1 /*- 2 * Copyright (c) 2011 NetApp, Inc. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD$ 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/smp.h> 35 #include <sys/kernel.h> 36 #include <sys/malloc.h> 37 #include <sys/pcpu.h> 38 #include <sys/proc.h> 39 #include <sys/sysctl.h> 40 41 #include <vm/vm.h> 42 #include <vm/pmap.h> 43 44 #include <machine/psl.h> 45 #include <machine/cpufunc.h> 46 #include <machine/md_var.h> 47 #include <machine/segments.h> 48 #include <machine/smp.h> 49 #include <machine/specialreg.h> 50 #include <machine/vmparam.h> 51 52 #include <machine/vmm.h> 53 #include <machine/vmm_dev.h> 54 #include <machine/vmm_instruction_emul.h> 55 #include "vmm_lapic.h" 56 #include "vmm_host.h" 57 #include "vmm_ioport.h" 58 #include "vmm_ktr.h" 59 #include "vmm_stat.h" 60 #include "vatpic.h" 61 #include "vlapic.h" 62 #include "vlapic_priv.h" 63 64 #include "ept.h" 65 #include "vmx_cpufunc.h" 66 #include "vmx.h" 67 #include "vmx_msr.h" 68 #include "x86.h" 69 #include "vmx_controls.h" 70 71 #define PINBASED_CTLS_ONE_SETTING \ 72 (PINBASED_EXTINT_EXITING | \ 73 PINBASED_NMI_EXITING | \ 74 PINBASED_VIRTUAL_NMI) 75 #define PINBASED_CTLS_ZERO_SETTING 0 76 77 #define PROCBASED_CTLS_WINDOW_SETTING \ 78 (PROCBASED_INT_WINDOW_EXITING | \ 79 PROCBASED_NMI_WINDOW_EXITING) 80 81 #define PROCBASED_CTLS_ONE_SETTING \ 82 (PROCBASED_SECONDARY_CONTROLS | \ 83 PROCBASED_MWAIT_EXITING | \ 84 PROCBASED_MONITOR_EXITING | \ 85 PROCBASED_IO_EXITING | \ 86 PROCBASED_MSR_BITMAPS | \ 87 PROCBASED_CTLS_WINDOW_SETTING | \ 88 PROCBASED_CR8_LOAD_EXITING | \ 89 PROCBASED_CR8_STORE_EXITING) 90 #define PROCBASED_CTLS_ZERO_SETTING \ 91 (PROCBASED_CR3_LOAD_EXITING | \ 92 PROCBASED_CR3_STORE_EXITING | \ 93 PROCBASED_IO_BITMAPS) 94 95 #define PROCBASED_CTLS2_ONE_SETTING PROCBASED2_ENABLE_EPT 96 #define PROCBASED_CTLS2_ZERO_SETTING 0 97 98 #define VM_EXIT_CTLS_ONE_SETTING \ 99 (VM_EXIT_HOST_LMA | \ 100 VM_EXIT_SAVE_EFER | \ 101 VM_EXIT_LOAD_EFER | \ 102 VM_EXIT_ACKNOWLEDGE_INTERRUPT) 103 104 #define VM_EXIT_CTLS_ZERO_SETTING VM_EXIT_SAVE_DEBUG_CONTROLS 105 106 #define VM_ENTRY_CTLS_ONE_SETTING (VM_ENTRY_LOAD_EFER) 107 108 #define VM_ENTRY_CTLS_ZERO_SETTING \ 109 (VM_ENTRY_LOAD_DEBUG_CONTROLS | \ 110 VM_ENTRY_INTO_SMM | \ 111 VM_ENTRY_DEACTIVATE_DUAL_MONITOR) 112 113 #define HANDLED 1 114 #define UNHANDLED 0 115 116 static MALLOC_DEFINE(M_VMX, "vmx", "vmx"); 117 static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic"); 118 119 SYSCTL_DECL(_hw_vmm); 120 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW, NULL, NULL); 121 122 int vmxon_enabled[MAXCPU]; 123 static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE); 124 125 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2; 126 static uint32_t exit_ctls, entry_ctls; 127 128 static uint64_t cr0_ones_mask, cr0_zeros_mask; 129 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD, 130 &cr0_ones_mask, 0, NULL); 131 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD, 132 &cr0_zeros_mask, 0, NULL); 133 134 static uint64_t cr4_ones_mask, cr4_zeros_mask; 135 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD, 136 &cr4_ones_mask, 0, NULL); 137 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD, 138 &cr4_zeros_mask, 0, NULL); 139 140 static int vmx_initialized; 141 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD, 142 &vmx_initialized, 0, "Intel VMX initialized"); 143 144 /* 145 * Optional capabilities 146 */ 147 static SYSCTL_NODE(_hw_vmm_vmx, OID_AUTO, cap, CTLFLAG_RW, NULL, NULL); 148 149 static int cap_halt_exit; 150 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, halt_exit, CTLFLAG_RD, &cap_halt_exit, 0, 151 "HLT triggers a VM-exit"); 152 153 static int cap_pause_exit; 154 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, pause_exit, CTLFLAG_RD, &cap_pause_exit, 155 0, "PAUSE triggers a VM-exit"); 156 157 static int cap_unrestricted_guest; 158 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, unrestricted_guest, CTLFLAG_RD, 159 &cap_unrestricted_guest, 0, "Unrestricted guests"); 160 161 static int cap_monitor_trap; 162 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, monitor_trap, CTLFLAG_RD, 163 &cap_monitor_trap, 0, "Monitor trap flag"); 164 165 static int cap_invpcid; 166 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, invpcid, CTLFLAG_RD, &cap_invpcid, 167 0, "Guests are allowed to use INVPCID"); 168 169 static int virtual_interrupt_delivery; 170 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD, 171 &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support"); 172 173 static int posted_interrupts; 174 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, posted_interrupts, CTLFLAG_RD, 175 &posted_interrupts, 0, "APICv posted interrupt support"); 176 177 static int pirvec = -1; 178 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD, 179 &pirvec, 0, "APICv posted interrupt vector"); 180 181 static struct unrhdr *vpid_unr; 182 static u_int vpid_alloc_failed; 183 SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD, 184 &vpid_alloc_failed, 0, NULL); 185 186 /* 187 * Use the last page below 4GB as the APIC access address. This address is 188 * occupied by the boot firmware so it is guaranteed that it will not conflict 189 * with a page in system memory. 190 */ 191 #define APIC_ACCESS_ADDRESS 0xFFFFF000 192 193 static int vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc); 194 static int vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval); 195 static int vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val); 196 static void vmx_inject_pir(struct vlapic *vlapic); 197 198 #ifdef KTR 199 static const char * 200 exit_reason_to_str(int reason) 201 { 202 static char reasonbuf[32]; 203 204 switch (reason) { 205 case EXIT_REASON_EXCEPTION: 206 return "exception"; 207 case EXIT_REASON_EXT_INTR: 208 return "extint"; 209 case EXIT_REASON_TRIPLE_FAULT: 210 return "triplefault"; 211 case EXIT_REASON_INIT: 212 return "init"; 213 case EXIT_REASON_SIPI: 214 return "sipi"; 215 case EXIT_REASON_IO_SMI: 216 return "iosmi"; 217 case EXIT_REASON_SMI: 218 return "smi"; 219 case EXIT_REASON_INTR_WINDOW: 220 return "intrwindow"; 221 case EXIT_REASON_NMI_WINDOW: 222 return "nmiwindow"; 223 case EXIT_REASON_TASK_SWITCH: 224 return "taskswitch"; 225 case EXIT_REASON_CPUID: 226 return "cpuid"; 227 case EXIT_REASON_GETSEC: 228 return "getsec"; 229 case EXIT_REASON_HLT: 230 return "hlt"; 231 case EXIT_REASON_INVD: 232 return "invd"; 233 case EXIT_REASON_INVLPG: 234 return "invlpg"; 235 case EXIT_REASON_RDPMC: 236 return "rdpmc"; 237 case EXIT_REASON_RDTSC: 238 return "rdtsc"; 239 case EXIT_REASON_RSM: 240 return "rsm"; 241 case EXIT_REASON_VMCALL: 242 return "vmcall"; 243 case EXIT_REASON_VMCLEAR: 244 return "vmclear"; 245 case EXIT_REASON_VMLAUNCH: 246 return "vmlaunch"; 247 case EXIT_REASON_VMPTRLD: 248 return "vmptrld"; 249 case EXIT_REASON_VMPTRST: 250 return "vmptrst"; 251 case EXIT_REASON_VMREAD: 252 return "vmread"; 253 case EXIT_REASON_VMRESUME: 254 return "vmresume"; 255 case EXIT_REASON_VMWRITE: 256 return "vmwrite"; 257 case EXIT_REASON_VMXOFF: 258 return "vmxoff"; 259 case EXIT_REASON_VMXON: 260 return "vmxon"; 261 case EXIT_REASON_CR_ACCESS: 262 return "craccess"; 263 case EXIT_REASON_DR_ACCESS: 264 return "draccess"; 265 case EXIT_REASON_INOUT: 266 return "inout"; 267 case EXIT_REASON_RDMSR: 268 return "rdmsr"; 269 case EXIT_REASON_WRMSR: 270 return "wrmsr"; 271 case EXIT_REASON_INVAL_VMCS: 272 return "invalvmcs"; 273 case EXIT_REASON_INVAL_MSR: 274 return "invalmsr"; 275 case EXIT_REASON_MWAIT: 276 return "mwait"; 277 case EXIT_REASON_MTF: 278 return "mtf"; 279 case EXIT_REASON_MONITOR: 280 return "monitor"; 281 case EXIT_REASON_PAUSE: 282 return "pause"; 283 case EXIT_REASON_MCE_DURING_ENTRY: 284 return "mce-during-entry"; 285 case EXIT_REASON_TPR: 286 return "tpr"; 287 case EXIT_REASON_APIC_ACCESS: 288 return "apic-access"; 289 case EXIT_REASON_GDTR_IDTR: 290 return "gdtridtr"; 291 case EXIT_REASON_LDTR_TR: 292 return "ldtrtr"; 293 case EXIT_REASON_EPT_FAULT: 294 return "eptfault"; 295 case EXIT_REASON_EPT_MISCONFIG: 296 return "eptmisconfig"; 297 case EXIT_REASON_INVEPT: 298 return "invept"; 299 case EXIT_REASON_RDTSCP: 300 return "rdtscp"; 301 case EXIT_REASON_VMX_PREEMPT: 302 return "vmxpreempt"; 303 case EXIT_REASON_INVVPID: 304 return "invvpid"; 305 case EXIT_REASON_WBINVD: 306 return "wbinvd"; 307 case EXIT_REASON_XSETBV: 308 return "xsetbv"; 309 case EXIT_REASON_APIC_WRITE: 310 return "apic-write"; 311 default: 312 snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason); 313 return (reasonbuf); 314 } 315 } 316 #endif /* KTR */ 317 318 static int 319 vmx_allow_x2apic_msrs(struct vmx *vmx) 320 { 321 int i, error; 322 323 error = 0; 324 325 /* 326 * Allow readonly access to the following x2APIC MSRs from the guest. 327 */ 328 error += guest_msr_ro(vmx, MSR_APIC_ID); 329 error += guest_msr_ro(vmx, MSR_APIC_VERSION); 330 error += guest_msr_ro(vmx, MSR_APIC_LDR); 331 error += guest_msr_ro(vmx, MSR_APIC_SVR); 332 333 for (i = 0; i < 8; i++) 334 error += guest_msr_ro(vmx, MSR_APIC_ISR0 + i); 335 336 for (i = 0; i < 8; i++) 337 error += guest_msr_ro(vmx, MSR_APIC_TMR0 + i); 338 339 for (i = 0; i < 8; i++) 340 error += guest_msr_ro(vmx, MSR_APIC_IRR0 + i); 341 342 error += guest_msr_ro(vmx, MSR_APIC_ESR); 343 error += guest_msr_ro(vmx, MSR_APIC_LVT_TIMER); 344 error += guest_msr_ro(vmx, MSR_APIC_LVT_THERMAL); 345 error += guest_msr_ro(vmx, MSR_APIC_LVT_PCINT); 346 error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT0); 347 error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT1); 348 error += guest_msr_ro(vmx, MSR_APIC_LVT_ERROR); 349 error += guest_msr_ro(vmx, MSR_APIC_ICR_TIMER); 350 error += guest_msr_ro(vmx, MSR_APIC_DCR_TIMER); 351 error += guest_msr_ro(vmx, MSR_APIC_ICR); 352 353 /* 354 * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest. 355 * 356 * These registers get special treatment described in the section 357 * "Virtualizing MSR-Based APIC Accesses". 358 */ 359 error += guest_msr_rw(vmx, MSR_APIC_TPR); 360 error += guest_msr_rw(vmx, MSR_APIC_EOI); 361 error += guest_msr_rw(vmx, MSR_APIC_SELF_IPI); 362 363 return (error); 364 } 365 366 u_long 367 vmx_fix_cr0(u_long cr0) 368 { 369 370 return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask); 371 } 372 373 u_long 374 vmx_fix_cr4(u_long cr4) 375 { 376 377 return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask); 378 } 379 380 static void 381 vpid_free(int vpid) 382 { 383 if (vpid < 0 || vpid > 0xffff) 384 panic("vpid_free: invalid vpid %d", vpid); 385 386 /* 387 * VPIDs [0,VM_MAXCPU] are special and are not allocated from 388 * the unit number allocator. 389 */ 390 391 if (vpid > VM_MAXCPU) 392 free_unr(vpid_unr, vpid); 393 } 394 395 static void 396 vpid_alloc(uint16_t *vpid, int num) 397 { 398 int i, x; 399 400 if (num <= 0 || num > VM_MAXCPU) 401 panic("invalid number of vpids requested: %d", num); 402 403 /* 404 * If the "enable vpid" execution control is not enabled then the 405 * VPID is required to be 0 for all vcpus. 406 */ 407 if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) { 408 for (i = 0; i < num; i++) 409 vpid[i] = 0; 410 return; 411 } 412 413 /* 414 * Allocate a unique VPID for each vcpu from the unit number allocator. 415 */ 416 for (i = 0; i < num; i++) { 417 x = alloc_unr(vpid_unr); 418 if (x == -1) 419 break; 420 else 421 vpid[i] = x; 422 } 423 424 if (i < num) { 425 atomic_add_int(&vpid_alloc_failed, 1); 426 427 /* 428 * If the unit number allocator does not have enough unique 429 * VPIDs then we need to allocate from the [1,VM_MAXCPU] range. 430 * 431 * These VPIDs are not be unique across VMs but this does not 432 * affect correctness because the combined mappings are also 433 * tagged with the EP4TA which is unique for each VM. 434 * 435 * It is still sub-optimal because the invvpid will invalidate 436 * combined mappings for a particular VPID across all EP4TAs. 437 */ 438 while (i-- > 0) 439 vpid_free(vpid[i]); 440 441 for (i = 0; i < num; i++) 442 vpid[i] = i + 1; 443 } 444 } 445 446 static void 447 vpid_init(void) 448 { 449 /* 450 * VPID 0 is required when the "enable VPID" execution control is 451 * disabled. 452 * 453 * VPIDs [1,VM_MAXCPU] are used as the "overflow namespace" when the 454 * unit number allocator does not have sufficient unique VPIDs to 455 * satisfy the allocation. 456 * 457 * The remaining VPIDs are managed by the unit number allocator. 