1 /*- 2 * Copyright (c) 2011 NetApp, Inc. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD$ 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/sysctl.h> 37 #include <sys/malloc.h> 38 #include <sys/pcpu.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/proc.h> 42 #include <sys/rwlock.h> 43 #include <sys/sched.h> 44 #include <sys/smp.h> 45 #include <sys/systm.h> 46 47 #include <vm/vm.h> 48 #include <vm/vm_object.h> 49 #include <vm/vm_page.h> 50 #include <vm/pmap.h> 51 #include <vm/vm_map.h> 52 #include <vm/vm_extern.h> 53 #include <vm/vm_param.h> 54 55 #include <machine/cpu.h> 56 #include <machine/vm.h> 57 #include <machine/pcb.h> 58 #include <machine/smp.h> 59 #include <x86/psl.h> 60 #include <x86/apicreg.h> 61 #include <machine/vmparam.h> 62 63 #include <machine/vmm.h> 64 #include <machine/vmm_dev.h> 65 66 #include "vmm_ktr.h" 67 #include "vmm_host.h" 68 #include "vmm_mem.h" 69 #include "vmm_util.h" 70 #include "vatpic.h" 71 #include "vhpet.h" 72 #include "vioapic.h" 73 #include "vlapic.h" 74 #include "vmm_msr.h" 75 #include "vmm_ipi.h" 76 #include "vmm_stat.h" 77 #include "vmm_lapic.h" 78 79 #include "io/ppt.h" 80 #include "io/iommu.h" 81 82 struct vlapic; 83 84 struct vcpu { 85 int flags; 86 enum vcpu_state state; 87 struct mtx mtx; 88 int hostcpu; /* host cpuid this vcpu last ran on */ 89 uint64_t guest_msrs[VMM_MSR_NUM]; 90 struct vlapic *vlapic; 91 int vcpuid; 92 struct savefpu *guestfpu; /* guest fpu state */ 93 uint64_t guest_xcr0; 94 void *stats; 95 struct vm_exit exitinfo; 96 enum x2apic_state x2apic_state; 97 int nmi_pending; 98 int extint_pending; 99 struct vm_exception exception; 100 int exception_pending; 101 }; 102 103 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 104 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 105 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 106 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 107 108 struct mem_seg { 109 vm_paddr_t gpa; 110 size_t len; 111 boolean_t wired; 112 vm_object_t object; 113 }; 114 #define VM_MAX_MEMORY_SEGMENTS 2 115 116 struct vm { 117 void *cookie; /* processor-specific data */ 118 void *iommu; /* iommu-specific data */ 119 struct vhpet *vhpet; /* virtual HPET */ 120 struct vioapic *vioapic; /* virtual ioapic */ 121 struct vatpic *vatpic; /* virtual atpic */ 122 struct vmspace *vmspace; /* guest's address space */ 123 struct vcpu vcpu[VM_MAXCPU]; 124 int num_mem_segs; 125 struct mem_seg mem_segs[VM_MAX_MEMORY_SEGMENTS]; 126 char name[VM_MAX_NAMELEN]; 127 128 /* 129 * Set of active vcpus. 130 * An active vcpu is one that has been started implicitly (BSP) or 131 * explicitly (AP) by sending it a startup ipi. 132 */ 133 cpuset_t active_cpus; 134 135 struct mtx rendezvous_mtx; 136 cpuset_t rendezvous_req_cpus; 137 cpuset_t rendezvous_done_cpus; 138 void *rendezvous_arg; 139 vm_rendezvous_func_t rendezvous_func; 140 }; 141 142 static int vmm_initialized; 143 144 static struct vmm_ops *ops; 145 #define VMM_INIT(num) (ops != NULL ? (*ops->init)(num) : 0) 146 #define VMM_CLEANUP() (ops != NULL ? (*ops->cleanup)() : 0) 147 #define VMM_RESUME() (ops != NULL ? (*ops->resume)() : 0) 148 149 #define VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL) 150 #define VMRUN(vmi, vcpu, rip, pmap, rptr) \ 151 (ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, rptr) : ENXIO) 152 #define VMCLEANUP(vmi) (ops != NULL ? (*ops->vmcleanup)(vmi) : NULL) 153 #define VMSPACE_ALLOC(min, max) \ 154 (ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL) 155 #define VMSPACE_FREE(vmspace) \ 156 (ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO) 157 #define VMGETREG(vmi, vcpu, num, retval) \ 158 (ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO) 159 #define VMSETREG(vmi, vcpu, num, val) \ 160 (ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO) 161 #define VMGETDESC(vmi, vcpu, num, desc) \ 162 (ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO) 163 #define VMSETDESC(vmi, vcpu, num, desc) \ 164 (ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO) 165 #define VMGETCAP(vmi, vcpu, num, retval) \ 166 (ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO) 167 #define VMSETCAP(vmi, vcpu, num, val) \ 168 (ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO) 169 #define VLAPIC_INIT(vmi, vcpu) \ 170 (ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL) 171 #define VLAPIC_CLEANUP(vmi, vlapic) \ 172 (ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL) 173 174 #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS) 175 #define fpu_stop_emulating() clts() 176 177 static MALLOC_DEFINE(M_VM, "vm", "vm"); 178 CTASSERT(VMM_MSR_NUM <= 64); /* msr_mask can keep track of up to 64 msrs */ 179 180 /* statistics */ 181 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 182 183 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL); 184 185 static int vmm_ipinum; 186 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 187 "IPI vector used for vcpu notifications"); 188 189 static void vm_deactivate_cpu(struct vm *vm, int vcpuid); 190 191 static void 192 vcpu_cleanup(struct vm *vm, int i) 193 { 194 struct vcpu *vcpu = &vm->vcpu[i]; 195 196 VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic); 