1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014, Neel Natu (neel@freebsd.org) 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_bhyve_snapshot.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/queue.h> 37 #include <sys/kernel.h> 38 #include <sys/malloc.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/clock.h> 42 #include <sys/sysctl.h> 43 44 #include <machine/vmm.h> 45 #include <machine/vmm_snapshot.h> 46 47 #include <isa/rtc.h> 48 49 #include "vmm_ktr.h" 50 #include "vatpic.h" 51 #include "vioapic.h" 52 #include "vrtc.h" 53 54 /* Register layout of the RTC */ 55 struct rtcdev { 56 uint8_t sec; 57 uint8_t alarm_sec; 58 uint8_t min; 59 uint8_t alarm_min; 60 uint8_t hour; 61 uint8_t alarm_hour; 62 uint8_t day_of_week; 63 uint8_t day_of_month; 64 uint8_t month; 65 uint8_t year; 66 uint8_t reg_a; 67 uint8_t reg_b; 68 uint8_t reg_c; 69 uint8_t reg_d; 70 uint8_t nvram[36]; 71 uint8_t century; 72 uint8_t nvram2[128 - 51]; 73 } __packed; 74 CTASSERT(sizeof(struct rtcdev) == 128); 75 CTASSERT(offsetof(struct rtcdev, century) == RTC_CENTURY); 76 77 struct vrtc { 78 struct vm *vm; 79 struct mtx mtx; 80 struct callout callout; 81 u_int addr; /* RTC register to read or write */ 82 sbintime_t base_uptime; 83 time_t base_rtctime; 84 struct rtcdev rtcdev; 85 }; 86 87 #define VRTC_LOCK(vrtc) mtx_lock(&((vrtc)->mtx)) 88 #define VRTC_UNLOCK(vrtc) mtx_unlock(&((vrtc)->mtx)) 89 #define VRTC_LOCKED(vrtc) mtx_owned(&((vrtc)->mtx)) 90 91 /* 92 * RTC time is considered "broken" if: 93 * - RTC updates are halted by the guest 94 * - RTC date/time fields have invalid values 95 */ 96 #define VRTC_BROKEN_TIME ((time_t)-1) 97 98 #define RTC_IRQ 8 99 #define RTCSB_BIN 0x04 100 #define RTCSB_ALL_INTRS (RTCSB_UINTR | RTCSB_AINTR | RTCSB_PINTR) 101 #define rtc_halted(vrtc) ((vrtc->rtcdev.reg_b & RTCSB_HALT) != 0) 102 #define aintr_enabled(vrtc) (((vrtc)->rtcdev.reg_b & RTCSB_AINTR) != 0) 103 #define pintr_enabled(vrtc) (((vrtc)->rtcdev.reg_b & RTCSB_PINTR) != 0) 104 #define uintr_enabled(vrtc) (((vrtc)->rtcdev.reg_b & RTCSB_UINTR) != 0) 105 106 static void vrtc_callout_handler(void *arg); 107 static void vrtc_set_reg_c(struct vrtc *vrtc, uint8_t newval); 108 109 static MALLOC_DEFINE(M_VRTC, "vrtc", "bhyve virtual rtc"); 110 111 SYSCTL_DECL(_hw_vmm); 112 SYSCTL_NODE(_hw_vmm, OID_AUTO, vrtc, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 113 NULL); 114 115 static int rtc_flag_broken_time = 1; 116 SYSCTL_INT(_hw_vmm_vrtc, OID_AUTO, flag_broken_time, CTLFLAG_RDTUN, 117 &rtc_flag_broken_time, 0, "Stop guest when invalid RTC time is detected"); 118 119 static __inline bool 120 divider_enabled(int reg_a) 121 { 122 /* 123 * The RTC is counting only when dividers are not held in reset. 124 */ 125 return ((reg_a & 0x70) == 0x20); 126 } 127 128 static __inline bool 129 update_enabled(struct vrtc *vrtc) 130 { 131 /* 132 * RTC date/time can be updated only if: 133 * - divider is not held in reset 134 * - guest has not disabled updates 135 * - the date/time fields have valid contents 136 */ 137 if (!divider_enabled(vrtc->rtcdev.reg_a)) 138 return (false); 139 140 if (rtc_halted(vrtc)) 141 return (false); 142 143 if (vrtc->base_rtctime == VRTC_BROKEN_TIME) 144 return (false); 145 146 return (true); 147 } 148 149 static time_t 150 vrtc_curtime(struct vrtc *vrtc, sbintime_t *basetime) 151 { 152 sbintime_t now, delta; 153 time_t t, secs; 154 155 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 