1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include "opt_bhyve_snapshot.h" 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/sysctl.h> 37 #include <sys/malloc.h> 38 #include <sys/pcpu.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/proc.h> 42 #include <sys/rwlock.h> 43 #include <sys/sched.h> 44 #include <sys/smp.h> 45 #include <sys/sx.h> 46 #include <sys/vnode.h> 47 48 #include <vm/vm.h> 49 #include <vm/vm_param.h> 50 #include <vm/vm_extern.h> 51 #include <vm/vm_object.h> 52 #include <vm/vm_page.h> 53 #include <vm/pmap.h> 54 #include <vm/vm_map.h> 55 #include <vm/vm_pager.h> 56 #include <vm/vm_kern.h> 57 #include <vm/vnode_pager.h> 58 #include <vm/swap_pager.h> 59 #include <vm/uma.h> 60 61 #include <machine/cpu.h> 62 #include <machine/pcb.h> 63 #include <machine/smp.h> 64 #include <machine/md_var.h> 65 #include <x86/psl.h> 66 #include <x86/apicreg.h> 67 #include <x86/ifunc.h> 68 69 #include <machine/vmm.h> 70 #include <machine/vmm_instruction_emul.h> 71 #include <machine/vmm_snapshot.h> 72 73 #include <dev/vmm/vmm_dev.h> 74 #include <dev/vmm/vmm_ktr.h> 75 76 #include "vmm_ioport.h" 77 #include "vmm_host.h" 78 #include "vmm_mem.h" 79 #include "vmm_util.h" 80 #include "vatpic.h" 81 #include "vatpit.h" 82 #include "vhpet.h" 83 #include "vioapic.h" 84 #include "vlapic.h" 85 #include "vpmtmr.h" 86 #include "vrtc.h" 87 #include "vmm_stat.h" 88 #include "vmm_lapic.h" 89 90 #include "io/ppt.h" 91 #include "io/iommu.h" 92 93 struct vlapic; 94 95 /* 96 * Initialization: 97 * (a) allocated when vcpu is created 98 * (i) initialized when vcpu is created and when it is reinitialized 99 * (o) initialized the first time the vcpu is created 100 * (x) initialized before use 101 */ 102 struct vcpu { 103 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 104 enum vcpu_state state; /* (o) vcpu state */ 105 int vcpuid; /* (o) */ 106 int hostcpu; /* (o) vcpu's host cpu */ 107 int reqidle; /* (i) request vcpu to idle */ 108 struct vm *vm; /* (o) */ 109 void *cookie; /* (i) cpu-specific data */ 110 struct vlapic *vlapic; /* (i) APIC device model */ 111 enum x2apic_state x2apic_state; /* (i) APIC mode */ 112 uint64_t exitintinfo; /* (i) events pending at VM exit */ 113 int nmi_pending; /* (i) NMI pending */ 114 int extint_pending; /* (i) INTR pending */ 115 int exception_pending; /* (i) exception pending */ 116 int exc_vector; /* (x) exception collateral */ 117 int exc_errcode_valid; 118 uint32_t exc_errcode; 119 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 120 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 121 void *stats; /* (a,i) statistics */ 122 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 123 cpuset_t exitinfo_cpuset; /* (x) storage for vmexit handlers */ 124 uint64_t nextrip; /* (x) next instruction to execute */ 125 uint64_t tsc_offset; /* (o) TSC offsetting */ 126 }; 127 128 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 129 #define vcpu_lock_destroy(v) mtx_destroy(&((v)->mtx)) 130 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 131 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 132 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 133 134 struct mem_seg { 135 size_t len; 136 bool sysmem; 137 struct vm_object *object; 138 }; 139 #define VM_MAX_MEMSEGS 4 140 141 struct mem_map { 142 vm_paddr_t gpa; 143 size_t len; 144 vm_ooffset_t segoff; 145 int segid; 146 int prot; 147 int flags; 148 }; 149 #define VM_MAX_MEMMAPS 8 150 151 /* 152 * Initialization: 153 * (o) initialized the first time the VM is created 154 * (i) initialized when VM is created and when it is reinitialized 155 * (x) initialized before use 156 * 157 * Locking: 158 * [m] mem_segs_lock 159 * [r] rendezvous_mtx 160 * [v] reads require one frozen vcpu, writes require freezing all vcpus 161 */ 162 struct vm { 163 void *cookie; /* (i) cpu-specific data */ 164 void *iommu; /* (x) iommu-specific data */ 165 struct vhpet *vhpet; /* (i) virtual HPET */ 166 struct vioapic *vioapic; /* (i) virtual ioapic */ 167 struct vatpic *vatpic; /* (i) virtual atpic */ 168 struct vatpit *vatpit; /* (i) virtual atpit */ 169 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ 170 struct vrtc *vrtc; /* (o) virtual RTC */ 171 volatile cpuset_t active_cpus; /* (i) active vcpus */ 172 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */ 173 cpuset_t startup_cpus; /* (i) [r] waiting for startup */ 174 int suspend; /* (i) stop VM execution */ 175 bool dying; /* (o) is dying */ 176 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 177 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 178 cpuset_t rendezvous_req_cpus; /* (x) [r] rendezvous requested */ 179 cpuset_t rendezvous_done_cpus; /* (x) [r] rendezvous finished */ 180 void *rendezvous_arg; /* (x) [r] rendezvous func/arg */ 181 vm_rendezvous_func_t rendezvous_func; 182 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 183 struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) [m+v] guest address space */ 184 struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) [m+v] guest memory regions */ 185 struct vmspace *vmspace; /* (o) guest's address space */ 186 char name[VM_MAX_NAMELEN+1]; /* (o) virtual machine name */ 187 struct vcpu **vcpu; /* (o) guest vcpus */ 188 /* The following describe the vm cpu topology */ 189 uint16_t sockets; /* (o) num of sockets */ 190 uint16_t cores; /* (o) num of cores/socket */ 191 uint16_t threads; /* (o) num of threads/core */ 192 uint16_t maxcpus; /* (o) max pluggable cpus */ 193 struct sx mem_segs_lock; /* (o) */ 194 struct sx vcpus_init_lock; /* (o) */ 195 }; 196 197 #define VMM_CTR0(vcpu, format) \ 198 VCPU_CTR0((vcpu)->vm, (vcpu)->vcpuid, format) 199 200 #define VMM_CTR1(vcpu, format, p1) \ 201 VCPU_CTR1((vcpu)->vm, (vcpu)->vcpuid, format, p1) 202 203 #define VMM_CTR2(vcpu, format, p1, p2) \ 204 VCPU_CTR2((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2) 205 206 #define VMM_CTR3(vcpu, format, p1, p2, p3) \ 207 VCPU_CTR3((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3) 208 209 #define VMM_CTR4(vcpu, format, p1, p2, p3, p4) \ 210 VCPU_CTR4((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3, p4) 211 212 static int vmm_initialized; 213 214 static void vmmops_panic(void); 215 216 static void 217 vmmops_panic(void) 218 { 219 panic("vmm_ops func called when !vmm_is_intel() && !vmm_is_svm()"); 220 } 221 222 #define DEFINE_VMMOPS_IFUNC(ret_type, opname, args) \ 223 DEFINE_IFUNC(static, ret_type, vmmops_##opname, args) \ 224 { \ 225 if (vmm_is_intel()) \ 226 return (vmm_ops_intel.opname); \ 227 else if (vmm_is_svm()) \ 228 return (vmm_ops_amd.opname); \ 229 else \ 230 return ((ret_type (*)args)vmmops_panic); \ 231 } 232 233 DEFINE_VMMOPS_IFUNC(int, modinit, (int ipinum)) 234 DEFINE_VMMOPS_IFUNC(int, modcleanup, (void)) 235 DEFINE_VMMOPS_IFUNC(void, modresume, (void)) 236 DEFINE_VMMOPS_IFUNC(void *, init, (struct vm *vm, struct pmap *pmap)) 237 DEFINE_VMMOPS_IFUNC(int, run, (void *vcpui, register_t rip, struct pmap *pmap, 238 struct vm_eventinfo *info)) 239 DEFINE_VMMOPS_IFUNC(void, cleanup, (void *vmi)) 240 DEFINE_VMMOPS_IFUNC(void *, vcpu_init, (void *vmi, struct vcpu *vcpu, 241 int vcpu_id)) 242 DEFINE_VMMOPS_IFUNC(void, vcpu_cleanup, (void *vcpui)) 243 DEFINE_VMMOPS_IFUNC(int, getreg, (void *vcpui, int num, uint64_t *retval)) 244 DEFINE_VMMOPS_IFUNC(int, setreg, (void *vcpui, int num, uint64_t val)) 245 DEFINE_VMMOPS_IFUNC(int, getdesc, (void *vcpui, int num, struct seg_desc *desc)) 246 DEFINE_VMMOPS_IFUNC(int, setdesc, (void *vcpui, int num, struct seg_desc *desc)) 247 DEFINE_VMMOPS_IFUNC(int, getcap, (void *vcpui, int num, int *retval)) 248 DEFINE_VMMOPS_IFUNC(int, setcap, (void *vcpui, int num, int val)) 249 DEFINE_VMMOPS_IFUNC(struct vmspace *, vmspace_alloc, (vm_offset_t min, 250 vm_offset_t max)) 251 DEFINE_VMMOPS_IFUNC(void, vmspace_free, (struct vmspace *vmspace)) 252 DEFINE_VMMOPS_IFUNC(struct vlapic *, vlapic_init, (void *vcpui)) 253 DEFINE_VMMOPS_IFUNC(void, vlapic_cleanup, (struct vlapic *vlapic)) 254 #ifdef BHYVE_SNAPSHOT 255 DEFINE_VMMOPS_IFUNC(int, vcpu_snapshot, (void *vcpui, 256 struct vm_snapshot_meta *meta)) 257 DEFINE_VMMOPS_IFUNC(int, restore_tsc, (void *vcpui, uint64_t now)) 258 #endif 259 260 SDT_PROVIDER_DEFINE(vmm); 261 262 static MALLOC_DEFINE(M_VM, "vm", "vm"); 263 264 /* statistics */ 265 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 266 267 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 268 NULL); 269 270 /* 271 * Halt the guest if all vcpus are executing a HLT instruction with 272 * interrupts disabled. 273 */ 274 static int halt_detection_enabled = 1; 275 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 276 &halt_detection_enabled, 0, 277 "Halt VM if all vcpus execute HLT with interrupts disabled"); 278 279 static int vmm_ipinum; 280 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 281 "IPI vector used for vcpu notifications"); 282 283 static int trace_guest_exceptions; 284 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN, 285 &trace_guest_exceptions, 0, 286 "Trap into hypervisor on all guest exceptions and reflect them back"); 287 288 static int trap_wbinvd; 289 SYSCTL_INT(_hw_vmm, OID_AUTO, trap_wbinvd, CTLFLAG_RDTUN, &trap_wbinvd, 0, 290 "WBINVD triggers a VM-exit"); 291 292 u_int vm_maxcpu; 293 SYSCTL_UINT(_hw_vmm, OID_AUTO, maxcpu, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 294 &vm_maxcpu, 0, "Maximum number of vCPUs"); 295 296 static void vm_free_memmap(struct vm *vm, int ident); 297 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm); 298 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr); 299 300 /* global statistics */ 301 VMM_STAT(VCPU_MIGRATIONS, "vcpu migration across host cpus"); 302 VMM_STAT(VMEXIT_COUNT, "total number of vm exits"); 303 VMM_STAT(VMEXIT_EXTINT, "vm exits due to external interrupt"); 304 VMM_STAT(VMEXIT_HLT, "number of times hlt was intercepted"); 305 VMM_STAT(VMEXIT_CR_ACCESS, "number of times %cr access was intercepted"); 306 VMM_STAT(VMEXIT_RDMSR, "number of times rdmsr was intercepted"); 307 VMM_STAT(VMEXIT_WRMSR, "number of times wrmsr was intercepted"); 308 VMM_STAT(VMEXIT_MTRAP, "number of monitor trap exits"); 309 VMM_STAT(VMEXIT_PAUSE, "number of times pause was intercepted"); 310 VMM_STAT(VMEXIT_INTR_WINDOW, "vm exits due to interrupt window opening"); 311 VMM_STAT(VMEXIT_NMI_WINDOW, "vm exits due to nmi window opening"); 312 VMM_STAT(VMEXIT_INOUT, "number of times in/out was intercepted"); 313 VMM_STAT(VMEXIT_CPUID, "number of times cpuid was intercepted"); 314 VMM_STAT(VMEXIT_NESTED_FAULT, "vm exits due to nested page fault"); 315 VMM_STAT(VMEXIT_INST_EMUL, "vm exits for instruction emulation"); 316 VMM_STAT(VMEXIT_UNKNOWN, "number of vm exits for unknown reason"); 317 VMM_STAT(VMEXIT_ASTPENDING, "number of times astpending at exit"); 318 VMM_STAT(VMEXIT_REQIDLE, "number of times idle requested at exit"); 319 VMM_STAT(VMEXIT_USERSPACE, "number of vm exits handled in userspace"); 320 VMM_STAT(VMEXIT_RENDEZVOUS, "number of times rendezvous pending at exit"); 321 VMM_STAT(VMEXIT_EXCEPTION, "number of vm exits due to exceptions"); 322 323 /* 324 * Upper limit on vm_maxcpu. Limited by use of uint16_t types for CPU 325 * counts as well as range of vpid values for VT-x and by the capacity 326 * of cpuset_t masks. The call to new_unrhdr() in vpid_init() in 327 * vmx.c requires 'vm_maxcpu + 1 <= 0xffff', hence the '- 1' below. 