458 */ 459 vpid_unr = new_unrhdr(VM_MAXCPU + 1, 0xffff, NULL); 460 } 461 462 static void 463 vmx_disable(void *arg __unused) 464 { 465 struct invvpid_desc invvpid_desc = { 0 }; 466 struct invept_desc invept_desc = { 0 }; 467 468 if (vmxon_enabled[curcpu]) { 469 /* 470 * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b. 471 * 472 * VMXON or VMXOFF are not required to invalidate any TLB 473 * caching structures. This prevents potential retention of 474 * cached information in the TLB between distinct VMX episodes. 475 */ 476 invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc); 477 invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc); 478 vmxoff(); 479 } 480 load_cr4(rcr4() & ~CR4_VMXE); 481 } 482 483 static int 484 vmx_cleanup(void) 485 { 486 487 if (pirvec >= 0) 488 lapic_ipi_free(pirvec); 489 490 if (vpid_unr != NULL) { 491 delete_unrhdr(vpid_unr); 492 vpid_unr = NULL; 493 } 494 495 smp_rendezvous(NULL, vmx_disable, NULL, NULL); 496 497 return (0); 498 } 499 500 static void 501 vmx_enable(void *arg __unused) 502 { 503 int error; 504 uint64_t feature_control; 505 506 feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL); 507 if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 || 508 (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) { 509 wrmsr(MSR_IA32_FEATURE_CONTROL, 510 feature_control | IA32_FEATURE_CONTROL_VMX_EN | 511 IA32_FEATURE_CONTROL_LOCK); 512 } 513 514 load_cr4(rcr4() | CR4_VMXE); 515 516 *(uint32_t *)vmxon_region[curcpu] = vmx_revision(); 517 error = vmxon(vmxon_region[curcpu]); 518 if (error == 0) 519 vmxon_enabled[curcpu] = 1; 520 } 521 522 static void 523 vmx_restore(void) 524 { 525 526 if (vmxon_enabled[curcpu]) 527 vmxon(vmxon_region[curcpu]); 528 } 529 530 static int 531 vmx_init(int ipinum) 532 { 533 int error, use_tpr_shadow; 534 uint64_t basic, fixed0, fixed1, feature_control; 535 uint32_t tmp, procbased2_vid_bits; 536 537 /* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */ 538 if (!(cpu_feature2 & CPUID2_VMX)) { 539 printf("vmx_init: processor does not support VMX operation\n"); 540 return (ENXIO); 541 } 542 543 /* 544 * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits 545 * are set (bits 0 and 2 respectively). 546 */ 547 feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL); 548 if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 1 && 549 (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) { 550 printf("vmx_init: VMX operation disabled by BIOS\n"); 551 return (ENXIO); 552 } 553 554 /* 555 * Verify capabilities MSR_VMX_BASIC: 556 * - bit 54 indicates support for INS/OUTS decoding 557 */ 558 basic = rdmsr(MSR_VMX_BASIC); 559 if ((basic & (1UL << 54)) == 0) { 560 printf("vmx_init: processor does not support desired basic " 561 "capabilities\n"); 562 return (EINVAL); 563 } 564 565 /* Check support for primary processor-based VM-execution controls */ 566 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 567 MSR_VMX_TRUE_PROCBASED_CTLS, 568 PROCBASED_CTLS_ONE_SETTING, 569 PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls); 570 if (error) { 571 printf("vmx_init: processor does not support desired primary " 572 "processor-based controls\n"); 573 return (error); 574 } 575 576 /* Clear the processor-based ctl bits that are set on demand */ 577 procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING; 578 579 /* Check support for secondary processor-based VM-execution controls */ 580 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, 581 MSR_VMX_PROCBASED_CTLS2, 582 PROCBASED_CTLS2_ONE_SETTING, 583 PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2); 584 if (error) { 585 printf("vmx_init: processor does not support desired secondary " 586 "processor-based controls\n"); 587 return (error); 588 } 589 590 /* Check support for VPID */ 591 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2, 592 PROCBASED2_ENABLE_VPID, 0, &tmp); 593 if (error == 0) 594 procbased_ctls2 |= PROCBASED2_ENABLE_VPID; 595 596 /* Check support for pin-based VM-execution controls */ 597 error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS, 598 MSR_VMX_TRUE_PINBASED_CTLS, 599 PINBASED_CTLS_ONE_SETTING, 600 PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls); 601 if (error) { 602 printf("vmx_init: processor does not support desired " 603 "pin-based controls\n"); 604 return (error); 605 } 606 607 /* Check support for VM-exit controls */ 608 error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS, 609 VM_EXIT_CTLS_ONE_SETTING, 610 VM_EXIT_CTLS_ZERO_SETTING, 611 &exit_ctls); 612 if (error) { 613 printf("vmx_init: processor does not support desired " 614 "exit controls\n"); 615 return (error); 616 } 617 618 /* Check support for VM-entry controls */ 619 error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS, 620 VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING, 621 &entry_ctls); 622 if (error) { 623 printf("vmx_init: processor does not support desired " 624 "entry controls\n"); 625 return (error); 626 } 627 628 /* 629 * Check support for optional features by testing them 630 * as individual bits 631 */ 632 cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 633 MSR_VMX_TRUE_PROCBASED_CTLS, 634 PROCBASED_HLT_EXITING, 0, 635 &tmp) == 0); 636 637 cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 638 MSR_VMX_PROCBASED_CTLS, 639 PROCBASED_MTF, 0, 640 &tmp) == 0); 641 642 cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 643 MSR_VMX_TRUE_PROCBASED_CTLS, 644 PROCBASED_PAUSE_EXITING, 0, 645 &tmp) == 0); 646 647 cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, 648 MSR_VMX_PROCBASED_CTLS2, 649 PROCBASED2_UNRESTRICTED_GUEST, 0, 650 &tmp) == 0); 651 652 cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, 653 MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0, 654 &tmp) == 0); 655 656 /* 657 * Check support for virtual interrupt delivery. 658 */ 659 procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES | 660 PROCBASED2_VIRTUALIZE_X2APIC_MODE | 661 PROCBASED2_APIC_REGISTER_VIRTUALIZATION | 662 PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY); 663 664 use_tpr_shadow = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 665 MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0, 666 &tmp) == 0); 667 668 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2, 669 procbased2_vid_bits, 0, &tmp); 670 if (error == 0 && use_tpr_shadow) { 671 virtual_interrupt_delivery = 1; 672 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid", 673 &virtual_interrupt_delivery); 674 } 675 676 if (virtual_interrupt_delivery) { 677 procbased_ctls |= PROCBASED_USE_TPR_SHADOW; 678 procbased_ctls2 |= procbased2_vid_bits; 679 procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE; 680 681 /* 682 * No need to emulate accesses to %CR8 if virtual 683 * interrupt delivery is enabled. 684 */ 685 procbased_ctls &= ~PROCBASED_CR8_LOAD_EXITING; 686 procbased_ctls &= ~PROCBASED_CR8_STORE_EXITING; 687 688 /* 689 * Check for Posted Interrupts only if Virtual Interrupt 690 * Delivery is enabled. 691 */ 692 error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS, 693 MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0, 694 &tmp); 695 if (error == 0) { 696 pirvec = lapic_ipi_alloc(&IDTVEC(justreturn)); 697 if (pirvec < 0) { 698 if (bootverbose) { 699 printf("vmx_init: unable to allocate " 700 "posted interrupt vector\n"); 701 } 702 } else { 703 posted_interrupts = 1; 704 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir", 705 &posted_interrupts); 706 } 707 } 708 } 709 710 if (posted_interrupts) 711 pinbased_ctls |= PINBASED_POSTED_INTERRUPT; 712 713 /* Initialize EPT */ 714 error = ept_init(ipinum); 715 if (error) { 716 printf("vmx_init: ept initialization failed (%d)\n", error); 717 return (error); 718 } 719 720 /* 721 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1 722 */ 723 fixed0 = rdmsr(MSR_VMX_CR0_FIXED0); 724 fixed1 = rdmsr(MSR_VMX_CR0_FIXED1); 725 cr0_ones_mask = fixed0 & fixed1; 726 cr0_zeros_mask = ~fixed0 & ~fixed1; 727 728 /* 729 * CR0_PE and CR0_PG can be set to zero in VMX non-root operation 730 * if unrestricted guest execution is allowed. 731 */ 732 if (cap_unrestricted_guest) 733 cr0_ones_mask &= ~(CR0_PG | CR0_PE); 734 735 /* 736 * Do not allow the guest to set CR0_NW or CR0_CD. 737 */ 738 cr0_zeros_mask |= (CR0_NW | CR0_CD); 739 740 fixed0 = rdmsr(MSR_VMX_CR4_FIXED0); 741 fixed1 = rdmsr(MSR_VMX_CR4_FIXED1); 742 cr4_ones_mask = fixed0 & fixed1; 743 cr4_zeros_mask = ~fixed0 & ~fixed1; 744 745 vpid_init(); 746 747 vmx_msr_init(); 748 749 /* enable VMX operation */ 750 smp_rendezvous(NULL, vmx_enable, NULL, NULL); 751 752 vmx_initialized = 1; 753 754 return (0); 755 } 756 757 static void 758 vmx_trigger_hostintr(int vector) 759 { 760 uintptr_t func; 761 struct gate_descriptor *gd; 762 763 gd = &idt[vector]; 764 765 KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: " 766 "invalid vector %d", vector)); 767 KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present", 768 vector)); 769 KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d " 770 "has invalid type %d", vector, gd->gd_type)); 771 KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d " 772 "has invalid dpl %d", vector, gd->gd_dpl)); 773 KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor " 774 "for vector %d has invalid selector %d", vector, gd->gd_selector)); 775 KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid " 776 "IST %d", vector, gd->gd_ist)); 777 778 func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset); 779 vmx_call_isr(func); 780 } 781 782 static int 783 vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial) 784 { 785 int error, mask_ident, shadow_ident; 786 uint64_t mask_value; 787 788 if (which != 0 && which != 4) 789 panic("vmx_setup_cr_shadow: unknown cr%d", which); 790 791 if (which == 0) { 792 mask_ident = VMCS_CR0_MASK; 793 mask_value = cr0_ones_mask | cr0_zeros_mask; 794 shadow_ident = VMCS_CR0_SHADOW; 795 } else { 796 mask_ident = VMCS_CR4_MASK; 797 mask_value = cr4_ones_mask | cr4_zeros_mask; 798 shadow_ident = VMCS_CR4_SHADOW; 799 } 800 801 error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value); 802 if (error) 803 return (error); 804 805 error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial); 806 if (error) 807 return (error); 808 809 return (0); 810 } 811 #define vmx_setup_cr0_shadow(vmcs,init) vmx_setup_cr_shadow(0, (vmcs), (init)) 812 #define vmx_setup_cr4_shadow(vmcs,init) vmx_setup_cr_shadow(4, (vmcs), (init)) 813 814 static void * 815 vmx_vminit(struct vm *vm, pmap_t pmap) 816 { 817 uint16_t vpid[VM_MAXCPU]; 818 int i, error; 819 struct vmx *vmx; 820 struct vmcs *vmcs; 821 uint32_t exc_bitmap; 822 823 vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO); 824 if ((uintptr_t)vmx & PAGE_MASK) { 825 panic("malloc of struct vmx not aligned on %d byte boundary", 826 PAGE_SIZE); 827 } 828 vmx->vm = vm; 829 830 vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pml4)); 831 832 /* 833 * Clean up EPTP-tagged guest physical and combined mappings 834 * 835 * VMX transitions are not required to invalidate any guest physical 836 * mappings. So, it may be possible for stale guest physical mappings 837 * to be present in the processor TLBs. 838 * 839 * Combined mappings for this EP4TA are also invalidated for all VPIDs. 840 */ 841 ept_invalidate_mappings(vmx->eptp); 842 843 msr_bitmap_initialize(vmx->msr_bitmap); 844 845 /* 846 * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE. 847 * The guest FSBASE and GSBASE are saved and restored during 848 * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are 849 * always restored from the vmcs host state area on vm-exit. 850 * 851 * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in 852 * how they are saved/restored so can be directly accessed by the 853 * guest. 