156 157 t = vrtc->base_rtctime; 158 *basetime = vrtc->base_uptime; 159 if (update_enabled(vrtc)) { 160 now = sbinuptime(); 161 delta = now - vrtc->base_uptime; 162 KASSERT(delta >= 0, ("vrtc_curtime: uptime went backwards: " 163 "%#lx to %#lx", vrtc->base_uptime, now)); 164 secs = delta / SBT_1S; 165 t += secs; 166 *basetime += secs * SBT_1S; 167 } 168 return (t); 169 } 170 171 static __inline uint8_t 172 rtcset(struct rtcdev *rtc, int val) 173 { 174 175 KASSERT(val >= 0 && val < 100, ("%s: invalid bin2bcd index %d", 176 __func__, val)); 177 178 return ((rtc->reg_b & RTCSB_BIN) ? val : bin2bcd_data[val]); 179 } 180 181 static void 182 secs_to_rtc(time_t rtctime, struct vrtc *vrtc, int force_update) 183 { 184 struct clocktime ct; 185 struct timespec ts; 186 struct rtcdev *rtc; 187 int hour; 188 189 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 190 191 if (rtctime < 0) { 192 KASSERT(rtctime == VRTC_BROKEN_TIME, 193 ("%s: invalid vrtc time %#lx", __func__, rtctime)); 194 return; 195 } 196 197 /* 198 * If the RTC is halted then the guest has "ownership" of the 199 * date/time fields. Don't update the RTC date/time fields in 200 * this case (unless forced). 201 */ 202 if (rtc_halted(vrtc) && !force_update) 203 return; 204 205 ts.tv_sec = rtctime; 206 ts.tv_nsec = 0; 207 clock_ts_to_ct(&ts, &ct); 208 209 KASSERT(ct.sec >= 0 && ct.sec <= 59, ("invalid clocktime sec %d", 210 ct.sec)); 211 KASSERT(ct.min >= 0 && ct.min <= 59, ("invalid clocktime min %d", 212 ct.min)); 213 KASSERT(ct.hour >= 0 && ct.hour <= 23, ("invalid clocktime hour %d", 214 ct.hour)); 215 KASSERT(ct.dow >= 0 && ct.dow <= 6, ("invalid clocktime wday %d", 216 ct.dow)); 217 KASSERT(ct.day >= 1 && ct.day <= 31, ("invalid clocktime mday %d", 218 ct.day)); 219 KASSERT(ct.mon >= 1 && ct.mon <= 12, ("invalid clocktime month %d", 220 ct.mon)); 221 KASSERT(ct.year >= POSIX_BASE_YEAR, ("invalid clocktime year %d", 222 ct.year)); 223 224 rtc = &vrtc->rtcdev; 225 rtc->sec = rtcset(rtc, ct.sec); 226 rtc->min = rtcset(rtc, ct.min); 227 228 if (rtc->reg_b & RTCSB_24HR) { 229 hour = ct.hour; 230 } else { 231 /* 232 * Convert to the 12-hour format. 233 */ 234 switch (ct.hour) { 235 case 0: /* 12 AM */ 236 case 12: /* 12 PM */ 237 hour = 12; 238 break; 239 default: 240 /* 241 * The remaining 'ct.hour' values are interpreted as: 242 * [1 - 11] -> 1 - 11 AM 243 * [13 - 23] -> 1 - 11 PM 244 */ 245 hour = ct.hour % 12; 246 break; 247 } 248 } 249 250 rtc->hour = rtcset(rtc, hour); 251 252 if ((rtc->reg_b & RTCSB_24HR) == 0 && ct.hour >= 12) 253 rtc->hour |= 0x80; /* set MSB to indicate PM */ 254 255 rtc->day_of_week = rtcset(rtc, ct.dow + 1); 256 rtc->day_of_month = rtcset(rtc, ct.day); 257 rtc->month = rtcset(rtc, ct.mon); 258 rtc->year = rtcset(rtc, ct.year % 100); 259 rtc->century = rtcset(rtc, ct.year / 100); 260 } 261 262 static int 263 rtcget(struct rtcdev *rtc, int val, int *retval) 264 { 265 uint8_t upper, lower; 266 267 if (rtc->reg_b & RTCSB_BIN) { 268 *retval = val; 269 return (0); 270 } 271 272 lower = val & 0xf; 273 upper = (val >> 4) & 0xf; 274 275 if (lower > 9 || upper > 9) 276 return (-1); 277 278 *retval = upper * 10 + lower; 279 return (0); 280 } 281 282 static time_t 283 rtc_to_secs(struct vrtc *vrtc) 284 { 285 struct clocktime ct; 286 struct timespec ts; 287 struct rtcdev *rtc; 288 #ifdef KTR 289 struct vm *vm = vrtc->vm; 290 #endif 291 int century, error, hour, pm, year; 292 293 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 