197 vmm_stat_free(vcpu->stats); 198 fpu_save_area_free(vcpu->guestfpu); 199 } 200 201 static void 202 vcpu_init(struct vm *vm, uint32_t vcpu_id) 203 { 204 struct vcpu *vcpu; 205 206 vcpu = &vm->vcpu[vcpu_id]; 207 208 vcpu_lock_init(vcpu); 209 vcpu->hostcpu = NOCPU; 210 vcpu->vcpuid = vcpu_id; 211 vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id); 212 vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED); 213 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 214 vcpu->guestfpu = fpu_save_area_alloc(); 215 fpu_save_area_reset(vcpu->guestfpu); 216 vcpu->stats = vmm_stat_alloc(); 217 } 218 219 struct vm_exit * 220 vm_exitinfo(struct vm *vm, int cpuid) 221 { 222 struct vcpu *vcpu; 223 224 if (cpuid < 0 || cpuid >= VM_MAXCPU) 225 panic("vm_exitinfo: invalid cpuid %d", cpuid); 226 227 vcpu = &vm->vcpu[cpuid]; 228 229 return (&vcpu->exitinfo); 230 } 231 232 static void 233 vmm_resume(void) 234 { 235 VMM_RESUME(); 236 } 237 238 static int 239 vmm_init(void) 240 { 241 int error; 242 243 vmm_host_state_init(); 244 245 vmm_ipinum = vmm_ipi_alloc(); 246 if (vmm_ipinum == 0) 247 vmm_ipinum = IPI_AST; 248 249 error = vmm_mem_init(); 250 if (error) 251 return (error); 252 253 if (vmm_is_intel()) 254 ops = &vmm_ops_intel; 255 else if (vmm_is_amd()) 256 ops = &vmm_ops_amd; 257 else 258 return (ENXIO); 259 260 vmm_msr_init(); 261 vmm_resume_p = vmm_resume; 262 263 return (VMM_INIT(vmm_ipinum)); 264 } 265 266 static int 267 vmm_handler(module_t mod, int what, void *arg) 268 { 269 int error; 270 271 switch (what) { 272 case MOD_LOAD: 273 vmmdev_init(); 274 if (ppt_avail_devices() > 0) 275 iommu_init(); 276 error = vmm_init(); 277 if (error == 0) 278 vmm_initialized = 1; 279 break; 280 case MOD_UNLOAD: 281 error = vmmdev_cleanup(); 282 if (error == 0) { 283 vmm_resume_p = NULL; 284 iommu_cleanup(); 285 if (vmm_ipinum != IPI_AST) 286 vmm_ipi_free(vmm_ipinum); 287 error = VMM_CLEANUP(); 288 /* 289 * Something bad happened - prevent new 290 * VMs from being created 291 */ 292 if (error) 293 vmm_initialized = 0; 294 } 295 break; 296 default: 297 error = 0; 298 break; 299 } 300 return (error); 301 } 302 303 static moduledata_t vmm_kmod = { 304 "vmm", 305 vmm_handler, 306 NULL 307 }; 308 309 /* 310 * vmm initialization has the following dependencies: 311 * 312 * - iommu initialization must happen after the pci passthru driver has had 313 * a chance to attach to any passthru devices (after SI_SUB_CONFIGURE). 314 * 315 * - VT-x initialization requires smp_rendezvous() and therefore must happen 316 * after SMP is fully functional (after SI_SUB_SMP). 317 */ 318 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 319 MODULE_VERSION(vmm, 1); 320 321 int 322 vm_create(const char *name, struct vm **retvm) 323 { 324 int i; 325 struct vm *vm; 326 struct vmspace *vmspace; 327 328 const int BSP = 0; 329 330 /* 331 * If vmm.ko could not be successfully initialized then don't attempt 332 * to create the virtual machine. 333 */ 334 if (!vmm_initialized) 335 return (ENXIO); 336 337 if (name == NULL || strlen(name) >= VM_MAX_NAMELEN) 338 return (EINVAL); 339 340 vmspace = VMSPACE_ALLOC(VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS); 341 if (vmspace == NULL) 342 return (ENOMEM); 343 344 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 345 strcpy(vm->name, name); 346 vm->vmspace = vmspace; 347 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 348 vm->cookie = VMINIT(vm, vmspace_pmap(vmspace)); 349 vm->vioapic = vioapic_init(vm); 350 vm->vhpet = vhpet_init(vm); 351 vm->vatpic = vatpic_init(vm); 352 353 for (i = 0; i < VM_MAXCPU; i++) { 354 vcpu_init(vm, i); 355 guest_msrs_init(vm, i); 356 } 357 358 vm_activate_cpu(vm, BSP); 359 360 *retvm = vm; 361 return (0); 362 } 363 364 static void 365 vm_free_mem_seg(struct vm *vm, struct mem_seg *seg) 366 { 367 368 if (seg->object != NULL) 369 vmm_mem_free(vm->vmspace, seg->gpa, seg->len); 370 371 bzero(seg, sizeof(*seg)); 372 } 373 374 void 375 vm_destroy(struct vm *vm) 376 { 377 int i; 378 379 ppt_unassign_all(vm); 380 381 if (vm->iommu != NULL) 382 iommu_destroy_domain(vm->iommu); 383 384 vhpet_cleanup(vm->vhpet); 385 vatpic_cleanup(vm->vatpic); 386 vioapic_cleanup(vm->vioapic); 387 388 for (i = 0; i < vm->num_mem_segs; i++) 389 vm_free_mem_seg(vm, &vm->mem_segs[i]); 390 391 vm->num_mem_segs = 0; 392 393 for (i = 0; i < VM_MAXCPU; i++) 394 vcpu_cleanup(vm, i); 395 396 VMSPACE_FREE(vm->vmspace); 397 398 VMCLEANUP(vm->cookie); 399 400 free(vm, M_VM); 401 } 402 403 const char * 404 vm_name(struct vm *vm) 405 { 406 return (vm->name); 407 } 408 409 int 410 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 411 { 412 vm_object_t obj; 413 414 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 415 return (ENOMEM); 416 else 417 return (0); 418 } 419 420 int 421 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 422 { 423 424 vmm_mmio_free(vm->vmspace, gpa, len); 425 return (0); 426 } 427 428 boolean_t 429 vm_mem_allocated(struct vm *vm, vm_paddr_t gpa) 430 { 431 int i; 432 vm_paddr_t gpabase, gpalimit; 433 434 for (i = 0; i < vm->num_mem_segs; i++) { 435 gpabase = vm->mem_segs[i].gpa; 436 gpalimit = gpabase + vm->mem_segs[i].len; 437 if (gpa >= gpabase && gpa < gpalimit) 438 return (TRUE); /* 'gpa' is regular memory */ 439 } 440 441 if (ppt_is_mmio(vm, gpa)) 442 return (TRUE); /* 'gpa' is pci passthru mmio */ 443 444 return (FALSE); 445 } 446 447 int 448 vm_malloc(struct vm *vm, vm_paddr_t gpa, size_t len) 449 { 450 int available, allocated; 451 struct mem_seg *seg; 452 vm_object_t object; 453 vm_paddr_t g; 454 455 if ((gpa & PAGE_MASK) || (len & PAGE_MASK) || len == 0) 456 return (EINVAL); 457 458 available = allocated = 0; 459 g = gpa; 460 while (g < gpa + len) { 461 if (vm_mem_allocated(vm, g)) 462 allocated++; 463 else 464 available++; 465 466 g += PAGE_SIZE; 467 } 468 469 /* 470 * If there are some allocated and some available pages in the address 471 * range then it is an error. 