1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014, Neel Natu (neel@freebsd.org) 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include "opt_bhyve_snapshot.h" 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/queue.h> 35 #include <sys/kernel.h> 36 #include <sys/malloc.h> 37 #include <sys/lock.h> 38 #include <sys/mutex.h> 39 #include <sys/clock.h> 40 #include <sys/sysctl.h> 41 42 #include <machine/vmm.h> 43 #include <machine/vmm_snapshot.h> 44 45 #include <isa/rtc.h> 46 47 #include <dev/vmm/vmm_ktr.h> 48 49 #include "vatpic.h" 50 #include "vioapic.h" 51 #include "vrtc.h" 52 53 /* Register layout of the RTC */ 54 struct rtcdev { 55 uint8_t sec; 56 uint8_t alarm_sec; 57 uint8_t min; 58 uint8_t alarm_min; 59 uint8_t hour; 60 uint8_t alarm_hour; 61 uint8_t day_of_week; 62 uint8_t day_of_month; 63 uint8_t month; 64 uint8_t year; 65 uint8_t reg_a; 66 uint8_t reg_b; 67 uint8_t reg_c; 68 uint8_t reg_d; 69 uint8_t nvram[36]; 70 uint8_t century; 71 uint8_t nvram2[128 - 51]; 72 } __packed; 73 CTASSERT(sizeof(struct rtcdev) == 128); 74 CTASSERT(offsetof(struct rtcdev, century) == RTC_CENTURY); 75 76 struct vrtc { 77 struct vm *vm; 78 struct mtx mtx; 79 struct callout callout; 80 u_int addr; /* RTC register to read or write */ 81 sbintime_t base_uptime; 82 time_t base_rtctime; 83 struct rtcdev rtcdev; 84 }; 85 86 #define VRTC_LOCK(vrtc) mtx_lock(&((vrtc)->mtx)) 87 #define VRTC_UNLOCK(vrtc) mtx_unlock(&((vrtc)->mtx)) 88 #define VRTC_LOCKED(vrtc) mtx_owned(&((vrtc)->mtx)) 89 90 /* 91 * RTC time is considered "broken" if: 92 * - RTC updates are halted by the guest 93 * - RTC date/time fields have invalid values 94 */ 95 #define VRTC_BROKEN_TIME ((time_t)-1) 96 97 #define RTC_IRQ 8 98 #define RTCSB_BIN 0x04 99 #define RTCSB_ALL_INTRS (RTCSB_UINTR | RTCSB_AINTR | RTCSB_PINTR) 100 #define rtc_halted(vrtc) ((vrtc->rtcdev.reg_b & RTCSB_HALT) != 0) 101 #define aintr_enabled(vrtc) (((vrtc)->rtcdev.reg_b & RTCSB_AINTR) != 0) 102 #define pintr_enabled(vrtc) (((vrtc)->rtcdev.reg_b & RTCSB_PINTR) != 0) 103 #define uintr_enabled(vrtc) (((vrtc)->rtcdev.reg_b & RTCSB_UINTR) != 0) 104 105 static void vrtc_callout_handler(void *arg); 106 static void vrtc_set_reg_c(struct vrtc *vrtc, uint8_t newval); 107 108 static MALLOC_DEFINE(M_VRTC, "vrtc", "bhyve virtual rtc"); 109 110 SYSCTL_DECL(_hw_vmm); 111 SYSCTL_NODE(_hw_vmm, OID_AUTO, vrtc, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 112 NULL); 113 114 static int rtc_flag_broken_time = 1; 115 SYSCTL_INT(_hw_vmm_vrtc, OID_AUTO, flag_broken_time, CTLFLAG_RDTUN, 116 &rtc_flag_broken_time, 0, "Stop guest when invalid RTC time is detected"); 117 118 static __inline bool 119 divider_enabled(int reg_a) 120 { 121 /* 122 * The RTC is counting only when dividers are not held in reset. 123 */ 124 return ((reg_a & 0x70) == 0x20); 125 } 126 127 static __inline bool 128 update_enabled(struct vrtc *vrtc) 129 { 130 /* 131 * RTC date/time can be updated only if: 132 * - divider is not held in reset 133 * - guest has not disabled updates 134 * - the date/time fields have valid contents 135 */ 136 if (!divider_enabled(vrtc->rtcdev.reg_a)) 137 return (false); 138 139 if (rtc_halted(vrtc)) 140 return (false); 141 142 if (vrtc->base_rtctime == VRTC_BROKEN_TIME) 143 return (false); 144 145 return (true); 146 } 147 148 static time_t 149 vrtc_curtime(struct vrtc *vrtc, sbintime_t *basetime) 150 { 151 sbintime_t now, delta; 152 time_t t, secs; 153 154 