294 295 rtc = &vrtc->rtcdev; 296 297 bzero(&ct, sizeof(struct clocktime)); 298 299 error = rtcget(rtc, rtc->sec, &ct.sec); 300 if (error || ct.sec < 0 || ct.sec > 59) { 301 VM_CTR2(vm, "Invalid RTC sec %#x/%d", rtc->sec, ct.sec); 302 goto fail; 303 } 304 305 error = rtcget(rtc, rtc->min, &ct.min); 306 if (error || ct.min < 0 || ct.min > 59) { 307 VM_CTR2(vm, "Invalid RTC min %#x/%d", rtc->min, ct.min); 308 goto fail; 309 } 310 311 pm = 0; 312 hour = rtc->hour; 313 if ((rtc->reg_b & RTCSB_24HR) == 0) { 314 if (hour & 0x80) { 315 hour &= ~0x80; 316 pm = 1; 317 } 318 } 319 error = rtcget(rtc, hour, &ct.hour); 320 if ((rtc->reg_b & RTCSB_24HR) == 0) { 321 if (ct.hour >= 1 && ct.hour <= 12) { 322 /* 323 * Convert from 12-hour format to internal 24-hour 324 * representation as follows: 325 * 326 * 12-hour format ct.hour 327 * 12 AM 0 328 * 1 - 11 AM 1 - 11 329 * 12 PM 12 330 * 1 - 11 PM 13 - 23 331 */ 332 if (ct.hour == 12) 333 ct.hour = 0; 334 if (pm) 335 ct.hour += 12; 336 } else { 337 VM_CTR2(vm, "Invalid RTC 12-hour format %#x/%d", 338 rtc->hour, ct.hour); 339 goto fail; 340 } 341 } 342 343 if (error || ct.hour < 0 || ct.hour > 23) { 344 VM_CTR2(vm, "Invalid RTC hour %#x/%d", rtc->hour, ct.hour); 345 goto fail; 346 } 347 348 /* 349 * Ignore 'rtc->dow' because some guests like Linux don't bother 350 * setting it at all while others like OpenBSD/i386 set it incorrectly. 351 * 352 * clock_ct_to_ts() does not depend on 'ct.dow' anyways so ignore it. 353 */ 354 ct.dow = -1; 355 356 error = rtcget(rtc, rtc->day_of_month, &ct.day); 357 if (error || ct.day < 1 || ct.day > 31) { 358 VM_CTR2(vm, "Invalid RTC mday %#x/%d", rtc->day_of_month, 359 ct.day); 360 goto fail; 361 } 362 363 error = rtcget(rtc, rtc->month, &ct.mon); 364 if (error || ct.mon < 1 || ct.mon > 12) { 365 VM_CTR2(vm, "Invalid RTC month %#x/%d", rtc->month, ct.mon); 366 goto fail; 367 } 368 369 error = rtcget(rtc, rtc->year, &year); 370 if (error || year < 0 || year > 99) { 371 VM_CTR2(vm, "Invalid RTC year %#x/%d", rtc->year, year); 372 goto fail; 373 } 374 375 error = rtcget(rtc, rtc->century, ¢ury); 376 ct.year = century * 100 + year; 377 if (error || ct.year < POSIX_BASE_YEAR) { 378 VM_CTR2(vm, "Invalid RTC century %#x/%d", rtc->century, 379 ct.year); 380 goto fail; 381 } 382 383 error = clock_ct_to_ts(&ct, &ts); 384 if (error || ts.tv_sec < 0) { 385 VM_CTR3(vm, "Invalid RTC clocktime.date %04d-%02d-%02d", 386 ct.year, ct.mon, ct.day); 387 VM_CTR3(vm, "Invalid RTC clocktime.time %02d:%02d:%02d", 388 ct.hour, ct.min, ct.sec); 389 goto fail; 390 } 391 return (ts.tv_sec); /* success */ 392 fail: 393 /* 394 * Stop updating the RTC if the date/time fields programmed by 395 * the guest are invalid. 396 */ 397 VM_CTR0(vrtc->vm, "Invalid RTC date/time programming detected"); 398 return (VRTC_BROKEN_TIME); 399 } 400 401 static int 402 vrtc_time_update(struct vrtc *vrtc, time_t newtime, sbintime_t newbase) 403 { 404 struct rtcdev *rtc; 405 time_t oldtime; 406 uint8_t alarm_sec, alarm_min, alarm_hour; 407 408 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 409 410 rtc = &vrtc->rtcdev; 411 alarm_sec = rtc->alarm_sec; 412 alarm_min = rtc->alarm_min; 413 alarm_hour = rtc->alarm_hour; 414 415 oldtime = vrtc->base_rtctime; 416 VM_CTR2(vrtc->vm, "Updating RTC secs from %#lx to %#lx", 417 oldtime, newtime); 418 419 VM_CTR2(vrtc->vm, "Updating RTC base uptime from %#lx to %#lx", 420 vrtc->base_uptime, newbase); 421 vrtc->base_uptime = newbase; 422 423 if (newtime == oldtime) 424 return (0); 425 426 /* 427 * If 'newtime' indicates that RTC updates are disabled then just 428 * record that and return. There is no need to do alarm interrupt 429 * processing in this case. 430 */ 431 if (newtime == VRTC_BROKEN_TIME) { 432 vrtc->base_rtctime = VRTC_BROKEN_TIME; 433 return (0); 434 } 435 436 /* 437 * Return an error if RTC updates are halted by the guest. 