1 /*- 2 * Copyright (c) 2011 NetApp, Inc. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD$ 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/kernel.h> 35 #include <sys/module.h> 36 #include <sys/sysctl.h> 37 #include <sys/malloc.h> 38 #include <sys/pcpu.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/proc.h> 42 #include <sys/rwlock.h> 43 #include <sys/sched.h> 44 #include <sys/smp.h> 45 #include <sys/systm.h> 46 47 #include <vm/vm.h> 48 #include <vm/vm_object.h> 49 #include <vm/vm_page.h> 50 #include <vm/pmap.h> 51 #include <vm/vm_map.h> 52 #include <vm/vm_extern.h> 53 #include <vm/vm_param.h> 54 55 #include <machine/cpu.h> 56 #include <machine/pcb.h> 57 #include <machine/smp.h> 58 #include <x86/psl.h> 59 #include <x86/apicreg.h> 60 61 #include <machine/vmm.h> 62 #include <machine/vmm_dev.h> 63 #include <machine/vmm_instruction_emul.h> 64 65 #include "vmm_ioport.h" 66 #include "vmm_ktr.h" 67 #include "vmm_host.h" 68 #include "vmm_mem.h" 69 #include "vmm_util.h" 70 #include "vatpic.h" 71 #include "vatpit.h" 72 #include "vhpet.h" 73 #include "vioapic.h" 74 #include "vlapic.h" 75 #include "vpmtmr.h" 76 #include "vrtc.h" 77 #include "vmm_stat.h" 78 #include "vmm_lapic.h" 79 80 #include "io/ppt.h" 81 #include "io/iommu.h" 82 83 struct vlapic; 84 85 /* 86 * Initialization: 87 * (a) allocated when vcpu is created 88 * (i) initialized when vcpu is created and when it is reinitialized 89 * (o) initialized the first time the vcpu is created 90 * (x) initialized before use 91 */ 92 struct vcpu { 93 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 94 enum vcpu_state state; /* (o) vcpu state */ 95 int hostcpu; /* (o) vcpu's host cpu */ 96 int reqidle; /* (i) request vcpu to idle */ 97 struct vlapic *vlapic; /* (i) APIC device model */ 98 enum x2apic_state x2apic_state; /* (i) APIC mode */ 99 uint64_t exitintinfo; /* (i) events pending at VM exit */ 100 int nmi_pending; /* (i) NMI pending */ 101 int extint_pending; /* (i) INTR pending */ 102 int exception_pending; /* (i) exception pending */ 103 int exc_vector; /* (x) exception collateral */ 104 int exc_errcode_valid; 105 uint32_t exc_errcode; 106 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 107 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 108 void *stats; /* (a,i) statistics */ 109 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 110 uint64_t nextrip; /* (x) next instruction to execute */ 111 }; 112 113 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx)) 114 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 115 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 116 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 117 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 118 119 struct mem_seg { 120 size_t len; 121 bool sysmem; 122 struct vm_object *object; 123 }; 124 #define VM_MAX_MEMSEGS 3 125 126 struct mem_map { 127 vm_paddr_t gpa; 128 size_t len; 129 vm_ooffset_t segoff; 130 int segid; 131 int prot; 132 int flags; 133 }; 134 #define VM_MAX_MEMMAPS 4 135 136 /* 137 * Initialization: 138 * (o) initialized the first time the VM is created 139 * (i) initialized when VM is created and when it is reinitialized 140 * (x) initialized before use 141 */ 142 struct vm { 143 void *cookie; /* (i) cpu-specific data */ 144 void *iommu; /* (x) iommu-specific data */ 145 struct vhpet *vhpet; /* (i) virtual HPET */ 146 struct vioapic *vioapic; /* (i) virtual ioapic */ 147 struct vatpic *vatpic; /* (i) virtual atpic */ 148 struct vatpit *vatpit; /* (i) virtual atpit */ 149 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ 150 struct vrtc *vrtc; /* (o) virtual RTC */ 151 volatile cpuset_t active_cpus; /* (i) active vcpus */ 152 int suspend; /* (i) stop VM execution */ 153 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 154 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 155 cpuset_t rendezvous_req_cpus; /* (x) rendezvous requested */ 156 cpuset_t rendezvous_done_cpus; /* (x) rendezvous finished */ 157 void *rendezvous_arg; /* (x) rendezvous func/arg */ 158 vm_rendezvous_func_t rendezvous_func; 159 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 160 struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */ 161 struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */ 162 struct vmspace *vmspace; /* (o) guest's address space */ 163 char name[VM_MAX_NAMELEN]; /* (o) virtual machine name */ 164 struct vcpu vcpu[VM_MAXCPU]; /* (i) guest vcpus */ 165 }; 166 167 static int vmm_initialized; 168 169 static struct vmm_ops *ops; 170 #define VMM_INIT(num) (ops != NULL ? (*ops->init)(num) : 0) 171 #define VMM_CLEANUP() (ops != NULL ? (*ops->cleanup)() : 0) 172 #define VMM_RESUME() (ops != NULL ? (*ops->resume)() : 0) 173 174 #define VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL) 175 #define VMRUN(vmi, vcpu, rip, pmap, evinfo) \ 176 (ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, evinfo) : ENXIO) 177 #define VMCLEANUP(vmi) (ops != NULL ? (*ops->vmcleanup)(vmi) : NULL) 178 #define VMSPACE_ALLOC(min, max) \ 179 (ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL) 180 #define VMSPACE_FREE(vmspace) \ 181 (ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO) 182 #define VMGETREG(vmi, vcpu, num, retval) \ 183 (ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO) 184 #define VMSETREG(vmi, vcpu, num, val) \ 185 (ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO) 186 #define VMGETDESC(vmi, vcpu, num, desc) \ 187 (ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO) 188 #define VMSETDESC(vmi, vcpu, num, desc) \ 189 (ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO) 190 #define VMGETCAP(vmi, vcpu, num, retval) \ 191 (ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO) 192 #define VMSETCAP(vmi, vcpu, num, val) \ 193 (ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO) 194 #define VLAPIC_INIT(vmi, vcpu) \ 195 (ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL) 196 #define VLAPIC_CLEANUP(vmi, vlapic) \ 197 (ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL) 198 199 #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS) 200 #define fpu_stop_emulating() clts() 201 202 static MALLOC_DEFINE(M_VM, "vm", "vm"); 203 204 /* statistics */ 205 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 206 207 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL); 208 209 /* 210 * Halt the guest if all vcpus are executing a HLT instruction with 211 * interrupts disabled. 212 */ 213 static int halt_detection_enabled = 1; 214 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 215 &halt_detection_enabled, 0, 216 "Halt VM if all vcpus execute HLT with interrupts disabled"); 217 218 static int vmm_ipinum; 219 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 220 "IPI vector used for vcpu notifications"); 221 222 static int trace_guest_exceptions; 223 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN, 224 &trace_guest_exceptions, 0, 225 "Trap into hypervisor on all guest exceptions and reflect them back"); 226 227 static void vm_free_memmap(struct vm *vm, int ident); 228 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm); 229 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr); 230 231 #ifdef KTR 232 static const char * 233 vcpu_state2str(enum vcpu_state state) 234 { 235 236 switch (state) { 237 case VCPU_IDLE: 238 return ("idle"); 239 case VCPU_FROZEN: 240 return ("frozen"); 241 case VCPU_RUNNING: 242 return ("running"); 243 case VCPU_SLEEPING: 244 return ("sleeping"); 245 default: 246 return ("unknown"); 247 } 248 } 249 #endif 250 251 static void 252 vcpu_cleanup(struct vm *vm, int i, bool destroy) 253 { 254 struct vcpu *vcpu = &vm->vcpu[i]; 255 256 VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic); 257 if (destroy) { 258 vmm_stat_free(vcpu->stats); 259 fpu_save_area_free(vcpu->guestfpu); 260 } 261 } 262 263 static void 264 vcpu_init(struct vm *vm, int vcpu_id, bool create) 265 { 266 struct vcpu *vcpu; 267 268 KASSERT(vcpu_id >= 0 && vcpu_id < VM_MAXCPU, 269 ("vcpu_init: invalid vcpu %d", vcpu_id)); 270 271 vcpu = &vm->vcpu[vcpu_id]; 272 273 if (create) { 274 KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already " 275 "initialized", vcpu_id)); 276 vcpu_lock_init(vcpu); 277 vcpu->state = VCPU_IDLE; 278 vcpu->hostcpu = NOCPU; 279 vcpu->guestfpu = fpu_save_area_alloc(); 280 vcpu->stats = vmm_stat_alloc(); 281 } 282 283 vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id); 