472 */ 473 if (allocated && available) 474 return (EINVAL); 475 476 /* 477 * If the entire address range being requested has already been 478 * allocated then there isn't anything more to do. 479 */ 480 if (allocated && available == 0) 481 return (0); 482 483 if (vm->num_mem_segs >= VM_MAX_MEMORY_SEGMENTS) 484 return (E2BIG); 485 486 seg = &vm->mem_segs[vm->num_mem_segs]; 487 488 if ((object = vmm_mem_alloc(vm->vmspace, gpa, len)) == NULL) 489 return (ENOMEM); 490 491 seg->gpa = gpa; 492 seg->len = len; 493 seg->object = object; 494 seg->wired = FALSE; 495 496 vm->num_mem_segs++; 497 498 return (0); 499 } 500 501 static void 502 vm_gpa_unwire(struct vm *vm) 503 { 504 int i, rv; 505 struct mem_seg *seg; 506 507 for (i = 0; i < vm->num_mem_segs; i++) { 508 seg = &vm->mem_segs[i]; 509 if (!seg->wired) 510 continue; 511 512 rv = vm_map_unwire(&vm->vmspace->vm_map, 513 seg->gpa, seg->gpa + seg->len, 514 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 515 KASSERT(rv == KERN_SUCCESS, ("vm(%s) memory segment " 516 "%#lx/%ld could not be unwired: %d", 517 vm_name(vm), seg->gpa, seg->len, rv)); 518 519 seg->wired = FALSE; 520 } 521 } 522 523 static int 524 vm_gpa_wire(struct vm *vm) 525 { 526 int i, rv; 527 struct mem_seg *seg; 528 529 for (i = 0; i < vm->num_mem_segs; i++) { 530 seg = &vm->mem_segs[i]; 531 if (seg->wired) 532 continue; 533 534 /* XXX rlimits? */ 535 rv = vm_map_wire(&vm->vmspace->vm_map, 536 seg->gpa, seg->gpa + seg->len, 537 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 538 if (rv != KERN_SUCCESS) 539 break; 540 541 seg->wired = TRUE; 542 } 543 544 if (i < vm->num_mem_segs) { 545 /* 546 * Undo the wiring before returning an error. 547 */ 548 vm_gpa_unwire(vm); 549 return (EAGAIN); 550 } 551 552 return (0); 553 } 554 555 static void 556 vm_iommu_modify(struct vm *vm, boolean_t map) 557 { 558 int i, sz; 559 vm_paddr_t gpa, hpa; 560 struct mem_seg *seg; 561 void *vp, *cookie, *host_domain; 562 563 sz = PAGE_SIZE; 564 host_domain = iommu_host_domain(); 565 566 for (i = 0; i < vm->num_mem_segs; i++) { 567 seg = &vm->mem_segs[i]; 568 KASSERT(seg->wired, ("vm(%s) memory segment %#lx/%ld not wired", 569 vm_name(vm), seg->gpa, seg->len)); 570 571 gpa = seg->gpa; 572 while (gpa < seg->gpa + seg->len) { 573 vp = vm_gpa_hold(vm, gpa, PAGE_SIZE, VM_PROT_WRITE, 574 &cookie); 575 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", 576 vm_name(vm), gpa)); 577 578 vm_gpa_release(cookie); 579 580 hpa = DMAP_TO_PHYS((uintptr_t)vp); 581 if (map) { 582 iommu_create_mapping(vm->iommu, gpa, hpa, sz); 583 iommu_remove_mapping(host_domain, hpa, sz); 584 } else { 585 iommu_remove_mapping(vm->iommu, gpa, sz); 586 iommu_create_mapping(host_domain, hpa, hpa, sz); 587 } 588 589 gpa += PAGE_SIZE; 590 } 591 } 592 593 /* 594 * Invalidate the cached translations associated with the domain 595 * from which pages were removed. 596 */ 597 if (map) 598 iommu_invalidate_tlb(host_domain); 599 else 600 iommu_invalidate_tlb(vm->iommu); 601 } 602 603 #define vm_iommu_unmap(vm) vm_iommu_modify((vm), FALSE) 604 #define vm_iommu_map(vm) vm_iommu_modify((vm), TRUE) 605 606 int 607 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 608 { 609 int error; 610 611 error = ppt_unassign_device(vm, bus, slot, func); 612 if (error) 613 return (error); 614 615 if (ppt_assigned_devices(vm) == 0) { 616 vm_iommu_unmap(vm); 617 vm_gpa_unwire(vm); 618 } 619 return (0); 620 } 621 622 int 623 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 624 { 625 int error; 626 vm_paddr_t maxaddr; 627 628 /* 629 * Virtual machines with pci passthru devices get special treatment: 630 * - the guest physical memory is wired 631 * - the iommu is programmed to do the 'gpa' to 'hpa' translation 632 * 633 * We need to do this before the first pci passthru device is attached. 