1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2014, Neel Natu (neel@freebsd.org) 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_bhyve_snapshot.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/queue.h> 37 #include <sys/kernel.h> 38 #include <sys/malloc.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/clock.h> 42 #include <sys/sysctl.h> 43 44 #include <machine/vmm.h> 45 #include <machine/vmm_snapshot.h> 46 47 #include <isa/rtc.h> 48 49 #include "vmm_ktr.h" 50 #include "vatpic.h" 51 #include "vioapic.h" 52 #include "vrtc.h" 53 54 /* Register layout of the RTC */ 55 struct rtcdev { 56 uint8_t sec; 57 uint8_t alarm_sec; 58 uint8_t min; 59 uint8_t alarm_min; 60 uint8_t hour; 61 uint8_t alarm_hour; 62 uint8_t day_of_week; 63 uint8_t day_of_month; 64 uint8_t month; 65 uint8_t year; 66 uint8_t reg_a; 67 uint8_t reg_b; 68 uint8_t reg_c; 69 uint8_t reg_d; 70 uint8_t nvram[36]; 71 uint8_t century; 72 uint8_t nvram2[128 - 51]; 73 } __packed; 74 CTASSERT(sizeof(struct rtcdev) == 128); 75 CTASSERT(offsetof(struct rtcdev, century) == RTC_CENTURY); 76 77 struct vrtc { 78 struct vm *vm; 79 struct mtx mtx; 80 struct callout callout; 81 u_int addr; /* RTC register to read or write */ 82 sbintime_t base_uptime; 83 time_t base_rtctime; 84 struct rtcdev rtcdev; 85 }; 86 87 #define VRTC_LOCK(vrtc) mtx_lock(&((vrtc)->mtx)) 88 #define VRTC_UNLOCK(vrtc) mtx_unlock(&((vrtc)->mtx)) 89 #define VRTC_LOCKED(vrtc) mtx_owned(&((vrtc)->mtx)) 90 91 /* 92 * RTC time is considered "broken" if: 93 * - RTC updates are halted by the guest 94 * - RTC date/time fields have invalid values 95 */ 96 #define VRTC_BROKEN_TIME ((time_t)-1) 97 98 #define RTC_IRQ 8 99 #define RTCSB_BIN 0x04 100 #define RTCSB_ALL_INTRS (RTCSB_UINTR | RTCSB_AINTR | RTCSB_PINTR) 101 #define rtc_halted(vrtc) ((vrtc->rtcdev.reg_b & RTCSB_HALT) != 0) 102 #define aintr_enabled(vrtc) (((vrtc)->rtcdev.reg_b & RTCSB_AINTR) != 0) 103 #define pintr_enabled(vrtc) (((vrtc)->rtcdev.reg_b & RTCSB_PINTR) != 0) 104 #define uintr_enabled(vrtc) (((vrtc)->rtcdev.reg_b & RTCSB_UINTR) != 0) 105 106 static void vrtc_callout_handler(void *arg); 107 static void vrtc_set_reg_c(struct vrtc *vrtc, uint8_t newval); 108 109 static MALLOC_DEFINE(M_VRTC, "vrtc", "bhyve virtual rtc"); 110 111 SYSCTL_DECL(_hw_vmm); 112 SYSCTL_NODE(_hw_vmm, OID_AUTO, vrtc, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 113 NULL); 114 115 static int rtc_flag_broken_time = 1; 116 SYSCTL_INT(_hw_vmm_vrtc, OID_AUTO, flag_broken_time, CTLFLAG_RDTUN, 117 &rtc_flag_broken_time, 0, "Stop guest when invalid RTC time is detected"); 118 119 static __inline bool 120 divider_enabled(int reg_a) 121 { 122 /* 123 * The RTC is counting only when dividers are not held in reset. 124 */ 125 return ((reg_a & 0x70) == 0x20); 126 } 127 128 static __inline bool 129 update_enabled(struct vrtc *vrtc) 130 { 131 /* 132 * RTC date/time can be updated only if: 133 * - divider is not held in reset 134 * - guest has not disabled updates 135 * - the date/time fields have valid contents 136 */ 137 if (!divider_enabled(vrtc->rtcdev.reg_a)) 138 return (false); 139 140 if (rtc_halted(vrtc)) 141 return (false); 142 143 if (vrtc->base_rtctime == VRTC_BROKEN_TIME) 144 return (false); 145 146 return (true); 147 } 148 149 static time_t 150 vrtc_curtime(struct vrtc *vrtc, sbintime_t *basetime) 151 { 152 sbintime_t now, delta; 153 time_t t, secs; 154 155 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 156 157 t = vrtc->base_rtctime; 158 *basetime = vrtc->base_uptime; 159 if (update_enabled(vrtc)) { 160 now = sbinuptime(); 161 delta = now - vrtc->base_uptime; 162 KASSERT(delta >= 0, ("vrtc_curtime: uptime went backwards: " 163 "%#lx to %#lx", vrtc->base_uptime, now)); 164 secs = delta / SBT_1S; 165 t += secs; 166 *basetime += secs * SBT_1S; 167 } 168 return (t); 169 } 170 171 static __inline uint8_t 172 rtcset(struct rtcdev *rtc, int val) 173 { 174 175 KASSERT(val >= 0 && val < 100, ("%s: invalid bin2bcd index %d", 176 __func__, val)); 177 178 return ((rtc->reg_b & RTCSB_BIN) ? val : bin2bcd_data[val]); 179 } 180 181 static void 182 secs_to_rtc(time_t rtctime, struct vrtc *vrtc, int force_update) 183 { 184 struct clocktime ct; 185 struct timespec ts; 186 struct rtcdev *rtc; 187 int hour; 188 189 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 190 191 if (rtctime < 0) { 192 KASSERT(rtctime == VRTC_BROKEN_TIME, 193 ("%s: invalid vrtc time %#lx", __func__, rtctime)); 194 return; 195 } 196 197 /* 198 * If the RTC is halted then the guest has "ownership" of the 199 * date/time fields. Don't update the RTC date/time fields in 200 * this case (unless forced). 201 */ 202 if (rtc_halted(vrtc) && !force_update) 203 return; 204 205 ts.tv_sec = rtctime; 206 ts.tv_nsec = 0; 207 clock_ts_to_ct(&ts, &ct); 208 209 KASSERT(ct.sec >= 0 && ct.sec <= 59, ("invalid clocktime sec %d", 210 ct.sec)); 211 KASSERT(ct.min >= 0 && ct.min <= 59, ("invalid clocktime min %d", 212 ct.min)); 213 KASSERT(ct.hour >= 0 && ct.hour <= 23, ("invalid clocktime hour %d", 214 ct.hour)); 215 KASSERT(ct.dow >= 0 && ct.dow <= 6, ("invalid clocktime wday %d", 216 ct.dow)); 217 KASSERT(ct.day >= 1 && ct.day <= 31, ("invalid clocktime mday %d", 218 ct.day)); 219 KASSERT(ct.mon >= 1 && ct.mon <= 12, ("invalid clocktime month %d", 220 ct.mon)); 221 KASSERT(ct.year >= POSIX_BASE_YEAR, ("invalid clocktime year %d", 222 ct.year)); 223 224 rtc = &vrtc->rtcdev; 225 rtc->sec = rtcset(rtc, ct.sec); 226 rtc->min = rtcset(rtc, ct.min); 227 228 if (rtc->reg_b & RTCSB_24HR) { 229 hour = ct.hour; 230 } else { 231 /* 232 * Convert to the 12-hour format. 233 */ 234 switch (ct.hour) { 235 case 0: /* 12 AM */ 236 case 12: /* 12 PM */ 237 hour = 12; 238 break; 239 default: 240 /* 241 * The remaining 'ct.hour' values are interpreted as: 242 * [1 - 11] -> 1 - 11 AM 243 * [13 - 23] -> 1 - 11 PM 244 */ 245 hour = ct.hour % 12; 246 break; 247 } 248 } 249 250 rtc->hour = rtcset(rtc, hour); 251 252 if ((rtc->reg_b & RTCSB_24HR) == 0 && ct.hour >= 12) 253 rtc->hour |= 0x80; /* set MSB to indicate PM */ 254 255 rtc->day_of_week = rtcset(rtc, ct.dow + 1); 256 rtc->day_of_month = rtcset(rtc, ct.day); 257 rtc->month = rtcset(rtc, ct.mon); 258 rtc->year = rtcset(rtc, ct.year % 100); 259 rtc->century = rtcset(rtc, ct.year / 100); 260 } 261 262 static int 263 rtcget(struct rtcdev *rtc, int val, int *retval) 264 { 265 uint8_t upper, lower; 266 267 if (rtc->reg_b & RTCSB_BIN) { 268 *retval = val; 269 return (0); 270 } 271 272 lower = val & 0xf; 273 upper = (val >> 4) & 0xf; 274 275 if (lower > 9 || upper > 9) 276 return (-1); 277 278 *retval = upper * 10 + lower; 279 return (0); 280 } 281 282 static time_t 283 rtc_to_secs(struct vrtc *vrtc) 284 { 285 struct clocktime ct; 286 struct timespec ts; 287 struct rtcdev *rtc; 288 struct vm *vm __diagused; 289 int century, error, hour, pm, year; 290 291 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 292 293 vm = vrtc->vm; 294 rtc = &vrtc->rtcdev; 295 296 bzero(&ct, sizeof(struct clocktime)); 297 298 error = rtcget(rtc, rtc->sec, &ct.sec); 299 if (error || ct.sec < 0 || ct.sec > 59) { 300 VM_CTR2(vm, "Invalid RTC sec %#x/%d", rtc->sec, ct.sec); 301 goto fail; 302 } 303 304 error = rtcget(rtc, rtc->min, &ct.min); 305 if (error || ct.min < 0 || ct.min > 59) { 306 VM_CTR2(vm, "Invalid RTC min %#x/%d", rtc->min, ct.min); 307 goto fail; 308 } 309 310 pm = 0; 311 hour = rtc->hour; 312 if ((rtc->reg_b & RTCSB_24HR) == 0) { 313 if (hour & 0x80) { 314 hour &= ~0x80; 315 pm = 1; 316 } 317 } 318 error = rtcget(rtc, hour, &ct.hour); 319 if ((rtc->reg_b & RTCSB_24HR) == 0) { 320 if (ct.hour >= 1 && ct.hour <= 12) { 321 /* 322 * Convert from 12-hour format to internal 24-hour 323 * representation as follows: 324 * 325 * 12-hour format ct.hour 326 * 12 AM 0 327 * 1 - 11 AM 1 - 11 328 * 12 PM 12 329 * 1 - 11 PM 13 - 23 330 */ 331 if (ct.hour == 12) 332 ct.hour = 0; 333 if (pm) 334 ct.hour += 12; 335 } else { 336 VM_CTR2(vm, "Invalid RTC 12-hour format %#x/%d", 337 rtc->hour, ct.hour); 338 goto fail; 339 } 340 } 341 342 if (error || ct.hour < 0 || ct.hour > 23) { 343 VM_CTR2(vm, "Invalid RTC hour %#x/%d", rtc->hour, ct.hour); 344 goto fail; 345 } 346 347 /* 348 * Ignore 'rtc->dow' because some guests like Linux don't bother 349 * setting it at all while others like OpenBSD/i386 set it incorrectly. 350 * 351 * clock_ct_to_ts() does not depend on 'ct.dow' anyways so ignore it. 352 */ 353 ct.dow = -1; 354 355 error = rtcget(rtc, rtc->day_of_month, &ct.day); 356 if (error || ct.day < 1 || ct.day > 31) { 357 VM_CTR2(vm, "Invalid RTC mday %#x/%d", rtc->day_of_month, 358 ct.day); 359 goto fail; 360 } 361 362 error = rtcget(rtc, rtc->month, &ct.mon); 363 if (error || ct.mon < 1 || ct.mon > 12) { 364 VM_CTR2(vm, "Invalid RTC month %#x/%d", rtc->month, ct.mon); 365 goto fail; 366 } 367 368 error = rtcget(rtc, rtc->year, &year); 369 if (error || year < 0 || year > 99) { 370 VM_CTR2(vm, "Invalid RTC year %#x/%d", rtc->year, year); 371 goto fail; 372 } 373 374 error = rtcget(rtc, rtc->century, ¢ury); 375 ct.year = century * 100 + year; 376 if (error || ct.year < POSIX_BASE_YEAR) { 377 VM_CTR2(vm, "Invalid RTC century %#x/%d", rtc->century, 378 ct.year); 379 goto fail; 380 } 381 382 error = clock_ct_to_ts(&ct, &ts); 383 if (error || ts.tv_sec < 0) { 384 VM_CTR3(vm, "Invalid RTC clocktime.date %04d-%02d-%02d", 385 ct.year, ct.mon, ct.day); 386 VM_CTR3(vm, "Invalid RTC clocktime.time %02d:%02d:%02d", 387 ct.hour, ct.min, ct.sec); 388 goto fail; 389 } 390 return (ts.tv_sec); /* success */ 391 fail: 392 /* 393 * Stop updating the RTC if the date/time fields programmed by 394 * the guest are invalid. 395 */ 396 VM_CTR0(vrtc->vm, "Invalid RTC date/time programming detected"); 397 return (VRTC_BROKEN_TIME); 398 } 399 400 static int 401 vrtc_time_update(struct vrtc *vrtc, time_t newtime, sbintime_t newbase) 402 { 403 struct rtcdev *rtc; 404 sbintime_t oldbase __diagused; 405 time_t oldtime; 406 uint8_t alarm_sec, alarm_min, alarm_hour; 407 408 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 409 410 rtc = &vrtc->rtcdev; 411 alarm_sec = rtc->alarm_sec; 412 alarm_min = rtc->alarm_min; 413 alarm_hour = rtc->alarm_hour; 414 415 oldtime = vrtc->base_rtctime; 416 VM_CTR2(vrtc->vm, "Updating RTC secs from %#lx to %#lx", 417 oldtime, newtime); 418 419 oldbase = vrtc->base_uptime; 420 VM_CTR2(vrtc->vm, "Updating RTC base uptime from %#lx to %#lx", 421 oldbase, newbase); 422 vrtc->base_uptime = newbase; 423 424 if (newtime == oldtime) 425 return (0); 426 427 /* 428 * If 'newtime' indicates that RTC updates are disabled then just 429 * record that and return. There is no need to do alarm interrupt 430 * processing in this case. 431 */ 432 if (newtime == VRTC_BROKEN_TIME) { 433 vrtc->base_rtctime = VRTC_BROKEN_TIME; 434 return (0); 435 } 436 437 /* 438 * Return an error if RTC updates are halted by the guest. 