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 155 156 t = vrtc->base_rtctime; 157 *basetime = vrtc->base_uptime; 158 if (update_enabled(vrtc)) { 159 now = sbinuptime(); 160 delta = now - vrtc->base_uptime; 161 KASSERT(delta >= 0, ("vrtc_curtime: uptime went backwards: " 162 "%#lx to %#lx", vrtc->base_uptime, now)); 163 secs = delta / SBT_1S; 164 t += secs; 165 *basetime += secs * SBT_1S; 166 } 167 return (t); 168 } 169 170 static __inline uint8_t 171 rtcset(struct rtcdev *rtc, int val) 172 { 173 174 KASSERT(val >= 0 && val < 100, ("%s: invalid bin2bcd index %d", 175 __func__, val)); 176 177 return ((rtc->reg_b & RTCSB_BIN) ? val : bin2bcd_data[val]); 178 } 179 180 static void 181 secs_to_rtc(time_t rtctime, struct vrtc *vrtc, int force_update) 182 { 183 struct clocktime ct; 184 struct timespec ts; 185 struct rtcdev *rtc; 186 int hour; 187 188 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 189 190 if (rtctime < 0) { 191 KASSERT(rtctime == VRTC_BROKEN_TIME, 192 ("%s: invalid vrtc time %#lx", __func__, rtctime)); 193 return; 194 } 195 196 /* 197 * If the RTC is halted then the guest has "ownership" of the 198 * date/time fields. Don't update the RTC date/time fields in 199 * this case (unless forced). 200 */ 201 if (rtc_halted(vrtc) && !force_update) 202 return; 203 204 ts.tv_sec = rtctime; 205 ts.tv_nsec = 0; 206 clock_ts_to_ct(&ts, &ct); 207 208 KASSERT(ct.sec >= 0 && ct.sec <= 59, ("invalid clocktime sec %d", 209 ct.sec)); 210 KASSERT(ct.min >= 0 && ct.min <= 59, ("invalid clocktime min %d", 211 ct.min)); 212 KASSERT(ct.hour >= 0 && ct.hour <= 23, ("invalid clocktime hour %d", 213 ct.hour)); 214 KASSERT(ct.dow >= 0 && ct.dow <= 6, ("invalid clocktime wday %d", 215 ct.dow)); 216 KASSERT(ct.day >= 1 && ct.day <= 31, ("invalid clocktime mday %d", 217 ct.day)); 218 KASSERT(ct.mon >= 1 && ct.mon <= 12, ("invalid clocktime month %d", 219 ct.mon)); 220 KASSERT(ct.year >= POSIX_BASE_YEAR, ("invalid clocktime year %d", 221 ct.year)); 222 223 rtc = &vrtc->rtcdev; 224 rtc->sec = rtcset(rtc, ct.sec); 225 rtc->min = rtcset(rtc, ct.min); 226 227 if (rtc->reg_b & RTCSB_24HR) { 228 hour = ct.hour; 229 } else { 230 /* 231 * Convert to the 12-hour format. 232 */ 233 switch (ct.hour) { 234 case 0: /* 12 AM */ 235 case 12: /* 12 PM */ 236 hour = 12; 237 break; 238 default: 239 /* 240 * The remaining 'ct.hour' values are interpreted as: 241 * [1 - 11] -> 1 - 11 AM 242 * [13 - 23] -> 1 - 11 PM 243 */ 244 hour = ct.hour % 12; 245 break; 246 } 247 } 248 249 rtc->hour = rtcset(rtc, hour); 250 251 if ((rtc->reg_b & RTCSB_24HR) == 0 && ct.hour >= 12) 252 rtc->hour |= 0x80; /* set MSB to indicate PM */ 253 254 rtc->day_of_week = rtcset(rtc, ct.dow + 1); 255 rtc->day_of_month = rtcset(rtc, ct.day); 256 rtc->month = rtcset(rtc, ct.mon); 257 rtc->year = rtcset(rtc, ct.year % 100); 258 rtc->century = rtcset(rtc, ct.year / 100); 259 } 260 261 static int 262 rtcget(struct rtcdev *rtc, int val, int *retval) 263 { 264 uint8_t upper, lower; 265 266 if (rtc->reg_b & RTCSB_BIN) { 267 *retval = val; 268 return (0); 269 } 270 271 lower = val & 0xf; 272 upper = (val >> 4) & 0xf; 273 274 if (lower > 9 || upper > 9) 275 return (-1); 276 277 *retval = upper * 10 + lower; 278 return (0); 279 } 280 281 static time_t 282 rtc_to_secs(struct vrtc *vrtc) 283 { 284 struct clocktime ct; 285 struct timespec ts; 286 struct rtcdev *rtc; 287 #ifdef KTR 288 struct vm *vm = vrtc->vm; 289 #endif 290 int century, error, hour, pm, year; 291 292 