xref: /freebsd/sys/amd64/vmm/io/vrtc.c (revision ec0e626bafb335b30c499d06066997f54b10c092)
1 /*-
2  * Copyright (c) 2014, Neel Natu (neel@freebsd.org)
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/queue.h>
33 #include <sys/cpuset.h>
34 #include <sys/kernel.h>
35 #include <sys/malloc.h>
36 #include <sys/lock.h>
37 #include <sys/mutex.h>
38 #include <sys/clock.h>
39 #include <sys/sysctl.h>
40 
41 #include <machine/vmm.h>
42 
43 #include <isa/rtc.h>
44 
45 #include "vmm_ktr.h"
46 #include "vatpic.h"
47 #include "vioapic.h"
48 #include "vrtc.h"
49 
50 /* Register layout of the RTC */
51 struct rtcdev {
52 	uint8_t	sec;
53 	uint8_t	alarm_sec;
54 	uint8_t	min;
55 	uint8_t	alarm_min;
56 	uint8_t	hour;
57 	uint8_t	alarm_hour;
58 	uint8_t	day_of_week;
59 	uint8_t	day_of_month;
60 	uint8_t	month;
61 	uint8_t	year;
62 	uint8_t	reg_a;
63 	uint8_t	reg_b;
64 	uint8_t	reg_c;
65 	uint8_t	reg_d;
66 	uint8_t	nvram[128 - 14];
67 } __packed;
68 CTASSERT(sizeof(struct rtcdev) == 128);
69 
70 struct vrtc {
71 	struct vm	*vm;
72 	struct mtx	mtx;
73 	struct callout	callout;
74 	u_int		addr;		/* RTC register to read or write */
75 	sbintime_t	base_uptime;
76 	time_t		base_rtctime;
77 	struct rtcdev	rtcdev;
78 };
79 
80 #define	VRTC_LOCK(vrtc)		mtx_lock(&((vrtc)->mtx))
81 #define	VRTC_UNLOCK(vrtc)	mtx_unlock(&((vrtc)->mtx))
82 #define	VRTC_LOCKED(vrtc)	mtx_owned(&((vrtc)->mtx))
83 
84 /*
85  * RTC time is considered "broken" if:
86  * - RTC updates are halted by the guest
87  * - RTC date/time fields have invalid values
88  */
89 #define	VRTC_BROKEN_TIME	((time_t)-1)
90 
91 #define	RTC_IRQ			8
92 #define	RTCSB_BIN		0x04
93 #define	RTCSB_ALL_INTRS		(RTCSB_UINTR | RTCSB_AINTR | RTCSB_PINTR)
94 #define	rtc_halted(vrtc)	((vrtc->rtcdev.reg_b & RTCSB_HALT) != 0)
95 #define	aintr_enabled(vrtc)	(((vrtc)->rtcdev.reg_b & RTCSB_AINTR) != 0)
96 #define	pintr_enabled(vrtc)	(((vrtc)->rtcdev.reg_b & RTCSB_PINTR) != 0)
97 #define	uintr_enabled(vrtc)	(((vrtc)->rtcdev.reg_b & RTCSB_UINTR) != 0)
98 
99 static void vrtc_callout_handler(void *arg);
100 static void vrtc_set_reg_c(struct vrtc *vrtc, uint8_t newval);
101 
102 static MALLOC_DEFINE(M_VRTC, "vrtc", "bhyve virtual rtc");
103 
104 SYSCTL_DECL(_hw_vmm);
105 SYSCTL_NODE(_hw_vmm, OID_AUTO, vrtc, CTLFLAG_RW, NULL, NULL);
106 
107 static int rtc_flag_broken_time = 1;
108 SYSCTL_INT(_hw_vmm_vrtc, OID_AUTO, flag_broken_time, CTLFLAG_RDTUN,
109     &rtc_flag_broken_time, 0, "Stop guest when invalid RTC time is detected");
110 
111 static __inline bool
112 divider_enabled(int reg_a)
113 {
114 	/*
115 	 * The RTC is counting only when dividers are not held in reset.
