xref: /freebsd/sys/amd64/vmm/io/vrtc.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2014, Neel Natu (neel@freebsd.org)
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include "opt_bhyve_snapshot.h"
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/queue.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/lock.h>
38 #include <sys/mutex.h>
39 #include <sys/clock.h>
40 #include <sys/sysctl.h>
41 
42 #include <machine/vmm.h>
43 #include <machine/vmm_snapshot.h>
44 
45 #include <isa/rtc.h>
46 
47 #include <dev/vmm/vmm_ktr.h>
48 
49 #include "vatpic.h"
50 #include "vioapic.h"
51 #include "vrtc.h"
52 
53 /* Register layout of the RTC */
54 struct rtcdev {
55 	uint8_t	sec;
56 	uint8_t	alarm_sec;
57 	uint8_t	min;
58 	uint8_t	alarm_min;
59 	uint8_t	hour;
60 	uint8_t	alarm_hour;
61 	uint8_t	day_of_week;
62 	uint8_t	day_of_month;
63 	uint8_t	month;
64 	uint8_t	year;
65 	uint8_t	reg_a;
66 	uint8_t	reg_b;
67 	uint8_t	reg_c;
68 	uint8_t	reg_d;
69 	uint8_t	nvram[36];
70 	uint8_t	century;
71 	uint8_t	nvram2[128 - 51];
72 } __packed;
73 CTASSERT(sizeof(struct rtcdev) == 128);
74 CTASSERT(offsetof(struct rtcdev, century) == RTC_CENTURY);
75 
76 struct vrtc {
77 	struct vm	*vm;
78 	struct mtx	mtx;
79 	struct callout	callout;
80 	u_int		addr;		/* RTC register to read or write */
81 	sbintime_t	base_uptime;
82 	time_t		base_rtctime;
83 	struct rtcdev	rtcdev;
84 };
85 
86 #define	VRTC_LOCK(vrtc)		mtx_lock(&((vrtc)->mtx))
87 #define	VRTC_UNLOCK(vrtc)	mtx_unlock(&((vrtc)->mtx))
88 #define	VRTC_LOCKED(vrtc)	mtx_owned(&((vrtc)->mtx))
89 
90 /*
91  * RTC time is considered "broken" if:
92  * - RTC updates are halted by the guest
93  * - RTC date/time fields have invalid values
94  */
95 #define	VRTC_BROKEN_TIME	((time_t)-1)
96 
97 #define	RTC_IRQ			8
98 #define	RTCSB_BIN		0x04
99 #define	RTCSB_ALL_INTRS		(RTCSB_UINTR | RTCSB_AINTR | RTCSB_PINTR)
100 #define	rtc_halted(vrtc)	((vrtc->rtcdev.reg_b & RTCSB_HALT) != 0)
101 #define	aintr_enabled(vrtc)	(((vrtc)->rtcdev.reg_b & RTCSB_AINTR) != 0)
102 #define	pintr_enabled(vrtc)	(((vrtc)->rtcdev.reg_b & RTCSB_PINTR) != 0)
103 #define	uintr_enabled(vrtc)	(((vrtc)->rtcdev.reg_b & RTCSB_UINTR) != 0)
104 
105 static void vrtc_callout_handler(void *arg);
106 static void vrtc_set_reg_c(struct vrtc *vrtc, uint8_t newval);
107 
108 static MALLOC_DEFINE(M_VRTC, "vrtc", "bhyve virtual rtc");
109 
110 SYSCTL_DECL(_hw_vmm);
111 SYSCTL_NODE(_hw_vmm, OID_AUTO, vrtc, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
112     NULL);
113 
114 static int rtc_flag_broken_time = 1;
115 SYSCTL_INT(_hw_vmm_vrtc, OID_AUTO, flag_broken_time, CTLFLAG_RDTUN,
116     &rtc_flag_broken_time, 0, "Stop guest when invalid RTC time is detected");
117 
118 static __inline bool
119 divider_enabled(int reg_a)
120 {
121 	/*
122 	 * The RTC is counting only when dividers are not held in reset.
