1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include "opt_bhyve_snapshot.h" 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/kernel.h> 39 #include <sys/module.h> 40 #include <sys/sysctl.h> 41 #include <sys/malloc.h> 42 #include <sys/pcpu.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/proc.h> 46 #include <sys/rwlock.h> 47 #include <sys/sched.h> 48 #include <sys/smp.h> 49 #include <sys/vnode.h> 50 51 #include <vm/vm.h> 52 #include <vm/vm_param.h> 53 #include <vm/vm_extern.h> 54 #include <vm/vm_object.h> 55 #include <vm/vm_page.h> 56 #include <vm/pmap.h> 57 #include <vm/vm_map.h> 58 #include <vm/vm_pager.h> 59 #include <vm/vm_kern.h> 60 #include <vm/vnode_pager.h> 61 #include <vm/swap_pager.h> 62 #include <vm/uma.h> 63 64 #include <machine/cpu.h> 65 #include <machine/pcb.h> 66 #include <machine/smp.h> 67 #include <machine/md_var.h> 68 #include <x86/psl.h> 69 #include <x86/apicreg.h> 70 #include <x86/ifunc.h> 71 72 #include <machine/vmm.h> 73 #include <machine/vmm_dev.h> 74 #include <machine/vmm_instruction_emul.h> 75 #include <machine/vmm_snapshot.h> 76 77 #include "vmm_ioport.h" 78 #include "vmm_ktr.h" 79 #include "vmm_host.h" 80 #include "vmm_mem.h" 81 #include "vmm_util.h" 82 #include "vatpic.h" 83 #include "vatpit.h" 84 #include "vhpet.h" 85 #include "vioapic.h" 86 #include "vlapic.h" 87 #include "vpmtmr.h" 88 #include "vrtc.h" 89 #include "vmm_stat.h" 90 #include "vmm_lapic.h" 91 92 #include "io/ppt.h" 93 #include "io/iommu.h" 94 95 struct vlapic; 96 97 /* 98 * Initialization: 99 * (a) allocated when vcpu is created 100 * (i) initialized when vcpu is created and when it is reinitialized 101 * (o) initialized the first time the vcpu is created 102 * (x) initialized before use 103 */ 104 struct vcpu { 105 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 106 enum vcpu_state state; /* (o) vcpu state */ 107 int hostcpu; /* (o) vcpu's host cpu */ 108 int reqidle; /* (i) request vcpu to idle */ 109 struct vlapic *vlapic; /* (i) APIC device model */ 110 enum x2apic_state x2apic_state; /* (i) APIC mode */ 111 uint64_t exitintinfo; /* (i) events pending at VM exit */ 112 int nmi_pending; /* (i) NMI pending */ 113 int extint_pending; /* (i) INTR pending */ 114 int exception_pending; /* (i) exception pending */ 115 int exc_vector; /* (x) exception collateral */ 116 int exc_errcode_valid; 117 uint32_t exc_errcode; 118 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 119 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 120 void *stats; /* (a,i) statistics */ 121 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 122 uint64_t nextrip; /* (x) next instruction to execute */ 123 uint64_t tsc_offset; /* (o) TSC offsetting */ 124 }; 125 126 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx)) 127 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 128 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 129 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 130 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 131 132 struct mem_seg { 133 size_t len; 134 bool sysmem; 135 struct vm_object *object; 136 }; 137 #define VM_MAX_MEMSEGS 4 138 139 struct mem_map { 140 vm_paddr_t gpa; 141 size_t len; 142 vm_ooffset_t segoff; 143 int segid; 144 int prot; 145 int flags; 146 }; 147 #define VM_MAX_MEMMAPS 8 148 149 /* 150 * Initialization: 151 * (o) initialized the first time the VM is created 152 * (i) initialized when VM is created and when it is reinitialized 153 * (x) initialized before use 154 */ 155 struct vm { 156 void *cookie; /* (i) cpu-specific data */ 157 void *iommu; /* (x) iommu-specific data */ 158 struct vhpet *vhpet; /* (i) virtual HPET */ 159 struct vioapic *vioapic; /* (i) virtual ioapic */ 160 struct vatpic *vatpic; /* (i) virtual atpic */ 161 struct vatpit *vatpit; /* (i) virtual atpit */ 162 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ 163 struct vrtc *vrtc; /* (o) virtual RTC */ 164 volatile cpuset_t active_cpus; /* (i) active vcpus */ 165 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */ 166 int suspend; /* (i) stop VM execution */ 167 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 168 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 169 cpuset_t rendezvous_req_cpus; /* (x) rendezvous requested */ 170 cpuset_t rendezvous_done_cpus; /* (x) rendezvous finished */ 171 void *rendezvous_arg; /* (x) rendezvous func/arg */ 172 vm_rendezvous_func_t rendezvous_func; 173 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 174 struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */ 175 struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */ 176 struct vmspace *vmspace; /* (o) guest's address space */ 177 char name[VM_MAX_NAMELEN+1]; /* (o) virtual machine name */ 178 struct vcpu vcpu[VM_MAXCPU]; /* (i) guest vcpus */ 179 /* The following describe the vm cpu topology */ 180 uint16_t sockets; /* (o) num of sockets */ 181 uint16_t cores; /* (o) num of cores/socket */ 182 uint16_t threads; /* (o) num of threads/core */ 183 uint16_t maxcpus; /* (o) max pluggable cpus */ 184 }; 185 186 static int vmm_initialized; 187 188 static void vmmops_panic(void); 189 190 static void 191 vmmops_panic(void) 192 { 193 panic("vmm_ops func called when !vmm_is_intel() && !vmm_is_svm()"); 194 } 195 196 #define DEFINE_VMMOPS_IFUNC(ret_type, opname, args) \ 197 DEFINE_IFUNC(static, ret_type, vmmops_##opname, args) \ 198 { \ 199 if (vmm_is_intel()) \ 200 return (vmm_ops_intel.opname); \ 201 else if (vmm_is_svm()) \ 202 return (vmm_ops_amd.opname); \ 203 else \ 204 return ((ret_type (*)args)vmmops_panic); \ 205 } 206 207 DEFINE_VMMOPS_IFUNC(int, modinit, (int ipinum)) 208 DEFINE_VMMOPS_IFUNC(int, modcleanup, (void)) 209 DEFINE_VMMOPS_IFUNC(void, modresume, (void)) 210 DEFINE_VMMOPS_IFUNC(void *, init, (struct vm *vm, struct pmap *pmap)) 211 DEFINE_VMMOPS_IFUNC(int, run, (void *vmi, int vcpu, register_t rip, 212 struct pmap *pmap, struct vm_eventinfo *info)) 213 DEFINE_VMMOPS_IFUNC(void, cleanup, (void *vmi)) 214 DEFINE_VMMOPS_IFUNC(int, getreg, (void *vmi, int vcpu, int num, 215 uint64_t *retval)) 216 DEFINE_VMMOPS_IFUNC(int, setreg, (void *vmi, int vcpu, int num, 217 uint64_t val)) 218 DEFINE_VMMOPS_IFUNC(int, getdesc, (void *vmi, int vcpu, int num, 219 struct seg_desc *desc)) 220 DEFINE_VMMOPS_IFUNC(int, setdesc, (void *vmi, int vcpu, int num, 221 struct seg_desc *desc)) 222 DEFINE_VMMOPS_IFUNC(int, getcap, (void *vmi, int vcpu, int num, int *retval)) 223 DEFINE_VMMOPS_IFUNC(int, setcap, (void *vmi, int vcpu, int num, int val)) 224 DEFINE_VMMOPS_IFUNC(struct vmspace *, vmspace_alloc, (vm_offset_t min, 225 vm_offset_t max)) 226 DEFINE_VMMOPS_IFUNC(void, vmspace_free, (struct vmspace *vmspace)) 227 DEFINE_VMMOPS_IFUNC(struct vlapic *, vlapic_init, (void *vmi, int vcpu)) 228 DEFINE_VMMOPS_IFUNC(void, vlapic_cleanup, (void *vmi, struct vlapic *vlapic)) 229 #ifdef BHYVE_SNAPSHOT 230 DEFINE_VMMOPS_IFUNC(int, snapshot, (void *vmi, struct vm_snapshot_meta 231 *meta)) 232 DEFINE_VMMOPS_IFUNC(int, vmcx_snapshot, (void *vmi, struct vm_snapshot_meta 233 *meta, int vcpu)) 234 DEFINE_VMMOPS_IFUNC(int, restore_tsc, (void *vmi, int vcpuid, uint64_t now)) 235 #endif 236 237 #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS) 238 #define fpu_stop_emulating() clts() 239 240 SDT_PROVIDER_DEFINE(vmm); 241 242 static MALLOC_DEFINE(M_VM, "vm", "vm"); 243 244 /* statistics */ 245 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 246 247 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 248 NULL); 249 250 /* 251 * Halt the guest if all vcpus are executing a HLT instruction with 252 * interrupts disabled. 253 */ 254 static int halt_detection_enabled = 1; 255 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 256 &halt_detection_enabled, 0, 257 "Halt VM if all vcpus execute HLT with interrupts disabled"); 258 259 static int vmm_ipinum; 260 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 261 "IPI vector used for vcpu notifications"); 262 263 static int trace_guest_exceptions; 264 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN, 265 &trace_guest_exceptions, 0, 266 "Trap into hypervisor on all guest exceptions and reflect them back"); 267 268 static int trap_wbinvd; 269 SYSCTL_INT(_hw_vmm, OID_AUTO, trap_wbinvd, CTLFLAG_RDTUN, &trap_wbinvd, 0, 270 "WBINVD triggers a VM-exit"); 271 272 static void vm_free_memmap(struct vm *vm, int ident); 273 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm); 274 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr); 275 276 #ifdef KTR 277 static const char * 278 vcpu_state2str(enum vcpu_state state) 279 { 280 281 switch (state) { 282 case VCPU_IDLE: 283 return ("idle"); 284 case VCPU_FROZEN: 285 return ("frozen"); 286 case VCPU_RUNNING: 287 return ("running"); 288 case VCPU_SLEEPING: 289 return ("sleeping"); 290 default: 291 return ("unknown"); 292 } 293 } 294 #endif 295 296 static void 297 vcpu_cleanup(struct vm *vm, int i, bool destroy) 298 { 299 struct vcpu *vcpu = &vm->vcpu[i]; 300 301 vmmops_vlapic_cleanup(vm->cookie, vcpu->vlapic); 302 if (destroy) { 303 vmm_stat_free(vcpu->stats); 304 fpu_save_area_free(vcpu->guestfpu); 305 } 306 } 307 308 static void 309 vcpu_init(struct vm *vm, int vcpu_id, bool create) 310 { 311 struct vcpu *vcpu; 312 313 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus, 314 ("vcpu_init: invalid vcpu %d", vcpu_id)); 315 316 vcpu = &vm->vcpu[vcpu_id]; 317 318 if (create) { 319 KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already " 320 "initialized", vcpu_id)); 321 vcpu_lock_init(vcpu); 322 vcpu->state = VCPU_IDLE; 323 vcpu->hostcpu = NOCPU; 324 vcpu->guestfpu = fpu_save_area_alloc(); 325 vcpu->stats = vmm_stat_alloc(); 326 vcpu->tsc_offset = 0; 327 } 328 329 vcpu->vlapic = vmmops_vlapic_init(vm->cookie, vcpu_id); 330 vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED); 331 vcpu->reqidle = 0; 332 vcpu->exitintinfo = 0; 333 vcpu->nmi_pending = 0; 334 vcpu->extint_pending = 0; 335 vcpu->exception_pending = 0; 336 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 337 fpu_save_area_reset(vcpu->guestfpu); 338 vmm_stat_init(vcpu->stats); 339 } 340 341 int 342 vcpu_trace_exceptions(struct vm *vm, int vcpuid) 343 { 344 345 return (trace_guest_exceptions); 346 } 347 348 int 349 vcpu_trap_wbinvd(struct vm *vm, int vcpuid) 350 { 351 return (trap_wbinvd); 352 } 353 354 struct vm_exit * 355 vm_exitinfo(struct vm *vm, int cpuid) 356 { 357 struct vcpu *vcpu; 358 359 if (cpuid < 0 || cpuid >= vm->maxcpus) 360 panic("vm_exitinfo: invalid cpuid %d", cpuid); 361 362 vcpu = &vm->vcpu[cpuid]; 363 364 return (&vcpu->exitinfo); 365 } 366 367 static int 368 vmm_init(void) 369 { 370 int error; 371 372 if (!vmm_is_hw_supported()) 373 return (ENXIO); 374 375 vmm_host_state_init(); 376 377 vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) : 378 &IDTVEC(justreturn)); 379 if (vmm_ipinum < 0) 380 vmm_ipinum = IPI_AST; 381 382 error = vmm_mem_init(); 383 if (error) 384 return (error); 385 386 vmm_resume_p = vmmops_modresume; 387 388 return (vmmops_modinit(vmm_ipinum)); 389 } 390 391 static int 392 vmm_handler(module_t mod, int what, void *arg) 393 { 394 int error; 395 396 switch (what) { 397 case MOD_LOAD: 398 if (vmm_is_hw_supported()) { 399 vmmdev_init(); 400 error = vmm_init(); 401 if (error == 0) 402 vmm_initialized = 1; 403 } else { 404 error = ENXIO; 405 } 406 break; 407 case MOD_UNLOAD: 408 if (vmm_is_hw_supported()) { 409 error = vmmdev_cleanup(); 410 if (error == 0) { 411 vmm_resume_p = NULL; 412 iommu_cleanup(); 413 if (vmm_ipinum != IPI_AST) 414 lapic_ipi_free(vmm_ipinum); 415 error = vmmops_modcleanup(); 416 /* 417 * Something bad happened - prevent new 418 * VMs from being created 419 */ 420 if (error) 421 vmm_initialized = 0; 422 } 423 } else { 424 error = 0; 425 } 426 break; 427 default: 428 error = 0; 429 break; 430 } 431 return (error); 432 } 433 434 static moduledata_t vmm_kmod = { 435 "vmm", 436 vmm_handler, 437 NULL 438 }; 439 440 /* 441 * vmm initialization has the following dependencies: 442 * 443 * - VT-x initialization requires smp_rendezvous() and therefore must happen 444 * after SMP is fully functional (after SI_SUB_SMP). 445 */ 446 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 447 MODULE_VERSION(vmm, 1); 448 449 static void 450 vm_init(struct vm *vm, bool create) 451 { 452 int i; 453 454 vm->cookie = vmmops_init(vm, vmspace_pmap(vm->vmspace)); 455 vm->iommu = NULL; 456 vm->vioapic = vioapic_init(vm); 457 vm->vhpet = vhpet_init(vm); 458 vm->vatpic = vatpic_init(vm); 459 vm->vatpit = vatpit_init(vm); 460 vm->vpmtmr = vpmtmr_init(vm); 461 if (create) 462 vm->vrtc = vrtc_init(vm); 463 464 CPU_ZERO(&vm->active_cpus); 465 CPU_ZERO(&vm->debug_cpus); 466 467 vm->suspend = 0; 468 CPU_ZERO(&vm->suspended_cpus); 469 470 for (i = 0; i < vm->maxcpus; i++) 471 vcpu_init(vm, i, create); 472 } 473 474 /* 475 * The default CPU topology is a single thread per package. 476 */ 477 u_int cores_per_package = 1; 478 u_int threads_per_core = 1; 479 480 int 481 vm_create(const char *name, struct vm **retvm) 482 { 483 struct vm *vm; 484 struct vmspace *vmspace; 485 486 /* 487 * If vmm.ko could not be successfully initialized then don't attempt 488 * to create the virtual machine. 489 */ 490 if (!vmm_initialized) 491 return (ENXIO); 492 493 if (name == NULL || strnlen(name, VM_MAX_NAMELEN + 1) == 494 VM_MAX_NAMELEN + 1) 495 return (EINVAL); 496 497 vmspace = vmmops_vmspace_alloc(0, VM_MAXUSER_ADDRESS_LA48); 498 if (vmspace == NULL) 499 return (ENOMEM); 500 501 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 502 strcpy(vm->name, name); 503 vm->vmspace = vmspace; 504 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 505 506 vm->sockets = 1; 507 vm->cores = cores_per_package; /* XXX backwards compatibility */ 508 vm->threads = threads_per_core; /* XXX backwards compatibility */ 509 vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */ 510 511 vm_init(vm, true); 512 513 *retvm = vm; 514 return (0); 515 } 516 517 void 518 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, 519 uint16_t *threads, uint16_t *maxcpus) 520 { 521 *sockets = vm->sockets; 522 *cores = vm->cores; 523 *threads = vm->threads; 524 *maxcpus = vm->maxcpus; 525 } 526 527 uint16_t 528 vm_get_maxcpus(struct vm *vm) 529 { 530 return (vm->maxcpus); 531 } 532 533 int 534 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, 535 uint16_t threads, uint16_t maxcpus) 536 { 537 if (maxcpus != 0) 538 return (EINVAL); /* XXX remove when supported */ 539 if ((sockets * cores * threads) > vm->maxcpus) 540 return (EINVAL); 541 /* XXX need to check sockets * cores * threads == vCPU, how? */ 542 vm->sockets = sockets; 543 vm->cores = cores; 544 vm->threads = threads; 545 vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */ 546 return(0); 547 } 548 549 static void 550 vm_cleanup(struct vm *vm, bool destroy) 551 { 552 struct mem_map *mm; 553 int i; 554 555 ppt_unassign_all(vm); 556 557 if (vm->iommu != NULL) 558 iommu_destroy_domain(vm->iommu); 559 560 if (destroy) 561 vrtc_cleanup(vm->vrtc); 562 else 563 vrtc_reset(vm->vrtc); 564 vpmtmr_cleanup(vm->vpmtmr); 565 vatpit_cleanup(vm->vatpit); 566 vhpet_cleanup(vm->vhpet); 567 vatpic_cleanup(vm->vatpic); 568 vioapic_cleanup(vm->vioapic); 569 570 for (i = 0; i < vm->maxcpus; i++) 571 vcpu_cleanup(vm, i, destroy); 572 573 vmmops_cleanup(vm->cookie); 574 575 /* 576 * System memory is removed from the guest address space only when 577 * the VM is destroyed. This is because the mapping remains the same 578 * across VM reset. 579 * 580 * Device memory can be relocated by the guest (e.g. using PCI BARs) 581 * so those mappings are removed on a VM reset. 582 */ 583 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 584 mm = &vm->mem_maps[i]; 585 if (destroy || !sysmem_mapping(vm, mm)) 586 vm_free_memmap(vm, i); 587 } 588 589 if (destroy) { 590 for (i = 0; i < VM_MAX_MEMSEGS; i++) 591 vm_free_memseg(vm, i); 592 593 vmmops_vmspace_free(vm->vmspace); 594 vm->vmspace = NULL; 595 } 596 } 597 598 void 599 vm_destroy(struct vm *vm) 600 { 601 vm_cleanup(vm, true); 602 free(vm, M_VM); 603 } 604 605 int 606 vm_reinit(struct vm *vm) 607 { 608 int error; 609 610 /* 611 * A virtual machine can be reset only if all vcpus are suspended. 612 */ 613 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 614 vm_cleanup(vm, false); 615 vm_init(vm, false); 616 error = 0; 617 } else { 618 error = EBUSY; 619 } 620 621 return (error); 622 } 623 624 const char * 625 vm_name(struct vm *vm) 626 { 627 return (vm->name); 628 } 629 630 int 631 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 632 { 633 vm_object_t obj; 634 635 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 636 return (ENOMEM); 637 else 638 return (0); 639 } 640 641 int 642 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 643 { 644 645 vmm_mmio_free(vm->vmspace, gpa, len); 646 return (0); 647 } 648 649 /* 650 * Return 'true' if 'gpa' is allocated in the guest address space. 651 * 652 * This function is called in the context of a running vcpu which acts as 653 * an implicit lock on 'vm->mem_maps[]'. 654 */ 655 bool 656 vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa) 657 { 658 struct mem_map *mm; 659 int i; 660 661 #ifdef INVARIANTS 662 int hostcpu, state; 663 state = vcpu_get_state(vm, vcpuid, &hostcpu); 664 KASSERT(state == VCPU_RUNNING && hostcpu == curcpu, 665 ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu)); 666 #endif 667 668 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 669 mm = &vm->mem_maps[i]; 670 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len) 671 return (true); /* 'gpa' is sysmem or devmem */ 672 } 673 674 if (ppt_is_mmio(vm, gpa)) 675 return (true); /* 'gpa' is pci passthru mmio */ 676 677 return (false); 678 } 679 680 int 681 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem) 682 { 683 struct mem_seg *seg; 684 vm_object_t obj; 685 686 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 687 return (EINVAL); 688 689 if (len == 0 || (len & PAGE_MASK)) 690 return (EINVAL); 691 692 seg = &vm->mem_segs[ident]; 693 if (seg->object != NULL) { 694 if (seg->len == len && seg->sysmem == sysmem) 695 return (EEXIST); 696 else 697 return (EINVAL); 698 } 699 700 obj = vm_object_allocate(OBJT_SWAP, len >> PAGE_SHIFT); 701 if (obj == NULL) 702 return (ENOMEM); 703 704 seg->len = len; 705 seg->object = obj; 706 seg->sysmem = sysmem; 707 return (0); 708 } 709 710 int 711 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, 712 vm_object_t *objptr) 713 { 714 struct mem_seg *seg; 715 716 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 717 return (EINVAL); 718 719 seg = &vm->mem_segs[ident]; 720 if (len) 721 *len = seg->len; 722 if (sysmem) 723 *sysmem = seg->sysmem; 724 if (objptr) 725 *objptr = seg->object; 726 return (0); 727 } 728 729 void 730 vm_free_memseg(struct vm *vm, int ident) 731 { 732 struct mem_seg *seg; 733 734 KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS, 735 ("%s: invalid memseg ident %d", __func__, ident)); 736 737 seg = &vm->mem_segs[ident]; 738 if (seg->object != NULL) { 739 vm_object_deallocate(seg->object); 740 bzero(seg, sizeof(struct mem_seg)); 741 } 742 } 743 744 int 745 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first, 746 size_t len, int prot, int flags) 747 { 748 struct mem_seg *seg; 749 