116 	 */
117 	return ((reg_a & 0x70) == 0x20);
118 }
119 
120 static __inline bool
121 update_enabled(struct vrtc *vrtc)
122 {
123 	/*
124 	 * RTC date/time can be updated only if:
125 	 * - divider is not held in reset
126 	 * - guest has not disabled updates
127 	 * - the date/time fields have valid contents
128 	 */
129 	if (!divider_enabled(vrtc->rtcdev.reg_a))
130 		return (false);
131 
132 	if (rtc_halted(vrtc))
133 		return (false);
134 
135 	if (vrtc->base_rtctime == VRTC_BROKEN_TIME)
136 		return (false);
137 
138 	return (true);
139 }
140 
141 static time_t
142 vrtc_curtime(struct vrtc *vrtc)
143 {
144 	sbintime_t now, delta;
145 	time_t t;
146 
147 	KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__));
148 
149 	t = vrtc->base_rtctime;
150 	if (update_enabled(vrtc)) {
151 		now = sbinuptime();
152 		delta = now - vrtc->base_uptime;
153 		KASSERT(delta >= 0, ("vrtc_curtime: uptime went backwards: "
154 		    "%#lx to %#lx", vrtc->base_uptime, now));
155 		t += delta / SBT_1S;
156 	}
157 	return (t);
158 }
159 
160 static __inline uint8_t
161 rtcset(struct rtcdev *rtc, int val)
162 {
163 
164 	KASSERT(val >= 0 && val < 100, ("%s: invalid bin2bcd index %d",
165 	    __func__, val));
166 
167 	return ((rtc->reg_b & RTCSB_BIN) ? val : bin2bcd_data[val]);
168 }
169 
170 static void
171 secs_to_rtc(time_t rtctime, struct vrtc *vrtc, int force_update)
172 {
173 	struct clocktime ct;
174 	struct timespec ts;
175 	struct rtcdev *rtc;
176 	int hour;
177 
178 	KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__));
179 
180 	if (rtctime < 0) {
181 		KASSERT(rtctime == VRTC_BROKEN_TIME,
182 		    ("%s: invalid vrtc time %#lx", __func__, rtctime));
183 		return;
184 	}
185 
186 	/*
187 	 * If the RTC is halted then the guest has "ownership" of the
188 	 * date/time fields. Don't update the RTC date/time fields in
189 	 * this case (unless forced).
190 	 */
191 	if (rtc_halted(vrtc) && !force_update)
192 		return;
193 
194 	ts.tv_sec = rtctime;
195 	ts.tv_nsec = 0;
196 	clock_ts_to_ct(&ts, &ct);
197 
198 	KASSERT(ct.sec >= 0 && ct.sec <= 59, ("invalid clocktime sec %d",
199 	    ct.sec));
200 	KASSERT(ct.min >= 0 && ct.min <= 59, ("invalid clocktime min %d",
201 	    ct.min));
202 	KASSERT(ct.hour >= 0 && ct.hour <= 23, ("invalid clocktime hour %d",
203 	    ct.hour));
204 	KASSERT(ct.dow >= 0 && ct.dow <= 6, ("invalid clocktime wday %d",
205 	    ct.dow));
206 	KASSERT(ct.day >= 1 && ct.day <= 31, ("invalid clocktime mday %d",
207 	    ct.day));
208 	KASSERT(ct.mon >= 1 && ct.mon <= 12, ("invalid clocktime month %d",
209 	    ct.mon));
210 	KASSERT(ct.year >= POSIX_BASE_YEAR, ("invalid clocktime year %d",
211 	    ct.year));
212 
213 	rtc = &vrtc->rtcdev;
214 	rtc->sec = rtcset(rtc, ct.sec);
215 	rtc->min = rtcset(rtc, ct.min);
216 
217 	hour = ct.hour;
218 	if ((rtc->reg_b & RTCSB_24HR) == 0)
219 		hour = (hour % 12) + 1;	    /* convert to a 12-hour format */
220 
221 	rtc->hour = rtcset(rtc, hour);
222 
223 	if ((rtc->reg_b & RTCSB_24HR) == 0 && ct.hour >= 12)
224 		rtc->hour |= 0x80;	    /* set MSB to indicate PM */
225 
226 	rtc->day_of_week = rtcset(rtc, ct.dow + 1);
227 	rtc->day_of_month = rtcset(rtc, ct.day);
228 	rtc->month = rtcset(rtc, ct.mon);
229 	rtc->year = rtcset(rtc, ct.year % 100);
230 }
231 
232 static int
233 rtcget(struct rtcdev *rtc, int val, int *retval)
234 {
235 	uint8_t upper, lower;
236 
237 	if (rtc->reg_b & RTCSB_BIN) {
238 		*retval = val;
239 		return (0);
240 	}
241 