438 */ 439 if (rtc_halted(vrtc)) { 440 VM_CTR0(vrtc->vm, "RTC update halted by guest"); 441 return (EBUSY); 442 } 443 444 do { 445 /* 446 * If the alarm interrupt is enabled and 'oldtime' is valid 447 * then visit all the seconds between 'oldtime' and 'newtime' 448 * to check for the alarm condition. 449 * 450 * Otherwise move the RTC time forward directly to 'newtime'. 451 */ 452 if (aintr_enabled(vrtc) && oldtime != VRTC_BROKEN_TIME) 453 vrtc->base_rtctime++; 454 else 455 vrtc->base_rtctime = newtime; 456 457 if (aintr_enabled(vrtc)) { 458 /* 459 * Update the RTC date/time fields before checking 460 * if the alarm conditions are satisfied. 461 */ 462 secs_to_rtc(vrtc->base_rtctime, vrtc, 0); 463 464 if ((alarm_sec >= 0xC0 || alarm_sec == rtc->sec) && 465 (alarm_min >= 0xC0 || alarm_min == rtc->min) && 466 (alarm_hour >= 0xC0 || alarm_hour == rtc->hour)) { 467 vrtc_set_reg_c(vrtc, rtc->reg_c | RTCIR_ALARM); 468 } 469 } 470 } while (vrtc->base_rtctime != newtime); 471 472 if (uintr_enabled(vrtc)) 473 vrtc_set_reg_c(vrtc, rtc->reg_c | RTCIR_UPDATE); 474 475 return (0); 476 } 477 478 static sbintime_t 479 vrtc_freq(struct vrtc *vrtc) 480 { 481 int ratesel; 482 483 static sbintime_t pf[16] = { 484 0, 485 SBT_1S / 256, 486 SBT_1S / 128, 487 SBT_1S / 8192, 488 SBT_1S / 4096, 489 SBT_1S / 2048, 490 SBT_1S / 1024, 491 SBT_1S / 512, 492 SBT_1S / 256, 493 SBT_1S / 128, 494 SBT_1S / 64, 495 SBT_1S / 32, 496 SBT_1S / 16, 497 SBT_1S / 8, 498 SBT_1S / 4, 499 SBT_1S / 2, 500 }; 501 502 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 503 504 /* 505 * If both periodic and alarm interrupts are enabled then use the 506 * periodic frequency to drive the callout. The minimum periodic 507 * frequency (2 Hz) is higher than the alarm frequency (1 Hz) so 508 * piggyback the alarm on top of it. The same argument applies to 509 * the update interrupt. 510 */ 511 if (pintr_enabled(vrtc) && divider_enabled(vrtc->rtcdev.reg_a)) { 512 ratesel = vrtc->rtcdev.reg_a & 0xf; 513 return (pf[ratesel]); 514 } else if (aintr_enabled(vrtc) && update_enabled(vrtc)) { 515 return (SBT_1S); 516 } else if (uintr_enabled(vrtc) && update_enabled(vrtc)) { 517 return (SBT_1S); 518 } else { 519 return (0); 520 } 521 } 522 523 static void 524 vrtc_callout_reset(struct vrtc *vrtc, sbintime_t freqsbt) 525 { 526 527 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 528 529 if (freqsbt == 0) { 530 if (callout_active(&vrtc->callout)) { 531 VM_CTR0(vrtc->vm, "RTC callout stopped"); 532 callout_stop(&vrtc->callout); 533 } 534 return; 535 } 536 VM_CTR1(vrtc->vm, "RTC callout frequency %d hz", SBT_1S / freqsbt); 537 callout_reset_sbt(&vrtc->callout, freqsbt, 0, vrtc_callout_handler, 538 vrtc, 0); 539 } 540 541 static void 542 vrtc_callout_handler(void *arg) 543 { 544 struct vrtc *vrtc = arg; 545 sbintime_t freqsbt, basetime; 546 time_t rtctime; 547 int error __diagused; 548 549 VM_CTR0(vrtc->vm, "vrtc callout fired"); 550 551 VRTC_LOCK(vrtc); 552 if (callout_pending(&vrtc->callout)) /* callout