634 */ 635 if (ppt_assigned_devices(vm) == 0) { 636 KASSERT(vm->iommu == NULL, 637 ("vm_assign_pptdev: iommu must be NULL")); 638 maxaddr = vmm_mem_maxaddr(); 639 vm->iommu = iommu_create_domain(maxaddr); 640 641 error = vm_gpa_wire(vm); 642 if (error) 643 return (error); 644 645 vm_iommu_map(vm); 646 } 647 648 error = ppt_assign_device(vm, bus, slot, func); 649 return (error); 650 } 651 652 void * 653 vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 654 void **cookie) 655 { 656 int count, pageoff; 657 vm_page_t m; 658 659 pageoff = gpa & PAGE_MASK; 660 if (len > PAGE_SIZE - pageoff) 661 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 662 663 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 664 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 665 666 if (count == 1) { 667 *cookie = m; 668 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 669 } else { 670 *cookie = NULL; 671 return (NULL); 672 } 673 } 674 675 void 676 vm_gpa_release(void *cookie) 677 { 678 vm_page_t m = cookie; 679 680 vm_page_lock(m); 681 vm_page_unhold(m); 682 vm_page_unlock(m); 683 } 684 685 int 686 vm_gpabase2memseg(struct vm *vm, vm_paddr_t gpabase, 687 struct vm_memory_segment *seg) 688 { 689 int i; 690 691 for (i = 0; i < vm->num_mem_segs; i++) { 692 if (gpabase == vm->mem_segs[i].gpa) { 693 seg->gpa = vm->mem_segs[i].gpa; 694 seg->len = vm->mem_segs[i].len; 695 seg->wired = vm->mem_segs[i].wired; 696 return (0); 697 } 698 } 699 return (-1); 700 } 701 702 int 703 vm_get_memobj(struct vm *vm, vm_paddr_t gpa, size_t len, 704 vm_offset_t *offset, struct vm_object **object) 705 { 706 int i; 707 size_t seg_len; 708 vm_paddr_t seg_gpa; 709 vm_object_t seg_obj; 710 711 for (i = 0; i < vm->num_mem_segs; i++) { 712 if ((seg_obj = vm->mem_segs[i].object) == NULL) 713 continue; 714 715 seg_gpa = vm->mem_segs[i].gpa; 716 seg_len = vm->mem_segs[i].len; 717 718 if (gpa >= seg_gpa && gpa < seg_gpa + seg_len) { 719 *offset = gpa - seg_gpa; 720 *object = seg_obj; 721 vm_object_reference(seg_obj); 722 return (0); 723 } 724 } 725 726 return (EINVAL); 727 } 728 729 int 730 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval) 731 { 732 733 if (vcpu < 0 || vcpu >= VM_MAXCPU) 734 return (EINVAL); 735 736 if (reg >= VM_REG_LAST) 737 return (EINVAL); 738 739 return (VMGETREG(vm->cookie, vcpu, reg, retval)); 740 } 741 742 int 743 vm_set_register(struct vm *vm, int vcpu, int reg, uint64_t val) 744 { 745 746 if (vcpu < 0 || vcpu >= VM_MAXCPU) 747 return (EINVAL); 748 749 if (reg >= VM_REG_LAST) 750 return (EINVAL); 751 752 return (VMSETREG(vm->cookie, vcpu, reg, val)); 753 } 754 755 static boolean_t 756 is_descriptor_table(int reg) 757 { 758 759 switch (reg) { 760 case VM_REG_GUEST_IDTR: 761 case VM_REG_GUEST_GDTR: 762 return (TRUE); 763 default: 764 return (FALSE); 765 } 766 } 767 768 static boolean_t 769 is_segment_register(int reg) 770 { 771 772 switch (reg) { 773 case VM_REG_GUEST_ES: 774 case VM_REG_GUEST_CS: 775 case VM_REG_GUEST_SS: 776 case VM_REG_GUEST_DS: 777 case VM_REG_GUEST_FS: 778 case VM_REG_GUEST_GS: 779 case VM_REG_GUEST_TR: 780 case VM_REG_GUEST_LDTR: 781 return (TRUE); 782 default: 783 return (FALSE); 784 } 785 } 786 787 int 788 vm_get_seg_desc(struct vm *vm, int vcpu, int reg, 789 struct seg_desc *desc) 790 { 791 792 if (vcpu < 0 || vcpu >= VM_MAXCPU) 793 return (EINVAL); 794 795 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 796 return (EINVAL); 797 798 return (VMGETDESC(vm->cookie, vcpu, reg, desc)); 799 } 800 801 int 802 vm_set_seg_desc(struct vm *vm, int vcpu, int reg, 803 struct seg_desc *desc) 804 { 805 if (vcpu < 0 || vcpu >= VM_MAXCPU) 806 return (EINVAL); 807 808 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 809 return (EINVAL); 810 811 return (VMSETDESC(vm->cookie, vcpu, reg, desc)); 812 } 813 814 static void 815 restore_guest_fpustate(struct vcpu *vcpu) 816 { 817 818 /* flush host state to the pcb */ 819 fpuexit(curthread); 820 821 /* restore guest FPU state */ 822 fpu_stop_emulating(); 823 fpurestore(vcpu->guestfpu); 824 825 /* restore guest XCR0 if XSAVE is enabled in the host */ 826 if (rcr4() & CR4_XSAVE) 827 load_xcr(0, vcpu->guest_xcr0); 828 829 /* 830 * The FPU is now "dirty" with the guest's state so turn on emulation 831 * to trap any access to the FPU by the host. 832 */ 833 fpu_start_emulating(); 834 } 835 836 static void 837 save_guest_fpustate(struct vcpu *vcpu) 838 { 839 840 if ((rcr0() & CR0_TS) == 0) 841 panic("fpu emulation not enabled in host!"); 842 843 /* save guest XCR0 and restore host XCR0 */ 844 if (rcr4() & CR4_XSAVE) { 845 vcpu->guest_xcr0 = rxcr(0); 846 load_xcr(0, vmm_get_host_xcr0()); 847 } 848 849 /* save guest FPU state */ 850 fpu_stop_emulating(); 851 fpusave(vcpu->guestfpu); 852 fpu_start_emulating(); 853 } 854 855 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 856 857 static int 858 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate, 859 bool from_idle) 860 { 861 int error; 862 863 vcpu_assert_locked(vcpu); 864 865 /* 866 * State transitions from the vmmdev_ioctl() must always begin from 867 * the VCPU_IDLE state. This guarantees that there is only a single 868 * ioctl() operating on a vcpu at any point. 