123 	 */
124 	return ((reg_a & 0x70) == 0x20);
125 }
126 
127 static __inline bool
128 update_enabled(struct vrtc *vrtc)
129 {
130 	/*
131 	 * RTC date/time can be updated only if:
132 	 * - divider is not held in reset
133 	 * - guest has not disabled updates
134 	 * - the date/time fields have valid contents
135 	 */
136 	if (!divider_enabled(vrtc->rtcdev.reg_a))
137 		return (false);
138 
139 	if (rtc_halted(vrtc))
140 		return (false);
141 
142 	if (vrtc->base_rtctime == VRTC_BROKEN_TIME)
143 		return (false);
144 
145 	return (true);
146 }
147 
148 static time_t
149 vrtc_curtime(struct vrtc *vrtc, sbintime_t *basetime)
150 {
151 	sbintime_t now, delta;
152 	time_t t, secs;
153 
154 	KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__));
155 
156 	t = vrtc->base_rtctime;
157 	*basetime = vrtc->base_uptime;
158 	if (update_enabled(vrtc)) {
159 		now = sbinuptime();
160 		delta = now - vrtc->base_uptime;
161 		KASSERT(delta >= 0, ("vrtc_curtime: uptime went backwards: "
162 		    "%#lx to %#lx", vrtc->base_uptime, now));
163 		secs = delta / SBT_1S;
164 		t += secs;
165 		*basetime += secs * SBT_1S;
166 	}
167 	return (t);
168 }
169 
170 static __inline uint8_t
171 rtcset(struct rtcdev *rtc, int val)
172 {
173 
174 	KASSERT(val >= 0 && val < 100, ("%s: invalid bin2bcd index %d",
175 	    __func__, val));
176 
177 	return ((rtc->reg_b & RTCSB_BIN) ? val : bin2bcd_data[val]);
178 }
179 
180 static void
181 secs_to_rtc(time_t rtctime, struct vrtc *vrtc, int force_update)
182 {
183 	struct clocktime ct;
184 	struct timespec ts;
185 	struct rtcdev *rtc;
186 	int hour;
187 
188 	KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__));
189 
190 	if (rtctime < 0) {
191 		KASSERT(rtctime == VRTC_BROKEN_TIME,
192 		    ("%s: invalid vrtc time %#lx", __func__, rtctime));
193 		return;
194 	}
195 
196 	/*
197 	 * If the RTC is halted then the guest has "ownership" of the
198 	 * date/time fields. Don't update the RTC date/time fields in
199 	 * this case (unless forced).
200 	 */
201 	if (rtc_halted(vrtc) && !force_update)
202 		return;
203 
204 	ts.tv_sec = rtctime;
205 	ts.tv_nsec = 0;
206 	clock_ts_to_ct(&ts, &ct);
207 
208 	KASSERT(ct.sec >= 0 && ct.sec <= 59, ("invalid clocktime sec %d",
209 	    ct.sec));
210 	KASSERT(ct.min >= 0 && ct.min <= 59, ("invalid clocktime min %d",
211 	    ct.min));
212 	KASSERT(ct.hour >= 0 && ct.hour <= 23, ("invalid clocktime hour %d",
213 	    ct.hour));
214 	KASSERT(ct.dow >= 0 && ct.dow <= 6, ("invalid clocktime wday %d",
215 	    ct.dow));
216 	KASSERT(ct.day >= 1 && ct.day <= 31, ("invalid clocktime mday %d",
217 	    ct.day));
218 	KASSERT(ct.mon >= 1 && ct.mon <= 12, ("invalid clocktime month %d",
219 	    ct.mon));
220 	KASSERT(ct.year >= POSIX_BASE_YEAR, ("invalid clocktime year %d",
221 	    ct.year));
222 
223 	rtc = &vrtc->rtcdev;
224 	rtc->sec = rtcset(rtc, ct.sec);
225 	rtc->min = rtcset(rtc, ct.min);
226 
227 	if (rtc->reg_b & RTCSB_24HR) {
228 		hour = ct.hour;
229 	} else {
230 		/*
231 		 * Convert to the 12-hour format.
232 		 */
233 		switch (ct.hour) {
234 		case 0:			/* 12 AM */
235 		case 12:		/* 12 PM */
236 			hour = 12;
237 			break;
238 		default:
239 			/*
240 			 * The remaining 'ct.hour' values are interpreted as:
241 			 * [1  - 11] ->  1 - 11 AM
242 			 * [13 - 23] ->  1 - 11 PM
243 			 */
244 			hour = ct.hour % 12;
245 			break;
246 		}
247 	}
248 
249 	rtc->hour = rtcset(rtc, hour);
250 
251 	if ((rtc->reg_b & RTCSB_24HR) == 0 && ct.hour >= 12)
252 		rtc->hour |= 0x80;	    /* set MSB to indicate PM */
253 
254 	rtc->day_of_week = rtcset(rtc, ct.dow + 1);
255 	rtc->day_of_month = rtcset(rtc, ct.day);
256 	rtc->month = rtcset(rtc, ct.mon);
257 	rtc->year = rtcset(rtc, ct.year % 100);
258 	rtc->century = rtcset(rtc, ct.year / 100);
259 }
260 
261 static int
262 rtcget(struct rtcdev *rtc, int val, int *retval)
263 {
264 	uint8_t upper, lower;
265 
266 	if (rtc->reg_b & RTCSB_BIN) {
267 		*retval = val;
268 		return (0);
269 	}
270 
271 	lower = val & 0xf;
272 	upper = (val >> 4) & 0xf;
273 
274 	if (lower > 9 || upper > 9)
275 		return (-1);
276 
277 	*retval = upper * 10 + lower;
278 	return (0);
279 }
280 
281 static time_t
282 rtc_to_secs(struct vrtc *vrtc)
