx].len, prot, &cookie); 2794 if (hva == NULL) 2795 break; 2796 copyinfo[idx].hva = hva; 2797 copyinfo[idx].cookie = cookie; 2798 } 2799 2800 if (idx != nused) { 2801 vm_copy_teardown(copyinfo, num_copyinfo); 2802 return (EFAULT); 2803 } else { 2804 *fault = 0; 2805 return (0); 2806 } 2807 } 2808 2809 void 2810 vm_copyin(struct vm_copyinfo *copyinfo, void *kaddr, size_t len) 2811 { 2812 char *dst; 2813 int idx; 2814 2815 dst = kaddr; 2816 idx = 0; 2817 while (len > 0) { 2818 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2819 len -= copyinfo[idx].len; 2820 dst += copyinfo[idx].len; 2821 idx++; 2822 } 2823 } 2824 2825 void 2826 vm_copyout(const void *kaddr, struct vm_copyinfo *copyinfo, size_t len) 2827 { 2828 const char *src; 2829 int idx; 2830 2831 src = kaddr; 2832 idx = 0; 2833 while (len > 0) { 2834 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2835 len -= copyinfo[idx].len; 2836 src += copyinfo[idx].len; 2837 idx++; 2838 } 2839 } 2840 2841 /* 2842 * Return the amount of in-use and wired memory for the VM. Since 2843 * these are global stats, only return the values with for vCPU 0 2844 */ 2845 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2846 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2847 2848 static void 2849 vm_get_rescnt(struct vcpu *vcpu, struct vmm_stat_type *stat) 2850 { 2851 2852 if (vcpu->vcpuid == 0) { 2853 vmm_stat_set(vcpu, VMM_MEM_RESIDENT, PAGE_SIZE * 2854 vmspace_resident_count(vcpu->vm->vmspace)); 2855 } 2856 } 2857 2858 static void 2859 vm_get_wiredcnt(struct vcpu *vcpu, struct vmm_stat_type *stat) 2860 { 2861 2862 if (vcpu->vcpuid == 0) { 2863 vmm_stat_set(vcpu, VMM_MEM_WIRED, PAGE_SIZE * 2864 pmap_wired_count(vmspace_pmap(vcpu->vm->vmspace))); 2865 } 2866 } 2867 2868 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2869 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2870 2871 #ifdef BHYVE_SNAPSHOT 2872 static int 2873 vm_snapshot_vcpus(struct vm *vm, struct vm_snapshot_meta *meta) 2874 { 2875 uint64_t tsc, now; 2876 int ret; 2877 struct vcpu *vcpu; 2878 uint16_t i, maxcpus; 2879 2880 now = rdtsc(); 2881 maxcpus = vm_get_maxcpus(vm); 2882 for (i = 0; i < maxcpus; i++) { 2883 vcpu = vm->vcpu[i]; 2884 if (vcpu == NULL) 2885 continue; 2886 2887 SNAPSHOT_VAR_OR_LEAVE(vcpu->x2apic_state, meta, ret, done); 2888 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitintinfo, meta, ret, done); 2889 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_vector, meta, ret, done); 2890 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode_valid, meta, ret, done); 2891 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode, meta, ret, done); 2892 SNAPSHOT_VAR_OR_LEAVE(vcpu->guest_xcr0, meta, ret, done); 2893 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitinfo, meta, ret, done); 2894 SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, ret, done); 2895 2896 /* 2897 * Save the absolute TSC value by adding now to tsc_offset. 