328 */ 329 #define VM_MAXCPU MIN(0xffff - 1, CPU_SETSIZE) 330 331 #ifdef KTR 332 static const char * 333 vcpu_state2str(enum vcpu_state state) 334 { 335 336 switch (state) { 337 case VCPU_IDLE: 338 return ("idle"); 339 case VCPU_FROZEN: 340 return ("frozen"); 341 case VCPU_RUNNING: 342 return ("running"); 343 case VCPU_SLEEPING: 344 return ("sleeping"); 345 default: 346 return ("unknown"); 347 } 348 } 349 #endif 350 351 static void 352 vcpu_cleanup(struct vcpu *vcpu, bool destroy) 353 { 354 vmmops_vlapic_cleanup(vcpu->vlapic); 355 vmmops_vcpu_cleanup(vcpu->cookie); 356 vcpu->cookie = NULL; 357 if (destroy) { 358 vmm_stat_free(vcpu->stats); 359 fpu_save_area_free(vcpu->guestfpu); 360 vcpu_lock_destroy(vcpu); 361 free(vcpu, M_VM); 362 } 363 } 364 365 static struct vcpu * 366 vcpu_alloc(struct vm *vm, int vcpu_id) 367 { 368 struct vcpu *vcpu; 369 370 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus, 371 ("vcpu_init: invalid vcpu %d", vcpu_id)); 372 373 vcpu = malloc(sizeof(*vcpu), M_VM, M_WAITOK | M_ZERO); 374 vcpu_lock_init(vcpu); 375 vcpu->state = VCPU_IDLE; 376 vcpu->hostcpu = NOCPU; 377 vcpu->vcpuid = vcpu_id; 378 vcpu->vm = vm; 379 vcpu->guestfpu = fpu_save_area_alloc(); 380 vcpu->stats = vmm_stat_alloc(); 381 vcpu->tsc_offset = 0; 382 return (vcpu); 383 } 384 385 static void 386 vcpu_init(struct vcpu *vcpu) 387 { 388 vcpu->cookie = vmmops_vcpu_init(vcpu->vm->cookie, vcpu, vcpu->vcpuid); 389 vcpu->vlapic = vmmops_vlapic_init(vcpu->cookie); 390 vm_set_x2apic_state(vcpu, X2APIC_DISABLED); 391 vcpu->reqidle = 0; 392 vcpu->exitintinfo = 0; 393 vcpu->nmi_pending = 0; 394 vcpu->extint_pending = 0; 395 vcpu->exception_pending = 0; 396 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 397 fpu_save_area_reset(vcpu->guestfpu); 398 vmm_stat_init(vcpu->stats); 399 } 400 401 int 402 vcpu_trace_exceptions(struct vcpu *vcpu) 403 { 404 405 return (trace_guest_exceptions); 406 } 407 408 int 409 vcpu_trap_wbinvd(struct vcpu *vcpu) 410 { 411 return (trap_wbinvd); 412 } 413 414 struct vm_exit * 415 vm_exitinfo(struct vcpu *vcpu) 416 { 417 return (&vcpu->exitinfo); 418 } 419 420 cpuset_t * 421 vm_exitinfo_cpuset(struct vcpu *vcpu) 422 { 423 return (&vcpu->exitinfo_cpuset); 424 } 425 426 static int 427 vmm_init(void) 428 { 429 int error; 430 431 if (!vmm_is_hw_supported()) 432 return (ENXIO); 433 434 vm_maxcpu = mp_ncpus; 435 TUNABLE_INT_FETCH("hw.vmm.maxcpu", &vm_maxcpu); 436 437 if (vm_maxcpu > VM_MAXCPU) { 438 printf("vmm: vm_maxcpu clamped to %u\n", VM_MAXCPU); 439 vm_maxcpu = VM_MAXCPU; 440 } 441 if (vm_maxcpu == 0) 442 vm_maxcpu = 1; 443 444 vmm_host_state_init(); 445 446 vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) : 447 &IDTVEC(justreturn)); 448 if (vmm_ipinum < 0) 449 vmm_ipinum = IPI_AST; 450 451 error = vmm_mem_init(); 452 if (error) 453 return (error); 454 455 vmm_resume_p = vmmops_modresume; 456 457 return (vmmops_modinit(vmm_ipinum)); 458 } 459 460 static int 461 vmm_handler(module_t mod, int what, void *arg) 462 { 463 int error; 464 465 switch (what) { 466 case MOD_LOAD: 467 if (vmm_is_hw_supported()) { 468 error = vmmdev_init(); 469 if (error != 0) 470 break; 471 error = vmm_init(); 472 if (error == 0) 473 vmm_initialized = 1; 474 } else { 475 error = ENXIO; 476 } 477 break; 478 case MOD_UNLOAD: 479 if (vmm_is_hw_supported()) { 480 error = vmmdev_cleanup(); 481 if (error == 0) { 482 vmm_resume_p = NULL; 483 iommu_cleanup(); 484 if (vmm_ipinum != IPI_AST) 485 lapic_ipi_free(vmm_ipinum); 486 error = vmmops_modcleanup(); 487 /* 488 * Something bad happened - prevent new 489 * VMs from being created 490 */ 491 if (error) 492 vmm_initialized = 0; 493 } 494 } else { 495 error = 0; 496 } 497 break; 498 default: 499 error = 0; 500 break; 501 } 502 return (error); 503 } 504 505 static moduledata_t vmm_kmod = { 506 "vmm", 507 vmm_handler, 508 NULL 509 }; 510 511 /* 512 * vmm initialization has the following dependencies: 513 * 514 * - VT-x initialization requires smp_rendezvous() and therefore must happen 515 * after SMP is fully functional (after SI_SUB_SMP). 516 * - vmm device initialization requires an initialized devfs. 517 */ 518 DECLARE_MODULE(vmm, vmm_kmod, MAX(SI_SUB_SMP, SI_SUB_DEVFS) + 1, SI_ORDER_ANY); 519 MODULE_VERSION(vmm, 1); 520 521 static void 522 vm_init(struct vm *vm, bool create) 523 { 524 vm->cookie = vmmops_init(vm, vmspace_pmap(vm->vmspace)); 525 vm->iommu = NULL; 526 vm->vioapic = vioapic_init(vm); 527 vm->vhpet = vhpet_init(vm); 528 vm->vatpic = vatpic_init(vm); 529 vm->vatpit = vatpit_init(vm); 530 vm->vpmtmr = vpmtmr_init(vm); 531 if (create) 532 vm->vrtc = vrtc_init(vm); 533 534 CPU_ZERO(&vm->active_cpus); 535 CPU_ZERO(&vm->debug_cpus); 536 CPU_ZERO(&vm->startup_cpus); 537 538 vm->suspend = 0; 539 CPU_ZERO(&vm->suspended_cpus); 540 541 if (!create) { 542 for (int i = 0; i < vm->maxcpus; i++) { 543 if (vm->vcpu[i] != NULL) 544 vcpu_init(vm->vcpu[i]); 545 } 546 } 547 } 548 549 void 550 vm_disable_vcpu_creation(struct vm *vm) 551 { 552 sx_xlock(&vm->vcpus_init_lock); 553 vm->dying = true; 554 sx_xunlock(&vm->vcpus_init_lock); 555 } 556 557 struct vcpu * 558 vm_alloc_vcpu(struct vm *vm, int vcpuid) 559 { 560 struct vcpu *vcpu; 561 562 if (vcpuid < 0 || vcpuid >= vm_get_maxcpus(vm)) 563 return (NULL); 564 565 vcpu = (struct vcpu *) 566 atomic_load_acq_ptr((uintptr_t *)&vm->vcpu[vcpuid]); 567 if (__predict_true(vcpu != NULL)) 568 return (vcpu); 569 570 sx_xlock(&vm->vcpus_init_lock); 571 vcpu = vm->vcpu[vcpuid]; 572 if (vcpu == NULL && !vm->dying) { 573 vcpu = vcpu_alloc(vm, vcpuid); 574 vcpu_init(vcpu); 575 576 /* 577 * Ensure vCPU is fully created before updating pointer 578 * to permit unlocked reads above. 579 */ 580 atomic_store_rel_ptr((uintptr_t *)&vm->vcpu[vcpuid], 581 (uintptr_t)vcpu); 582 } 583 sx_xunlock(&vm->vcpus_init_lock); 584 return (vcpu); 585 } 586 587 void 588 vm_slock_vcpus(struct vm *vm) 589 { 590 sx_slock(&vm->vcpus_init_lock); 591 } 592 593 void 594 vm_unlock_vcpus(struct vm *vm) 595 { 596 sx_unlock(&vm->vcpus_init_lock); 597 } 598 599 /* 600 * The default CPU topology is a single thread per package. 601 */ 602 u_int cores_per_package = 1; 603 u_int threads_per_core = 1; 604 605 int 606 vm_create(const char *name, struct vm **retvm) 607 { 608 struct vm *vm; 609 struct vmspace *vmspace; 610 611 /* 612 * If vmm.ko could not be successfully initialized then don't attempt 613 * to create the virtual machine. 614 */ 615 if (!vmm_initialized) 616 return (ENXIO); 617 618 if (name == NULL || strnlen(name, VM_MAX_NAMELEN + 1) == 619 VM_MAX_NAMELEN + 1) 620 return (EINVAL); 621 622 vmspace = vmmops_vmspace_alloc(0, VM_MAXUSER_ADDRESS_LA48); 623 if (vmspace == NULL) 624 return (ENOMEM); 625 626 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 627 strcpy(vm->name, name); 628 vm->vmspace = vmspace; 629 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 630 sx_init(&vm->mem_segs_lock, "vm mem_segs"); 631 sx_init(&vm->vcpus_init_lock, "vm vcpus"); 632 vm->vcpu = malloc(sizeof(*vm->vcpu) * vm_maxcpu, M_VM, M_WAITOK | 633 M_ZERO); 634 635 vm->sockets = 1; 636 vm->cores = cores_per_package; /* XXX backwards compatibility */ 637 vm->threads = threads_per_core; /* XXX backwards compatibility */ 638 vm->maxcpus = vm_maxcpu; 639 640 vm_init(vm, true); 641 642 *retvm = vm; 643 return (0); 644 } 645 646 void 647 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, 648 uint16_t *threads, uint16_t *maxcpus) 649 { 650 *sockets = vm->sockets; 651 *cores = vm->cores; 652 *threads = vm->threads; 653 *maxcpus = vm->maxcpus; 654 } 655 656 uint16_t 657 vm_get_maxcpus(struct vm *vm) 658 { 659 return (vm->maxcpus); 660 } 661 662 int 663 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, 664 uint16_t threads, uint16_t maxcpus __unused) 665 { 666 /* Ignore maxcpus. */ 667 if ((sockets * cores * threads) > vm->maxcpus) 668 return (EINVAL); 669 vm->sockets = sockets; 670 vm->cores = cores; 671 vm->threads = threads; 672 return(0); 673 } 674 675 static void 676 vm_cleanup(struct vm *vm, bool destroy) 677 { 678 struct mem_map *mm; 679 int i; 680 681 if (destroy) 682 vm_xlock_memsegs(vm); 683 684 ppt_unassign_all(vm); 685 686 if (vm->iommu != NULL) 687 iommu_destroy_domain(vm->iommu); 688 689 if (destroy) 690 vrtc_cleanup(vm->vrtc); 691 else 692 vrtc_reset(vm->vrtc); 693 vpmtmr_cleanup(vm->vpmtmr); 694 vatpit_cleanup(vm->vatpit); 695 vhpet_cleanup(vm->vhpet); 696 vatpic_cleanup(vm->vatpic); 697 vioapic_cleanup(vm->vioapic); 698 699 for (i = 0; i < vm->maxcpus; i++) { 700 if (vm->vcpu[i] != NULL) 701 vcpu_cleanup(vm->vcpu[i], destroy); 702 } 703 704 vmmops_cleanup(vm->cookie); 705 706 /* 707 * System memory is removed from the guest address space only when 708 * the VM is destroyed. This is because the mapping remains the same 709 * across VM reset. 