283 {
284 	struct clocktime ct;
285 	struct timespec ts;
286 	struct rtcdev *rtc;
287 #ifdef KTR
288 	struct vm *vm = vrtc->vm;
289 #endif
290 	int century, error, hour, pm, year;
291 
292 	KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__));
293 
294 	rtc = &vrtc->rtcdev;
295 
296 	bzero(&ct, sizeof(struct clocktime));
297 
298 	error = rtcget(rtc, rtc->sec, &ct.sec);
299 	if (error || ct.sec < 0 || ct.sec > 59) {
300 		VM_CTR2(vm, "Invalid RTC sec %#x/%d", rtc->sec, ct.sec);
301 		goto fail;
302 	}
303 
304 	error = rtcget(rtc, rtc->min, &ct.min);
305 	if (error || ct.min < 0 || ct.min > 59) {
306 		VM_CTR2(vm, "Invalid RTC min %#x/%d", rtc->min, ct.min);
307 		goto fail;
308 	}
309 
310 	pm = 0;
311 	hour = rtc->hour;
312 	if ((rtc->reg_b & RTCSB_24HR) == 0) {
313 		if (hour & 0x80) {
314 			hour &= ~0x80;
315 			pm = 1;
316 		}
317 	}
318 	error = rtcget(rtc, hour, &ct.hour);
319 	if ((rtc->reg_b & RTCSB_24HR) == 0) {
320 		if (ct.hour >= 1 && ct.hour <= 12) {
321 			/*
322 			 * Convert from 12-hour format to internal 24-hour
323 			 * representation as follows:
324 			 *
325 			 *    12-hour format		ct.hour
326 			 *	12	AM		0
327 			 *	1 - 11	AM		1 - 11
328 			 *	12	PM		12
329 			 *	1 - 11	PM		13 - 23
330 			 */
331 			if (ct.hour == 12)
332 				ct.hour = 0;
333 			if (pm)
334 				ct.hour += 12;
335 		} else {
336 			VM_CTR2(vm, "Invalid RTC 12-hour format %#x/%d",
337 			    rtc->hour, ct.hour);
338 			goto fail;
339 		}
340 	}
341 
342 	if (error || ct.hour < 0 || ct.hour > 23) {
343 		VM_CTR2(vm, "Invalid RTC hour %#x/%d", rtc->hour, ct.hour);
344 		goto fail;
345 	}
346 
347 	/*
348 	 * Ignore 'rtc->dow' because some guests like Linux don't bother
349 	 * setting it at all while others like OpenBSD/i386 set it incorrectly.
350 	 *
351 	 * clock_ct_to_ts() does not depend on 'ct.dow' anyways so ignore it.
352 	 */
353 	ct.dow = -1;
354 
355 	error = rtcget(rtc, rtc->day_of_month, &ct.day);
356 	if (error || ct.day < 1 || ct.day > 31) {
357 		VM_CTR2(vm, "Invalid RTC mday %#x/%d", rtc->day_of_month,
358 		    ct.day);
359 		goto fail;
360 	}
361 
362 	error = rtcget(rtc, rtc->month, &ct.mon);
363 	if (error || ct.mon < 1 || ct.mon > 12) {
364 		VM_CTR2(vm, "Invalid RTC month %#x/%d", rtc->month, ct.mon);
365 		goto fail;
366 	}
367 
368 	error = rtcget(rtc, rtc->year, &year);
369 	if (error || year < 0 || year > 99) {
370 		VM_CTR2(vm, "Invalid RTC year %#x/%d", rtc->year, year);
371 		goto fail;
372 	}
373 
374 	error = rtcget(rtc, rtc->century, &century);
375 	ct.year = century * 100 + year;
376 	if (error || ct.year < POSIX_BASE_YEAR) {
377 		VM_CTR2(vm, "Invalid RTC century %#x/%d", rtc->century,
378 		    ct.year);
379 		goto fail;
380 	}
381 
382 	error = clock_ct_to_ts(&ct, &ts);
383 	if (error || ts.tv_sec < 0) {
384 		VM_CTR3(vm, "Invalid RTC clocktime.date %04d-%02d-%02d",
385 		    ct.year, ct.mon, ct.day);
386 		VM_CTR3(vm, "Invalid RTC clocktime.time %02d:%02d:%02d",
387 		    ct.hour, ct.min, ct.sec);
388 		goto fail;
389 	}
390 	return (ts.tv_sec);		/* success */
391 fail:
392 	/*
393 	 * Stop updating the RTC if the date/time fields programmed by
394 	 * the guest are invalid.
395 	 */
396 	VM_CTR0(vrtc->vm, "Invalid RTC date/time programming detected");
397 	return (VRTC_BROKEN_TIME);
398 }
399 
400 static int
401 vrtc_time_update(struct vrtc *vrtc, time_t newtime, sbintime_t newbase)
402 {
403 	struct rtcdev *rtc;
404 	time_t oldtime;
405 	uint8_t alarm_sec, alarm_min, alarm_hour;
406 
407 	KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__));
408 
409 	rtc = &vrtc->rtcdev;
410 	alarm_sec = rtc->alarm_sec;
411 	alarm_min = rtc->alarm_min;
412 	alarm_hour = rtc->alarm_hour;
413 
414 	oldtime = vrtc->base_rtctime;
415 	VM_CTR2(vrtc->vm, "Updating RTC secs from %#lx to %#lx",
416 	    oldtime, newtime);
417 
418 	VM_CTR2(vrtc->vm, "Updating RTC base uptime from %#lx to %#lx",
419 	    vrtc->base_uptime, newbase);
420 	vrtc->base_uptime = newbase;
421 
422 	if (newtime == oldtime)
423 		return (0);
424 
425 	/*
426 	 * If 'newtime' indicates that RTC updates are disabled then just
427 	 * record that and return. There is no need to do alarm interrupt
428 	 * processing in this case.