2898 * 2899 * It will be turned turned back into an actual offset when the 2900 * TSC restore function is called 2901 */ 2902 tsc = now + vcpu->tsc_offset; 2903 SNAPSHOT_VAR_OR_LEAVE(tsc, meta, ret, done); 2904 if (meta->op == VM_SNAPSHOT_RESTORE) 2905 vcpu->tsc_offset = tsc; 2906 } 2907 2908 done: 2909 return (ret); 2910 } 2911 2912 static int 2913 vm_snapshot_vm(struct vm *vm, struct vm_snapshot_meta *meta) 2914 { 2915 int ret; 2916 2917 ret = vm_snapshot_vcpus(vm, meta); 2918 if (ret != 0) 2919 goto done; 2920 2921 SNAPSHOT_VAR_OR_LEAVE(vm->startup_cpus, meta, ret, done); 2922 done: 2923 return (ret); 2924 } 2925 2926 static int 2927 vm_snapshot_vcpu(struct vm *vm, struct vm_snapshot_meta *meta) 2928 { 2929 int error; 2930 struct vcpu *vcpu; 2931 uint16_t i, maxcpus; 2932 2933 error = 0; 2934 2935 maxcpus = vm_get_maxcpus(vm); 2936 for (i = 0; i < maxcpus; i++) { 2937 vcpu = vm->vcpu[i]; 2938 if (vcpu == NULL) 2939 continue; 2940 2941 error = vmmops_vcpu_snapshot(vcpu->cookie, meta); 2942 if (error != 0) { 2943 printf("%s: failed to snapshot vmcs/vmcb data for " 2944 "vCPU: %d; error: %d\n", __func__, i, error); 2945 goto done; 2946 } 2947 } 2948 2949 done: 2950 return (error); 2951 } 2952 2953 /* 2954 * Save kernel-side structures to user-space for snapshotting. 2955 */ 2956 int 2957 vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta) 2958 { 2959 int ret = 0; 2960 2961 switch (meta->dev_req) { 2962 case STRUCT_VMCX: 2963 ret = vm_snapshot_vcpu(vm, meta); 2964 break; 2965 case STRUCT_VM: 2966 ret = vm_snapshot_vm(vm, meta); 2967 break; 2968 case STRUCT_VIOAPIC: 2969 ret = vioapic_snapshot(vm_ioapic(vm), meta); 2970 break; 2971 case STRUCT_VLAPIC: 2972 ret = vlapic_snapshot(vm, meta); 2973 break; 2974 case STRUCT_VHPET: 2975 ret = vhpet_snapshot(vm_hpet(vm), meta); 2976 break; 2977 case STRUCT_VATPIC: 2978 ret = vatpic_snapshot(vm_atpic(vm), meta); 2979 break; 2980 case STRUCT_VATPIT: 2981 ret = vatpit_snapshot(vm_atpit(vm), meta); 2982 break; 2983 case STRUCT_VPMTMR: 2984 ret = vpmtmr_snapshot(vm_pmtmr(vm), meta); 2985 break; 2986 case STRUCT_VRTC: 2987 ret = vrtc_snapshot(vm_rtc(vm), meta); 2988 break; 2989 default: 2990 printf("%s: failed to find the requested type %#x\n", 2991 __func__, meta->dev_req); 2992 ret = (EINVAL); 2993 } 2994 return (ret); 2995 } 2996 2997 void 2998 vm_set_tsc_offset(struct vcpu *vcpu, uint64_t offset) 2999 { 3000 vcpu->tsc_offset = offset; 3001 } 3002 3003 int 3004 vm_restore_time(struct vm *vm) 3005 { 3006 int error; 3007 uint64_t now; 3008 struct vcpu *vcpu; 3009 uint16_t i, maxcpus; 3010 3011 now = rdtsc(); 3012 3013 error = vhpet_restore_time(vm_hpet(vm)); 3014 if (error) 3015 return (error); 3016 3017 maxcpus = vm_get_maxcpus(vm); 3018 for (i = 0; i < maxcpus; i++) { 3019 vcpu = vm->vcpu[i]; 3020 if (vcpu == NULL) 3021 continue; 3022 3023 error = vmmops_restore_tsc(vcpu->cookie, 3024 vcpu->tsc_offset - now); 3025 if (error) 3026 return (error); 3027 } 3028 3029 return (0); 3030 } 3031 #endif 3032