854 * 855 * MSR_EFER is saved and restored in the guest VMCS area on a 856 * VM exit and entry respectively. It is also restored from the 857 * host VMCS area on a VM exit. 858 * 859 * The TSC MSR is exposed read-only. Writes are disallowed as 860 * that will impact the host TSC. If the guest does a write 861 * the "use TSC offsetting" execution control is enabled and the 862 * difference between the host TSC and the guest TSC is written 863 * into the TSC offset in the VMCS. 864 */ 865 if (guest_msr_rw(vmx, MSR_GSBASE) || 866 guest_msr_rw(vmx, MSR_FSBASE) || 867 guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) || 868 guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) || 869 guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) || 870 guest_msr_rw(vmx, MSR_EFER) || 871 guest_msr_ro(vmx, MSR_TSC)) 872 panic("vmx_vminit: error setting guest msr access"); 873 874 vpid_alloc(vpid, VM_MAXCPU); 875 876 if (virtual_interrupt_delivery) { 877 error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE, 878 APIC_ACCESS_ADDRESS); 879 /* XXX this should really return an error to the caller */ 880 KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error)); 881 } 882 883 for (i = 0; i < VM_MAXCPU; i++) { 884 vmcs = &vmx->vmcs[i]; 885 vmcs->identifier = vmx_revision(); 886 error = vmclear(vmcs); 887 if (error != 0) { 888 panic("vmx_vminit: vmclear error %d on vcpu %d\n", 889 error, i); 890 } 891 892 vmx_msr_guest_init(vmx, i); 893 894 error = vmcs_init(vmcs); 895 KASSERT(error == 0, ("vmcs_init error %d", error)); 896 897 VMPTRLD(vmcs); 898 error = 0; 899 error += vmwrite(VMCS_HOST_RSP, (u_long)&vmx->ctx[i]); 900 error += vmwrite(VMCS_EPTP, vmx->eptp); 901 error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls); 902 error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls); 903 error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2); 904 error += vmwrite(VMCS_EXIT_CTLS, exit_ctls); 905 error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls); 906 error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap)); 907 error += vmwrite(VMCS_VPID, vpid[i]); 908 909 /* exception bitmap */ 910 if (vcpu_trace_exceptions(vm, i)) 911 exc_bitmap = 0xffffffff; 912 else 913 exc_bitmap = 1 << IDT_MC; 914 error += vmwrite(VMCS_EXCEPTION_BITMAP, exc_bitmap); 915 916 if (virtual_interrupt_delivery) { 917 error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS); 918 error += vmwrite(VMCS_VIRTUAL_APIC, 919 vtophys(&vmx->apic_page[i])); 920 error += vmwrite(VMCS_EOI_EXIT0, 0); 921 error += vmwrite(VMCS_EOI_EXIT1, 0); 922 error += vmwrite(VMCS_EOI_EXIT2, 0); 923 error += vmwrite(VMCS_EOI_EXIT3, 0); 924 } 925 if (posted_interrupts) { 926 error += vmwrite(VMCS_PIR_VECTOR, pirvec); 927 error += vmwrite(VMCS_PIR_DESC, 928 vtophys(&vmx->pir_desc[i])); 929 } 930 VMCLEAR(vmcs); 931 KASSERT(error == 0, ("vmx_vminit: error customizing the vmcs")); 932 933 vmx->cap[i].set = 0; 934 vmx->cap[i].proc_ctls = procbased_ctls; 935 vmx->cap[i].proc_ctls2 = procbased_ctls2; 936 937 vmx->state[i].nextrip = ~0; 938 vmx->state[i].lastcpu = NOCPU; 939 vmx->state[i].vpid = vpid[i]; 940 941 /* 942 * Set up the CR0/4 shadows, and init the read shadow 943 * to the power-on register value from the Intel Sys Arch. 944 * CR0 - 0x60000010 945 * CR4 - 0 946 */ 947 error = vmx_setup_cr0_shadow(vmcs, 0x60000010); 948 if (error != 0) 949 panic("vmx_setup_cr0_shadow %d", error); 950 951 error = vmx_setup_cr4_shadow(vmcs, 0); 952 if (error != 0) 953 panic("vmx_setup_cr4_shadow %d", error); 954 955 vmx->ctx[i].pmap = pmap; 956 } 957 958 return (vmx); 959 } 960 961 static int 962 vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx) 963 { 964 int handled, func; 965 966 func = vmxctx->guest_rax; 967 968 handled = x86_emulate_cpuid(vm, vcpu, 969 (uint32_t*)(&vmxctx->guest_rax), 970 (uint32_t*)(&vmxctx->guest_rbx), 971 (uint32_t*)(&vmxctx->guest_rcx), 972 (uint32_t*)(&vmxctx->guest_rdx)); 973 return (handled); 974 } 975 976 static __inline void 977 vmx_run_trace(struct vmx *vmx, int vcpu) 978 { 979 #ifdef KTR 980 VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %#lx", vmcs_guest_rip()); 981 #endif 982 } 983 984 static __inline void 985 vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason, 986 int handled) 987 { 988 #ifdef KTR 989 VCPU_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx", 990 handled ? "handled" : "unhandled", 991 exit_reason_to_str(exit_reason), rip); 992 #endif 993 } 994 995 static __inline void 996 vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip) 997 { 998 #ifdef KTR 999 VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip); 1000 #endif 1001 } 1002 1003 static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved"); 1004 static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done"); 1005 1006 /* 1007 * Invalidate guest mappings identified by its vpid from the TLB. 1008 */ 1009 static __inline void 1010 vmx_invvpid(struct vmx *vmx, int vcpu, pmap_t pmap, int running) 1011 { 1012 struct vmxstate *vmxstate; 1013 struct invvpid_desc invvpid_desc; 1014 1015 vmxstate = &vmx->state[vcpu]; 1016 if (vmxstate->vpid == 0) 1017 return; 1018 1019 if (!running) { 1020 /* 1021 * Set the 'lastcpu' to an invalid host cpu. 1022 * 1023 * This will invalidate TLB entries tagged with the vcpu's 1024 * vpid the next time it runs via vmx_set_pcpu_defaults(). 1025 */ 1026 vmxstate->lastcpu = NOCPU; 1027 return; 1028 } 1029 1030 KASSERT(curthread->td_critnest > 0, ("%s: vcpu %d running outside " 1031 "critical section", __func__, vcpu)); 1032 1033 /* 1034 * Invalidate all mappings tagged with 'vpid' 1035 * 1036 * We do this because this vcpu was executing on a different host 1037 * cpu when it last ran. We do not track whether it invalidated 1038 * mappings associated with its 'vpid' during that run. So we must 1039 * assume that the mappings associated with 'vpid' on 'curcpu' are 1040 * stale and invalidate them. 1041 * 1042 * Note that we incur this penalty only when the scheduler chooses to 1043 * move the thread associated with this vcpu between host cpus. 1044 * 1045 * Note also that this will invalidate mappings tagged with 'vpid' 1046 * for "all" EP4TAs. 1047 */ 1048 if (pmap->pm_eptgen == vmx->eptgen[curcpu]) { 1049 invvpid_desc._res1 = 0; 1050 invvpid_desc._res2 = 0; 1051 invvpid_desc.vpid = vmxstate->vpid; 1052 invvpid_desc.linear_addr = 0; 1053 invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc); 1054 vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_DONE, 1); 1055 } else { 1056 /* 1057 * The invvpid can be skipped if an invept is going to 1058 * be performed before entering the guest. The invept 1059 * will invalidate combined mappings tagged with 1060 * 'vmx->eptp' for all vpids. 1061 */ 1062 vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_SAVED, 1); 1063 } 1064 } 1065 1066 static void 1067 vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu, pmap_t pmap) 1068 { 1069 struct vmxstate *vmxstate; 1070 1071 vmxstate = &vmx->state[vcpu]; 1072 if (vmxstate->lastcpu == curcpu) 1073 return; 1074 1075 vmxstate->lastcpu = curcpu; 1076 1077 vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1); 1078 1079 vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase()); 1080 vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase()); 1081 vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase()); 1082 vmx_invvpid(vmx, vcpu, pmap, 1); 1083 } 1084 1085 /* 1086 * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set. 1087 */ 1088 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0); 1089 1090 static void __inline 1091 vmx_set_int_window_exiting(struct vmx *vmx, int vcpu) 1092 { 1093 1094 if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) { 1095 vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING; 1096 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); 1097 VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting"); 1098 } 1099 } 1100 1101 static void __inline 1102 vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu) 1103 { 1104 1105 KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0, 1106 ("intr_window_exiting not set: %#x", vmx->cap[vcpu].proc_ctls)); 1107 vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING; 1108 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); 1109 VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting"); 1110 } 1111 1112 static void __inline 1113 vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu) 1114 { 1115 1116 if ((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) { 1117 vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING; 1118 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); 1119 VCPU_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting"); 1120 } 1121 } 1122 1123 static void __inline 1124 vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu) 1125 { 1126 1127 KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0, 1128 ("nmi_window_exiting not set %#x", vmx->cap[vcpu].proc_ctls)); 1129 vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING; 1130 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); 1131 VCPU_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting"); 1132 } 1133 1134 int 1135 vmx_set_tsc_offset(struct vmx *vmx, int vcpu, uint64_t offset) 1136 { 1137 int error; 1138 1139 if ((vmx->cap[vcpu].proc_ctls & PROCBASED_TSC_OFFSET) == 0) { 1140 vmx->cap[vcpu].proc_ctls |= PROCBASED_TSC_OFFSET; 1141 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); 1142 VCPU_CTR0(vmx->vm, vcpu, "Enabling TSC offsetting"); 1143 } 1144 1145 error = vmwrite(VMCS_TSC_OFFSET, offset); 1146 1147 return (error); 1148 } 1149 1150 #define NMI_BLOCKING (VMCS_INTERRUPTIBILITY_NMI_BLOCKING | \ 1151 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING) 1152 #define HWINTR_BLOCKING (VMCS_INTERRUPTIBILITY_STI_BLOCKING | \ 1153 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING) 1154 1155 static void 1156 vmx_inject_nmi(struct vmx *vmx, int vcpu) 1157 { 1158 uint32_t gi, info; 1159 1160 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1161 KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest " 1162 "interruptibility-state %#x", gi)); 1163 1164 info = vmcs_read(VMCS_ENTRY_INTR_INFO); 1165 KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid " 1166 "VM-entry interruption information %#x", info)); 1167 1168 /* 1169 * Inject the virtual NMI. The vector must be the NMI IDT entry 1170 * or the VMCS entry check will fail. 1171 */ 1172 info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID; 1173 vmcs_write(VMCS_ENTRY_INTR_INFO, info); 1174 1175 VCPU_CTR0(vmx->vm, vcpu, "Injecting vNMI"); 1176 1177 /* Clear the request */ 1178 vm_nmi_clear(vmx->vm, vcpu); 1179 } 1180 1181 static void 1182 vmx_inject_interrupts(struct vmx *vmx, int vcpu, struct vlapic *vlapic, 1183 uint64_t guestrip) 1184 { 1185 int vector, need_nmi_exiting, extint_pending; 1186 uint64_t rflags, entryinfo; 1187 uint32_t gi, info; 1188 1189 if (vmx->state[vcpu].nextrip != guestrip) { 1190 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1191 if (gi & HWINTR_BLOCKING) { 1192 VCPU_CTR2(vmx->vm, vcpu, "Guest interrupt blocking " 1193 "cleared due to rip change: %#lx/%#lx", 1194 vmx->state[vcpu].nextrip, guestrip); 1195 gi &= ~HWINTR_BLOCKING; 1196 vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi); 1197 } 1198 } 1199 1200 if (vm_entry_intinfo(vmx->vm, vcpu, &entryinfo)) { 1201 KASSERT((entryinfo & VMCS_INTR_VALID) != 0, ("%s: entry " 1202 "intinfo is not valid: %#lx", __func__, entryinfo)); 1203 1204 info = vmcs_read(VMCS_ENTRY_INTR_INFO); 1205 KASSERT((info & VMCS_INTR_VALID) == 0, ("%s: cannot inject " 1206 "pending exception: %#lx/%#x", __func__, entryinfo, info)); 1207 1208 info = entryinfo; 1209 vector = info & 0xff; 1210 if (vector == IDT_BP || vector == IDT_OF) { 1211 /* 1212 * VT-x requires #BP and #OF to be injected as software 1213 * exceptions. 1214 */ 1215 info &= ~VMCS_INTR_T_MASK; 1216 info |= VMCS_INTR_T_SWEXCEPTION; 1217 } 1218 1219 if (info & VMCS_INTR_DEL_ERRCODE) 1220 vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, entryinfo >> 32); 1221 1222 vmcs_write(VMCS_ENTRY_INTR_INFO, info); 1223 } 1224 1225 if (vm_nmi_pending(vmx->vm, vcpu)) { 1226 /* 1227 * If there are no conditions blocking NMI injection then 1228 * inject it directly here otherwise enable "NMI window 1229 * exiting" to inject it as soon as we can. 1230 * 1231 * We also check for STI_BLOCKING because some implementations 1232 * don't allow NMI injection in this case. If we are running 1233 * on a processor that doesn't have this restriction it will 1234 * immediately exit and the NMI will be injected in the 1235 * "NMI window exiting" handler. 1236 */ 1237 need_nmi_exiting = 1; 1238 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1239 if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) { 1240 info = vmcs_read(VMCS_ENTRY_INTR_INFO); 1241 if ((info & VMCS_INTR_VALID) == 0) { 1242 vmx_inject_nmi(vmx, vcpu); 1243 need_nmi_exiting = 0; 1244 } else { 1245 VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI " 1246 "due to VM-entry intr info %#x", info); 1247 } 1248 } else { 1249 VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI due to " 1250 "Guest Interruptibility-state %#x", gi); 1251 } 1252 1253 if (need_nmi_exiting) 1254 vmx_set_nmi_window_exiting(vmx, vcpu); 1255 } 1256 1257 extint_pending = vm_extint_pending(vmx->vm, vcpu); 1258 1259 if (!extint_pending && virtual_interrupt_delivery) { 1260 vmx_inject_pir(vlapic); 1261 return; 1262 } 1263 1264 /* 1265 * If interrupt-window exiting is already in effect then don't bother 1266 * checking for pending interrupts. This is just an optimization and 1267 * not needed for correctness. 