869 */ 870 if (from_idle) { 871 while (vcpu->state != VCPU_IDLE) 872 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 873 } else { 874 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 875 "vcpu idle state")); 876 } 877 878 if (vcpu->state == VCPU_RUNNING) { 879 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 880 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 881 } else { 882 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 883 "vcpu that is not running", vcpu->hostcpu)); 884 } 885 886 /* 887 * The following state transitions are allowed: 888 * IDLE -> FROZEN -> IDLE 889 * FROZEN -> RUNNING -> FROZEN 890 * FROZEN -> SLEEPING -> FROZEN 891 */ 892 switch (vcpu->state) { 893 case VCPU_IDLE: 894 case VCPU_RUNNING: 895 case VCPU_SLEEPING: 896 error = (newstate != VCPU_FROZEN); 897 break; 898 case VCPU_FROZEN: 899 error = (newstate == VCPU_FROZEN); 900 break; 901 default: 902 error = 1; 903 break; 904 } 905 906 if (error) 907 return (EBUSY); 908 909 vcpu->state = newstate; 910 if (newstate == VCPU_RUNNING) 911 vcpu->hostcpu = curcpu; 912 else 913 vcpu->hostcpu = NOCPU; 914 915 if (newstate == VCPU_IDLE) 916 wakeup(&vcpu->state); 917 918 return (0); 919 } 920 921 static void 922 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate) 923 { 924 int error; 925 926 if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0) 927 panic("Error %d setting state to %d\n", error, newstate); 928 } 929 930 static void 931 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate) 932 { 933 int error; 934 935 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0) 936 panic("Error %d setting state to %d", error, newstate); 937 } 938 939 static void 940 vm_set_rendezvous_func(struct vm *vm, vm_rendezvous_func_t func) 941 { 942 943 KASSERT(mtx_owned(&vm->rendezvous_mtx), ("rendezvous_mtx not locked")); 944 945 /* 946 * Update 'rendezvous_func' and execute a write memory barrier to 947 * ensure that it is visible across all host cpus. This is not needed 948 * for correctness but it does ensure that all the vcpus will notice 949 * that the rendezvous is requested immediately. 950 */ 951 vm->rendezvous_func = func; 952 wmb(); 953 } 954 955 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt) \ 956 do { \ 957 if (vcpuid >= 0) \ 958 VCPU_CTR0(vm, vcpuid, fmt); \ 959 else \ 960 VM_CTR0(vm, fmt); \ 961 } while (0) 962 963 static void 964 vm_handle_rendezvous(struct vm *vm, int vcpuid) 965 { 966 967 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU), 968 ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid)); 969 970 mtx_lock(&vm->rendezvous_mtx); 971 while (vm->rendezvous_func != NULL) { 972 if (vcpuid != -1 && 973 CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus)) { 974 VCPU_CTR0(vm, vcpuid, "Calling rendezvous func"); 975 (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg); 976 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 977 } 978 if (CPU_CMP(&vm->rendezvous_req_cpus, 979 &vm->rendezvous_done_cpus) == 0) { 980 VCPU_CTR0(vm, vcpuid, "Rendezvous completed"); 981 vm_set_rendezvous_func(vm, NULL); 982 wakeup(&vm->rendezvous_func); 983 break; 984 } 985 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion"); 986 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 987 "vmrndv", 0); 988 } 989 mtx_unlock(&vm->rendezvous_mtx); 990 } 991 992 /* 993 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 994 */ 995 static int 996 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu) 997 { 998 struct vm_exit *vmexit; 999 struct vcpu *vcpu; 1000 int t, timo; 1001 1002 vcpu = &vm->vcpu[vcpuid]; 1003 1004 vcpu_lock(vcpu); 1005 1006 /* 1007 * Do a final check for pending NMI or interrupts before 1008 * really putting this thread to sleep. 1009 * 1010 * These interrupts could have happened any time after we 1011 * returned from VMRUN() and before we grabbed the vcpu lock. 1012 */ 1013 if (!vm_nmi_pending(vm, vcpuid) && 1014 (intr_disabled || !vlapic_pending_intr(vcpu->vlapic, NULL))) { 1015 t = ticks; 1016 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1017 if (vlapic_enabled(vcpu->vlapic)) { 1018 /* 1019 * XXX msleep_spin() is not interruptible so use the 1020 * 'timo' to put an upper bound on the sleep time. 1021 */ 1022 timo = hz; 1023 msleep_spin(vcpu, &vcpu->mtx, "vmidle", timo); 1024 } else { 1025 /* 1026 * Spindown the vcpu if the apic is disabled and it 1027 * had entered the halted state. 1028 */ 1029 *retu = true; 1030 vmexit = vm_exitinfo(vm, vcpuid); 1031 vmexit->exitcode = VM_EXITCODE_SPINDOWN_CPU; 1032 vm_deactivate_cpu(vm, vcpuid); 1033 VCPU_CTR0(vm, vcpuid, "spinning down cpu"); 1034 } 1035 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1036 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t); 1037 } 1038 vcpu_unlock(vcpu); 1039 1040 return (0); 1041 } 1042 1043 static int 1044 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu) 1045 { 1046 int rv, ftype; 1047 struct vm_map *map; 1048 struct vcpu *vcpu; 1049 struct vm_exit *vme; 1050 1051 vcpu = &vm->vcpu[vcpuid]; 1052 vme = &vcpu->exitinfo; 1053 1054 ftype = vme->u.paging.fault_type; 1055 KASSERT(ftype == VM_PROT_READ || 1056 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1057 ("vm_handle_paging: invalid fault_type %d", ftype)); 1058 1059 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1060 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1061 vme->u.paging.gpa, ftype); 1062 if (rv == 0) 1063 goto done; 1064 } 1065 1066 map = &vm->vmspace->vm_map; 1067 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL); 1068 1069 VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, " 1070 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1071 1072 if (rv != KERN_SUCCESS) 1073 return (EFAULT); 1074 done: 1075 /* restart execution at the faulting instruction */ 1076 vme->inst_length = 0; 1077 1078 return (0); 1079 } 1080 1081 static int 1082 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu) 1083 { 1084 struct vie *vie; 1085 struct vcpu *vcpu; 1086 struct vm_exit *vme; 1087 int error, inst_length; 1088 uint64_t rip, gla, gpa, cr3; 1089 enum vie_cpu_mode cpu_mode; 1090 enum vie_paging_mode paging_mode; 1091 mem_region_read_t mread; 1092 mem_region_write_t mwrite; 1093 1094 vcpu = &vm->vcpu[vcpuid]; 1095 vme = &vcpu->exitinfo; 1096 1097 rip = vme->rip; 1098 inst_length = vme->inst_length; 1099 1100 gla = vme->u.inst_emul.gla; 1101 gpa = vme->u.inst_emul.gpa; 1102 cr3 = vme->u.inst_emul.cr3; 1103 cpu_mode = vme->u.inst_emul.cpu_mode; 1104 paging_mode = vme->u.inst_emul.paging_mode; 1105 vie = &vme->u.inst_emul.vie; 1106 1107 vie_init(vie); 1108 1109 /* Fetch, decode and emulate the faulting instruction */ 1110 if (vmm_fetch_instruction(vm, vcpuid, rip, inst_length, cr3, 1111 paging_mode, vie) != 0) 1112 return (EFAULT); 1113 1114 if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, vie) != 0) 1115 return (EFAULT); 1116 1117 /* return to userland unless this is an in-kernel emulated device */ 1118 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1119 mread = lapic_mmio_read; 1120 mwrite = lapic_mmio_write; 1121 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1122 mread = vioapic_mmio_read; 1123 mwrite = vioapic_mmio_write; 1124 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1125 mread = vhpet_mmio_read; 1126 mwrite = vhpet_mmio_write; 1127 } else { 1128 *retu = true; 1129 return (0); 1130 } 1131 1132 error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, mread, mwrite, 1133 retu); 1134 1135 return (error); 1136 } 1137 1138 int 1139 vm_run(struct vm *vm, struct vm_run *vmrun) 1140 { 1141 int error, vcpuid; 1142 struct vcpu *vcpu; 1143 struct pcb *pcb; 1144 uint64_t tscval, rip; 1145 struct vm_exit *vme; 1146 bool retu, intr_disabled; 1147 pmap_t pmap; 1148 1149 vcpuid = vmrun->cpuid; 1150 1151 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1152 return (EINVAL); 1153 1154 pmap = vmspace_pmap(vm->vmspace); 1155 vcpu = &vm->vcpu[vcpuid]; 1156 vme = &vcpu->exitinfo; 1157 rip = vmrun->rip; 1158 restart: 1159 critical_enter(); 1160 1161 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1162 ("vm_run: absurd pm_active")); 1163 1164 tscval = rdtsc(); 1165 1166 pcb = PCPU_GET(curpcb); 1167 set_pcb_flags(pcb, PCB_FULL_IRET); 1168 1169 restore_guest_msrs(vm, vcpuid); 1170 restore_guest_fpustate(vcpu); 1171 1172 vcpu_require_state(vm, vcpuid, VCPU_RUNNING); 1173 error = VMRUN(vm->cookie, vcpuid, rip, pmap, &vm->rendezvous_func); 1174 vcpu_require_state(vm, vcpuid, VCPU_FROZEN); 1175 1176 save_guest_fpustate(vcpu); 1177 restore_host_msrs(vm, vcpuid); 1178 1179 vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1180 1181 critical_exit(); 1182 1183 if (error == 0) { 1184 retu = false; 1185 switch (vme->exitcode) { 1186 case VM_EXITCODE_IOAPIC_EOI: 1187 vioapic_process_eoi(vm, vcpuid, 1188 vme->u.ioapic_eoi.vector); 1189 break; 1190 case VM_EXITCODE_RENDEZVOUS: 1191 vm_handle_rendezvous(vm, vcpuid); 1192 error = 0; 1193 break; 1194 case VM_EXITCODE_HLT: 1195 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1196 error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu); 1197 break; 1198 case VM_EXITCODE_PAGING: 1199 error = vm_handle_paging(vm, vcpuid, &retu); 1200 break; 1201 case VM_EXITCODE_INST_EMUL: 1202 error = vm_handle_inst_emul(vm, vcpuid, &retu); 1203 break; 1204 default: 1205 retu = true; /* handled in userland */ 1206 break; 1207 } 1208 } 1209 1210 if (error == 0 && retu == false) { 1211 rip = vme->rip + vme->inst_length; 1212 goto restart; 1213 } 1214 1215 /* copy the exit information */ 1216 bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit)); 1217 return (error); 1218 } 1219 1220 int 1221 vm_inject_exception(struct vm *vm, int vcpuid, struct vm_exception *exception) 1222 { 1223 struct vcpu *vcpu; 1224 1225 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1226 return (EINVAL); 1227 1228 if (exception->vector < 0 || exception->vector >= 32) 1229 return (EINVAL); 1230 1231 vcpu = &vm->vcpu[vcpuid]; 1232 1233 if (vcpu->exception_pending) { 1234 VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to " 1235 "pending exception %d", exception->vector, 1236 vcpu->exception.vector); 1237 return (EBUSY); 1238 } 1239 1240 vcpu->exception_pending = 1; 1241 vcpu->exception = *exception; 1242 VCPU_CTR1(vm, vcpuid, "Exception %d pending", exception->vector); 1243 return (0); 1244 } 1245 1246 int 1247 vm_exception_pending(struct vm *vm, int vcpuid, struct vm_exception *exception) 1248 { 1249 struct vcpu *vcpu; 1250 int pending; 1251 1252 KASSERT(vcpuid >= 0 && vcpuid < VM_MAXCPU, ("invalid vcpu %d", vcpuid)); 1253 1254 vcpu = &vm->vcpu[vcpuid]; 1255 pending = vcpu->exception_pending; 1256 if (pending) { 1257 vcpu->exception_pending = 0; 1258 *exception = vcpu->exception; 1259 VCPU_CTR1(vm, vcpuid, "Exception %d delivered", 1260 exception->vector); 1261 } 1262 return (pending); 1263 } 1264 1265 static void 1266 vm_inject_fault(struct vm *vm, int vcpuid, struct vm_exception *exception) 1267 { 1268 struct vm_exit *vmexit; 1269 int error; 1270 1271 error = vm_inject_exception(vm, vcpuid, exception); 1272 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 1273 1274 /* 1275 * A fault-like exception allows the instruction to be restarted 1276 * after the exception handler returns. 