1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * Copyright (c) 2018 Joyent, Inc. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $FreeBSD$ 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_bhyve_snapshot.h" 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/smp.h> 40 #include <sys/kernel.h> 41 #include <sys/malloc.h> 42 #include <sys/pcpu.h> 43 #include <sys/proc.h> 44 #include <sys/reg.h> 45 #include <sys/smr.h> 46 #include <sys/sysctl.h> 47 48 #include <vm/vm.h> 49 #include <vm/pmap.h> 50 51 #include <machine/psl.h> 52 #include <machine/cpufunc.h> 53 #include <machine/md_var.h> 54 #include <machine/segments.h> 55 #include <machine/smp.h> 56 #include <machine/specialreg.h> 57 #include <machine/vmparam.h> 58 59 #include <machine/vmm.h> 60 #include <machine/vmm_dev.h> 61 #include <machine/vmm_instruction_emul.h> 62 #include <machine/vmm_snapshot.h> 63 64 #include "vmm_lapic.h" 65 #include "vmm_host.h" 66 #include "vmm_ioport.h" 67 #include "vmm_ktr.h" 68 #include "vmm_stat.h" 69 #include "vatpic.h" 70 #include "vlapic.h" 71 #include "vlapic_priv.h" 72 73 #include "ept.h" 74 #include "vmx_cpufunc.h" 75 #include "vmx.h" 76 #include "vmx_msr.h" 77 #include "x86.h" 78 #include "vmx_controls.h" 79 80 #define PINBASED_CTLS_ONE_SETTING \ 81 (PINBASED_EXTINT_EXITING | \ 82 PINBASED_NMI_EXITING | \ 83 PINBASED_VIRTUAL_NMI) 84 #define PINBASED_CTLS_ZERO_SETTING 0 85 86 #define PROCBASED_CTLS_WINDOW_SETTING \ 87 (PROCBASED_INT_WINDOW_EXITING | \ 88 PROCBASED_NMI_WINDOW_EXITING) 89 90 #define PROCBASED_CTLS_ONE_SETTING \ 91 (PROCBASED_SECONDARY_CONTROLS | \ 92 PROCBASED_MWAIT_EXITING | \ 93 PROCBASED_MONITOR_EXITING | \ 94 PROCBASED_IO_EXITING | \ 95 PROCBASED_MSR_BITMAPS | \ 96 PROCBASED_CTLS_WINDOW_SETTING | \ 97 PROCBASED_CR8_LOAD_EXITING | \ 98 PROCBASED_CR8_STORE_EXITING) 99 #define PROCBASED_CTLS_ZERO_SETTING \ 100 (PROCBASED_CR3_LOAD_EXITING | \ 101 PROCBASED_CR3_STORE_EXITING | \ 102 PROCBASED_IO_BITMAPS) 103 104 #define PROCBASED_CTLS2_ONE_SETTING PROCBASED2_ENABLE_EPT 105 #define PROCBASED_CTLS2_ZERO_SETTING 0 106 107 #define VM_EXIT_CTLS_ONE_SETTING \ 108 (VM_EXIT_SAVE_DEBUG_CONTROLS | \ 109 VM_EXIT_HOST_LMA | \ 110 VM_EXIT_SAVE_EFER | \ 111 VM_EXIT_LOAD_EFER | \ 112 VM_EXIT_ACKNOWLEDGE_INTERRUPT) 113 114 #define VM_EXIT_CTLS_ZERO_SETTING 0 115 116 #define VM_ENTRY_CTLS_ONE_SETTING \ 117 (VM_ENTRY_LOAD_DEBUG_CONTROLS | \ 118 VM_ENTRY_LOAD_EFER) 119 120 #define VM_ENTRY_CTLS_ZERO_SETTING \ 121 (VM_ENTRY_INTO_SMM | \ 122 VM_ENTRY_DEACTIVATE_DUAL_MONITOR) 123 124 #define HANDLED 1 125 #define UNHANDLED 0 126 127 static MALLOC_DEFINE(M_VMX, "vmx", "vmx"); 128 static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic"); 129 130 bool vmx_have_msr_tsc_aux; 131 132 SYSCTL_DECL(_hw_vmm); 133 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 134 NULL); 135 136 int vmxon_enabled[MAXCPU]; 137 static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE); 138 139 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2; 140 static uint32_t exit_ctls, entry_ctls; 141 142 static uint64_t cr0_ones_mask, cr0_zeros_mask; 143 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD, 144 &cr0_ones_mask, 0, NULL); 145 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD, 146 &cr0_zeros_mask, 0, NULL); 147 148 static uint64_t cr4_ones_mask, cr4_zeros_mask; 149 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD, 150 &cr4_ones_mask, 0, NULL); 151 