1268 */ 1269 if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0) { 1270 VCPU_CTR0(vmx->vm, vcpu, "Skip interrupt injection due to " 1271 "pending int_window_exiting"); 1272 return; 1273 } 1274 1275 if (!extint_pending) { 1276 /* Ask the local apic for a vector to inject */ 1277 if (!vlapic_pending_intr(vlapic, &vector)) 1278 return; 1279 1280 /* 1281 * From the Intel SDM, Volume 3, Section "Maskable 1282 * Hardware Interrupts": 1283 * - maskable interrupt vectors [16,255] can be delivered 1284 * through the local APIC. 1285 */ 1286 KASSERT(vector >= 16 && vector <= 255, 1287 ("invalid vector %d from local APIC", vector)); 1288 } else { 1289 /* Ask the legacy pic for a vector to inject */ 1290 vatpic_pending_intr(vmx->vm, &vector); 1291 1292 /* 1293 * From the Intel SDM, Volume 3, Section "Maskable 1294 * Hardware Interrupts": 1295 * - maskable interrupt vectors [0,255] can be delivered 1296 * through the INTR pin. 1297 */ 1298 KASSERT(vector >= 0 && vector <= 255, 1299 ("invalid vector %d from INTR", vector)); 1300 } 1301 1302 /* Check RFLAGS.IF and the interruptibility state of the guest */ 1303 rflags = vmcs_read(VMCS_GUEST_RFLAGS); 1304 if ((rflags & PSL_I) == 0) { 1305 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to " 1306 "rflags %#lx", vector, rflags); 1307 goto cantinject; 1308 } 1309 1310 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1311 if (gi & HWINTR_BLOCKING) { 1312 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to " 1313 "Guest Interruptibility-state %#x", vector, gi); 1314 goto cantinject; 1315 } 1316 1317 info = vmcs_read(VMCS_ENTRY_INTR_INFO); 1318 if (info & VMCS_INTR_VALID) { 1319 /* 1320 * This is expected and could happen for multiple reasons: 1321 * - A vectoring VM-entry was aborted due to astpending 1322 * - A VM-exit happened during event injection. 1323 * - An exception was injected above. 1324 * - An NMI was injected above or after "NMI window exiting" 1325 */ 1326 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to " 1327 "VM-entry intr info %#x", vector, info); 1328 goto cantinject; 1329 } 1330 1331 /* Inject the interrupt */ 1332 info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID; 1333 info |= vector; 1334 vmcs_write(VMCS_ENTRY_INTR_INFO, info); 1335 1336 if (!extint_pending) { 1337 /* Update the Local APIC ISR */ 1338 vlapic_intr_accepted(vlapic, vector); 1339 } else { 1340 vm_extint_clear(vmx->vm, vcpu); 1341 vatpic_intr_accepted(vmx->vm, vector); 1342 1343 /* 1344 * After we accepted the current ExtINT the PIC may 1345 * have posted another one. If that is the case, set 1346 * the Interrupt Window Exiting execution control so 1347 * we can inject that one too. 1348 * 1349 * Also, interrupt window exiting allows us to inject any 1350 * pending APIC vector that was preempted by the ExtINT 1351 * as soon as possible. This applies both for the software 1352 * emulated vlapic and the hardware assisted virtual APIC. 1353 */ 1354 vmx_set_int_window_exiting(vmx, vcpu); 1355 } 1356 1357 VCPU_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector); 1358 1359 return; 1360 1361 cantinject: 1362 /* 1363 * Set the Interrupt Window Exiting execution control so we can inject 1364 * the interrupt as soon as blocking condition goes away. 1365 */ 1366 vmx_set_int_window_exiting(vmx, vcpu); 1367 } 1368 1369 /* 1370 * If the Virtual NMIs execution control is '1' then the logical processor 1371 * tracks virtual-NMI blocking in the Guest Interruptibility-state field of 1372 * the VMCS. An IRET instruction in VMX non-root operation will remove any 1373 * virtual-NMI blocking. 1374 * 1375 * This unblocking occurs even if the IRET causes a fault. In this case the 1376 * hypervisor needs to restore virtual-NMI blocking before resuming the guest. 1377 */ 1378 static void 1379 vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid) 1380 { 1381 uint32_t gi; 1382 1383 VCPU_CTR0(vmx->vm, vcpuid, "Restore Virtual-NMI blocking"); 1384 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1385 gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING; 1386 vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi); 1387 } 1388 1389 static void 1390 vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid) 1391 { 1392 uint32_t gi; 1393 1394 VCPU_CTR0(vmx->vm, vcpuid, "Clear Virtual-NMI blocking"); 1395 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1396 gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING; 1397 vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi); 1398 } 1399 1400 static void 1401 vmx_assert_nmi_blocking(struct vmx *vmx, int vcpuid) 1402 { 1403 uint32_t gi; 1404 1405 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1406 KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING, 1407 ("NMI blocking is not in effect %#x", gi)); 1408 } 1409 1410 static int 1411 vmx_emulate_xsetbv(struct vmx *vmx, int vcpu, struct vm_exit *vmexit) 1412 { 1413 struct vmxctx *vmxctx; 1414 uint64_t xcrval; 1415 const struct xsave_limits *limits; 1416 1417 vmxctx = &vmx->ctx[vcpu]; 1418 limits = vmm_get_xsave_limits(); 1419 1420 /* 1421 * Note that the processor raises a GP# fault on its own if 1422 * xsetbv is executed for CPL != 0, so we do not have to 1423 * emulate that fault here. 1424 */ 1425 1426 /* Only xcr0 is supported. */ 1427 if (vmxctx->guest_rcx != 0) { 1428 vm_inject_gp(vmx->vm, vcpu); 1429 return (HANDLED); 1430 } 1431 1432 /* We only handle xcr0 if both the host and guest have XSAVE enabled. */ 1433 if (!limits->xsave_enabled || !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) { 1434 vm_inject_ud(vmx->vm, vcpu); 1435 return (HANDLED); 1436 } 1437 1438 xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff); 1439 if ((xcrval & ~limits->xcr0_allowed) != 0) { 1440 vm_inject_gp(vmx->vm, vcpu); 1441 return (HANDLED); 1442 } 1443 1444 if (!(xcrval & XFEATURE_ENABLED_X87)) { 1445 vm_inject_gp(vmx->vm, vcpu); 1446 return (HANDLED); 1447 } 1448 1449 /* AVX (YMM_Hi128) requires SSE. */ 1450 if (xcrval & XFEATURE_ENABLED_AVX && 1451 (xcrval & XFEATURE_AVX) != XFEATURE_AVX) { 1452 vm_inject_gp(vmx->vm, vcpu); 1453 return (HANDLED); 1454 } 1455 1456 /* 1457 * AVX512 requires base AVX (YMM_Hi128) as well as OpMask, 1458 * ZMM_Hi256, and Hi16_ZMM. 1459 */ 1460 if (xcrval & XFEATURE_AVX512 && 1461 (xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) != 1462 (XFEATURE_AVX512 | XFEATURE_AVX)) { 1463 vm_inject_gp(vmx->vm, vcpu); 1464 return (HANDLED); 1465 } 1466 1467 /* 1468 * Intel MPX requires both bound register state flags to be 1469 * set. 1470 */ 1471 if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) != 1472 ((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) { 1473 vm_inject_gp(vmx->vm, vcpu); 1474 return (HANDLED); 1475 } 1476 1477 /* 1478 * This runs "inside" vmrun() with the guest's FPU state, so 1479 * modifying xcr0 directly modifies the guest's xcr0, not the 1480 * host's. 1481 */ 1482 load_xcr(0, xcrval); 1483 return (HANDLED); 1484 } 1485 1486 static uint64_t 1487 vmx_get_guest_reg(struct vmx *vmx, int vcpu, int ident) 1488 { 1489 const struct vmxctx *vmxctx; 1490 1491 vmxctx = &vmx->ctx[vcpu]; 1492 1493 switch (ident) { 1494 case 0: 1495 return (vmxctx->guest_rax); 1496 case 1: 1497 return (vmxctx->guest_rcx); 1498 case 2: 1499 return (vmxctx->guest_rdx); 1500 case 3: 1501 return (vmxctx->guest_rbx); 1502 case 4: 1503 return (vmcs_read(VMCS_GUEST_RSP)); 1504 case 5: 1505 return (vmxctx->guest_rbp); 1506 case 6: 1507 return (vmxctx->guest_rsi); 1508 case 7: 1509 return (vmxctx->guest_rdi); 1510 case 8: 1511 return (vmxctx->guest_r8); 1512 case 9: 1513 return (vmxctx->guest_r9); 1514 case 10: 1515 return (vmxctx->guest_r10); 1516 case 11: 1517 return (vmxctx->guest_r11); 1518 case 12: 1519 return (vmxctx->guest_r12); 1520 case 13: 1521 return (vmxctx->guest_r13); 1522 case 14: 1523 return (vmxctx->guest_r14); 1524 case 15: 1525 return (vmxctx->guest_r15); 1526 default: 1527 panic("invalid vmx register %d", ident); 1528 } 1529 } 1530 1531 static void 1532 vmx_set_guest_reg(struct vmx *vmx, int vcpu, int ident, uint64_t regval) 1533 { 1534 struct vmxctx *vmxctx; 1535 1536 vmxctx = &vmx->ctx[vcpu]; 1537 1538 switch (ident) { 1539 case 0: 1540 vmxctx->guest_rax = regval; 1541 break; 1542 case 1: 1543 vmxctx->guest_rcx = regval; 1544 break; 1545 case 2: 1546 vmxctx->guest_rdx = regval; 1547 break; 1548 case 3: 1549 vmxctx->guest_rbx = regval; 1550 break; 1551 case 4: 1552 vmcs_write(VMCS_GUEST_RSP, regval); 1553 break; 1554 case 5: 1555 vmxctx->guest_rbp = regval; 1556 break; 1557 case 6: 1558 vmxctx->guest_rsi = regval; 1559 break; 1560 case 7: 1561 vmxctx->guest_rdi = regval; 1562 break; 1563 case 8: 1564 vmxctx->guest_r8 = regval; 1565 break; 1566 case 9: 1567 vmxctx->guest_r9 = regval; 1568 break; 1569 case 10: 1570 vmxctx->guest_r10 = regval; 1571 break; 1572 case 11: 1573 vmxctx->guest_r11 = regval; 1574 break; 1575 case 12: 1576 vmxctx->guest_r12 = regval; 1577 break; 1578 case 13: 1579 vmxctx->guest_r13 = regval; 1580 break; 1581 case 14: 1582 vmxctx->guest_r14 = regval; 1583 break; 1584 case 15: 1585 vmxctx->guest_r15 = regval; 1586 break; 1587 default: 1588 panic("invalid vmx register %d", ident); 1589 } 1590 } 1591 1592 static int 1593 vmx_emulate_cr0_access(struct vmx *vmx, int vcpu, uint64_t exitqual) 1594 { 1595 uint64_t crval, regval; 1596 1597 /* We only handle mov to %cr0 at this time */ 1598 if ((exitqual & 0xf0) != 0x00) 1599 return (UNHANDLED); 1600 1601 regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf); 1602 1603 vmcs_write(VMCS_CR0_SHADOW, regval); 1604 1605 crval = regval | cr0_ones_mask; 1606 crval &= ~cr0_zeros_mask; 1607 vmcs_write(VMCS_GUEST_CR0, crval); 1608 1609 if (regval & CR0_PG) { 1610 uint64_t efer, entry_ctls; 1611 1612 /* 1613 * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and 1614 * the "IA-32e mode guest" bit in VM-entry control must be 1615 * equal. 1616 */ 1617 efer = vmcs_read(VMCS_GUEST_IA32_EFER); 1618 if (efer & EFER_LME) { 1619 efer |= EFER_LMA; 1620 vmcs_write(VMCS_GUEST_IA32_EFER, efer); 1621 entry_ctls = vmcs_read(VMCS_ENTRY_CTLS); 1622 entry_ctls |= VM_ENTRY_GUEST_LMA; 1623 vmcs_write(VMCS_ENTRY_CTLS, entry_ctls); 1624 } 1625 } 1626 1627 return (HANDLED); 1628 } 1629 1630 static int 1631 vmx_emulate_cr4_access(struct vmx *vmx, int vcpu, uint64_t exitqual) 1632 { 1633 uint64_t crval, regval; 1634 1635 /* We only handle mov to %cr4 at this time */ 1636 if ((exitqual & 0xf0) != 0x00) 1637 return (UNHANDLED); 1638 1639 regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf); 1640 1641 vmcs_write(VMCS_CR4_SHADOW, regval); 1642 1643 crval = regval | cr4_ones_mask; 1644 crval &= ~cr4_zeros_mask; 1645 vmcs_write(VMCS_GUEST_CR4, crval); 1646 1647 return (HANDLED); 1648 } 1649 1650 static int 1651 vmx_emulate_cr8_access(struct vmx *vmx, int vcpu, uint64_t exitqual) 1652 { 1653 struct vlapic *vlapic; 1654 uint64_t cr8; 1655 int regnum; 1656 1657 /* We only handle mov %cr8 to/from a register at this time. */ 1658 if ((exitqual & 0xe0) != 0x00) { 1659 return (UNHANDLED); 1660 } 1661 1662 vlapic = vm_lapic(vmx->vm, vcpu); 1663 regnum = (exitqual >> 8) & 0xf; 1664 if (exitqual & 0x10) { 1665 cr8 = vlapic_get_cr8(vlapic); 1666 vmx_set_guest_reg(vmx, vcpu, regnum, cr8); 1667 } else { 1668 cr8 = vmx_get_guest_reg(vmx, vcpu, regnum); 1669 vlapic_set_cr8(vlapic, cr8); 1670 } 1671 1672 return (HANDLED); 1673 } 1674 1675 /* 1676 * From section "Guest Register State" in the Intel SDM: CPL = SS.DPL 1677 */ 1678 static int 1679 vmx_cpl(void) 1680 { 1681 uint32_t ssar; 1682 1683 ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS); 1684 return ((ssar >> 5) & 0x3); 1685 } 1686 1687 static enum vm_cpu_mode 1688 vmx_cpu_mode(void) 1689 { 1690 uint32_t csar; 1691 1692 if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) { 1693 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS); 1694 if (csar & 0x2000) 1695 return (CPU_MODE_64BIT); /* CS.L = 1 */ 1696 else 1697 return (CPU_MODE_COMPATIBILITY); 1698 } else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) { 1699 return (CPU_MODE_PROTECTED); 1700 } else { 1701 return (CPU_MODE_REAL); 1702 } 1703 } 1704 1705 static enum vm_paging_mode 1706 vmx_paging_mode(void) 1707 { 1708 1709 if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG)) 1710 return (PAGING_MODE_FLAT); 1711 if (!