439 */ 440 if (rtc_halted(vrtc)) { 441 VM_CTR0(vrtc->vm, "RTC update halted by guest"); 442 return (EBUSY); 443 } 444 445 do { 446 /* 447 * If the alarm interrupt is enabled and 'oldtime' is valid 448 * then visit all the seconds between 'oldtime' and 'newtime' 449 * to check for the alarm condition. 450 * 451 * Otherwise move the RTC time forward directly to 'newtime'. 452 */ 453 if (aintr_enabled(vrtc) && oldtime != VRTC_BROKEN_TIME) 454 vrtc->base_rtctime++; 455 else 456 vrtc->base_rtctime = newtime; 457 458 if (aintr_enabled(vrtc)) { 459 /* 460 * Update the RTC date/time fields before checking 461 * if the alarm conditions are satisfied. 462 */ 463 secs_to_rtc(vrtc->base_rtctime, vrtc, 0); 464 465 if ((alarm_sec >= 0xC0 || alarm_sec == rtc->sec) && 466 (alarm_min >= 0xC0 || alarm_min == rtc->min) && 467 (alarm_hour >= 0xC0 || alarm_hour == rtc->hour)) { 468 vrtc_set_reg_c(vrtc, rtc->reg_c | RTCIR_ALARM); 469 } 470 } 471 } while (vrtc->base_rtctime != newtime); 472 473 if (uintr_enabled(vrtc)) 474 vrtc_set_reg_c(vrtc, rtc->reg_c | RTCIR_UPDATE); 475 476 return (0); 477 } 478 479 static sbintime_t 480 vrtc_freq(struct vrtc *vrtc) 481 { 482 int ratesel; 483 484 static sbintime_t pf[16] = { 485 0, 486 SBT_1S / 256, 487 SBT_1S / 128, 488 SBT_1S / 8192, 489 SBT_1S / 4096, 490 SBT_1S / 2048, 491 SBT_1S / 1024, 492 SBT_1S / 512, 493 SBT_1S / 256, 494 SBT_1S / 128, 495 SBT_1S / 64, 496 SBT_1S / 32, 497 SBT_1S / 16, 498 SBT_1S / 8, 499 SBT_1S / 4, 500 SBT_1S / 2, 501 }; 502 503 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 504 505 /* 506 * If both periodic and alarm interrupts are enabled then use the 507 * periodic frequency to drive the callout. The minimum periodic 508 * frequency (2 Hz) is higher than the alarm frequency (1 Hz) so 509 * piggyback the alarm on top of it. The same argument applies to 510 * the update interrupt. 511 */ 512 if (pintr_enabled(vrtc) && divider_enabled(vrtc->rtcdev.reg_a)) { 513 ratesel = vrtc->rtcdev.reg_a & 0xf; 514 return (pf[ratesel]); 515 } else if (aintr_enabled(vrtc) && update_enabled(vrtc)) { 516 return (SBT_1S); 517 } else if (uintr_enabled(vrtc) && update_enabled(vrtc)) { 518 return (SBT_1S); 519 } else { 520 return (0); 521 } 522 } 523 524 static void 525 vrtc_callout_reset(struct vrtc *vrtc, sbintime_t freqsbt) 526 { 527 528 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 529 530 if (freqsbt == 0) { 531 if (callout_active(&vrtc->callout)) { 532 VM_CTR0(vrtc->vm, "RTC callout stopped"); 533 callout_stop(&vrtc->callout); 534 } 535 return; 536 } 537 VM_CTR1(vrtc->vm, "RTC callout frequency %d hz", SBT_1S / freqsbt); 538 callout_reset_sbt(&vrtc->callout, freqsbt, 0, vrtc_callout_handler, 539 vrtc, 0); 540 } 541 542 static void 543 vrtc_callout_handler(void *arg) 544 { 545 struct vrtc *vrtc = arg; 546 sbintime_t freqsbt, basetime; 547 time_t rtctime; 548 int error __diagused; 549 550 VM_CTR0(vrtc->vm, "vrtc callout fired"); 551 552 VRTC_LOCK(vrtc); 553 if (callout_pending(&vrtc->callout)) /* callout