242 	lower = val & 0xf;
243 	upper = (val >> 4) & 0xf;
244 
245 	if (lower > 9 || upper > 9)
246 		return (-1);
247 
248 	*retval = upper * 10 + lower;
249 	return (0);
250 }
251 
252 static time_t
253 rtc_to_secs(struct vrtc *vrtc)
254 {
255 	struct clocktime ct;
256 	struct timespec ts;
257 	struct rtcdev *rtc;
258 	struct vm *vm;
259 	int error, hour, pm, year;
260 
261 	KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__));
262 
263 	vm = vrtc->vm;
264 	rtc = &vrtc->rtcdev;
265 
266 	bzero(&ct, sizeof(struct clocktime));
267 
268 	error = rtcget(rtc, rtc->sec, &ct.sec);
269 	if (error || ct.sec < 0 || ct.sec > 59) {
270 		VM_CTR2(vm, "Invalid RTC sec %#x/%d", rtc->sec, ct.sec);
271 		goto fail;
272 	}
273 
274 	error = rtcget(rtc, rtc->min, &ct.min);
275 	if (error || ct.min < 0 || ct.min > 59) {
276 		VM_CTR2(vm, "Invalid RTC min %#x/%d", rtc->min, ct.min);
277 		goto fail;
278 	}
279 
280 	pm = 0;
281 	hour = rtc->hour;
282 	if ((rtc->reg_b & RTCSB_24HR) == 0) {
283 		if (hour & 0x80) {
284 			hour &= ~0x80;
285 			pm = 1;
286 		}
287 	}
288 	error = rtcget(rtc, hour, &ct.hour);
289 	if ((rtc->reg_b & RTCSB_24HR) == 0) {
290 		ct.hour -= 1;
291 		if (pm)
292 			ct.hour += 12;
293 	}
294 
295 	if (error || ct.hour < 0 || ct.hour > 23) {
296 		VM_CTR2(vm, "Invalid RTC hour %#x/%d", rtc->hour, ct.hour);
297 		goto fail;
298 	}
299 
300 	/*
301 	 * Ignore 'rtc->dow' because some guests like Linux don't bother
302 	 * setting it at all while others like OpenBSD/i386 set it incorrectly.
303 	 *
304 	 * clock_ct_to_ts() does not depend on 'ct.dow' anyways so ignore it.
305 	 */
306 	ct.dow = -1;
307 
308 	error = rtcget(rtc, rtc->day_of_month, &ct.day);
309 	if (error || ct.day < 1 || ct.day > 31) {
310 		VM_CTR2(vm, "Invalid RTC mday %#x/%d", rtc->day_of_month,
311 		    ct.day);
312 		goto fail;
313 	}
314 
315 	error = rtcget(rtc, rtc->month, &ct.mon);
316 	if (error || ct.mon < 1 || ct.mon > 12) {
317 		VM_CTR2(vm, "Invalid RTC month %#x/%d", rtc->month, ct.mon);
318 		goto fail;
319 	}
320 
321 	error = rtcget(rtc, rtc->year, &year);
322 	if (error || year < 0 || year > 99) {
323 		VM_CTR2(vm, "Invalid RTC year %#x/%d", rtc->year, year);
324 		goto fail;
325 	}
326 	if (year >= 70)
327 		ct.year = 1900 + year;
328 	else
329 		ct.year = 2000 + year;
330 
331 	error = clock_ct_to_ts(&ct, &ts);
332 	if (error || ts.tv_sec < 0) {
333 		VM_CTR3(vm, "Invalid RTC clocktime.date %04d-%02d-%02d",
334 		    ct.year, ct.mon, ct.day);
335 		VM_CTR3(vm, "Invalid RTC clocktime.time %02d:%02d:%02d",
336 		    ct.hour, ct.min, ct.sec);
337 		goto fail;
338 	}
339 	return (ts.tv_sec);		/* success */
340 fail:
341 	return (VRTC_BROKEN_TIME);	/* failure */
342 }
343 
344 static int
345 vrtc_time_update(struct vrtc *vrtc, time_t newtime)
346 {
347 	struct rtcdev *rtc;
348 	time_t oldtime;
349 	uint8_t alarm_sec, alarm_min, alarm_hour;
350 
351 	KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__));
352 
353 	rtc = &vrtc->rtcdev;
354 	alarm_sec = rtc->alarm_sec;
355 	alarm_min = rtc->alarm_min;
356 	alarm_hour = rtc->alarm_hour;
357 
358 	oldtime = vrtc->base_rtctime;
359 	VM_CTR2(vrtc->vm, "Updating RTC time from %#lx to %#lx",
360 	    oldtime, newtime);
361 
362 	if (newtime == oldtime)
363 		return (0);
364 
365 	/*
366 	 * If 'newtime' indicates that RTC updates are disabled then just
367 	 * record that and return. There is no need to do alarm interrupt
368 	 * processing or update 'base_uptime' in this case.