struct mem_map *m, *map; 750 vm_ooffset_t last; 751 int i, error; 752 753 if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0) 754 return (EINVAL); 755 756 if (flags & ~VM_MEMMAP_F_WIRED) 757 return (EINVAL); 758 759 if (segid < 0 || segid >= VM_MAX_MEMSEGS) 760 return (EINVAL); 761 762 seg = &vm->mem_segs[segid]; 763 if (seg->object == NULL) 764 return (EINVAL); 765 766 last = first + len; 767 if (first < 0 || first >= last || last > seg->len) 768 return (EINVAL); 769 770 if ((gpa | first | last) & PAGE_MASK) 771 return (EINVAL); 772 773 map = NULL; 774 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 775 m = &vm->mem_maps[i]; 776 if (m->len == 0) { 777 map = m; 778 break; 779 } 780 } 781 782 if (map == NULL) 783 return (ENOSPC); 784 785 error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa, 786 len, 0, VMFS_NO_SPACE, prot, prot, 0); 787 if (error != KERN_SUCCESS) 788 return (EFAULT); 789 790 vm_object_reference(seg->object); 791 792 if (flags & VM_MEMMAP_F_WIRED) { 793 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len, 794 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 795 if (error != KERN_SUCCESS) { 796 vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len); 797 return (error == KERN_RESOURCE_SHORTAGE ? ENOMEM : 798 EFAULT); 799 } 800 } 801 802 map->gpa = gpa; 803 map->len = len; 804 map->segoff = first; 805 map->segid = segid; 806 map->prot = prot; 807 map->flags = flags; 808 return (0); 809 } 810 811 int 812 vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len) 813 { 814 struct mem_map *m; 815 int i; 816 817 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 818 m = &vm->mem_maps[i]; 819 if (m->gpa == gpa && m->len == len && 820 (m->flags & VM_MEMMAP_F_IOMMU) == 0) { 821 vm_free_memmap(vm, i); 822 return (0); 823 } 824 } 825 826 return (EINVAL); 827 } 828 829 int 830 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, 831 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 832 { 833 struct mem_map *mm, *mmnext; 834 int i; 835 836 mmnext = NULL; 837 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 838 mm = &vm->mem_maps[i]; 839 if (mm->len == 0 || mm->gpa < *gpa) 840 continue; 841 if (mmnext == NULL || mm->gpa < mmnext->gpa) 842 mmnext = mm; 843 } 844 845 if (mmnext != NULL) { 846 *gpa = mmnext->gpa; 847 if (segid) 848 *segid = mmnext->segid; 849 if (segoff) 850 *segoff = mmnext->segoff; 851 if (len) 852 *len = mmnext->len; 853 if (prot) 854 *prot = mmnext->prot; 855 if (flags) 856 *flags = mmnext->flags; 857 return (0); 858 } else { 859 return (ENOENT); 860 } 861 } 862 863 static void 864 vm_free_memmap(struct vm *vm, int ident) 865 { 866 struct mem_map *mm; 867 int error __diagused; 868 869 mm = &vm->mem_maps[ident]; 870 if (mm->len) { 871 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa, 872 mm->gpa + mm->len); 873 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d", 874 __func__, error)); 875 bzero(mm, sizeof(struct mem_map)); 876 } 877 } 878 879 static __inline bool 880 sysmem_mapping(struct vm *vm, struct mem_map *mm) 881 { 882 883 if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem) 884 return (true); 885 else 886 return (false); 887 } 888 889 vm_paddr_t 890 vmm_sysmem_maxaddr(struct vm *vm) 891 { 892 struct mem_map *mm; 893 vm_paddr_t maxaddr; 894 int i; 895 896 maxaddr = 0; 897 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 898 mm = &vm->mem_maps[i]; 899 if (sysmem_mapping(vm, mm)) { 900 if (maxaddr < mm->gpa + mm->len) 901 maxaddr = mm->gpa + mm->len; 902 } 903 } 904 return (maxaddr); 905 } 906 907 static void 908 vm_iommu_modify(struct vm *vm, bool map) 909 { 910 int i, sz; 911 vm_paddr_t gpa, hpa; 912 struct mem_map *mm; 913 void *vp, *cookie, *host_domain; 914 915 sz = PAGE_SIZE; 916 host_domain = iommu_host_domain(); 917 918 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 919 mm = &vm->mem_maps[i]; 920 if (!sysmem_mapping(vm, mm)) 921 continue; 922 923 if (map) { 924 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0, 925 ("iommu map found invalid memmap %#lx/%#lx/%#x", 926 mm->gpa, mm->len, mm->flags)); 927 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0) 928 continue; 929 mm->flags |= VM_MEMMAP_F_IOMMU; 930 } else { 931 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0) 932 continue; 933 mm->flags &= ~VM_MEMMAP_F_IOMMU; 934 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0, 935 ("iommu unmap found invalid memmap %#lx/%#lx/%#x", 936 mm->gpa, mm->len, mm->flags)); 937 } 938 939 gpa = mm->gpa; 940 while (gpa < mm->gpa + mm->len) { 941 vp = vm_gpa_hold(vm, -1, gpa, PAGE_SIZE, VM_PROT_WRITE, 942 &cookie); 943 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", 944 vm_name(vm), gpa)); 945 946 vm_gpa_release(cookie); 947 948 hpa = DMAP_TO_PHYS((uintptr_t)vp); 949 if (map) { 950 iommu_create_mapping(vm->iommu, gpa, hpa, sz); 951 } else { 952 iommu_remove_mapping(vm->iommu, gpa, sz); 953 } 954 955 gpa += PAGE_SIZE; 956 } 957 } 958 959 /* 960 * Invalidate the cached translations associated with the domain 961 * from which pages were removed. 962 */ 963 if (map) 964 iommu_invalidate_tlb(host_domain); 965 else 966 iommu_invalidate_tlb(vm->iommu); 967 } 968 969 #define vm_iommu_unmap(vm) vm_iommu_modify((vm), false) 970 #define vm_iommu_map(vm) vm_iommu_modify((vm), true) 971 972 int 973 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 974 { 975 int error; 976 977 error = ppt_unassign_device(vm, bus, slot, func); 978 if (error) 979 return (error); 980 981 if (ppt_assigned_devices(vm) == 0) 982 vm_iommu_unmap(vm); 983 984 return (0); 985 } 986 987 int 988 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 989 { 990 int error; 991 vm_paddr_t maxaddr; 992 993 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */ 994 if (ppt_assigned_devices(vm) == 0) { 995 KASSERT(vm->iommu == NULL, 996 ("vm_assign_pptdev: iommu must be NULL")); 997 maxaddr = vmm_sysmem_maxaddr(vm); 998 vm->iommu = iommu_create_domain(maxaddr); 999 if (vm->iommu == NULL) 1000 return (ENXIO); 1001 vm_iommu_map(vm); 1002 } 1003 1004 error = ppt_assign_device(vm, bus, slot, func); 1005 return (error); 1006 } 1007 1008 void * 1009 vm_gpa_hold(struct vm *vm, int vcpuid, vm_paddr_t gpa, size_t len, int reqprot, 1010 void **cookie) 1011 { 1012 int i, count, pageoff; 1013 struct mem_map *mm; 1014 vm_page_t m; 1015 #ifdef INVARIANTS 1016 /* 1017 * All vcpus are frozen by ioctls that modify the memory map 1018 * (e.g. VM_MMAP_MEMSEG). Therefore 'vm->memmap[]' stability is 1019 * guaranteed if at least one vcpu is in the VCPU_FROZEN state. 1020 */ 1021 int state; 1022 KASSERT(vcpuid >= -1 && vcpuid < vm->maxcpus, ("%s: invalid vcpuid %d", 1023 __func__, vcpuid)); 1024 for (i = 0; i < vm->maxcpus; i++) { 1025 if (vcpuid != -1 && vcpuid != i) 1026 continue; 1027 state = vcpu_get_state(vm, i, NULL); 1028 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d", 1029 __func__, state)); 1030 } 1031 #endif 1032 pageoff = gpa & PAGE_MASK; 1033 if (len > PAGE_SIZE - pageoff) 1034 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 1035 1036 count = 0; 1037 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1038 mm = &vm->mem_maps[i]; 1039 if (gpa >= mm->gpa && gpa < mm->gpa + mm->len) { 1040 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 1041 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 1042 break; 1043 } 1044 } 1045 1046 if (count == 1) { 1047 *cookie = m; 1048 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 1049 } else { 1050 *cookie = NULL; 1051 return (NULL); 1052 } 1053 } 1054 1055 void 1056 vm_gpa_release(void *cookie) 1057 { 1058 vm_page_t m = cookie; 1059 1060 vm_page_unwire(m, PQ_ACTIVE); 1061 } 1062 1063 int 1064 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval) 1065 { 1066 1067 if (vcpu < 0 || vcpu >= vm->maxcpus) 1068 return (EINVAL); 1069 1070 if (reg >= VM_REG_LAST) 1071 return (EINVAL); 1072 1073 return (vmmops_getreg(vm->cookie, vcpu, reg, retval)); 1074 } 1075 1076 int 1077 vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val) 1078 { 1079 struct vcpu *vcpu; 1080 int error; 1081 1082 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1083 return (EINVAL); 1084 1085 if (reg >= VM_REG_LAST) 1086 return (EINVAL); 1087 1088 error = vmmops_setreg(vm->cookie, vcpuid, reg, val); 1089 if (error || reg != VM_REG_GUEST_RIP) 1090 return (error); 1091 1092 /* Set 'nextrip' to match the value of %rip */ 1093 VCPU_CTR1(vm, vcpuid, "Setting nextrip to %#lx", val); 1094 vcpu = &vm->vcpu[vcpuid]; 1095 vcpu->nextrip = val; 1096 return (0); 1097 } 1098 1099 static bool 1100 is_descriptor_table(int reg) 1101 { 1102 1103 switch (reg) { 1104 case VM_REG_GUEST_IDTR: 1105 case VM_REG_GUEST_GDTR: 1106 return (true); 1107 default: 1108 return (false); 1109 } 1110 } 1111 1112 static bool 1113 is_segment_register(int reg) 1114 { 1115 1116 switch (reg) { 1117 case VM_REG_GUEST_ES: 1118 case VM_REG_GUEST_CS: 1119 case VM_REG_GUEST_SS: 1120 case VM_REG_GUEST_DS: 1121 case VM_REG_GUEST_FS: 1122 case VM_REG_GUEST_GS: 1123 case VM_REG_GUEST_TR: 1124 case VM_REG_GUEST_LDTR: 1125 return (true); 1126 default: 1127 return (false); 1128 } 1129 } 1130 1131 int 1132 vm_get_seg_desc(struct vm *vm, int vcpu, int reg, 1133 struct seg_desc *desc) 1134 { 1135 1136 if (vcpu < 0 || vcpu >= vm->maxcpus) 1137 return (EINVAL); 1138 1139 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1140 return (EINVAL); 1141 1142 return (vmmops_getdesc(vm->cookie, vcpu, reg, desc)); 1143 } 1144 1145 int 1146 vm_set_seg_desc(struct vm *vm, int vcpu, int reg, 1147 struct seg_desc *desc) 1148 { 1149 if (vcpu < 0 || vcpu >= vm->maxcpus) 1150 return (EINVAL); 1151 1152 