710 * 711 * Device memory can be relocated by the guest (e.g. using PCI BARs) 712 * so those mappings are removed on a VM reset. 713 */ 714 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 715 mm = &vm->mem_maps[i]; 716 if (destroy || !sysmem_mapping(vm, mm)) 717 vm_free_memmap(vm, i); 718 } 719 720 if (destroy) { 721 for (i = 0; i < VM_MAX_MEMSEGS; i++) 722 vm_free_memseg(vm, i); 723 vm_unlock_memsegs(vm); 724 725 vmmops_vmspace_free(vm->vmspace); 726 vm->vmspace = NULL; 727 728 free(vm->vcpu, M_VM); 729 sx_destroy(&vm->vcpus_init_lock); 730 sx_destroy(&vm->mem_segs_lock); 731 mtx_destroy(&vm->rendezvous_mtx); 732 } 733 } 734 735 void 736 vm_destroy(struct vm *vm) 737 { 738 vm_cleanup(vm, true); 739 free(vm, M_VM); 740 } 741 742 int 743 vm_reinit(struct vm *vm) 744 { 745 int error; 746 747 /* 748 * A virtual machine can be reset only if all vcpus are suspended. 749 */ 750 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 751 vm_cleanup(vm, false); 752 vm_init(vm, false); 753 error = 0; 754 } else { 755 error = EBUSY; 756 } 757 758 return (error); 759 } 760 761 const char * 762 vm_name(struct vm *vm) 763 { 764 return (vm->name); 765 } 766 767 void 768 vm_slock_memsegs(struct vm *vm) 769 { 770 sx_slock(&vm->mem_segs_lock); 771 } 772 773 void 774 vm_xlock_memsegs(struct vm *vm) 775 { 776 sx_xlock(&vm->mem_segs_lock); 777 } 778 779 void 780 vm_unlock_memsegs(struct vm *vm) 781 { 782 sx_unlock(&vm->mem_segs_lock); 783 } 784 785 int 786 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 787 { 788 vm_object_t obj; 789 790 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 791 return (ENOMEM); 792 else 793 return (0); 794 } 795 796 int 797 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 798 { 799 800 vmm_mmio_free(vm->vmspace, gpa, len); 801 return (0); 802 } 803 804 /* 805 * Return 'true' if 'gpa' is allocated in the guest address space. 806 * 807 * This function is called in the context of a running vcpu which acts as 808 * an implicit lock on 'vm->mem_maps[]'. 809 */ 810 bool 811 vm_mem_allocated(struct vcpu *vcpu, vm_paddr_t gpa) 812 { 813 struct vm *vm = vcpu->vm; 814 struct mem_map *mm; 815 int i; 816 817 #ifdef INVARIANTS 818 int hostcpu, state; 819 state = vcpu_get_state(vcpu, &hostcpu); 820 KASSERT(state == VCPU_RUNNING && hostcpu == curcpu, 821 ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu)); 822 #endif 823 824 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 825 mm = &vm->mem_maps[i]; 826 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len) 827 return (true); /* 'gpa' is sysmem or devmem */ 828 } 829 830 if (ppt_is_mmio(vm, gpa)) 831 return (true); /* 'gpa' is pci passthru mmio */ 832 833 return (false); 834 } 835 836 int 837 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem) 838 { 839 struct mem_seg *seg; 840 vm_object_t obj; 841 842 sx_assert(&vm->mem_segs_lock, SX_XLOCKED); 843 844 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 845 return (EINVAL); 846 847 if (len == 0 || (len & PAGE_MASK)) 848 return (EINVAL); 849 850 seg = &vm->mem_segs[ident]; 851 if (seg->object != NULL) { 852 if (seg->len == len && seg->sysmem == sysmem) 853 return (EEXIST); 854 else 855 return (EINVAL); 856 } 857 858 obj = vm_object_allocate(OBJT_SWAP, len >> PAGE_SHIFT); 859 if (obj == NULL) 860 return (ENOMEM); 861 862 seg->len = len; 863 seg->object = obj; 864 seg->sysmem = sysmem; 865 return (0); 866 } 867 868 int 869 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, 870 vm_object_t *objptr) 871 { 872 struct mem_seg *seg; 873 874 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 875 876 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 877 return (EINVAL); 878 879 seg = &vm->mem_segs[ident]; 880 if (len) 881 *len = seg->len; 882 if (sysmem) 883 *sysmem = seg->sysmem; 884 if (objptr) 885 *objptr = seg->object; 886 return (0); 887 } 888 889 void 890 vm_free_memseg(struct vm *vm, int ident) 891 { 892 struct mem_seg *seg; 893 894 KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS, 895 ("%s: invalid memseg ident %d", __func__, ident)); 896 897 seg = &vm->mem_segs[ident]; 898 if (seg->object != NULL) { 899 vm_object_deallocate(seg->object); 900 bzero(seg, sizeof(struct mem_seg)); 901 } 902 } 903 904 int 905 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first, 906 size_t len, int prot, int flags) 907 { 908 struct mem_seg *seg; 909 struct mem_map *m, *map; 910 vm_ooffset_t last; 911 int i, error; 912 913 if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0) 914 return (EINVAL); 915 916 if (flags & ~VM_MEMMAP_F_WIRED) 917 return (EINVAL); 918 919 if (segid < 0 || segid >= VM_MAX_MEMSEGS) 920 return (EINVAL); 921 922 seg = &vm->mem_segs[segid]; 923 if (seg->object == NULL) 924 return (EINVAL); 925 926 last = first + len; 927 if (first < 0 || first >= last || last > seg->len) 928 return (EINVAL); 929 930 if ((gpa | first | last) & PAGE_MASK) 931 return (EINVAL); 932 933 map = NULL; 934 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 935 m = &vm->mem_maps[i]; 936 if (m->len == 0) { 937 map = m; 938 break; 939 } 940 } 941 942 if (map == NULL) 943 return (ENOSPC); 944 945 error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa, 946 len, 0, VMFS_NO_SPACE, prot, prot, 0); 947 if (error != KERN_SUCCESS) 948 return (EFAULT); 949 950 vm_object_reference(seg->object); 951 952 if (flags & VM_MEMMAP_F_WIRED) { 953 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len, 954 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 955 if (error != KERN_SUCCESS) { 956 vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len); 957 return (error == KERN_RESOURCE_SHORTAGE ? ENOMEM : 958 EFAULT); 959 } 960 } 961 962 map->gpa = gpa; 963 map->len = len; 964 map->segoff = first; 965 map->segid = segid; 966 map->prot = prot; 967 map->flags = flags; 968 return (0); 969 } 970 971 int 972 vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len) 973 { 974 struct mem_map *m; 975 int i; 976 977 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 978 m = &vm->mem_maps[i]; 979 if (m->gpa == gpa && m->len == len && 980 (m->flags & VM_MEMMAP_F_IOMMU) == 0) { 981 vm_free_memmap(vm, i); 982 return (0); 983 } 984 } 985 986 return (EINVAL); 987 } 988 989 int 990 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, 991 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 992 { 993 struct mem_map *mm, *mmnext; 994 int i; 995 996 mmnext = NULL; 997 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 998 mm = &vm->mem_maps[i]; 999 if (mm->len == 0 || mm->gpa < *gpa) 1000 continue; 1001 if (mmnext == NULL || mm->gpa < mmnext->gpa) 1002 mmnext = mm; 1003 } 1004 1005 if (mmnext != NULL) { 1006 *gpa = mmnext->gpa; 1007 if (segid) 1008 *segid = mmnext->segid; 1009 if (segoff) 1010 *segoff = mmnext->segoff; 1011 if (len) 1012 *len = mmnext->len; 1013 if (prot) 1014 *prot = mmnext->prot; 1015 if (flags) 1016 *flags = mmnext->flags; 1017 return (0); 1018 } else { 1019 return (ENOENT); 1020 } 1021 } 1022 1023 static void 1024 vm_free_memmap(struct vm *vm, int ident) 1025 { 1026 struct mem_map *mm; 1027 int error __diagused; 1028 1029 mm = &vm->mem_maps[ident]; 1030 if (mm->len) { 1031 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa, 1032 mm->gpa + mm->len); 1033 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d", 1034 __func__, error)); 1035 bzero(mm, sizeof(struct mem_map)); 1036 } 1037 } 1038 1039 static __inline bool 1040 sysmem_mapping(struct vm *vm, struct mem_map *mm) 1041 { 1042 1043 if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem) 1044 return (true); 1045 else 1046 return (false); 1047 } 1048 1049 vm_paddr_t 1050 vmm_sysmem_maxaddr(struct vm *vm) 1051 { 1052 struct mem_map *mm; 1053 vm_paddr_t maxaddr; 1054 int i; 1055 1056 maxaddr = 0; 1057 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1058 mm = &vm->mem_maps[i]; 1059 if (sysmem_mapping(vm, mm)) { 1060 if (maxaddr < mm->gpa + mm->len) 1061 maxaddr = mm->gpa + mm->len; 1062 } 1063 } 1064 return (maxaddr); 1065 } 1066 1067 static void 1068 vm_iommu_map(struct vm *vm) 1069 { 1070 vm_paddr_t gpa, hpa; 1071 struct mem_map *mm; 1072 int i; 1073 1074 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 1075 1076 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1077 mm = &vm->mem_maps[i]; 1078 if (!sysmem_mapping(vm, mm)) 1079 continue; 1080 1081 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0, 1082 ("iommu map found invalid memmap %#lx/%#lx/%#x", 1083 mm->gpa, mm->len, mm->flags)); 1084 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0) 1085 continue; 1086 mm->flags |= VM_MEMMAP_F_IOMMU; 1087 1088 for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) { 1089 hpa = pmap_extract(vmspace_pmap(vm->vmspace), gpa); 1090 1091 /* 1092 * All mappings in the vmm vmspace must be 1093 * present since they are managed by vmm in this way. 1094 * Because we are in pass-through mode, the 1095 * mappings must also be wired. This implies 1096 * that all pages must be mapped and wired, 1097 * allowing to use pmap_extract() and avoiding the 1098 * need to use vm_gpa_hold_global(). 1099 * 1100 * This could change if/when we start 1101 * supporting page faults on IOMMU maps. 1102 */ 1103 KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(hpa)), 1104 ("vm_iommu_map: vm %p gpa %jx hpa %jx not wired", 1105 vm, (uintmax_t)gpa, (uintmax_t)hpa)); 1106 1107 iommu_create_mapping(vm->iommu, gpa, hpa, PAGE_SIZE); 1108 } 1109 } 1110 1111 iommu_invalidate_tlb(iommu_host_domain()); 1112 } 1113 1114 static void 1115 vm_iommu_unmap(struct vm *vm) 1116 { 1117 vm_paddr_t gpa; 1118 struct mem_map *mm; 1119 int i; 1120 1121 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 1122 1123 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1124 mm = &vm->mem_maps[i]; 1125 if (!sysmem_mapping(vm, mm)) 1126 continue; 1127 1128 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0) 1129 continue; 1130 mm->flags &= ~VM_MEMMAP_F_IOMMU; 1131 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0, 1132 ("iommu unmap found invalid memmap %#lx/%#lx/%#x", 1133 mm->gpa, mm->len, mm->flags)); 1134 1135 for (gpa = mm->gpa; gpa < mm->gpa + mm->len; gpa += PAGE_SIZE) { 1136 KASSERT(vm_page_wired(PHYS_TO_VM_PAGE(pmap_extract( 1137 vmspace_pmap(vm->vmspace), gpa))), 1138 ("vm_iommu_unmap: vm %p gpa %jx not wired", 1139 vm, (uintmax_t)gpa)); 1140 iommu_remove_mapping(vm->iommu, gpa, PAGE_SIZE); 1141 } 1142 } 1143 1144 /* 1145 * Invalidate the cached translations associated with the domain 1146 * from which pages were removed. 