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD, 152 &cr4_zeros_mask, 0, NULL); 153 154 static int vmx_initialized; 155 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD, 156 &vmx_initialized, 0, "Intel VMX initialized"); 157 158 /* 159 * Optional capabilities 160 */ 161 static SYSCTL_NODE(_hw_vmm_vmx, OID_AUTO, cap, 162 CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 163 NULL); 164 165 static int cap_halt_exit; 166 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, halt_exit, CTLFLAG_RD, &cap_halt_exit, 0, 167 "HLT triggers a VM-exit"); 168 169 static int cap_pause_exit; 170 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, pause_exit, CTLFLAG_RD, &cap_pause_exit, 171 0, "PAUSE triggers a VM-exit"); 172 173 static int cap_wbinvd_exit; 174 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, wbinvd_exit, CTLFLAG_RD, &cap_wbinvd_exit, 175 0, "WBINVD triggers a VM-exit"); 176 177 static int cap_rdpid; 178 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, rdpid, CTLFLAG_RD, &cap_rdpid, 0, 179 "Guests are allowed to use RDPID"); 180 181 static int cap_rdtscp; 182 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, rdtscp, CTLFLAG_RD, &cap_rdtscp, 0, 183 "Guests are allowed to use RDTSCP"); 184 185 static int cap_unrestricted_guest; 186 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, unrestricted_guest, CTLFLAG_RD, 187 &cap_unrestricted_guest, 0, "Unrestricted guests"); 188 189 static int cap_monitor_trap; 190 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, monitor_trap, CTLFLAG_RD, 191 &cap_monitor_trap, 0, "Monitor trap flag"); 192 193 static int cap_invpcid; 194 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, invpcid, CTLFLAG_RD, &cap_invpcid, 195 0, "Guests are allowed to use INVPCID"); 196 197 static int tpr_shadowing; 198 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, tpr_shadowing, CTLFLAG_RD, 199 &tpr_shadowing, 0, "TPR shadowing support"); 200 201 static int virtual_interrupt_delivery; 202 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD, 203 &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support"); 204 205 static int posted_interrupts; 206 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, posted_interrupts, CTLFLAG_RD, 207 &posted_interrupts, 0, "APICv posted interrupt support"); 208 209 static int pirvec = -1; 210 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD, 211 &pirvec, 0, "APICv posted interrupt vector"); 212 213 static struct unrhdr *vpid_unr; 214 static u_int vpid_alloc_failed; 215 SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD, 216 &vpid_alloc_failed, 0, NULL); 217 218 int guest_l1d_flush; 219 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush, CTLFLAG_RD, 220 &guest_l1d_flush, 0, NULL); 221 int guest_l1d_flush_sw; 222 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush_sw, CTLFLAG_RD, 223 &guest_l1d_flush_sw, 0, NULL); 224 225 static struct msr_entry msr_load_list[1] __aligned(16); 226 227 /* 228 * The definitions of SDT probes for VMX. 229 */ 230 231 SDT_PROBE_DEFINE3(vmm, vmx, exit, entry, 232 "struct vmx *", "int", "struct vm_exit *"); 233 234 SDT_PROBE_DEFINE4(vmm, vmx, exit, taskswitch, 235 "struct vmx *", "int", "struct vm_exit *", "struct vm_task_switch *"); 236 237 SDT_PROBE_DEFINE4(vmm, vmx, exit, craccess, 238 "struct vmx *", "int", "struct vm_exit *", "uint64_t"); 239 240 SDT_PROBE_DEFINE4(vmm, vmx, exit, rdmsr, 