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1153 return (EINVAL); 1154 1155 return (vmmops_setdesc(vm->cookie, vcpu, reg, desc)); 1156 } 1157 1158 static void 1159 restore_guest_fpustate(struct vcpu *vcpu) 1160 { 1161 1162 /* flush host state to the pcb */ 1163 fpuexit(curthread); 1164 1165 /* restore guest FPU state */ 1166 fpu_stop_emulating(); 1167 fpurestore(vcpu->guestfpu); 1168 1169 /* restore guest XCR0 if XSAVE is enabled in the host */ 1170 if (rcr4() & CR4_XSAVE) 1171 load_xcr(0, vcpu->guest_xcr0); 1172 1173 /* 1174 * The FPU is now "dirty" with the guest's state so turn on emulation 1175 * to trap any access to the FPU by the host. 1176 */ 1177 fpu_start_emulating(); 1178 } 1179 1180 static void 1181 save_guest_fpustate(struct vcpu *vcpu) 1182 { 1183 1184 if ((rcr0() & CR0_TS) == 0) 1185 panic("fpu emulation not enabled in host!"); 1186 1187 /* save guest XCR0 and restore host XCR0 */ 1188 if (rcr4() & CR4_XSAVE) { 1189 vcpu->guest_xcr0 = rxcr(0); 1190 load_xcr(0, vmm_get_host_xcr0()); 1191 } 1192 1193 /* save guest FPU state */ 1194 fpu_stop_emulating(); 1195 fpusave(vcpu->guestfpu); 1196 fpu_start_emulating(); 1197 } 1198 1199 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 1200 1201 static int 1202 vcpu_set_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate, 1203 bool from_idle) 1204 { 1205 struct vcpu *vcpu; 1206 int error; 1207 1208 vcpu = &vm->vcpu[vcpuid]; 1209 vcpu_assert_locked(vcpu); 1210 1211 /* 1212 * State transitions from the vmmdev_ioctl() must always begin from 1213 * the VCPU_IDLE state. This guarantees that there is only a single 1214 * ioctl() operating on a vcpu at any point. 1215 */ 1216 if (from_idle) { 1217 while (vcpu->state != VCPU_IDLE) { 1218 vcpu->reqidle = 1; 1219 vcpu_notify_event_locked(vcpu, false); 1220 VCPU_CTR1(vm, vcpuid, "vcpu state change from %s to " 1221 "idle requested", vcpu_state2str(vcpu->state)); 1222 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 1223 } 1224 } else { 1225 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 1226 "vcpu idle state")); 1227 } 1228 1229 if (vcpu->state == VCPU_RUNNING) { 1230 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 1231 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 1232 } else { 1233 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 1234 "vcpu that is not running", vcpu->hostcpu)); 1235 } 1236 1237 /* 1238 * The following state transitions are allowed: 1239 * IDLE -> FROZEN -> IDLE 1240 * FROZEN -> RUNNING -> FROZEN 1241 * FROZEN -> SLEEPING -> FROZEN 1242 */ 1243 switch (vcpu->state) { 1244 case VCPU_IDLE: 1245 case VCPU_RUNNING: 1246 case VCPU_SLEEPING: 1247 error = (newstate != VCPU_FROZEN); 1248 break; 1249 case VCPU_FROZEN: 1250 error = (newstate == VCPU_FROZEN); 1251 break; 1252 default: 1253 error = 1; 1254 break; 1255 } 1256 1257 if (error) 1258 return (EBUSY); 1259 1260 VCPU_CTR2(vm, vcpuid, "vcpu state changed from %s to %s", 1261 vcpu_state2str(vcpu->state), vcpu_state2str(newstate)); 1262 1263 vcpu->state = newstate; 1264 if (newstate == VCPU_RUNNING) 1265 vcpu->hostcpu = curcpu; 1266 else 1267 vcpu->hostcpu = NOCPU; 1268 1269 if (newstate == VCPU_IDLE) 1270 wakeup(&vcpu->state); 1271 1272 return (0); 1273 } 1274 1275 static void 1276 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1277 { 1278 int error; 1279 1280 if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0) 1281 panic("Error %d setting state to %d\n", error, newstate); 1282 } 1283 1284 static void 1285 vcpu_require_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1286 { 1287 int error; 1288 1289 if ((error = vcpu_set_state_locked(vm, vcpuid, newstate, false)) != 0) 1290 panic("Error %d setting state to %d", error, newstate); 1291 } 1292 1293 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt) \ 1294 do { \ 1295 if (vcpuid >= 0) \ 1296 VCPU_CTR0(vm, vcpuid, fmt); \ 1297 else \ 1298 VM_CTR0(vm, fmt); \ 1299 } while (0) 1300 1301 static int 1302 vm_handle_rendezvous(struct vm *vm, int vcpuid) 1303 { 1304 struct thread *td; 1305 int error; 1306 1307 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus), 1308 ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid)); 1309 1310 error = 0; 1311 td = curthread; 1312 mtx_lock(&vm->rendezvous_mtx); 1313 while (vm->rendezvous_func != NULL) { 1314 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1315 CPU_AND(&vm->rendezvous_req_cpus, &vm->rendezvous_req_cpus, &vm->active_cpus); 1316 1317 if (vcpuid != -1 && 1318 CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1319 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1320 VCPU_CTR0(vm, vcpuid, "Calling rendezvous func"); 1321 (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg); 1322 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1323 } 1324 if (CPU_CMP(&vm->rendezvous_req_cpus, 1325 &vm->rendezvous_done_cpus) == 0) { 1326 VCPU_CTR0(vm, vcpuid, "Rendezvous completed"); 1327 vm->rendezvous_func = NULL; 1328 wakeup(&vm->rendezvous_func); 1329 break; 1330 } 1331 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion"); 1332 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1333 "vmrndv", hz); 1334 if (td_ast_pending(td, TDA_SUSPEND)) { 1335 mtx_unlock(&vm->rendezvous_mtx); 1336 error = thread_check_susp(td, true); 1337 if (error != 0) 1338 return (error); 1339 mtx_lock(&vm->rendezvous_mtx); 1340 } 1341 } 1342 mtx_unlock(&vm->rendezvous_mtx); 1343 return (0); 1344 } 1345 1346 /* 1347 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1348 */ 1349 static int 1350 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu) 1351 { 1352 struct vcpu *vcpu; 1353 const char *wmesg; 1354 struct thread *td; 1355 int error, t, vcpu_halted, vm_halted; 1356 1357 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1358 1359 vcpu = &vm->vcpu[vcpuid]; 1360 vcpu_halted = 0; 1361 vm_halted = 0; 1362 error = 0; 1363 td = curthread; 1364 1365 vcpu_lock(vcpu); 1366 while (1) { 1367 /* 1368 * Do a final check for pending NMI or interrupts before 1369 * really putting this thread to sleep. Also check for 1370 * software events that would cause this vcpu to wakeup. 1371 * 1372 * These interrupts/events could have happened after the 1373 * vcpu returned from vmmops_run() and before it acquired the 1374 * vcpu lock above. 1375 */ 1376 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle) 1377 break; 1378 if (vm_nmi_pending(vm, vcpuid)) 1379 break; 1380 if (!intr_disabled) { 1381 if (vm_extint_pending(vm, vcpuid) || 1382 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1383 break; 1384 } 1385 } 1386 1387 /* Don't go to sleep if the vcpu thread needs to yield */ 1388 if (vcpu_should_yield(vm, vcpuid)) 1389 break; 1390 1391 if (vcpu_debugged(vm, vcpuid)) 1392 break; 1393 1394 /* 1395 * Some Linux guests implement "halt" by having all vcpus 1396 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1397 * track of the vcpus that have entered this state. When all 1398 * vcpus enter the halted state the virtual machine is halted. 1399 */ 1400 if (intr_disabled) { 1401 wmesg = "vmhalt"; 1402 VCPU_CTR0(vm, vcpuid, "Halted"); 1403 if (!vcpu_halted && halt_detection_enabled) { 1404 vcpu_halted = 1; 1405 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1406 } 1407 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1408 vm_halted = 1; 1409 break; 1410 } 1411 } else { 1412 wmesg = "vmidle"; 1413 } 1414 1415 t = ticks; 1416 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); 1417 /* 1418 * XXX msleep_spin() cannot be interrupted by signals so 1419 * wake up periodically to check pending signals. 1420 */ 1421 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1422 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); 1423 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t); 1424 if (td_ast_pending(td, TDA_SUSPEND)) { 1425 vcpu_unlock(vcpu); 1426 error = thread_check_susp(td, false); 1427 if (error != 0) 1428 return (error); 1429 vcpu_lock(vcpu); 1430 } 1431 } 1432 1433 if (vcpu_halted) 1434 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1435 1436 vcpu_unlock(vcpu); 1437 1438 if (vm_halted) 1439 vm_suspend(vm, VM_SUSPEND_HALT); 1440 1441 return (0); 1442 } 1443 1444 static int 1445 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu) 1446 { 1447 int rv, ftype; 1448 struct vm_map *map; 1449 struct vcpu *vcpu; 1450 struct vm_exit *vme; 1451 1452 vcpu = &vm->vcpu[vcpuid]; 1453 vme = &vcpu->exitinfo; 1454 1455 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1456 __func__, vme->inst_length)); 1457 1458 ftype = vme->u.paging.fault_type; 1459 KASSERT(ftype == VM_PROT_READ || 1460 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1461 ("vm_handle_paging: invalid fault_type %d", ftype)); 1462 1463 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1464 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1465 vme->u.paging.gpa, ftype); 1466 if (rv == 0) { 1467 VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx", 1468 ftype == VM_PROT_READ ? "accessed" : "dirty", 1469 vme->u.paging.gpa); 1470 goto done; 1471 } 1472 } 1473 1474 map = &vm->vmspace->vm_map; 1475 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL); 1476 1477 VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, " 1478 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1479 1480 if (rv != KERN_SUCCESS) 1481 return (EFAULT); 1482 done: 1483 return (0); 1484 } 1485 1486 static int 1487 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu) 1488 { 1489 struct vie *vie; 1490 struct vcpu *vcpu; 1491 struct vm_exit *vme; 1492 uint64_t gla, gpa, cs_base; 1493 struct vm_guest_paging *paging; 1494 mem_region_read_t mread; 1495 mem_region_write_t mwrite; 1496 enum vm_cpu_mode cpu_mode; 1497 int cs_d, error, fault; 1498 1499 vcpu = &vm->vcpu[vcpuid]; 1500 vme = &vcpu->exitinfo; 1501 1502 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1503 __func__, vme->inst_length)); 1504 1505 gla = vme->u.inst_emul.gla; 1506 gpa = vme->u.inst_emul.gpa; 1507 cs_base = vme->u.inst_emul.cs_base; 1508 cs_d = vme->u.inst_emul.cs_d; 1509 vie = &vme->u.inst_emul.vie; 1510 paging = &vme->u.inst_emul.paging; 1511 cpu_mode = paging->cpu_mode; 1512 1513 VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa); 1514 1515 /* Fetch, decode and emulate the faulting instruction */ 1516 if (vie->num_valid == 0) { 1517 error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip + 1518 cs_base, VIE_INST_SIZE, vie, &fault); 1519 } else { 1520 /* 1521 * The instruction bytes have already been copied into 'vie' 1522 */ 1523 error = fault = 0; 1524 } 1525 if (error || fault) 1526 return (error); 1527 1528 if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) { 1529 VCPU_CTR1(vm, vcpuid, "Error decoding instruction at %#lx", 1530 vme->rip + cs_base); 1531 *retu = true; /* dump instruction bytes in userspace */ 1532 return (0); 1533 } 1534 1535 /* 1536 * Update 'nextrip' based on the length of the emulated instruction. 