284 vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED); 285 vcpu->reqidle = 0; 286 vcpu->exitintinfo = 0; 287 vcpu->nmi_pending = 0; 288 vcpu->extint_pending = 0; 289 vcpu->exception_pending = 0; 290 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 291 fpu_save_area_reset(vcpu->guestfpu); 292 vmm_stat_init(vcpu->stats); 293 } 294 295 int 296 vcpu_trace_exceptions(struct vm *vm, int vcpuid) 297 { 298 299 return (trace_guest_exceptions); 300 } 301 302 struct vm_exit * 303 vm_exitinfo(struct vm *vm, int cpuid) 304 { 305 struct vcpu *vcpu; 306 307 if (cpuid < 0 || cpuid >= VM_MAXCPU) 308 panic("vm_exitinfo: invalid cpuid %d", cpuid); 309 310 vcpu = &vm->vcpu[cpuid]; 311 312 return (&vcpu->exitinfo); 313 } 314 315 static void 316 vmm_resume(void) 317 { 318 VMM_RESUME(); 319 } 320 321 static int 322 vmm_init(void) 323 { 324 int error; 325 326 vmm_host_state_init(); 327 328 vmm_ipinum = lapic_ipi_alloc(&IDTVEC(justreturn)); 329 if (vmm_ipinum < 0) 330 vmm_ipinum = IPI_AST; 331 332 error = vmm_mem_init(); 333 if (error) 334 return (error); 335 336 if (vmm_is_intel()) 337 ops = &vmm_ops_intel; 338 else if (vmm_is_amd()) 339 ops = &vmm_ops_amd; 340 else 341 return (ENXIO); 342 343 vmm_resume_p = vmm_resume; 344 345 return (VMM_INIT(vmm_ipinum)); 346 } 347 348 static int 349 vmm_handler(module_t mod, int what, void *arg) 350 { 351 int error; 352 353 switch (what) { 354 case MOD_LOAD: 355 vmmdev_init(); 356 error = vmm_init(); 357 if (error == 0) 358 vmm_initialized = 1; 359 break; 360 case MOD_UNLOAD: 361 error = vmmdev_cleanup(); 362 if (error == 0) { 363 vmm_resume_p = NULL; 364 iommu_cleanup(); 365 if (vmm_ipinum != IPI_AST) 366 lapic_ipi_free(vmm_ipinum); 367 error = VMM_CLEANUP(); 368 /* 369 * Something bad happened - prevent new 370 * VMs from being created 371 */ 372 if (error) 373 vmm_initialized = 0; 374 } 375 break; 376 default: 377 error = 0; 378 break; 379 } 380 return (error); 381 } 382 383 static moduledata_t vmm_kmod = { 384 "vmm", 385 vmm_handler, 386 NULL 387 }; 388 389 /* 390 * vmm initialization has the following dependencies: 391 * 392 * - VT-x initialization requires smp_rendezvous() and therefore must happen 393 * after SMP is fully functional (after SI_SUB_SMP). 394 */ 395 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 396 MODULE_VERSION(vmm, 1); 397 398 static void 399 vm_init(struct vm *vm, bool create) 400 { 401 int i; 402 403 vm->cookie = VMINIT(vm, vmspace_pmap(vm->vmspace)); 404 vm->iommu = NULL; 405 vm->vioapic = vioapic_init(vm); 406 vm->vhpet = vhpet_init(vm); 407 vm->vatpic = vatpic_init(vm); 408 vm->vatpit = vatpit_init(vm); 409 vm->vpmtmr = vpmtmr_init(vm); 410 if (create) 411 vm->vrtc = vrtc_init(vm); 412 413 CPU_ZERO(&vm->active_cpus); 414 415 vm->suspend = 0; 416 CPU_ZERO(&vm->suspended_cpus); 417 418 for (i = 0; i < VM_MAXCPU; i++) 419 vcpu_init(vm, i, create); 420 } 421 422 int 423 vm_create(const char *name, struct vm **retvm) 424 { 425 struct vm *vm; 426 struct vmspace *vmspace; 427 428 /* 429 * If vmm.ko could not be successfully initialized then don't attempt 430 * to create the virtual machine. 431 */ 432 if (!vmm_initialized) 433 return (ENXIO); 434 435 if (name == NULL || strlen(name) >= VM_MAX_NAMELEN) 436 return (EINVAL); 437 438 vmspace = VMSPACE_ALLOC(0, VM_MAXUSER_ADDRESS); 439 if (vmspace == NULL) 440 return (ENOMEM); 441 442 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 443 strcpy(vm->name, name); 444 vm->vmspace = vmspace; 445 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 446 447 vm_init(vm, true); 448 449 *retvm = vm; 450 return (0); 451 } 452 453 static void 454 vm_cleanup(struct vm *vm, bool destroy) 455 { 456 struct mem_map *mm; 457 int i; 458 459 ppt_unassign_all(vm); 460 461 if (vm->iommu != NULL) 462 iommu_destroy_domain(vm->iommu); 463 464 if (destroy) 465 vrtc_cleanup(vm->vrtc); 466 else 467 vrtc_reset(vm->vrtc); 468 vpmtmr_cleanup(vm->vpmtmr); 469 vatpit_cleanup(vm->vatpit); 470 vhpet_cleanup(vm->vhpet); 471 vatpic_cleanup(vm->vatpic); 472 vioapic_cleanup(vm->vioapic); 473 474 for (i = 0; i < VM_MAXCPU; i++) 475 vcpu_cleanup(vm, i, destroy); 476 477 VMCLEANUP(vm->cookie); 478 479 /* 480 * System memory is removed from the guest address space only when 481 * the VM is destroyed. This is because the mapping remains the same 482 * across VM reset. 483 * 484 * Device memory can be relocated by the guest (e.g. using PCI BARs) 485 * so those mappings are removed on a VM reset. 486 */ 487 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 488 mm = &vm->mem_maps[i]; 489 if (destroy || !sysmem_mapping(vm, mm)) 490 vm_free_memmap(vm, i); 491 } 492 493 if (destroy) { 494 for (i = 0; i < VM_MAX_MEMSEGS; i++) 495 vm_free_memseg(vm, i); 496 497 VMSPACE_FREE(vm->vmspace); 498 vm->vmspace = NULL; 499 } 500 } 501 502 void 503 vm_destroy(struct vm *vm) 504 { 505 vm_cleanup(vm, true); 506 free(vm, M_VM); 507 } 508 509 int 510 vm_reinit(struct vm *vm) 511 { 512 int error; 513 514 /* 515 * A virtual machine can be reset only if all vcpus are suspended. 516 */ 517 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 518 vm_cleanup(vm, false); 519 vm_init(vm, false); 520 error = 0; 521 } else { 522 error = EBUSY; 523 } 524 525 return (error); 526 } 527 528 const char * 529 vm_name(struct vm *vm) 530 { 531 return (vm->name); 532 } 533 534 int 535 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 536 { 537 vm_object_t obj; 538 539 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 540 return (ENOMEM); 541 else 542 return (0); 543 } 544 545 int 546 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 547 { 548 549 vmm_mmio_free(vm->vmspace, gpa, len); 550 return (0); 551 } 552 553 /* 554 * Return 'true' if 'gpa' is allocated in the guest address space. 555 * 556 * This function is called in the context of a running vcpu which acts as 557 * an implicit lock on 'vm->mem_maps[]'. 558 */ 559 bool 560 vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa) 561 { 562 struct mem_map *mm; 563 int i; 564 565 #ifdef INVARIANTS 566 int hostcpu, state; 567 state = vcpu_get_state(vm, vcpuid, &hostcpu); 568 KASSERT(state == VCPU_RUNNING && hostcpu == curcpu, 569 ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu)); 570 #endif 571 572 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 573 mm = &vm->mem_maps[i]; 574 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len) 575 return (true); /* 'gpa' is sysmem or devmem */ 576 } 577 578 if (ppt_is_mmio(vm, gpa)) 579 return (true); /* 'gpa' is pci passthru mmio */ 580 581 return (false); 582 } 583 584 int 585 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem) 586 { 587 struct mem_seg *seg; 588 vm_object_t obj; 589 590 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 591 return (EINVAL); 592 593 if (len == 0 || (len & PAGE_MASK)) 594 return (EINVAL); 595 596 seg = &vm->mem_segs[ident]; 597 if (seg->object != NULL) { 598 if (seg->len == len && seg->sysmem == sysmem) 599 return (EEXIST); 600 else 601 return (EINVAL); 602 } 603 604 obj = vm_object_allocate(OBJT_DEFAULT, len >> PAGE_SHIFT); 605 if (obj == NULL) 606 return (ENOMEM); 607 608 seg->len = len; 609 seg->object = obj; 610 seg->sysmem = sysmem; 611 return (0); 612 } 613 614 int 615 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, 616 vm_object_t *objptr) 617 { 618 struct mem_seg *seg; 619 620 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 621 return (EINVAL); 622 623 seg = &vm->mem_segs[ident]; 624 if (len) 625 *len = seg->len; 626 if (sysmem) 627 *sysmem = seg->sysmem; 628 if (objptr) 629 *objptr = seg->object; 630 return (0); 631 } 632 633 void 634 vm_free_memseg(struct vm *vm, int ident) 635 { 636 struct mem_seg *seg; 637 638 KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS, 639 ("%s: invalid memseg ident %d", __func__, ident)); 640 641 seg = &vm->mem_segs[ident]; 642 if (seg->object != NULL) { 643 vm_object_deallocate(seg->object); 644 bzero(seg, sizeof(struct mem_seg)); 645 } 646 } 647 648 int 649 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first, 650 size_t len, int prot, int flags) 651 { 652 struct mem_seg *seg; 653 struct mem_map *m, *map; 654 vm_ooffset_t last; 655 int i, error; 656 657 if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0) 658 return (EINVAL); 659 660 if (flags & ~VM_MEMMAP_F_WIRED) 661 return (EINVAL); 662 663 if (segid < 0 || segid >= VM_MAX_MEMSEGS) 664 return (EINVAL); 