429 	 */
430 	if (newtime == VRTC_BROKEN_TIME) {
431 		vrtc->base_rtctime = VRTC_BROKEN_TIME;
432 		return (0);
433 	}
434 
435 	/*
436 	 * Return an error if RTC updates are halted by the guest.
437 	 */
438 	if (rtc_halted(vrtc)) {
439 		VM_CTR0(vrtc->vm, "RTC update halted by guest");
440 		return (EBUSY);
441 	}
442 
443 	do {
444 		/*
445 		 * If the alarm interrupt is enabled and 'oldtime' is valid
446 		 * then visit all the seconds between 'oldtime' and 'newtime'
447 		 * to check for the alarm condition.
448 		 *
449 		 * Otherwise move the RTC time forward directly to 'newtime'.
450 		 */
451 		if (aintr_enabled(vrtc) && oldtime != VRTC_BROKEN_TIME)
452 			vrtc->base_rtctime++;
453 		else
454 			vrtc->base_rtctime = newtime;
455 
456 		if (aintr_enabled(vrtc)) {
457 			/*
458 			 * Update the RTC date/time fields before checking
459 			 * if the alarm conditions are satisfied.
460 			 */
461 			secs_to_rtc(vrtc->base_rtctime, vrtc, 0);
462 
463 			if ((alarm_sec >= 0xC0 || alarm_sec == rtc->sec) &&
464 			    (alarm_min >= 0xC0 || alarm_min == rtc->min) &&
465 			    (alarm_hour >= 0xC0 || alarm_hour == rtc->hour)) {
466 				vrtc_set_reg_c(vrtc, rtc->reg_c | RTCIR_ALARM);
467 			}
468 		}
469 	} while (vrtc->base_rtctime != newtime);
470 
471 	if (uintr_enabled(vrtc))
472 		vrtc_set_reg_c(vrtc, rtc->reg_c | RTCIR_UPDATE);
473 
474 	return (0);
475 }
476 
477 static sbintime_t
478 vrtc_freq(struct vrtc *vrtc)
479 {
480 	int ratesel;
481 
482 	static sbintime_t pf[16] = {
483 		0,
484 		SBT_1S / 256,
485 		SBT_1S / 128,
486 		SBT_1S / 8192,
487 		SBT_1S / 4096,
488 		SBT_1S / 2048,
489 		SBT_1S / 1024,
490 		SBT_1S / 512,
491 		SBT_1S / 256,
492 		SBT_1S / 128,
493 		SBT_1S / 64,
494 		SBT_1S / 32,
495 		SBT_1S / 16,
496 		SBT_1S / 8,
497 		SBT_1S / 4,
498 		SBT_1S / 2,
499 	};
500 
501 	KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__));
502 
503 	/*
504 	 * If both periodic and alarm interrupts are enabled then use the
505 	 * periodic frequency to drive the callout. The minimum periodic
506 	 * frequency (2 Hz) is higher than the alarm frequency (1 Hz) so
507 	 * piggyback the alarm on top of it. The same argument applies to
508 	 * the update interrupt.