1537 */ 1538 vme->inst_length = vie->num_processed; 1539 vcpu->nextrip += vie->num_processed; 1540 VCPU_CTR1(vm, vcpuid, "nextrip updated to %#lx after instruction " 1541 "decoding", vcpu->nextrip); 1542 1543 /* return to userland unless this is an in-kernel emulated device */ 1544 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1545 mread = lapic_mmio_read; 1546 mwrite = lapic_mmio_write; 1547 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1548 mread = vioapic_mmio_read; 1549 mwrite = vioapic_mmio_write; 1550 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1551 mread = vhpet_mmio_read; 1552 mwrite = vhpet_mmio_write; 1553 } else { 1554 *retu = true; 1555 return (0); 1556 } 1557 1558 error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging, 1559 mread, mwrite, retu); 1560 1561 return (error); 1562 } 1563 1564 static int 1565 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu) 1566 { 1567 int error, i; 1568 struct vcpu *vcpu; 1569 struct thread *td; 1570 1571 error = 0; 1572 vcpu = &vm->vcpu[vcpuid]; 1573 td = curthread; 1574 1575 CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus); 1576 1577 /* 1578 * Wait until all 'active_cpus' have suspended themselves. 1579 * 1580 * Since a VM may be suspended at any time including when one or 1581 * more vcpus are doing a rendezvous we need to call the rendezvous 1582 * handler while we are waiting to prevent a deadlock. 1583 */ 1584 vcpu_lock(vcpu); 1585 while (error == 0) { 1586 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1587 VCPU_CTR0(vm, vcpuid, "All vcpus suspended"); 1588 break; 1589 } 1590 1591 if (vm->rendezvous_func == NULL) { 1592 VCPU_CTR0(vm, vcpuid, "Sleeping during suspend"); 1593 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); 1594 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1595 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); 1596 if (td_ast_pending(td, TDA_SUSPEND)) { 1597 vcpu_unlock(vcpu); 1598 error = thread_check_susp(td, false); 1599 vcpu_lock(vcpu); 1600 } 1601 } else { 1602 VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend"); 1603 vcpu_unlock(vcpu); 1604 error = vm_handle_rendezvous(vm, vcpuid); 1605 vcpu_lock(vcpu); 1606 } 1607 } 1608 vcpu_unlock(vcpu); 1609 1610 /* 1611 * Wakeup the other sleeping vcpus and return to userspace. 1612 */ 1613 for (i = 0; i < vm->maxcpus; i++) { 1614 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1615 vcpu_notify_event(vm, i, false); 1616 } 1617 } 1618 1619 *retu = true; 1620 return (error); 1621 } 1622 1623 static int 1624 vm_handle_reqidle(struct vm *vm, int vcpuid, bool *retu) 1625 { 1626 struct vcpu *vcpu = &vm->vcpu[vcpuid]; 1627 1628 vcpu_lock(vcpu); 1629 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle)); 1630 vcpu->reqidle = 0; 1631 vcpu_unlock(vcpu); 1632 *retu = true; 1633 return (0); 1634 } 1635 1636 int 1637 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1638 { 1639 int i; 1640 1641 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1642 return (EINVAL); 1643 1644 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1645 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1646 vm->suspend, how); 1647 return (EALREADY); 1648 } 1649 1650 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1651 1652 /* 1653 * Notify all active vcpus that they are now suspended. 1654 */ 1655 for (i = 0; i < vm->maxcpus; i++) { 1656 if (CPU_ISSET(i, &vm->active_cpus)) 1657 vcpu_notify_event(vm, i, false); 1658 } 1659 1660 return (0); 1661 } 1662 1663 void 1664 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip) 1665 { 1666 struct vm_exit *vmexit; 1667 1668 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1669 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1670 1671 vmexit = vm_exitinfo(vm, vcpuid); 1672 vmexit->rip = rip; 1673 vmexit->inst_length = 0; 1674 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1675 vmexit->u.suspended.how = vm->suspend; 1676 } 1677 1678 void 1679 vm_exit_debug(struct vm *vm, int vcpuid, uint64_t rip) 1680 { 1681 struct vm_exit *vmexit; 1682 1683 vmexit = vm_exitinfo(vm, vcpuid); 1684 vmexit->rip = rip; 1685 vmexit->inst_length = 0; 1686 vmexit->exitcode = VM_EXITCODE_DEBUG; 1687 } 1688 1689 void 1690 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip) 1691 { 1692 struct vm_exit *vmexit; 1693 1694 KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress")); 1695 1696 vmexit = vm_exitinfo(vm, vcpuid); 1697 vmexit->rip = rip; 1698 vmexit->inst_length = 0; 1699 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1700 vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1); 1701 } 1702 1703 void 1704 vm_exit_reqidle(struct vm *vm, int vcpuid, uint64_t rip) 1705 { 1706 struct vm_exit *vmexit; 1707 1708 vmexit = vm_exitinfo(vm, vcpuid); 1709 vmexit->rip = rip; 1710 vmexit->inst_length = 0; 1711 vmexit->exitcode = VM_EXITCODE_REQIDLE; 1712 vmm_stat_incr(vm, vcpuid, VMEXIT_REQIDLE, 1); 1713 } 1714 1715 void 1716 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip) 1717 { 1718 struct vm_exit *vmexit; 1719 1720 vmexit = vm_exitinfo(vm, vcpuid); 1721 vmexit->rip = rip; 1722 vmexit->inst_length = 0; 1723 vmexit->exitcode = VM_EXITCODE_BOGUS; 1724 vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1); 1725 } 1726 1727 int 1728 vm_run(struct vm *vm, struct vm_run *vmrun) 1729 { 1730 struct vm_eventinfo evinfo; 1731 int error, vcpuid; 1732 struct vcpu *vcpu; 1733 struct pcb *pcb; 1734 uint64_t tscval; 1735 struct vm_exit *vme; 1736 bool retu, intr_disabled; 1737 pmap_t pmap; 1738 1739 vcpuid = vmrun->cpuid; 1740 1741 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1742 return (EINVAL); 1743 1744 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1745 return (EINVAL); 1746 1747 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1748 return (EINVAL); 1749 1750 pmap = vmspace_pmap(vm->vmspace); 1751 vcpu = &vm->vcpu[vcpuid]; 1752 vme = &vcpu->exitinfo; 1753 evinfo.rptr = &vm->rendezvous_func; 1754 evinfo.sptr = &vm->suspend; 1755 evinfo.iptr = &vcpu->reqidle; 1756 restart: 1757 critical_enter(); 1758 1759 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1760 ("vm_run: absurd pm_active")); 1761 1762 tscval = rdtsc(); 1763 1764 pcb = PCPU_GET(curpcb); 1765 set_pcb_flags(pcb, PCB_FULL_IRET); 1766 1767 restore_guest_fpustate(vcpu); 1768 1769 vcpu_require_state(vm, vcpuid, VCPU_RUNNING); 1770 error = vmmops_run(vm->cookie, vcpuid, vcpu->nextrip, pmap, &evinfo); 1771 vcpu_require_state(vm, vcpuid, VCPU_FROZEN); 1772 1773 save_guest_fpustate(vcpu); 1774 1775 vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1776 1777 critical_exit(); 1778 1779 if (error == 0) { 1780 retu = false; 1781 vcpu->nextrip = vme->rip + vme->inst_length; 1782 switch (vme->exitcode) { 1783 case VM_EXITCODE_REQIDLE: 1784 error = vm_handle_reqidle(vm, vcpuid, &retu); 1785 break; 1786 case VM_EXITCODE_SUSPENDED: 1787 error = vm_handle_suspend(vm, vcpuid, &retu); 1788 break; 1789 case VM_EXITCODE_IOAPIC_EOI: 1790 vioapic_process_eoi(vm, vcpuid, 1791 vme->u.ioapic_eoi.vector); 1792 break; 1793 case VM_EXITCODE_RENDEZVOUS: 1794 error = vm_handle_rendezvous(vm, vcpuid); 1795 break; 1796 case VM_EXITCODE_HLT: 1797 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1798 error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu); 1799 break; 1800 case VM_EXITCODE_PAGING: 1801 error = vm_handle_paging(vm, vcpuid, &retu); 1802 break; 1803 case VM_EXITCODE_INST_EMUL: 1804 error = vm_handle_inst_emul(vm, vcpuid, &retu); 1805 break; 1806 case VM_EXITCODE_INOUT: 1807 case VM_EXITCODE_INOUT_STR: 1808 error = vm_handle_inout(vm, vcpuid, vme, &retu); 1809 break; 1810 case VM_EXITCODE_MONITOR: 1811 case VM_EXITCODE_MWAIT: 1812 case VM_EXITCODE_VMINSN: 1813 vm_inject_ud(vm, vcpuid); 1814 break; 1815 default: 1816 retu = true; /* handled in userland */ 1817 break; 1818 } 1819 } 1820 1821 /* 1822 * VM_EXITCODE_INST_EMUL could access the apic which could transform the 1823 * exit code into VM_EXITCODE_IPI. 1824 */ 1825 if (error == 0 && vme->exitcode == VM_EXITCODE_IPI) { 1826 retu = false; 1827 error = vm_handle_ipi(vm, vcpuid, vme, &retu); 1828 } 1829 1830 if (error == 0 && retu == false) 1831 goto restart; 1832 1833 vmm_stat_incr(vm, vcpuid, VMEXIT_USERSPACE, 1); 1834 VCPU_CTR2(vm, vcpuid, "retu %d/%d", error, vme->exitcode); 1835 1836 /* copy the exit information */ 1837 bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit)); 1838 return (error); 1839 } 1840 1841 int 1842 vm_restart_instruction(void *arg, int vcpuid) 1843 { 1844 struct vm *vm; 1845 struct vcpu *vcpu; 1846 enum vcpu_state state; 1847 uint64_t rip; 1848 int error __diagused; 1849 1850 vm = arg; 1851 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1852 return (EINVAL); 1853 1854 vcpu = &vm->vcpu[vcpuid]; 1855 state = vcpu_get_state(vm, vcpuid, NULL); 1856 if (state == VCPU_RUNNING) { 1857 /* 1858 * When a vcpu is "running" the next instruction is determined 1859 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'. 