241 "struct vmx *", "int", "struct vm_exit *", "uint32_t"); 242 243 SDT_PROBE_DEFINE5(vmm, vmx, exit, wrmsr, 244 "struct vmx *", "int", "struct vm_exit *", "uint32_t", "uint64_t"); 245 246 SDT_PROBE_DEFINE3(vmm, vmx, exit, halt, 247 "struct vmx *", "int", "struct vm_exit *"); 248 249 SDT_PROBE_DEFINE3(vmm, vmx, exit, mtrap, 250 "struct vmx *", "int", "struct vm_exit *"); 251 252 SDT_PROBE_DEFINE3(vmm, vmx, exit, pause, 253 "struct vmx *", "int", "struct vm_exit *"); 254 255 SDT_PROBE_DEFINE3(vmm, vmx, exit, intrwindow, 256 "struct vmx *", "int", "struct vm_exit *"); 257 258 SDT_PROBE_DEFINE4(vmm, vmx, exit, interrupt, 259 "struct vmx *", "int", "struct vm_exit *", "uint32_t"); 260 261 SDT_PROBE_DEFINE3(vmm, vmx, exit, nmiwindow, 262 "struct vmx *", "int", "struct vm_exit *"); 263 264 SDT_PROBE_DEFINE3(vmm, vmx, exit, inout, 265 "struct vmx *", "int", "struct vm_exit *"); 266 267 SDT_PROBE_DEFINE3(vmm, vmx, exit, cpuid, 268 "struct vmx *", "int", "struct vm_exit *"); 269 270 SDT_PROBE_DEFINE5(vmm, vmx, exit, exception, 271 "struct vmx *", "int", "struct vm_exit *", "uint32_t", "int"); 272 273 SDT_PROBE_DEFINE5(vmm, vmx, exit, nestedfault, 274 "struct vmx *", "int", "struct vm_exit *", "uint64_t", "uint64_t"); 275 276 SDT_PROBE_DEFINE4(vmm, vmx, exit, mmiofault, 277 "struct vmx *", "int", "struct vm_exit *", "uint64_t"); 278 279 SDT_PROBE_DEFINE3(vmm, vmx, exit, eoi, 280 "struct vmx *", "int", "struct vm_exit *"); 281 282 SDT_PROBE_DEFINE3(vmm, vmx, exit, apicaccess, 283 "struct vmx *", "int", "struct vm_exit *"); 284 285 SDT_PROBE_DEFINE4(vmm, vmx, exit, apicwrite, 286 "struct vmx *", "int", "struct vm_exit *", "struct vlapic *"); 287 288 SDT_PROBE_DEFINE3(vmm, vmx, exit, xsetbv, 289 "struct vmx *", "int", "struct vm_exit *"); 290 291 SDT_PROBE_DEFINE3(vmm, vmx, exit, monitor, 292 "struct vmx *", "int", "struct vm_exit *"); 293 294 SDT_PROBE_DEFINE3(vmm, vmx, exit, mwait, 295 "struct vmx *", "int", "struct vm_exit *"); 296 297 SDT_PROBE_DEFINE3(vmm, vmx, exit, vminsn, 298 "struct vmx *", "int", "struct vm_exit *"); 299 300 SDT_PROBE_DEFINE4(vmm, vmx, exit, unknown, 301 "struct vmx *", "int", "struct vm_exit *", "uint32_t"); 302 303 SDT_PROBE_DEFINE4(vmm, vmx, exit, return, 304 "struct vmx *", "int", "struct vm_exit *", "int"); 305 306 /* 307 * Use the last page below 4GB as the APIC access address. This address is 308 * occupied by the boot firmware so it is guaranteed that it will not conflict 309 * with a page in system memory. 310 */ 311 #define APIC_ACCESS_ADDRESS 0xFFFFF000 312 313 static int vmx_getdesc(void *vcpui, int reg, struct seg_desc *desc); 314 static int vmx_getreg(void *vcpui, int reg, uint64_t *retval); 315 static int vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val); 316 static void vmx_inject_pir(struct vlapic *vlapic); 317 #ifdef BHYVE_SNAPSHOT 318 static int vmx_restore_tsc(void *vcpui, uint64_t now); 319 #endif 320 321 static inline bool 322 host_has_rdpid(void) 323 { 324 return ((cpu_stdext_feature2 & CPUID_STDEXT2_RDPID) != 0); 325 } 326 327 static inline bool 328 host_has_rdtscp(void) 329 { 330 return ((amd_feature & AMDID_RDTSCP) != 0); 331 } 332 333 #ifdef KTR 334 static const char * 335 exit_reason_to_str(int reason) 336 { 337 static char reasonbuf[32]; 338 339 switch (reason) { 340 case EXIT_REASON_EXCEPTION: 341 return "exception"; 342 case EXIT_REASON_EXT_INTR: 343 return "extint"; 344 case EXIT_REASON_TRIPLE_FAULT: 