369 	 */
370 	if (newtime == VRTC_BROKEN_TIME) {
371 		vrtc->base_rtctime = VRTC_BROKEN_TIME;
372 		return (0);
373 	}
374 
375 	/*
376 	 * Return an error if RTC updates are halted by the guest.
377 	 */
378 	if (rtc_halted(vrtc)) {
379 		VM_CTR0(vrtc->vm, "RTC update halted by guest");
380 		return (EBUSY);
381 	}
382 
383 	do {
384 		/*
385 		 * If the alarm interrupt is enabled and 'oldtime' is valid
386 		 * then visit all the seconds between 'oldtime' and 'newtime'
387 		 * to check for the alarm condition.
388 		 *
389 		 * Otherwise move the RTC time forward directly to 'newtime'.
390 		 */
391 		if (aintr_enabled(vrtc) && oldtime != VRTC_BROKEN_TIME)
392 			vrtc->base_rtctime++;
393 		else
394 			vrtc->base_rtctime = newtime;
395 
396 		if (aintr_enabled(vrtc)) {
397 			/*
398 			 * Update the RTC date/time fields before checking
399 			 * if the alarm conditions are satisfied.
400 			 */
401 			secs_to_rtc(vrtc->base_rtctime, vrtc, 0);
402 
403 			if ((alarm_sec >= 0xC0 || alarm_sec == rtc->sec) &&
404 			    (alarm_min >= 0xC0 || alarm_min == rtc->min) &&
405 			    (alarm_hour >= 0xC0 || alarm_hour == rtc->hour)) {
406 				vrtc_set_reg_c(vrtc, rtc->reg_c | RTCIR_ALARM);
407 			}
408 		}
409 	} while (vrtc->base_rtctime != newtime);
410 
411 	if (uintr_enabled(vrtc))
412 		vrtc_set_reg_c(vrtc, rtc->reg_c | RTCIR_UPDATE);
413 
414 	vrtc->base_uptime = sbinuptime();
415 
416 	return (0);
417 }
418 
419 static sbintime_t
420 vrtc_freq(struct vrtc *vrtc)
421 {
422 	int ratesel;
423 
424 	static sbintime_t pf[16] = {
425 		0,
426 		SBT_1S / 256,
427 		SBT_1S / 128,
428 		SBT_1S / 8192,
429 		SBT_1S / 4096,
430 		SBT_1S / 2048,
431 		SBT_1S / 1024,
432 		SBT_1S / 512,
433 		SBT_1S / 256,
434 		SBT_1S / 128,
435 		SBT_1S / 64,
436 		SBT_1S / 32,
437 		SBT_1S / 16,
438 		SBT_1S / 8,
439 		SBT_1S / 4,
440 		SBT_1S / 2,
441 	};
442 
443 	KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__));
444 
445 	/*
446 	 * If both periodic and alarm interrupts are enabled then use the
447 	 * periodic frequency to drive the callout. The minimum periodic
448 	 * frequency (2 Hz) is higher than the alarm frequency (1 Hz) so
449 	 * piggyback the alarm on top of it. The same argument applies to
450 	 * the update interrupt.
