1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include "opt_bhyve_snapshot.h" 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/kernel.h> 39 #include <sys/module.h> 40 #include <sys/sysctl.h> 41 #include <sys/malloc.h> 42 #include <sys/pcpu.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/proc.h> 46 #include <sys/rwlock.h> 47 #include <sys/sched.h> 48 #include <sys/smp.h> 49 #include <sys/vnode.h> 50 51 #include <vm/vm.h> 52 #include <vm/vm_object.h> 53 #include <vm/vm_page.h> 54 #include <vm/pmap.h> 55 #include <vm/vm_map.h> 56 #include <vm/vm_extern.h> 57 #include <vm/vm_param.h> 58 #include <vm/vm_pager.h> 59 #include <vm/vm_kern.h> 60 #include <vm/vnode_pager.h> 61 #include <vm/swap_pager.h> 62 #include <vm/uma.h> 63 64 #include <machine/cpu.h> 65 #include <machine/pcb.h> 66 #include <machine/smp.h> 67 #include <machine/md_var.h> 68 #include <x86/psl.h> 69 #include <x86/apicreg.h> 70 71 #include <machine/vmm.h> 72 #include <machine/vmm_dev.h> 73 #include <machine/vmm_instruction_emul.h> 74 #include <machine/vmm_snapshot.h> 75 76 #include "vmm_ioport.h" 77 #include "vmm_ktr.h" 78 #include "vmm_host.h" 79 #include "vmm_mem.h" 80 #include "vmm_util.h" 81 #include "vatpic.h" 82 #include "vatpit.h" 83 #include "vhpet.h" 84 #include "vioapic.h" 85 #include "vlapic.h" 86 #include "vpmtmr.h" 87 #include "vrtc.h" 88 #include "vmm_stat.h" 89 #include "vmm_lapic.h" 90 91 #include "io/ppt.h" 92 #include "io/iommu.h" 93 94 struct vlapic; 95 96 /* 97 * Initialization: 98 * (a) allocated when vcpu is created 99 * (i) initialized when vcpu is created and when it is reinitialized 100 * (o) initialized the first time the vcpu is created 101 * (x) initialized before use 102 */ 103 struct vcpu { 104 struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */ 105 enum vcpu_state state; /* (o) vcpu state */ 106 int hostcpu; /* (o) vcpu's host cpu */ 107 int reqidle; /* (i) request vcpu to idle */ 108 struct vlapic *vlapic; /* (i) APIC device model */ 109 enum x2apic_state x2apic_state; /* (i) APIC mode */ 110 uint64_t exitintinfo; /* (i) events pending at VM exit */ 111 int nmi_pending; /* (i) NMI pending */ 112 int extint_pending; /* (i) INTR pending */ 113 int exception_pending; /* (i) exception pending */ 114 int exc_vector; /* (x) exception collateral */ 115 int exc_errcode_valid; 116 uint32_t exc_errcode; 117 struct savefpu *guestfpu; /* (a,i) guest fpu state */ 118 uint64_t guest_xcr0; /* (i) guest %xcr0 register */ 119 void *stats; /* (a,i) statistics */ 120 struct vm_exit exitinfo; /* (x) exit reason and collateral */ 121 uint64_t nextrip; /* (x) next instruction to execute */ 122 uint64_t tsc_offset; /* (o) TSC offsetting */ 123 }; 124 125 #define vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx)) 126 #define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN) 127 #define vcpu_lock(v) mtx_lock_spin(&((v)->mtx)) 128 #define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx)) 129 #define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED) 130 131 struct mem_seg { 132 size_t len; 133 bool sysmem; 134 struct vm_object *object; 135 }; 136 #define VM_MAX_MEMSEGS 3 137 138 struct mem_map { 139 vm_paddr_t gpa; 140 size_t len; 141 vm_ooffset_t segoff; 142 int segid; 143 int prot; 144 int flags; 145 }; 146 #define VM_MAX_MEMMAPS 8 147 148 /* 149 * Initialization: 150 * (o) initialized the first time the VM is created 151 * (i) initialized when VM is created and when it is reinitialized 152 * (x) initialized before use 153 */ 154 struct vm { 155 void *cookie; /* (i) cpu-specific data */ 156 void *iommu; /* (x) iommu-specific data */ 157 struct vhpet *vhpet; /* (i) virtual HPET */ 158 struct vioapic *vioapic; /* (i) virtual ioapic */ 159 struct vatpic *vatpic; /* (i) virtual atpic */ 160 struct vatpit *vatpit; /* (i) virtual atpit */ 161 struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */ 162 struct vrtc *vrtc; /* (o) virtual RTC */ 163 volatile cpuset_t active_cpus; /* (i) active vcpus */ 164 volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */ 165 int suspend; /* (i) stop VM execution */ 166 volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */ 167 volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */ 168 cpuset_t rendezvous_req_cpus; /* (x) rendezvous requested */ 169 cpuset_t rendezvous_done_cpus; /* (x) rendezvous finished */ 170 void *rendezvous_arg; /* (x) rendezvous func/arg */ 171 vm_rendezvous_func_t rendezvous_func; 172 struct mtx rendezvous_mtx; /* (o) rendezvous lock */ 173 struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */ 174 struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */ 175 struct vmspace *vmspace; /* (o) guest's address space */ 176 char name[VM_MAX_NAMELEN]; /* (o) virtual machine name */ 177 struct vcpu vcpu[VM_MAXCPU]; /* (i) guest vcpus */ 178 /* The following describe the vm cpu topology */ 179 uint16_t sockets; /* (o) num of sockets */ 180 uint16_t cores; /* (o) num of cores/socket */ 181 uint16_t threads; /* (o) num of threads/core */ 182 uint16_t maxcpus; /* (o) max pluggable cpus */ 183 }; 184 185 static int vmm_initialized; 186 187 static struct vmm_ops *ops; 188 #define VMM_INIT(num) (ops != NULL ? (*ops->init)(num) : 0) 189 #define VMM_CLEANUP() (ops != NULL ? (*ops->cleanup)() : 0) 190 #define VMM_RESUME() (ops != NULL ? (*ops->resume)() : 0) 191 192 #define VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL) 193 #define VMRUN(vmi, vcpu, rip, pmap, evinfo) \ 194 (ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, evinfo) : ENXIO) 195 #define VMCLEANUP(vmi) (ops != NULL ? (*ops->vmcleanup)(vmi) : NULL) 196 #define VMSPACE_ALLOC(min, max) \ 197 (ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL) 198 #define VMSPACE_FREE(vmspace) \ 199 (ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO) 200 #define VMGETREG(vmi, vcpu, num, retval) \ 201 (ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO) 202 #define VMSETREG(vmi, vcpu, num, val) \ 203 (ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO) 204 #define VMGETDESC(vmi, vcpu, num, desc) \ 205 (ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO) 206 #define VMSETDESC(vmi, vcpu, num, desc) \ 207 (ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO) 208 #define VMGETCAP(vmi, vcpu, num, retval) \ 209 (ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO) 210 #define VMSETCAP(vmi, vcpu, num, val) \ 211 (ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO) 212 #define VLAPIC_INIT(vmi, vcpu) \ 213 (ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL) 214 #define VLAPIC_CLEANUP(vmi, vlapic) \ 215 (ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL) 216 #ifdef BHYVE_SNAPSHOT 217 #define VM_SNAPSHOT_VMI(vmi, meta) \ 218 (ops != NULL ? (*ops->vmsnapshot)(vmi, meta) : ENXIO) 219 #define VM_SNAPSHOT_VMCX(vmi, meta, vcpuid) \ 220 (ops != NULL ? (*ops->vmcx_snapshot)(vmi, meta, vcpuid) : ENXIO) 221 #define VM_RESTORE_TSC(vmi, vcpuid, offset) \ 222 (ops != NULL ? (*ops->vm_restore_tsc)(vmi, vcpuid, offset) : ENXIO) 223 #endif 224 225 #define fpu_start_emulating() load_cr0(rcr0() | CR0_TS) 226 #define fpu_stop_emulating() clts() 227 228 SDT_PROVIDER_DEFINE(vmm); 229 230 static MALLOC_DEFINE(M_VM, "vm", "vm"); 231 232 /* statistics */ 233 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime"); 234 235 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 236 NULL); 237 238 /* 239 * Halt the guest if all vcpus are executing a HLT instruction with 240 * interrupts disabled. 241 */ 242 static int halt_detection_enabled = 1; 243 SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN, 244 &halt_detection_enabled, 0, 245 "Halt VM if all vcpus execute HLT with interrupts disabled"); 246 247 static int vmm_ipinum; 248 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0, 249 "IPI vector used for vcpu notifications"); 250 251 static int trace_guest_exceptions; 252 SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN, 253 &trace_guest_exceptions, 0, 254 "Trap into hypervisor on all guest exceptions and reflect them back"); 255 256 static void vm_free_memmap(struct vm *vm, int ident); 257 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm); 258 static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr); 259 260 #ifdef KTR 261 static const char * 262 vcpu_state2str(enum vcpu_state state) 263 { 264 265 switch (state) { 266 case VCPU_IDLE: 267 return ("idle"); 268 case VCPU_FROZEN: 269 return ("frozen"); 270 case VCPU_RUNNING: 271 return ("running"); 272 case VCPU_SLEEPING: 273 return ("sleeping"); 274 default: 275 return ("unknown"); 276 } 277 } 278 #endif 279 280 static void 281 vcpu_cleanup(struct vm *vm, int i, bool destroy) 282 { 283 struct vcpu *vcpu = &vm->vcpu[i]; 284 285 VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic); 286 if (destroy) { 287 vmm_stat_free(vcpu->stats); 288 fpu_save_area_free(vcpu->guestfpu); 289 } 290 } 291 292 static void 293 vcpu_init(struct vm *vm, int vcpu_id, bool create) 294 { 295 struct vcpu *vcpu; 296 297 KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus, 298 ("vcpu_init: invalid vcpu %d", vcpu_id)); 299 300 vcpu = &vm->vcpu[vcpu_id]; 301 302 if (create) { 303 KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already " 304 "initialized", vcpu_id)); 305 vcpu_lock_init(vcpu); 306 vcpu->state = VCPU_IDLE; 307 vcpu->hostcpu = NOCPU; 308 vcpu->guestfpu = fpu_save_area_alloc(); 309 vcpu->stats = vmm_stat_alloc(); 310 vcpu->tsc_offset = 0; 311 } 312 313 vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id); 314 vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED); 315 vcpu->reqidle = 0; 316 vcpu->exitintinfo = 0; 317 vcpu->nmi_pending = 0; 318 vcpu->extint_pending = 0; 319 vcpu->exception_pending = 0; 320 vcpu->guest_xcr0 = XFEATURE_ENABLED_X87; 321 fpu_save_area_reset(vcpu->guestfpu); 322 vmm_stat_init(vcpu->stats); 323 } 324 325 int 326 vcpu_trace_exceptions(struct vm *vm, int vcpuid) 327 { 328 329 return (trace_guest_exceptions); 330 } 331 332 struct vm_exit * 333 vm_exitinfo(struct vm *vm, int cpuid) 334 { 335 struct vcpu *vcpu; 336 337 if (cpuid < 0 || cpuid >= vm->maxcpus) 338 panic("vm_exitinfo: invalid cpuid %d", cpuid); 339 340 vcpu = &vm->vcpu[cpuid]; 341 342 return (&vcpu->exitinfo); 343 } 344 345 static void 346 vmm_resume(void) 347 { 348 VMM_RESUME(); 349 } 350 351 static int 352 vmm_init(void) 353 { 354 int error; 355 356 vmm_host_state_init(); 357 358 vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) : 359 &IDTVEC(justreturn)); 360 if (vmm_ipinum < 0) 361 vmm_ipinum = IPI_AST; 362 363 error = vmm_mem_init(); 364 if (error) 365 return (error); 366 367 if (vmm_is_intel()) 368 ops = &vmm_ops_intel; 369 else if (vmm_is_svm()) 370 ops = &vmm_ops_amd; 371 else 372 return (ENXIO); 373 374 vmm_resume_p = vmm_resume; 375 376 return (VMM_INIT(vmm_ipinum)); 377 } 378 379 static int 380 vmm_handler(module_t mod, int what, void *arg) 381 { 382 int error; 383 384 switch (what) { 385 case MOD_LOAD: 386 vmmdev_init(); 387 error = vmm_init(); 388 if (error == 0) 389 vmm_initialized = 1; 390 break; 391 case MOD_UNLOAD: 392 error = vmmdev_cleanup(); 393 if (error == 0) { 394 vmm_resume_p = NULL; 395 iommu_cleanup(); 396 if (vmm_ipinum != IPI_AST) 397 lapic_ipi_free(vmm_ipinum); 398 error = VMM_CLEANUP(); 399 /* 400 * Something bad happened - prevent new 401 * VMs from being created 402 */ 403 if (error) 404 vmm_initialized = 0; 405 } 406 break; 407 default: 408 error = 0; 409 break; 410 } 411 return (error); 412 } 413 414 static moduledata_t vmm_kmod = { 415 "vmm", 416 vmm_handler, 417 NULL 418 }; 419 420 /* 421 * vmm initialization has the following dependencies: 422 * 423 * - VT-x initialization requires smp_rendezvous() and therefore must happen 424 * after SMP is fully functional (after SI_SUB_SMP). 425 */ 426 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY); 427 MODULE_VERSION(vmm, 1); 428 429 static void 430 vm_init(struct vm *vm, bool create) 431 { 432 int i; 433 434 vm->cookie = VMINIT(vm, vmspace_pmap(vm->vmspace)); 435 vm->iommu = NULL; 436 vm->vioapic = vioapic_init(vm); 437 vm->vhpet = vhpet_init(vm); 438 vm->vatpic = vatpic_init(vm); 439 vm->vatpit = vatpit_init(vm); 440 vm->vpmtmr = vpmtmr_init(vm); 441 if (create) 442 vm->vrtc = vrtc_init(vm); 443 444 CPU_ZERO(&vm->active_cpus); 445 CPU_ZERO(&vm->debug_cpus); 446 447 vm->suspend = 0; 448 CPU_ZERO(&vm->suspended_cpus); 449 450 for (i = 0; i < vm->maxcpus; i++) 451 vcpu_init(vm, i, create); 452 } 453 454 /* 455 * The default CPU topology is a single thread per package. 456 */ 457 u_int cores_per_package = 1; 458 u_int threads_per_core = 1; 459 460 int 461 vm_create(const char *name, struct vm **retvm) 462 { 463 struct vm *vm; 464 struct vmspace *vmspace; 465 466 /* 467 * If vmm.ko could not be successfully initialized then don't attempt 468 * to create the virtual machine. 469 */ 470 if (!vmm_initialized) 471 return (ENXIO); 472 473 if (name == NULL || strlen(name) >= VM_MAX_NAMELEN) 474 return (EINVAL); 475 476 vmspace = VMSPACE_ALLOC(0, VM_MAXUSER_ADDRESS); 477 if (vmspace == NULL) 478 return (ENOMEM); 479 480 vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO); 481 strcpy(vm->name, name); 482 vm->vmspace = vmspace; 483 mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF); 484 485 vm->sockets = 1; 486 vm->cores = cores_per_package; /* XXX backwards compatibility */ 487 vm->threads = threads_per_core; /* XXX backwards compatibility */ 488 vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */ 489 490 vm_init(vm, true); 491 492 *retvm = vm; 493 return (0); 494 } 495 496 void 497 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, 498 uint16_t *threads, uint16_t *maxcpus) 499 { 500 *sockets = vm->sockets; 501 *cores = vm->cores; 502 *threads = vm->threads; 503 *maxcpus = vm->maxcpus; 504 } 505 506 uint16_t 507 vm_get_maxcpus(struct vm *vm) 508 { 509 return (vm->maxcpus); 510 } 511 512 int 513 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, 514 uint16_t threads, uint16_t maxcpus) 515 { 516 if (maxcpus != 0) 517 return (EINVAL); /* XXX remove when supported */ 518 if ((sockets * cores * threads) > vm->maxcpus) 519 return (EINVAL); 520 /* XXX need to check sockets * cores * threads == vCPU, how? */ 521 vm->sockets = sockets; 522 vm->cores = cores; 523 vm->threads = threads; 524 vm->maxcpus = VM_MAXCPU; /* XXX temp to keep code working */ 525 return(0); 526 } 527 528 static void 529 vm_cleanup(struct vm *vm, bool destroy) 530 { 531 struct mem_map *mm; 532 int i; 533 534 ppt_unassign_all(vm); 535 536 if (vm->iommu != NULL) 537 iommu_destroy_domain(vm->iommu); 538 539 if (destroy) 540 vrtc_cleanup(vm->vrtc); 541 else 542 vrtc_reset(vm->vrtc); 543 vpmtmr_cleanup(vm->vpmtmr); 544 vatpit_cleanup(vm->vatpit); 545 vhpet_cleanup(vm->vhpet); 546 vatpic_cleanup(vm->vatpic); 547 vioapic_cleanup(vm->vioapic); 548 549 for (i = 0; i < vm->maxcpus; i++) 550 vcpu_cleanup(vm, i, destroy); 551 552 VMCLEANUP(vm->cookie); 553 554 /* 555 * System memory is removed from the guest address space only when 556 * the VM is destroyed. This is because the mapping remains the same 557 * across VM reset. 558 * 559 * Device memory can be relocated by the guest (e.g. using PCI BARs) 560 * so those mappings are removed on a VM reset. 561 */ 562 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 563 mm = &vm->mem_maps[i]; 564 if (destroy || !sysmem_mapping(vm, mm)) 565 vm_free_memmap(vm, i); 566 } 567 568 if (destroy) { 569 for (i = 0; i < VM_MAX_MEMSEGS; i++) 570 vm_free_memseg(vm, i); 571 572 VMSPACE_FREE(vm->vmspace); 573 vm->vmspace = NULL; 574 } 575 } 576 577 void 578 vm_destroy(struct vm *vm) 579 { 580 vm_cleanup(vm, true); 581 free(vm, M_VM); 582 } 583 584 int 585 vm_reinit(struct vm *vm) 586 { 587 int error; 588 589 /* 590 * A virtual machine can be reset only if all vcpus are suspended. 591 */ 592 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 593 vm_cleanup(vm, false); 594 vm_init(vm, false); 595 error = 0; 596 } else { 597 error = EBUSY; 598 } 599 600 return (error); 601 } 602 603 const char * 604 vm_name(struct vm *vm) 605 { 606 return (vm->name); 607 } 608 609 int 610 vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa) 611 { 612 vm_object_t obj; 613 614 if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL) 615 return (ENOMEM); 616 else 617 return (0); 618 } 619 620 int 621 vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len) 622 { 623 624 vmm_mmio_free(vm->vmspace, gpa, len); 625 return (0); 626 } 627 628 /* 629 * Return 'true' if 'gpa' is allocated in the guest address space. 630 * 631 * This function is called in the context of a running vcpu which acts as 632 * an implicit lock on 'vm->mem_maps[]'. 633 */ 634 bool 635 vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa) 636 { 637 struct mem_map *mm; 638 int i; 639 640 #ifdef INVARIANTS 641 int hostcpu, state; 642 state = vcpu_get_state(vm, vcpuid, &hostcpu); 643 KASSERT(state == VCPU_RUNNING && hostcpu == curcpu, 644 ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu)); 645 #endif 646 647 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 648 mm = &vm->mem_maps[i]; 649 if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len) 650 return (true); /* 'gpa' is sysmem or devmem */ 651 } 652 653 if (ppt_is_mmio(vm, gpa)) 654 return (true); /* 'gpa' is pci passthru mmio */ 655 656 return (false); 657 } 658 659 int 660 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem) 661 { 662 struct mem_seg *seg; 663 vm_object_t obj; 664 665 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 666 return (EINVAL); 667 668 if (len == 0 || (len & PAGE_MASK)) 669 return (EINVAL); 670 671 seg = &vm->mem_segs[ident]; 672 if (seg->object != NULL) { 673 if (seg->len == len && seg->sysmem == sysmem) 674 return (EEXIST); 675 else 676 return (EINVAL); 677 } 678 679 obj = vm_object_allocate(OBJT_DEFAULT, len >> PAGE_SHIFT); 680 if (obj == NULL) 681 return (ENOMEM); 682 683 seg->len = len; 684 seg->object = obj; 685 seg->sysmem = sysmem; 686 return (0); 687 } 688 689 int 690 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, 691 vm_object_t *objptr) 692 { 693 struct mem_seg *seg; 694 695 if (ident < 0 || ident >= VM_MAX_MEMSEGS) 696 return (EINVAL); 697 698 seg = &vm->mem_segs[ident]; 699 if (len) 700 *len = seg->len; 701 if (sysmem) 702 *sysmem = seg->sysmem; 703 if (objptr) 704 *objptr = seg->object; 705 return (0); 706 } 707 708 void 709 vm_free_memseg(struct vm *vm, int ident) 710 { 711 struct mem_seg *seg; 712 713 KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS, 714 ("%s: invalid memseg ident %d", __func__, ident)); 715 716 seg = &vm->mem_segs[ident]; 717 if (seg->object != NULL) { 718 vm_object_deallocate(seg->object); 719 bzero(seg, sizeof(struct mem_seg)); 720 } 721 } 722 723 int 724 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first, 725 size_t len, int prot, int flags) 726 { 727 struct mem_seg *seg; 728 struct mem_map *m, *map; 729 vm_ooffset_t last; 730 int i, error; 731 732 if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0) 733 return (EINVAL); 734 735 if (flags & ~VM_MEMMAP_F_WIRED) 736 return (EINVAL); 737 738 if (segid < 0 || segid >= VM_MAX_MEMSEGS) 739 return (EINVAL); 740 741 seg = &vm->mem_segs[segid]; 742 if (seg->object == NULL) 743 return (EINVAL); 744 745 last = first + len; 746 if (first < 0 || first >= last || last > seg->len) 747 return (EINVAL); 748 749 if ((gpa | first | last) & PAGE_MASK) 750 return (EINVAL); 751 752 map = NULL; 753 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 754 m = &vm->mem_maps[i]; 755 if (m->len == 0) { 756 map = m; 757 break; 758 } 759 } 760 761 if (map == NULL) 762 return (ENOSPC); 763 764 error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa, 765 len, 0, VMFS_NO_SPACE, prot, prot, 0); 766 if (error != KERN_SUCCESS) 767 return (EFAULT); 768 769 vm_object_reference(seg->object); 770 771 if (flags & VM_MEMMAP_F_WIRED) { 772 error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len, 773 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 774 if (error != KERN_SUCCESS) { 775 vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len); 776 return (error == KERN_RESOURCE_SHORTAGE ? ENOMEM : 777 EFAULT); 778 } 779 } 780 781 map->gpa = gpa; 782 map->len = len; 783 map->segoff = first; 784 map->segid = segid; 785 map->prot = prot; 786 map->flags = flags; 787 return (0); 788 } 789 790 int 791 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, 792 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags) 793 { 794 struct mem_map *mm, *mmnext; 795 int i; 796 797 mmnext = NULL; 798 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 799 mm = &vm->mem_maps[i]; 800 if (mm->len == 0 || mm->gpa < *gpa) 801 continue; 802 if (mmnext == NULL || mm->gpa < mmnext->gpa) 803 mmnext = mm; 804 } 805 806 if (mmnext != NULL) { 807 *gpa = mmnext->gpa; 808 if (segid) 809 *segid = mmnext->segid; 810 if (segoff) 811 *segoff = mmnext->segoff; 812 if (len) 813 *len = mmnext->len; 814 if (prot) 815 *prot = mmnext->prot; 816 if (flags) 817 *flags = mmnext->flags; 818 return (0); 819 } else { 820 return (ENOENT); 821 } 822 } 823 824 static void 825 vm_free_memmap(struct vm *vm, int ident) 826 { 827 struct mem_map *mm; 828 int error; 829 830 mm = &vm->mem_maps[ident]; 831 if (mm->len) { 832 error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa, 833 mm->gpa + mm->len); 834 KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d", 835 __func__, error)); 836 bzero(mm, sizeof(struct mem_map)); 837 } 838 } 839 840 static __inline bool 841 sysmem_mapping(struct vm *vm, struct mem_map *mm) 842 { 843 844 if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem) 845 return (true); 846 else 847 return (false); 848 } 849 850 vm_paddr_t 851 vmm_sysmem_maxaddr(struct vm *vm) 852 { 853 struct mem_map *mm; 854 vm_paddr_t maxaddr; 855 int i; 856 857 maxaddr = 0; 858 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 859 mm = &vm->mem_maps[i]; 860 if (sysmem_mapping(vm, mm)) { 861 if (maxaddr < mm->gpa + mm->len) 862 maxaddr = mm->gpa + mm->len; 863 } 864 } 865 return (maxaddr); 866 } 867 868 static void 869 vm_iommu_modify(struct vm *vm, bool map) 870 { 871 int i, sz; 872 vm_paddr_t gpa, hpa; 873 struct mem_map *mm; 874 void *vp, *cookie, *host_domain; 875 876 sz = PAGE_SIZE; 877 host_domain = iommu_host_domain(); 878 879 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 880 mm = &vm->mem_maps[i]; 881 if (!sysmem_mapping(vm, mm)) 882 continue; 883 884 if (map) { 885 KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0, 886 ("iommu map found invalid memmap %#lx/%#lx/%#x", 887 mm->gpa, mm->len, mm->flags)); 888 if ((mm->flags & VM_MEMMAP_F_WIRED) == 0) 889 continue; 890 mm->flags |= VM_MEMMAP_F_IOMMU; 891 } else { 892 if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0) 893 continue; 894 mm->flags &= ~VM_MEMMAP_F_IOMMU; 895 KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0, 896 ("iommu unmap found invalid memmap %#lx/%#lx/%#x", 897 mm->gpa, mm->len, mm->flags)); 898 } 899 900 gpa = mm->gpa; 901 while (gpa < mm->gpa + mm->len) { 902 vp = vm_gpa_hold(vm, -1, gpa, PAGE_SIZE, VM_PROT_WRITE, 903 &cookie); 904 KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx", 905 vm_name(vm), gpa)); 906 907 vm_gpa_release(cookie); 908 909 hpa = DMAP_TO_PHYS((uintptr_t)vp); 910 if (map) { 911 iommu_create_mapping(vm->iommu, gpa, hpa, sz); 912 iommu_remove_mapping(host_domain, hpa, sz); 913 } else { 914 iommu_remove_mapping(vm->iommu, gpa, sz); 915 iommu_create_mapping(host_domain, hpa, hpa, sz); 916 } 917 918 gpa += PAGE_SIZE; 919 } 920 } 921 922 /* 923 * Invalidate the cached translations associated with the domain 924 * from which pages were removed. 925 */ 926 if (map) 927 iommu_invalidate_tlb(host_domain); 928 else 929 iommu_invalidate_tlb(vm->iommu); 930 } 931 932 #define vm_iommu_unmap(vm) vm_iommu_modify((vm), false) 933 #define vm_iommu_map(vm) vm_iommu_modify((vm), true) 934 935 int 936 vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func) 937 { 938 int error; 939 940 error = ppt_unassign_device(vm, bus, slot, func); 941 if (error) 942 return (error); 943 944 if (ppt_assigned_devices(vm) == 0) 945 vm_iommu_unmap(vm); 946 947 return (0); 948 } 949 950 int 951 vm_assign_pptdev(struct vm *vm, int bus, int slot, int func) 952 { 953 int error; 954 vm_paddr_t maxaddr; 955 956 /* Set up the IOMMU to do the 'gpa' to 'hpa' translation */ 957 if (ppt_assigned_devices(vm) == 0) { 958 KASSERT(vm->iommu == NULL, 959 ("vm_assign_pptdev: iommu must be NULL")); 960 maxaddr = vmm_sysmem_maxaddr(vm); 961 vm->iommu = iommu_create_domain(maxaddr); 962 if (vm->iommu == NULL) 963 return (ENXIO); 964 vm_iommu_map(vm); 965 } 966 967 error = ppt_assign_device(vm, bus, slot, func); 968 return (error); 969 } 970 971 void * 972 vm_gpa_hold(struct vm *vm, int vcpuid, vm_paddr_t gpa, size_t len, int reqprot, 973 void **cookie) 974 { 975 int i, count, pageoff; 976 struct mem_map *mm; 977 vm_page_t m; 978 #ifdef INVARIANTS 979 /* 980 * All vcpus are frozen by ioctls that modify the memory map 981 * (e.g. VM_MMAP_MEMSEG). Therefore 'vm->memmap[]' stability is 982 * guaranteed if at least one vcpu is in the VCPU_FROZEN state. 983 */ 984 int state; 985 KASSERT(vcpuid >= -1 && vcpuid < vm->maxcpus, ("%s: invalid vcpuid %d", 986 __func__, vcpuid)); 987 for (i = 0; i < vm->maxcpus; i++) { 988 if (vcpuid != -1 && vcpuid != i) 989 continue; 990 state = vcpu_get_state(vm, i, NULL); 991 KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d", 992 __func__, state)); 993 } 994 #endif 995 pageoff = gpa & PAGE_MASK; 996 if (len > PAGE_SIZE - pageoff) 997 panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len); 998 999 count = 0; 1000 for (i = 0; i < VM_MAX_MEMMAPS; i++) { 1001 mm = &vm->mem_maps[i]; 1002 if (sysmem_mapping(vm, mm) && gpa >= mm->gpa && 1003 gpa < mm->gpa + mm->len) { 1004 count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map, 1005 trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1); 1006 break; 1007 } 1008 } 1009 1010 if (count == 1) { 1011 *cookie = m; 1012 return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff)); 1013 } else { 1014 *cookie = NULL; 1015 return (NULL); 1016 } 1017 } 1018 1019 void 1020 vm_gpa_release(void *cookie) 1021 { 1022 vm_page_t m = cookie; 1023 1024 vm_page_unwire(m, PQ_ACTIVE); 1025 } 1026 1027 int 1028 vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval) 1029 { 1030 1031 if (vcpu < 0 || vcpu >= vm->maxcpus) 1032 return (EINVAL); 1033 1034 if (reg >= VM_REG_LAST) 1035 return (EINVAL); 1036 1037 return (VMGETREG(vm->cookie, vcpu, reg, retval)); 1038 } 1039 1040 int 1041 vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val) 1042 { 1043 struct vcpu *vcpu; 1044 int error; 1045 1046 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1047 return (EINVAL); 1048 1049 if (reg >= VM_REG_LAST) 1050 return (EINVAL); 1051 1052 error = VMSETREG(vm->cookie, vcpuid, reg, val); 1053 if (error || reg != VM_REG_GUEST_RIP) 1054 return (error); 1055 1056 /* Set 'nextrip' to match the value of %rip */ 1057 VCPU_CTR1(vm, vcpuid, "Setting nextrip to %#lx", val); 1058 vcpu = &vm->vcpu[vcpuid]; 1059 vcpu->nextrip = val; 1060 return (0); 1061 } 1062 1063 static bool 1064 is_descriptor_table(int reg) 1065 { 1066 1067 switch (reg) { 1068 case VM_REG_GUEST_IDTR: 1069 case VM_REG_GUEST_GDTR: 1070 return (true); 1071 default: 1072 return (false); 1073 } 1074 } 1075 1076 static bool 1077 is_segment_register(int reg) 1078 { 1079 1080 switch (reg) { 1081 case VM_REG_GUEST_ES: 1082 case VM_REG_GUEST_CS: 1083 case VM_REG_GUEST_SS: 1084 case VM_REG_GUEST_DS: 1085 case VM_REG_GUEST_FS: 1086 case VM_REG_GUEST_GS: 1087 case VM_REG_GUEST_TR: 1088 case VM_REG_GUEST_LDTR: 1089 return (true); 1090 default: 1091 return (false); 1092 } 1093 } 1094 1095 int 1096 vm_get_seg_desc(struct vm *vm, int vcpu, int reg, 1097 struct seg_desc *desc) 1098 { 1099 1100 if (vcpu < 0 || vcpu >= vm->maxcpus) 1101 return (EINVAL); 1102 1103 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1104 return (EINVAL); 1105 1106 return (VMGETDESC(vm->cookie, vcpu, reg, desc)); 1107 } 1108 1109 int 1110 vm_set_seg_desc(struct vm *vm, int vcpu, int reg, 1111 struct seg_desc *desc) 1112 { 1113 if (vcpu < 0 || vcpu >= vm->maxcpus) 1114 return (EINVAL); 1115 1116 if (!is_segment_register(reg) && !is_descriptor_table(reg)) 1117 return (EINVAL); 1118 1119 return (VMSETDESC(vm->cookie, vcpu, reg, desc)); 1120 } 1121 1122 static void 1123 restore_guest_fpustate(struct vcpu *vcpu) 1124 { 1125 1126 /* flush host state to the pcb */ 1127 fpuexit(curthread); 1128 1129 /* restore guest FPU state */ 1130 fpu_stop_emulating(); 1131 fpurestore(vcpu->guestfpu); 1132 1133 /* restore guest XCR0 if XSAVE is enabled in the host */ 1134 if (rcr4() & CR4_XSAVE) 1135 load_xcr(0, vcpu->guest_xcr0); 1136 1137 /* 1138 * The FPU is now "dirty" with the guest's state so turn on emulation 1139 * to trap any access to the FPU by the host. 1140 */ 1141 fpu_start_emulating(); 1142 } 1143 1144 static void 1145 save_guest_fpustate(struct vcpu *vcpu) 1146 { 1147 1148 if ((rcr0() & CR0_TS) == 0) 1149 panic("fpu emulation not enabled in host!"); 1150 1151 /* save guest XCR0 and restore host XCR0 */ 1152 if (rcr4() & CR4_XSAVE) { 1153 vcpu->guest_xcr0 = rxcr(0); 1154 load_xcr(0, vmm_get_host_xcr0()); 1155 } 1156 1157 /* save guest FPU state */ 1158 fpu_stop_emulating(); 1159 fpusave(vcpu->guestfpu); 1160 fpu_start_emulating(); 1161 } 1162 1163 static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle"); 1164 1165 static int 1166 vcpu_set_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate, 1167 bool from_idle) 1168 { 1169 struct vcpu *vcpu; 1170 int error; 1171 1172 vcpu = &vm->vcpu[vcpuid]; 1173 vcpu_assert_locked(vcpu); 1174 1175 /* 1176 * State transitions from the vmmdev_ioctl() must always begin from 1177 * the VCPU_IDLE state. This guarantees that there is only a single 1178 * ioctl() operating on a vcpu at any point. 