509 	 */
510 	if (pintr_enabled(vrtc) && divider_enabled(vrtc->rtcdev.reg_a)) {
511 		ratesel = vrtc->rtcdev.reg_a & 0xf;
512 		return (pf[ratesel]);
513 	} else if (aintr_enabled(vrtc) && update_enabled(vrtc)) {
514 		return (SBT_1S);
515 	} else if (uintr_enabled(vrtc) && update_enabled(vrtc)) {
516 		return (SBT_1S);
517 	} else {
518 		return (0);
519 	}
520 }
521 
522 static void
523 vrtc_callout_reset(struct vrtc *vrtc, sbintime_t freqsbt)
524 {
525 
526 	KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__));
527 
528 	if (freqsbt == 0) {
529 		if (callout_active(&vrtc->callout)) {
530 			VM_CTR0(vrtc->vm, "RTC callout stopped");
531 			callout_stop(&vrtc->callout);
532 		}
533 		return;
534 	}
535 	VM_CTR1(vrtc->vm, "RTC callout frequency %d hz", SBT_1S / freqsbt);
536 	callout_reset_sbt(&vrtc->callout, freqsbt, 0, vrtc_callout_handler,
537 	    vrtc, 0);
538 }
539 
540 static void
541 vrtc_callout_handler(void *arg)
542 {
543 	struct vrtc *vrtc = arg;
544 	sbintime_t freqsbt, basetime;
545 	time_t rtctime;
546 	int error __diagused;
547 
548 	VM_CTR0(vrtc->vm, "vrtc callout fired");
549 
550 	VRTC_LOCK(vrtc);
551 	if (callout_pending(&vrtc->callout))	/* callout was reset */
552 		goto done;
553 
554 	if (!callout_active(&vrtc->callout))	/* callout was stopped */
555 		goto done;
556 
557 	callout_deactivate(&vrtc->callout);
558 
559 	KASSERT((vrtc->rtcdev.reg_b & RTCSB_ALL_INTRS) != 0,
560 	    ("gratuitous vrtc callout"));
561 
562 	if (pintr_enabled(vrtc))
563 		vrtc_set_reg_c(vrtc, vrtc->rtcdev.reg_c | RTCIR_PERIOD);
564 
565 	if (aintr_enabled(vrtc) || uintr_enabled(vrtc)) {
566 		rtctime = vrtc_curtime(vrtc, &basetime);
567 		error = vrtc_time_update(vrtc, rtctime, basetime);
568 		KASSERT(error == 0, ("%s: vrtc_time_update error %d",
569 		    __func__, error));
570 	}
571 
572 	freqsbt = vrtc_freq(vrtc);
573 	KASSERT(freqsbt != 0, ("%s: vrtc frequency cannot be zero", __func__));
574 	vrtc_callout_reset(vrtc, freqsbt);
575 done:
576 	VRTC_UNLOCK(vrtc);
577 }
578 
579 static __inline void
580 vrtc_callout_check(struct vrtc *vrtc, sbintime_t freq)
581 {
582 	int active __diagused;
583 
584 	active = callout_active(&vrtc->callout) ? 1 : 0;
585 	KASSERT((freq == 0 && !active) || (freq != 0 && active),
586 	    ("vrtc callout %s with frequency %#lx",
587 	    active ? "active" : "inactive", freq));
588 }
589 
590 static void
591 vrtc_set_reg_c(struct vrtc *vrtc, uint8_t newval)
592 {
593 	struct rtcdev *rtc;
594 	int oldirqf, newirqf;
595 	uint8_t oldval, changed;
596 
597 	KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__));
598 
599 	rtc = &vrtc->rtcdev;
600 	newval &= RTCIR_ALARM | RTCIR_PERIOD | RTCIR_UPDATE;
601 
602 	oldirqf = rtc->reg_c & RTCIR_INT;
603 	if ((aintr_enabled(vrtc) && (newval & RTCIR_ALARM) != 0) ||
604 	    (pintr_enabled(vrtc) && (newval & RTCIR_PERIOD) != 0) ||
605 	    (uintr_enabled(vrtc) && (newval & RTCIR_UPDATE) != 0)) {
606 		newirqf = RTCIR_INT;
607 	} else {
608 		newirqf = 0;
609 	}
610 
611 	oldval = rtc->reg_c;
612 	rtc->reg_c = newirqf | newval;
613 	changed = oldval ^ rtc->reg_c;
614 	if (changed) {
615 		VM_CTR2(vrtc->vm, "RTC reg_c changed from %#x to %#x",
616 		    oldval, rtc->reg_c);
617 	}
618 
619 	if (!oldirqf && newirqf) {
620 		VM_CTR1(vrtc->vm, "RTC irq %d asserted", RTC_IRQ);
621 		vatpic_pulse_irq(vrtc->vm, RTC_IRQ);
622 		vioapic_pulse_irq(vrtc->vm, RTC_IRQ);
623 	} else if (oldirqf && !newirqf) {
624 		VM_CTR1(vrtc->vm, "RTC irq %d deasserted", RTC_IRQ);
625 	}
626 }
627 
628 static int
629 vrtc_set_reg_b(struct vrtc *vrtc, uint8_t newval)
630 {
631 	struct rtcdev *rtc;
632 	sbintime_t oldfreq, newfreq, basetime;
633 	time_t curtime, rtctime;
634 	int error __diagused;
635 	uint8_t oldval, changed;
636 
637 	KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__));
638 
639 	rtc = &vrtc->rtcdev;
640 	oldval = rtc->reg_b;
641 	oldfreq = vrtc_freq(vrtc);
642 
643 	rtc->reg_b = newval;
644 	changed = oldval ^ newval;
645 	if (changed) {
646 		VM_CTR2(vrtc->vm, "RTC reg_b changed from %#x to %#x",
647 		    oldval, newval);
648 	}
649 
650 	if (changed & RTCSB_HALT) {
651 		if ((newval & RTCSB_HALT) == 0) {
652 			rtctime = rtc_to_secs(vrtc);
653 			basetime = sbinuptime();
654 			if (rtctime == VRTC_BROKEN_TIME) {
655 				if (rtc_flag_broken_time)
656 					return (-1);
657 			}
658 		} else {
659 			curtime = vrtc_curtime(vrtc, &basetime);
660 			KASSERT(curtime == vrtc->base_rtctime, ("%s: mismatch "
661 			    "between vrtc basetime (%#lx) and curtime (%#lx)",
662 			    __func__, vrtc->base_rtctime, curtime));
663 
664 			/*
665 			 * Force a refresh of the RTC date/time fields so
666 			 * they reflect the time right before the guest set
667 			 * the HALT bit.