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 293 294 rtc = &vrtc->rtcdev; 295 296 bzero(&ct, sizeof(struct clocktime)); 297 298 error = rtcget(rtc, rtc->sec, &ct.sec); 299 if (error || ct.sec < 0 || ct.sec > 59) { 300 VM_CTR2(vm, "Invalid RTC sec %#x/%d", rtc->sec, ct.sec); 301 goto fail; 302 } 303 304 error = rtcget(rtc, rtc->min, &ct.min); 305 if (error || ct.min < 0 || ct.min > 59) { 306 VM_CTR2(vm, "Invalid RTC min %#x/%d", rtc->min, ct.min); 307 goto fail; 308 } 309 310 pm = 0; 311 hour = rtc->hour; 312 if ((rtc->reg_b & RTCSB_24HR) == 0) { 313 if (hour & 0x80) { 314 hour &= ~0x80; 315 pm = 1; 316 } 317 } 318 error = rtcget(rtc, hour, &ct.hour); 319 if ((rtc->reg_b & RTCSB_24HR) == 0) { 320 if (ct.hour >= 1 && ct.hour <= 12) { 321 /* 322 * Convert from 12-hour format to internal 24-hour 323 * representation as follows: 324 * 325 * 12-hour format ct.hour 326 * 12 AM 0 327 * 1 - 11 AM 1 - 11 328 * 12 PM 12 329 * 1 - 11 PM 13 - 23 330 */ 331 if (ct.hour == 12) 332 ct.hour = 0; 333 if (pm) 334 ct.hour += 12; 335 } else { 336 VM_CTR2(vm, "Invalid RTC 12-hour format %#x/%d", 337 rtc->hour, ct.hour); 338 goto fail; 339 } 340 } 341 342 if (error || ct.hour < 0 || ct.hour > 23) { 343 VM_CTR2(vm, "Invalid RTC hour %#x/%d", rtc->hour, ct.hour); 344 goto fail; 345 } 346 347 /* 348 * Ignore 'rtc->dow' because some guests like Linux don't bother 349 * setting it at all while others like OpenBSD/i386 set it incorrectly. 350 * 351 * clock_ct_to_ts() does not depend on 'ct.dow' anyways so ignore it. 352 */ 353 ct.dow = -1; 354 355 error = rtcget(rtc, rtc->day_of_month, &ct.day); 356 if (error || ct.day < 1 || ct.day > 31) { 357 VM_CTR2(vm, "Invalid RTC mday %#x/%d", rtc->day_of_month, 358 ct.day); 359 goto fail; 360 } 361 362 error = rtcget(rtc, rtc->month, &ct.mon); 363 if (error || ct.mon < 1 || ct.mon > 12) { 364 VM_CTR2(vm, "Invalid RTC month %#x/%d", rtc->month, ct.mon); 365 goto fail; 366 } 367 368 error = rtcget(rtc, rtc->year, &year); 369 if (error || year < 0 || year > 99) { 370 VM_CTR2(vm, "Invalid RTC year %#x/%d", rtc->year, year); 371 goto fail; 372 } 373 374 error = rtcget(rtc, rtc->century, ¢ury); 375 ct.year = century * 100 + year; 376 if (error || ct.year < POSIX_BASE_YEAR) { 377 VM_CTR2(vm, "Invalid RTC century %#x/%d", rtc->century, 378 ct.year); 379 goto fail; 380 } 381 382 error = clock_ct_to_ts(&ct, &ts); 383 if (error || ts.tv_sec < 0) { 384 VM_CTR3(vm, "Invalid RTC clocktime.date %04d-%02d-%02d", 385 ct.year, ct.mon, ct.day); 386 VM_CTR3(vm, "Invalid RTC clocktime.time %02d:%02d:%02d", 387 ct.hour, ct.min, ct.sec); 388 goto fail; 389 } 390 return (ts.tv_sec); /* success */ 391 fail: 392 /* 393 * Stop updating the RTC if the date/time fields programmed by 394 * the guest are invalid. 395 */ 396 VM_CTR0(vrtc->vm, "Invalid RTC date/time programming detected"); 397 return (VRTC_BROKEN_TIME); 398 } 399 400 static int 401 vrtc_time_update(struct vrtc *vrtc, time_t newtime, sbintime_t newbase) 402 { 403 struct rtcdev *rtc; 404 time_t oldtime; 405 uint8_t alarm_sec, alarm_min, alarm_hour; 406 407 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 408 409 rtc = &vrtc->rtcdev; 410 alarm_sec = rtc->alarm_sec; 411 alarm_min = rtc->alarm_min; 412 alarm_hour = rtc->alarm_hour; 413 414 oldtime = vrtc->base_rtctime; 415 VM_CTR2(vrtc->vm, "Updating RTC secs from %#lx to %#lx", 416 oldtime, newtime); 417 418 VM_CTR2(vrtc->vm, "Updating RTC base uptime from %#lx to %#lx", 419 vrtc->base_uptime, newbase); 420 vrtc->base_uptime = newbase; 421 422 if (newtime == oldtime) 423 return (0); 424 425 /* 426 * If 'newtime' indicates that RTC updates are disabled then just 427 * record that and return. There is no need to do alarm interrupt 428 * processing in this case. 429 */ 430 if (newtime == VRTC_BROKEN_TIME) { 431 vrtc->base_rtctime = VRTC_BROKEN_TIME; 432 return (0); 433 } 434 435 /* 436 * Return an error if RTC updates are halted by the guest. 