(vmcs_read(VMCS_GUEST_CR4) & CR4_PAE)) 1712 return (PAGING_MODE_32); 1713 if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME) 1714 return (PAGING_MODE_64); 1715 else 1716 return (PAGING_MODE_PAE); 1717 } 1718 1719 static uint64_t 1720 inout_str_index(struct vmx *vmx, int vcpuid, int in) 1721 { 1722 uint64_t val; 1723 int error; 1724 enum vm_reg_name reg; 1725 1726 reg = in ? VM_REG_GUEST_RDI : VM_REG_GUEST_RSI; 1727 error = vmx_getreg(vmx, vcpuid, reg, &val); 1728 KASSERT(error == 0, ("%s: vmx_getreg error %d", __func__, error)); 1729 return (val); 1730 } 1731 1732 static uint64_t 1733 inout_str_count(struct vmx *vmx, int vcpuid, int rep) 1734 { 1735 uint64_t val; 1736 int error; 1737 1738 if (rep) { 1739 error = vmx_getreg(vmx, vcpuid, VM_REG_GUEST_RCX, &val); 1740 KASSERT(!error, ("%s: vmx_getreg error %d", __func__, error)); 1741 } else { 1742 val = 1; 1743 } 1744 return (val); 1745 } 1746 1747 static int 1748 inout_str_addrsize(uint32_t inst_info) 1749 { 1750 uint32_t size; 1751 1752 size = (inst_info >> 7) & 0x7; 1753 switch (size) { 1754 case 0: 1755 return (2); /* 16 bit */ 1756 case 1: 1757 return (4); /* 32 bit */ 1758 case 2: 1759 return (8); /* 64 bit */ 1760 default: 1761 panic("%s: invalid size encoding %d", __func__, size); 1762 } 1763 } 1764 1765 static void 1766 inout_str_seginfo(struct vmx *vmx, int vcpuid, uint32_t inst_info, int in, 1767 struct vm_inout_str *vis) 1768 { 1769 int error, s; 1770 1771 if (in) { 1772 vis->seg_name = VM_REG_GUEST_ES; 1773 } else { 1774 s = (inst_info >> 15) & 0x7; 1775 vis->seg_name = vm_segment_name(s); 1776 } 1777 1778 error = vmx_getdesc(vmx, vcpuid, vis->seg_name, &vis->seg_desc); 1779 KASSERT(error == 0, ("%s: vmx_getdesc error %d", __func__, error)); 1780 } 1781 1782 static void 1783 vmx_paging_info(struct vm_guest_paging *paging) 1784 { 1785 paging->cr3 = vmcs_guest_cr3(); 1786 paging->cpl = vmx_cpl(); 1787 paging->cpu_mode = vmx_cpu_mode(); 1788 paging->paging_mode = vmx_paging_mode(); 1789 } 1790 1791 static void 1792 vmexit_inst_emul(struct vm_exit *vmexit, uint64_t gpa, uint64_t gla) 1793 { 1794 struct vm_guest_paging *paging; 1795 uint32_t csar; 1796 1797 paging = &vmexit->u.inst_emul.paging; 1798 1799 vmexit->exitcode = VM_EXITCODE_INST_EMUL; 1800 vmexit->inst_length = 0; 1801 vmexit->u.inst_emul.gpa = gpa; 1802 vmexit->u.inst_emul.gla = gla; 1803 vmx_paging_info(paging); 1804 switch (paging->cpu_mode) { 1805 case CPU_MODE_REAL: 1806 vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE); 1807 vmexit->u.inst_emul.cs_d = 0; 1808 break; 1809 case CPU_MODE_PROTECTED: 1810 case CPU_MODE_COMPATIBILITY: 1811 vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE); 1812 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS); 1813 vmexit->u.inst_emul.cs_d = SEG_DESC_DEF32(csar); 1814 break; 1815 default: 1816 vmexit->u.inst_emul.cs_base = 0; 1817 vmexit->u.inst_emul.cs_d = 0; 1818 break; 1819 } 1820 vie_init(&vmexit->u.inst_emul.vie, NULL, 0); 1821 } 1822 1823 static int 1824 ept_fault_type(uint64_t ept_qual) 1825 { 1826 int fault_type; 1827 1828 if (ept_qual & EPT_VIOLATION_DATA_WRITE) 1829 fault_type = VM_PROT_WRITE; 1830 else if (ept_qual & EPT_VIOLATION_INST_FETCH) 1831 fault_type = VM_PROT_EXECUTE; 1832 else 1833 fault_type= VM_PROT_READ; 1834 1835 return (fault_type); 1836 } 1837 1838 static boolean_t 1839 ept_emulation_fault(uint64_t ept_qual) 1840 { 1841 int read, write; 1842 1843 /* EPT fault on an instruction fetch doesn't make sense here */ 1844 if (ept_qual & EPT_VIOLATION_INST_FETCH) 1845 return (FALSE); 1846 1847 /* EPT fault must be a read fault or a write fault */ 1848 read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0; 1849 write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0; 1850 if ((read | write) == 0) 1851 return (FALSE); 1852 1853 /* 1854 * The EPT violation must have been caused by accessing a 1855 * guest-physical address that is a translation of a guest-linear 1856 * address. 1857 */ 1858 if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 || 1859 (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) { 1860 return (FALSE); 1861 } 1862 1863 return (TRUE); 1864 } 1865 1866 static __inline int 1867 apic_access_virtualization(struct vmx *vmx, int vcpuid) 1868 { 1869 uint32_t proc_ctls2; 1870 1871 proc_ctls2 = vmx->cap[vcpuid].proc_ctls2; 1872 return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0); 1873 } 1874 1875 static __inline int 1876 x2apic_virtualization(struct vmx *vmx, int vcpuid) 1877 { 1878 uint32_t proc_ctls2; 1879 1880 proc_ctls2 = vmx->cap[vcpuid].proc_ctls2; 1881 return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0); 1882 } 1883 1884 static int 1885 vmx_handle_apic_write(struct vmx *vmx, int vcpuid, struct vlapic *vlapic, 1886 uint64_t qual) 1887 { 1888 int error, handled, offset; 1889 uint32_t *apic_regs, vector; 1890 bool retu; 1891 1892 handled = HANDLED; 1893 offset = APIC_WRITE_OFFSET(qual); 1894 1895 if (!apic_access_virtualization(vmx, vcpuid)) { 1896 /* 1897 * In general there should not be any APIC write VM-exits 1898 * unless APIC-access virtualization is enabled. 1899 * 1900 * However self-IPI virtualization can legitimately trigger 1901 * an APIC-write VM-exit so treat it specially. 1902 */ 1903 if (x2apic_virtualization(vmx, vcpuid) && 1904 offset == APIC_OFFSET_SELF_IPI) { 1905 apic_regs = (uint32_t *)(vlapic->apic_page); 1906 vector = apic_regs[APIC_OFFSET_SELF_IPI / 4]; 1907 vlapic_self_ipi_handler(vlapic, vector); 1908 return (HANDLED); 1909 } else 1910 return (UNHANDLED); 1911 } 1912 1913 switch (offset) { 1914 case APIC_OFFSET_ID: 1915 vlapic_id_write_handler(vlapic); 1916 break; 1917 case APIC_OFFSET_LDR: 1918 vlapic_ldr_write_handler(vlapic); 1919 break; 1920 case APIC_OFFSET_DFR: 1921 vlapic_dfr_write_handler(vlapic); 1922 break; 1923 case APIC_OFFSET_SVR: 1924 vlapic_svr_write_handler(vlapic); 1925 break; 1926 case APIC_OFFSET_ESR: 1927 vlapic_esr_write_handler(vlapic); 1928 break; 1929 case APIC_OFFSET_ICR_LOW: 1930 retu = false; 1931 error = vlapic_icrlo_write_handler(vlapic, &retu); 1932 if (error != 0 || retu) 1933 handled = UNHANDLED; 1934 break; 1935 case APIC_OFFSET_CMCI_LVT: 1936 case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT: 1937 vlapic_lvt_write_handler(vlapic, offset); 1938 break; 1939 case APIC_OFFSET_TIMER_ICR: 1940 vlapic_icrtmr_write_handler(vlapic); 1941 break; 1942 case APIC_OFFSET_TIMER_DCR: 1943 vlapic_dcr_write_handler(vlapic); 1944 break; 1945 default: 1946 handled = UNHANDLED; 1947 break; 1948 } 1949 return (handled); 1950 } 1951 1952 static bool 1953 apic_access_fault(struct vmx *vmx, int vcpuid, uint64_t gpa) 1954 { 1955 1956 if (apic_access_virtualization(vmx, vcpuid) && 1957 (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE)) 1958 return (true); 1959 else 1960 return (false); 1961 } 1962 1963 static int 1964 vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit) 1965 { 1966 uint64_t qual; 1967 int access_type, offset, allowed; 1968 1969 if (!apic_access_virtualization(vmx, vcpuid)) 1970 return (UNHANDLED); 1971 1972 qual = vmexit->u.vmx.exit_qualification; 1973 access_type = APIC_ACCESS_TYPE(qual); 1974 offset = APIC_ACCESS_OFFSET(qual); 1975 1976 allowed = 0; 1977 if (access_type == 0) { 1978 /* 1979 * Read data access to the following registers is expected. 1980 */ 1981 switch (offset) { 1982 case APIC_OFFSET_APR: 1983 case APIC_OFFSET_PPR: 1984 case APIC_OFFSET_RRR: 1985 case APIC_OFFSET_CMCI_LVT: 1986 case APIC_OFFSET_TIMER_CCR: 1987 allowed = 1; 1988 break; 1989 default: 1990 break; 1991 } 1992 } else if (access_type == 1) { 1993 /* 1994 * Write data access to the following registers is expected. 1995 */ 1996 switch (offset) { 1997 case APIC_OFFSET_VER: 1998 case APIC_OFFSET_APR: 1999 case APIC_OFFSET_PPR: 2000 case APIC_OFFSET_RRR: 2001 case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7: 2002 case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7: 2003 case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7: 2004 case APIC_OFFSET_CMCI_LVT: 2005 case APIC_OFFSET_TIMER_CCR: 2006 allowed = 1; 2007 break; 2008 default: 2009 break; 2010 } 2011 } 2012 2013 if (allowed) { 2014 vmexit_inst_emul(vmexit, DEFAULT_APIC_BASE + offset, 2015 VIE_INVALID_GLA); 2016 } 2017 2018 /* 2019 * Regardless of whether the APIC-access is allowed this handler 2020 * always returns UNHANDLED: 2021 * - if the access is allowed then it is handled by emulating the 2022 * instruction that caused the VM-exit (outside the critical section) 2023 * - if the access is not allowed then it will be converted to an 2024 * exitcode of VM_EXITCODE_VMX and will be dealt with in userland. 2025 */ 2026 return (UNHANDLED); 2027 } 2028 2029 static enum task_switch_reason 2030 vmx_task_switch_reason(uint64_t qual) 2031 { 2032 int reason; 2033 2034 reason = (qual >> 30) & 0x3; 2035 switch (reason) { 2036 case 0: 2037 return (TSR_CALL); 2038 case 1: 2039 return (TSR_IRET); 2040 case 2: 2041 return (TSR_JMP); 2042 case 3: 2043 return (TSR_IDT_GATE); 2044 default: 2045 panic("%s: invalid reason %d", __func__, reason); 2046 } 2047 } 2048 2049 static int 2050 emulate_wrmsr(struct vmx *vmx, int vcpuid, u_int num, uint64_t val, bool *retu) 2051 { 2052 int error; 2053 2054 if (lapic_msr(num)) 2055 error = lapic_wrmsr(vmx->vm, vcpuid, num, val, retu); 2056 else 2057 error = vmx_wrmsr(vmx, vcpuid, num, val, retu); 2058 2059 return (error); 2060 } 2061 2062 static int 2063 emulate_rdmsr(struct vmx *vmx, int vcpuid, u_int num, bool *retu) 2064 { 2065 struct vmxctx *vmxctx; 2066 uint64_t result; 2067 uint32_t eax, edx; 2068 int error; 2069 2070 if (lapic_msr(num)) 2071 error = lapic_rdmsr(vmx->vm, vcpuid, num, &result, retu); 2072 else 2073 error = vmx_rdmsr(vmx, vcpuid, num, &result, retu); 2074 2075 if (error == 0) { 2076 eax = result; 2077 vmxctx = &vmx->ctx[vcpuid]; 2078 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RAX, eax); 2079 KASSERT(error == 0, ("vmxctx_setreg(rax) error %d", error)); 2080 2081 edx = result >> 32; 2082 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RDX, edx); 2083 KASSERT(error == 0, ("vmxctx_setreg(rdx) error %d", error)); 2084 } 2085 2086 return (error); 2087 } 2088 2089 static int 2090 vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit) 2091 { 2092 int error, errcode, errcode_valid, handled, in; 2093 struct vmxctx *vmxctx; 2094 struct vlapic *vlapic; 2095 struct vm_inout_str *vis; 2096 struct vm_task_switch *ts; 2097 uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, inst_info; 2098 uint32_t intr_type, intr_vec, reason; 2099 uint64_t exitintinfo, qual, gpa; 2100 bool retu; 2101 2102 CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0); 2103 CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0); 2104 2105 handled = UNHANDLED; 2106 vmxctx = &vmx->ctx[vcpu]; 2107 2108 qual = vmexit->u.vmx.exit_qualification; 2109 reason = vmexit->u.vmx.exit_reason; 2110 vmexit->exitcode = VM_EXITCODE_BOGUS; 2111 2112 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1); 2113 2114 /* 2115 * VM-entry failures during or after loading guest state. 2116 * 2117 * These VM-exits are uncommon but must be handled specially 2118 * as most VM-exit fields are not populated as usual. 2119 */ 2120 if (__predict_false(reason == EXIT_REASON_MCE_DURING_ENTRY)) { 2121 VCPU_CTR0(vmx->vm, vcpu, "Handling MCE during VM-entry"); 2122 __asm __volatile("int $18"); 2123 return (1); 2124 } 2125 2126 /* 2127 * VM exits that can be triggered during event delivery need to 2128 * be handled specially by re-injecting the event if the IDT 2129 * vectoring information field's valid bit is set. 2130 * 2131 * See "Information for VM Exits During Event Delivery" in Intel SDM 2132 * for details. 2133 */ 2134 idtvec_info = vmcs_idt_vectoring_info(); 2135 if (idtvec_info & VMCS_IDT_VEC_VALID) { 2136 idtvec_info &= ~(1 << 12); /* clear undefined bit */ 2137 exitintinfo = idtvec_info; 2138 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) { 2139 idtvec_err = vmcs_idt_vectoring_err(); 2140 exitintinfo |= (uint64_t)idtvec_err << 32; 2141 } 2142 error = vm_exit_intinfo(vmx->vm, vcpu, exitintinfo); 2143 KASSERT(error == 0, ("%s: vm_set_intinfo error %d", 2144 __func__, error)); 2145 2146 /* 2147 * If 'virtual NMIs' are being used and the VM-exit 2148 * happened while injecting an NMI during the previous 2149 * VM-entry, then clear "blocking by NMI" in the 2150 * Guest Interruptibility-State so the NMI can be 2151 * reinjected on the subsequent VM-entry. 2152 * 2153 * However, if the NMI was being delivered through a task 2154 * gate, then the new task must start execution with NMIs 2155 * blocked so don't clear NMI blocking in this case. 2156 */ 2157 intr_type = idtvec_info & VMCS_INTR_T_MASK; 2158 if (intr_type == VMCS_INTR_T_NMI) { 2159 if (reason != EXIT_REASON_TASK_SWITCH) 2160 vmx_clear_nmi_blocking(vmx, vcpu); 2161 else 2162 vmx_assert_nmi_blocking(vmx, vcpu); 2163 } 2164 2165 /* 2166 * Update VM-entry instruction length if the event being 2167 * delivered was a software interrupt or software exception. 