665 666 seg = &vm->mem_segs[segid]; 667 if (seg->object == NULL) 668 return (EINVAL); 669 670 last = first + len; 671 if (first < 0 || first >= last || last > seg->len) 672 return (EINVAL); 673 674 if ((gpa | first | last) & PAGE_MASK) 675 return (EINVAL); 676 677 map = NULL; 678 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 679 m = &vm->mem_maps[i]; 680 if (m->len == 0) { 681 map = m; 682 break; 683 } 684 } 685 686 if (map == NULL) 687 return (ENOSPC); 688 689 error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa, 690 len, 0, VMFS_NO_SPACE, prot, prot, 0); 691 if (error != KERN_SUCCESS) 692 return (EFAULT); 693 694 vm_object_reference(seg->object); 695 696 if (flags & VM_MEMMAP_F_WIRED) { 697 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len, 698 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 699 if (error != KERN_SUCCESS) { 700 vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len); 701 return (EFAULT); 702 } 703 } 704 705 map->gpa = gpa; 706 map->len = len; 707 map->segoff = first; 708 map->segid = segid; 709 map->prot = prot; 710 map->flags = flags; 711 return (0); 712 } 713 714 int 715 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, 716 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 717 { 718 struct mem_map *mm, *mmnext; 719 int i; 720 721 mmnext = NULL; 722 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 723 mm = &vm->mem_maps[i]; 724 if (mm->len == 0 || mm->gpa < *gpa) 725 continue; 726 if (mmnext == NULL || mm->gpa < mmnext->gpa) 727 mmnext = mm; 728 } 729 730 if (mmnext != NULL) { 731 *gpa = mmnext->gpa; 732 if (segid) 733 *segid = mmnext->segid; 734 if (segoff) 735 *segoff = mmnext->segoff; 736 if (len) 737 *len = mmnext->len; 738 if (prot) 739 *prot = mmnext->prot; 740 if (flags) 741 *flags = mmnext->flags; 742 return (0); 743 } else { 744 return (ENOENT); 745 } 746 } 747 748 static void 749 vm_free_memmap(struct vm *vm, int ident) 750 { 751 struct mem_map *mm; 752 int error; 753 754 mm = &vm->mem_maps[ident]; 755 if (mm->len) { 756 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa, 757 mm->gpa + mm->len); 758 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d", 759 __func__, error)); 760 bzero(mm, sizeof(struct mem_map)); 761 } 762 } 763 764 static __inline bool 765 sysmem_mapping(struct vm *vm, struct mem_map *mm) 766 { 767 768 if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem) 769 return (true); 770 else 771 return (false); 772 } 773 774 static vm_paddr_t 775 sysmem_maxaddr(struct vm *vm) 776 { 777 struct mem_map *mm; 778 vm_paddr_t maxaddr; 779 int i; 780 781 maxaddr = 0; 782 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 783 mm = &vm->mem_maps[i]; 784 if (sysmem_mapping(vm, mm)) { 785 if (maxaddr < mm->gpa + mm->len) 786 maxaddr = mm->gpa + mm->len; 787 } 788 } 789 return (maxaddr); 790 } 791 792 static void 793 vm_iommu_modify(struct vm *vm, boolean_t map) 794 { 795 int i, sz; 796 vm_paddr_t gpa, hpa; 797 struct mem_map *mm; 798 void *vp, *cookie, *host_domain; 799 800 sz = PAGE_SIZE; 801 host_domain = iommu_host_domain(); 802 803 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 804 mm = &vm->mem_maps[i]; 805 if (!sysmem_mapping(vm, mm)) 806 continue; 807 808 if (map) { 809 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0, 810 ("iommu map found invalid memmap %#lx/%#lx/%#x", 811 mm->gpa, mm->len, mm->flags)); 812 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0) 813 continue; 814 mm->flags |= VM_MEMMAP_F_IOMMU; 815 } else { 816 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0) 817 continue; 818 mm->flags &= ~VM_MEMMAP_F_IOMMU; 819 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0, 820 ("iommu unmap found invalid memmap %#lx/%#lx/%#x", 821 mm->gpa, mm->len, mm->flags)); 822 } 823 824 gpa = mm->gpa; 825 while (gpa < mm->gpa + mm->len) { 826 vp = vm_gpa_hold(vm, -1, gpa, PAGE_SIZE, VM_PROT_WRITE, 827 &cookie); 828 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", 829 vm_name(vm), gpa)); 830 831 vm_gpa_release(cookie); 832 833 hpa = DMAP_TO_PHYS((uintptr_t)vp); 834 if (map) { 835 iommu_create_mapping(vm->iommu, gpa, hpa, sz); 836 iommu_remove_mapping(host_domain, hpa, sz); 837 } else { 838 iommu_remove_mapping(vm->iommu, gpa, sz); 839 iommu_create_mapping(host_domain, hpa, hpa, sz); 840 } 841 842 gpa += PAGE_SIZE; 843 } 844 } 845 846 /* 847 * Invalidate the cached translations associated with the domain 848 * from which pages were removed. 849 */ 850 if (map) 851 iommu_invalidate_tlb(host_domain); 852 else 853 iommu_invalidate_tlb(vm->iommu); 854 } 855 856 #define vm_iommu_unmap(vm) vm_iommu_modify((vm), FALSE) 857 #define vm_iommu_map(vm) vm_iommu_modify((vm), TRUE) 858 859 int 860 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 861 { 862 int error; 863 864 error = ppt_unassign_device(vm, bus, slot, func); 865 if (error) 866 return (error); 867 868 if (ppt_assigned_devices(vm) == 0) 869 vm_iommu_unmap(vm); 870 871 return (0); 872 } 873 874 int 875 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 876 { 877 int error; 878 vm_paddr_t maxaddr; 879 880 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */ 881 if (ppt_assigned_devices(vm) == 0) { 882 KASSERT(vm->iommu == NULL, 883 ("vm_assign_pptdev: iommu must be NULL")); 884 maxaddr = sysmem_maxaddr(vm); 885 vm->iommu = iommu_create_domain(maxaddr); 886 if (vm->iommu == NULL) 887 return (ENXIO); 888 vm_iommu_map(vm); 889 } 890 891 error = ppt_assign_device(vm, bus, slot, func); 892 return (error); 893 } 894 895 void * 896 vm_gpa_hold(struct vm *vm, int vcpuid, vm_paddr_t gpa, size_t len, int reqprot, 897 void **cookie) 898 { 899 int i, count, pageoff; 900 struct mem_map *mm; 901 vm_page_t m; 902 #ifdef INVARIANTS 903 /* 904 * All vcpus are frozen by ioctls that modify the memory map 905 * (e.g. VM_MMAP_MEMSEG). Therefore 'vm->memmap[]' stability is 906 * guaranteed if at least one vcpu is in the VCPU_FROZEN state. 907 */ 908 int state; 909 KASSERT(vcpuid >= -1 && vcpuid < VM_MAXCPU, ("%s: invalid vcpuid %d", 910 __func__, vcpuid)); 911 for (i = 0; i < VM_MAXCPU; i++) { 912 if (vcpuid != -1 && vcpuid != i) 913 continue; 914 state = vcpu_get_state(vm, i, NULL); 915 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d", 916 __func__, state)); 917 } 918 #endif 919 pageoff = gpa & PAGE_MASK; 920 if (len > PAGE_SIZE - pageoff) 921 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 922 923 count = 0; 924 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 925 mm = &vm->mem_maps[i]; 926 if (sysmem_mapping(vm, mm) && gpa >= mm->gpa && 927 gpa < mm->gpa + mm->len) { 928 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 929 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 930 break; 931 } 932 } 933 934 if (count == 1) { 935 *cookie = m; 936 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 937 } else { 938 *cookie = NULL; 939 return (NULL); 940 } 941 } 942 943 void 944 vm_gpa_release(void *cookie) 945 { 946 vm_page_t m = cookie; 947 948 vm_page_lock(m); 949 vm_page_unhold(m); 950 vm_page_unlock(m); 951 } 952 953 int 954 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval) 955 { 956 957 if (vcpu < 0 || vcpu >= VM_MAXCPU) 958 return (EINVAL); 959 960 if (reg >= VM_REG_LAST) 961 return (EINVAL); 962 963 return (VMGETREG(vm->cookie, vcpu, reg, retval)); 964 } 965 966 int 967 vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val) 968 { 969 struct vcpu *vcpu; 970 int error; 971 972 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 973 return (EINVAL); 974 975 if (reg >= VM_REG_LAST) 976 return (EINVAL); 977 978 error = VMSETREG(vm->cookie, vcpuid, reg, val); 979 if (error || reg != VM_REG_GUEST_RIP) 980 return (error); 981 982 /* Set 'nextrip' to match the value of %rip */ 983 VCPU_CTR1(vm, vcpuid, "Setting nextrip to %#lx", val); 984 vcpu = &vm->vcpu[vcpuid]; 985 vcpu->nextrip = val; 986 return (0); 987 } 988 989 static boolean_t 990 is_descriptor_table(int reg) 991 { 992 993 switch (reg) { 994 case VM_REG_GUEST_IDTR: 995 case VM_REG_GUEST_GDTR: 996 return (TRUE); 997 default: 998 return (FALSE); 999 } 1000 } 1001 1002 static boolean_t 1003 is_segment_register(int reg) 1004 { 1005 1006 switch (reg) { 1007 case VM_REG_GUEST_ES: 1008 case VM_REG_GUEST_CS: 1009 case VM_REG_GUEST_SS: 1010 case VM_REG_GUEST_DS: 1011 case VM_REG_GUEST_FS: 1012 case VM_REG_GUEST_GS: 1013 case VM_REG_GUEST_TR: 1014 case VM_REG_GUEST_LDTR: 1015 