451 	 */
452 	if (pintr_enabled(vrtc) && divider_enabled(vrtc->rtcdev.reg_a)) {
453 		ratesel = vrtc->rtcdev.reg_a & 0xf;
454 		return (pf[ratesel]);
455 	} else if (aintr_enabled(vrtc) && update_enabled(vrtc)) {
456 		return (SBT_1S);
457 	} else if (uintr_enabled(vrtc) && update_enabled(vrtc)) {
458 		return (SBT_1S);
459 	} else {
460 		return (0);
461 	}
462 }
463 
464 static void
465 vrtc_callout_reset(struct vrtc *vrtc, sbintime_t freqsbt)
466 {
467 
468 	KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__));
469 
470 	if (freqsbt == 0) {
471 		if (callout_active(&vrtc->callout)) {
472 			VM_CTR0(vrtc->vm, "RTC callout stopped");
473 			callout_stop(&vrtc->callout);
474 		}
475 		return;
476 	}
477 	VM_CTR1(vrtc->vm, "RTC callout frequency %d hz", SBT_1S / freqsbt);
478 	callout_reset_sbt(&vrtc->callout, freqsbt, 0, vrtc_callout_handler,
479 	    vrtc, 0);
480 }
481 
482 static void
483 vrtc_callout_handler(void *arg)
484 {
485 	struct vrtc *vrtc = arg;
486 	sbintime_t freqsbt;
487 	time_t rtctime;
488 	int error;
489 
490 	VM_CTR0(vrtc->vm, "vrtc callout fired");
491 
492 	VRTC_LOCK(vrtc);
493 	if (callout_pending(&vrtc->callout))	/* callout was reset */
494 		goto done;
495 
496 	if (!callout_active(&vrtc->callout))	/* callout was stopped */
497 		goto done;
498 
499 	callout_deactivate(&vrtc->callout);
500 
501 	KASSERT((vrtc->rtcdev.reg_b & RTCSB_ALL_INTRS) != 0,
502 	    ("gratuitous vrtc callout"));
503 
504 	if (pintr_enabled(vrtc))
505 		vrtc_set_reg_c(vrtc, vrtc->rtcdev.reg_c | RTCIR_PERIOD);
506 
507 	if (aintr_enabled(vrtc) || uintr_enabled(vrtc)) {
508 		rtctime = vrtc_curtime(vrtc);
509 		error = vrtc_time_update(vrtc, rtctime);
510 		KASSERT(error == 0, ("%s: vrtc_time_update error %d",
511 		    __func__, error));
512 	}
513 
514 	freqsbt = vrtc_freq(vrtc);
515 	KASSERT(freqsbt != 0, ("%s: vrtc frequency cannot be zero", __func__));
516 	vrtc_callout_reset(vrtc, freqsbt);
517 done:
518 	VRTC_UNLOCK(vrtc);
519 }
520 
521 static __inline void
522 vrtc_callout_check(struct vrtc *vrtc, sbintime_t freq)
523 {
524 	int active;
525 
526 	active = callout_active(&vrtc->callout) ? 1 : 0;
527 	KASSERT((freq == 0 && !active) || (freq != 0 && active),
528 	    ("vrtc callout %s with frequency %#lx",
529 	    active ? "active" : "inactive", freq));
530 }
531 
532 static void
533 vrtc_set_reg_c(struct vrtc *vrtc, uint8_t newval)
534 {
535 	struct rtcdev *rtc;
536 	int oldirqf, newirqf;
537 	uint8_t oldval, changed;
538 
539 	KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__));
540 
541 	rtc = &vrtc->rtcdev;
542 	newval &= RTCIR_ALARM | RTCIR_PERIOD | RTCIR_UPDATE;
543 
544 	oldirqf = rtc->reg_c & RTCIR_INT;
545 	if ((aintr_enabled(vrtc) && (newval & RTCIR_ALARM) != 0) ||
546 	    (pintr_enabled(vrtc) && (newval & RTCIR_PERIOD) != 0) ||
547 	    (uintr_enabled(vrtc) && (newval & RTCIR_UPDATE) != 0)) {
548 		newirqf = RTCIR_INT;
549 	} else {
550 		newirqf = 0;
551 	}
552 
553 	oldval = rtc->reg_c;
554 	rtc->reg_c = newirqf | newval;
555 	changed = oldval ^ rtc->reg_c;
556 	if (changed) {
557 		VM_CTR2(vrtc->vm, "RTC reg_c changed from %#x to %#x",
558 		    oldval, rtc->reg_c);
559 	}
560 
561 	if (!oldirqf && newirqf) {
562 		VM_CTR1(vrtc->vm, "RTC irq %d asserted", RTC_IRQ);
563 		vatpic_pulse_irq(vrtc->vm, RTC_IRQ);
564 		vioapic_pulse_irq(vrtc->vm, RTC_IRQ);
565 	} else if (oldirqf && !newirqf) {
566 		VM_CTR1(vrtc->vm, "RTC irq %d deasserted", RTC_IRQ);
567 	}
568 }
569 
570 static int
571 vrtc_set_reg_b(struct vrtc *vrtc, uint8_t newval)
572 {
573 	struct rtcdev *rtc;
574 	sbintime_t oldfreq, newfreq;
575 	time_t curtime, rtctime;
576 	int error;
577 	uint8_t oldval, changed;
578 
579 	KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__));
580 
581 	rtc = &vrtc->rtcdev;
582 	oldval = rtc->reg_b;
583 	oldfreq = vrtc_freq(vrtc);
584 
585 	rtc->reg_b = newval;
586 	changed = oldval ^ newval;
587 	if (changed) {
588 		VM_CTR2(vrtc->vm, "RTC reg_b changed from %#x to %#x",
589 		    oldval, newval);
590 	}
591 
592 	if (changed & RTCSB_HALT) {
593 		if ((newval & RTCSB_HALT) == 0) {
594 			rtctime = rtc_to_secs(vrtc);
595 			if (rtctime == VRTC_BROKEN_TIME) {
596 				/*
597 				 * Stop updating the RTC if the date/time
598 				 * programmed by the guest is not correct.