1860 * Thus setting 'inst_length' to zero will cause the current 1861 * instruction to be restarted. 1862 */ 1863 vcpu->exitinfo.inst_length = 0; 1864 VCPU_CTR1(vm, vcpuid, "restarting instruction at %#lx by " 1865 "setting inst_length to zero", vcpu->exitinfo.rip); 1866 } else if (state == VCPU_FROZEN) { 1867 /* 1868 * When a vcpu is "frozen" it is outside the critical section 1869 * around vmmops_run() and 'nextrip' points to the next 1870 * instruction. Thus instruction restart is achieved by setting 1871 * 'nextrip' to the vcpu's %rip. 1872 */ 1873 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip); 1874 KASSERT(!error, ("%s: error %d getting rip", __func__, error)); 1875 VCPU_CTR2(vm, vcpuid, "restarting instruction by updating " 1876 "nextrip from %#lx to %#lx", vcpu->nextrip, rip); 1877 vcpu->nextrip = rip; 1878 } else { 1879 panic("%s: invalid state %d", __func__, state); 1880 } 1881 return (0); 1882 } 1883 1884 int 1885 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info) 1886 { 1887 struct vcpu *vcpu; 1888 int type, vector; 1889 1890 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1891 return (EINVAL); 1892 1893 vcpu = &vm->vcpu[vcpuid]; 1894 1895 if (info & VM_INTINFO_VALID) { 1896 type = info & VM_INTINFO_TYPE; 1897 vector = info & 0xff; 1898 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 1899 return (EINVAL); 1900 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 1901 return (EINVAL); 1902 if (info & VM_INTINFO_RSVD) 1903 return (EINVAL); 1904 } else { 1905 info = 0; 1906 } 1907 VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info); 1908 vcpu->exitintinfo = info; 1909 return (0); 1910 } 1911 1912 enum exc_class { 1913 EXC_BENIGN, 1914 EXC_CONTRIBUTORY, 1915 EXC_PAGEFAULT 1916 }; 1917 1918 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 1919 1920 static enum exc_class 1921 exception_class(uint64_t info) 1922 { 1923 int type, vector; 1924 1925 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 1926 type = info & VM_INTINFO_TYPE; 1927 vector = info & 0xff; 1928 1929 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 1930 switch (type) { 1931 case VM_INTINFO_HWINTR: 1932 case VM_INTINFO_SWINTR: 1933 case VM_INTINFO_NMI: 1934 return (EXC_BENIGN); 1935 default: 1936 /* 1937 * Hardware exception. 1938 * 1939 * SVM and VT-x use identical type values to represent NMI, 1940 * hardware interrupt and software interrupt. 1941 * 1942 * SVM uses type '3' for all exceptions. VT-x uses type '3' 1943 * for exceptions except #BP and #OF. #BP and #OF use a type 1944 * value of '5' or '6'. Therefore we don't check for explicit 1945 * values of 'type' to classify 'intinfo' into a hardware 1946 * exception. 1947 */ 1948 break; 1949 } 1950 1951 switch (vector) { 1952 case IDT_PF: 1953 case IDT_VE: 1954 return (EXC_PAGEFAULT); 1955 case IDT_DE: 1956 case IDT_TS: 1957 case IDT_NP: 1958 case IDT_SS: 1959 case IDT_GP: 1960 return (EXC_CONTRIBUTORY); 1961 default: 1962 return (EXC_BENIGN); 1963 } 1964 } 1965 1966 static int 1967 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2, 1968 uint64_t *retinfo) 1969 { 1970 enum exc_class exc1, exc2; 1971 int type1, vector1; 1972 1973 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 1974 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 1975 1976 /* 1977 * If an exception occurs while attempting to call the double-fault 1978 * handler the processor enters shutdown mode (aka triple fault). 1979 */ 1980 type1 = info1 & VM_INTINFO_TYPE; 1981 vector1 = info1 & 0xff; 1982 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 1983 VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)", 1984 info1, info2); 1985 vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT); 1986 *retinfo = 0; 1987 return (0); 1988 } 1989 1990 /* 1991 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 1992 */ 1993 exc1 = exception_class(info1); 1994 exc2 = exception_class(info2); 1995 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 1996 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 1997 /* Convert nested fault into a double fault. */ 1998 *retinfo = IDT_DF; 1999 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 2000 *retinfo |= VM_INTINFO_DEL_ERRCODE; 2001 } else { 2002 /* Handle exceptions serially */ 2003 *retinfo = info2; 2004 } 2005 return (1); 2006 } 2007 2008 static uint64_t 2009 vcpu_exception_intinfo(struct vcpu *vcpu) 2010 { 2011 uint64_t info = 0; 2012 2013 if (vcpu->exception_pending) { 2014 info = vcpu->exc_vector & 0xff; 2015 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 2016 if (vcpu->exc_errcode_valid) { 2017 info |= VM_INTINFO_DEL_ERRCODE; 2018 info |= (uint64_t)vcpu->exc_errcode << 32; 2019 } 2020 } 2021 return (info); 2022 } 2023 2024 int 2025 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo) 2026 { 2027 struct vcpu *vcpu; 2028 uint64_t info1, info2; 2029 int valid; 2030 2031 KASSERT(vcpuid >= 0 && 2032 vcpuid < vm->maxcpus, ("invalid vcpu %d", vcpuid)); 2033 2034 vcpu = &vm->vcpu[vcpuid]; 2035 2036 info1 = vcpu->exitintinfo; 2037 vcpu->exitintinfo = 0; 2038 2039 info2 = 0; 2040 if (vcpu->exception_pending) { 2041 info2 = vcpu_exception_intinfo(vcpu); 2042 vcpu->exception_pending = 0; 2043 VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx", 2044 vcpu->exc_vector, info2); 2045 } 2046 2047 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 2048 valid = nested_fault(vm, vcpuid, info1, info2, retinfo); 2049 } else if (info1 & VM_INTINFO_VALID) { 2050 *retinfo = info1; 2051 valid = 1; 2052 } else if (info2 & VM_INTINFO_VALID) { 2053 *retinfo = info2; 2054 valid = 1; 2055 } else { 2056 valid = 0; 2057 } 2058 2059 if (valid) { 2060 VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), " 2061 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 2062 } 2063 2064 return (valid); 2065 } 2066 2067 int 2068 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2) 2069 { 2070 struct vcpu *vcpu; 2071 2072 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2073 return (EINVAL); 2074 2075 vcpu = &vm->vcpu[vcpuid]; 2076 *info1 = vcpu->exitintinfo; 2077 *info2 = vcpu_exception_intinfo(vcpu); 2078 return (0); 2079 } 2080 2081 int 2082 vm_inject_exception(struct vm *vm, int vcpuid, int vector, int errcode_valid, 2083 uint32_t errcode, int restart_instruction) 2084 { 2085 struct vcpu *vcpu; 2086 uint64_t regval; 2087 int error __diagused; 2088 2089 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2090 return (EINVAL); 2091 2092 if (vector < 0 || vector >= 32) 2093 return (EINVAL); 2094 2095 /* 2096 * A double fault exception should never be injected directly into 2097 * the guest. It is a derived exception that results from specific 2098 * combinations of nested faults. 2099 */ 2100 if (vector == IDT_DF) 2101 return (EINVAL); 2102 2103 vcpu = &vm->vcpu[vcpuid]; 2104 2105 if (vcpu->exception_pending) { 2106 VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to " 2107 "pending exception %d", vector, vcpu->exc_vector); 2108 return (EBUSY); 2109 } 2110 2111 if (errcode_valid) { 2112 /* 2113 * Exceptions don't deliver an error code in real mode. 2114 */ 2115 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_CR0, ®val); 2116 KASSERT(!error, ("%s: error %d getting CR0", __func__, error)); 2117 if (!(regval & CR0_PE)) 2118 errcode_valid = 0; 2119 } 2120 2121 /* 2122 * From section 26.6.1 "Interruptibility State" in Intel SDM: 2123 * 2124 * Event blocking by "STI" or "MOV SS" is cleared after guest executes 2125 * one instruction or incurs an exception. 2126 */ 2127 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0); 2128 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", 2129 __func__, error)); 2130 2131 if (restart_instruction) 2132 vm_restart_instruction(vm, vcpuid); 2133 2134 vcpu->exception_pending = 1; 2135 vcpu->exc_vector = vector; 2136 vcpu->exc_errcode = errcode; 2137 vcpu->exc_errcode_valid = errcode_valid; 2138 VCPU_CTR1(vm, vcpuid, "Exception %d pending", vector); 2139 return (0); 2140 } 2141 2142 void 2143 vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid, 2144 int errcode) 2145 { 2146 struct vm *vm; 2147 int error __diagused, restart_instruction; 2148 2149 vm = vmarg; 2150 restart_instruction = 1; 2151 2152 error = vm_inject_exception(vm, vcpuid, vector, errcode_valid, 2153 errcode, restart_instruction); 2154 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 2155 } 2156 2157 void 2158 vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2) 2159 { 2160 struct vm *vm; 2161 int error __diagused; 2162 2163 vm = vmarg; 2164 VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx", 2165 error_code, cr2); 2166 2167 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2); 2168 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 2169 2170 vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code); 2171 } 2172 2173 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 2174 2175 int 2176 vm_inject_nmi(struct vm *vm, int vcpuid) 2177 { 2178 struct vcpu *vcpu; 2179 2180 