return (TRUE); 1016 default: 1017 return (FALSE); 1018 } 1019 } 1020 1021 int 1022 vm_get_seg_desc(struct vm *vm, int vcpu, int reg, 1023 struct seg_desc *desc) 1024 { 1025 1026 if (vcpu < 0 || vcpu >= VM_MAXCPU) 1027 return (EINVAL); 1028 1029 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1030 return (EINVAL); 1031 1032 return (VMGETDESC(vm->cookie, vcpu, reg, desc)); 1033 } 1034 1035 int 1036 vm_set_seg_desc(struct vm *vm, int vcpu, int reg, 1037 struct seg_desc *desc) 1038 { 1039 if (vcpu < 0 || vcpu >= VM_MAXCPU) 1040 return (EINVAL); 1041 1042 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1043 return (EINVAL); 1044 1045 return (VMSETDESC(vm->cookie, vcpu, reg, desc)); 1046 } 1047 1048 static void 1049 restore_guest_fpustate(struct vcpu *vcpu) 1050 { 1051 1052 /* flush host state to the pcb */ 1053 fpuexit(curthread); 1054 1055 /* restore guest FPU state */ 1056 fpu_stop_emulating(); 1057 fpurestore(vcpu->guestfpu); 1058 1059 /* restore guest XCR0 if XSAVE is enabled in the host */ 1060 if (rcr4() & CR4_XSAVE) 1061 load_xcr(0, vcpu->guest_xcr0); 1062 1063 /* 1064 * The FPU is now "dirty" with the guest's state so turn on emulation 1065 * to trap any access to the FPU by the host. 1066 */ 1067 fpu_start_emulating(); 1068 } 1069 1070 static void 1071 save_guest_fpustate(struct vcpu *vcpu) 1072 { 1073 1074 if ((rcr0() & CR0_TS) == 0) 1075 panic("fpu emulation not enabled in host!"); 1076 1077 /* save guest XCR0 and restore host XCR0 */ 1078 if (rcr4() & CR4_XSAVE) { 1079 vcpu->guest_xcr0 = rxcr(0); 1080 load_xcr(0, vmm_get_host_xcr0()); 1081 } 1082 1083 /* save guest FPU state */ 1084 fpu_stop_emulating(); 1085 fpusave(vcpu->guestfpu); 1086 fpu_start_emulating(); 1087 } 1088 1089 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 1090 1091 static int 1092 vcpu_set_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate, 1093 bool from_idle) 1094 { 1095 struct vcpu *vcpu; 1096 int error; 1097 1098 vcpu = &vm->vcpu[vcpuid]; 1099 vcpu_assert_locked(vcpu); 1100 1101 /* 1102 * State transitions from the vmmdev_ioctl() must always begin from 1103 * the VCPU_IDLE state. This guarantees that there is only a single 1104 * ioctl() operating on a vcpu at any point. 1105 */ 1106 if (from_idle) { 1107 while (vcpu->state != VCPU_IDLE) { 1108 vcpu->reqidle = 1; 1109 vcpu_notify_event_locked(vcpu, false); 1110 VCPU_CTR1(vm, vcpuid, "vcpu state change from %s to " 1111 "idle requested", vcpu_state2str(vcpu->state)); 1112 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 1113 } 1114 } else { 1115 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 1116 "vcpu idle state")); 1117 } 1118 1119 if (vcpu->state == VCPU_RUNNING) { 1120 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 1121 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 1122 } else { 1123 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 1124 "vcpu that is not running", vcpu->hostcpu)); 1125 } 1126 1127 /* 1128 * The following state transitions are allowed: 1129 * IDLE -> FROZEN -> IDLE 1130 * FROZEN -> RUNNING -> FROZEN 1131 * FROZEN -> SLEEPING -> FROZEN 1132 */ 1133 switch (vcpu->state) { 1134 case VCPU_IDLE: 1135 case VCPU_RUNNING: 1136 case VCPU_SLEEPING: 1137 error = (newstate != VCPU_FROZEN); 1138 break; 1139 case VCPU_FROZEN: 1140 error = (newstate == VCPU_FROZEN); 1141 break; 1142 default: 1143 error = 1; 1144 break; 1145 } 1146 1147 if (error) 1148 return (EBUSY); 1149 1150 VCPU_CTR2(vm, vcpuid, "vcpu state changed from %s to %s", 1151 vcpu_state2str(vcpu->state), vcpu_state2str(newstate)); 1152 1153 vcpu->state = newstate; 1154 if (newstate == VCPU_RUNNING) 1155 vcpu->hostcpu = curcpu; 1156 else 1157 vcpu->hostcpu = NOCPU; 1158 1159 if (newstate == VCPU_IDLE) 1160 wakeup(&vcpu->state); 1161 1162 return (0); 1163 } 1164 1165 static void 1166 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1167 { 1168 int error; 1169 1170 if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0) 1171 panic("Error %d setting state to %d\n", error, newstate); 1172 } 1173 1174 static void 1175 vcpu_require_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1176 { 1177 int error; 1178 1179 if ((error = vcpu_set_state_locked(vm, vcpuid, newstate, false)) != 0) 1180 panic("Error %d setting state to %d", error, newstate); 1181 } 1182 1183 static void 1184 vm_set_rendezvous_func(struct vm *vm, vm_rendezvous_func_t func) 1185 { 1186 1187 KASSERT(mtx_owned(&vm->rendezvous_mtx), ("rendezvous_mtx not locked")); 1188 1189 /* 1190 * Update 'rendezvous_func' and execute a write memory barrier to 1191 * ensure that it is visible across all host cpus. This is not needed 1192 * for correctness but it does ensure that all the vcpus will notice 1193 * that the rendezvous is requested immediately. 1194 */ 1195 vm->rendezvous_func = func; 1196 wmb(); 1197 } 1198 1199 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt) \ 1200 do { \ 1201 if (vcpuid >= 0) \ 1202 VCPU_CTR0(vm, vcpuid, fmt); \ 1203 else \ 1204 VM_CTR0(vm, fmt); \ 1205 } while (0) 1206 1207 static void 1208 vm_handle_rendezvous(struct vm *vm, int vcpuid) 1209 { 1210 1211 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU), 1212 ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid)); 1213 1214 mtx_lock(&vm->rendezvous_mtx); 1215 while (vm->rendezvous_func != NULL) { 1216 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1217 CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus); 1218 1219 if (vcpuid != -1 && 1220 CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1221 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1222 VCPU_CTR0(vm, vcpuid, "Calling rendezvous func"); 1223 (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg); 1224 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1225 } 1226 if (CPU_CMP(&vm->rendezvous_req_cpus, 1227 &vm->rendezvous_done_cpus) == 0) { 1228 VCPU_CTR0(vm, vcpuid, "Rendezvous completed"); 1229 vm_set_rendezvous_func(vm, NULL); 1230 wakeup(&vm->rendezvous_func); 1231 break; 1232 } 1233 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion"); 1234 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1235 "vmrndv", 0); 1236 } 1237 mtx_unlock(&vm->rendezvous_mtx); 1238 } 1239 1240 /* 1241 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1242 */ 1243 static int 1244 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu) 1245 { 1246 struct vcpu *vcpu; 1247 const char *wmesg; 1248 int t, vcpu_halted, vm_halted; 1249 1250 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1251 1252 vcpu = &vm->vcpu[vcpuid]; 1253 vcpu_halted = 0; 1254 vm_halted = 0; 1255 1256 vcpu_lock(vcpu); 1257 while (1) { 1258 /* 1259 * Do a final check for pending NMI or interrupts before 1260 * really putting this thread to sleep. Also check for 1261 * software events that would cause this vcpu to wakeup. 1262 * 1263 * These interrupts/events could have happened after the 1264 * vcpu returned from VMRUN() and before it acquired the 1265 * vcpu lock above. 1266 */ 1267 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle) 1268 break; 1269 if (vm_nmi_pending(vm, vcpuid)) 1270 break; 1271 if (!intr_disabled) { 1272 if (vm_extint_pending(vm, vcpuid) || 1273 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1274 break; 1275 } 1276 } 1277 1278 /* Don't go to sleep if the vcpu thread needs to yield */ 1279 if (vcpu_should_yield(vm, vcpuid)) 1280 break; 1281 1282 /* 1283 * Some Linux guests implement "halt" by having all vcpus 1284 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1285 * track of the vcpus that have entered this state. When all 1286 * vcpus enter the halted state the virtual machine is halted. 1287 */ 1288 if (intr_disabled) { 1289 wmesg = "vmhalt"; 1290 VCPU_CTR0(vm, vcpuid, "Halted"); 1291 if (!vcpu_halted && halt_detection_enabled) { 1292 vcpu_halted = 1; 1293 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1294 } 1295 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1296 vm_halted = 1; 1297 break; 1298 } 1299 } else { 1300 wmesg = "vmidle"; 1301 } 1302 1303 t = ticks; 1304 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); 1305 /* 1306 * XXX msleep_spin() cannot be interrupted by signals so 1307 * wake up periodically to check pending signals. 