1179 */ 1180 if (from_idle) { 1181 while (vcpu->state != VCPU_IDLE) { 1182 vcpu->reqidle = 1; 1183 vcpu_notify_event_locked(vcpu, false); 1184 VCPU_CTR1(vm, vcpuid, "vcpu state change from %s to " 1185 "idle requested", vcpu_state2str(vcpu->state)); 1186 msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz); 1187 } 1188 } else { 1189 KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from " 1190 "vcpu idle state")); 1191 } 1192 1193 if (vcpu->state == VCPU_RUNNING) { 1194 KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d " 1195 "mismatch for running vcpu", curcpu, vcpu->hostcpu)); 1196 } else { 1197 KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a " 1198 "vcpu that is not running", vcpu->hostcpu)); 1199 } 1200 1201 /* 1202 * The following state transitions are allowed: 1203 * IDLE -> FROZEN -> IDLE 1204 * FROZEN -> RUNNING -> FROZEN 1205 * FROZEN -> SLEEPING -> FROZEN 1206 */ 1207 switch (vcpu->state) { 1208 case VCPU_IDLE: 1209 case VCPU_RUNNING: 1210 case VCPU_SLEEPING: 1211 error = (newstate != VCPU_FROZEN); 1212 break; 1213 case VCPU_FROZEN: 1214 error = (newstate == VCPU_FROZEN); 1215 break; 1216 default: 1217 error = 1; 1218 break; 1219 } 1220 1221 if (error) 1222 return (EBUSY); 1223 1224 VCPU_CTR2(vm, vcpuid, "vcpu state changed from %s to %s", 1225 vcpu_state2str(vcpu->state), vcpu_state2str(newstate)); 1226 1227 vcpu->state = newstate; 1228 if (newstate == VCPU_RUNNING) 1229 vcpu->hostcpu = curcpu; 1230 else 1231 vcpu->hostcpu = NOCPU; 1232 1233 if (newstate == VCPU_IDLE) 1234 wakeup(&vcpu->state); 1235 1236 return (0); 1237 } 1238 1239 static void 1240 vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1241 { 1242 int error; 1243 1244 if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0) 1245 panic("Error %d setting state to %d\n", error, newstate); 1246 } 1247 1248 static void 1249 vcpu_require_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate) 1250 { 1251 int error; 1252 1253 if ((error = vcpu_set_state_locked(vm, vcpuid, newstate, false)) != 0) 1254 panic("Error %d setting state to %d", error, newstate); 1255 } 1256 1257 #define RENDEZVOUS_CTR0(vm, vcpuid, fmt) \ 1258 do { \ 1259 if (vcpuid >= 0) \ 1260 VCPU_CTR0(vm, vcpuid, fmt); \ 1261 else \ 1262 VM_CTR0(vm, fmt); \ 1263 } while (0) 1264 1265 static int 1266 vm_handle_rendezvous(struct vm *vm, int vcpuid) 1267 { 1268 struct thread *td; 1269 int error; 1270 1271 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus), 1272 ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid)); 1273 1274 error = 0; 1275 td = curthread; 1276 mtx_lock(&vm->rendezvous_mtx); 1277 while (vm->rendezvous_func != NULL) { 1278 /* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */ 1279 CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus); 1280 1281 if (vcpuid != -1 && 1282 CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) && 1283 !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) { 1284 VCPU_CTR0(vm, vcpuid, "Calling rendezvous func"); 1285 (*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg); 1286 CPU_SET(vcpuid, &vm->rendezvous_done_cpus); 1287 } 1288 if (CPU_CMP(&vm->rendezvous_req_cpus, 1289 &vm->rendezvous_done_cpus) == 0) { 1290 VCPU_CTR0(vm, vcpuid, "Rendezvous completed"); 1291 vm->rendezvous_func = NULL; 1292 wakeup(&vm->rendezvous_func); 1293 break; 1294 } 1295 RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion"); 1296 mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0, 1297 "vmrndv", hz); 1298 if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) { 1299 mtx_unlock(&vm->rendezvous_mtx); 1300 error = thread_check_susp(td, true); 1301 if (error != 0) 1302 return (error); 1303 mtx_lock(&vm->rendezvous_mtx); 1304 } 1305 } 1306 mtx_unlock(&vm->rendezvous_mtx); 1307 return (0); 1308 } 1309 1310 /* 1311 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run. 1312 */ 1313 static int 1314 vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu) 1315 { 1316 struct vcpu *vcpu; 1317 const char *wmesg; 1318 struct thread *td; 1319 int error, t, vcpu_halted, vm_halted; 1320 1321 KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted")); 1322 1323 vcpu = &vm->vcpu[vcpuid]; 1324 vcpu_halted = 0; 1325 vm_halted = 0; 1326 error = 0; 1327 td = curthread; 1328 1329 vcpu_lock(vcpu); 1330 while (1) { 1331 /* 1332 * Do a final check for pending NMI or interrupts before 1333 * really putting this thread to sleep. Also check for 1334 * software events that would cause this vcpu to wakeup. 1335 * 1336 * These interrupts/events could have happened after the 1337 * vcpu returned from VMRUN() and before it acquired the 1338 * vcpu lock above. 1339 */ 1340 if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle) 1341 break; 1342 if (vm_nmi_pending(vm, vcpuid)) 1343 break; 1344 if (!intr_disabled) { 1345 if (vm_extint_pending(vm, vcpuid) || 1346 vlapic_pending_intr(vcpu->vlapic, NULL)) { 1347 break; 1348 } 1349 } 1350 1351 /* Don't go to sleep if the vcpu thread needs to yield */ 1352 if (vcpu_should_yield(vm, vcpuid)) 1353 break; 1354 1355 if (vcpu_debugged(vm, vcpuid)) 1356 break; 1357 1358 /* 1359 * Some Linux guests implement "halt" by having all vcpus 1360 * execute HLT with interrupts disabled. 'halted_cpus' keeps 1361 * track of the vcpus that have entered this state. When all 1362 * vcpus enter the halted state the virtual machine is halted. 1363 */ 1364 if (intr_disabled) { 1365 wmesg = "vmhalt"; 1366 VCPU_CTR0(vm, vcpuid, "Halted"); 1367 if (!vcpu_halted && halt_detection_enabled) { 1368 vcpu_halted = 1; 1369 CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus); 1370 } 1371 if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) { 1372 vm_halted = 1; 1373 break; 1374 } 1375 } else { 1376 wmesg = "vmidle"; 1377 } 1378 1379 t = ticks; 1380 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); 1381 /* 1382 * XXX msleep_spin() cannot be interrupted by signals so 1383 * wake up periodically to check pending signals. 1384 */ 1385 msleep_spin(vcpu, &vcpu->mtx, wmesg, hz); 1386 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); 1387 vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t); 1388 if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) { 1389 vcpu_unlock(vcpu); 1390 error = thread_check_susp(td, false); 1391 if (error != 0) 1392 return (error); 1393 vcpu_lock(vcpu); 1394 } 1395 } 1396 1397 if (vcpu_halted) 1398 CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus); 1399 1400 vcpu_unlock(vcpu); 1401 1402 if (vm_halted) 1403 vm_suspend(vm, VM_SUSPEND_HALT); 1404 1405 return (0); 1406 } 1407 1408 static int 1409 vm_handle_paging(struct vm *vm, int vcpuid, bool *retu) 1410 { 1411 int rv, ftype; 1412 struct vm_map *map; 1413 struct vcpu *vcpu; 1414 struct vm_exit *vme; 1415 1416 vcpu = &vm->vcpu[vcpuid]; 1417 vme = &vcpu->exitinfo; 1418 1419 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1420 __func__, vme->inst_length)); 1421 1422 ftype = vme->u.paging.fault_type; 1423 KASSERT(ftype == VM_PROT_READ || 1424 ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE, 1425 ("vm_handle_paging: invalid fault_type %d", ftype)); 1426 1427 if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) { 1428 rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace), 1429 vme->u.paging.gpa, ftype); 1430 if (rv == 0) { 1431 VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx", 1432 ftype == VM_PROT_READ ? "accessed" : "dirty", 1433 vme->u.paging.gpa); 1434 goto done; 1435 } 1436 } 1437 1438 map = &vm->vmspace->vm_map; 1439 rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL); 1440 1441 VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, " 1442 "ftype = %d", rv, vme->u.paging.gpa, ftype); 1443 1444 if (rv != KERN_SUCCESS) 1445 return (EFAULT); 1446 done: 1447 return (0); 1448 } 1449 1450 static int 1451 vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu) 1452 { 1453 struct vie *vie; 1454 struct vcpu *vcpu; 1455 struct vm_exit *vme; 1456 uint64_t gla, gpa, cs_base; 1457 struct vm_guest_paging *paging; 1458 mem_region_read_t mread; 1459 mem_region_write_t mwrite; 1460 enum vm_cpu_mode cpu_mode; 1461 int cs_d, error, fault; 1462 1463 vcpu = &vm->vcpu[vcpuid]; 1464 vme = &vcpu->exitinfo; 1465 1466 KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d", 1467 __func__, vme->inst_length)); 1468 1469 gla = vme->u.inst_emul.gla; 1470 gpa = vme->u.inst_emul.gpa; 1471 cs_base = vme->u.inst_emul.cs_base; 1472 cs_d = vme->u.inst_emul.cs_d; 1473 vie = &vme->u.inst_emul.vie; 1474 paging = &vme->u.inst_emul.paging; 1475 cpu_mode = paging->cpu_mode; 1476 1477 VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa); 1478 1479 /* Fetch, decode and emulate the faulting instruction */ 1480 if (vie->num_valid == 0) { 1481 error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip + 1482 cs_base, VIE_INST_SIZE, vie, &fault); 1483 } else { 1484 /* 1485 * The instruction bytes have already been copied into 'vie' 1486 */ 1487 error = fault = 0; 1488 } 1489 if (error || fault) 1490 return (error); 1491 1492 if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) { 1493 VCPU_CTR1(vm, vcpuid, "Error decoding instruction at %#lx", 1494 vme->rip + cs_base); 1495 *retu = true; /* dump instruction bytes in userspace */ 1496 return (0); 1497 } 1498 1499 /* 1500 * Update 'nextrip' based on the length of the emulated instruction. 