668 			 */
669 			secs_to_rtc(curtime, vrtc, 1);
670 
671 			/*
672 			 * Updates are halted so mark 'base_rtctime' to denote
673 			 * that the RTC date/time is in flux.
674 			 */
675 			rtctime = VRTC_BROKEN_TIME;
676 			rtc->reg_b &= ~RTCSB_UINTR;
677 		}
678 		error = vrtc_time_update(vrtc, rtctime, basetime);
679 		KASSERT(error == 0, ("vrtc_time_update error %d", error));
680 	}
681 
682 	/*
683 	 * Side effect of changes to the interrupt enable bits.
684 	 */
685 	if (changed & RTCSB_ALL_INTRS)
686 		vrtc_set_reg_c(vrtc, vrtc->rtcdev.reg_c);
687 
688 	/*
689 	 * Change the callout frequency if it has changed.
690 	 */
691 	newfreq = vrtc_freq(vrtc);
692 	if (newfreq != oldfreq)
693 		vrtc_callout_reset(vrtc, newfreq);
694 	else
695 		vrtc_callout_check(vrtc, newfreq);
696 
697 	/*
698 	 * The side effect of bits that control the RTC date/time format
699 	 * is handled lazily when those fields are actually read.
700 	 */
701 	return (0);
702 }
703 
704 static void
705 vrtc_set_reg_a(struct vrtc *vrtc, uint8_t newval)
706 {
707 	sbintime_t oldfreq, newfreq;
708 	uint8_t oldval, changed;
709 
710 	KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__));
711 
712 	newval &= ~RTCSA_TUP;
713 	oldval = vrtc->rtcdev.reg_a;
714 	oldfreq = vrtc_freq(vrtc);
715 
716 	if (divider_enabled(oldval) && !divider_enabled(newval)) {
717 		VM_CTR2(vrtc->vm, "RTC divider held in reset at %#lx/%#lx",
718 		    vrtc->base_rtctime, vrtc->base_uptime);
719 	} else if (!divider_enabled(oldval) && divider_enabled(newval)) {
720 		/*
721 		 * If the dividers are coming out of reset then update
722 		 * 'base_uptime' before this happens. This is done to
723 		 * maintain the illusion that the RTC date/time was frozen
724 		 * while the dividers were disabled.
725 		 */
726 		vrtc->base_uptime = sbinuptime();
727 		VM_CTR2(vrtc->vm, "RTC divider out of reset at %#lx/%#lx",
728 		    vrtc->base_rtctime, vrtc->base_uptime);
729 	} else {
730 		/* NOTHING */
731 	}
732 
733 	vrtc->rtcdev.reg_a = newval;
734 	changed = oldval ^ newval;
735 	if (changed) {
736 		VM_CTR2(vrtc->vm, "RTC reg_a changed from %#x to %#x",
737 		    oldval, newval);
738 	}
739 
740 	/*
741 	 * Side effect of changes to rate select and divider enable bits.
742 	 */
743 	newfreq = vrtc_freq(vrtc);
744 	if (newfreq != oldfreq)
745 		vrtc_callout_reset(vrtc, newfreq);
746 	else
747 		vrtc_callout_check(vrtc, newfreq);
748 }
749 
750 int
751 vrtc_set_time(struct vm *vm, time_t secs)
752 {
753 	struct vrtc *vrtc;
754 	int error;
755 
756 	vrtc = vm_rtc(vm);
757 	VRTC_LOCK(vrtc);
758 	error = vrtc_time_update(vrtc, secs, sbinuptime());
759 	VRTC_UNLOCK(vrtc);
760 
761 	if (error) {
762 		VM_CTR2(vrtc->vm, "Error %d setting RTC time to %#lx", error,
763 		    secs);
764 	} else {
765 		VM_CTR1(vrtc->vm, "RTC time set to %#lx", secs);
766 	}
767 
768 	return (error);
769 }
770 
771 time_t
772 vrtc_get_time(struct vm *vm)
773 {
774 	struct vrtc *vrtc;
775 	sbintime_t basetime;
776 	time_t t;
777 
778 	vrtc = vm_rtc(vm);
779 	VRTC_LOCK(vrtc);
780 	t = vrtc_curtime(vrtc, &basetime);
781 	VRTC_UNLOCK(vrtc);
782 
783 	return (t);
784 }
785 
786 int
787 vrtc_nvram_write(struct vm *vm, int offset, uint8_t value)
788 {
789 	struct vrtc *vrtc;
790 	uint8_t *ptr;
791 
792 	vrtc = vm_rtc(vm);
793 
794 	/*
795 	 * Don't allow writes to RTC control registers or the date/time fields.