was reset */ 553 goto done; 554 555 if (!callout_active(&vrtc->callout)) /* callout was stopped */ 556 goto done; 557 558 callout_deactivate(&vrtc->callout); 559 560 KASSERT((vrtc->rtcdev.reg_b & RTCSB_ALL_INTRS) != 0, 561 ("gratuitous vrtc callout")); 562 563 if (pintr_enabled(vrtc)) 564 vrtc_set_reg_c(vrtc, vrtc->rtcdev.reg_c | RTCIR_PERIOD); 565 566 if (aintr_enabled(vrtc) || uintr_enabled(vrtc)) { 567 rtctime = vrtc_curtime(vrtc, &basetime); 568 error = vrtc_time_update(vrtc, rtctime, basetime); 569 KASSERT(error == 0, ("%s: vrtc_time_update error %d", 570 __func__, error)); 571 } 572 573 freqsbt = vrtc_freq(vrtc); 574 KASSERT(freqsbt != 0, ("%s: vrtc frequency cannot be zero", __func__)); 575 vrtc_callout_reset(vrtc, freqsbt); 576 done: 577 VRTC_UNLOCK(vrtc); 578 } 579 580 static __inline void 581 vrtc_callout_check(struct vrtc *vrtc, sbintime_t freq) 582 { 583 int active __diagused; 584 585 active = callout_active(&vrtc->callout) ? 1 : 0; 586 KASSERT((freq == 0 && !active) || (freq != 0 && active), 587 ("vrtc callout %s with frequency %#lx", 588 active ? "active" : "inactive", freq)); 589 } 590 591 static void 592 vrtc_set_reg_c(struct vrtc *vrtc, uint8_t newval) 593 { 594 struct rtcdev *rtc; 595 int oldirqf, newirqf; 596 uint8_t oldval, changed; 597 598 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 599 600 rtc = &vrtc->rtcdev; 601 newval &= RTCIR_ALARM | RTCIR_PERIOD | RTCIR_UPDATE; 602 603 oldirqf = rtc->reg_c & RTCIR_INT; 604 if ((aintr_enabled(vrtc) && (newval & RTCIR_ALARM) != 0) || 605 (pintr_enabled(vrtc) && (newval & RTCIR_PERIOD) != 0) || 606 (uintr_enabled(vrtc) && (newval & RTCIR_UPDATE) != 0)) { 607 newirqf = RTCIR_INT; 608 } else { 609 newirqf = 0; 610 } 611 612 oldval = rtc->reg_c; 613 rtc->reg_c = newirqf | newval; 614 changed = oldval ^ rtc->reg_c; 615 if (changed) { 616 VM_CTR2(vrtc->vm, "RTC reg_c changed from %#x to %#x", 617 oldval, rtc->reg_c); 618 } 619 620 if (!oldirqf && newirqf) { 621 VM_CTR1(vrtc->vm, "RTC irq %d asserted", RTC_IRQ); 622 vatpic_pulse_irq(vrtc->vm, RTC_IRQ); 623 vioapic_pulse_irq(vrtc->vm, RTC_IRQ); 624 } else if (oldirqf && !newirqf) { 625 VM_CTR1(vrtc->vm, "RTC irq %d deasserted", RTC_IRQ); 626 } 627 } 628 629 static int 630 vrtc_set_reg_b(struct vrtc *vrtc, uint8_t newval) 631 { 632 struct rtcdev *rtc; 633 sbintime_t oldfreq, newfreq, basetime; 634 time_t curtime, rtctime; 635 int error __diagused; 636 uint8_t oldval, changed; 637 638 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 639 640 rtc = &vrtc->rtcdev; 641 oldval = rtc->reg_b; 642 oldfreq = vrtc_freq(vrtc); 643 644 rtc->reg_b = newval; 645 changed = oldval ^ newval; 646 if (changed) { 647 VM_CTR2(vrtc->vm, "RTC reg_b changed from %#x to %#x", 648 oldval, newval); 649 } 650 651 if (changed & RTCSB_HALT) { 652 if ((newval & RTCSB_HALT) == 0) { 653 rtctime = rtc_to_secs(vrtc); 654 basetime = sbinuptime(); 655 if (rtctime == VRTC_BROKEN_TIME) { 656 if (rtc_flag_broken_time) 657 return (-1); 658 } 659 } else { 660 curtime = vrtc_curtime(vrtc, &basetime); 661 KASSERT(curtime == vrtc->base_rtctime, ("%s: mismatch " 662 "between vrtc basetime (%#lx) and curtime (%#lx)", 663 __func__, vrtc->base_rtctime, curtime)); 664 665 /* 666 * Force a refresh of the RTC date/time fields so 667 * they reflect the time right before the guest set 668 * the HALT bit. 669 */ 670 secs_to_rtc(curtime, vrtc, 1); 671 672 /* 673 * Updates are halted so mark 'base_rtctime' to denote 674 * that the RTC date/time is in flux. 675 */ 676 rtctime = VRTC_BROKEN_TIME; 677 rtc->reg_b &= ~RTCSB_UINTR; 678 } 679 error = vrtc_time_update(vrtc, rtctime, basetime); 680 KASSERT(error == 0, ("vrtc_time_update error %d", error)); 681 } 682 683 /* 684 * Side effect of changes to the interrupt enable bits. 685 */ 686 if (changed & RTCSB_ALL_INTRS) 687 vrtc_set_reg_c(vrtc, vrtc->rtcdev.reg_c); 688 689 /* 690 * Change the callout frequency if it has changed. 