437 */ 438 if (rtc_halted(vrtc)) { 439 VM_CTR0(vrtc->vm, "RTC update halted by guest"); 440 return (EBUSY); 441 } 442 443 do { 444 /* 445 * If the alarm interrupt is enabled and 'oldtime' is valid 446 * then visit all the seconds between 'oldtime' and 'newtime' 447 * to check for the alarm condition. 448 * 449 * Otherwise move the RTC time forward directly to 'newtime'. 450 */ 451 if (aintr_enabled(vrtc) && oldtime != VRTC_BROKEN_TIME) 452 vrtc->base_rtctime++; 453 else 454 vrtc->base_rtctime = newtime; 455 456 if (aintr_enabled(vrtc)) { 457 /* 458 * Update the RTC date/time fields before checking 459 * if the alarm conditions are satisfied. 460 */ 461 secs_to_rtc(vrtc->base_rtctime, vrtc, 0); 462 463 if ((alarm_sec >= 0xC0 || alarm_sec == rtc->sec) && 464 (alarm_min >= 0xC0 || alarm_min == rtc->min) && 465 (alarm_hour >= 0xC0 || alarm_hour == rtc->hour)) { 466 vrtc_set_reg_c(vrtc, rtc->reg_c | RTCIR_ALARM); 467 } 468 } 469 } while (vrtc->base_rtctime != newtime); 470 471 if (uintr_enabled(vrtc)) 472 vrtc_set_reg_c(vrtc, rtc->reg_c | RTCIR_UPDATE); 473 474 return (0); 475 } 476 477 static sbintime_t 478 vrtc_freq(struct vrtc *vrtc) 479 { 480 int ratesel; 481 482 static sbintime_t pf[16] = { 483 0, 484 SBT_1S / 256, 485 SBT_1S / 128, 486 SBT_1S / 8192, 487 SBT_1S / 4096, 488 SBT_1S / 2048, 489 SBT_1S / 1024, 490 SBT_1S / 512, 491 SBT_1S / 256, 492 SBT_1S / 128, 493 SBT_1S / 64, 494 SBT_1S / 32, 495 SBT_1S / 16, 496 SBT_1S / 8, 497 SBT_1S / 4, 498 SBT_1S / 2, 499 }; 500 501 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 502 503 /* 504 * If both periodic and alarm interrupts are enabled then use the 505 * periodic frequency to drive the callout. The minimum periodic 506 * frequency (2 Hz) is higher than the alarm frequency (1 Hz) so 507 * piggyback the alarm on top of it. The same argument applies to 508 * the update interrupt. 509 */ 510 if (pintr_enabled(vrtc) && divider_enabled(vrtc->rtcdev.reg_a)) { 511 ratesel = vrtc->rtcdev.reg_a & 0xf; 512 return (pf[ratesel]); 513 } else if (aintr_enabled(vrtc) && update_enabled(vrtc)) { 514 return (SBT_1S); 515 } else if (uintr_enabled(vrtc) && update_enabled(vrtc)) { 516 return (SBT_1S); 517 } else { 518 return (0); 519 } 520 } 521 522 static void 523 vrtc_callout_reset(struct vrtc *vrtc, sbintime_t freqsbt) 524 { 525 526 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 527 528 if (freqsbt == 0) { 529 if (callout_active(&vrtc->callout)) { 530 VM_CTR0(vrtc->vm, "RTC callout stopped"); 531 callout_stop(&vrtc->callout); 532 } 533 return; 534 } 535 VM_CTR1(vrtc->vm, "RTC callout frequency %d hz", SBT_1S / freqsbt); 536 callout_reset_sbt(&vrtc->callout, freqsbt, 0, vrtc_callout_handler, 537 vrtc, 0); 538 } 539 540 static void 541 vrtc_callout_handler(void *arg) 542 { 543 struct vrtc *vrtc = arg; 544 sbintime_t freqsbt, basetime; 545 time_t rtctime; 546 int error __diagused; 547 548 VM_CTR0(vrtc->vm, "vrtc callout fired"); 549 550 VRTC_LOCK(vrtc); 551 if (callout_pending(&vrtc->callout)) /* callout was reset */ 552 goto done; 553 554 if (!callout_active(&vrtc->callout)) /* callout was stopped */ 555 goto done; 556 557 callout_deactivate(&vrtc->callout); 558 559 KASSERT((vrtc->rtcdev.reg_b & RTCSB_ALL_INTRS) != 0, 560 ("gratuitous vrtc callout")); 561 562 if (pintr_enabled(vrtc)) 563 vrtc_set_reg_c(vrtc, vrtc->rtcdev.reg_c | RTCIR_PERIOD); 564 565 if (aintr_enabled(vrtc) || uintr_enabled(vrtc)) { 566 rtctime = vrtc_curtime(vrtc, &basetime); 567 error = vrtc_time_update(vrtc, rtctime, basetime); 568 KASSERT(error == 0, ("%s: vrtc_time_update error %d", 569 __func__, error)); 570 } 571 572 freqsbt = vrtc_freq(vrtc); 573 KASSERT(freqsbt != 0, ("%s: vrtc frequency cannot be zero", __func__)); 574 vrtc_callout_reset(vrtc, freqsbt); 575 done: 576 VRTC_UNLOCK(vrtc); 577 } 578 579 static __inline void 580 vrtc_callout_check(struct vrtc *vrtc, sbintime_t freq) 581 { 582 int active __diagused; 583 584 active = callout_active(&vrtc->callout) ? 1 : 0; 585 KASSERT((freq == 0 && !active) || (freq != 0 && active), 586 ("vrtc callout %s with frequency %#lx", 587 active ? "active" : "inactive", freq)); 588 } 589 590 static void 591 vrtc_set_reg_c(struct vrtc *vrtc, uint8_t newval) 592 { 593 struct rtcdev *rtc; 594 int oldirqf, newirqf; 595 uint8_t oldval, changed; 596 597 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 598 599 rtc = &vrtc->rtcdev; 600 newval &= RTCIR_ALARM | RTCIR_PERIOD | RTCIR_UPDATE; 601 602 oldirqf = rtc->reg_c & RTCIR_INT; 603 if ((aintr_enabled(vrtc) && (newval & RTCIR_ALARM) != 0) || 604 (pintr_enabled(vrtc) && (newval & RTCIR_PERIOD) != 0) || 605 (uintr_enabled(vrtc) && (newval & RTCIR_UPDATE) != 0)) { 606 newirqf = RTCIR_INT; 607 } else { 608 newirqf = 0; 609 } 610 611 oldval = rtc->reg_c; 612 rtc->reg_c = newirqf | newval; 613 changed = oldval ^ rtc->reg_c; 614 if (changed) { 615 VM_CTR2(vrtc->vm, "RTC reg_c changed from %#x to %#x", 616 oldval, rtc->reg_c); 617 } 618 619 if (!oldirqf && newirqf) { 620 VM_CTR1(vrtc->vm, "RTC irq %d asserted", RTC_IRQ); 621 vatpic_pulse_irq(vrtc->vm, RTC_IRQ); 622 vioapic_pulse_irq(vrtc->vm, RTC_IRQ); 623 } else if (oldirqf && !newirqf) { 624 VM_CTR1(vrtc->vm, "RTC irq %d deasserted", RTC_IRQ); 625 } 626 } 627 628 static int 629 vrtc_set_reg_b(struct vrtc *vrtc, uint8_t newval) 630 { 631 struct rtcdev *rtc; 632 sbintime_t oldfreq, newfreq, basetime; 633 time_t curtime, rtctime; 634 int error __diagused; 635 uint8_t oldval, changed; 636 637 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 638 639 rtc = &vrtc->rtcdev; 640 oldval = rtc->reg_b; 641 oldfreq = vrtc_freq(vrtc); 642 643 rtc->reg_b = newval; 644 changed = oldval ^ newval; 645 if (changed) { 646 VM_CTR2(vrtc->vm, "RTC reg_b changed from %#x to %#x", 647 oldval, newval); 648 } 649 650 if (changed & RTCSB_HALT) { 651 if ((newval & RTCSB_HALT) == 0) { 652 rtctime = rtc_to_secs(vrtc); 653 basetime = sbinuptime(); 654 if (rtctime == VRTC_BROKEN_TIME) { 655 if (rtc_flag_broken_time) 656 return (-1); 657 } 658 } else { 659 curtime = vrtc_curtime(vrtc, &basetime); 660 KASSERT(curtime == vrtc->base_rtctime, ("%s: mismatch " 661 "between vrtc basetime (%#lx) and curtime (%#lx)", 662 __func__, vrtc->base_rtctime, curtime)); 663 664 /* 665 * Force a refresh of the RTC date/time fields so 666 * they reflect the time right before the guest set 667 * the HALT bit. 668 */ 669 secs_to_rtc(curtime, vrtc, 1); 670 671 /* 672 * Updates are halted so mark 'base_rtctime' to denote 673 * that the RTC date/time is in flux. 674 */ 675 rtctime = VRTC_BROKEN_TIME; 676 rtc->reg_b &= ~RTCSB_UINTR; 677 } 678 error = vrtc_time_update(vrtc, rtctime, basetime); 679 KASSERT(error == 0, ("vrtc_time_update error %d", error)); 680 } 681 682 /* 683 * Side effect of changes to the interrupt enable bits. 684 */ 685 if (changed & RTCSB_ALL_INTRS) 686 vrtc_set_reg_c(vrtc, vrtc->rtcdev.reg_c); 687 688 /* 689 * Change the callout frequency if it has changed. 