1277 * 1278 * By setting the inst_length to 0 we ensure that the instruction 1279 * pointer remains at the faulting instruction. 1280 */ 1281 vmexit = vm_exitinfo(vm, vcpuid); 1282 vmexit->inst_length = 0; 1283 } 1284 1285 void 1286 vm_inject_gp(struct vm *vm, int vcpuid) 1287 { 1288 struct vm_exception gpf = { 1289 .vector = IDT_GP, 1290 .error_code_valid = 1, 1291 .error_code = 0 1292 }; 1293 1294 vm_inject_fault(vm, vcpuid, &gpf); 1295 } 1296 1297 void 1298 vm_inject_ud(struct vm *vm, int vcpuid) 1299 { 1300 struct vm_exception udf = { 1301 .vector = IDT_UD, 1302 .error_code_valid = 0 1303 }; 1304 1305 vm_inject_fault(vm, vcpuid, &udf); 1306 } 1307 1308 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 1309 1310 int 1311 vm_inject_nmi(struct vm *vm, int vcpuid) 1312 { 1313 struct vcpu *vcpu; 1314 1315 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1316 return (EINVAL); 1317 1318 vcpu = &vm->vcpu[vcpuid]; 1319 1320 vcpu->nmi_pending = 1; 1321 vcpu_notify_event(vm, vcpuid, false); 1322 return (0); 1323 } 1324 1325 int 1326 vm_nmi_pending(struct vm *vm, int vcpuid) 1327 { 1328 struct vcpu *vcpu; 1329 1330 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1331 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 1332 1333 vcpu = &vm->vcpu[vcpuid]; 1334 1335 return (vcpu->nmi_pending); 1336 } 1337 1338 void 1339 vm_nmi_clear(struct vm *vm, int vcpuid) 1340 { 1341 struct vcpu *vcpu; 1342 1343 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1344 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 1345 1346 vcpu = &vm->vcpu[vcpuid]; 1347 1348 if (vcpu->nmi_pending == 0) 1349 panic("vm_nmi_clear: inconsistent nmi_pending state"); 1350 1351 vcpu->nmi_pending = 0; 1352 vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1); 1353 } 1354 1355 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 1356 1357 int 1358 vm_inject_extint(struct vm *vm, int vcpuid) 1359 { 1360 struct vcpu *vcpu; 1361 1362 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1363 return (EINVAL); 1364 1365 vcpu = &vm->vcpu[vcpuid]; 1366 1367 vcpu->extint_pending = 1; 1368 vcpu_notify_event(vm, vcpuid, false); 1369 return (0); 1370 } 1371 1372 int 1373 vm_extint_pending(struct vm *vm, int vcpuid) 1374 { 1375 struct vcpu *vcpu; 1376 1377 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1378 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 1379 1380 vcpu = &vm->vcpu[vcpuid]; 1381 1382 return (vcpu->extint_pending); 1383 } 1384 1385 void 1386 vm_extint_clear(struct vm *vm, int vcpuid) 1387 { 1388 struct vcpu *vcpu; 1389 1390 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1391 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 1392 1393 vcpu = &vm->vcpu[vcpuid]; 1394 1395 if (vcpu->extint_pending == 0) 1396 panic("vm_extint_clear: inconsistent extint_pending state"); 1397 1398 vcpu->extint_pending = 0; 1399 vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1); 1400 } 1401 1402 int 1403 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval) 1404 { 1405 if (vcpu < 0 || vcpu >= VM_MAXCPU) 1406 return (EINVAL); 1407 1408 if (type < 0 || type >= VM_CAP_MAX) 1409 return (EINVAL); 1410 1411 return (VMGETCAP(vm->cookie, vcpu, type, retval)); 1412 } 1413 1414 int 1415 vm_set_capability(struct vm *vm, int vcpu, int type, int val) 1416 { 1417 if (vcpu < 0 || vcpu >= VM_MAXCPU) 1418 return (EINVAL); 1419 1420 if (type < 0 || type >= VM_CAP_MAX) 1421 return (EINVAL); 1422 1423 return (VMSETCAP(vm->cookie, vcpu, type, val)); 1424 } 1425 1426 uint64_t * 1427 vm_guest_msrs(struct vm *vm, int cpu) 1428 { 1429 return (vm->vcpu[cpu].guest_msrs); 1430 } 1431 1432 struct vlapic * 1433 vm_lapic(struct vm *vm, int cpu) 1434 { 1435 return (vm->vcpu[cpu].vlapic); 1436 } 1437 1438 struct vioapic * 1439 vm_ioapic(struct vm *vm) 1440 { 1441 1442 return (vm->vioapic); 1443 } 1444 1445 struct vhpet * 1446 vm_hpet(struct vm *vm) 1447 { 1448 1449 return (vm->vhpet); 1450 } 1451 1452 boolean_t 1453 vmm_is_pptdev(int bus, int slot, int func) 1454 { 1455 int found, i, n; 1456 int b, s, f; 1457 char *val, *cp, *cp2; 1458 1459 /* 1460 * XXX 1461 * The length of an environment variable is limited to 128 bytes which 1462 * puts an upper limit on the number of passthru devices that may be 1463 * specified using a single environment variable. 