1308 */ 1309 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1310 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); 1311 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t); 1312 } 1313 1314 if (vcpu_halted) 1315 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1316 1317 vcpu_unlock(vcpu); 1318 1319 if (vm_halted) 1320 vm_suspend(vm, VM_SUSPEND_HALT); 1321 1322 return (0); 1323 } 1324 1325 static int 1326 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu) 1327 { 1328 int rv, ftype; 1329 struct vm_map *map; 1330 struct vcpu *vcpu; 1331 struct vm_exit *vme; 1332 1333 vcpu = &vm->vcpu[vcpuid]; 1334 vme = &vcpu->exitinfo; 1335 1336 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1337 __func__, vme->inst_length)); 1338 1339 ftype = vme->u.paging.fault_type; 1340 KASSERT(ftype == VM_PROT_READ || 1341 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1342 ("vm_handle_paging: invalid fault_type %d", ftype)); 1343 1344 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1345 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1346 vme->u.paging.gpa, ftype); 1347 if (rv == 0) { 1348 VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx", 1349 ftype == VM_PROT_READ ? "accessed" : "dirty", 1350 vme->u.paging.gpa); 1351 goto done; 1352 } 1353 } 1354 1355 map = &vm->vmspace->vm_map; 1356 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL); 1357 1358 VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, " 1359 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1360 1361 if (rv != KERN_SUCCESS) 1362 return (EFAULT); 1363 done: 1364 return (0); 1365 } 1366 1367 static int 1368 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu) 1369 { 1370 struct vie *vie; 1371 struct vcpu *vcpu; 1372 struct vm_exit *vme; 1373 uint64_t gla, gpa, cs_base; 1374 struct vm_guest_paging *paging; 1375 mem_region_read_t mread; 1376 mem_region_write_t mwrite; 1377 enum vm_cpu_mode cpu_mode; 1378 int cs_d, error, fault; 1379 1380 vcpu = &vm->vcpu[vcpuid]; 1381 vme = &vcpu->exitinfo; 1382 1383 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1384 __func__, vme->inst_length)); 1385 1386 gla = vme->u.inst_emul.gla; 1387 gpa = vme->u.inst_emul.gpa; 1388 cs_base = vme->u.inst_emul.cs_base; 1389 cs_d = vme->u.inst_emul.cs_d; 1390 vie = &vme->u.inst_emul.vie; 1391 paging = &vme->u.inst_emul.paging; 1392 cpu_mode = paging->cpu_mode; 1393 1394 VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa); 1395 1396 /* Fetch, decode and emulate the faulting instruction */ 1397 if (vie->num_valid == 0) { 1398 error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip + 1399 cs_base, VIE_INST_SIZE, vie, &fault); 1400 } else { 1401 /* 1402 * The instruction bytes have already been copied into 'vie' 1403 */ 1404 error = fault = 0; 1405 } 1406 if (error || fault) 1407 return (error); 1408 1409 if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) { 1410 VCPU_CTR1(vm, vcpuid, "Error decoding instruction at %#lx", 1411 vme->rip + cs_base); 1412 *retu = true; /* dump instruction bytes in userspace */ 1413 return (0); 1414 } 1415 1416 /* 1417 * Update 'nextrip' based on the length of the emulated instruction. 1418 */ 1419 vme->inst_length = vie->num_processed; 1420 vcpu->nextrip += vie->num_processed; 1421 VCPU_CTR1(vm, vcpuid, "nextrip updated to %#lx after instruction " 1422 "decoding", vcpu->nextrip); 1423 1424 /* return to userland unless this is an in-kernel emulated device */ 1425 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1426 mread = lapic_mmio_read; 1427 mwrite = lapic_mmio_write; 1428 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1429 mread = vioapic_mmio_read; 1430 mwrite = vioapic_mmio_write; 1431 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1432 mread = vhpet_mmio_read; 1433 mwrite = vhpet_mmio_write; 1434 } else { 1435 *retu = true; 1436 return (0); 1437 } 1438 1439 error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging, 1440 mread, mwrite, retu); 1441 1442 return (error); 1443 } 1444 1445 static int 1446 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu) 1447 { 1448 int i, done; 1449 struct vcpu *vcpu; 1450 1451 done = 0; 1452 vcpu = &vm->vcpu[vcpuid]; 1453 1454 CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus); 1455 1456 /* 1457 * Wait until all 'active_cpus' have suspended themselves. 1458 * 1459 * Since a VM may be suspended at any time including when one or 1460 * more vcpus are doing a rendezvous we need to call the rendezvous 1461 * handler while we are waiting to prevent a deadlock. 1462 */ 1463 vcpu_lock(vcpu); 1464 while (1) { 1465 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1466 VCPU_CTR0(vm, vcpuid, "All vcpus suspended"); 1467 break; 1468 } 1469 1470 if (vm->rendezvous_func == NULL) { 1471 VCPU_CTR0(vm, vcpuid, "Sleeping during suspend"); 1472 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); 1473 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1474 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); 1475 } else { 1476 VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend"); 1477 vcpu_unlock(vcpu); 1478 vm_handle_rendezvous(vm, vcpuid); 1479 vcpu_lock(vcpu); 1480 } 1481 } 1482 vcpu_unlock(vcpu); 1483 1484 /* 1485 * Wakeup the other sleeping vcpus and return to userspace. 1486 */ 1487 for (i = 0; i < VM_MAXCPU; i++) { 1488 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1489 vcpu_notify_event(vm, i, false); 1490 } 1491 } 1492 1493 *retu = true; 1494 return (0); 1495 } 1496 1497 static int 1498 vm_handle_reqidle(struct vm *vm, int vcpuid, bool *retu) 1499 { 1500 struct vcpu *vcpu = &vm->vcpu[vcpuid]; 1501 1502 vcpu_lock(vcpu); 1503 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle)); 1504 vcpu->reqidle = 0; 1505 vcpu_unlock(vcpu); 1506 *retu = true; 1507 return (0); 1508 } 1509 1510 int 1511 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1512 { 1513 int i; 1514 1515 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1516 return (EINVAL); 1517 1518 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1519 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1520 vm->suspend, how); 1521 return (EALREADY); 1522 } 1523 1524 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1525 1526 /* 1527 * Notify all active vcpus that they are now suspended. 1528 */ 1529 for (i = 0; i < VM_MAXCPU; i++) { 1530 if (CPU_ISSET(i, &vm->active_cpus)) 1531 vcpu_notify_event(vm, i, false); 1532 } 1533 1534 return (0); 1535 } 1536 1537 void 1538 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip) 1539 { 1540 struct vm_exit *vmexit; 1541 1542 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1543 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1544 1545 vmexit = vm_exitinfo(vm, vcpuid); 1546 vmexit->rip = rip; 1547 vmexit->inst_length = 0; 1548 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1549 vmexit->u.suspended.how = vm->suspend; 1550 } 1551 1552 void 1553 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip) 1554 { 1555 struct vm_exit *vmexit; 1556 1557 KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress")); 1558 1559 vmexit = vm_exitinfo(vm, vcpuid); 1560 vmexit->rip = rip; 1561 vmexit->inst_length = 0; 1562 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1563 vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1); 1564 } 1565 1566 void 1567 vm_exit_reqidle(struct vm *vm, int vcpuid, uint64_t rip) 1568 { 1569 struct vm_exit *vmexit; 1570 1571 vmexit = vm_exitinfo(vm, vcpuid); 1572 vmexit->rip = rip; 1573 vmexit->inst_length = 0; 1574 vmexit->exitcode = VM_EXITCODE_REQIDLE; 1575 vmm_stat_incr(vm, vcpuid, VMEXIT_REQIDLE, 1); 1576 } 1577 1578 void 1579 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip) 1580 { 1581 struct vm_exit *vmexit; 1582 1583 vmexit = vm_exitinfo(vm, vcpuid); 1584 vmexit->rip = rip; 1585 vmexit->inst_length = 0; 1586 vmexit->exitcode = VM_EXITCODE_BOGUS; 1587 vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1); 1588 } 1589 1590 int 1591 vm_run(struct vm *vm, struct vm_run *vmrun) 1592 { 1593 struct vm_eventinfo evinfo; 1594 int error, vcpuid; 1595 struct vcpu *vcpu; 1596 struct pcb *pcb; 1597 uint64_t tscval; 1598 struct vm_exit *vme; 1599 bool retu, intr_disabled; 1600 pmap_t pmap; 1601 1602 vcpuid = vmrun->cpuid; 1603 1604 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1605 return (EINVAL); 1606 1607 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1608 return (EINVAL); 1609 1610 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1611 return (EINVAL); 1612 1613 pmap = vmspace_pmap(vm->vmspace); 1614 vcpu = &vm->vcpu[vcpuid]; 1615 vme = &vcpu->exitinfo; 1616 evinfo.rptr = &vm->rendezvous_func; 1617 evinfo.sptr = &vm->suspend; 1618 evinfo.iptr = &vcpu->reqidle; 1619 restart: 1620 critical_enter(); 1621 1622 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1623 ("vm_run: absurd pm_active")); 1624 1625 tscval = rdtsc(); 1626 1627 pcb = PCPU_GET(curpcb); 1628 set_pcb_flags(pcb, PCB_FULL_IRET); 1629 1630 restore_guest_fpustate(vcpu); 1631 1632 vcpu_require_state(vm, vcpuid, VCPU_RUNNING); 1633 error = VMRUN(vm->cookie, vcpuid, vcpu->nextrip, pmap, &evinfo); 1634 vcpu_require_state(vm, vcpuid, VCPU_FROZEN); 1635 1636 save_guest_fpustate(vcpu); 1637 1638 vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1639 1640 critical_exit(); 1641 1642 if (error == 0) { 1643 retu = false; 1644 vcpu->nextrip = vme->rip + vme->inst_length; 1645 switch (vme->exitcode) { 1646 case VM_EXITCODE_REQIDLE: 1647 error = vm_handle_reqidle(vm, vcpuid, &retu); 1648 break; 1649 case VM_EXITCODE_SUSPENDED: 1650 error = vm_handle_suspend(vm, vcpuid, &retu); 1651 break; 1652 case VM_EXITCODE_IOAPIC_EOI: 1653 vioapic_process_eoi(vm, vcpuid, 1654 vme->u.ioapic_eoi.vector); 1655 break; 1656 case VM_EXITCODE_RENDEZVOUS: 1657 vm_handle_rendezvous(vm, vcpuid); 1658 error = 0; 1659 break; 1660 case VM_EXITCODE_HLT: 1661 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1662 error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu); 1663 break; 1664 case VM_EXITCODE_PAGING: 1665 error = vm_handle_paging(vm, vcpuid, &retu); 1666 break; 1667 case VM_EXITCODE_INST_EMUL: 1668 error = vm_handle_inst_emul(vm, vcpuid, &retu); 1669 break; 1670 case VM_EXITCODE_INOUT: 1671 case VM_EXITCODE_INOUT_STR: 1672 error = vm_handle_inout(vm, vcpuid, vme, &retu); 1673 break; 1674 case VM_EXITCODE_MONITOR: 1675 case VM_EXITCODE_MWAIT: 1676 vm_inject_ud(vm, vcpuid); 1677 break; 1678 default: 1679 retu = true; /* handled in userland */ 1680 break; 1681 } 1682 } 1683 1684 if (error == 0 && retu == false) 1685 goto restart; 1686 1687 VCPU_CTR2(vm, vcpuid, "retu %d/%d", error, vme->exitcode); 1688 1689 /* copy the exit information */ 1690 bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit)); 1691 return (error); 1692 } 1693 1694 int 1695 vm_restart_instruction(void *arg, int vcpuid) 1696 { 1697 struct vm *vm; 1698 struct vcpu *vcpu; 1699 enum vcpu_state state; 1700 uint64_t rip; 1701 int error; 1702 1703 vm = arg; 1704 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1705 return (EINVAL); 1706 1707 vcpu = &vm->vcpu[vcpuid]; 1708 state = vcpu_get_state(vm, vcpuid, NULL); 1709 if (state == VCPU_RUNNING) { 1710 /* 1711 * When a vcpu is "running" the next instruction is determined 1712 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'. 1713 * Thus setting 'inst_length' to zero will cause the current 1714 * instruction to be restarted. 1715 */ 1716 vcpu->exitinfo.inst_length = 0; 1717 VCPU_CTR1(vm, vcpuid, "restarting instruction at %#lx by " 1718 "setting inst_length to zero", vcpu->exitinfo.rip); 1719 } else if (state == VCPU_FROZEN) { 1720 /* 1721 * When a vcpu is "frozen" it is outside the critical section 1722 * around VMRUN() and 'nextrip' points to the next instruction. 1723 * Thus instruction restart is achieved by setting 'nextrip' 1724 * to the vcpu's %rip. 1725 */ 1726 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip); 1727 KASSERT(!error, ("%s: error %d getting rip", __func__, error)); 1728 VCPU_CTR2(vm, vcpuid, "restarting instruction by updating " 1729 "nextrip from %#lx to %#lx", vcpu->nextrip, rip); 1730 vcpu->nextrip = rip; 1731 } else { 1732 panic("%s: invalid state %d", __func__, state); 1733 } 1734 return (0); 1735 } 1736 1737 int 1738 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info) 1739 { 1740 struct vcpu *vcpu; 1741 int type, vector; 1742 1743 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1744 return (EINVAL); 1745 1746 vcpu = &vm->vcpu[vcpuid]; 1747 1748 if (info & VM_INTINFO_VALID) { 1749 type = info & VM_INTINFO_TYPE; 1750 vector = info & 0xff; 1751 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 1752 return (EINVAL); 1753 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 1754 return (EINVAL); 1755 if (info & VM_INTINFO_RSVD) 1756 return (EINVAL); 1757 } else { 1758 info = 0; 1759 } 1760 VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info); 1761 vcpu->exitintinfo = info; 1762 return (0); 1763 } 1764 1765 enum exc_class { 1766 EXC_BENIGN, 1767 EXC_CONTRIBUTORY, 1768 EXC_PAGEFAULT 1769 }; 1770 1771 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 1772 1773 static enum exc_class 1774 exception_class(uint64_t info) 1775 { 1776 int type, vector; 1777 1778 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 1779 type = info & VM_INTINFO_TYPE; 1780 vector = info & 0xff; 1781 1782 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 1783 switch (type) { 1784 case VM_INTINFO_HWINTR: 1785 case VM_INTINFO_SWINTR: 1786 case VM_INTINFO_NMI: 1787 return (EXC_BENIGN); 1788 default: 1789 /* 1790 * Hardware exception. 1791 * 1792 * SVM and VT-x use identical type values to represent NMI, 1793 * hardware interrupt and software interrupt. 1794 * 1795 * SVM uses type '3' for all exceptions. VT-x uses type '3' 1796 * for exceptions except #BP and #OF. #BP and #OF use a type 1797 * value of '5' or '6'. Therefore we don't check for explicit 1798 * values of 'type' to classify 'intinfo' into a hardware 1799 * exception. 1800 */ 1801 break; 1802 } 1803 1804 switch (vector) { 1805 case IDT_PF: 1806 case IDT_VE: 1807 return (EXC_PAGEFAULT); 1808 case IDT_DE: 1809 case IDT_TS: 1810 case IDT_NP: 1811 case IDT_SS: 1812 case IDT_GP: 1813 return (EXC_CONTRIBUTORY); 1814 default: 1815 return (EXC_BENIGN); 1816 } 1817 } 1818 1819 static int 1820 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2, 1821 uint64_t *retinfo) 1822 { 1823 enum exc_class exc1, exc2; 1824 int type1, vector1; 1825 1826 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 1827 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 1828 1829 /* 1830 * If an exception occurs while attempting to call the double-fault 1831 * handler the processor enters shutdown mode (aka triple fault). 1832 */ 1833 type1 = info1 & VM_INTINFO_TYPE; 1834 vector1 = info1 & 0xff; 1835 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 1836 VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)", 1837 info1, info2); 1838 vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT); 1839 *retinfo = 0; 1840 return (0); 1841 } 1842 1843 /* 1844 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 1845 */ 1846 exc1 = exception_class(info1); 1847 exc2 = exception_class(info2); 1848 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 1849 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 1850 /* Convert nested fault into a double fault. */ 1851 *retinfo = IDT_DF; 1852 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1853 *retinfo |= VM_INTINFO_DEL_ERRCODE; 1854 } else { 1855 /* Handle exceptions serially */ 1856 *retinfo = info2; 1857 } 1858 return (1); 1859 } 1860 1861 static uint64_t 1862 vcpu_exception_intinfo(struct vcpu *vcpu) 1863 { 1864 uint64_t info = 0; 1865 1866 if (vcpu->exception_pending) { 1867 info = vcpu->exc_vector & 0xff; 1868 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1869 if (vcpu->exc_errcode_valid) { 1870 info |= VM_INTINFO_DEL_ERRCODE; 1871 info |= (uint64_t)vcpu->exc_errcode << 32; 1872 } 1873 } 1874 return (info); 1875 } 1876 1877 int 1878 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo) 1879 { 1880 struct vcpu *vcpu; 1881 uint64_t info1, info2; 1882 int valid; 1883 1884 KASSERT(vcpuid >= 0 && vcpuid < VM_MAXCPU, ("invalid vcpu %d", vcpuid)); 1885 1886 vcpu = &vm->vcpu[vcpuid]; 1887 1888 info1 = vcpu->exitintinfo; 1889 vcpu->exitintinfo = 0; 1890 1891 info2 = 0; 1892 if (vcpu->exception_pending) { 1893 info2 = vcpu_exception_intinfo(vcpu); 1894 vcpu->exception_pending = 0; 1895 VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx", 1896 vcpu->exc_vector, info2); 1897 } 1898 1899 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 1900 valid = nested_fault(vm, vcpuid, info1, info2, retinfo); 1901 } else if (info1 & VM_INTINFO_VALID) { 1902 *retinfo = info1; 1903 valid = 1; 1904 } else if (info2 & VM_INTINFO_VALID) { 1905 *retinfo = info2; 1906 valid = 1; 1907 } else { 1908 valid = 0; 1909 } 1910 1911 if (valid) { 1912 VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), " 1913 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 1914 } 1915 1916 return (valid); 1917 } 1918 1919 int 1920 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2) 1921 { 1922 struct vcpu *vcpu; 1923 1924 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1925 return (EINVAL); 1926 1927 vcpu = &vm->vcpu[vcpuid]; 1928 *info1 = vcpu->exitintinfo; 1929 *info2 = vcpu_exception_intinfo(vcpu); 1930 return (0); 1931 } 1932 1933 int 1934 vm_inject_exception(struct vm *vm, int vcpuid, int vector, int errcode_valid, 1935 uint32_t errcode, int restart_instruction) 1936 { 1937 struct vcpu *vcpu; 1938 uint64_t regval; 1939 int error; 1940 1941 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 1942 return (EINVAL); 1943 1944 if (vector < 0 || vector >= 32) 1945 return (EINVAL); 1946 1947 /* 1948 * A double fault exception should never be injected directly into 1949 * the guest. It is a derived exception that results from specific 1950 * combinations of nested faults. 