690 */ 691 newfreq = vrtc_freq(vrtc); 692 if (newfreq != oldfreq) 693 vrtc_callout_reset(vrtc, newfreq); 694 else 695 vrtc_callout_check(vrtc, newfreq); 696 697 /* 698 * The side effect of bits that control the RTC date/time format 699 * is handled lazily when those fields are actually read. 700 */ 701 return (0); 702 } 703 704 static void 705 vrtc_set_reg_a(struct vrtc *vrtc, uint8_t newval) 706 { 707 sbintime_t oldfreq, newfreq; 708 uint8_t oldval, changed; 709 710 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 711 712 newval &= ~RTCSA_TUP; 713 oldval = vrtc->rtcdev.reg_a; 714 oldfreq = vrtc_freq(vrtc); 715 716 if (divider_enabled(oldval) && !divider_enabled(newval)) { 717 VM_CTR2(vrtc->vm, "RTC divider held in reset at %#lx/%#lx", 718 vrtc->base_rtctime, vrtc->base_uptime); 719 } else if (!divider_enabled(oldval) && divider_enabled(newval)) { 720 /* 721 * If the dividers are coming out of reset then update 722 * 'base_uptime' before this happens. This is done to 723 * maintain the illusion that the RTC date/time was frozen 724 * while the dividers were disabled. 725 */ 726 vrtc->base_uptime = sbinuptime(); 727 VM_CTR2(vrtc->vm, "RTC divider out of reset at %#lx/%#lx", 728 vrtc->base_rtctime, vrtc->base_uptime); 729 } else { 730 /* NOTHING */ 731 } 732 733 vrtc->rtcdev.reg_a = newval; 734 changed = oldval ^ newval; 735 if (changed) { 736 VM_CTR2(vrtc->vm, "RTC reg_a changed from %#x to %#x", 737 oldval, newval); 738 } 739 740 /* 741 * Side effect of changes to rate select and divider enable bits. 742 */ 743 newfreq = vrtc_freq(vrtc); 744 if (newfreq != oldfreq) 745 vrtc_callout_reset(vrtc, newfreq); 746 else 747 vrtc_callout_check(vrtc, newfreq); 748 } 749 750 int 751 vrtc_set_time(struct vm *vm, time_t secs) 752 { 753 struct vrtc *vrtc; 754 int error; 755 756 vrtc = vm_rtc(vm); 757 VRTC_LOCK(vrtc); 758 error = vrtc_time_update(vrtc, secs, sbinuptime()); 759 VRTC_UNLOCK(vrtc); 760 761 if (error) { 762 VM_CTR2(vrtc->vm, "Error %d setting RTC time to %#lx", error, 763 secs); 764 } else { 765 VM_CTR1(vrtc->vm, "RTC time set to %#lx", secs); 766 } 767 768 return (error); 769 } 770 771 time_t 772 vrtc_get_time(struct vm *vm) 773 { 774 struct vrtc *vrtc; 775 sbintime_t basetime; 776 time_t t; 777 778 vrtc = vm_rtc(vm); 779 VRTC_LOCK(vrtc); 780 t = vrtc_curtime(vrtc, &basetime); 781 VRTC_UNLOCK(vrtc); 782 783 return (t); 784 } 785 786 int 787 vrtc_nvram_write(struct vm *vm, int offset, uint8_t value) 788 { 789 struct vrtc *vrtc; 790 uint8_t *ptr; 791 792 vrtc = vm_rtc(vm); 793 794 /* 795 * Don't allow writes to RTC control registers or the date/time fields. 