1464 * 1465 * Work around this by scanning multiple environment variable 1466 * names instead of a single one - yuck! 1467 */ 1468 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 1469 1470 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 1471 found = 0; 1472 for (i = 0; names[i] != NULL && !found; i++) { 1473 cp = val = getenv(names[i]); 1474 while (cp != NULL && *cp != '\0') { 1475 if ((cp2 = strchr(cp, ' ')) != NULL) 1476 *cp2 = '\0'; 1477 1478 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 1479 if (n == 3 && bus == b && slot == s && func == f) { 1480 found = 1; 1481 break; 1482 } 1483 1484 if (cp2 != NULL) 1485 *cp2++ = ' '; 1486 1487 cp = cp2; 1488 } 1489 freeenv(val); 1490 } 1491 return (found); 1492 } 1493 1494 void * 1495 vm_iommu_domain(struct vm *vm) 1496 { 1497 1498 return (vm->iommu); 1499 } 1500 1501 int 1502 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate, 1503 bool from_idle) 1504 { 1505 int error; 1506 struct vcpu *vcpu; 1507 1508 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1509 panic("vm_set_run_state: invalid vcpuid %d", vcpuid); 1510 1511 vcpu = &vm->vcpu[vcpuid]; 1512 1513 vcpu_lock(vcpu); 1514 error = vcpu_set_state_locked(vcpu, newstate, from_idle); 1515 vcpu_unlock(vcpu); 1516 1517 return (error); 1518 } 1519 1520 enum vcpu_state 1521 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu) 1522 { 1523 struct vcpu *vcpu; 1524 enum vcpu_state state; 1525 1526 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1527 panic("vm_get_run_state: invalid vcpuid %d", vcpuid); 1528 1529 vcpu = &vm->vcpu[vcpuid]; 1530 1531 vcpu_lock(vcpu); 1532 state = vcpu->state; 1533 if (hostcpu != NULL) 1534 *hostcpu = vcpu->hostcpu; 1535 vcpu_unlock(vcpu); 1536 1537 return (state); 1538 } 1539 1540 void 1541 vm_activate_cpu(struct vm *vm, int vcpuid) 1542 { 1543 1544 if (vcpuid >= 0 && vcpuid < VM_MAXCPU) 1545 CPU_SET(vcpuid, &vm->active_cpus); 1546 } 1547 1548 static void 1549 vm_deactivate_cpu(struct vm *vm, int vcpuid) 1550 { 1551 1552 if (vcpuid >= 0 && vcpuid < VM_MAXCPU) 1553 CPU_CLR(vcpuid, &vm->active_cpus); 1554 } 1555 1556 cpuset_t 1557 vm_active_cpus(struct vm *vm) 1558 { 1559 1560 return (vm->active_cpus); 1561 } 1562 1563 void * 1564 vcpu_stats(struct vm *vm, int vcpuid) 1565 { 1566 1567 return (vm->vcpu[vcpuid].stats); 1568 } 1569 1570 int 1571 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state) 1572 { 1573 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1574 return (EINVAL); 1575 1576 *state = vm->vcpu[vcpuid].x2apic_state; 1577 1578 return (0); 1579 } 1580 1581 int 1582 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state) 1583 { 1584 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1585 return (EINVAL); 1586 1587 if (state >= X2APIC_STATE_LAST) 1588 return (EINVAL); 1589 1590 vm->vcpu[vcpuid].x2apic_state = state; 1591 1592 vlapic_set_x2apic_state(vm, vcpuid, state); 1593 1594 return (0); 1595 } 1596 1597 /* 1598 * This function is called to ensure that a vcpu "sees" a pending event 1599 * as soon as possible: 1600 * - If the vcpu thread is sleeping then it is woken up. 1601 * - If the vcpu is running on a different host_cpu then an IPI will be directed 1602 * to the host_cpu to cause the vcpu to trap into the hypervisor. 1603 */ 1604 void 1605 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr) 1606 { 1607 int hostcpu; 1608 struct vcpu *vcpu; 1609 1610 vcpu = &vm->vcpu[vcpuid]; 1611 1612 vcpu_lock(vcpu); 1613 hostcpu = vcpu->hostcpu; 1614 if (vcpu->state == VCPU_RUNNING) { 1615 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 1616 if (hostcpu != curcpu) { 1617 if (lapic_intr) { 1618 vlapic_post_intr(vcpu->vlapic, hostcpu, 1619 vmm_ipinum); 1620 } else { 1621 ipi_cpu(hostcpu, vmm_ipinum); 1622 } 1623 } else { 1624 /* 1625 * If the 'vcpu' is running on 'curcpu' then it must 1626 * be sending a notification to itself (e.g. SELF_IPI). 1627 * The pending event will be picked up when the vcpu 1628 * transitions back to guest context. 1629 */ 1630 } 1631 } else { 1632 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 1633 "with hostcpu %d", vcpu->state, hostcpu)); 1634 if (vcpu->state == VCPU_SLEEPING) 1635 wakeup_one(vcpu); 1636 } 1637 vcpu_unlock(vcpu); 1638 } 1639 1640 struct vmspace * 1641 vm_get_vmspace(struct vm *vm) 1642 { 1643 1644 return (vm->vmspace); 1645 } 1646 1647 int 1648 vm_apicid2vcpuid(struct vm *vm, int apicid) 1649 { 1650 /* 1651 * XXX apic id is assumed to be numerically identical to vcpu id 1652 */ 1653 return (apicid); 1654 } 1655 1656 void 1657 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest, 1658 vm_rendezvous_func_t func, void *arg) 1659 { 1660 /* 1661 * Enforce that this function is called without any locks 1662 */ 1663 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 1664 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU), 1665 ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid)); 1666 1667 restart: 1668 mtx_lock(&vm->rendezvous_mtx); 1669 if (vm->rendezvous_func != NULL) { 1670 /* 1671 * If a rendezvous is already in progress then we need to 1672 * call the rendezvous handler in case this 'vcpuid' is one 1673 * of the targets of the rendezvous. 1674 */ 1675 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress"); 1676 mtx_unlock(&vm->rendezvous_mtx); 1677 vm_handle_rendezvous(vm, vcpuid); 1678 goto restart; 1679 } 1680 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 1681 "rendezvous is still in progress")); 1682 1683 RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous"); 1684 vm->rendezvous_req_cpus = dest; 1685 CPU_ZERO(&vm->rendezvous_done_cpus); 1686 vm->rendezvous_arg = arg; 1687 vm_set_rendezvous_func(vm, func); 1688 mtx_unlock(&vm->rendezvous_mtx); 1689 1690 vm_handle_rendezvous(vm, vcpuid); 1691 } 1692 1693 struct vatpic * 1694 vm_atpic(struct vm *vm) 1695 { 1696 return (vm->vatpic); 1697 } 1698