1147 */ 1148 iommu_invalidate_tlb(vm->iommu); 1149 } 1150 1151 int 1152 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 1153 { 1154 int error; 1155 1156 error = ppt_unassign_device(vm, bus, slot, func); 1157 if (error) 1158 return (error); 1159 1160 if (ppt_assigned_devices(vm) == 0) 1161 vm_iommu_unmap(vm); 1162 1163 return (0); 1164 } 1165 1166 int 1167 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 1168 { 1169 int error; 1170 vm_paddr_t maxaddr; 1171 1172 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */ 1173 if (ppt_assigned_devices(vm) == 0) { 1174 KASSERT(vm->iommu == NULL, 1175 ("vm_assign_pptdev: iommu must be NULL")); 1176 maxaddr = vmm_sysmem_maxaddr(vm); 1177 vm->iommu = iommu_create_domain(maxaddr); 1178 if (vm->iommu == NULL) 1179 return (ENXIO); 1180 vm_iommu_map(vm); 1181 } 1182 1183 error = ppt_assign_device(vm, bus, slot, func); 1184 return (error); 1185 } 1186 1187 static void * 1188 _vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 1189 void **cookie) 1190 { 1191 int i, count, pageoff; 1192 struct mem_map *mm; 1193 vm_page_t m; 1194 1195 pageoff = gpa & PAGE_MASK; 1196 if (len > PAGE_SIZE - pageoff) 1197 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 1198 1199 count = 0; 1200 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1201 mm = &vm->mem_maps[i]; 1202 if (gpa >= mm->gpa && gpa < mm->gpa + mm->len) { 1203 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 1204 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 1205 break; 1206 } 1207 } 1208 1209 if (count == 1) { 1210 *cookie = m; 1211 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 1212 } else { 1213 *cookie = NULL; 1214 return (NULL); 1215 } 1216 } 1217 1218 void * 1219 vm_gpa_hold(struct vcpu *vcpu, vm_paddr_t gpa, size_t len, int reqprot, 1220 void **cookie) 1221 { 1222 #ifdef INVARIANTS 1223 /* 1224 * The current vcpu should be frozen to ensure 'vm_memmap[]' 1225 * stability. 1226 */ 1227 int state = vcpu_get_state(vcpu, NULL); 1228 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d", 1229 __func__, state)); 1230 #endif 1231 return (_vm_gpa_hold(vcpu->vm, gpa, len, reqprot, cookie)); 1232 } 1233 1234 void * 1235 vm_gpa_hold_global(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot, 1236 void **cookie) 1237 { 1238 sx_assert(&vm->mem_segs_lock, SX_LOCKED); 1239 return (_vm_gpa_hold(vm, gpa, len, reqprot, cookie)); 1240 } 1241 1242 void 1243 vm_gpa_release(void *cookie) 1244 { 1245 vm_page_t m = cookie; 1246 1247 vm_page_unwire(m, PQ_ACTIVE); 1248 } 1249 1250 int 1251 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval) 1252 { 1253 1254 if (reg >= VM_REG_LAST) 1255 return (EINVAL); 1256 1257 return (vmmops_getreg(vcpu->cookie, reg, retval)); 1258 } 1259 1260 int 1261 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val) 1262 { 1263 int error; 1264 1265 if (reg >= VM_REG_LAST) 1266 return (EINVAL); 1267 1268 error = vmmops_setreg(vcpu->cookie, reg, val); 1269 if (error || reg != VM_REG_GUEST_RIP) 1270 return (error); 1271 1272 /* Set 'nextrip' to match the value of %rip */ 1273 VMM_CTR1(vcpu, "Setting nextrip to %#lx", val); 1274 vcpu->nextrip = val; 1275 return (0); 1276 } 1277 1278 static bool 1279 is_descriptor_table(int reg) 1280 { 1281 1282 switch (reg) { 1283 case VM_REG_GUEST_IDTR: 1284 case VM_REG_GUEST_GDTR: 1285 return (true); 1286 default: 1287 return (false); 1288 } 1289 } 1290 1291 static bool 1292 is_segment_register(int reg) 1293 { 1294 1295 switch (reg) { 1296 case VM_REG_GUEST_ES: 1297 case VM_REG_GUEST_CS: 1298 case VM_REG_GUEST_SS: 1299 case VM_REG_GUEST_DS: 1300 case VM_REG_GUEST_FS: 1301 case VM_REG_GUEST_GS: 1302 case VM_REG_GUEST_TR: 1303 case VM_REG_GUEST_LDTR: 1304 return (true); 1305 default: 1306 return (false); 1307 } 1308 } 1309 1310 int 1311 vm_get_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc) 1312 { 1313 1314 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1315 return (EINVAL); 1316 1317 return (vmmops_getdesc(vcpu->cookie, reg, desc)); 1318 } 1319 1320 int 1321 vm_set_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc) 1322 { 1323 1324 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1325 return (EINVAL); 1326 1327 return (vmmops_setdesc(vcpu->cookie, reg, desc)); 1328 } 1329 1330 static void 1331 restore_guest_fpustate(struct vcpu *vcpu) 1332 { 1333 1334 /* flush host state to the pcb */ 1335 fpuexit(curthread); 1336 1337 /* restore guest FPU state */ 1338 fpu_enable(); 1339 fpurestore(vcpu->guestfpu); 1340 1341 /* restore guest XCR0 if XSAVE is enabled in the host */ 1342 if (rcr4() & CR4_XSAVE) 1343 load_xcr(0, vcpu->guest_xcr0); 1344 1345 /* 1346 * The FPU is now "dirty" with the guest's state so disable 1347 * the FPU to trap any access by the host. 1348 */ 1349 fpu_disable(); 1350 } 1351 1352 static void 1353 save_guest_fpustate(struct vcpu *vcpu) 1354 { 1355 1356 if ((rcr0() & CR0_TS) == 0) 1357 panic("fpu emulation not enabled in host!"); 1358 1359 /* save guest XCR0 and restore host XCR0 */ 1360 if (rcr4() & CR4_XSAVE) { 1361 vcpu->guest_xcr0 = rxcr(0); 1362 load_xcr(0, vmm_get_host_xcr0()); 1363 } 1364 1365 /* save guest FPU state */ 1366 fpu_enable(); 1367 fpusave(vcpu->guestfpu); 1368 fpu_disable(); 1369 } 1370 1371 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 1372 1373 static int 1374 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate, 1375 bool from_idle) 1376 { 1377 int error; 1378 1379 vcpu_assert_locked(vcpu); 1380 1381 /* 1382 * State transitions from the vmmdev_ioctl() must always begin from 1383 * the VCPU_IDLE state. This guarantees that there is only a single 1384 * ioctl() operating on a vcpu at any point. 1385 */ 1386 if (from_idle) { 1387 while (vcpu->state != VCPU_IDLE) { 1388 vcpu->reqidle = 1; 1389 vcpu_notify_event_locked(vcpu, false); 1390 VMM_CTR1(vcpu, "vcpu state change from %s to " 1391 "idle requested", vcpu_state2str(vcpu->state)); 1392 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 1393 } 1394 } else { 1395 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 1396 "vcpu idle state")); 1397 } 1398 1399 if (vcpu->state == VCPU_RUNNING) { 1400 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 1401 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 1402 } else { 1403 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 1404 "vcpu that is not running", vcpu->hostcpu)); 1405 } 1406 1407 /* 1408 * The following state transitions are allowed: 1409 * IDLE -> FROZEN -> IDLE 1410 * FROZEN -> RUNNING -> FROZEN 1411 * FROZEN -> SLEEPING -> FROZEN 1412 */ 1413 switch (vcpu->state) { 1414 case VCPU_IDLE: 1415 case VCPU_RUNNING: 1416 case VCPU_SLEEPING: 1417 error = (newstate != VCPU_FROZEN); 1418 break; 1419 case VCPU_FROZEN: 1420 error = (newstate == VCPU_FROZEN); 1421 break; 1422 default: 1423 error = 1; 1424 break; 1425 } 1426 1427 if (error) 1428 return (EBUSY); 1429 1430 VMM_CTR2(vcpu, "vcpu state changed from %s to %s", 1431 vcpu_state2str(vcpu->state), vcpu_state2str(newstate)); 1432 1433 vcpu->state = newstate; 1434 if (newstate == VCPU_RUNNING) 1435 vcpu->hostcpu = curcpu; 1436 else 1437 vcpu->hostcpu = NOCPU; 1438 1439 if (newstate == VCPU_IDLE) 1440 wakeup(&vcpu->state); 1441 1442 return (0); 1443 } 1444 1445 static void 1446 vcpu_require_state(struct vcpu *vcpu, enum vcpu_state newstate) 1447 { 1448 int error; 1449 1450 if ((error = vcpu_set_state(vcpu, newstate, false)) != 0) 1451 panic("Error %d setting state to %d\n", error, newstate); 1452 } 1453 1454 static void 1455 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate) 1456 { 1457 int error; 1458 1459 if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0) 1460 panic("Error %d setting state to %d", error, newstate); 1461 } 1462 1463 static int 1464 vm_handle_rendezvous(struct vcpu *vcpu) 1465 { 1466 struct vm *vm = vcpu->vm; 1467 struct thread *td; 1468 int error, vcpuid; 1469 1470 error = 0; 1471 vcpuid = vcpu->vcpuid; 1472 td = curthread; 1473 mtx_lock(&vm->rendezvous_mtx); 1474 while (vm->rendezvous_func != NULL) { 1475 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1476 CPU_AND(&vm->rendezvous_req_cpus, &vm->rendezvous_req_cpus, &vm->active_cpus); 1477 1478 if (CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1479 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1480 VMM_CTR0(vcpu, "Calling rendezvous func"); 1481 (*vm->rendezvous_func)(vcpu, vm->rendezvous_arg); 1482 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1483 } 1484 if (CPU_CMP(&vm->rendezvous_req_cpus, 1485 &vm->rendezvous_done_cpus) == 0) { 1486 VMM_CTR0(vcpu, "Rendezvous completed"); 1487 CPU_ZERO(&vm->rendezvous_req_cpus); 1488 vm->rendezvous_func = NULL; 1489 wakeup(&vm->rendezvous_func); 1490 break; 1491 } 1492 VMM_CTR0(vcpu, "Wait for rendezvous completion"); 1493 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1494 "vmrndv", hz); 1495 if (td_ast_pending(td, TDA_SUSPEND)) { 1496 mtx_unlock(&vm->rendezvous_mtx); 1497 error = thread_check_susp(td, true); 1498 if (error != 0) 1499 return (error); 1500 mtx_lock(&vm->rendezvous_mtx); 1501 } 1502 } 1503 mtx_unlock(&vm->rendezvous_mtx); 1504 return (0); 1505 } 1506 1507 /* 1508 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1509 */ 1510 static int 1511 vm_handle_hlt(struct vcpu *vcpu, bool intr_disabled, bool *retu) 1512 { 1513 struct vm *vm = vcpu->vm; 1514 const char *wmesg; 1515 struct thread *td; 1516 int error, t, vcpuid, vcpu_halted, vm_halted; 1517 1518 vcpuid = vcpu->vcpuid; 1519 vcpu_halted = 0; 1520 vm_halted = 0; 1521 error = 0; 1522 td = curthread; 1523 1524 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1525 1526 vcpu_lock(vcpu); 1527 while (1) { 1528 /* 1529 * Do a final check for pending NMI or interrupts before 1530 * really putting this thread to sleep. Also check for 1531 * software events that would cause this vcpu to wakeup. 