691 */ 692 newfreq = vrtc_freq(vrtc); 693 if (newfreq != oldfreq) 694 vrtc_callout_reset(vrtc, newfreq); 695 else 696 vrtc_callout_check(vrtc, newfreq); 697 698 /* 699 * The side effect of bits that control the RTC date/time format 700 * is handled lazily when those fields are actually read. 701 */ 702 return (0); 703 } 704 705 static void 706 vrtc_set_reg_a(struct vrtc *vrtc, uint8_t newval) 707 { 708 sbintime_t oldfreq, newfreq; 709 uint8_t oldval, changed; 710 711 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 712 713 newval &= ~RTCSA_TUP; 714 oldval = vrtc->rtcdev.reg_a; 715 oldfreq = vrtc_freq(vrtc); 716 717 if (divider_enabled(oldval) && !divider_enabled(newval)) { 718 VM_CTR2(vrtc->vm, "RTC divider held in reset at %#lx/%#lx", 719 vrtc->base_rtctime, vrtc->base_uptime); 720 } else if (!divider_enabled(oldval) && divider_enabled(newval)) { 721 /* 722 * If the dividers are coming out of reset then update 723 * 'base_uptime' before this happens. This is done to 724 * maintain the illusion that the RTC date/time was frozen 725 * while the dividers were disabled. 726 */ 727 vrtc->base_uptime = sbinuptime(); 728 VM_CTR2(vrtc->vm, "RTC divider out of reset at %#lx/%#lx", 729 vrtc->base_rtctime, vrtc->base_uptime); 730 } else { 731 /* NOTHING */ 732 } 733 734 vrtc->rtcdev.reg_a = newval; 735 changed = oldval ^ newval; 736 if (changed) { 737 VM_CTR2(vrtc->vm, "RTC reg_a changed from %#x to %#x", 738 oldval, newval); 739 } 740 741 /* 742 * Side effect of changes to rate select and divider enable bits. 743 */ 744 newfreq = vrtc_freq(vrtc); 745 if (newfreq != oldfreq) 746 vrtc_callout_reset(vrtc, newfreq); 747 else 748 vrtc_callout_check(vrtc, newfreq); 749 } 750 751 int 752 vrtc_set_time(struct vm *vm, time_t secs) 753 { 754 struct vrtc *vrtc; 755 int error; 756 757 vrtc = vm_rtc(vm); 758 VRTC_LOCK(vrtc); 759 error = vrtc_time_update(vrtc, secs, sbinuptime()); 760 VRTC_UNLOCK(vrtc); 761 762 if (error) { 763 VM_CTR2(vrtc->vm, "Error %d setting RTC time to %#lx", error, 764 secs); 765 } else { 766 VM_CTR1(vrtc->vm, "RTC time set to %#lx", secs); 767 } 768 769 return (error); 770 } 771 772 time_t 773 vrtc_get_time(struct vm *vm) 774 { 775 struct vrtc *vrtc; 776 sbintime_t basetime; 777 time_t t; 778 779 vrtc = vm_rtc(vm); 780 VRTC_LOCK(vrtc); 781 t = vrtc_curtime(vrtc, &basetime); 782 VRTC_UNLOCK(vrtc); 783 784 return (t); 785 } 786 787 int 788 vrtc_nvram_write(struct vm *vm, int offset, uint8_t value) 789 { 790 struct vrtc *vrtc; 791 uint8_t *ptr; 792 793 vrtc = vm_rtc(vm); 794 795 /* 796 * Don't allow writes to RTC control registers or the date/time fields. 