1951 */ 1952 if (vector == IDT_DF) 1953 return (EINVAL); 1954 1955 vcpu = &vm->vcpu[vcpuid]; 1956 1957 if (vcpu->exception_pending) { 1958 VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to " 1959 "pending exception %d", vector, vcpu->exc_vector); 1960 return (EBUSY); 1961 } 1962 1963 if (errcode_valid) { 1964 /* 1965 * Exceptions don't deliver an error code in real mode. 1966 */ 1967 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_CR0, ®val); 1968 KASSERT(!error, ("%s: error %d getting CR0", __func__, error)); 1969 if (!(regval & CR0_PE)) 1970 errcode_valid = 0; 1971 } 1972 1973 /* 1974 * From section 26.6.1 "Interruptibility State" in Intel SDM: 1975 * 1976 * Event blocking by "STI" or "MOV SS" is cleared after guest executes 1977 * one instruction or incurs an exception. 1978 */ 1979 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0); 1980 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", 1981 __func__, error)); 1982 1983 if (restart_instruction) 1984 vm_restart_instruction(vm, vcpuid); 1985 1986 vcpu->exception_pending = 1; 1987 vcpu->exc_vector = vector; 1988 vcpu->exc_errcode = errcode; 1989 vcpu->exc_errcode_valid = errcode_valid; 1990 VCPU_CTR1(vm, vcpuid, "Exception %d pending", vector); 1991 return (0); 1992 } 1993 1994 void 1995 vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid, 1996 int errcode) 1997 { 1998 struct vm *vm; 1999 int error, restart_instruction; 2000 2001 vm = vmarg; 2002 restart_instruction = 1; 2003 2004 error = vm_inject_exception(vm, vcpuid, vector, errcode_valid, 2005 errcode, restart_instruction); 2006 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 2007 } 2008 2009 void 2010 vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2) 2011 { 2012 struct vm *vm; 2013 int error; 2014 2015 vm = vmarg; 2016 VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx", 2017 error_code, cr2); 2018 2019 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2); 2020 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 2021 2022 vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code); 2023 } 2024 2025 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 2026 2027 int 2028 vm_inject_nmi(struct vm *vm, int vcpuid) 2029 { 2030 struct vcpu *vcpu; 2031 2032 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2033 return (EINVAL); 2034 2035 vcpu = &vm->vcpu[vcpuid]; 2036 2037 vcpu->nmi_pending = 1; 2038 vcpu_notify_event(vm, vcpuid, false); 2039 return (0); 2040 } 2041 2042 int 2043 vm_nmi_pending(struct vm *vm, int vcpuid) 2044 { 2045 struct vcpu *vcpu; 2046 2047 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2048 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 2049 2050 vcpu = &vm->vcpu[vcpuid]; 2051 2052 return (vcpu->nmi_pending); 2053 } 2054 2055 void 2056 vm_nmi_clear(struct vm *vm, int vcpuid) 2057 { 2058 struct vcpu *vcpu; 2059 2060 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2061 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 2062 2063 vcpu = &vm->vcpu[vcpuid]; 2064 2065 if (vcpu->nmi_pending == 0) 2066 panic("vm_nmi_clear: inconsistent nmi_pending state"); 2067 2068 vcpu->nmi_pending = 0; 2069 vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1); 2070 } 2071 2072 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 2073 2074 int 2075 vm_inject_extint(struct vm *vm, int vcpuid) 2076 { 2077 struct vcpu *vcpu; 2078 2079 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2080 return (EINVAL); 2081 2082 vcpu = &vm->vcpu[vcpuid]; 2083 2084 vcpu->extint_pending = 1; 2085 vcpu_notify_event(vm, vcpuid, false); 2086 return (0); 2087 } 2088 2089 int 2090 vm_extint_pending(struct vm *vm, int vcpuid) 2091 { 2092 struct vcpu *vcpu; 2093 2094 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2095 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 2096 2097 vcpu = &vm->vcpu[vcpuid]; 2098 2099 return (vcpu->extint_pending); 2100 } 2101 2102 void 2103 vm_extint_clear(struct vm *vm, int vcpuid) 2104 { 2105 struct vcpu *vcpu; 2106 2107 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2108 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 2109 2110 vcpu = &vm->vcpu[vcpuid]; 2111 2112 if (vcpu->extint_pending == 0) 2113 panic("vm_extint_clear: inconsistent extint_pending state"); 2114 2115 vcpu->extint_pending = 0; 2116 vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1); 2117 } 2118 2119 int 2120 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval) 2121 { 2122 if (vcpu < 0 || vcpu >= VM_MAXCPU) 2123 return (EINVAL); 2124 2125 if (type < 0 || type >= VM_CAP_MAX) 2126 return (EINVAL); 2127 2128 return (VMGETCAP(vm->cookie, vcpu, type, retval)); 2129 } 2130 2131 int 2132 vm_set_capability(struct vm *vm, int vcpu, int type, int val) 2133 { 2134 if (vcpu < 0 || vcpu >= VM_MAXCPU) 2135 return (EINVAL); 2136 2137 if (type < 0 || type >= VM_CAP_MAX) 2138 return (EINVAL); 2139 2140 return (VMSETCAP(vm->cookie, vcpu, type, val)); 2141 } 2142 2143 struct vlapic * 2144 vm_lapic(struct vm *vm, int cpu) 2145 { 2146 return (vm->vcpu[cpu].vlapic); 2147 } 2148 2149 struct vioapic * 2150 vm_ioapic(struct vm *vm) 2151 { 2152 2153 return (vm->vioapic); 2154 } 2155 2156 struct vhpet * 2157 vm_hpet(struct vm *vm) 2158 { 2159 2160 return (vm->vhpet); 2161 } 2162 2163 boolean_t 2164 vmm_is_pptdev(int bus, int slot, int func) 2165 { 2166 int found, i, n; 2167 int b, s, f; 2168 char *val, *cp, *cp2; 2169 2170 /* 2171 * XXX 2172 * The length of an environment variable is limited to 128 bytes which 2173 * puts an upper limit on the number of passthru devices that may be 2174 * specified using a single environment variable. 2175 * 2176 * Work around this by scanning multiple environment variable 2177 * names instead of a single one - yuck! 2178 */ 2179 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 2180 2181 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 2182 found = 0; 2183 for (i = 0; names[i] != NULL && !found; i++) { 2184 cp = val = kern_getenv(names[i]); 2185 while (cp != NULL && *cp != '\0') { 2186 if ((cp2 = strchr(cp, ' ')) != NULL) 2187 *cp2 = '\0'; 2188 2189 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 2190 if (n == 3 && bus == b && slot == s && func == f) { 2191 found = 1; 2192 break; 2193 } 2194 2195 if (cp2 != NULL) 2196 *cp2++ = ' '; 2197 2198 cp = cp2; 2199 } 2200 freeenv(val); 2201 } 2202 return (found); 2203 } 2204 2205 void * 2206 vm_iommu_domain(struct vm *vm) 2207 { 2208 2209 return (vm->iommu); 2210 } 2211 2212 int 2213 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate, 2214 bool from_idle) 2215 { 2216 int error; 2217 struct vcpu *vcpu; 2218 2219 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2220 panic("vm_set_run_state: invalid vcpuid %d", vcpuid); 2221 2222 vcpu = &vm->vcpu[vcpuid]; 2223 2224 vcpu_lock(vcpu); 2225 error = vcpu_set_state_locked(vm, vcpuid, newstate, from_idle); 2226 vcpu_unlock(vcpu); 2227 2228 return (error); 2229 } 2230 2231 enum vcpu_state 2232 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu) 2233 { 2234 struct vcpu *vcpu; 2235 enum vcpu_state state; 2236 2237 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2238 panic("vm_get_run_state: invalid vcpuid %d", vcpuid); 2239 2240 vcpu = &vm->vcpu[vcpuid]; 2241 2242 vcpu_lock(vcpu); 2243 state = vcpu->state; 2244 if (hostcpu != NULL) 2245 *hostcpu = vcpu->hostcpu; 2246 vcpu_unlock(vcpu); 2247 2248 return (state); 2249 } 2250 2251 int 2252 