1532 * 1533 * These interrupts/events could have happened after the 1534 * vcpu returned from vmmops_run() and before it acquired the 1535 * vcpu lock above. 1536 */ 1537 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle) 1538 break; 1539 if (vm_nmi_pending(vcpu)) 1540 break; 1541 if (!intr_disabled) { 1542 if (vm_extint_pending(vcpu) || 1543 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1544 break; 1545 } 1546 } 1547 1548 /* Don't go to sleep if the vcpu thread needs to yield */ 1549 if (vcpu_should_yield(vcpu)) 1550 break; 1551 1552 if (vcpu_debugged(vcpu)) 1553 break; 1554 1555 /* 1556 * Some Linux guests implement "halt" by having all vcpus 1557 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1558 * track of the vcpus that have entered this state. When all 1559 * vcpus enter the halted state the virtual machine is halted. 1560 */ 1561 if (intr_disabled) { 1562 wmesg = "vmhalt"; 1563 VMM_CTR0(vcpu, "Halted"); 1564 if (!vcpu_halted && halt_detection_enabled) { 1565 vcpu_halted = 1; 1566 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1567 } 1568 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1569 vm_halted = 1; 1570 break; 1571 } 1572 } else { 1573 wmesg = "vmidle"; 1574 } 1575 1576 t = ticks; 1577 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1578 /* 1579 * XXX msleep_spin() cannot be interrupted by signals so 1580 * wake up periodically to check pending signals. 1581 */ 1582 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1583 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1584 vmm_stat_incr(vcpu, VCPU_IDLE_TICKS, ticks - t); 1585 if (td_ast_pending(td, TDA_SUSPEND)) { 1586 vcpu_unlock(vcpu); 1587 error = thread_check_susp(td, false); 1588 if (error != 0) { 1589 if (vcpu_halted) { 1590 CPU_CLR_ATOMIC(vcpuid, 1591 &vm->halted_cpus); 1592 } 1593 return (error); 1594 } 1595 vcpu_lock(vcpu); 1596 } 1597 } 1598 1599 if (vcpu_halted) 1600 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1601 1602 vcpu_unlock(vcpu); 1603 1604 if (vm_halted) 1605 vm_suspend(vm, VM_SUSPEND_HALT); 1606 1607 return (0); 1608 } 1609 1610 static int 1611 vm_handle_paging(struct vcpu *vcpu, bool *retu) 1612 { 1613 struct vm *vm = vcpu->vm; 1614 int rv, ftype; 1615 struct vm_map *map; 1616 struct vm_exit *vme; 1617 1618 vme = &vcpu->exitinfo; 1619 1620 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1621 __func__, vme->inst_length)); 1622 1623 ftype = vme->u.paging.fault_type; 1624 KASSERT(ftype == VM_PROT_READ || 1625 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1626 ("vm_handle_paging: invalid fault_type %d", ftype)); 1627 1628 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1629 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1630 vme->u.paging.gpa, ftype); 1631 if (rv == 0) { 1632 VMM_CTR2(vcpu, "%s bit emulation for gpa %#lx", 1633 ftype == VM_PROT_READ ? "accessed" : "dirty", 1634 vme->u.paging.gpa); 1635 goto done; 1636 } 1637 } 1638 1639 map = &vm->vmspace->vm_map; 1640 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL); 1641 1642 VMM_CTR3(vcpu, "vm_handle_paging rv = %d, gpa = %#lx, " 1643 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1644 1645 if (rv != KERN_SUCCESS) 1646 return (EFAULT); 1647 done: 1648 return (0); 1649 } 1650 1651 static int 1652 vm_handle_inst_emul(struct vcpu *vcpu, bool *retu) 1653 { 1654 struct vie *vie; 1655 struct vm_exit *vme; 1656 uint64_t gla, gpa, cs_base; 1657 struct vm_guest_paging *paging; 1658 mem_region_read_t mread; 1659 mem_region_write_t mwrite; 1660 enum vm_cpu_mode cpu_mode; 1661 int cs_d, error, fault; 1662 1663 vme = &vcpu->exitinfo; 1664 1665 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1666 __func__, vme->inst_length)); 1667 1668 gla = vme->u.inst_emul.gla; 1669 gpa = vme->u.inst_emul.gpa; 1670 cs_base = vme->u.inst_emul.cs_base; 1671 cs_d = vme->u.inst_emul.cs_d; 1672 vie = &vme->u.inst_emul.vie; 1673 paging = &vme->u.inst_emul.paging; 1674 cpu_mode = paging->cpu_mode; 1675 1676 VMM_CTR1(vcpu, "inst_emul fault accessing gpa %#lx", gpa); 1677 1678 /* Fetch, decode and emulate the faulting instruction */ 1679 if (vie->num_valid == 0) { 1680 error = vmm_fetch_instruction(vcpu, paging, vme->rip + cs_base, 1681 VIE_INST_SIZE, vie, &fault); 1682 } else { 1683 /* 1684 * The instruction bytes have already been copied into 'vie' 1685 */ 1686 error = fault = 0; 1687 } 1688 if (error || fault) 1689 return (error); 1690 1691 if (vmm_decode_instruction(vcpu, gla, cpu_mode, cs_d, vie) != 0) { 1692 VMM_CTR1(vcpu, "Error decoding instruction at %#lx", 1693 vme->rip + cs_base); 1694 *retu = true; /* dump instruction bytes in userspace */ 1695 return (0); 1696 } 1697 1698 /* 1699 * Update 'nextrip' based on the length of the emulated instruction. 1700 */ 1701 vme->inst_length = vie->num_processed; 1702 vcpu->nextrip += vie->num_processed; 1703 VMM_CTR1(vcpu, "nextrip updated to %#lx after instruction decoding", 1704 vcpu->nextrip); 1705 1706 /* return to userland unless this is an in-kernel emulated device */ 1707 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1708 mread = lapic_mmio_read; 1709 mwrite = lapic_mmio_write; 1710 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1711 mread = vioapic_mmio_read; 1712 mwrite = vioapic_mmio_write; 1713 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1714 mread = vhpet_mmio_read; 1715 mwrite = vhpet_mmio_write; 1716 } else { 1717 *retu = true; 1718 return (0); 1719 } 1720 1721 error = vmm_emulate_instruction(vcpu, gpa, vie, paging, mread, mwrite, 1722 retu); 1723 1724 return (error); 1725 } 1726 1727 static int 1728 vm_handle_suspend(struct vcpu *vcpu, bool *retu) 1729 { 1730 struct vm *vm = vcpu->vm; 1731 int error, i; 1732 struct thread *td; 1733 1734 error = 0; 1735 td = curthread; 1736 1737 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->suspended_cpus); 1738 1739 /* 1740 * Wait until all 'active_cpus' have suspended themselves. 1741 * 1742 * Since a VM may be suspended at any time including when one or 1743 * more vcpus are doing a rendezvous we need to call the rendezvous 1744 * handler while we are waiting to prevent a deadlock. 1745 */ 1746 vcpu_lock(vcpu); 1747 while (error == 0) { 1748 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1749 VMM_CTR0(vcpu, "All vcpus suspended"); 1750 break; 1751 } 1752 1753 if (vm->rendezvous_func == NULL) { 1754 VMM_CTR0(vcpu, "Sleeping during suspend"); 1755 vcpu_require_state_locked(vcpu, VCPU_SLEEPING); 1756 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1757 vcpu_require_state_locked(vcpu, VCPU_FROZEN); 1758 if (td_ast_pending(td, TDA_SUSPEND)) { 1759 vcpu_unlock(vcpu); 1760 error = thread_check_susp(td, false); 1761 vcpu_lock(vcpu); 1762 } 1763 } else { 1764 VMM_CTR0(vcpu, "Rendezvous during suspend"); 1765 vcpu_unlock(vcpu); 1766 error = vm_handle_rendezvous(vcpu); 1767 vcpu_lock(vcpu); 1768 } 1769 } 1770 vcpu_unlock(vcpu); 1771 1772 /* 1773 * Wakeup the other sleeping vcpus and return to userspace. 1774 */ 1775 for (i = 0; i < vm->maxcpus; i++) { 1776 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1777 vcpu_notify_event(vm_vcpu(vm, i), false); 1778 } 1779 } 1780 1781 *retu = true; 1782 return (error); 1783 } 1784 1785 static int 1786 vm_handle_reqidle(struct vcpu *vcpu, bool *retu) 1787 { 1788 vcpu_lock(vcpu); 1789 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle)); 1790 vcpu->reqidle = 0; 1791 vcpu_unlock(vcpu); 1792 *retu = true; 1793 return (0); 1794 } 1795 1796 static int 1797 vm_handle_db(struct vcpu *vcpu, struct vm_exit *vme, bool *retu) 1798 { 1799 int error, fault; 1800 uint64_t rsp; 1801 uint64_t rflags; 1802 struct vm_copyinfo copyinfo[2]; 1803 1804 *retu = true; 1805 if (!vme->u.dbg.pushf_intercept || vme->u.dbg.tf_shadow_val != 0) { 1806 return (0); 1807 } 1808 1809 vm_get_register(vcpu, VM_REG_GUEST_RSP, &rsp); 1810 error = vm_copy_setup(vcpu, &vme->u.dbg.paging, rsp, sizeof(uint64_t), 1811 VM_PROT_RW, copyinfo, nitems(copyinfo), &fault); 1812 if (error != 0 || fault != 0) { 1813 *retu = false; 1814 return (EINVAL); 1815 } 1816 1817 /* Read pushed rflags value from top of stack. */ 1818 vm_copyin(copyinfo, &rflags, sizeof(uint64_t)); 1819 1820 /* Clear TF bit. */ 1821 rflags &= ~(PSL_T); 1822 1823 /* Write updated value back to memory. */ 1824 vm_copyout(&rflags, copyinfo, sizeof(uint64_t)); 1825 vm_copy_teardown(copyinfo, nitems(copyinfo)); 1826 1827 return (0); 1828 } 1829 1830 int 1831 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1832 { 1833 int i; 1834 1835 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1836 return (EINVAL); 1837 1838 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1839 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1840 vm->suspend, how); 1841 return (EALREADY); 1842 } 1843 1844 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1845 1846 /* 1847 * Notify all active vcpus that they are now suspended. 