1501 */ 1502 vme->inst_length = vie->num_processed; 1503 vcpu->nextrip += vie->num_processed; 1504 VCPU_CTR1(vm, vcpuid, "nextrip updated to %#lx after instruction " 1505 "decoding", vcpu->nextrip); 1506 1507 /* return to userland unless this is an in-kernel emulated device */ 1508 if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) { 1509 mread = lapic_mmio_read; 1510 mwrite = lapic_mmio_write; 1511 } else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) { 1512 mread = vioapic_mmio_read; 1513 mwrite = vioapic_mmio_write; 1514 } else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) { 1515 mread = vhpet_mmio_read; 1516 mwrite = vhpet_mmio_write; 1517 } else { 1518 *retu = true; 1519 return (0); 1520 } 1521 1522 error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging, 1523 mread, mwrite, retu); 1524 1525 return (error); 1526 } 1527 1528 static int 1529 vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu) 1530 { 1531 int error, i; 1532 struct vcpu *vcpu; 1533 struct thread *td; 1534 1535 error = 0; 1536 vcpu = &vm->vcpu[vcpuid]; 1537 td = curthread; 1538 1539 CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus); 1540 1541 /* 1542 * Wait until all 'active_cpus' have suspended themselves. 1543 * 1544 * Since a VM may be suspended at any time including when one or 1545 * more vcpus are doing a rendezvous we need to call the rendezvous 1546 * handler while we are waiting to prevent a deadlock. 1547 */ 1548 vcpu_lock(vcpu); 1549 while (error == 0) { 1550 if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) { 1551 VCPU_CTR0(vm, vcpuid, "All vcpus suspended"); 1552 break; 1553 } 1554 1555 if (vm->rendezvous_func == NULL) { 1556 VCPU_CTR0(vm, vcpuid, "Sleeping during suspend"); 1557 vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING); 1558 msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz); 1559 vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN); 1560 if ((td->td_flags & TDF_NEEDSUSPCHK) != 0) { 1561 vcpu_unlock(vcpu); 1562 error = thread_check_susp(td, false); 1563 vcpu_lock(vcpu); 1564 } 1565 } else { 1566 VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend"); 1567 vcpu_unlock(vcpu); 1568 error = vm_handle_rendezvous(vm, vcpuid); 1569 vcpu_lock(vcpu); 1570 } 1571 } 1572 vcpu_unlock(vcpu); 1573 1574 /* 1575 * Wakeup the other sleeping vcpus and return to userspace. 1576 */ 1577 for (i = 0; i < vm->maxcpus; i++) { 1578 if (CPU_ISSET(i, &vm->suspended_cpus)) { 1579 vcpu_notify_event(vm, i, false); 1580 } 1581 } 1582 1583 *retu = true; 1584 return (error); 1585 } 1586 1587 static int 1588 vm_handle_reqidle(struct vm *vm, int vcpuid, bool *retu) 1589 { 1590 struct vcpu *vcpu = &vm->vcpu[vcpuid]; 1591 1592 vcpu_lock(vcpu); 1593 KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle)); 1594 vcpu->reqidle = 0; 1595 vcpu_unlock(vcpu); 1596 *retu = true; 1597 return (0); 1598 } 1599 1600 int 1601 vm_suspend(struct vm *vm, enum vm_suspend_how how) 1602 { 1603 int i; 1604 1605 if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST) 1606 return (EINVAL); 1607 1608 if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) { 1609 VM_CTR2(vm, "virtual machine already suspended %d/%d", 1610 vm->suspend, how); 1611 return (EALREADY); 1612 } 1613 1614 VM_CTR1(vm, "virtual machine successfully suspended %d", how); 1615 1616 /* 1617 * Notify all active vcpus that they are now suspended. 1618 */ 1619 for (i = 0; i < vm->maxcpus; i++) { 1620 if (CPU_ISSET(i, &vm->active_cpus)) 1621 vcpu_notify_event(vm, i, false); 1622 } 1623 1624 return (0); 1625 } 1626 1627 void 1628 vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip) 1629 { 1630 struct vm_exit *vmexit; 1631 1632 KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST, 1633 ("vm_exit_suspended: invalid suspend type %d", vm->suspend)); 1634 1635 vmexit = vm_exitinfo(vm, vcpuid); 1636 vmexit->rip = rip; 1637 vmexit->inst_length = 0; 1638 vmexit->exitcode = VM_EXITCODE_SUSPENDED; 1639 vmexit->u.suspended.how = vm->suspend; 1640 } 1641 1642 void 1643 vm_exit_debug(struct vm *vm, int vcpuid, uint64_t rip) 1644 { 1645 struct vm_exit *vmexit; 1646 1647 vmexit = vm_exitinfo(vm, vcpuid); 1648 vmexit->rip = rip; 1649 vmexit->inst_length = 0; 1650 vmexit->exitcode = VM_EXITCODE_DEBUG; 1651 } 1652 1653 void 1654 vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip) 1655 { 1656 struct vm_exit *vmexit; 1657 1658 KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress")); 1659 1660 vmexit = vm_exitinfo(vm, vcpuid); 1661 vmexit->rip = rip; 1662 vmexit->inst_length = 0; 1663 vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; 1664 vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1); 1665 } 1666 1667 void 1668 vm_exit_reqidle(struct vm *vm, int vcpuid, uint64_t rip) 1669 { 1670 struct vm_exit *vmexit; 1671 1672 vmexit = vm_exitinfo(vm, vcpuid); 1673 vmexit->rip = rip; 1674 vmexit->inst_length = 0; 1675 vmexit->exitcode = VM_EXITCODE_REQIDLE; 1676 vmm_stat_incr(vm, vcpuid, VMEXIT_REQIDLE, 1); 1677 } 1678 1679 void 1680 vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip) 1681 { 1682 struct vm_exit *vmexit; 1683 1684 vmexit = vm_exitinfo(vm, vcpuid); 1685 vmexit->rip = rip; 1686 vmexit->inst_length = 0; 1687 vmexit->exitcode = VM_EXITCODE_BOGUS; 1688 vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1); 1689 } 1690 1691 int 1692 vm_run(struct vm *vm, struct vm_run *vmrun) 1693 { 1694 struct vm_eventinfo evinfo; 1695 int error, vcpuid; 1696 struct vcpu *vcpu; 1697 struct pcb *pcb; 1698 uint64_t tscval; 1699 struct vm_exit *vme; 1700 bool retu, intr_disabled; 1701 pmap_t pmap; 1702 1703 vcpuid = vmrun->cpuid; 1704 1705 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1706 return (EINVAL); 1707 1708 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 1709 return (EINVAL); 1710 1711 if (CPU_ISSET(vcpuid, &vm->suspended_cpus)) 1712 return (EINVAL); 1713 1714 pmap = vmspace_pmap(vm->vmspace); 1715 vcpu = &vm->vcpu[vcpuid]; 1716 vme = &vcpu->exitinfo; 1717 evinfo.rptr = &vm->rendezvous_func; 1718 evinfo.sptr = &vm->suspend; 1719 evinfo.iptr = &vcpu->reqidle; 1720 restart: 1721 critical_enter(); 1722 1723 KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active), 1724 ("vm_run: absurd pm_active")); 1725 1726 tscval = rdtsc(); 1727 1728 pcb = PCPU_GET(curpcb); 1729 set_pcb_flags(pcb, PCB_FULL_IRET); 1730 1731 restore_guest_fpustate(vcpu); 1732 1733 vcpu_require_state(vm, vcpuid, VCPU_RUNNING); 1734 error = VMRUN(vm->cookie, vcpuid, vcpu->nextrip, pmap, &evinfo); 1735 vcpu_require_state(vm, vcpuid, VCPU_FROZEN); 1736 1737 save_guest_fpustate(vcpu); 1738 1739 vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval); 1740 1741 critical_exit(); 1742 1743 if (error == 0) { 1744 retu = false; 1745 vcpu->nextrip = vme->rip + vme->inst_length; 1746 switch (vme->exitcode) { 1747 case VM_EXITCODE_REQIDLE: 1748 error = vm_handle_reqidle(vm, vcpuid, &retu); 1749 break; 1750 case VM_EXITCODE_SUSPENDED: 1751 error = vm_handle_suspend(vm, vcpuid, &retu); 1752 break; 1753 case VM_EXITCODE_IOAPIC_EOI: 1754 vioapic_process_eoi(vm, vcpuid, 1755 vme->u.ioapic_eoi.vector); 1756 break; 1757 case VM_EXITCODE_RENDEZVOUS: 1758 error = vm_handle_rendezvous(vm, vcpuid); 1759 break; 1760 case VM_EXITCODE_HLT: 1761 intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0); 1762 error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu); 1763 break; 1764 case VM_EXITCODE_PAGING: 1765 error = vm_handle_paging(vm, vcpuid, &retu); 1766 break; 1767 case VM_EXITCODE_INST_EMUL: 1768 error = vm_handle_inst_emul(vm, vcpuid, &retu); 1769 break; 1770 case VM_EXITCODE_INOUT: 1771 case VM_EXITCODE_INOUT_STR: 1772 error = vm_handle_inout(vm, vcpuid, vme, &retu); 1773 break; 1774 case VM_EXITCODE_MONITOR: 1775 case VM_EXITCODE_MWAIT: 1776 case VM_EXITCODE_VMINSN: 1777 vm_inject_ud(vm, vcpuid); 1778 break; 1779 default: 1780 retu = true; /* handled in userland */ 1781 break; 1782 } 1783 } 1784 1785 if (error == 0 && retu == false) 1786 goto restart; 1787 1788 VCPU_CTR2(vm, vcpuid, "retu %d/%d", error, vme->exitcode); 1789 1790 /* copy the exit information */ 1791 bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit)); 1792 return (error); 1793 } 1794 1795 int 1796 vm_restart_instruction(void *arg, int vcpuid) 1797 { 1798 struct vm *vm; 1799 struct vcpu *vcpu; 1800 enum vcpu_state state; 1801 uint64_t rip; 1802 int error; 1803 1804 vm = arg; 1805 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1806 return (EINVAL); 1807 1808 vcpu = &vm->vcpu[vcpuid]; 1809 state = vcpu_get_state(vm, vcpuid, NULL); 1810 if (state == VCPU_RUNNING) { 1811 /* 1812 * When a vcpu is "running" the next instruction is determined 1813 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'. 