was reset */ 554 goto done; 555 556 if (!callout_active(&vrtc->callout)) /* callout was stopped */ 557 goto done; 558 559 callout_deactivate(&vrtc->callout); 560 561 KASSERT((vrtc->rtcdev.reg_b & RTCSB_ALL_INTRS) != 0, 562 ("gratuitous vrtc callout")); 563 564 if (pintr_enabled(vrtc)) 565 vrtc_set_reg_c(vrtc, vrtc->rtcdev.reg_c | RTCIR_PERIOD); 566 567 if (aintr_enabled(vrtc) || uintr_enabled(vrtc)) { 568 rtctime = vrtc_curtime(vrtc, &basetime); 569 error = vrtc_time_update(vrtc, rtctime, basetime); 570 KASSERT(error == 0, ("%s: vrtc_time_update error %d", 571 __func__, error)); 572 } 573 574 freqsbt = vrtc_freq(vrtc); 575 KASSERT(freqsbt != 0, ("%s: vrtc frequency cannot be zero", __func__)); 576 vrtc_callout_reset(vrtc, freqsbt); 577 done: 578 VRTC_UNLOCK(vrtc); 579 } 580 581 static __inline void 582 vrtc_callout_check(struct vrtc *vrtc, sbintime_t freq) 583 { 584 int active __diagused; 585 586 active = callout_active(&vrtc->callout) ? 1 : 0; 587 KASSERT((freq == 0 && !active) || (freq != 0 && active), 588 ("vrtc callout %s with frequency %#lx", 589 active ? "active" : "inactive", freq)); 590 } 591 592 static void 593 vrtc_set_reg_c(struct vrtc *vrtc, uint8_t newval) 594 { 595 struct rtcdev *rtc; 596 int oldirqf, newirqf; 597 uint8_t oldval, changed; 598 599 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 600 601 rtc = &vrtc->rtcdev; 602 newval &= RTCIR_ALARM | RTCIR_PERIOD | RTCIR_UPDATE; 603 604 oldirqf = rtc->reg_c & RTCIR_INT; 605 if ((aintr_enabled(vrtc) && (newval & RTCIR_ALARM) != 0) || 606 (pintr_enabled(vrtc) && (newval & RTCIR_PERIOD) != 0) || 607 (uintr_enabled(vrtc) && (newval & RTCIR_UPDATE) != 0)) { 608 newirqf = RTCIR_INT; 609 } else { 610 newirqf = 0; 611 } 612 613 oldval = rtc->reg_c; 614 rtc->reg_c = newirqf | newval; 615 changed = oldval ^ rtc->reg_c; 616 if (changed) { 617 VM_CTR2(vrtc->vm, "RTC reg_c changed from %#x to %#x", 618 oldval, rtc->reg_c); 619 } 620 621 if (!oldirqf && newirqf) { 622 VM_CTR1(vrtc->vm, "RTC irq %d asserted", RTC_IRQ); 623 vatpic_pulse_irq(vrtc->vm, RTC_IRQ); 624 vioapic_pulse_irq(vrtc->vm, RTC_IRQ); 625 } else if (oldirqf && !newirqf) { 626 VM_CTR1(vrtc->vm, "RTC irq %d deasserted", RTC_IRQ); 627 } 628 } 629 630 static int 631 vrtc_set_reg_b(struct vrtc *vrtc, uint8_t newval) 632 { 633 struct rtcdev *rtc; 634 sbintime_t oldfreq, newfreq, basetime; 635 time_t curtime, rtctime; 636 int error __diagused; 637 uint8_t oldval, changed; 638 639 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 640 641 rtc = &vrtc->rtcdev; 642 oldval = rtc->reg_b; 643 oldfreq = vrtc_freq(vrtc); 644 645 rtc->reg_b = newval; 646 changed = oldval ^ newval; 647 if (changed) { 648 VM_CTR2(vrtc->vm, "RTC reg_b changed from %#x to %#x", 649 oldval, newval); 650 } 651 652 if (changed & RTCSB_HALT) { 653 if ((newval & RTCSB_HALT) == 0) { 654 rtctime = rtc_to_secs(vrtc); 655 basetime = sbinuptime(); 656 if (rtctime == VRTC_BROKEN_TIME) { 657 if (rtc_flag_broken_time) 658 return (-1); 659 } 660 } else { 661 curtime = vrtc_curtime(vrtc, &basetime); 662 KASSERT(curtime == vrtc->base_rtctime, ("%s: mismatch " 663 "between vrtc basetime (%#lx) and curtime (%#lx)", 664 __func__, vrtc->base_rtctime, curtime)); 665 666 /* 667 * Force a refresh of the RTC date/time fields so 668 * they reflect the time right before the guest set 669 * the HALT bit. 670 */ 671 secs_to_rtc(curtime, vrtc, 1); 672 673 /* 674 * Updates are halted so mark 'base_rtctime' to denote 675 * that the RTC date/time is in flux. 676 */ 677 rtctime = VRTC_BROKEN_TIME; 678 rtc->reg_b &= ~RTCSB_UINTR; 679 } 680 error = vrtc_time_update(vrtc, rtctime, basetime); 681 KASSERT(error == 0, ("vrtc_time_update error %d", error)); 682 } 683 684 /* 685 * Side effect of changes to the interrupt enable bits. 686 */ 687 if (changed & RTCSB_ALL_INTRS) 688 vrtc_set_reg_c(vrtc, vrtc->rtcdev.reg_c); 689 690 /* 691 * Change the callout frequency if it has changed. 