1848 */ 1849 for (i = 0; i < vm->maxcpus; i++) { 1850 if (CPU_ISSET(i, &vm->active_cpus)) 1851 vcpu_notify_event(vm_vcpu(vm, i), false); 1852 } 1853 1854 return (0); 1855 } 1856 1857 void 1858 vm_exit_suspended(struct vcpu *vcpu, uint64_t rip) 1859 { 1860 struct vm *vm = vcpu->vm; 1861 struct vm_exit *vmexit; 1862 1863 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1864 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1865 1866 vmexit = vm_exitinfo(vcpu); 1867 vmexit->rip = rip; 1868 vmexit->inst_length = 0; 1869 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1870 vmexit->u.suspended.how = vm->suspend; 1871 } 1872 1873 void 1874 vm_exit_debug(struct vcpu *vcpu, uint64_t rip) 1875 { 1876 struct vm_exit *vmexit; 1877 1878 vmexit = vm_exitinfo(vcpu); 1879 vmexit->rip = rip; 1880 vmexit->inst_length = 0; 1881 vmexit->exitcode = VM_EXITCODE_DEBUG; 1882 } 1883 1884 void 1885 vm_exit_rendezvous(struct vcpu *vcpu, uint64_t rip) 1886 { 1887 struct vm_exit *vmexit; 1888 1889 vmexit = vm_exitinfo(vcpu); 1890 vmexit->rip = rip; 1891 vmexit->inst_length = 0; 1892 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1893 vmm_stat_incr(vcpu, VMEXIT_RENDEZVOUS, 1); 1894 } 1895 1896 void 1897 vm_exit_reqidle(struct vcpu *vcpu, uint64_t rip) 1898 { 1899 struct vm_exit *vmexit; 1900 1901 vmexit = vm_exitinfo(vcpu); 1902 vmexit->rip = rip; 1903 vmexit->inst_length = 0; 1904 vmexit->exitcode = VM_EXITCODE_REQIDLE; 1905 vmm_stat_incr(vcpu, VMEXIT_REQIDLE, 1); 1906 } 1907 1908 void 1909 vm_exit_astpending(struct vcpu *vcpu, uint64_t rip) 1910 { 1911 struct vm_exit *vmexit; 1912 1913 vmexit = vm_exitinfo(vcpu); 1914 vmexit->rip = rip; 1915 vmexit->inst_length = 0; 1916 vmexit->exitcode = VM_EXITCODE_BOGUS; 1917 vmm_stat_incr(vcpu, VMEXIT_ASTPENDING, 1); 1918 } 1919 1920 int 1921 vm_run(struct vcpu *vcpu) 1922 { 1923 struct vm *vm = vcpu->vm; 1924 struct vm_eventinfo evinfo; 1925 int error, vcpuid; 1926 struct pcb *pcb; 1927 uint64_t tscval; 1928 struct vm_exit *vme; 1929 bool retu, intr_disabled; 1930 pmap_t pmap; 1931 1932 vcpuid = vcpu->vcpuid; 1933 1934 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1935 return (EINVAL); 1936 1937 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1938 return (EINVAL); 1939 1940 pmap = vmspace_pmap(vm->vmspace); 1941 vme = &vcpu->exitinfo; 1942 evinfo.rptr = &vm->rendezvous_req_cpus; 1943 evinfo.sptr = &vm->suspend; 1944 evinfo.iptr = &vcpu->reqidle; 1945 restart: 1946 critical_enter(); 1947 1948 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1949 ("vm_run: absurd pm_active")); 1950 1951 tscval = rdtsc(); 1952 1953 pcb = PCPU_GET(curpcb); 1954 set_pcb_flags(pcb, PCB_FULL_IRET); 1955 1956 restore_guest_fpustate(vcpu); 1957 1958 vcpu_require_state(vcpu, VCPU_RUNNING); 1959 error = vmmops_run(vcpu->cookie, vcpu->nextrip, pmap, &evinfo); 1960 vcpu_require_state(vcpu, VCPU_FROZEN); 1961 1962 save_guest_fpustate(vcpu); 1963 1964 vmm_stat_incr(vcpu, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1965 1966 critical_exit(); 1967 1968 if (error == 0) { 1969 retu = false; 1970 vcpu->nextrip = vme->rip + vme->inst_length; 1971 switch (vme->exitcode) { 1972 case VM_EXITCODE_REQIDLE: 1973 error = vm_handle_reqidle(vcpu, &retu); 1974 break; 1975 case VM_EXITCODE_SUSPENDED: 1976 error = vm_handle_suspend(vcpu, &retu); 1977 break; 1978 case VM_EXITCODE_IOAPIC_EOI: 1979 vioapic_process_eoi(vm, vme->u.ioapic_eoi.vector); 1980 break; 1981 case VM_EXITCODE_RENDEZVOUS: 1982 error = vm_handle_rendezvous(vcpu); 1983 break; 1984 case VM_EXITCODE_HLT: 1985 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1986 error = vm_handle_hlt(vcpu, intr_disabled, &retu); 1987 break; 1988 case VM_EXITCODE_PAGING: 1989 error = vm_handle_paging(vcpu, &retu); 1990 break; 1991 case VM_EXITCODE_INST_EMUL: 1992 error = vm_handle_inst_emul(vcpu, &retu); 1993 break; 1994 case VM_EXITCODE_INOUT: 1995 case VM_EXITCODE_INOUT_STR: 1996 error = vm_handle_inout(vcpu, vme, &retu); 1997 break; 1998 case VM_EXITCODE_DB: 1999 error = vm_handle_db(vcpu, vme, &retu); 2000 break; 2001 case VM_EXITCODE_MONITOR: 2002 case VM_EXITCODE_MWAIT: 2003 case VM_EXITCODE_VMINSN: 2004 vm_inject_ud(vcpu); 2005 break; 2006 default: 2007 retu = true; /* handled in userland */ 2008 break; 2009 } 2010 } 2011 2012 /* 2013 * VM_EXITCODE_INST_EMUL could access the apic which could transform the 2014 * exit code into VM_EXITCODE_IPI. 2015 */ 2016 if (error == 0 && vme->exitcode == VM_EXITCODE_IPI) 2017 error = vm_handle_ipi(vcpu, vme, &retu); 2018 2019 if (error == 0 && retu == false) 2020 goto restart; 2021 2022 vmm_stat_incr(vcpu, VMEXIT_USERSPACE, 1); 2023 VMM_CTR2(vcpu, "retu %d/%d", error, vme->exitcode); 2024 2025 return (error); 2026 } 2027 2028 int 2029 vm_restart_instruction(struct vcpu *vcpu) 2030 { 2031 enum vcpu_state state; 2032 uint64_t rip; 2033 int error __diagused; 2034 2035 state = vcpu_get_state(vcpu, NULL); 2036 if (state == VCPU_RUNNING) { 2037 /* 2038 * When a vcpu is "running" the next instruction is determined 2039 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'. 2040 * Thus setting 'inst_length' to zero will cause the current 2041 * instruction to be restarted. 2042 */ 2043 vcpu->exitinfo.inst_length = 0; 2044 VMM_CTR1(vcpu, "restarting instruction at %#lx by " 2045 "setting inst_length to zero", vcpu->exitinfo.rip); 2046 } else if (state == VCPU_FROZEN) { 2047 /* 2048 * When a vcpu is "frozen" it is outside the critical section 2049 * around vmmops_run() and 'nextrip' points to the next 2050 * instruction. Thus instruction restart is achieved by setting 2051 * 'nextrip' to the vcpu's %rip. 2052 */ 2053 error = vm_get_register(vcpu, VM_REG_GUEST_RIP, &rip); 2054 KASSERT(!error, ("%s: error %d getting rip", __func__, error)); 2055 VMM_CTR2(vcpu, "restarting instruction by updating " 2056 "nextrip from %#lx to %#lx", vcpu->nextrip, rip); 2057 vcpu->nextrip = rip; 2058 } else { 2059 panic("%s: invalid state %d", __func__, state); 2060 } 2061 return (0); 2062 } 2063 2064 int 2065 vm_exit_intinfo(struct vcpu *vcpu, uint64_t info) 2066 { 2067 int type, vector; 2068 2069 if (info & VM_INTINFO_VALID) { 2070 type = info & VM_INTINFO_TYPE; 2071 vector = info & 0xff; 2072 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 2073 return (EINVAL); 2074 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 2075 return (EINVAL); 2076 if (info & VM_INTINFO_RSVD) 2077 return (EINVAL); 2078 } else { 2079 info = 0; 2080 } 2081 VMM_CTR2(vcpu, "%s: info1(%#lx)", __func__, info); 2082 vcpu->exitintinfo = info; 2083 return (0); 2084 } 2085 2086 enum exc_class { 2087 EXC_BENIGN, 2088 EXC_CONTRIBUTORY, 2089 EXC_PAGEFAULT 2090 }; 2091 2092 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 2093 2094 static enum exc_class 2095 exception_class(uint64_t info) 2096 { 2097 int type, vector; 2098 2099 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 2100 type = info & VM_INTINFO_TYPE; 2101 vector = info & 0xff; 2102 2103 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 2104 switch (type) { 2105 case VM_INTINFO_HWINTR: 2106 case VM_INTINFO_SWINTR: 2107 case VM_INTINFO_NMI: 2108 return (EXC_BENIGN); 2109 default: 2110 /* 2111 * Hardware exception. 2112 * 2113 * SVM and VT-x use identical type values to represent NMI, 2114 * hardware interrupt and software interrupt. 2115 * 2116 * SVM uses type '3' for all exceptions. VT-x uses type '3' 2117 * for exceptions except #BP and #OF. #BP and #OF use a type 2118 * value of '5' or '6'. Therefore we don't check for explicit 2119 * values of 'type' to classify 'intinfo' into a hardware 2120 * exception. 2121 */ 2122 break; 2123 } 2124 2125 switch (vector) { 2126 case IDT_PF: 2127 case IDT_VE: 2128 return (EXC_PAGEFAULT); 2129 case IDT_DE: 2130 case IDT_TS: 2131 case IDT_NP: 2132 case IDT_SS: 2133 case IDT_GP: 2134 return (EXC_CONTRIBUTORY); 2135 default: 2136 return (EXC_BENIGN); 2137 } 2138 } 2139 2140 static int 2141 nested_fault(struct vcpu *vcpu, uint64_t info1, uint64_t info2, 2142 uint64_t *retinfo) 2143 { 2144 enum exc_class exc1, exc2; 2145 int type1, vector1; 2146 2147 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 2148 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 2149 2150 /* 2151 * If an exception occurs while attempting to call the double-fault 2152 * handler the processor enters shutdown mode (aka triple fault). 2153 */ 2154 type1 = info1 & VM_INTINFO_TYPE; 2155 vector1 = info1 & 0xff; 2156 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 2157 VMM_CTR2(vcpu, "triple fault: info1(%#lx), info2(%#lx)", 2158 info1, info2); 2159 vm_suspend(vcpu->vm, VM_SUSPEND_TRIPLEFAULT); 2160 *retinfo = 0; 2161 return (0); 2162 } 2163 2164 /* 2165 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 2166 */ 2167 exc1 = exception_class(info1); 2168 exc2 = exception_class(info2); 2169 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 2170 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 2171 /* Convert nested fault into a double fault. */ 2172 *retinfo = IDT_DF; 2173 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 2174 *retinfo |= VM_INTINFO_DEL_ERRCODE; 2175 } else { 2176 /* Handle exceptions serially */ 2177 *retinfo = info2; 2178 } 2179 return (1); 2180 } 2181 2182 static uint64_t 2183 vcpu_exception_intinfo(struct vcpu *vcpu) 2184 { 2185 uint64_t info = 0; 2186 2187 if (vcpu->exception_pending) { 2188 info = vcpu->exc_vector & 0xff; 2189 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 2190 if (vcpu->exc_errcode_valid) { 2191 info |= VM_INTINFO_DEL_ERRCODE; 2192 info |= (uint64_t)vcpu->exc_errcode << 32; 2193 } 2194 } 2195 return (info); 2196 } 2197 2198 int 2199 vm_entry_intinfo(struct vcpu *vcpu, uint64_t *retinfo) 2200 { 2201 uint64_t info1, info2; 2202 int valid; 2203 2204 info1 = vcpu->exitintinfo; 2205 vcpu->exitintinfo = 0; 2206 2207 info2 = 0; 2208 if (vcpu->exception_pending) { 2209 info2 = vcpu_exception_intinfo(vcpu); 2210 vcpu->exception_pending = 0; 2211 VMM_CTR2(vcpu, "Exception %d delivered: %#lx", 2212 vcpu->exc_vector, info2); 2213 } 2214 2215 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 2216 valid = nested_fault(vcpu, info1, info2, retinfo); 2217 } else if (info1 & VM_INTINFO_VALID) { 2218 *retinfo = info1; 2219 valid = 1; 2220 } else if (info2 & VM_INTINFO_VALID) { 2221 *retinfo = info2; 2222 valid = 1; 2223 } else { 2224 valid = 0; 2225 } 2226 2227 if (valid) { 2228 VMM_CTR4(vcpu, "%s: info1(%#lx), info2(%#lx), " 2229 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 2230 } 2231 2232 return (valid); 2233 } 2234 2235 int 2236 vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2) 2237 { 2238 *info1 = vcpu->exitintinfo; 2239 *info2 = vcpu_exception_intinfo(vcpu); 2240 return (0); 2241 } 2242 2243 int 2244 vm_inject_exception(struct vcpu *vcpu, int vector, int errcode_valid, 2245 uint32_t errcode, int restart_instruction) 2246 { 2247 uint64_t regval; 2248 int error __diagused; 2249 2250 if (vector < 0 || vector >= 32) 2251 return (EINVAL); 2252 2253 /* 2254 * A double fault exception should never be injected directly into 2255 * the guest. It is a derived exception that results from specific 2256 * combinations of nested faults. 