2168 */ 2169 if (intr_type == VMCS_INTR_T_SWINTR || 2170 intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION || 2171 intr_type == VMCS_INTR_T_SWEXCEPTION) { 2172 vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length); 2173 } 2174 } 2175 2176 switch (reason) { 2177 case EXIT_REASON_TASK_SWITCH: 2178 ts = &vmexit->u.task_switch; 2179 ts->tsssel = qual & 0xffff; 2180 ts->reason = vmx_task_switch_reason(qual); 2181 ts->ext = 0; 2182 ts->errcode_valid = 0; 2183 vmx_paging_info(&ts->paging); 2184 /* 2185 * If the task switch was due to a CALL, JMP, IRET, software 2186 * interrupt (INT n) or software exception (INT3, INTO), 2187 * then the saved %rip references the instruction that caused 2188 * the task switch. The instruction length field in the VMCS 2189 * is valid in this case. 2190 * 2191 * In all other cases (e.g., NMI, hardware exception) the 2192 * saved %rip is one that would have been saved in the old TSS 2193 * had the task switch completed normally so the instruction 2194 * length field is not needed in this case and is explicitly 2195 * set to 0. 2196 */ 2197 if (ts->reason == TSR_IDT_GATE) { 2198 KASSERT(idtvec_info & VMCS_IDT_VEC_VALID, 2199 ("invalid idtvec_info %#x for IDT task switch", 2200 idtvec_info)); 2201 intr_type = idtvec_info & VMCS_INTR_T_MASK; 2202 if (intr_type != VMCS_INTR_T_SWINTR && 2203 intr_type != VMCS_INTR_T_SWEXCEPTION && 2204 intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) { 2205 /* Task switch triggered by external event */ 2206 ts->ext = 1; 2207 vmexit->inst_length = 0; 2208 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) { 2209 ts->errcode_valid = 1; 2210 ts->errcode = vmcs_idt_vectoring_err(); 2211 } 2212 } 2213 } 2214 vmexit->exitcode = VM_EXITCODE_TASK_SWITCH; 2215 VCPU_CTR4(vmx->vm, vcpu, "task switch reason %d, tss 0x%04x, " 2216 "%s errcode 0x%016lx", ts->reason, ts->tsssel, 2217 ts->ext ? "external" : "internal", 2218 ((uint64_t)ts->errcode << 32) | ts->errcode_valid); 2219 break; 2220 case EXIT_REASON_CR_ACCESS: 2221 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1); 2222 switch (qual & 0xf) { 2223 case 0: 2224 handled = vmx_emulate_cr0_access(vmx, vcpu, qual); 2225 break; 2226 case 4: 2227 handled = vmx_emulate_cr4_access(vmx, vcpu, qual); 2228 break; 2229 case 8: 2230 handled = vmx_emulate_cr8_access(vmx, vcpu, qual); 2231 break; 2232 } 2233 break; 2234 case EXIT_REASON_RDMSR: 2235 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1); 2236 retu = false; 2237 ecx = vmxctx->guest_rcx; 2238 VCPU_CTR1(vmx->vm, vcpu, "rdmsr 0x%08x", ecx); 2239 error = emulate_rdmsr(vmx, vcpu, ecx, &retu); 2240 if (error) { 2241 vmexit->exitcode = VM_EXITCODE_RDMSR; 2242 vmexit->u.msr.code = ecx; 2243 } else if (!retu) { 2244 handled = HANDLED; 2245 } else { 2246 /* Return to userspace with a valid exitcode */ 2247 KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS, 2248 ("emulate_rdmsr retu with bogus exitcode")); 2249 } 2250 break; 2251 case EXIT_REASON_WRMSR: 2252 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1); 2253 retu = false; 2254 eax = vmxctx->guest_rax; 2255 ecx = vmxctx->guest_rcx; 2256 edx = vmxctx->guest_rdx; 2257 VCPU_CTR2(vmx->vm, vcpu, "wrmsr 0x%08x value 0x%016lx", 2258 ecx, (uint64_t)edx << 32 | eax); 2259 error = emulate_wrmsr(vmx, vcpu, ecx, 2260 (uint64_t)edx << 32 | eax, &retu); 2261 if (error) { 2262 vmexit->exitcode = VM_EXITCODE_WRMSR; 2263 vmexit->u.msr.code = ecx; 2264 vmexit->u.msr.wval = (uint64_t)edx << 32 | eax; 2265 } else if (!retu) { 2266 handled = HANDLED; 2267 } else { 2268 /* Return to userspace with a valid exitcode */ 2269 KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS, 2270 ("emulate_wrmsr retu with bogus exitcode")); 2271 } 2272 break; 2273 case EXIT_REASON_HLT: 2274 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1); 2275 vmexit->exitcode = VM_EXITCODE_HLT; 2276 vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS); 2277 break; 2278 case EXIT_REASON_MTF: 2279 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1); 2280 vmexit->exitcode = VM_EXITCODE_MTRAP; 2281 vmexit->inst_length = 0; 2282 break; 2283 case EXIT_REASON_PAUSE: 2284 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1); 2285 vmexit->exitcode = VM_EXITCODE_PAUSE; 2286 break; 2287 case EXIT_REASON_INTR_WINDOW: 2288 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1); 2289 vmx_clear_int_window_exiting(vmx, vcpu); 2290 return (1); 2291 case EXIT_REASON_EXT_INTR: 2292 /* 2293 * External interrupts serve only to cause VM exits and allow 2294 * the host interrupt handler to run. 2295 * 2296 * If this external interrupt triggers a virtual interrupt 2297 * to a VM, then that state will be recorded by the 2298 * host interrupt handler in the VM's softc. We will inject 2299 * this virtual interrupt during the subsequent VM enter. 2300 */ 2301 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO); 2302 2303 /* 2304 * XXX: Ignore this exit if VMCS_INTR_VALID is not set. 2305 * This appears to be a bug in VMware Fusion? 2306 */ 2307 if (!(intr_info & VMCS_INTR_VALID)) 2308 return (1); 2309 KASSERT((intr_info & VMCS_INTR_VALID) != 0 && 2310 (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR, 2311 ("VM exit interruption info invalid: %#x", intr_info)); 2312 vmx_trigger_hostintr(intr_info & 0xff); 2313 2314 /* 2315 * This is special. We want to treat this as an 'handled' 2316 * VM-exit but not increment the instruction pointer. 2317 */ 2318 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1); 2319 return (1); 2320 case EXIT_REASON_NMI_WINDOW: 2321 /* Exit to allow the pending virtual NMI to be injected */ 2322 if (vm_nmi_pending(vmx->vm, vcpu)) 2323 vmx_inject_nmi(vmx, vcpu); 2324 vmx_clear_nmi_window_exiting(vmx, vcpu); 2325 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1); 2326 return (1); 2327 case EXIT_REASON_INOUT: 2328 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1); 2329 vmexit->exitcode = VM_EXITCODE_INOUT; 2330 vmexit->u.inout.bytes = (qual & 0x7) + 1; 2331 vmexit->u.inout.in = in = (qual & 0x8) ? 1 : 0; 2332 vmexit->u.inout.string = (qual & 0x10) ? 1 : 0; 2333 vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0; 2334 vmexit->u.inout.port = (uint16_t)(qual >> 16); 2335 vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax); 2336 if (vmexit->u.inout.string) { 2337 inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO); 2338 vmexit->exitcode = VM_EXITCODE_INOUT_STR; 2339 vis = &vmexit->u.inout_str; 2340 vmx_paging_info(&vis->paging); 2341 vis->rflags = vmcs_read(VMCS_GUEST_RFLAGS); 2342 vis->cr0 = vmcs_read(VMCS_GUEST_CR0); 2343 vis->index = inout_str_index(vmx, vcpu, in); 2344 vis->count = inout_str_count(vmx, vcpu, vis->inout.rep); 2345 vis->addrsize = inout_str_addrsize(inst_info); 2346 inout_str_seginfo(vmx, vcpu, inst_info, in, vis); 2347 } 2348 break; 2349 case EXIT_REASON_CPUID: 2350 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1); 2351 handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx); 2352 break; 2353 case EXIT_REASON_EXCEPTION: 2354 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXCEPTION, 1); 2355 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO); 2356 KASSERT((intr_info & VMCS_INTR_VALID) != 0, 2357 ("VM exit interruption info invalid: %#x", intr_info)); 2358 2359 intr_vec = intr_info & 0xff; 2360 intr_type = intr_info & VMCS_INTR_T_MASK; 2361 2362 /* 2363 * If Virtual NMIs control is 1 and the VM-exit is due to a 2364 * fault encountered during the execution of IRET then we must 2365 * restore the state of "virtual-NMI blocking" before resuming 2366 * the guest. 2367 * 2368 * See "Resuming Guest Software after Handling an Exception". 2369 * See "Information for VM Exits Due to Vectored Events". 2370 */ 2371 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 && 2372 (intr_vec != IDT_DF) && 2373 (intr_info & EXIT_QUAL_NMIUDTI) != 0) 2374 vmx_restore_nmi_blocking(vmx, vcpu); 2375 2376 /* 2377 * The NMI has already been handled in vmx_exit_handle_nmi(). 2378 */ 2379 if (intr_type == VMCS_INTR_T_NMI) 2380 return (1); 2381 2382 /* 2383 * Call the machine check handler by hand. Also don't reflect 2384 * the machine check back into the guest. 2385 */ 2386 if (intr_vec == IDT_MC) { 2387 VCPU_CTR0(vmx->vm, vcpu, "Vectoring to MCE handler"); 2388 __asm __volatile("int $18"); 2389 return (1); 2390 } 2391 2392 if (intr_vec == IDT_PF) { 2393 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_CR2, qual); 2394 KASSERT(error == 0, ("%s: vmxctx_setreg(cr2) error %d", 2395 __func__, error)); 2396 } 2397 2398 /* 2399 * Software exceptions exhibit trap-like behavior. This in 2400 * turn requires populating the VM-entry instruction length 2401 * so that the %rip in the trap frame is past the INT3/INTO 2402 * instruction. 2403 */ 2404 if (intr_type == VMCS_INTR_T_SWEXCEPTION) 2405 vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length); 2406 2407 /* Reflect all other exceptions back into the guest */ 2408 errcode_valid = errcode = 0; 2409 if (intr_info & VMCS_INTR_DEL_ERRCODE) { 2410 errcode_valid = 1; 2411 errcode = vmcs_read(VMCS_EXIT_INTR_ERRCODE); 2412 } 2413 VCPU_CTR2(vmx->vm, vcpu, "Reflecting exception %d/%#x into " 2414 "the guest", intr_vec, errcode); 2415 error = vm_inject_exception(vmx->vm, vcpu, intr_vec, 2416 errcode_valid, errcode, 0); 2417 KASSERT(error == 0, ("%s: vm_inject_exception error %d", 2418 __func__, error)); 2419 return (1); 2420 2421 case EXIT_REASON_EPT_FAULT: 2422 /* 2423 * If 'gpa' lies within the address space allocated to 2424 * memory then this must be a nested page fault otherwise 2425 * this must be an instruction that accesses MMIO space. 2426 */ 2427 gpa = vmcs_gpa(); 2428 if (vm_mem_allocated(vmx->vm, vcpu, gpa) || 2429 apic_access_fault(vmx, vcpu, gpa)) { 2430 vmexit->exitcode = VM_EXITCODE_PAGING; 2431 vmexit->inst_length = 0; 2432 vmexit->u.paging.gpa = gpa; 2433 vmexit->u.paging.fault_type = ept_fault_type(qual); 2434 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NESTED_FAULT, 1); 2435 } else if (ept_emulation_fault(qual)) { 2436 vmexit_inst_emul(vmexit, gpa, vmcs_gla()); 2437 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INST_EMUL, 1); 2438 } 2439 /* 2440 * If Virtual NMIs control is 1 and the VM-exit is due to an 2441 * EPT fault during the execution of IRET then we must restore 2442 * the state of "virtual-NMI blocking" before resuming. 2443 * 2444 * See description of "NMI unblocking due to IRET" in 2445 * "Exit Qualification for EPT Violations". 2446 */ 2447 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 && 2448 (qual & EXIT_QUAL_NMIUDTI) != 0) 2449 vmx_restore_nmi_blocking(vmx, vcpu); 2450 break; 2451 case EXIT_REASON_VIRTUALIZED_EOI: 2452 vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI; 2453 vmexit->u.ioapic_eoi.vector = qual & 0xFF; 2454 vmexit->inst_length = 0; /* trap-like */ 2455 break; 2456 case EXIT_REASON_APIC_ACCESS: 2457 handled = vmx_handle_apic_access(vmx, vcpu, vmexit); 2458 break; 2459 case EXIT_REASON_APIC_WRITE: 2460 /* 2461 * APIC-write VM exit is trap-like so the %rip is already 2462 * pointing to the next instruction. 2463 */ 2464 vmexit->inst_length = 0; 2465 vlapic = vm_lapic(vmx->vm, vcpu); 2466 handled = vmx_handle_apic_write(vmx, vcpu, vlapic, qual); 2467 break; 2468 case EXIT_REASON_XSETBV: 2469 handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit); 2470 break; 2471 case EXIT_REASON_MONITOR: 2472 vmexit->exitcode = VM_EXITCODE_MONITOR; 2473 break; 2474 case EXIT_REASON_MWAIT: 2475 vmexit->exitcode = VM_EXITCODE_MWAIT; 2476 break; 2477 default: 2478 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1); 2479 break; 2480 } 2481 2482 if (handled) { 2483 /* 2484 * It is possible that control is returned to userland 2485 * even though we were able to handle the VM exit in the 2486 * kernel. 2487 * 2488 * In such a case we want to make sure that the userland 2489 * restarts guest execution at the instruction *after* 2490 * the one we just processed. Therefore we update the 2491 * guest rip in the VMCS and in 'vmexit'. 2492 */ 2493 vmexit->rip += vmexit->inst_length; 2494 vmexit->inst_length = 0; 2495 vmcs_write(VMCS_GUEST_RIP, vmexit->rip); 2496 } else { 2497 if (vmexit->exitcode == VM_EXITCODE_BOGUS) { 2498 /* 2499 * If this VM exit was not claimed by anybody then 2500 * treat it as a generic VMX exit. 2501 */ 2502 vmexit->exitcode = VM_EXITCODE_VMX; 2503 vmexit->u.vmx.status = VM_SUCCESS; 2504 vmexit->u.vmx.inst_type = 0; 2505 vmexit->u.vmx.inst_error = 0; 2506 } else { 2507 /* 2508 * The exitcode and collateral have been populated. 2509 * The VM exit will be processed further in userland. 