796 */ 797 if (offset < offsetof(struct rtcdev, nvram[0]) || 798 offset == RTC_CENTURY || offset >= sizeof(struct rtcdev)) { 799 VM_CTR1(vrtc->vm, "RTC nvram write to invalid offset %d", 800 offset); 801 return (EINVAL); 802 } 803 804 VRTC_LOCK(vrtc); 805 ptr = (uint8_t *)(&vrtc->rtcdev); 806 ptr[offset] = value; 807 VM_CTR2(vrtc->vm, "RTC nvram write %#x to offset %#x", value, offset); 808 VRTC_UNLOCK(vrtc); 809 810 return (0); 811 } 812 813 int 814 vrtc_nvram_read(struct vm *vm, int offset, uint8_t *retval) 815 { 816 struct vrtc *vrtc; 817 sbintime_t basetime; 818 time_t curtime; 819 uint8_t *ptr; 820 821 /* 822 * Allow all offsets in the RTC to be read. 823 */ 824 if (offset < 0 || offset >= sizeof(struct rtcdev)) 825 return (EINVAL); 826 827 vrtc = vm_rtc(vm); 828 VRTC_LOCK(vrtc); 829 830 /* 831 * Update RTC date/time fields if necessary. 832 */ 833 if (offset < 10 || offset == RTC_CENTURY) { 834 curtime = vrtc_curtime(vrtc, &basetime); 835 secs_to_rtc(curtime, vrtc, 0); 836 } 837 838 ptr = (uint8_t *)(&vrtc->rtcdev); 839 *retval = ptr[offset]; 840 841 VRTC_UNLOCK(vrtc); 842 return (0); 843 } 844 845 int 846 vrtc_addr_handler(struct vm *vm, bool in, int port, int bytes, uint32_t *val) 847 { 848 struct vrtc *vrtc; 849 850 vrtc = vm_rtc(vm); 851 852 if (bytes != 1) 853 return (-1); 854 855 if (in) { 856 *val = 0xff; 857 return (0); 858 } 859 860 VRTC_LOCK(vrtc); 861 vrtc->addr = *val & 0x7f; 862 VRTC_UNLOCK(vrtc); 863 864 return (0); 865 } 866 867 int 868 vrtc_data_handler(struct vm *vm, bool in, int port, int bytes, uint32_t *val) 869 { 870 struct vrtc *vrtc; 871 struct rtcdev *rtc; 872 sbintime_t basetime; 873 time_t curtime; 874 int error, offset; 875 876 vrtc = vm_rtc(vm); 877 rtc = &vrtc->rtcdev; 878 879 if (bytes != 1) 880 return (-1); 881 882 VRTC_LOCK(vrtc); 883 offset = vrtc->addr; 884 if (offset >= sizeof(struct rtcdev)) { 885 VRTC_UNLOCK(vrtc); 886 return (-1); 887 } 888 889 error = 0; 890 curtime = vrtc_curtime(vrtc, &basetime); 891 vrtc_time_update(vrtc, curtime, basetime); 892 893 /* 894 * Update RTC date/time fields if necessary. 895 * 896 * This is not just for reads of the RTC. The side-effect of writing 897 * the century byte requires other RTC date/time fields (e.g. sec) 898 * to be updated here. 899 */ 900 if (offset < 10 || offset == RTC_CENTURY) 901 secs_to_rtc(curtime, vrtc, 0); 902 903 if (in) { 904 if (offset == 12) { 905 /* 906 * XXX 907 * reg_c interrupt flags are updated only if the 908 * corresponding interrupt enable bit in reg_b is set. 909 */ 910 *val = vrtc->rtcdev.reg_c; 911 vrtc_set_reg_c(vrtc, 0); 912 } else { 913 *val = *((uint8_t *)rtc + offset); 914 } 915 VM_CTR2(vm, "Read value %#x from RTC offset %#x", 916 *val, offset); 917 } else { 918 switch (offset) { 919 case 10: 920 VM_CTR1(vm, "RTC reg_a set to %#x", *val); 921 vrtc_set_reg_a(vrtc, *val); 922 break; 923 case 11: 924 VM_CTR1(vm, "RTC reg_b set to %#x", *val); 925 error = vrtc_set_reg_b(vrtc, *val); 926 break; 927 case 12: 928 VM_CTR1(vm, "RTC reg_c set to %#x (ignored)", 929 *val); 930 break; 931 case 13: 932 VM_CTR1(vm, "RTC reg_d set to %#x (ignored)", 933 *val); 934 break; 935 case 0: 936 /* 937 * High order bit of 'seconds' is readonly. 938 */ 939 *val &= 0x7f; 940 /* FALLTHRU */ 941 default: 942 VM_CTR2(vm, "RTC offset %#x set to %#x", 943 offset, *val); 944 *((uint8_t *)rtc + offset) = *val; 945 break; 946 } 947 948 /* 949 * XXX some guests (e.g. OpenBSD) write the century byte 950 * outside of RTCSB_HALT so re-calculate the RTC date/time. 951 */ 952 if (offset == RTC_CENTURY && !rtc_halted(vrtc)) { 953 curtime = rtc_to_secs(vrtc); 954 error = vrtc_time_update(vrtc, curtime, sbinuptime()); 955 KASSERT(!error, ("vrtc_time_update error %d", error)); 956 if (curtime == VRTC_BROKEN_TIME && rtc_flag_broken_time) 957 error = -1; 958 } 959 } 960 VRTC_UNLOCK(vrtc); 961 return (error); 962 } 963 964 void 965 vrtc_reset(struct vrtc *vrtc) 966 { 967 struct rtcdev *rtc; 968 969 VRTC_LOCK(vrtc); 970 971 rtc = &vrtc->rtcdev; 972 vrtc_set_reg_b(vrtc, rtc->reg_b & ~(RTCSB_ALL_INTRS | RTCSB_SQWE)); 973 vrtc_set_reg_c(vrtc, 0); 974 KASSERT(!callout_active(&vrtc->callout), ("rtc callout still active")); 975 976 VRTC_UNLOCK(vrtc); 977 } 978 979 struct vrtc * 980 vrtc_init(struct vm *vm) 981 { 982 struct vrtc *vrtc; 983 struct rtcdev *rtc; 984 time_t curtime; 985 986 vrtc = malloc(sizeof(struct vrtc), M_VRTC, M_WAITOK | M_ZERO); 987 vrtc->vm = vm; 988 mtx_init(&vrtc->mtx, "vrtc lock", NULL, MTX_DEF); 989 callout_init(&vrtc->callout, 1); 990 991 /* Allow dividers to keep time but disable everything else */ 992 rtc = &vrtc->rtcdev; 993 rtc->reg_a = 0x20; 994 rtc->reg_b = RTCSB_24HR; 995 rtc->reg_c = 0; 996 rtc->reg_d = RTCSD_PWR; 997 998 /* Reset the index register to a safe value. */ 999 vrtc->addr = RTC_STATUSD; 1000 1001 /* 1002 * Initialize RTC time to 00:00:00 Jan 1, 1970. 1003 */ 1004 curtime = 0; 1005 1006 VRTC_LOCK(vrtc); 1007 vrtc->base_rtctime = VRTC_BROKEN_TIME; 1008 vrtc_time_update(vrtc, curtime, sbinuptime()); 1009 secs_to_rtc(curtime, vrtc, 0); 1010 VRTC_UNLOCK(vrtc); 1011 1012 return (vrtc); 1013 } 1014 1015 void 1016 vrtc_cleanup(struct vrtc *vrtc) 1017 { 1018 1019 callout_drain(&vrtc->callout); 1020 mtx_destroy(&vrtc->mtx); 1021 free(vrtc, M_VRTC); 1022 } 1023 1024 #ifdef BHYVE_SNAPSHOT 1025 int 1026 vrtc_snapshot(struct vrtc *vrtc, struct vm_snapshot_meta *meta) 1027 { 1028 int ret; 1029 1030 VRTC_LOCK(vrtc); 1031 1032 SNAPSHOT_VAR_OR_LEAVE(vrtc->addr, meta, ret, done); 1033 if (meta->op == VM_SNAPSHOT_RESTORE) 1034 vrtc->base_uptime = sbinuptime(); 1035 SNAPSHOT_VAR_OR_LEAVE(vrtc->base_rtctime, meta, ret, done); 1036 1037 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.sec, meta, ret, done); 1038 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.alarm_sec, meta, ret, done); 1039 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.min, meta, ret, done); 1040 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.alarm_min, meta, ret, done); 1041 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.hour, meta, ret, done); 1042 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.alarm_hour, meta, ret, done); 1043 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.day_of_week, meta, ret, done); 1044 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.day_of_month, meta, ret, done); 1045 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.month, meta, ret, done); 1046 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.year, meta, ret, done); 1047 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.reg_a, meta, ret, done); 1048 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.reg_b, meta, ret, done); 1049 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.reg_c, meta, ret, done); 1050 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.reg_d, meta, ret, done); 1051 SNAPSHOT_BUF_OR_LEAVE(vrtc->rtcdev.nvram, sizeof(vrtc->rtcdev.nvram), 1052 meta, ret, done); 1053 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.century, meta, ret, done); 1054 SNAPSHOT_BUF_OR_LEAVE(vrtc->rtcdev.nvram2, sizeof(vrtc->rtcdev.nvram2), 1055 meta, ret, done); 1056 1057 vrtc_callout_reset(vrtc, vrtc_freq(vrtc)); 1058 1059 VRTC_UNLOCK(vrtc); 1060 1061 done: 1062 return (ret); 1063 } 1064 #endif 1065