2257 */ 2258 if (vector == IDT_DF) 2259 return (EINVAL); 2260 2261 if (vcpu->exception_pending) { 2262 VMM_CTR2(vcpu, "Unable to inject exception %d due to " 2263 "pending exception %d", vector, vcpu->exc_vector); 2264 return (EBUSY); 2265 } 2266 2267 if (errcode_valid) { 2268 /* 2269 * Exceptions don't deliver an error code in real mode. 2270 */ 2271 error = vm_get_register(vcpu, VM_REG_GUEST_CR0, ®val); 2272 KASSERT(!error, ("%s: error %d getting CR0", __func__, error)); 2273 if (!(regval & CR0_PE)) 2274 errcode_valid = 0; 2275 } 2276 2277 /* 2278 * From section 26.6.1 "Interruptibility State" in Intel SDM: 2279 * 2280 * Event blocking by "STI" or "MOV SS" is cleared after guest executes 2281 * one instruction or incurs an exception. 2282 */ 2283 error = vm_set_register(vcpu, VM_REG_GUEST_INTR_SHADOW, 0); 2284 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", 2285 __func__, error)); 2286 2287 if (restart_instruction) 2288 vm_restart_instruction(vcpu); 2289 2290 vcpu->exception_pending = 1; 2291 vcpu->exc_vector = vector; 2292 vcpu->exc_errcode = errcode; 2293 vcpu->exc_errcode_valid = errcode_valid; 2294 VMM_CTR1(vcpu, "Exception %d pending", vector); 2295 return (0); 2296 } 2297 2298 void 2299 vm_inject_fault(struct vcpu *vcpu, int vector, int errcode_valid, int errcode) 2300 { 2301 int error __diagused, restart_instruction; 2302 2303 restart_instruction = 1; 2304 2305 error = vm_inject_exception(vcpu, vector, errcode_valid, 2306 errcode, restart_instruction); 2307 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 2308 } 2309 2310 void 2311 vm_inject_pf(struct vcpu *vcpu, int error_code, uint64_t cr2) 2312 { 2313 int error __diagused; 2314 2315 VMM_CTR2(vcpu, "Injecting page fault: error_code %#x, cr2 %#lx", 2316 error_code, cr2); 2317 2318 error = vm_set_register(vcpu, VM_REG_GUEST_CR2, cr2); 2319 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 2320 2321 vm_inject_fault(vcpu, IDT_PF, 1, error_code); 2322 } 2323 2324 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 2325 2326 int 2327 vm_inject_nmi(struct vcpu *vcpu) 2328 { 2329 2330 vcpu->nmi_pending = 1; 2331 vcpu_notify_event(vcpu, false); 2332 return (0); 2333 } 2334 2335 int 2336 vm_nmi_pending(struct vcpu *vcpu) 2337 { 2338 return (vcpu->nmi_pending); 2339 } 2340 2341 void 2342 vm_nmi_clear(struct vcpu *vcpu) 2343 { 2344 if (vcpu->nmi_pending == 0) 2345 panic("vm_nmi_clear: inconsistent nmi_pending state"); 2346 2347 vcpu->nmi_pending = 0; 2348 vmm_stat_incr(vcpu, VCPU_NMI_COUNT, 1); 2349 } 2350 2351 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 2352 2353 int 2354 vm_inject_extint(struct vcpu *vcpu) 2355 { 2356 2357 vcpu->extint_pending = 1; 2358 vcpu_notify_event(vcpu, false); 2359 return (0); 2360 } 2361 2362 int 2363 vm_extint_pending(struct vcpu *vcpu) 2364 { 2365 return (vcpu->extint_pending); 2366 } 2367 2368 void 2369 vm_extint_clear(struct vcpu *vcpu) 2370 { 2371 if (vcpu->extint_pending == 0) 2372 panic("vm_extint_clear: inconsistent extint_pending state"); 2373 2374 vcpu->extint_pending = 0; 2375 vmm_stat_incr(vcpu, VCPU_EXTINT_COUNT, 1); 2376 } 2377 2378 int 2379 vm_get_capability(struct vcpu *vcpu, int type, int *retval) 2380 { 2381 if (type < 0 || type >= VM_CAP_MAX) 2382 return (EINVAL); 2383 2384 return (vmmops_getcap(vcpu->cookie, type, retval)); 2385 } 2386 2387 int 2388 vm_set_capability(struct vcpu *vcpu, int type, int val) 2389 { 2390 if (type < 0 || type >= VM_CAP_MAX) 2391 return (EINVAL); 2392 2393 return (vmmops_setcap(vcpu->cookie, type, val)); 2394 } 2395 2396 struct vm * 2397 vcpu_vm(struct vcpu *vcpu) 2398 { 2399 return (vcpu->vm); 2400 } 2401 2402 int 2403 vcpu_vcpuid(struct vcpu *vcpu) 2404 { 2405 return (vcpu->vcpuid); 2406 } 2407 2408 struct vcpu * 2409 vm_vcpu(struct vm *vm, int vcpuid) 2410 { 2411 return (vm->vcpu[vcpuid]); 2412 } 2413 2414 struct vlapic * 2415 vm_lapic(struct vcpu *vcpu) 2416 { 2417 return (vcpu->vlapic); 2418 } 2419 2420 struct vioapic * 2421 vm_ioapic(struct vm *vm) 2422 { 2423 2424 return (vm->vioapic); 2425 } 2426 2427 struct vhpet * 2428 vm_hpet(struct vm *vm) 2429 { 2430 2431 return (vm->vhpet); 2432 } 2433 2434 bool 2435 vmm_is_pptdev(int bus, int slot, int func) 2436 { 2437 int b, f, i, n, s; 2438 char *val, *cp, *cp2; 2439 bool found; 2440 2441 /* 2442 * XXX 2443 * The length of an environment variable is limited to 128 bytes which 2444 * puts an upper limit on the number of passthru devices that may be 2445 * specified using a single environment variable. 2446 * 2447 * Work around this by scanning multiple environment variable 2448 * names instead of a single one - yuck! 2449 */ 2450 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 2451 2452 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 2453 found = false; 2454 for (i = 0; names[i] != NULL && !found; i++) { 2455 cp = val = kern_getenv(names[i]); 2456 while (cp != NULL && *cp != '\0') { 2457 if ((cp2 = strchr(cp, ' ')) != NULL) 2458 *cp2 = '\0'; 2459 2460 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 2461 if (n == 3 && bus == b && slot == s && func == f) { 2462 found = true; 2463 break; 2464 } 2465 2466 if (cp2 != NULL) 2467 *cp2++ = ' '; 2468 2469 cp = cp2; 2470 } 2471 freeenv(val); 2472 } 2473 return (found); 2474 } 2475 2476 void * 2477 vm_iommu_domain(struct vm *vm) 2478 { 2479 2480 return (vm->iommu); 2481 } 2482 2483 int 2484 vcpu_set_state(struct vcpu *vcpu, enum vcpu_state newstate, bool from_idle) 2485 { 2486 int error; 2487 2488 vcpu_lock(vcpu); 2489 error = vcpu_set_state_locked(vcpu, newstate, from_idle); 2490 vcpu_unlock(vcpu); 2491 2492 return (error); 2493 } 2494 2495 enum vcpu_state 2496 vcpu_get_state(struct vcpu *vcpu, int *hostcpu) 2497 { 2498 enum vcpu_state state; 2499 2500 vcpu_lock(vcpu); 2501 state = vcpu->state; 2502 if (hostcpu != NULL) 2503 *hostcpu = vcpu->hostcpu; 2504 vcpu_unlock(vcpu); 2505 2506 return (state); 2507 } 2508 2509 int 2510 vm_activate_cpu(struct vcpu *vcpu) 2511 { 2512 struct vm *vm = vcpu->vm; 2513 2514 if (CPU_ISSET(vcpu->vcpuid, &vm->active_cpus)) 2515 return (EBUSY); 2516 2517 VMM_CTR0(vcpu, "activated"); 2518 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->active_cpus); 2519 return (0); 2520 } 2521 2522 int 2523 vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu) 2524 { 2525 if (vcpu == NULL) { 2526 vm->debug_cpus = vm->active_cpus; 2527 for (int i = 0; i < vm->maxcpus; i++) { 2528 if (CPU_ISSET(i, &vm->active_cpus)) 2529 vcpu_notify_event(vm_vcpu(vm, i), false); 2530 } 2531 } else { 2532 if (!CPU_ISSET(vcpu->vcpuid, &vm->active_cpus)) 2533 return (EINVAL); 2534 2535 CPU_SET_ATOMIC(vcpu->vcpuid, &vm->debug_cpus); 2536 vcpu_notify_event(vcpu, false); 2537 } 2538 return (0); 2539 } 2540 2541 int 2542 vm_resume_cpu(struct vm *vm, struct vcpu *vcpu) 2543 { 2544 2545 if (vcpu == NULL) { 2546 CPU_ZERO(&vm->debug_cpus); 2547 } else { 2548 if (!CPU_ISSET(vcpu->vcpuid, &vm->debug_cpus)) 2549 return (EINVAL); 2550 2551 CPU_CLR_ATOMIC(vcpu->vcpuid, &vm->debug_cpus); 2552 } 2553 return (0); 2554 } 2555 2556 int 2557 vcpu_debugged(struct vcpu *vcpu) 2558 { 2559 2560 return (CPU_ISSET(vcpu->vcpuid, &vcpu->vm->debug_cpus)); 2561 } 2562 2563 cpuset_t 2564 vm_active_cpus(struct vm *vm) 2565 { 2566 2567 return (vm->active_cpus); 2568 } 2569 2570 cpuset_t 2571 vm_debug_cpus(struct vm *vm) 2572 { 2573 2574 return (vm->debug_cpus); 2575 } 2576 2577 cpuset_t 2578 vm_suspended_cpus(struct vm *vm) 2579 { 2580 2581 return (vm->suspended_cpus); 2582 } 2583 2584 /* 2585 * Returns the subset of vCPUs in tostart that are awaiting startup. 2586 * These vCPUs are also marked as no longer awaiting startup. 2587 */ 2588 cpuset_t 2589 vm_start_cpus(struct vm *vm, const cpuset_t *tostart) 2590 { 2591 cpuset_t set; 2592 2593 mtx_lock(&vm->rendezvous_mtx); 2594 CPU_AND(&set, &vm->startup_cpus, tostart); 2595 CPU_ANDNOT(&vm->startup_cpus, &vm->startup_cpus, &set); 2596 mtx_unlock(&vm->rendezvous_mtx); 2597 return (set); 2598 } 2599 2600 void 2601 vm_await_start(struct vm *vm, const cpuset_t *waiting) 2602 { 2603 mtx_lock(&vm->rendezvous_mtx); 2604 CPU_OR(&vm->startup_cpus, &vm->startup_cpus, waiting); 2605 mtx_unlock(&vm->rendezvous_mtx); 2606 } 2607 2608 void * 2609 vcpu_stats(struct vcpu *vcpu) 2610 { 2611 2612 return (vcpu->stats); 2613 } 2614 2615 int 2616 vm_get_x2apic_state(struct vcpu *vcpu, enum x2apic_state *state) 2617 { 2618 *state = vcpu->x2apic_state; 2619 2620 return (0); 2621 } 2622 2623 int 2624 vm_set_x2apic_state(struct vcpu *vcpu, enum x2apic_state state) 2625 { 2626 if (state >= X2APIC_STATE_LAST) 2627 return (EINVAL); 2628 2629 vcpu->x2apic_state = state; 2630 2631 vlapic_set_x2apic_state(vcpu, state); 2632 2633 return (0); 2634 } 2635 2636 /* 2637 * This function is called to ensure that a vcpu "sees" a pending event 2638 * as soon as possible: 2639 * - If the vcpu thread is sleeping then it is woken up. 2640 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2641 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2642 */ 2643 static void 2644 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr) 2645 { 2646 int hostcpu; 2647 2648 hostcpu = vcpu->hostcpu; 2649 if (vcpu->state == VCPU_RUNNING) { 2650 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2651 if (hostcpu != curcpu) { 2652 if (lapic_intr) { 2653 vlapic_post_intr(vcpu->vlapic, hostcpu, 2654 vmm_ipinum); 2655 } else { 2656 ipi_cpu(hostcpu, vmm_ipinum); 2657 } 2658 } else { 2659 /* 2660 * If the 'vcpu' is running on 'curcpu' then it must 2661 * be sending a notification to itself (e.g. SELF_IPI). 2662 * The pending event will be picked up when the vcpu 2663 * transitions back to guest context. 