1814 * Thus setting 'inst_length' to zero will cause the current 1815 * instruction to be restarted. 1816 */ 1817 vcpu->exitinfo.inst_length = 0; 1818 VCPU_CTR1(vm, vcpuid, "restarting instruction at %#lx by " 1819 "setting inst_length to zero", vcpu->exitinfo.rip); 1820 } else if (state == VCPU_FROZEN) { 1821 /* 1822 * When a vcpu is "frozen" it is outside the critical section 1823 * around VMRUN() and 'nextrip' points to the next instruction. 1824 * Thus instruction restart is achieved by setting 'nextrip' 1825 * to the vcpu's %rip. 1826 */ 1827 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip); 1828 KASSERT(!error, ("%s: error %d getting rip", __func__, error)); 1829 VCPU_CTR2(vm, vcpuid, "restarting instruction by updating " 1830 "nextrip from %#lx to %#lx", vcpu->nextrip, rip); 1831 vcpu->nextrip = rip; 1832 } else { 1833 panic("%s: invalid state %d", __func__, state); 1834 } 1835 return (0); 1836 } 1837 1838 int 1839 vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info) 1840 { 1841 struct vcpu *vcpu; 1842 int type, vector; 1843 1844 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 1845 return (EINVAL); 1846 1847 vcpu = &vm->vcpu[vcpuid]; 1848 1849 if (info & VM_INTINFO_VALID) { 1850 type = info & VM_INTINFO_TYPE; 1851 vector = info & 0xff; 1852 if (type == VM_INTINFO_NMI && vector != IDT_NMI) 1853 return (EINVAL); 1854 if (type == VM_INTINFO_HWEXCEPTION && vector >= 32) 1855 return (EINVAL); 1856 if (info & VM_INTINFO_RSVD) 1857 return (EINVAL); 1858 } else { 1859 info = 0; 1860 } 1861 VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info); 1862 vcpu->exitintinfo = info; 1863 return (0); 1864 } 1865 1866 enum exc_class { 1867 EXC_BENIGN, 1868 EXC_CONTRIBUTORY, 1869 EXC_PAGEFAULT 1870 }; 1871 1872 #define IDT_VE 20 /* Virtualization Exception (Intel specific) */ 1873 1874 static enum exc_class 1875 exception_class(uint64_t info) 1876 { 1877 int type, vector; 1878 1879 KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info)); 1880 type = info & VM_INTINFO_TYPE; 1881 vector = info & 0xff; 1882 1883 /* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */ 1884 switch (type) { 1885 case VM_INTINFO_HWINTR: 1886 case VM_INTINFO_SWINTR: 1887 case VM_INTINFO_NMI: 1888 return (EXC_BENIGN); 1889 default: 1890 /* 1891 * Hardware exception. 1892 * 1893 * SVM and VT-x use identical type values to represent NMI, 1894 * hardware interrupt and software interrupt. 1895 * 1896 * SVM uses type '3' for all exceptions. VT-x uses type '3' 1897 * for exceptions except #BP and #OF. #BP and #OF use a type 1898 * value of '5' or '6'. Therefore we don't check for explicit 1899 * values of 'type' to classify 'intinfo' into a hardware 1900 * exception. 1901 */ 1902 break; 1903 } 1904 1905 switch (vector) { 1906 case IDT_PF: 1907 case IDT_VE: 1908 return (EXC_PAGEFAULT); 1909 case IDT_DE: 1910 case IDT_TS: 1911 case IDT_NP: 1912 case IDT_SS: 1913 case IDT_GP: 1914 return (EXC_CONTRIBUTORY); 1915 default: 1916 return (EXC_BENIGN); 1917 } 1918 } 1919 1920 static int 1921 nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2, 1922 uint64_t *retinfo) 1923 { 1924 enum exc_class exc1, exc2; 1925 int type1, vector1; 1926 1927 KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1)); 1928 KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2)); 1929 1930 /* 1931 * If an exception occurs while attempting to call the double-fault 1932 * handler the processor enters shutdown mode (aka triple fault). 1933 */ 1934 type1 = info1 & VM_INTINFO_TYPE; 1935 vector1 = info1 & 0xff; 1936 if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) { 1937 VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)", 1938 info1, info2); 1939 vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT); 1940 *retinfo = 0; 1941 return (0); 1942 } 1943 1944 /* 1945 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3 1946 */ 1947 exc1 = exception_class(info1); 1948 exc2 = exception_class(info2); 1949 if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) || 1950 (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) { 1951 /* Convert nested fault into a double fault. */ 1952 *retinfo = IDT_DF; 1953 *retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1954 *retinfo |= VM_INTINFO_DEL_ERRCODE; 1955 } else { 1956 /* Handle exceptions serially */ 1957 *retinfo = info2; 1958 } 1959 return (1); 1960 } 1961 1962 static uint64_t 1963 vcpu_exception_intinfo(struct vcpu *vcpu) 1964 { 1965 uint64_t info = 0; 1966 1967 if (vcpu->exception_pending) { 1968 info = vcpu->exc_vector & 0xff; 1969 info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION; 1970 if (vcpu->exc_errcode_valid) { 1971 info |= VM_INTINFO_DEL_ERRCODE; 1972 info |= (uint64_t)vcpu->exc_errcode << 32; 1973 } 1974 } 1975 return (info); 1976 } 1977 1978 int 1979 vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo) 1980 { 1981 struct vcpu *vcpu; 1982 uint64_t info1, info2; 1983 int valid; 1984 1985 KASSERT(vcpuid >= 0 && 1986 vcpuid < vm->maxcpus, ("invalid vcpu %d", vcpuid)); 1987 1988 vcpu = &vm->vcpu[vcpuid]; 1989 1990 info1 = vcpu->exitintinfo; 1991 vcpu->exitintinfo = 0; 1992 1993 info2 = 0; 1994 if (vcpu->exception_pending) { 1995 info2 = vcpu_exception_intinfo(vcpu); 1996 vcpu->exception_pending = 0; 1997 VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx", 1998 vcpu->exc_vector, info2); 1999 } 2000 2001 if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) { 2002 valid = nested_fault(vm, vcpuid, info1, info2, retinfo); 2003 } else if (info1 & VM_INTINFO_VALID) { 2004 *retinfo = info1; 2005 valid = 1; 2006 } else if (info2 & VM_INTINFO_VALID) { 2007 *retinfo = info2; 2008 valid = 1; 2009 } else { 2010 valid = 0; 2011 } 2012 2013 if (valid) { 2014 VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), " 2015 "retinfo(%#lx)", __func__, info1, info2, *retinfo); 2016 } 2017 2018 return (valid); 2019 } 2020 2021 int 2022 vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2) 2023 { 2024 struct vcpu *vcpu; 2025 2026 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2027 return (EINVAL); 2028 2029 vcpu = &vm->vcpu[vcpuid]; 2030 *info1 = vcpu->exitintinfo; 2031 *info2 = vcpu_exception_intinfo(vcpu); 2032 return (0); 2033 } 2034 2035 int 2036 vm_inject_exception(struct vm *vm, int vcpuid, int vector, int errcode_valid, 2037 uint32_t errcode, int restart_instruction) 2038 { 2039 struct vcpu *vcpu; 2040 uint64_t regval; 2041 int error; 2042 2043 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2044 return (EINVAL); 2045 2046 if (vector < 0 || vector >= 32) 2047 return (EINVAL); 2048 2049 /* 2050 * A double fault exception should never be injected directly into 2051 * the guest. It is a derived exception that results from specific 2052 * combinations of nested faults. 2053 */ 2054 if (vector == IDT_DF) 2055 return (EINVAL); 2056 2057 vcpu = &vm->vcpu[vcpuid]; 2058 2059 if (vcpu->exception_pending) { 2060 VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to " 2061 "pending exception %d", vector, vcpu->exc_vector); 2062 return (EBUSY); 2063 } 2064 2065 if (errcode_valid) { 2066 /* 2067 * Exceptions don't deliver an error code in real mode. 2068 */ 2069 error = vm_get_register(vm, vcpuid, VM_REG_GUEST_CR0, ®val); 2070 KASSERT(!error, ("%s: error %d getting CR0", __func__, error)); 2071 if (!(regval & CR0_PE)) 2072 errcode_valid = 0; 2073 } 2074 2075 /* 2076 * From section 26.6.1 "Interruptibility State" in Intel SDM: 2077 * 2078 * Event blocking by "STI" or "MOV SS" is cleared after guest executes 2079 * one instruction or incurs an exception. 2080 */ 2081 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0); 2082 KASSERT(error == 0, ("%s: error %d clearing interrupt shadow", 2083 __func__, error)); 2084 2085 if (restart_instruction) 2086 vm_restart_instruction(vm, vcpuid); 2087 2088 vcpu->exception_pending = 1; 2089 vcpu->exc_vector = vector; 2090 vcpu->exc_errcode = errcode; 2091 vcpu->exc_errcode_valid = errcode_valid; 2092 VCPU_CTR1(vm, vcpuid, "Exception %d pending", vector); 2093 return (0); 2094 } 2095 2096 void 2097 vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid, 2098 int errcode) 2099 { 2100 struct vm *vm; 2101 int error, restart_instruction; 2102 2103 vm = vmarg; 2104 restart_instruction = 1; 2105 2106 error = vm_inject_exception(vm, vcpuid, vector, errcode_valid, 2107 errcode, restart_instruction); 2108 KASSERT(error == 0, ("vm_inject_exception error %d", error)); 2109 } 2110 2111 void 2112 vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2) 2113 { 2114 struct vm *vm; 2115 int error; 2116 2117 vm = vmarg; 2118 VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx", 2119 error_code, cr2); 2120 2121 error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2); 2122 KASSERT(error == 0, ("vm_set_register(cr2) error %d", error)); 2123 2124 vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code); 2125 } 2126 2127 static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu"); 2128 2129 int 2130 vm_inject_nmi(struct vm *vm, int vcpuid) 2131 { 2132 struct vcpu *vcpu; 2133 2134 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2135 return (EINVAL); 2136 2137 vcpu = &vm->vcpu[vcpuid]; 2138 2139 vcpu->nmi_pending = 1; 2140 vcpu_notify_event(vm, vcpuid, false); 2141 return (0); 2142 } 2143 2144 int 2145 vm_nmi_pending(struct