2510 */ 2511 } 2512 } 2513 return (handled); 2514 } 2515 2516 static __inline void 2517 vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit) 2518 { 2519 2520 KASSERT(vmxctx->inst_fail_status != VM_SUCCESS, 2521 ("vmx_exit_inst_error: invalid inst_fail_status %d", 2522 vmxctx->inst_fail_status)); 2523 2524 vmexit->inst_length = 0; 2525 vmexit->exitcode = VM_EXITCODE_VMX; 2526 vmexit->u.vmx.status = vmxctx->inst_fail_status; 2527 vmexit->u.vmx.inst_error = vmcs_instruction_error(); 2528 vmexit->u.vmx.exit_reason = ~0; 2529 vmexit->u.vmx.exit_qualification = ~0; 2530 2531 switch (rc) { 2532 case VMX_VMRESUME_ERROR: 2533 case VMX_VMLAUNCH_ERROR: 2534 case VMX_INVEPT_ERROR: 2535 vmexit->u.vmx.inst_type = rc; 2536 break; 2537 default: 2538 panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc); 2539 } 2540 } 2541 2542 /* 2543 * If the NMI-exiting VM execution control is set to '1' then an NMI in 2544 * non-root operation causes a VM-exit. NMI blocking is in effect so it is 2545 * sufficient to simply vector to the NMI handler via a software interrupt. 2546 * However, this must be done before maskable interrupts are enabled 2547 * otherwise the "iret" issued by an interrupt handler will incorrectly 2548 * clear NMI blocking. 2549 */ 2550 static __inline void 2551 vmx_exit_handle_nmi(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit) 2552 { 2553 uint32_t intr_info; 2554 2555 KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled")); 2556 2557 if (vmexit->u.vmx.exit_reason != EXIT_REASON_EXCEPTION) 2558 return; 2559 2560 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO); 2561 KASSERT((intr_info & VMCS_INTR_VALID) != 0, 2562 ("VM exit interruption info invalid: %#x", intr_info)); 2563 2564 if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) { 2565 KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due " 2566 "to NMI has invalid vector: %#x", intr_info)); 2567 VCPU_CTR0(vmx->vm, vcpuid, "Vectoring to NMI handler"); 2568 __asm __volatile("int $2"); 2569 } 2570 } 2571 2572 static int 2573 vmx_run(void *arg, int vcpu, register_t rip, pmap_t pmap, 2574 struct vm_eventinfo *evinfo) 2575 { 2576 int rc, handled, launched; 2577 struct vmx *vmx; 2578 struct vm *vm; 2579 struct vmxctx *vmxctx; 2580 struct vmcs *vmcs; 2581 struct vm_exit *vmexit; 2582 struct vlapic *vlapic; 2583 uint32_t exit_reason; 2584 2585 vmx = arg; 2586 vm = vmx->vm; 2587 vmcs = &vmx->vmcs[vcpu]; 2588 vmxctx = &vmx->ctx[vcpu]; 2589 vlapic = vm_lapic(vm, vcpu); 2590 vmexit = vm_exitinfo(vm, vcpu); 2591 launched = 0; 2592 2593 KASSERT(vmxctx->pmap == pmap, 2594 ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap)); 2595 2596 vmx_msr_guest_enter(vmx, vcpu); 2597 2598 VMPTRLD(vmcs); 2599 2600 /* 2601 * XXX 2602 * We do this every time because we may setup the virtual machine 2603 * from a different process than the one that actually runs it. 2604 * 2605 * If the life of a virtual machine was spent entirely in the context 2606 * of a single process we could do this once in vmx_vminit(). 2607 */ 2608 vmcs_write(VMCS_HOST_CR3, rcr3()); 2609 2610 vmcs_write(VMCS_GUEST_RIP, rip); 2611 vmx_set_pcpu_defaults(vmx, vcpu, pmap); 2612 do { 2613 KASSERT(vmcs_guest_rip() == rip, ("%s: vmcs guest rip mismatch " 2614 "%#lx/%#lx", __func__, vmcs_guest_rip(), rip)); 2615 2616 handled = UNHANDLED; 2617 /* 2618 * Interrupts are disabled from this point on until the 2619 * guest starts executing. This is done for the following 2620 * reasons: 2621 * 2622 * If an AST is asserted on this thread after the check below, 2623 * then the IPI_AST notification will not be lost, because it 2624 * will cause a VM exit due to external interrupt as soon as 2625 * the guest state is loaded. 2626 * 2627 * A posted interrupt after 'vmx_inject_interrupts()' will 2628 * not be "lost" because it will be held pending in the host 2629 * APIC because interrupts are disabled. The pending interrupt 2630 * will be recognized as soon as the guest state is loaded. 2631 * 2632 * The same reasoning applies to the IPI generated by 2633 * pmap_invalidate_ept(). 2634 */ 2635 disable_intr(); 2636 vmx_inject_interrupts(vmx, vcpu, vlapic, rip); 2637 2638 /* 2639 * Check for vcpu suspension after injecting events because 2640 * vmx_inject_interrupts() can suspend the vcpu due to a 2641 * triple fault. 2642 */ 2643 if (vcpu_suspended(evinfo)) { 2644 enable_intr(); 2645 vm_exit_suspended(vmx->vm, vcpu, rip); 2646 break; 2647 } 2648 2649 if (vcpu_rendezvous_pending(evinfo)) { 2650 enable_intr(); 2651 vm_exit_rendezvous(vmx->vm, vcpu, rip); 2652 break; 2653 } 2654 2655 if (vcpu_reqidle(evinfo)) { 2656 enable_intr(); 2657 vm_exit_reqidle(vmx->vm, vcpu, rip); 2658 break; 2659 } 2660 2661 if (vcpu_should_yield(vm, vcpu)) { 2662 enable_intr(); 2663 vm_exit_astpending(vmx->vm, vcpu, rip); 2664 vmx_astpending_trace(vmx, vcpu, rip); 2665 handled = HANDLED; 2666 break; 2667 } 2668 2669 vmx_run_trace(vmx, vcpu); 2670 rc = vmx_enter_guest(vmxctx, vmx, launched); 2671 2672 /* Collect some information for VM exit processing */ 2673 vmexit->rip = rip = vmcs_guest_rip(); 2674 vmexit->inst_length = vmexit_instruction_length(); 2675 vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason(); 2676 vmexit->u.vmx.exit_qualification = vmcs_exit_qualification(); 2677 2678 /* Update 'nextrip' */ 2679 vmx->state[vcpu].nextrip = rip; 2680 2681 if (rc == VMX_GUEST_VMEXIT) { 2682 vmx_exit_handle_nmi(vmx, vcpu, vmexit); 2683 enable_intr(); 2684 handled = vmx_exit_process(vmx, vcpu, vmexit); 2685 } else { 2686 enable_intr(); 2687 vmx_exit_inst_error(vmxctx, rc, vmexit); 2688 } 2689 launched = 1; 2690 vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled); 2691 rip = vmexit->rip; 2692 } while (handled); 2693 2694 /* 2695 * If a VM exit has been handled then the exitcode must be BOGUS 2696 * If a VM exit is not handled then the exitcode must not be BOGUS 2697 */ 2698 if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) || 2699 (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) { 2700 panic("Mismatch between handled (%d) and exitcode (%d)", 2701 handled, vmexit->exitcode); 2702 } 2703 2704 if (!handled) 2705 vmm_stat_incr(vm, vcpu, VMEXIT_USERSPACE, 1); 2706 2707 VCPU_CTR1(vm, vcpu, "returning from vmx_run: exitcode %d", 2708 vmexit->exitcode); 2709 2710 VMCLEAR(vmcs); 2711 vmx_msr_guest_exit(vmx, vcpu); 2712 2713 return (0); 2714 } 2715 2716 static void 2717 vmx_vmcleanup(void *arg) 2718 { 2719 int i; 2720 struct vmx *vmx = arg; 2721 2722 if (apic_access_virtualization(vmx, 0)) 2723 vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE); 2724 2725 for (i = 0; i < VM_MAXCPU; i++) 2726 vpid_free(vmx->state[i].vpid); 2727 2728 free(vmx, M_VMX); 2729 2730 return; 2731 } 2732 2733 static register_t * 2734 vmxctx_regptr(struct vmxctx *vmxctx, int reg) 2735 { 2736 2737 switch (reg) { 2738 case VM_REG_GUEST_RAX: 2739 return (&vmxctx->guest_rax); 2740 case VM_REG_GUEST_RBX: 2741 return (&vmxctx->guest_rbx); 2742 case VM_REG_GUEST_RCX: 2743 return (&vmxctx->guest_rcx); 2744 case VM_REG_GUEST_RDX: 2745 return (&vmxctx->guest_rdx); 2746 case VM_REG_GUEST_RSI: 2747 return (&vmxctx->guest_rsi); 2748 case VM_REG_GUEST_RDI: 2749 return (&vmxctx->guest_rdi); 2750 case VM_REG_GUEST_RBP: 2751 return (&vmxctx->guest_rbp); 2752 case VM_REG_GUEST_R8: 2753 return (&vmxctx->guest_r8); 2754 case VM_REG_GUEST_R9: 2755 return (&vmxctx->guest_r9); 2756 case VM_REG_GUEST_R10: 2757 return (&vmxctx->guest_r10); 2758 case VM_REG_GUEST_R11: 2759 return (&vmxctx->guest_r11); 2760 case VM_REG_GUEST_R12: 2761 return (&vmxctx->guest_r12); 2762 case VM_REG_GUEST_R13: 2763 return (&vmxctx->guest_r13); 2764 case VM_REG_GUEST_R14: 2765 return (&vmxctx->guest_r14); 2766 case VM_REG_GUEST_R15: 2767 return (&vmxctx->guest_r15); 2768 case VM_REG_GUEST_CR2: 2769 return (&vmxctx->guest_cr2); 2770 default: 2771 break; 2772 } 2773 return (NULL); 2774 } 2775 2776 static int 2777 vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval) 2778 { 2779 register_t *regp; 2780 2781 if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) { 2782 *retval = *regp; 2783 return (0); 2784 } else 2785 return (EINVAL); 2786 } 2787 2788 static int 2789 vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val) 2790 { 2791 register_t *regp; 2792 2793 if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) { 2794 *regp = val; 2795 return (0); 2796 } else 2797 return (EINVAL); 2798 } 2799 2800 static int 2801 vmx_get_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t *retval) 2802 { 2803 uint64_t gi; 2804 int error; 2805 2806 error = vmcs_getreg(&vmx->vmcs[vcpu], running, 2807 VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY), &gi); 2808 *retval = (gi & HWINTR_BLOCKING) ? 1 : 0; 2809 return (error); 2810 } 2811 2812 static int 2813 vmx_modify_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t val) 2814 { 2815 struct vmcs *vmcs; 2816 uint64_t gi; 2817 int error, ident; 2818 2819 /* 2820 * Forcing the vcpu into an interrupt shadow is not supported. 2821 */ 2822 if (val) { 2823 error = EINVAL; 2824 goto done; 2825 } 2826 2827 vmcs = &vmx->vmcs[vcpu]; 2828 ident = VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY); 2829 error = vmcs_getreg(vmcs, running, ident, &gi); 2830 if (error == 0) { 2831 gi &= ~HWINTR_BLOCKING; 2832 error = vmcs_setreg(vmcs, running, ident, gi); 2833 } 2834 done: 2835 VCPU_CTR2(vmx->vm, vcpu, "Setting intr_shadow to %#lx %s", val, 2836 error ? "failed" : "succeeded"); 2837 return (error); 2838 } 2839 2840 static int 2841 vmx_shadow_reg(int reg) 2842 { 2843 int shreg; 2844 2845 shreg = -1; 2846 2847 switch (reg) { 2848 case VM_REG_GUEST_CR0: 2849 shreg = VMCS_CR0_SHADOW; 2850 break; 2851 case VM_REG_GUEST_CR4: 2852 shreg = VMCS_CR4_SHADOW; 2853 break; 2854 default: 2855 break; 2856 } 2857 2858 return (shreg); 2859 } 2860 2861 static int 2862 vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval) 2863 { 2864 int running, hostcpu; 2865 struct vmx *vmx = arg; 2866 2867 running = vcpu_is_running(vmx->vm, vcpu, &hostcpu); 2868 if (running && hostcpu != curcpu) 2869 panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu); 2870 2871 if (reg == VM_REG_GUEST_INTR_SHADOW) 2872 return (vmx_get_intr_shadow(vmx, vcpu, running, retval)); 2873 2874 if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0) 2875 return (0); 2876 2877 return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval)); 2878 } 2879 2880 static int 2881 vmx_setreg(void *arg, int vcpu, int reg, uint64_t val) 2882 { 2883 int error, hostcpu, running, shadow; 2884 uint64_t ctls; 2885 pmap_t pmap; 2886 struct vmx *vmx = arg; 2887 2888 running = vcpu_is_running(vmx->vm, vcpu, &hostcpu); 2889 if (running && hostcpu != curcpu) 2890 panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu); 2891 2892 if (reg == VM_REG_GUEST_INTR_SHADOW) 2893 return (vmx_modify_intr_shadow(vmx, vcpu, running, val)); 2894 2895 if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0) 2896 return (0); 2897 2898 error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val); 2899 2900 if (error == 0) { 2901 /* 2902 * If the "load EFER" VM-entry control is 1 then the 2903 * value of EFER.LMA must be identical to "IA-32e mode guest" 2904 * bit in the VM-entry control. 2905 */ 2906 if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 && 2907 (reg == VM_REG_GUEST_EFER)) { 2908 vmcs_getreg(&vmx->vmcs[vcpu], running, 2909 VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls); 2910 if (val & EFER_LMA) 2911 ctls |= VM_ENTRY_GUEST_LMA; 2912 else 2913 ctls &= ~VM_ENTRY_GUEST_LMA; 2914 vmcs_setreg(&vmx->vmcs[vcpu], running, 2915 VMCS_IDENT(VMCS_ENTRY_CTLS), ctls); 2916 } 2917 2918 shadow = vmx_shadow_reg(reg); 2919 if (shadow > 0) { 2920 /* 2921 * Store the unmodified value in the shadow 2922 */ 2923 error = vmcs_setreg(&vmx->vmcs[vcpu], running, 2924 VMCS_IDENT(shadow), val); 2925 } 2926 2927 if (reg == VM_REG_GUEST_CR3) { 2928 /* 2929 * Invalidate the guest vcpu's TLB mappings to emulate 2930 * the behavior of updating %cr3. 