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2181 return (EINVAL); 2182 2183 vcpu = &vm->vcpu[vcpuid]; 2184 2185 vcpu->nmi_pending = 1; 2186 vcpu_notify_event(vm, vcpuid, false); 2187 return (0); 2188 } 2189 2190 int 2191 vm_nmi_pending(struct vm *vm, int vcpuid) 2192 { 2193 struct vcpu *vcpu; 2194 2195 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2196 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 2197 2198 vcpu = &vm->vcpu[vcpuid]; 2199 2200 return (vcpu->nmi_pending); 2201 } 2202 2203 void 2204 vm_nmi_clear(struct vm *vm, int vcpuid) 2205 { 2206 struct vcpu *vcpu; 2207 2208 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2209 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 2210 2211 vcpu = &vm->vcpu[vcpuid]; 2212 2213 if (vcpu->nmi_pending == 0) 2214 panic("vm_nmi_clear: inconsistent nmi_pending state"); 2215 2216 vcpu->nmi_pending = 0; 2217 vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1); 2218 } 2219 2220 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 2221 2222 int 2223 vm_inject_extint(struct vm *vm, int vcpuid) 2224 { 2225 struct vcpu *vcpu; 2226 2227 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2228 return (EINVAL); 2229 2230 vcpu = &vm->vcpu[vcpuid]; 2231 2232 vcpu->extint_pending = 1; 2233 vcpu_notify_event(vm, vcpuid, false); 2234 return (0); 2235 } 2236 2237 int 2238 vm_extint_pending(struct vm *vm, int vcpuid) 2239 { 2240 struct vcpu *vcpu; 2241 2242 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2243 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 2244 2245 vcpu = &vm->vcpu[vcpuid]; 2246 2247 return (vcpu->extint_pending); 2248 } 2249 2250 void 2251 vm_extint_clear(struct vm *vm, int vcpuid) 2252 { 2253 struct vcpu *vcpu; 2254 2255 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2256 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 2257 2258 vcpu = &vm->vcpu[vcpuid]; 2259 2260 if (vcpu->extint_pending == 0) 2261 panic("vm_extint_clear: inconsistent extint_pending state"); 2262 2263 vcpu->extint_pending = 0; 2264 vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1); 2265 } 2266 2267 int 2268 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval) 2269 { 2270 if (vcpu < 0 || vcpu >= vm->maxcpus) 2271 return (EINVAL); 2272 2273 if (type < 0 || type >= VM_CAP_MAX) 2274 return (EINVAL); 2275 2276 return (vmmops_getcap(vm->cookie, vcpu, type, retval)); 2277 } 2278 2279 int 2280 vm_set_capability(struct vm *vm, int vcpu, int type, int val) 2281 { 2282 if (vcpu < 0 || vcpu >= vm->maxcpus) 2283 return (EINVAL); 2284 2285 if (type < 0 || type >= VM_CAP_MAX) 2286 return (EINVAL); 2287 2288 return (vmmops_setcap(vm->cookie, vcpu, type, val)); 2289 } 2290 2291 struct vlapic * 2292 vm_lapic(struct vm *vm, int cpu) 2293 { 2294 return (vm->vcpu[cpu].vlapic); 2295 } 2296 2297 struct vioapic * 2298 vm_ioapic(struct vm *vm) 2299 { 2300 2301 return (vm->vioapic); 2302 } 2303 2304 struct vhpet * 2305 vm_hpet(struct vm *vm) 2306 { 2307 2308 return (vm->vhpet); 2309 } 2310 2311 bool 2312 vmm_is_pptdev(int bus, int slot, int func) 2313 { 2314 int b, f, i, n, s; 2315 char *val, *cp, *cp2; 2316 bool found; 2317 2318 /* 2319 * XXX 2320 * The length of an environment variable is limited to 128 bytes which 2321 * puts an upper limit on the number of passthru devices that may be 2322 * specified using a single environment variable. 2323 * 2324 * Work around this by scanning multiple environment variable 2325 * names instead of a single one - yuck! 2326 */ 2327 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 2328 2329 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 2330 found = false; 2331 for (i = 0; names[i] != NULL && !found; i++) { 2332 cp = val = kern_getenv(names[i]); 2333 while (cp != NULL && *cp != '\0') { 2334 if ((cp2 = strchr(cp, ' ')) != NULL) 2335 *cp2 = '\0'; 2336 2337 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 2338 if (n == 3 && bus == b && slot == s && func == f) { 2339 found = true; 2340 break; 2341 } 2342 2343 if (cp2 != NULL) 2344 *cp2++ = ' '; 2345 2346 cp = cp2; 2347 } 2348 freeenv(val); 2349 } 2350 return (found); 2351 } 2352 2353 void * 2354 vm_iommu_domain(struct vm *vm) 2355 { 2356 2357 return (vm->iommu); 2358 } 2359 2360 int 2361 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate, 2362 bool from_idle) 2363 { 2364 int error; 2365 struct vcpu *vcpu; 2366 2367 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2368 panic("vm_set_run_state: invalid vcpuid %d", vcpuid); 2369 2370 vcpu = &vm->vcpu[vcpuid]; 2371 2372 vcpu_lock(vcpu); 2373 error = vcpu_set_state_locked(vm, vcpuid, newstate, from_idle); 2374 vcpu_unlock(vcpu); 2375 2376 return (error); 2377 } 2378 2379 enum vcpu_state 2380 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu) 2381 { 2382 struct vcpu *vcpu; 2383 enum vcpu_state state; 2384 2385 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2386 panic("vm_get_run_state: invalid vcpuid %d", vcpuid); 2387 2388 vcpu = &vm->vcpu[vcpuid]; 2389 2390 vcpu_lock(vcpu); 2391 state = vcpu->state; 2392 if (hostcpu != NULL) 2393 *hostcpu = vcpu->hostcpu; 2394 vcpu_unlock(vcpu); 2395 2396 return (state); 2397 } 2398 2399 int 2400 vm_activate_cpu(struct vm *vm, int vcpuid) 2401 { 2402 2403 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2404 return (EINVAL); 2405 2406 if (CPU_ISSET(vcpuid, &vm->active_cpus)) 2407 return (EBUSY); 2408 2409 VCPU_CTR0(vm, vcpuid, "activated"); 2410 CPU_SET_ATOMIC(vcpuid, &vm->active_cpus); 2411 return (0); 2412 } 2413 2414 int 2415 vm_suspend_cpu(struct vm *vm, int vcpuid) 2416 { 2417 int i; 2418 2419 if (vcpuid < -1 || vcpuid >= vm->maxcpus) 2420 return (EINVAL); 2421 2422 if (vcpuid == -1) { 2423 vm->debug_cpus = vm->active_cpus; 2424 for (i = 0; i < vm->maxcpus; i++) { 2425 if (CPU_ISSET(i, &vm->active_cpus)) 2426 vcpu_notify_event(vm, i, false); 2427 } 2428 } else { 2429 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 2430 return (EINVAL); 2431 2432 CPU_SET_ATOMIC(vcpuid, &vm->debug_cpus); 2433 vcpu_notify_event(vm, vcpuid, false); 2434 } 2435 return (0); 2436 } 2437 2438 int 2439 vm_resume_cpu(struct vm *vm, int vcpuid) 2440 { 2441 2442 if (vcpuid < -1 || vcpuid >= vm->maxcpus) 2443 return (EINVAL); 2444 2445 if (vcpuid == -1) { 2446 CPU_ZERO(&vm->debug_cpus); 2447 } else { 2448 if (!CPU_ISSET(vcpuid, &vm->debug_cpus)) 2449 return (EINVAL); 2450 2451 CPU_CLR_ATOMIC(vcpuid, &vm->debug_cpus); 2452 } 2453 return (0); 2454 } 2455 2456 int 2457 vcpu_debugged(struct vm *vm, int vcpuid) 2458 { 2459 2460 return (CPU_ISSET(vcpuid, &vm->debug_cpus)); 2461 } 2462 2463 cpuset_t 2464 vm_active_cpus(struct vm *vm) 2465 { 2466 2467 return (vm->active_cpus); 2468 } 2469 2470 cpuset_t 2471 vm_debug_cpus(struct vm *vm) 2472 { 2473 2474 return (vm->debug_cpus); 2475 } 2476 2477 cpuset_t 2478 vm_suspended_cpus(struct vm *vm) 2479 { 2480 2481 return (vm->suspended_cpus); 2482 } 2483 2484 void * 2485 vcpu_stats(struct vm *vm, int vcpuid) 2486 { 2487 2488 return (vm->vcpu[vcpuid].stats); 2489 } 2490 2491 int 2492 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state) 2493 { 2494 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2495 return (EINVAL); 2496 2497 *state = vm->vcpu[vcpuid].x2apic_state; 2498 2499 return (0); 2500 } 2501 2502 int 2503 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state) 2504 { 2505 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2506 return (EINVAL); 2507 2508 if (state >= X2APIC_STATE_LAST) 2509 return (EINVAL); 2510 2511 vm->vcpu[vcpuid].x2apic_state = state; 2512 2513 vlapic_set_x2apic_state(vm, vcpuid, state); 2514 2515 return (0); 2516 } 2517 2518 /* 2519 * This function is called to ensure that a vcpu "sees" a pending event 2520 * as soon as possible: 2521 * - If the vcpu thread is sleeping then it is woken up. 2522 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2523 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2524 */ 2525 static void 2526 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr) 2527 { 2528 int hostcpu; 2529 2530 hostcpu = vcpu->hostcpu; 2531 if (vcpu->state == VCPU_RUNNING) { 2532 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2533 if (hostcpu != curcpu) { 2534 if (lapic_intr) { 2535 vlapic_post_intr(vcpu->vlapic, hostcpu, 2536 vmm_ipinum); 2537 } else { 2538 ipi_cpu(hostcpu, vmm_ipinum); 2539 } 2540 } else { 2541 /* 2542 * If the 'vcpu' is running on 'curcpu' then it must 2543 * be sending a notification to itself (e.g. SELF_IPI). 2544 * The pending event will be picked up when the vcpu 2545 * transitions back to guest context. 2546 */ 2547 } 2548 } else { 2549 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2550 "with hostcpu %d", vcpu->state, hostcpu)); 2551 if (vcpu->state == VCPU_SLEEPING) 2552 wakeup_one(vcpu); 2553 } 2554 } 2555 2556 void 2557 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr) 2558 { 2559 struct vcpu *vcpu = &vm->vcpu[vcpuid]; 2560 2561 vcpu_lock(vcpu); 2562 vcpu_notify_event_locked(vcpu, lapic_intr); 2563 vcpu_unlock(vcpu); 2564 } 2565 2566 struct vmspace * 2567 vm_get_vmspace(struct vm *vm) 2568 { 2569 2570 return (vm->vmspace); 2571 } 2572 2573 int 2574 vm_apicid2vcpuid(struct vm *vm, int apicid) 2575 { 2576 /* 2577 * XXX apic id is assumed to be numerically identical to vcpu id 2578 */ 2579 return (apicid); 2580 } 2581 2582 int 2583 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest, 2584 vm_rendezvous_func_t func, void *arg) 2585 { 2586 int error, i; 2587 2588 /* 2589 * Enforce that this function is called without any locks 2590 */ 2591 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2592 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus), 2593 ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid)); 2594 2595 restart: 2596 mtx_lock(&vm->rendezvous_mtx); 2597 if (vm->rendezvous_func != NULL) { 2598 /* 2599 * If a rendezvous is already in progress then we need to 2600 * call the rendezvous handler in case this 'vcpuid' is one 2601 * of the targets of the rendezvous. 