599 				 */
600 				VM_CTR0(vrtc->vm, "Invalid RTC date/time "
601 				    "programming detected");
602 
603 				if (rtc_flag_broken_time)
604 					return (-1);
605 			}
606 		} else {
607 			curtime = vrtc_curtime(vrtc);
608 			KASSERT(curtime == vrtc->base_rtctime, ("%s: mismatch "
609 			    "between vrtc basetime (%#lx) and curtime (%#lx)",
610 			    __func__, vrtc->base_rtctime, curtime));
611 
612 			/*
613 			 * Force a refresh of the RTC date/time fields so
614 			 * they reflect the time right before the guest set
615 			 * the HALT bit.
616 			 */
617 			secs_to_rtc(curtime, vrtc, 1);
618 
619 			/*
620 			 * Updates are halted so mark 'base_rtctime' to denote
621 			 * that the RTC date/time is in flux.
622 			 */
623 			rtctime = VRTC_BROKEN_TIME;
624 			rtc->reg_b &= ~RTCSB_UINTR;
625 		}
626 		error = vrtc_time_update(vrtc, rtctime);
627 		KASSERT(error == 0, ("vrtc_time_update error %d", error));
628 	}
629 
630 	/*
631 	 * Side effect of changes to the interrupt enable bits.
632 	 */
633 	if (changed & RTCSB_ALL_INTRS)
634 		vrtc_set_reg_c(vrtc, vrtc->rtcdev.reg_c);
635 
636 	/*
637 	 * Change the callout frequency if it has changed.
638 	 */
639 	newfreq = vrtc_freq(vrtc);
640 	if (newfreq != oldfreq)
641 		vrtc_callout_reset(vrtc, newfreq);
642 	else
643 		vrtc_callout_check(vrtc, newfreq);
644 
645 	/*
646 	 * The side effect of bits that control the RTC date/time format
647 	 * is handled lazily when those fields are actually read.
648 	 */
649 	return (0);
650 }
651 
652 static void
653 vrtc_set_reg_a(struct vrtc *vrtc, uint8_t newval)
654 {
655 	sbintime_t oldfreq, newfreq;
656 	uint8_t oldval, changed;
657 
658 	KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__));
659 
660 	newval &= ~RTCSA_TUP;
661 	oldval = vrtc->rtcdev.reg_a;
662 	oldfreq = vrtc_freq(vrtc);
663 
664 	if (divider_enabled(oldval) && !divider_enabled(newval)) {
665 		VM_CTR2(vrtc->vm, "RTC divider held in reset at %#lx/%#lx",
666 		    vrtc->base_rtctime, vrtc->base_uptime);
667 	} else if (!divider_enabled(oldval) && divider_enabled(newval)) {
668 		/*
669 		 * If the dividers are coming out of reset then update
670 		 * 'base_uptime' before this happens. This is done to
671 		 * maintain the illusion that the RTC date/time was frozen
672 		 * while the dividers were disabled.
673 		 */
674 		vrtc->base_uptime = sbinuptime();
675 		VM_CTR2(vrtc->vm, "RTC divider out of reset at %#lx/%#lx",
676 		    vrtc->base_rtctime, vrtc->base_uptime);
677 	} else {
678 		/* NOTHING */
679 	}
680 
681 	vrtc->rtcdev.reg_a = newval;
682 	changed = oldval ^ newval;
683 	if (changed) {
684 		VM_CTR2(vrtc->vm, "RTC reg_a changed from %#x to %#x",
685 		    oldval, newval);
686 	}
687 
688 	/*
689 	 * Side effect of changes to rate select and divider enable bits.