vm *vm, int vcpuid) 2146 { 2147 struct vcpu *vcpu; 2148 2149 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2150 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 2151 2152 vcpu = &vm->vcpu[vcpuid]; 2153 2154 return (vcpu->nmi_pending); 2155 } 2156 2157 void 2158 vm_nmi_clear(struct vm *vm, int vcpuid) 2159 { 2160 struct vcpu *vcpu; 2161 2162 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2163 panic("vm_nmi_pending: invalid vcpuid %d", vcpuid); 2164 2165 vcpu = &vm->vcpu[vcpuid]; 2166 2167 if (vcpu->nmi_pending == 0) 2168 panic("vm_nmi_clear: inconsistent nmi_pending state"); 2169 2170 vcpu->nmi_pending = 0; 2171 vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1); 2172 } 2173 2174 static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu"); 2175 2176 int 2177 vm_inject_extint(struct vm *vm, int vcpuid) 2178 { 2179 struct vcpu *vcpu; 2180 2181 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2182 return (EINVAL); 2183 2184 vcpu = &vm->vcpu[vcpuid]; 2185 2186 vcpu->extint_pending = 1; 2187 vcpu_notify_event(vm, vcpuid, false); 2188 return (0); 2189 } 2190 2191 int 2192 vm_extint_pending(struct vm *vm, int vcpuid) 2193 { 2194 struct vcpu *vcpu; 2195 2196 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2197 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 2198 2199 vcpu = &vm->vcpu[vcpuid]; 2200 2201 return (vcpu->extint_pending); 2202 } 2203 2204 void 2205 vm_extint_clear(struct vm *vm, int vcpuid) 2206 { 2207 struct vcpu *vcpu; 2208 2209 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2210 panic("vm_extint_pending: invalid vcpuid %d", vcpuid); 2211 2212 vcpu = &vm->vcpu[vcpuid]; 2213 2214 if (vcpu->extint_pending == 0) 2215 panic("vm_extint_clear: inconsistent extint_pending state"); 2216 2217 vcpu->extint_pending = 0; 2218 vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1); 2219 } 2220 2221 int 2222 vm_get_capability(struct vm *vm, int vcpu, int type, int *retval) 2223 { 2224 if (vcpu < 0 || vcpu >= vm->maxcpus) 2225 return (EINVAL); 2226 2227 if (type < 0 || type >= VM_CAP_MAX) 2228 return (EINVAL); 2229 2230 return (VMGETCAP(vm->cookie, vcpu, type, retval)); 2231 } 2232 2233 int 2234 vm_set_capability(struct vm *vm, int vcpu, int type, int val) 2235 { 2236 if (vcpu < 0 || vcpu >= vm->maxcpus) 2237 return (EINVAL); 2238 2239 if (type < 0 || type >= VM_CAP_MAX) 2240 return (EINVAL); 2241 2242 return (VMSETCAP(vm->cookie, vcpu, type, val)); 2243 } 2244 2245 struct vlapic * 2246 vm_lapic(struct vm *vm, int cpu) 2247 { 2248 return (vm->vcpu[cpu].vlapic); 2249 } 2250 2251 struct vioapic * 2252 vm_ioapic(struct vm *vm) 2253 { 2254 2255 return (vm->vioapic); 2256 } 2257 2258 struct vhpet * 2259 vm_hpet(struct vm *vm) 2260 { 2261 2262 return (vm->vhpet); 2263 } 2264 2265 bool 2266 vmm_is_pptdev(int bus, int slot, int func) 2267 { 2268 int b, f, i, n, s; 2269 char *val, *cp, *cp2; 2270 bool found; 2271 2272 /* 2273 * XXX 2274 * The length of an environment variable is limited to 128 bytes which 2275 * puts an upper limit on the number of passthru devices that may be 2276 * specified using a single environment variable. 2277 * 2278 * Work around this by scanning multiple environment variable 2279 * names instead of a single one - yuck! 2280 */ 2281 const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL }; 2282 2283 /* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */ 2284 found = false; 2285 for (i = 0; names[i] != NULL && !found; i++) { 2286 cp = val = kern_getenv(names[i]); 2287 while (cp != NULL && *cp != '\0') { 2288 if ((cp2 = strchr(cp, ' ')) != NULL) 2289 *cp2 = '\0'; 2290 2291 n = sscanf(cp, "%d/%d/%d", &b, &s, &f); 2292 if (n == 3 && bus == b && slot == s && func == f) { 2293 found = true; 2294 break; 2295 } 2296 2297 if (cp2 != NULL) 2298 *cp2++ = ' '; 2299 2300 cp = cp2; 2301 } 2302 freeenv(val); 2303 } 2304 return (found); 2305 } 2306 2307 void * 2308 vm_iommu_domain(struct vm *vm) 2309 { 2310 2311 return (vm->iommu); 2312 } 2313 2314 int 2315 vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate, 2316 bool from_idle) 2317 { 2318 int error; 2319 struct vcpu *vcpu; 2320 2321 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2322 panic("vm_set_run_state: invalid vcpuid %d", vcpuid); 2323 2324 vcpu = &vm->vcpu[vcpuid]; 2325 2326 vcpu_lock(vcpu); 2327 error = vcpu_set_state_locked(vm, vcpuid, newstate, from_idle); 2328 vcpu_unlock(vcpu); 2329 2330 return (error); 2331 } 2332 2333 enum vcpu_state 2334 vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu) 2335 { 2336 struct vcpu *vcpu; 2337 enum vcpu_state state; 2338 2339 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2340 panic("vm_get_run_state: invalid vcpuid %d", vcpuid); 2341 2342 vcpu = &vm->vcpu[vcpuid]; 2343 2344 vcpu_lock(vcpu); 2345 state = vcpu->state; 2346 if (hostcpu != NULL) 2347 *hostcpu = vcpu->hostcpu; 2348 vcpu_unlock(vcpu); 2349 2350 return (state); 2351 } 2352 2353 int 2354 vm_activate_cpu(struct vm *vm, int vcpuid) 2355 { 2356 2357 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2358 return (EINVAL); 2359 2360 if (CPU_ISSET(vcpuid, &vm->active_cpus)) 2361 return (EBUSY); 2362 2363 VCPU_CTR0(vm, vcpuid, "activated"); 2364 CPU_SET_ATOMIC(vcpuid, &vm->active_cpus); 2365 return (0); 2366 } 2367 2368 int 2369 vm_suspend_cpu(struct vm *vm, int vcpuid) 2370 { 2371 int i; 2372 2373 if (vcpuid < -1 || vcpuid >= vm->maxcpus) 2374 return (EINVAL); 2375 2376 if (vcpuid == -1) { 2377 vm->debug_cpus = vm->active_cpus; 2378 for (i = 0; i < vm->maxcpus; i++) { 2379 if (CPU_ISSET(i, &vm->active_cpus)) 2380 vcpu_notify_event(vm, i, false); 2381 } 2382 } else { 2383 if (!CPU_ISSET(vcpuid, &vm->active_cpus)) 2384 return (EINVAL); 2385 2386 CPU_SET_ATOMIC(vcpuid, &vm->debug_cpus); 2387 vcpu_notify_event(vm, vcpuid, false); 2388 } 2389 return (0); 2390 } 2391 2392 int 2393 vm_resume_cpu(struct vm *vm, int vcpuid) 2394 { 2395 2396 if (vcpuid < -1 || vcpuid >= vm->maxcpus) 2397 return (EINVAL); 2398 2399 if (vcpuid == -1) { 2400 CPU_ZERO(&vm->debug_cpus); 2401 } else { 2402 if (!CPU_ISSET(vcpuid, &vm->debug_cpus)) 2403 return (EINVAL); 2404 2405 CPU_CLR_ATOMIC(vcpuid, &vm->debug_cpus); 2406 } 2407 return (0); 2408 } 2409 2410 int 2411 vcpu_debugged(struct vm *vm, int vcpuid) 2412 { 2413 2414 return (CPU_ISSET(vcpuid, &vm->debug_cpus)); 2415 } 2416 2417 cpuset_t 2418 vm_active_cpus(struct vm *vm) 2419 { 2420 2421 return (vm->active_cpus); 2422 } 2423 2424 cpuset_t 2425 vm_debug_cpus(struct vm *vm) 2426 { 2427 2428 return (vm->debug_cpus); 2429 } 2430 2431 cpuset_t 2432 vm_suspended_cpus(struct vm *vm) 2433 { 2434 2435 return (vm->suspended_cpus); 2436 } 2437 2438 void * 2439 vcpu_stats(struct vm *vm, int vcpuid) 2440 { 2441 2442 return (vm->vcpu[vcpuid].stats); 2443 } 2444 2445 int 2446 vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state) 2447 { 2448 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2449 return (EINVAL); 2450 2451 *state = vm->vcpu[vcpuid].x2apic_state; 2452 2453 return (0); 2454 } 2455 2456 int 2457 vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state) 2458 { 2459 if (vcpuid < 0 || vcpuid >= vm->maxcpus) 2460 return (EINVAL); 2461 2462 if (state >= X2APIC_STATE_LAST) 2463 return (EINVAL); 2464 2465 vm->vcpu[vcpuid].x2apic_state = state; 2466 2467 vlapic_set_x2apic_state(vm, vcpuid, state); 2468 2469 return (0); 2470 } 2471 2472 /* 2473 * This function is called to ensure that a vcpu "sees" a pending event 2474 * as soon as possible: 2475 * - If the vcpu thread is sleeping then it is woken up. 2476 * - If the vcpu is running on a different host_cpu then an IPI will be directed 2477 * to the host_cpu to cause the vcpu to trap into the hypervisor. 2478 */ 2479 static void 2480 vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr) 2481 { 2482 int hostcpu; 2483 2484 hostcpu = vcpu->hostcpu; 2485 if (vcpu->state == VCPU_RUNNING) { 2486 KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu")); 2487 if (hostcpu != curcpu) { 2488 if (lapic_intr) { 2489 vlapic_post_intr(vcpu->vlapic, hostcpu, 2490 vmm_ipinum); 2491 } else { 2492 ipi_cpu(hostcpu, vmm_ipinum); 2493 } 2494 } else { 2495 /* 2496 * If the 'vcpu' is running on 'curcpu' then it must 2497 * be sending a notification to itself (e.g. SELF_IPI). 2498 * The pending event will be picked up when the vcpu 2499 * transitions back to guest context. 2500 */ 2501 } 2502 } else { 2503 KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent " 2504 "with hostcpu %d", vcpu->state, hostcpu)); 2505 if (vcpu->state == VCPU_SLEEPING) 2506 wakeup_one(vcpu); 2507 } 2508 } 2509 2510 void 2511 vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr) 2512 { 2513 struct vcpu *vcpu = &vm->vcpu[vcpuid]; 2514 2515 vcpu_lock(vcpu); 2516 vcpu_notify_event_locked(vcpu, lapic_intr); 2517 vcpu_unlock(vcpu); 2518 } 2519 2520 struct vmspace * 2521 vm_get_vmspace(struct vm *vm) 2522 { 2523 2524 return (vm->vmspace); 2525 } 2526 2527 int 2528 vm_apicid2vcpuid(struct vm *vm, int apicid) 2529 { 2530 /* 2531 * XXX apic id is assumed to be numerically identical to vcpu id 2532 */ 2533 return (apicid); 2534 } 2535 2536 int 2537 vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest, 2538 vm_rendezvous_func_t func, void *arg) 2539 { 2540 int error, i; 2541 2542 /* 2543 * Enforce that this function is called without any locks 2544 */ 2545 WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous"); 2546 KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < vm->maxcpus), 2547 ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid)); 2548 2549 restart: 2550 mtx_lock(&vm->rendezvous_mtx); 2551 if (vm->rendezvous_func != NULL) { 2552 /* 2553 * If a rendezvous is already in progress then we need to 2554 * call the rendezvous handler in case this 'vcpuid' is one 2555 * of the targets of the rendezvous. 