2602 */ 2603 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress"); 2604 mtx_unlock(&vm->rendezvous_mtx); 2605 error = vm_handle_rendezvous(vm, vcpuid); 2606 if (error != 0) 2607 return (error); 2608 goto restart; 2609 } 2610 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2611 "rendezvous is still in progress")); 2612 2613 RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous"); 2614 vm->rendezvous_req_cpus = dest; 2615 CPU_ZERO(&vm->rendezvous_done_cpus); 2616 vm->rendezvous_arg = arg; 2617 vm->rendezvous_func = func; 2618 mtx_unlock(&vm->rendezvous_mtx); 2619 2620 /* 2621 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2622 * vcpus so they handle the rendezvous as soon as possible. 2623 */ 2624 for (i = 0; i < vm->maxcpus; i++) { 2625 if (CPU_ISSET(i, &dest)) 2626 vcpu_notify_event(vm, i, false); 2627 } 2628 2629 return (vm_handle_rendezvous(vm, vcpuid)); 2630 } 2631 2632 struct vatpic * 2633 vm_atpic(struct vm *vm) 2634 { 2635 return (vm->vatpic); 2636 } 2637 2638 struct vatpit * 2639 vm_atpit(struct vm *vm) 2640 { 2641 return (vm->vatpit); 2642 } 2643 2644 struct vpmtmr * 2645 vm_pmtmr(struct vm *vm) 2646 { 2647 2648 return (vm->vpmtmr); 2649 } 2650 2651 struct vrtc * 2652 vm_rtc(struct vm *vm) 2653 { 2654 2655 return (vm->vrtc); 2656 } 2657 2658 enum vm_reg_name 2659 vm_segment_name(int seg) 2660 { 2661 static enum vm_reg_name seg_names[] = { 2662 VM_REG_GUEST_ES, 2663 VM_REG_GUEST_CS, 2664 VM_REG_GUEST_SS, 2665 VM_REG_GUEST_DS, 2666 VM_REG_GUEST_FS, 2667 VM_REG_GUEST_GS 2668 }; 2669 2670 KASSERT(seg >= 0 && seg < nitems(seg_names), 2671 ("%s: invalid segment encoding %d", __func__, seg)); 2672 return (seg_names[seg]); 2673 } 2674 2675 void 2676 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, 2677 int num_copyinfo) 2678 { 2679 int idx; 2680 2681 for (idx = 0; idx < num_copyinfo; idx++) { 2682 if (copyinfo[idx].cookie != NULL) 2683 vm_gpa_release(copyinfo[idx].cookie); 2684 } 2685 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2686 } 2687 2688 int 2689 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging, 2690 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2691 int num_copyinfo, int *fault) 2692 { 2693 int error, idx, nused; 2694 size_t n, off, remaining; 2695 void *hva, *cookie; 2696 uint64_t gpa; 2697 2698 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2699 2700 nused = 0; 2701 remaining = len; 2702 while (remaining > 0) { 2703 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo")); 2704 error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa, fault); 2705 if (error || *fault) 2706 return (error); 2707 off = gpa & PAGE_MASK; 2708 n = min(remaining, PAGE_SIZE - off); 2709 copyinfo[nused].gpa = gpa; 2710 copyinfo[nused].len = n; 2711 remaining -= n; 2712 gla += n; 2713 nused++; 2714 } 2715 2716 for (idx = 0; idx < nused; idx++) { 2717 hva = vm_gpa_hold(vm, vcpuid, copyinfo[idx].gpa, 2718 copyinfo[idx].len, prot, &cookie); 2719 if (hva == NULL) 2720 break; 2721 copyinfo[idx].hva = hva; 2722 copyinfo[idx].cookie = cookie; 2723 } 2724 2725 if (idx != nused) { 2726 vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo); 2727 return (EFAULT); 2728 } else { 2729 *fault = 0; 2730 return (0); 2731 } 2732 } 2733 2734 void 2735 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr, 2736 size_t len) 2737 { 2738 char *dst; 2739 int idx; 2740 2741 dst = kaddr; 2742 idx = 0; 2743 while (len > 0) { 2744 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2745 len -= copyinfo[idx].len; 2746 dst += copyinfo[idx].len; 2747 idx++; 2748 } 2749 } 2750 2751 void 2752 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr, 2753 struct vm_copyinfo *copyinfo, size_t len) 2754 { 2755 const char *src; 2756 int idx; 2757 2758 src = kaddr; 2759 idx = 0; 2760 while (len > 0) { 2761 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2762 len -= copyinfo[idx].len; 2763 src += copyinfo[idx].len; 2764 idx++; 2765 } 2766 } 2767 2768 /* 2769 * Return the amount of in-use and wired memory for the VM. Since 2770 * these are global stats, only return the values with for vCPU 0 2771 */ 2772 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2773 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2774 2775 static void 2776 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2777 { 2778 2779 if (vcpu == 0) { 2780 vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT, 2781 PAGE_SIZE * vmspace_resident_count(vm->vmspace)); 2782 } 2783 } 2784 2785 static void 2786 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2787 { 2788 2789 if (vcpu == 0) { 2790 vmm_stat_set(vm, vcpu, VMM_MEM_WIRED, 2791 PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace))); 2792 } 2793 } 2794 2795 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2796 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2797 2798 #ifdef BHYVE_SNAPSHOT 2799 static int 2800 vm_snapshot_vcpus(struct vm *vm, struct vm_snapshot_meta *meta) 2801 { 2802 int ret; 2803 int i; 2804 struct vcpu *vcpu; 2805 2806 for (i = 0; i < VM_MAXCPU; i++) { 2807 vcpu = &vm->vcpu[i]; 2808 2809 SNAPSHOT_VAR_OR_LEAVE(vcpu->x2apic_state, meta, ret, done); 2810 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitintinfo, meta, ret, done); 2811 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_vector, meta, ret, done); 2812 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode_valid, meta, ret, done); 2813 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode, meta, ret, done); 2814 SNAPSHOT_VAR_OR_LEAVE(vcpu->guest_xcr0, meta, ret, done); 2815 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitinfo, meta, ret, done); 2816 SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, ret, done); 2817 /* XXX we're cheating here, since the value of tsc_offset as 2818 * saved here is actually the value of the guest's TSC value. 2819 * 2820 * It will be turned turned back into an actual offset when the 2821 * TSC restore function is called 2822 */ 2823 SNAPSHOT_VAR_OR_LEAVE(vcpu->tsc_offset, meta, ret, done); 2824 } 2825 2826 done: 2827 return (ret); 2828 } 2829 2830 static int 2831 vm_snapshot_vm(struct vm *vm, struct vm_snapshot_meta *meta) 2832 { 2833 int ret; 2834 int i; 2835 uint64_t now; 2836 2837 ret = 0; 2838 now = rdtsc(); 2839 2840 if (meta->op == VM_SNAPSHOT_SAVE) { 2841 /* XXX make tsc_offset take the value TSC proper as seen by the 2842 * guest 2843 */ 2844 for (i = 0; i < VM_MAXCPU; i++) 2845 vm->vcpu[i].tsc_offset += now; 2846 } 2847 2848 ret = vm_snapshot_vcpus(vm, meta); 2849 if (ret != 0) { 2850 printf("%s: failed to copy vm data to user buffer", __func__); 2851 goto done; 2852 } 2853 2854 if (meta->op == VM_SNAPSHOT_SAVE) { 2855 /* XXX turn tsc_offset back into an offset; actual value is only 2856 * required for restore; using it otherwise would be wrong 2857 */ 2858 for (i = 0; i < VM_MAXCPU; i++) 2859 vm->vcpu[i].tsc_offset -= now; 2860 } 2861 2862 done: 2863 return (ret); 2864 } 2865 2866 static int 2867 vm_snapshot_vmcx(struct vm *vm, struct vm_snapshot_meta *meta) 2868 { 2869 int i, error; 2870 2871 error = 0; 2872 2873 for (i = 0; i < VM_MAXCPU; i++) { 2874 error = vmmops_vmcx_snapshot(vm->cookie, meta, i); 2875 if (error != 0) { 2876 printf("%s: failed to snapshot vmcs/vmcb data for " 2877 "vCPU: %d; error: %d\n", __func__, i, error); 2878 goto done; 2879 } 2880 } 2881 2882 done: 2883 return (error); 2884 } 2885 2886 /* 2887 * Save kernel-side structures to user-space for snapshotting. 2888 */ 2889 int 2890 vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta) 2891 { 2892 int ret = 0; 2893 2894 switch (meta->dev_req) { 2895 case STRUCT_VMX: 2896 ret = vmmops_snapshot(vm->cookie, meta); 2897 break; 2898 case STRUCT_VMCX: 2899 ret = vm_snapshot_vmcx(vm, meta); 2900 break; 2901 case STRUCT_VM: 2902 ret = vm_snapshot_vm(vm, meta); 2903 break; 2904 case STRUCT_VIOAPIC: 2905 ret = vioapic_snapshot(vm_ioapic(vm), meta); 2906 break; 2907 case STRUCT_VLAPIC: 2908 ret = vlapic_snapshot(vm, meta); 2909 break; 2910 case STRUCT_VHPET: 2911 ret = vhpet_snapshot(vm_hpet(vm), meta); 2912 break; 2913 case STRUCT_VATPIC: 2914 ret = vatpic_snapshot(vm_atpic(vm), meta); 2915 break; 2916 case STRUCT_VATPIT: 2917 ret = vatpit_snapshot(vm_atpit(vm), meta); 2918 break; 2919 case STRUCT_VPMTMR: 2920 ret = vpmtmr_snapshot(vm_pmtmr(vm), meta); 2921 break; 2922 case STRUCT_VRTC: 2923 ret = vrtc_snapshot(vm_rtc(vm), meta); 2924 break; 2925 default: 2926 printf("%s: failed to find the requested type %#x\n", 2927 __func__, meta->dev_req); 2928 ret = (EINVAL); 2929 } 2930 return (ret); 2931 } 2932 2933 int 2934 vm_set_tsc_offset(struct vm *vm, int vcpuid, uint64_t offset) 2935 { 2936 struct vcpu *vcpu; 2937 2938 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2939 return (EINVAL); 2940 2941 vcpu = &vm->vcpu[vcpuid]; 2942 vcpu->tsc_offset = offset; 2943 2944 return (0); 2945 } 2946 2947 int 2948 vm_restore_time(struct vm *vm) 2949 { 2950 int error, i; 2951 uint64_t now; 2952 struct vcpu *vcpu; 2953 2954 now = rdtsc(); 2955 2956 error = vhpet_restore_time(vm_hpet(vm)); 2957 if (error) 2958 return (error); 2959 2960 for (i = 0; i < nitems(vm->vcpu); i++) { 2961 vcpu = &vm->vcpu[i]; 2962 2963 error = vmmops_restore_tsc(vm->cookie, i, vcpu->tsc_offset - 2964 now); 2965 if (error) 2966 return (error); 2967 } 2968 2969 return (0); 2970 } 2971 #endif 2972