690 	 */
691 	newfreq = vrtc_freq(vrtc);
692 	if (newfreq != oldfreq)
693 		vrtc_callout_reset(vrtc, newfreq);
694 	else
695 		vrtc_callout_check(vrtc, newfreq);
696 }
697 
698 int
699 vrtc_set_time(struct vm *vm, time_t secs)
700 {
701 	struct vrtc *vrtc;
702 	int error;
703 
704 	vrtc = vm_rtc(vm);
705 	VRTC_LOCK(vrtc);
706 	error = vrtc_time_update(vrtc, secs);
707 	VRTC_UNLOCK(vrtc);
708 
709 	if (error) {
710 		VM_CTR2(vrtc->vm, "Error %d setting RTC time to %#lx", error,
711 		    secs);
712 	} else {
713 		VM_CTR1(vrtc->vm, "RTC time set to %#lx", secs);
714 	}
715 
716 	return (error);
717 }
718 
719 time_t
720 vrtc_get_time(struct vm *vm)
721 {
722 	struct vrtc *vrtc;
723 	time_t t;
724 
725 	vrtc = vm_rtc(vm);
726 	VRTC_LOCK(vrtc);
727 	t = vrtc_curtime(vrtc);
728 	VRTC_UNLOCK(vrtc);
729 
730 	return (t);
731 }
732 
733 int
734 vrtc_nvram_write(struct vm *vm, int offset, uint8_t value)
735 {
736 	struct vrtc *vrtc;
737 	uint8_t *ptr;
738 
739 	vrtc = vm_rtc(vm);
740 
741 	/*
742 	 * Don't allow writes to RTC control registers or the date/time fields.
743 	 */
744 	if (offset < offsetof(struct rtcdev, nvram[0]) ||
745 	    offset >= sizeof(struct rtcdev)) {
746 		VM_CTR1(vrtc->vm, "RTC nvram write to invalid offset %d",
747 		    offset);
748 		return (EINVAL);
749 	}
750 
751 	VRTC_LOCK(vrtc);
752 	ptr = (uint8_t *)(&vrtc->rtcdev);
753 	ptr[offset] = value;
754 	VM_CTR2(vrtc->vm, "RTC nvram write %#x to offset %#x", value, offset);
755 	VRTC_UNLOCK(vrtc);
756 
757 	return (0);
758 }
759 
760 int
761 vrtc_nvram_read(struct vm *vm, int offset, uint8_t *retval)
762 {
763 	struct vrtc *vrtc;
764 	time_t curtime;
765 	uint8_t *ptr;
766 
767 	/*
768 	 * Allow all offsets in the RTC to be read.
769 	 */
770 	if (offset < 0 || offset >= sizeof(struct rtcdev))
771 		return (EINVAL);
772 
773 	vrtc = vm_rtc(vm);
774 	VRTC_LOCK(vrtc);
775 
776 	/*
777 	 * Update RTC date/time fields if necessary.
778 	 */
779 	if (offset < 10) {
780 		curtime = vrtc_curtime(vrtc);
781 		secs_to_rtc(curtime, vrtc, 0);
782 	}
783 
784 	ptr = (uint8_t *)(&vrtc->rtcdev);
785 	*retval = ptr[offset];
786 
787 	VRTC_UNLOCK(vrtc);
788 	return (0);
789 }
790 
791 int
792 vrtc_addr_handler(struct vm *vm, int vcpuid, bool in, int port, int bytes,
793     uint32_t *val)
794 {
795 	struct vrtc *vrtc;
796 
797 	vrtc = vm_rtc(vm);
798 
799 	if (bytes != 1)
800 		return (-1);
801 
802 	if (in) {
803 		*val = 0xff;
804 		return (0);
805 	}
806 
807 	VRTC_LOCK(vrtc);
808 	vrtc->addr = *val & 0x7f;
809 	VRTC_UNLOCK(vrtc);
810 
811 	return (0);
812 }
813 
814 int
815 vrtc_data_handler(struct vm *vm, int vcpuid, bool in, int port, int bytes,
816     uint32_t *val)
817 {
818 	struct vrtc *vrtc;
819 	struct rtcdev *rtc;
820 	time_t curtime;
821 	int error, offset;
822 
823 	vrtc = vm_rtc(vm);
824 	rtc = &vrtc->rtcdev;
825 
826 	if (bytes != 1)
827 		return (-1);
828 
829 	VRTC_LOCK(vrtc);
830 	offset = vrtc->addr;
831 	if (offset >= sizeof(struct rtcdev)) {
832 		VRTC_UNLOCK(vrtc);
833 		return (-1);
834 	}
835 
836 	error = 0;
837 	curtime = vrtc_curtime(vrtc);
838 	vrtc_time_update(vrtc, curtime);
839 
840 	if (in) {
841 		/*
842 		 * Update RTC date/time fields if necessary.