2556 */ 2557 RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress"); 2558 mtx_unlock(&vm->rendezvous_mtx); 2559 error = vm_handle_rendezvous(vm, vcpuid); 2560 if (error != 0) 2561 return (error); 2562 goto restart; 2563 } 2564 KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous " 2565 "rendezvous is still in progress")); 2566 2567 RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous"); 2568 vm->rendezvous_req_cpus = dest; 2569 CPU_ZERO(&vm->rendezvous_done_cpus); 2570 vm->rendezvous_arg = arg; 2571 vm->rendezvous_func = func; 2572 mtx_unlock(&vm->rendezvous_mtx); 2573 2574 /* 2575 * Wake up any sleeping vcpus and trigger a VM-exit in any running 2576 * vcpus so they handle the rendezvous as soon as possible. 2577 */ 2578 for (i = 0; i < vm->maxcpus; i++) { 2579 if (CPU_ISSET(i, &dest)) 2580 vcpu_notify_event(vm, i, false); 2581 } 2582 2583 return (vm_handle_rendezvous(vm, vcpuid)); 2584 } 2585 2586 struct vatpic * 2587 vm_atpic(struct vm *vm) 2588 { 2589 return (vm->vatpic); 2590 } 2591 2592 struct vatpit * 2593 vm_atpit(struct vm *vm) 2594 { 2595 return (vm->vatpit); 2596 } 2597 2598 struct vpmtmr * 2599 vm_pmtmr(struct vm *vm) 2600 { 2601 2602 return (vm->vpmtmr); 2603 } 2604 2605 struct vrtc * 2606 vm_rtc(struct vm *vm) 2607 { 2608 2609 return (vm->vrtc); 2610 } 2611 2612 enum vm_reg_name 2613 vm_segment_name(int seg) 2614 { 2615 static enum vm_reg_name seg_names[] = { 2616 VM_REG_GUEST_ES, 2617 VM_REG_GUEST_CS, 2618 VM_REG_GUEST_SS, 2619 VM_REG_GUEST_DS, 2620 VM_REG_GUEST_FS, 2621 VM_REG_GUEST_GS 2622 }; 2623 2624 KASSERT(seg >= 0 && seg < nitems(seg_names), 2625 ("%s: invalid segment encoding %d", __func__, seg)); 2626 return (seg_names[seg]); 2627 } 2628 2629 void 2630 vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, 2631 int num_copyinfo) 2632 { 2633 int idx; 2634 2635 for (idx = 0; idx < num_copyinfo; idx++) { 2636 if (copyinfo[idx].cookie != NULL) 2637 vm_gpa_release(copyinfo[idx].cookie); 2638 } 2639 bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo)); 2640 } 2641 2642 int 2643 vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging, 2644 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 2645 int num_copyinfo, int *fault) 2646 { 2647 int error, idx, nused; 2648 size_t n, off, remaining; 2649 void *hva, *cookie; 2650 uint64_t gpa; 2651 2652 bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo); 2653 2654 nused = 0; 2655 remaining = len; 2656 while (remaining > 0) { 2657 KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo")); 2658 error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa, fault); 2659 if (error || *fault) 2660 return (error); 2661 off = gpa & PAGE_MASK; 2662 n = min(remaining, PAGE_SIZE - off); 2663 copyinfo[nused].gpa = gpa; 2664 copyinfo[nused].len = n; 2665 remaining -= n; 2666 gla += n; 2667 nused++; 2668 } 2669 2670 for (idx = 0; idx < nused; idx++) { 2671 hva = vm_gpa_hold(vm, vcpuid, copyinfo[idx].gpa, 2672 copyinfo[idx].len, prot, &cookie); 2673 if (hva == NULL) 2674 break; 2675 copyinfo[idx].hva = hva; 2676 copyinfo[idx].cookie = cookie; 2677 } 2678 2679 if (idx != nused) { 2680 vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo); 2681 return (EFAULT); 2682 } else { 2683 *fault = 0; 2684 return (0); 2685 } 2686 } 2687 2688 void 2689 vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr, 2690 size_t len) 2691 { 2692 char *dst; 2693 int idx; 2694 2695 dst = kaddr; 2696 idx = 0; 2697 while (len > 0) { 2698 bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len); 2699 len -= copyinfo[idx].len; 2700 dst += copyinfo[idx].len; 2701 idx++; 2702 } 2703 } 2704 2705 void 2706 vm_copyout(struct vm *vm, int vcpuid, const void *kaddr, 2707 struct vm_copyinfo *copyinfo, size_t len) 2708 { 2709 const char *src; 2710 int idx; 2711 2712 src = kaddr; 2713 idx = 0; 2714 while (len > 0) { 2715 bcopy(src, copyinfo[idx].hva, copyinfo[idx].len); 2716 len -= copyinfo[idx].len; 2717 src += copyinfo[idx].len; 2718 idx++; 2719 } 2720 } 2721 2722 /* 2723 * Return the amount of in-use and wired memory for the VM. Since 2724 * these are global stats, only return the values with for vCPU 0 2725 */ 2726 VMM_STAT_DECLARE(VMM_MEM_RESIDENT); 2727 VMM_STAT_DECLARE(VMM_MEM_WIRED); 2728 2729 static void 2730 vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2731 { 2732 2733 if (vcpu == 0) { 2734 vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT, 2735 PAGE_SIZE * vmspace_resident_count(vm->vmspace)); 2736 } 2737 } 2738 2739 static void 2740 vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat) 2741 { 2742 2743 if (vcpu == 0) { 2744 vmm_stat_set(vm, vcpu, VMM_MEM_WIRED, 2745 PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace))); 2746 } 2747 } 2748 2749 VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt); 2750 VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt); 2751 2752 #ifdef BHYVE_SNAPSHOT 2753 static int 2754 vm_snapshot_vcpus(struct vm *vm, struct vm_snapshot_meta *meta) 2755 { 2756 int ret; 2757 int i; 2758 struct vcpu *vcpu; 2759 2760 for (i = 0; i < VM_MAXCPU; i++) { 2761 vcpu = &vm->vcpu[i]; 2762 2763 SNAPSHOT_VAR_OR_LEAVE(vcpu->x2apic_state, meta, ret, done); 2764 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitintinfo, meta, ret, done); 2765 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_vector, meta, ret, done); 2766 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode_valid, meta, ret, done); 2767 SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode, meta, ret, done); 2768 SNAPSHOT_VAR_OR_LEAVE(vcpu->guest_xcr0, meta, ret, done); 2769 SNAPSHOT_VAR_OR_LEAVE(vcpu->exitinfo, meta, ret, done); 2770 SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, ret, done); 2771 /* XXX we're cheating here, since the value of tsc_offset as 2772 * saved here is actually the value of the guest's TSC value. 2773 * 2774 * It will be turned turned back into an actual offset when the 2775 * TSC restore function is called 2776 */ 2777 SNAPSHOT_VAR_OR_LEAVE(vcpu->tsc_offset, meta, ret, done); 2778 } 2779 2780 done: 2781 return (ret); 2782 } 2783 2784 static int 2785 vm_snapshot_vm(struct vm *vm, struct vm_snapshot_meta *meta) 2786 { 2787 int ret; 2788 int i; 2789 uint64_t now; 2790 2791 ret = 0; 2792 now = rdtsc(); 2793 2794 if (meta->op == VM_SNAPSHOT_SAVE) { 2795 /* XXX make tsc_offset take the value TSC proper as seen by the 2796 * guest 2797 */ 2798 for (i = 0; i < VM_MAXCPU; i++) 2799 vm->vcpu[i].tsc_offset += now; 2800 } 2801 2802 ret = vm_snapshot_vcpus(vm, meta); 2803 if (ret != 0) { 2804 printf("%s: failed to copy vm data to user buffer", __func__); 2805 goto done; 2806 } 2807 2808 if (meta->op == VM_SNAPSHOT_SAVE) { 2809 /* XXX turn tsc_offset back into an offset; actual value is only 2810 * required for restore; using it otherwise would be wrong 2811 */ 2812 for (i = 0; i < VM_MAXCPU; i++) 2813 vm->vcpu[i].tsc_offset -= now; 2814 } 2815 2816 done: 2817 return (ret); 2818 } 2819 2820 static int 2821 vm_snapshot_vmcx(struct vm *vm, struct vm_snapshot_meta *meta) 2822 { 2823 int i, error; 2824 2825 error = 0; 2826 2827 for (i = 0; i < VM_MAXCPU; i++) { 2828 error = VM_SNAPSHOT_VMCX(vm->cookie, meta, i); 2829 if (error != 0) { 2830 printf("%s: failed to snapshot vmcs/vmcb data for " 2831 "vCPU: %d; error: %d\n", __func__, i, error); 2832 goto done; 2833 } 2834 } 2835 2836 done: 2837 return (error); 2838 } 2839 2840 /* 2841 * Save kernel-side structures to user-space for snapshotting. 2842 */ 2843 int 2844 vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta) 2845 { 2846 int ret = 0; 2847 2848 switch (meta->dev_req) { 2849 case STRUCT_VMX: 2850 ret = VM_SNAPSHOT_VMI(vm->cookie, meta); 2851 break; 2852 case STRUCT_VMCX: 2853 ret = vm_snapshot_vmcx(vm, meta); 2854 break; 2855 case STRUCT_VM: 2856 ret = vm_snapshot_vm(vm, meta); 2857 break; 2858 case STRUCT_VIOAPIC: 2859 ret = vioapic_snapshot(vm_ioapic(vm), meta); 2860 break; 2861 case STRUCT_VLAPIC: 2862 ret = vlapic_snapshot(vm, meta); 2863 break; 2864 case STRUCT_VHPET: 2865 ret = vhpet_snapshot(vm_hpet(vm), meta); 2866 break; 2867 case STRUCT_VATPIC: 2868 ret = vatpic_snapshot(vm_atpic(vm), meta); 2869 break; 2870 case STRUCT_VATPIT: 2871 ret = vatpit_snapshot(vm_atpit(vm), meta); 2872 break; 2873 case STRUCT_VPMTMR: 2874 ret = vpmtmr_snapshot(vm_pmtmr(vm), meta); 2875 break; 2876 case STRUCT_VRTC: 2877 ret = vrtc_snapshot(vm_rtc(vm), meta); 2878 break; 2879 default: 2880 printf("%s: failed to find the requested type %#x\n", 2881 __func__, meta->dev_req); 2882 ret = (EINVAL); 2883 } 2884 return (ret); 2885 } 2886 2887 int 2888 vm_set_tsc_offset(struct vm *vm, int vcpuid, uint64_t offset) 2889 { 2890 struct vcpu *vcpu; 2891 2892 if (vcpuid < 0 || vcpuid >= VM_MAXCPU) 2893 return (EINVAL); 2894 2895 vcpu = &vm->vcpu[vcpuid]; 2896 vcpu->tsc_offset = offset; 2897 2898 return (0); 2899 } 2900 2901 int 2902 vm_restore_time(struct vm *vm) 2903 { 2904 int error, i; 2905 uint64_t now; 2906 struct vcpu *vcpu; 2907 2908 now = rdtsc(); 2909 2910 error = vhpet_restore_time(vm_hpet(vm)); 2911 if (error) 2912 return (error); 2913 2914 for (i = 0; i < nitems(vm->vcpu); i++) { 2915 vcpu = &vm->vcpu[i]; 2916 2917 error = VM_RESTORE_TSC(vm->cookie, i, vcpu->tsc_offset - now); 2918 if (error) 2919 return (error); 2920 } 2921 2922 return (0); 2923 } 2924 #endif 2925