vm_activate_cpu(struct vm *vm, int vcpuid) 2253 { 2254 2255 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2256 return (EINVAL); 2257 2258 if (CPU_ISSET(vcpuid, &vm->active_cpus)) 2259 return (EBUSY); 2260 2261 VCPU_CTR0(vm, vcpuid, "activated"); 2262 CPU_SET_ATOMIC(vcpuid, &vm->active_cpus); 2263 return (0); 2264 } 2265 2266 cpuset_t 2267 vm_active_cpus(struct vm *vm) 2268 { 2269 2270 return (vm->active_cpus); 2271 } 2272 2273 cpuset_t 2274 vm_suspended_cpus(struct vm *vm) 2275 { 2276 2277 return (vm->suspended_cpus); 2278 } 2279 2280 void * 2281 vcpu_stats(struct vm *vm, int vcpuid) 2282 { 2283 2284 return (vm->vcpu[vcpuid].stats); 2285 } 2286 2287 int 2288 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state) 2289 { 2290 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2291 return (EINVAL); 2292 2293 *state = vm->vcpu[vcpuid].x2apic_state; 2294 2295 return (0); 2296 } 2297 2298 int 2299 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state) 2300 { 2301 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2302 return (EINVAL); 2303 2304 if (state >= X2APIC_STATE_LAST) 2305 return (EINVAL); 2306 2307 vm->vcpu[vcpuid].x2apic_state = state; 2308 2309 vlapic_set_x2apic_state(vm, vcpuid, state); 2310 2311 return (0); 2312 } 2313 2314 /* 2315 * This function is called to ensure that a vcpu "sees" a pending event 2316 * as soon as possible: 2317 * - If the vcpu thread is sleeping then it is woken up. 2318 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2319 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2320 */ 2321 static void 2322 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr) 2323 { 2324 int hostcpu; 2325 2326 hostcpu = vcpu->hostcpu; 2327 if (vcpu->state == VCPU_RUNNING) { 2328 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2329 if (hostcpu != curcpu) { 2330 if (lapic_intr) { 2331 vlapic_post_intr(vcpu->vlapic, hostcpu, 2332 vmm_ipinum); 2333 } else { 2334 ipi_cpu(hostcpu, vmm_ipinum); 2335 } 2336 } else { 2337 /* 2338 * If the 'vcpu' is running on 'curcpu' then it must 2339 * be sending a notification to itself (e.g. SELF_IPI). 2340 * The pending event will be picked up when the vcpu 2341 * transitions back to guest context. 2342 */ 2343 } 2344 } else { 2345 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2346 "with hostcpu %d", vcpu->state, hostcpu)); 2347 if (vcpu->state == VCPU_SLEEPING) 2348 wakeup_one(vcpu); 2349 } 2350 } 2351 2352 void 2353 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr) 2354 { 2355 struct vcpu *vcpu = &vm->vcpu[vcpuid]; 2356 2357 vcpu_lock(vcpu); 2358 vcpu_notify_event_locked(vcpu, lapic_intr); 2359 vcpu_unlock(vcpu); 2360 } 2361 2362 struct vmspace * 2363 vm_get_vmspace(struct vm *vm) 2364 { 2365 2366 return (vm->vmspace); 2367 } 2368 2369 int 2370 vm_apicid2vcpuid(struct vm *vm, int apicid) 2371 { 2372 /* 2373 * XXX apic id is assumed to be numerically identical to vcpu id 2374 */ 2375 return (apicid); 2376 } 2377 2378 void 2379 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest, 2380 vm_rendezvous_func_t func, void *arg) 2381 { 2382 int i; 2383 2384 /* 2385 * Enforce that this function is called without any locks 2386 */ 2387 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2388 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU), 2389 ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid)); 2390 2391 restart: 2392 mtx_lock(&vm->rendezvous_mtx); 2393 if (vm->rendezvous_func != NULL) { 2394 /* 2395 * If a rendezvous is already in progress then we need to 2396 * call the rendezvous handler in case this 'vcpuid' is one 2397 * of the targets of the rendezvous. 2398 */ 2399 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress"); 2400 mtx_unlock(&vm->rendezvous_mtx); 2401 vm_handle_rendezvous(vm, vcpuid); 2402 goto restart; 2403 } 2404 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2405 "rendezvous is still in progress")); 2406 2407 RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous"); 2408 vm->rendezvous_req_cpus = dest; 2409 CPU_ZERO(&vm->rendezvous_done_cpus); 2410 vm->rendezvous_arg = arg; 2411 vm_set_rendezvous_func(vm, func); 2412 mtx_unlock(&vm->rendezvous_mtx); 2413 2414 /* 2415 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2416 * vcpus so they handle the rendezvous as soon as possible. 2417 */ 2418 for (i = 0; i < VM_MAXCPU; i++) { 2419 if (CPU_ISSET(i, &dest)) 2420 vcpu_notify_event(vm, i, false); 2421 } 2422 2423 vm_handle_rendezvous(vm, vcpuid); 2424 } 2425 2426 struct vatpic * 2427 vm_atpic(struct vm *vm) 2428 { 2429 return (vm->vatpic); 2430 } 2431 2432 struct vatpit * 2433 vm_atpit(struct vm *vm) 2434 { 2435 return (vm->vatpit); 2436 } 2437 2438 struct vpmtmr * 2439 vm_pmtmr(struct vm *vm) 2440 { 2441 2442 return (vm->vpmtmr); 2443 } 2444 2445 struct vrtc * 2446 vm_rtc(struct vm *vm) 2447 { 2448 2449 return (vm->vrtc); 2450 } 2451 2452 enum vm_reg_name 2453 vm_segment_name(int seg) 2454 { 2455 static enum vm_reg_name seg_names[] = { 2456 VM_REG_GUEST_ES, 2457 VM_REG_GUEST_CS, 2458 VM_REG_GUEST_SS, 2459 VM_REG_GUEST_DS, 2460 VM_REG_GUEST_FS, 2461 VM_REG_GUEST_GS 2462 }; 2463 2464 KASSERT(seg >= 0 && seg < nitems(seg_names), 2465 ("%s: invalid segment encoding %d", __func__, seg)); 2466 return (seg_names[seg]); 2467 } 2468 2469 void 2470 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, 2471 int num_copyinfo) 2472 { 2473 int idx; 2474 2475 for (idx = 0; idx < num_copyinfo; idx++) { 2476 if (copyinfo[idx].cookie != NULL) 2477 vm_gpa_release(copyinfo[idx].cookie); 2478 } 2479 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2480 } 2481 2482 int 2483 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging, 2484 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2485 int num_copyinfo, int *fault) 2486 { 2487 int error, idx, nused; 2488 size_t n, off, remaining; 2489 void *hva, *cookie; 2490 uint64_t gpa; 2491 2492 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2493 2494 nused = 0; 2495 remaining = len; 2496 while (remaining > 0) { 2497 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo")); 2498 error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa, fault); 2499 if (error || *fault) 2500 return (error); 2501 off = gpa & PAGE_MASK; 2502 n = min(remaining, PAGE_SIZE - off); 2503 copyinfo[nused].gpa = gpa; 2504 copyinfo[nused].len = n; 2505 remaining -= n; 2506 gla += n; 2507 nused++; 2508 } 2509 2510 for (idx = 0; idx < nused; idx++) { 2511 hva = vm_gpa_hold(vm, vcpuid, copyinfo[idx].gpa, 2512 copyinfo[idx].len, prot, &cookie); 2513 if (hva == NULL) 2514 break; 2515 copyinfo[idx].hva = hva; 2516 copyinfo[idx].cookie = cookie; 2517 } 2518 2519 if (idx != nused) { 2520 vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo); 2521 return (EFAULT); 2522 } else { 2523 *fault = 0; 2524 return (0); 2525 } 2526 } 2527 2528 void 2529 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr, 2530 size_t len) 2531 { 2532 char *dst; 2533 int idx; 2534 2535 dst = kaddr; 2536 idx = 0; 2537 while (len > 0) { 2538 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2539 len -= copyinfo[idx].len; 2540 dst += copyinfo[idx].len; 2541 idx++; 2542 } 2543 } 2544 2545 void 2546 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr, 2547 struct vm_copyinfo *copyinfo, size_t len) 2548 { 2549 const char *src; 2550 int idx; 2551 2552 src = kaddr; 2553 idx = 0; 2554 while (len > 0) { 2555 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2556 len -= copyinfo[idx].len; 2557 src += copyinfo[idx].len; 2558 idx++; 2559 } 2560 } 2561 2562 /* 2563 * Return the amount of in-use and wired memory for the VM. Since 2564 * these are global stats, only return the values with for vCPU 0 2565 */ 2566 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2567 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2568 2569 static void 2570 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2571 { 2572 2573 if (vcpu == 0) { 2574 vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT, 2575 PAGE_SIZE * vmspace_resident_count(vm->vmspace)); 2576 } 2577 } 2578 2579 static void 2580 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2581 { 2582 2583 if (vcpu == 0) { 2584 vmm_stat_set(vm, vcpu, VMM_MEM_WIRED, 2585 PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace))); 2586 } 2587 } 2588 2589 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2590 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2591