692 */ 693 newfreq = vrtc_freq(vrtc); 694 if (newfreq != oldfreq) 695 vrtc_callout_reset(vrtc, newfreq); 696 else 697 vrtc_callout_check(vrtc, newfreq); 698 699 /* 700 * The side effect of bits that control the RTC date/time format 701 * is handled lazily when those fields are actually read. 702 */ 703 return (0); 704 } 705 706 static void 707 vrtc_set_reg_a(struct vrtc *vrtc, uint8_t newval) 708 { 709 sbintime_t oldfreq, newfreq; 710 uint8_t oldval, changed; 711 712 KASSERT(VRTC_LOCKED(vrtc), ("%s: vrtc not locked", __func__)); 713 714 newval &= ~RTCSA_TUP; 715 oldval = vrtc->rtcdev.reg_a; 716 oldfreq = vrtc_freq(vrtc); 717 718 if (divider_enabled(oldval) && !divider_enabled(newval)) { 719 VM_CTR2(vrtc->vm, "RTC divider held in reset at %#lx/%#lx", 720 vrtc->base_rtctime, vrtc->base_uptime); 721 } else if (!divider_enabled(oldval) && divider_enabled(newval)) { 722 /* 723 * If the dividers are coming out of reset then update 724 * 'base_uptime' before this happens. This is done to 725 * maintain the illusion that the RTC date/time was frozen 726 * while the dividers were disabled. 727 */ 728 vrtc->base_uptime = sbinuptime(); 729 VM_CTR2(vrtc->vm, "RTC divider out of reset at %#lx/%#lx", 730 vrtc->base_rtctime, vrtc->base_uptime); 731 } else { 732 /* NOTHING */ 733 } 734 735 vrtc->rtcdev.reg_a = newval; 736 changed = oldval ^ newval; 737 if (changed) { 738 VM_CTR2(vrtc->vm, "RTC reg_a changed from %#x to %#x", 739 oldval, newval); 740 } 741 742 /* 743 * Side effect of changes to rate select and divider enable bits. 744 */ 745 newfreq = vrtc_freq(vrtc); 746 if (newfreq != oldfreq) 747 vrtc_callout_reset(vrtc, newfreq); 748 else 749 vrtc_callout_check(vrtc, newfreq); 750 } 751 752 int 753 vrtc_set_time(struct vm *vm, time_t secs) 754 { 755 struct vrtc *vrtc; 756 int error; 757 758 vrtc = vm_rtc(vm); 759 VRTC_LOCK(vrtc); 760 error = vrtc_time_update(vrtc, secs, sbinuptime()); 761 VRTC_UNLOCK(vrtc); 762 763 if (error) { 764 VM_CTR2(vrtc->vm, "Error %d setting RTC time to %#lx", error, 765 secs); 766 } else { 767 VM_CTR1(vrtc->vm, "RTC time set to %#lx", secs); 768 } 769 770 return (error); 771 } 772 773 time_t 774 vrtc_get_time(struct vm *vm) 775 { 776 struct vrtc *vrtc; 777 sbintime_t basetime; 778 time_t t; 779 780 vrtc = vm_rtc(vm); 781 VRTC_LOCK(vrtc); 782 t = vrtc_curtime(vrtc, &basetime); 783 VRTC_UNLOCK(vrtc); 784 785 return (t); 786 } 787 788 int 789 vrtc_nvram_write(struct vm *vm, int offset, uint8_t value) 790 { 791 struct vrtc *vrtc; 792 uint8_t *ptr; 793 794 vrtc = vm_rtc(vm); 795 796 /* 797 * Don't allow writes to RTC control registers or the date/time fields. 