796 	 */
797 	if (offset < offsetof(struct rtcdev, nvram[0]) ||
798 	    offset == RTC_CENTURY || offset >= sizeof(struct rtcdev)) {
799 		VM_CTR1(vrtc->vm, "RTC nvram write to invalid offset %d",
800 		    offset);
801 		return (EINVAL);
802 	}
803 
804 	VRTC_LOCK(vrtc);
805 	ptr = (uint8_t *)(&vrtc->rtcdev);
806 	ptr[offset] = value;
807 	VM_CTR2(vrtc->vm, "RTC nvram write %#x to offset %#x", value, offset);
808 	VRTC_UNLOCK(vrtc);
809 
810 	return (0);
811 }
812 
813 int
814 vrtc_nvram_read(struct vm *vm, int offset, uint8_t *retval)
815 {
816 	struct vrtc *vrtc;
817 	sbintime_t basetime;
818 	time_t curtime;
819 	uint8_t *ptr;
820 
821 	/*
822 	 * Allow all offsets in the RTC to be read.
823 	 */
824 	if (offset < 0 || offset >= sizeof(struct rtcdev))
825 		return (EINVAL);
826 
827 	vrtc = vm_rtc(vm);
828 	VRTC_LOCK(vrtc);
829 
830 	/*
831 	 * Update RTC date/time fields if necessary.
832 	 */
833 	if (offset < 10 || offset == RTC_CENTURY) {
834 		curtime = vrtc_curtime(vrtc, &basetime);
835 		secs_to_rtc(curtime, vrtc, 0);
836 	}
837 
838 	ptr = (uint8_t *)(&vrtc->rtcdev);
839 	*retval = ptr[offset];
840 
841 	VRTC_UNLOCK(vrtc);
842 	return (0);
843 }
844 
845 int
846 vrtc_addr_handler(struct vm *vm, bool in, int port, int bytes, uint32_t *val)
847 {
848 	struct vrtc *vrtc;
849 
850 	vrtc = vm_rtc(vm);
851 
852 	if (bytes != 1)
853 		return (-1);
854 
855 	if (in) {
856 		*val = 0xff;
857 		return (0);
858 	}
859 
860 	VRTC_LOCK(vrtc);
861 	vrtc->addr = *val & 0x7f;
862 	VRTC_UNLOCK(vrtc);
863 
864 	return (0);
865 }
866 
867 int
868 vrtc_data_handler(struct vm *vm, bool in, int port, int bytes, uint32_t *val)
869 {
870 	struct vrtc *vrtc;
871 	struct rtcdev *rtc;
872 	sbintime_t basetime;
873 	time_t curtime;
874 	int error, offset;
875 
876 	vrtc = vm_rtc(vm);
877 	rtc = &vrtc->rtcdev;
878 
879 	if (bytes != 1)
880 		return (-1);
881 
882 	VRTC_LOCK(vrtc);
883 	offset = vrtc->addr;
884 	if (offset >= sizeof(struct rtcdev)) {
885 		VRTC_UNLOCK(vrtc);
886 		return (-1);
887 	}
888 
889 	error = 0;
890 	curtime = vrtc_curtime(vrtc, &basetime);
891 	vrtc_time_update(vrtc, curtime, basetime);
892 
893 	/*
894 	 * Update RTC date/time fields if necessary.
895 	 *
896 	 * This is not just for reads of the RTC. The side-effect of writing
897 	 * the century byte requires other RTC date/time fields (e.g. sec)
898 	 * to be updated here.
899 	 */
900 	if (offset < 10 || offset == RTC_CENTURY)
901 		secs_to_rtc(curtime, vrtc, 0);
902 
903 	if (in) {
904 		if (offset == 12) {
905 			/*
906 			 * XXX
907 			 * reg_c interrupt flags are updated only if the
908 			 * corresponding interrupt enable bit in reg_b is set.
909 			 */
910 			*val = vrtc->rtcdev.reg_c;
911 			vrtc_set_reg_c(vrtc, 0);
912 		} else {
913 			*val = *((uint8_t *)rtc + offset);
914 		}
915 		VM_CTR2(vm, "Read value %#x from RTC offset %#x",
916 		    *val, offset);
917 	} else {
918 		switch (offset) {
919 		case 10:
920 			VM_CTR1(vm, "RTC reg_a set to %#x", *val);
921 			vrtc_set_reg_a(vrtc, *val);
922 			break;
923 		case 11:
924 			VM_CTR1(vm, "RTC reg_b set to %#x", *val);
925 			error = vrtc_set_reg_b(vrtc, *val);
926 			break;
927 		case 12:
928 			VM_CTR1(vm, "RTC reg_c set to %#x (ignored)",
929 			    *val);
930 			break;
931 		case 13:
932 			VM_CTR1(vm, "RTC reg_d set to %#x (ignored)",
933 			    *val);
934 			break;
935 		case 0:
936 			/*
937 			 * High order bit of 'seconds' is readonly.
938 			 */
939 			*val &= 0x7f;
940 			/* FALLTHRU */
941 		default:
942 			VM_CTR2(vm, "RTC offset %#x set to %#x",
943 			    offset, *val);
944 			*((uint8_t *)rtc + offset) = *val;
945 			break;
946 		}
947 
948 		/*
949 		 * XXX some guests (e.g. OpenBSD) write the century byte
950 		 * outside of RTCSB_HALT so re-calculate the RTC date/time.