2931 * 2932 * XXX the processor retains global mappings when %cr3 2933 * is updated but vmx_invvpid() does not. 2934 */ 2935 pmap = vmx->ctx[vcpu].pmap; 2936 vmx_invvpid(vmx, vcpu, pmap, running); 2937 } 2938 } 2939 2940 return (error); 2941 } 2942 2943 static int 2944 vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc) 2945 { 2946 int hostcpu, running; 2947 struct vmx *vmx = arg; 2948 2949 running = vcpu_is_running(vmx->vm, vcpu, &hostcpu); 2950 if (running && hostcpu != curcpu) 2951 panic("vmx_getdesc: %s%d is running", vm_name(vmx->vm), vcpu); 2952 2953 return (vmcs_getdesc(&vmx->vmcs[vcpu], running, reg, desc)); 2954 } 2955 2956 static int 2957 vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc) 2958 { 2959 int hostcpu, running; 2960 struct vmx *vmx = arg; 2961 2962 running = vcpu_is_running(vmx->vm, vcpu, &hostcpu); 2963 if (running && hostcpu != curcpu) 2964 panic("vmx_setdesc: %s%d is running", vm_name(vmx->vm), vcpu); 2965 2966 return (vmcs_setdesc(&vmx->vmcs[vcpu], running, reg, desc)); 2967 } 2968 2969 static int 2970 vmx_getcap(void *arg, int vcpu, int type, int *retval) 2971 { 2972 struct vmx *vmx = arg; 2973 int vcap; 2974 int ret; 2975 2976 ret = ENOENT; 2977 2978 vcap = vmx->cap[vcpu].set; 2979 2980 switch (type) { 2981 case VM_CAP_HALT_EXIT: 2982 if (cap_halt_exit) 2983 ret = 0; 2984 break; 2985 case VM_CAP_PAUSE_EXIT: 2986 if (cap_pause_exit) 2987 ret = 0; 2988 break; 2989 case VM_CAP_MTRAP_EXIT: 2990 if (cap_monitor_trap) 2991 ret = 0; 2992 break; 2993 case VM_CAP_UNRESTRICTED_GUEST: 2994 if (cap_unrestricted_guest) 2995 ret = 0; 2996 break; 2997 case VM_CAP_ENABLE_INVPCID: 2998 if (cap_invpcid) 2999 ret = 0; 3000 break; 3001 default: 3002 break; 3003 } 3004 3005 if (ret == 0) 3006 *retval = (vcap & (1 << type)) ? 1 : 0; 3007 3008 return (ret); 3009 } 3010 3011 static int 3012 vmx_setcap(void *arg, int vcpu, int type, int val) 3013 { 3014 struct vmx *vmx = arg; 3015 struct vmcs *vmcs = &vmx->vmcs[vcpu]; 3016 uint32_t baseval; 3017 uint32_t *pptr; 3018 int error; 3019 int flag; 3020 int reg; 3021 int retval; 3022 3023 retval = ENOENT; 3024 pptr = NULL; 3025 3026 switch (type) { 3027 case VM_CAP_HALT_EXIT: 3028 if (cap_halt_exit) { 3029 retval = 0; 3030 pptr = &vmx->cap[vcpu].proc_ctls; 3031 baseval = *pptr; 3032 flag = PROCBASED_HLT_EXITING; 3033 reg = VMCS_PRI_PROC_BASED_CTLS; 3034 } 3035 break; 3036 case VM_CAP_MTRAP_EXIT: 3037 if (cap_monitor_trap) { 3038 retval = 0; 3039 pptr = &vmx->cap[vcpu].proc_ctls; 3040 baseval = *pptr; 3041 flag = PROCBASED_MTF; 3042 reg = VMCS_PRI_PROC_BASED_CTLS; 3043 } 3044 break; 3045 case VM_CAP_PAUSE_EXIT: 3046 if (cap_pause_exit) { 3047 retval = 0; 3048 pptr = &vmx->cap[vcpu].proc_ctls; 3049 baseval = *pptr; 3050 flag = PROCBASED_PAUSE_EXITING; 3051 reg = VMCS_PRI_PROC_BASED_CTLS; 3052 } 3053 break; 3054 case VM_CAP_UNRESTRICTED_GUEST: 3055 if (cap_unrestricted_guest) { 3056 retval = 0; 3057 pptr = &vmx->cap[vcpu].proc_ctls2; 3058 baseval = *pptr; 3059 flag = PROCBASED2_UNRESTRICTED_GUEST; 3060 reg = VMCS_SEC_PROC_BASED_CTLS; 3061 } 3062 break; 3063 case VM_CAP_ENABLE_INVPCID: 3064 if (cap_invpcid) { 3065 retval = 0; 3066 pptr = &vmx->cap[vcpu].proc_ctls2; 3067 baseval = *pptr; 3068 flag = PROCBASED2_ENABLE_INVPCID; 3069 reg = VMCS_SEC_PROC_BASED_CTLS; 3070 } 3071 break; 3072 default: 3073 break; 3074 } 3075 3076 if (retval == 0) { 3077 if (val) { 3078 baseval |= flag; 3079 } else { 3080 baseval &= ~flag; 3081 } 3082 VMPTRLD(vmcs); 3083 error = vmwrite(reg, baseval); 3084 VMCLEAR(vmcs); 3085 3086 if (error) { 3087 retval = error; 3088 } else { 3089 /* 3090 * Update optional stored flags, and record 3091 * setting 3092 */ 3093 if (pptr != NULL) { 3094 *pptr = baseval; 3095 } 3096 3097 if (val) { 3098 vmx->cap[vcpu].set |= (1 << type); 3099 } else { 3100 vmx->cap[vcpu].set &= ~(1 << type); 3101 } 3102 } 3103 } 3104 3105 return (retval); 3106 } 3107 3108 struct vlapic_vtx { 3109 struct vlapic vlapic; 3110 struct pir_desc *pir_desc; 3111 struct vmx *vmx; 3112 }; 3113 3114 #define VMX_CTR_PIR(vm, vcpuid, pir_desc, notify, vector, level, msg) \ 3115 do { \ 3116 VCPU_CTR2(vm, vcpuid, msg " assert %s-triggered vector %d", \ 3117 level ? "level" : "edge", vector); \ 3118 VCPU_CTR1(vm, vcpuid, msg " pir0 0x%016lx", pir_desc->pir[0]); \ 3119 VCPU_CTR1(vm, vcpuid, msg " pir1 0x%016lx", pir_desc->pir[1]); \ 3120 VCPU_CTR1(vm, vcpuid, msg " pir2 0x%016lx", pir_desc->pir[2]); \ 3121 VCPU_CTR1(vm, vcpuid, msg " pir3 0x%016lx", pir_desc->pir[3]); \ 3122 VCPU_CTR1(vm, vcpuid, msg " notify: %s", notify ? "yes" : "no");\ 3123 } while (0) 3124 3125 /* 3126 * vlapic->ops handlers that utilize the APICv hardware assist described in 3127 * Chapter 29 of the Intel SDM. 3128 */ 3129 static int 3130 vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level) 3131 { 3132 struct vlapic_vtx *vlapic_vtx; 3133 struct pir_desc *pir_desc; 3134 uint64_t mask; 3135 int idx, notify; 3136 3137 vlapic_vtx = (struct vlapic_vtx *)vlapic; 3138 pir_desc = vlapic_vtx->pir_desc; 3139 3140 /* 3141 * Keep track of interrupt requests in the PIR descriptor. This is 3142 * because the virtual APIC page pointed to by the VMCS cannot be 3143 * modified if the vcpu is running. 3144 */ 3145 idx = vector / 64; 3146 mask = 1UL << (vector % 64); 3147 atomic_set_long(&pir_desc->pir[idx], mask); 3148 notify = atomic_cmpset_long(&pir_desc->pending, 0, 1); 3149 3150 VMX_CTR_PIR(vlapic->vm, vlapic->vcpuid, pir_desc, notify, vector, 3151 level, "vmx_set_intr_ready"); 3152 return (notify); 3153 } 3154 3155 static int 3156 vmx_pending_intr(struct vlapic *vlapic, int *vecptr) 3157 { 3158 struct vlapic_vtx *vlapic_vtx; 3159 struct pir_desc *pir_desc; 3160 struct LAPIC *lapic; 3161 uint64_t pending, pirval; 3162 uint32_t ppr, vpr; 3163 int i; 3164 3165 /* 3166 * This function is only expected to be called from the 'HLT' exit 3167 * handler which does not care about the vector that is pending. 3168 */ 3169 KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL")); 3170 3171 vlapic_vtx = (struct vlapic_vtx *)vlapic; 3172 pir_desc = vlapic_vtx->pir_desc; 3173 3174 pending = atomic_load_acq_long(&pir_desc->pending); 3175 if (!pending) 3176 return (0); /* common case */ 3177 3178 /* 3179 * If there is an interrupt pending then it will be recognized only 3180 * if its priority is greater than the processor priority. 3181 * 3182 * Special case: if the processor priority is zero then any pending 3183 * interrupt will be recognized. 3184 */ 3185 lapic = vlapic->apic_page; 3186 ppr = lapic->ppr & 0xf0; 3187 if (ppr == 0) 3188 return (1); 3189 3190 VCPU_CTR1(vlapic->vm, vlapic->vcpuid, "HLT with non-zero PPR %d", 3191 lapic->ppr); 3192 3193 for (i = 3; i >= 0; i--) { 3194 pirval = pir_desc->pir[i]; 3195 if (pirval != 0) { 3196 vpr = (i * 64 + flsl(pirval) - 1) & 0xf0; 3197 return (vpr > ppr); 3198 } 3199 } 3200 return (0); 3201 } 3202 3203 static void 3204 vmx_intr_accepted(struct vlapic *vlapic, int vector) 3205 { 3206 3207 panic("vmx_intr_accepted: not expected to be called"); 3208 } 3209 3210 static void 3211 vmx_set_tmr(struct vlapic *vlapic, int vector, bool level) 3212 { 3213 struct vlapic_vtx *vlapic_vtx; 3214 struct vmx *vmx; 3215 struct vmcs *vmcs; 3216 uint64_t mask, val; 3217 3218 KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d", vector)); 3219 KASSERT(!vcpu_is_running(vlapic->vm, vlapic->vcpuid, NULL), 3220 ("vmx_set_tmr: vcpu cannot be running")); 3221 3222 vlapic_vtx = (struct vlapic_vtx *)vlapic; 3223 vmx = vlapic_vtx->vmx; 3224 vmcs = &vmx->vmcs[vlapic->vcpuid]; 3225 mask = 1UL << (vector % 64); 3226 3227 VMPTRLD(vmcs); 3228 val = vmcs_read(VMCS_EOI_EXIT(vector)); 3229 if (level) 3230 val |= mask; 3231 else 3232 val &= ~mask; 3233 vmcs_write(VMCS_EOI_EXIT(vector), val); 3234 VMCLEAR(vmcs); 3235 } 3236 3237 static void 3238 vmx_enable_x2apic_mode(struct vlapic *vlapic) 3239 { 3240 struct vmx *vmx; 3241 struct vmcs *vmcs; 3242 uint32_t proc_ctls2; 3243 int vcpuid, error; 3244 3245 vcpuid = vlapic->vcpuid; 3246 vmx = ((struct vlapic_vtx *)vlapic)->vmx; 3247 vmcs = &vmx->vmcs[vcpuid]; 3248 3249 proc_ctls2 = vmx->cap[vcpuid].proc_ctls2; 3250 KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0, 3251 ("%s: invalid proc_ctls2 %#x", __func__, proc_ctls2)); 3252 3253 proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES; 3254 proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE; 3255 vmx->cap[vcpuid].proc_ctls2 = proc_ctls2; 3256 3257 VMPTRLD(vmcs); 3258 vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2); 3259 VMCLEAR(vmcs); 3260 3261 if (vlapic->vcpuid == 0) { 3262 /* 3263 * The nested page table mappings are shared by all vcpus 3264 * so unmap the APIC access page just once. 3265 */ 3266 error = vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE); 3267 KASSERT(error == 0, ("%s: vm_unmap_mmio error %d", 3268 __func__, error)); 3269 3270 /* 3271 * The MSR bitmap is shared by all vcpus so modify it only 3272 * once in the context of vcpu 0. 3273 */ 3274 error = vmx_allow_x2apic_msrs(vmx); 3275 KASSERT(error == 0, ("%s: vmx_allow_x2apic_msrs error %d", 3276 __func__, error)); 3277 } 3278 } 3279 3280 static void 3281 vmx_post_intr(struct vlapic *vlapic, int hostcpu) 3282 { 3283 3284 ipi_cpu(hostcpu, pirvec); 3285 } 3286 3287 /* 3288 * Transfer the pending interrupts in the PIR descriptor to the IRR 3289 * in the virtual APIC page. 3290 */ 3291 static void 3292 vmx_inject_pir(struct vlapic *vlapic) 3293 { 3294 struct vlapic_vtx *vlapic_vtx; 3295 struct pir_desc *pir_desc; 3296 struct LAPIC *lapic; 3297 uint64_t val, pirval; 3298 int rvi, pirbase = -1; 3299 uint16_t intr_status_old, intr_status_new; 3300 3301 vlapic_vtx = (struct vlapic_vtx *)vlapic; 3302 pir_desc = vlapic_vtx->pir_desc; 3303 if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) { 3304 VCPU_CTR0(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: " 3305 "no posted interrupt pending"); 3306 return; 3307 } 3308 3309 pirval = 0; 3310 pirbase = -1; 3311 lapic = vlapic->apic_page; 3312 3313 val = atomic_readandclear_long(&pir_desc->pir[0]); 3314 if (val != 0) { 3315 lapic->irr0 |= val; 3316 lapic->irr1 |= val >> 32; 3317 pirbase = 0; 3318 pirval = val; 3319 } 3320 3321 val = atomic_readandclear_long(&pir_desc->pir[1]); 3322 if (val != 0) { 3323 lapic->irr2 |= val; 3324 lapic->irr3 |= val >> 32; 3325 pirbase = 64; 3326 pirval = val; 3327 } 3328 3329 val = atomic_readandclear_long(&pir_desc->pir[2]); 3330 if (val != 0) { 3331 lapic->irr4 |= val; 3332 lapic->irr5 |= val >> 32; 3333 pirbase = 128; 3334 pirval = val; 3335 } 3336 3337 val = atomic_readandclear_long(&pir_desc->pir[3]); 3338 if (val != 0) { 3339 lapic->irr6 |= val; 3340 lapic->irr7 |= val >> 32; 3341 pirbase = 192; 3342 pirval = val; 3343 } 3344 3345 VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir"); 3346 3347 /* 3348 * Update RVI so the processor can evaluate pending virtual 3349 * interrupts on VM-entry. 3350 * 3351 * It is possible for pirval to be 0 here, even though the 3352 * pending bit has been set. The scenario is: 3353 * CPU-Y is sending a posted interrupt to CPU-X, which 3354 * is running a guest and processing posted interrupts in h/w. 3355 * CPU-X will eventually exit and the state seen in s/w is 3356 * the pending bit set, but no PIR bits set. 3357 * 3358 * CPU-X CPU-Y 3359 * (vm running) (host running) 3360 * rx posted interrupt 3361 * CLEAR pending bit 3362 * SET PIR bit 3363 * READ/CLEAR PIR bits 3364 * SET pending bit 3365 * (vm exit) 3366 * pending bit set, PIR 0 3367 */ 3368 if (pirval != 0) { 3369 rvi = pirbase + flsl(pirval) - 1; 3370 intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS); 3371 intr_status_new = (intr_status_old & 0xFF00) | rvi; 3372 if (intr_status_new > intr_status_old) { 3373 vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new); 3374 VCPU_CTR2(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: " 3375 "guest_intr_status changed from 0x%04x to 0x%04x", 3376 intr_status_old, intr_status_new); 3377 } 3378 } 3379 } 3380 3381 static struct vlapic * 3382 vmx_vlapic_init(void *arg, int vcpuid) 3383 { 3384 struct vmx *vmx; 3385 struct vlapic *vlapic; 3386 struct vlapic_vtx *vlapic_vtx; 3387 3388 vmx = arg; 3389 3390 vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO); 3391 vlapic->vm = vmx->vm; 3392 vlapic->vcpuid = vcpuid; 3393 vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid]; 3394 3395 vlapic_vtx = (struct vlapic_vtx *)vlapic; 3396 vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid]; 3397 vlapic_vtx->vmx = vmx; 3398 3399 if (virtual_interrupt_delivery) { 3400 vlapic->ops.set_intr_ready = vmx_set_intr_ready; 3401 vlapic->ops.pending_intr = vmx_pending_intr; 3402 vlapic->ops.intr_accepted = vmx_intr_accepted; 3403 vlapic->ops.set_tmr = vmx_set_tmr; 3404 vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode; 3405 } 3406 3407 if (posted_interrupts) 3408 vlapic->ops.post_intr = vmx_post_intr; 3409 3410 vlapic_init(vlapic); 3411 3412 return (vlapic); 3413 } 3414 3415 static void 3416 vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic) 3417 { 3418 3419 vlapic_cleanup(vlapic); 3420 free(vlapic, M_VLAPIC); 3421 } 3422 3423 struct vmm_ops vmm_ops_intel = { 3424 vmx_init, 3425 vmx_cleanup, 3426 vmx_restore, 3427 vmx_vminit, 3428 vmx_run, 3429 vmx_vmcleanup, 3430 vmx_getreg, 3431 vmx_setreg, 3432 vmx_getdesc, 3433 vmx_setdesc, 3434 vmx_getcap, 3435 vmx_setcap, 3436 ept_vmspace_alloc, 3437 ept_vmspace_free, 3438 vmx_vlapic_init, 3439 vmx_vlapic_cleanup, 3440 }; 3441