798 */ 799 if (offset < offsetof(struct rtcdev, nvram[0]) || 800 offset == RTC_CENTURY || offset >= sizeof(struct rtcdev)) { 801 VM_CTR1(vrtc->vm, "RTC nvram write to invalid offset %d", 802 offset); 803 return (EINVAL); 804 } 805 806 VRTC_LOCK(vrtc); 807 ptr = (uint8_t *)(&vrtc->rtcdev); 808 ptr[offset] = value; 809 VM_CTR2(vrtc->vm, "RTC nvram write %#x to offset %#x", value, offset); 810 VRTC_UNLOCK(vrtc); 811 812 return (0); 813 } 814 815 int 816 vrtc_nvram_read(struct vm *vm, int offset, uint8_t *retval) 817 { 818 struct vrtc *vrtc; 819 sbintime_t basetime; 820 time_t curtime; 821 uint8_t *ptr; 822 823 /* 824 * Allow all offsets in the RTC to be read. 825 */ 826 if (offset < 0 || offset >= sizeof(struct rtcdev)) 827 return (EINVAL); 828 829 vrtc = vm_rtc(vm); 830 VRTC_LOCK(vrtc); 831 832 /* 833 * Update RTC date/time fields if necessary. 834 */ 835 if (offset < 10 || offset == RTC_CENTURY) { 836 curtime = vrtc_curtime(vrtc, &basetime); 837 secs_to_rtc(curtime, vrtc, 0); 838 } 839 840 ptr = (uint8_t *)(&vrtc->rtcdev); 841 *retval = ptr[offset]; 842 843 VRTC_UNLOCK(vrtc); 844 return (0); 845 } 846 847 int 848 vrtc_addr_handler(struct vm *vm, int vcpuid, bool in, int port, int bytes, 849 uint32_t *val) 850 { 851 struct vrtc *vrtc; 852 853 vrtc = vm_rtc(vm); 854 855 if (bytes != 1) 856 return (-1); 857 858 if (in) { 859 *val = 0xff; 860 return (0); 861 } 862 863 VRTC_LOCK(vrtc); 864 vrtc->addr = *val & 0x7f; 865 VRTC_UNLOCK(vrtc); 866 867 return (0); 868 } 869 870 int 871 vrtc_data_handler(struct vm *vm, int vcpuid, bool in, int port, int bytes, 872 uint32_t *val) 873 { 874 struct vrtc *vrtc; 875 struct rtcdev *rtc; 876 sbintime_t basetime; 877 time_t curtime; 878 int error, offset; 879 880 vrtc = vm_rtc(vm); 881 rtc = &vrtc->rtcdev; 882 883 if (bytes != 1) 884 return (-1); 885 886 VRTC_LOCK(vrtc); 887 offset = vrtc->addr; 888 if (offset >= sizeof(struct rtcdev)) { 889 VRTC_UNLOCK(vrtc); 890 return (-1); 891 } 892 893 error = 0; 894 curtime = vrtc_curtime(vrtc, &basetime); 895 vrtc_time_update(vrtc, curtime, basetime); 896 897 /* 898 * Update RTC date/time fields if necessary. 899 * 900 * This is not just for reads of the RTC. The side-effect of writing 901 * the century byte requires other RTC date/time fields (e.g. sec) 902 * to be updated here. 903 */ 904 if (offset < 10 || offset == RTC_CENTURY) 905 secs_to_rtc(curtime, vrtc, 0); 906 907 if (in) { 908 if (offset == 12) { 909 /* 910 * XXX 911 * reg_c interrupt flags are updated only if the 912 * corresponding interrupt enable bit in reg_b is set. 913 */ 914 *val = vrtc->rtcdev.reg_c; 915 vrtc_set_reg_c(vrtc, 0); 916 } else { 917 *val = *((uint8_t *)rtc + offset); 918 } 919 VCPU_CTR2(vm, vcpuid, "Read value %#x from RTC offset %#x", 920 *val, offset); 921 } else { 922 switch (offset) { 923 case 10: 924 VCPU_CTR1(vm, vcpuid, "RTC reg_a set to %#x", *val); 925 vrtc_set_reg_a(vrtc, *val); 926 break; 927 case 11: 928 VCPU_CTR1(vm, vcpuid, "RTC reg_b set to %#x", *val); 929 error = vrtc_set_reg_b(vrtc, *val); 930 break; 931 case 12: 932 VCPU_CTR1(vm, vcpuid, "RTC reg_c set to %#x (ignored)", 933 *val); 934 break; 935 case 13: 936 VCPU_CTR1(vm, vcpuid, "RTC reg_d set to %#x (ignored)", 937 *val); 938 break; 939 case 0: 940 /* 941 * High order bit of 'seconds' is readonly. 942 */ 943 *val &= 0x7f; 944 /* FALLTHRU */ 945 default: 946 VCPU_CTR2(vm, vcpuid, "RTC offset %#x set to %#x", 947 offset, *val); 948 *((uint8_t *)rtc + offset) = *val; 949 break; 950 } 951 952 /* 953 * XXX some guests (e.g. OpenBSD) write the century byte 954 * outside of RTCSB_HALT so re-calculate the RTC date/time. 955 */ 956 if (offset == RTC_CENTURY && !rtc_halted(vrtc)) { 957 curtime = rtc_to_secs(vrtc); 958 error = vrtc_time_update(vrtc, curtime, sbinuptime()); 959 KASSERT(!error, ("vrtc_time_update error %d", error)); 960 if (curtime == VRTC_BROKEN_TIME && rtc_flag_broken_time) 961 error = -1; 962 } 963 } 964 VRTC_UNLOCK(vrtc); 965 return (error); 966 } 967 968 void 969 vrtc_reset(struct vrtc *vrtc) 970 { 971 struct rtcdev *rtc; 972 973 VRTC_LOCK(vrtc); 974 975 rtc = &vrtc->rtcdev; 976 vrtc_set_reg_b(vrtc, rtc->reg_b & ~(RTCSB_ALL_INTRS | RTCSB_SQWE)); 977 vrtc_set_reg_c(vrtc, 0); 978 KASSERT(!callout_active(&vrtc->callout), ("rtc callout still active")); 979 980 VRTC_UNLOCK(vrtc); 981 } 982 983 struct vrtc * 984 vrtc_init(struct vm *vm) 985 { 986 struct vrtc *vrtc; 987 struct rtcdev *rtc; 988 time_t curtime; 989 990 vrtc = malloc(sizeof(struct vrtc), M_VRTC, M_WAITOK | M_ZERO); 991 vrtc->vm = vm; 992 mtx_init(&vrtc->mtx, "vrtc lock", NULL, MTX_DEF); 993 callout_init(&vrtc->callout, 1); 994 995 /* Allow dividers to keep time but disable everything else */ 996 rtc = &vrtc->rtcdev; 997 rtc->reg_a = 0x20; 998 rtc->reg_b = RTCSB_24HR; 999 rtc->reg_c = 0; 1000 rtc->reg_d = RTCSD_PWR; 1001 1002 /* Reset the index register to a safe value. */ 1003 vrtc->addr = RTC_STATUSD; 1004 1005 /* 1006 * Initialize RTC time to 00:00:00 Jan 1, 1970. 1007 */ 1008 curtime = 0; 1009 1010 VRTC_LOCK(vrtc); 1011 vrtc->base_rtctime = VRTC_BROKEN_TIME; 1012 vrtc_time_update(vrtc, curtime, sbinuptime()); 1013 secs_to_rtc(curtime, vrtc, 0); 1014 VRTC_UNLOCK(vrtc); 1015 1016 return (vrtc); 1017 } 1018 1019 void 1020 vrtc_cleanup(struct vrtc *vrtc) 1021 { 1022 1023 callout_drain(&vrtc->callout); 1024 free(vrtc, M_VRTC); 1025 } 1026 1027 #ifdef BHYVE_SNAPSHOT 1028 int 1029 vrtc_snapshot(struct vrtc *vrtc, struct vm_snapshot_meta *meta) 1030 { 1031 int ret; 1032 1033 VRTC_LOCK(vrtc); 1034 1035 SNAPSHOT_VAR_OR_LEAVE(vrtc->addr, meta, ret, done); 1036 if (meta->op == VM_SNAPSHOT_RESTORE) 1037 vrtc->base_uptime = sbinuptime(); 1038 SNAPSHOT_VAR_OR_LEAVE(vrtc->base_rtctime, meta, ret, done); 1039 1040 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.sec, meta, ret, done); 1041 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.alarm_sec, meta, ret, done); 1042 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.min, meta, ret, done); 1043 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.alarm_min, meta, ret, done); 1044 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.hour, meta, ret, done); 1045 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.alarm_hour, meta, ret, done); 1046 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.day_of_week, meta, ret, done); 1047 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.day_of_month, meta, ret, done); 1048 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.month, meta, ret, done); 1049 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.year, meta, ret, done); 1050 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.reg_a, meta, ret, done); 1051 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.reg_b, meta, ret, done); 1052 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.reg_c, meta, ret, done); 1053 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.reg_d, meta, ret, done); 1054 SNAPSHOT_BUF_OR_LEAVE(vrtc->rtcdev.nvram, sizeof(vrtc->rtcdev.nvram), 1055 meta, ret, done); 1056 SNAPSHOT_VAR_OR_LEAVE(vrtc->rtcdev.century, meta, ret, done); 1057 SNAPSHOT_BUF_OR_LEAVE(vrtc->rtcdev.nvram2, sizeof(vrtc->rtcdev.nvram2), 1058 meta, ret, done); 1059 1060 vrtc_callout_reset(vrtc, vrtc_freq(vrtc)); 1061 1062 VRTC_UNLOCK(vrtc); 1063 1064 done: 1065 return (ret); 1066 } 1067 #endif 1068