797 */ 798 if (offset < offsetof(struct rtcdev, nvram[0]) || 799 offset == RTC_CENTURY || offset >= sizeof(struct rtcdev)) { 800 VM_CTR1(vrtc->vm, "RTC nvram write to invalid offset %d", 801 offset); 802 return (EINVAL); 803 } 804 805 VRTC_LOCK(vrtc); 806 ptr = (uint8_t *)(&vrtc->rtcdev); 807 ptr[offset] = value; 808 VM_CTR2(vrtc->vm, "RTC nvram write %#x to offset %#x", value, offset); 809 VRTC_UNLOCK(vrtc); 810 811 return (0); 812 } 813 814 int 815 vrtc_nvram_read(struct vm *vm, int offset, uint8_t *retval) 816 { 817 struct vrtc *vrtc; 818 sbintime_t basetime; 819 time_t curtime; 820 uint8_t *ptr; 821 822 /* 823 * Allow all offsets in the RTC to be read. 824 */ 825 if (offset < 0 || offset >= sizeof(struct rtcdev)) 826 return (EINVAL); 827 828 vrtc = vm_rtc(vm); 829 VRTC_LOCK(vrtc); 830 831 /* 832 * Update RTC date/time fields if necessary. 833 */ 834 if (offset < 10 || offset == RTC_CENTURY) { 835 curtime = vrtc_curtime(vrtc, &basetime); 836 secs_to_rtc(curtime, vrtc, 0); 837 } 838 839 ptr = (uint8_t *)(&vrtc->rtcdev); 840 *retval = ptr[offset]; 841 842 VRTC_UNLOCK(vrtc); 843 return (0); 844 } 845 846 int 847 vrtc_addr_handler(struct vm *vm, bool in, int port, int bytes, uint32_t *val) 848 { 849 struct vrtc *vrtc; 850 851 vrtc = vm_rtc(vm); 852 853 if (bytes != 1) 854 return (-1); 855 856 if (in) { 857 *val = 0xff; 858 return (0); 859 } 860 861 VRTC_LOCK(vrtc); 862 vrtc->addr = *val & 0x7f; 863 VRTC_UNLOCK(vrtc); 864 865 return (0); 866 } 867 868 int 869 vrtc_data_handler(struct vm *vm, bool in, int port, int bytes, uint32_t *val) 870 { 871 struct vrtc *vrtc; 872 struct rtcdev *rtc; 873 sbintime_t basetime; 874 time_t curtime; 875 int error, offset; 876 877 vrtc = vm_rtc(vm); 878 rtc = &vrtc->rtcdev; 879 880 if (bytes != 1) 881 return (-1); 882 883 VRTC_LOCK(vrtc); 884 offset = vrtc->addr; 885 if (offset >= sizeof(struct rtcdev)) { 886 VRTC_UNLOCK(vrtc); 887 return (-1); 888 } 889 890 error = 0; 891 curtime = vrtc_curtime(vrtc, &basetime); 892 vrtc_time_update(vrtc, curtime, basetime); 893 894 /* 895 * Update RTC date/time fields if necessary. 896 * 897 * This is not just for reads of the RTC. The side-effect of writing 898 * the century byte requires other RTC date/time fields (e.g. sec) 899 * to be updated here. 900 */ 901 if (offset < 10 || offset == RTC_CENTURY) 902 secs_to_rtc(curtime, vrtc, 0); 903 904 if (in) { 905 if (offset == 12) { 906 /* 907 * XXX 908 * reg_c interrupt flags are updated only if the 909 * corresponding interrupt enable bit in reg_b is set. 910 */ 911 *val = vrtc->rtcdev.reg_c; 912 vrtc_set_reg_c(vrtc, 0); 913 } else { 914 *val = *((uint8_t *)rtc + offset); 915 } 916 VM_CTR2(vm, "Read value %#x from RTC offset %#x", 917 *val, offset); 918 } else { 919 switch (offset) { 920 case 10: 921 VM_CTR1(vm, "RTC reg_a set to %#x", *val); 922 vrtc_set_reg_a(vrtc, *val); 923 break; 924 case 11: 925 VM_CTR1(vm, "RTC reg_b set to %#x", *val); 926 error = vrtc_set_reg_b(vrtc, *val); 927 break; 928 case 12: 929 VM_CTR1(vm, "RTC reg_c set to %#x (ignored)", 930 *val); 931 break; 932 case 13: 933 VM_CTR1(vm, "RTC reg_d set to %#x (ignored)", 934 *val); 935 break; 936 case 0: 937 /* 938 * High order bit of 'seconds' is readonly. 939 */ 940 *val &= 0x7f; 941 /* FALLTHRU */ 942 default: 943 VM_CTR2(vm, "RTC offset %#x set to %#x", 944 offset, *val); 945 *((uint8_t *)rtc + offset) = *val; 946 break; 947 } 948 949 /* 950 * XXX some guests (e.g. OpenBSD) write the century byte 951 * outside of RTCSB_HALT so re-calculate the RTC date/time. 952 */ 953 if (offset == RTC_CENTURY && !rtc_halted(vrtc)) { 954 curtime = rtc_to_secs(vrtc); 955 error = vrtc_time_update(vrtc, curtime, sbinuptime()); 956 KASSERT(!error, ("vrtc_time_update error %d", error)); 957 if (curtime == VRTC_BROKEN_TIME && rtc_flag_broken_time) 958 error = -1; 959 } 960 } 961 VRTC_UNLOCK(vrtc); 962 return (error); 963 } 964 965 void 966 vrtc_reset(struct vrtc *vrtc) 967 { 968 struct rtcdev *rtc; 969 970 VRTC_LOCK(vrtc); 971 972 rtc = &vrtc->rtcdev; 973 vrtc_set_reg_b(vrtc, rtc->reg_b & ~(RTCSB_ALL_INTRS | RTCSB_SQWE)); 974 vrtc_set_reg_c(vrtc, 0); 975 KASSERT(!callout_active(&vrtc->callout), ("rtc callout still active")); 976 977 VRTC_UNLOCK(vrtc); 978 } 979 980 struct vrtc * 981 vrtc_init(struct vm *vm) 982 { 983 struct vrtc *vrtc; 984 struct rtcdev *rtc; 985 time_t curtime; 986 987 vrtc = malloc(sizeof(struct vrtc), M_VRTC, M_WAITOK | M_ZERO); 988 vrtc->vm = vm; 989 mtx_init(&vrtc->mtx, "vrtc lock", NULL, MTX_DEF); 990 callout_init(&vrtc->callout, 1); 991 992 /* Allow dividers to keep time but disable everything else */ 993 rtc = &vrtc->rtcdev; 994 rtc->reg_a = 0x20; 995 rtc->reg_b = RTCSB_24HR; 996 rtc->reg_c = 0; 997 rtc->reg_d = RTCSD_PWR; 998 999 /* Reset the index register to a safe value. */ 1000 vrtc->addr = RTC_STATUSD; 1001 1002 /* 1003 * Initialize RTC time to 00:00:00 Jan 1, 1970. 1004 */ 1005 curtime = 0; 1006 1007 VRTC_LOCK(vrtc); 1008 vrtc->base_rtctime = VRTC_BROKEN_TIME; 1009 vrtc_time_update(vrtc, curtime, sbinuptime()); 1010 secs_to_rtc(curtime, vrtc, 0); 1011 VRTC_UNLOCK(vrtc); 1012 1013 return (vrtc); 1014 } 1015 1016 void 1017 vrtc_cleanup(struct vrtc *vrtc) 1018 { 1019 1020 callout_drain(&vrtc->callout); 1021 mtx_destroy(&vrtc->mtx); 1022 free(vrtc, M_VRTC); 1023 } 1024 1025 #ifdef BHYVE_SNAPSHOT 1026 int 1027 vrtc_snapshot(struct vrtc *vrtc, struct vm_snapshot_meta *meta) 1028 { 1029 int ret; 1030 1031 VRTC_LOCK(vrtc); 1032 1033 SNAPSHOT_VAR_OR_LEAVE(vrtc->addr, meta, ret, done); 1034 if (meta->op == VM_SNAPSHOT_RESTORE) 1035 vrtc->base_uptime = sbinuptime(); 1036 SNAPSHOT_VAR_OR_LEAVE(vrtc->base_rtctime, meta, ret, done); 1037 1038 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.sec, meta, ret, done); 1039 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.alarm_sec, meta, ret, done); 1040 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.min, meta, ret, done); 1041 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.alarm_min, meta, ret, done); 1042 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.hour, meta, ret, done); 1043 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.alarm_hour, meta, ret, done); 1044 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.day_of_week, meta, ret, done); 1045 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.day_of_month, meta, ret, done); 1046 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.month, meta, ret, done); 1047 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.year, meta, ret, done); 1048 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.reg_a, meta, ret, done); 1049 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.reg_b, meta, ret, done); 1050 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.reg_c, meta, ret, done); 1051 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.reg_d, meta, ret, done); 1052 SNAPSHOT_BUF_OR_LEAVE(vrtc->rtcdev.nvram, sizeof(vrtc->rtcdev.nvram), 1053 meta, ret, done); 1054 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.century, meta, ret, done); 1055 SNAPSHOT_BUF_OR_LEAVE(vrtc->rtcdev.nvram2, sizeof(vrtc->rtcdev.nvram2), 1056 meta, ret, done); 1057 1058 vrtc_callout_reset(vrtc, vrtc_freq(vrtc)); 1059 1060 VRTC_UNLOCK(vrtc); 1061 1062 done: 1063 return (ret); 1064 } 1065 #endif 1066