951 		 */
952 		if (offset == RTC_CENTURY && !rtc_halted(vrtc)) {
953 			curtime = rtc_to_secs(vrtc);
954 			error = vrtc_time_update(vrtc, curtime, sbinuptime());
955 			KASSERT(!error, ("vrtc_time_update error %d", error));
956 			if (curtime == VRTC_BROKEN_TIME && rtc_flag_broken_time)
957 				error = -1;
958 		}
959 	}
960 	VRTC_UNLOCK(vrtc);
961 	return (error);
962 }
963 
964 void
965 vrtc_reset(struct vrtc *vrtc)
966 {
967 	struct rtcdev *rtc;
968 
969 	VRTC_LOCK(vrtc);
970 
971 	rtc = &vrtc->rtcdev;
972 	vrtc_set_reg_b(vrtc, rtc->reg_b & ~(RTCSB_ALL_INTRS | RTCSB_SQWE));
973 	vrtc_set_reg_c(vrtc, 0);
974 	KASSERT(!callout_active(&vrtc->callout), ("rtc callout still active"));
975 
976 	VRTC_UNLOCK(vrtc);
977 }
978 
979 struct vrtc *
980 vrtc_init(struct vm *vm)
981 {
982 	struct vrtc *vrtc;
983 	struct rtcdev *rtc;
984 	time_t curtime;
985 
986 	vrtc = malloc(sizeof(struct vrtc), M_VRTC, M_WAITOK | M_ZERO);
987 	vrtc->vm = vm;
988 	mtx_init(&vrtc->mtx, "vrtc lock", NULL, MTX_DEF);
989 	callout_init(&vrtc->callout, 1);
990 
991 	/* Allow dividers to keep time but disable everything else */
992 	rtc = &vrtc->rtcdev;
993 	rtc->reg_a = 0x20;
994 	rtc->reg_b = RTCSB_24HR;
995 	rtc->reg_c = 0;
996 	rtc->reg_d = RTCSD_PWR;
997 
998 	/* Reset the index register to a safe value. */
999 	vrtc->addr = RTC_STATUSD;
1000 
1001 	/*
1002 	 * Initialize RTC time to 00:00:00 Jan 1, 1970.
1003 	 */
1004 	curtime = 0;
1005 
1006 	VRTC_LOCK(vrtc);
1007 	vrtc->base_rtctime = VRTC_BROKEN_TIME;
1008 	vrtc_time_update(vrtc, curtime, sbinuptime());
1009 	secs_to_rtc(curtime, vrtc, 0);
1010 	VRTC_UNLOCK(vrtc);
1011 
1012 	return (vrtc);
1013 }
1014 
1015 void
1016 vrtc_cleanup(struct vrtc *vrtc)
1017 {
1018 
1019 	callout_drain(&vrtc->callout);
1020 	mtx_destroy(&vrtc->mtx);
1021 	free(vrtc, M_VRTC);
1022 }
1023 
1024 #ifdef BHYVE_SNAPSHOT
1025 int
1026 vrtc_snapshot(struct vrtc *vrtc, struct vm_snapshot_meta *meta)
1027 {
1028 	int ret;
1029 
1030 	VRTC_LOCK(vrtc);
1031 
1032 	SNAPSHOT_VAR_OR_LEAVE(vrtc->addr, meta, ret, done);
1033 	if (meta->op == VM_SNAPSHOT_RESTORE)
1034 		vrtc->base_uptime = sbinuptime();
1035 	SNAPSHOT_VAR_OR_LEAVE(vrtc->base_rtctime, meta, ret, done);
1036 
1037 	SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.sec, meta, ret, done);
1038 	SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.alarm_sec, meta, ret, done);
1039 	SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.min, meta, ret, done);
1040 	SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.alarm_min, meta, ret, done);
1041 	SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.hour, meta, ret, done);
1042 	SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.alarm_hour, meta, ret, done);
1043 	SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.day_of_week, meta, ret, done);
1044 	SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.day_of_month, meta, ret, done);
1045 	SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.month, meta, ret, done);
1046 	SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.year, meta, ret, done);
1047 	SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.reg_a, meta, ret, done);
1048 	SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.reg_b, meta, ret, done);
1049 	SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.reg_c, meta, ret, done);
1050 	SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.reg_d, meta, ret, done);
1051 	SNAPSHOT_BUF_OR_LEAVE(vrtc->rtcdev.nvram, sizeof(vrtc->rtcdev.nvram),
1052 			      meta, ret, done);
1053 	SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.century, meta, ret, done);
1054 	SNAPSHOT_BUF_OR_LEAVE(vrtc->rtcdev.nvram2, sizeof(vrtc->rtcdev.nvram2),
1055 			      meta, ret, done);
1056 
1057 	vrtc_callout_reset(vrtc, vrtc_freq(vrtc));
1058 
1059 	VRTC_UNLOCK(vrtc);
1060 
1061 done:
1062 	return (ret);
1063 }
1064 #endif
1065