843 		 */
844 		if (offset < 10)
845 			secs_to_rtc(curtime, vrtc, 0);
846 
847 		if (offset == 12) {
848 			/*
849 			 * XXX
850 			 * reg_c interrupt flags are updated only if the
851 			 * corresponding interrupt enable bit in reg_b is set.
852 			 */
853 			*val = vrtc->rtcdev.reg_c;
854 			vrtc_set_reg_c(vrtc, 0);
855 		} else {
856 			*val = *((uint8_t *)rtc + offset);
857 		}
858 		VCPU_CTR2(vm, vcpuid, "Read value %#x from RTC offset %#x",
859 		    *val, offset);
860 	} else {
861 		switch (offset) {
862 		case 10:
863 			VCPU_CTR1(vm, vcpuid, "RTC reg_a set to %#x", *val);
864 			vrtc_set_reg_a(vrtc, *val);
865 			break;
866 		case 11:
867 			VCPU_CTR1(vm, vcpuid, "RTC reg_b set to %#x", *val);
868 			error = vrtc_set_reg_b(vrtc, *val);
869 			break;
870 		case 12:
871 			VCPU_CTR1(vm, vcpuid, "RTC reg_c set to %#x (ignored)",
872 			    *val);
873 			break;
874 		case 13:
875 			VCPU_CTR1(vm, vcpuid, "RTC reg_d set to %#x (ignored)",
876 			    *val);
877 			break;
878 		case 0:
879 			/*
880 			 * High order bit of 'seconds' is readonly.
881 			 */
882 			*val &= 0x7f;
883 			/* FALLTHRU */
884 		default:
885 			VCPU_CTR2(vm, vcpuid, "RTC offset %#x set to %#x",
886 			    offset, *val);
887 			*((uint8_t *)rtc + offset) = *val;
888 			break;
889 		}
890 	}
891 	VRTC_UNLOCK(vrtc);
892 	return (error);
893 }
894 
895 void
896 vrtc_reset(struct vrtc *vrtc)
897 {
898 	struct rtcdev *rtc;
899 
900 	VRTC_LOCK(vrtc);
901 
902 	rtc = &vrtc->rtcdev;
903 	vrtc_set_reg_b(vrtc, rtc->reg_b & ~(RTCSB_ALL_INTRS | RTCSB_SQWE));
904 	vrtc_set_reg_c(vrtc, 0);
905 	KASSERT(!callout_active(&vrtc->callout), ("rtc callout still active"));
906 
907 	VRTC_UNLOCK(vrtc);
908 }
909 
910 struct vrtc *
911 vrtc_init(struct vm *vm)
912 {
913 	struct vrtc *vrtc;
914 	struct rtcdev *rtc;
915 	time_t curtime;
916 
917 	vrtc = malloc(sizeof(struct vrtc), M_VRTC, M_WAITOK | M_ZERO);
918 	vrtc->vm = vm;
919 	mtx_init(&vrtc->mtx, "vrtc lock", NULL, MTX_DEF);
920 	callout_init(&vrtc->callout, 1);
921 
922 	/* Allow dividers to keep time but disable everything else */
923 	rtc = &vrtc->rtcdev;
924 	rtc->reg_a = 0x20;
925 	rtc->reg_b = RTCSB_24HR;
926 	rtc->reg_c = 0;
927 	rtc->reg_d = RTCSD_PWR;
928 
929 	/* Reset the index register to a safe value. */
930 	vrtc->addr = RTC_STATUSD;
931 
932 	/*
933 	 * Initialize RTC time to 00:00:00 Jan 1, 1970.
934 	 */
935 	curtime = 0;
936 
937 	VRTC_LOCK(vrtc);
938 	vrtc->base_rtctime = VRTC_BROKEN_TIME;
939 	vrtc_time_update(vrtc, curtime);
940 	secs_to_rtc(curtime, vrtc, 0);
941 	VRTC_UNLOCK(vrtc);
942 
943 	return (vrtc);
944 }
945 
946 void
947 vrtc_cleanup(struct vrtc *vrtc)
948 {
949 
950 	callout_drain(&vrtc->callout);
951 	free(vrtc, M_VRTC);
952 }
953