2664 */ 2665 } 2666 } else { 2667 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2668 "with hostcpu %d", vcpu->state, hostcpu)); 2669 if (vcpu->state == VCPU_SLEEPING) 2670 wakeup_one(vcpu); 2671 } 2672 } 2673 2674 void 2675 vcpu_notify_event(struct vcpu *vcpu, bool lapic_intr) 2676 { 2677 vcpu_lock(vcpu); 2678 vcpu_notify_event_locked(vcpu, lapic_intr); 2679 vcpu_unlock(vcpu); 2680 } 2681 2682 struct vmspace * 2683 vm_get_vmspace(struct vm *vm) 2684 { 2685 2686 return (vm->vmspace); 2687 } 2688 2689 int 2690 vm_apicid2vcpuid(struct vm *vm, int apicid) 2691 { 2692 /* 2693 * XXX apic id is assumed to be numerically identical to vcpu id 2694 */ 2695 return (apicid); 2696 } 2697 2698 int 2699 vm_smp_rendezvous(struct vcpu *vcpu, cpuset_t dest, 2700 vm_rendezvous_func_t func, void *arg) 2701 { 2702 struct vm *vm = vcpu->vm; 2703 int error, i; 2704 2705 /* 2706 * Enforce that this function is called without any locks 2707 */ 2708 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2709 2710 restart: 2711 mtx_lock(&vm->rendezvous_mtx); 2712 if (vm->rendezvous_func != NULL) { 2713 /* 2714 * If a rendezvous is already in progress then we need to 2715 * call the rendezvous handler in case this 'vcpu' is one 2716 * of the targets of the rendezvous. 2717 */ 2718 VMM_CTR0(vcpu, "Rendezvous already in progress"); 2719 mtx_unlock(&vm->rendezvous_mtx); 2720 error = vm_handle_rendezvous(vcpu); 2721 if (error != 0) 2722 return (error); 2723 goto restart; 2724 } 2725 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2726 "rendezvous is still in progress")); 2727 2728 VMM_CTR0(vcpu, "Initiating rendezvous"); 2729 vm->rendezvous_req_cpus = dest; 2730 CPU_ZERO(&vm->rendezvous_done_cpus); 2731 vm->rendezvous_arg = arg; 2732 vm->rendezvous_func = func; 2733 mtx_unlock(&vm->rendezvous_mtx); 2734 2735 /* 2736 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2737 * vcpus so they handle the rendezvous as soon as possible. 2738 */ 2739 for (i = 0; i < vm->maxcpus; i++) { 2740 if (CPU_ISSET(i, &dest)) 2741 vcpu_notify_event(vm_vcpu(vm, i), false); 2742 } 2743 2744 return (vm_handle_rendezvous(vcpu)); 2745 } 2746 2747 struct vatpic * 2748 vm_atpic(struct vm *vm) 2749 { 2750 return (vm->vatpic); 2751 } 2752 2753 struct vatpit * 2754 vm_atpit(struct vm *vm) 2755 { 2756 return (vm->vatpit); 2757 } 2758 2759 struct vpmtmr * 2760 vm_pmtmr(struct vm *vm) 2761 { 2762 2763 return (vm->vpmtmr); 2764 } 2765 2766 struct vrtc * 2767 vm_rtc(struct vm *vm) 2768 { 2769 2770 return (vm->vrtc); 2771 } 2772 2773 enum vm_reg_name 2774 vm_segment_name(int seg) 2775 { 2776 static enum vm_reg_name seg_names[] = { 2777 VM_REG_GUEST_ES, 2778 VM_REG_GUEST_CS, 2779 VM_REG_GUEST_SS, 2780 VM_REG_GUEST_DS, 2781 VM_REG_GUEST_FS, 2782 VM_REG_GUEST_GS 2783 }; 2784 2785 KASSERT(seg >= 0 && seg < nitems(seg_names), 2786 ("%s: invalid segment encoding %d", __func__, seg)); 2787 return (seg_names[seg]); 2788 } 2789 2790 void 2791 vm_copy_teardown(struct vm_copyinfo *copyinfo, int num_copyinfo) 2792 { 2793 int idx; 2794 2795 for (idx = 0; idx < num_copyinfo; idx++) { 2796 if (copyinfo[idx].cookie != NULL) 2797 vm_gpa_release(copyinfo[idx].cookie); 2798 } 2799 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2800 } 2801 2802 int 2803 vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging, 2804 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2805 int num_copyinfo, int *fault) 2806 { 2807 int error, idx, nused; 2808 size_t n, off, remaining; 2809 void *hva, *cookie; 2810 uint64_t gpa; 2811 2812 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2813 2814 nused = 0; 2815 remaining = len; 2816 while (remaining > 0) { 2817 if (nused >= num_copyinfo) 2818 return (EFAULT); 2819 error = vm_gla2gpa(vcpu, paging, gla, prot, &gpa, fault); 2820 if (error || *fault) 2821 return (error); 2822 off = gpa & PAGE_MASK; 2823 n = min(remaining, PAGE_SIZE - off); 2824 copyinfo[nused].gpa = gpa; 2825 copyinfo[nused].len = n; 2826 remaining -= n; 2827 gla += n; 2828 nused++; 2829 } 2830 2831 for (idx = 0; idx < nused; idx++) { 2832 hva = vm_gpa_hold(vcpu, copyinfo[idx].gpa, 2833 copyinfo[idx].len, prot, &cookie); 2834 if (hva == NULL) 2835 break; 2836 copyinfo[idx].hva = hva; 2837 copyinfo[idx].cookie = cookie; 2838 } 2839 2840 if (idx != nused) { 2841 vm_copy_teardown(copyinfo, num_copyinfo); 2842 return (EFAULT); 2843 } else { 2844 *fault = 0; 2845 return (0); 2846 } 2847 } 2848 2849 void 2850 vm_copyin(struct vm_copyinfo *copyinfo, void *kaddr, size_t len) 2851 { 2852 char *dst; 2853 int idx; 2854 2855 dst = kaddr; 2856 idx = 0; 2857 while (len > 0) { 2858 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2859 len -= copyinfo[idx].len; 2860 dst += copyinfo[idx].len; 2861 idx++; 2862 } 2863 } 2864 2865 void 2866 vm_copyout(const void *kaddr, struct vm_copyinfo *copyinfo, size_t len) 2867 { 2868 const char *src; 2869 int idx; 2870 2871 src = kaddr; 2872 idx = 0; 2873 while (len > 0) { 2874 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2875 len -= copyinfo[idx].len; 2876 src += copyinfo[idx].len; 2877 idx++; 2878 } 2879 } 2880 2881 /* 2882 * Return the amount of in-use and wired memory for the VM. Since 2883 * these are global stats, only return the values with for vCPU 0 2884 */ 2885 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2886 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2887 2888 static void 2889 vm_get_rescnt(struct vcpu *vcpu, struct vmm_stat_type *stat) 2890 { 2891 2892 if (vcpu->vcpuid == 0) { 2893 vmm_stat_set(vcpu, VMM_MEM_RESIDENT, PAGE_SIZE * 2894 vmspace_resident_count(vcpu->vm->vmspace)); 2895 } 2896 } 2897 2898 static void 2899 vm_get_wiredcnt(struct vcpu *vcpu, struct vmm_stat_type *stat) 2900 { 2901 2902 if (vcpu->vcpuid == 0) { 2903 vmm_stat_set(vcpu, VMM_MEM_WIRED, PAGE_SIZE * 2904 pmap_wired_count(vmspace_pmap(vcpu->vm->vmspace))); 2905 } 2906 } 2907 2908 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2909 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2910 2911 #ifdef BHYVE_SNAPSHOT 2912 static int 2913 vm_snapshot_vcpus(struct vm *vm, struct vm_snapshot_meta *meta) 2914 { 2915 uint64_t tsc, now; 2916 int ret; 2917 struct vcpu *vcpu; 2918 uint16_t i, maxcpus; 2919 2920 now = rdtsc(); 2921 maxcpus = vm_get_maxcpus(vm); 2922 for (i = 0; i < maxcpus; i++) { 2923 vcpu = vm->vcpu[i]; 2924 if (vcpu == NULL) 2925 continue; 2926 2927 SNAPSHOT_VAR_OR_LEAVE(vcpu->x2apic_state, meta, ret, done); 2928 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitintinfo, meta, ret, done); 2929 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_vector, meta, ret, done); 2930 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode_valid, meta, ret, done); 2931 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode, meta, ret, done); 2932 SNAPSHOT_VAR_OR_LEAVE(vcpu->guest_xcr0, meta, ret, done); 2933 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitinfo, meta, ret, done); 2934 SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, ret, done); 2935 2936 /* 2937 * Save the absolute TSC value by adding now to tsc_offset. 2938 * 2939 * It will be turned turned back into an actual offset when the 2940 * TSC restore function is called 2941 */ 2942 tsc = now + vcpu->tsc_offset; 2943 SNAPSHOT_VAR_OR_LEAVE(tsc, meta, ret, done); 2944 if (meta->op == VM_SNAPSHOT_RESTORE) 2945 vcpu->tsc_offset = tsc; 2946 } 2947 2948 done: 2949 return (ret); 2950 } 2951 2952 static int 2953 vm_snapshot_vm(struct vm *vm, struct vm_snapshot_meta *meta) 2954 { 2955 int ret; 2956 2957 ret = vm_snapshot_vcpus(vm, meta); 2958 if (ret != 0) 2959 goto done; 2960 2961 SNAPSHOT_VAR_OR_LEAVE(vm->startup_cpus, meta, ret, done); 2962 done: 2963 return (ret); 2964 } 2965 2966 static int 2967 vm_snapshot_vcpu(struct vm *vm, struct vm_snapshot_meta *meta) 2968 { 2969 int error; 2970 struct vcpu *vcpu; 2971 uint16_t i, maxcpus; 2972 2973 error = 0; 2974 2975 maxcpus = vm_get_maxcpus(vm); 2976 for (i = 0; i < maxcpus; i++) { 2977 vcpu = vm->vcpu[i]; 2978 if (vcpu == NULL) 2979 continue; 2980 2981 error = vmmops_vcpu_snapshot(vcpu->cookie, meta); 2982 if (error != 0) { 2983 printf("%s: failed to snapshot vmcs/vmcb data for " 2984 "vCPU: %d; error: %d\n", __func__, i, error); 2985 goto done; 2986 } 2987 } 2988 2989 done: 2990 return (error); 2991 } 2992 2993 /* 2994 * Save kernel-side structures to user-space for snapshotting. 2995 */ 2996 int 2997 vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta) 2998 { 2999 int ret = 0; 3000 3001 switch (meta->dev_req) { 3002 case STRUCT_VMCX: 3003 ret = vm_snapshot_vcpu(vm, meta); 3004 break; 3005 case STRUCT_VM: 3006 ret = vm_snapshot_vm(vm, meta); 3007 break; 3008 case STRUCT_VIOAPIC: 3009 ret = vioapic_snapshot(vm_ioapic(vm), meta); 3010 break; 3011 case STRUCT_VLAPIC: 3012 ret = vlapic_snapshot(vm, meta); 3013 break; 3014 case STRUCT_VHPET: 3015 ret = vhpet_snapshot(vm_hpet(vm), meta); 3016 break; 3017 case STRUCT_VATPIC: 3018 ret = vatpic_snapshot(vm_atpic(vm), meta); 3019 break; 3020 case STRUCT_VATPIT: 3021 ret = vatpit_snapshot(vm_atpit(vm), meta); 3022 break; 3023 case STRUCT_VPMTMR: 3024 ret = vpmtmr_snapshot(vm_pmtmr(vm), meta); 3025 break; 3026 case STRUCT_VRTC: 3027 ret = vrtc_snapshot(vm_rtc(vm), meta); 3028 break; 3029 default: 3030 printf("%s: failed to find the requested type %#x\n", 3031 __func__, meta->dev_req); 3032 ret = (EINVAL); 3033 } 3034 return (ret); 3035 } 3036 3037 void 3038 vm_set_tsc_offset(struct vcpu *vcpu, uint64_t offset) 3039 { 3040 vcpu->tsc_offset = offset; 3041 } 3042 3043 int 3044 vm_restore_time(struct vm *vm) 3045 { 3046 int error; 3047 uint64_t now; 3048 struct vcpu *vcpu; 3049 uint16_t i, maxcpus; 3050 3051 now = rdtsc(); 3052 3053 error = vhpet_restore_time(vm_hpet(vm)); 3054 if (error) 3055 return (error); 3056 3057 maxcpus = vm_get_maxcpus(vm); 3058 for (i = 0; i < maxcpus; i++) { 3059 vcpu = vm->vcpu[i]; 3060 if (vcpu == NULL) 3061 continue; 3062 3063 error = vmmops_restore_tsc(vcpu->cookie, 3064 vcpu->tsc_offset - now); 3065 if (error) 3066 return (error); 3067 } 3068 3069 return (0); 3070 } 3071 #endif 3072