345 return "triplefault"; 346 case EXIT_REASON_INIT: 347 return "init"; 348 case EXIT_REASON_SIPI: 349 return "sipi"; 350 case EXIT_REASON_IO_SMI: 351 return "iosmi"; 352 case EXIT_REASON_SMI: 353 return "smi"; 354 case EXIT_REASON_INTR_WINDOW: 355 return "intrwindow"; 356 case EXIT_REASON_NMI_WINDOW: 357 return "nmiwindow"; 358 case EXIT_REASON_TASK_SWITCH: 359 return "taskswitch"; 360 case EXIT_REASON_CPUID: 361 return "cpuid"; 362 case EXIT_REASON_GETSEC: 363 return "getsec"; 364 case EXIT_REASON_HLT: 365 return "hlt"; 366 case EXIT_REASON_INVD: 367 return "invd"; 368 case EXIT_REASON_INVLPG: 369 return "invlpg"; 370 case EXIT_REASON_RDPMC: 371 return "rdpmc"; 372 case EXIT_REASON_RDTSC: 373 return "rdtsc"; 374 case EXIT_REASON_RSM: 375 return "rsm"; 376 case EXIT_REASON_VMCALL: 377 return "vmcall"; 378 case EXIT_REASON_VMCLEAR: 379 return "vmclear"; 380 case EXIT_REASON_VMLAUNCH: 381 return "vmlaunch"; 382 case EXIT_REASON_VMPTRLD: 383 return "vmptrld"; 384 case EXIT_REASON_VMPTRST: 385 return "vmptrst"; 386 case EXIT_REASON_VMREAD: 387 return "vmread"; 388 case EXIT_REASON_VMRESUME: 389 return "vmresume"; 390 case EXIT_REASON_VMWRITE: 391 return "vmwrite"; 392 case EXIT_REASON_VMXOFF: 393 return "vmxoff"; 394 case EXIT_REASON_VMXON: 395 return "vmxon"; 396 case EXIT_REASON_CR_ACCESS: 397 return "craccess"; 398 case EXIT_REASON_DR_ACCESS: 399 return "draccess"; 400 case EXIT_REASON_INOUT: 401 return "inout"; 402 case EXIT_REASON_RDMSR: 403 return "rdmsr"; 404 case EXIT_REASON_WRMSR: 405 return "wrmsr"; 406 case EXIT_REASON_INVAL_VMCS: 407 return "invalvmcs"; 408 case EXIT_REASON_INVAL_MSR: 409 return "invalmsr"; 410 case EXIT_REASON_MWAIT: 411 return "mwait"; 412 case EXIT_REASON_MTF: 413 return "mtf"; 414 case EXIT_REASON_MONITOR: 415 return "monitor"; 416 case EXIT_REASON_PAUSE: 417 return "pause"; 418 case EXIT_REASON_MCE_DURING_ENTRY: 419 return "mce-during-entry"; 420 case EXIT_REASON_TPR: 421 return "tpr"; 422 case EXIT_REASON_APIC_ACCESS: 423 return "apic-access"; 424 case EXIT_REASON_GDTR_IDTR: 425 return "gdtridtr"; 426 case EXIT_REASON_LDTR_TR: 427 return "ldtrtr"; 428 case EXIT_REASON_EPT_FAULT: 429 return "eptfault"; 430 case EXIT_REASON_EPT_MISCONFIG: 431 return "eptmisconfig"; 432 case EXIT_REASON_INVEPT: 433 return "invept"; 434 case EXIT_REASON_RDTSCP: 435 return "rdtscp"; 436 case EXIT_REASON_VMX_PREEMPT: 437 return "vmxpreempt"; 438 case EXIT_REASON_INVVPID: 439 return "invvpid"; 440 case EXIT_REASON_WBINVD: 441 return "wbinvd"; 442 case EXIT_REASON_XSETBV: 443 return "xsetbv"; 444 case EXIT_REASON_APIC_WRITE: 445 return "apic-write"; 446 default: 447 snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason); 448 return (reasonbuf); 449 } 450 } 451 #endif /* KTR */ 452 453 static int 454 vmx_allow_x2apic_msrs(struct vmx *vmx) 455 { 456 int i, error; 457 458 error = 0; 459 460 /* 461 * Allow readonly access to the following x2APIC MSRs from the guest. 462 */ 463 error += guest_msr_ro(vmx, MSR_APIC_ID); 464 error += guest_msr_ro(vmx, MSR_APIC_VERSION); 465 error += guest_msr_ro(vmx, MSR_APIC_LDR); 466 error += guest_msr_ro(vmx, MSR_APIC_SVR); 467 468 for (i = 0; i < 8; i++) 469 error += guest_msr_ro(vmx, MSR_APIC_ISR0 + i); 470 471 for (i = 0; i < 8; i++) 472 error += guest_msr_ro(vmx, MSR_APIC_TMR0 + i); 473 474 for (i = 0; i < 8; i++) 475 error += guest_msr_ro(vmx, MSR_APIC_IRR0 + i); 476 477 error += guest_msr_ro(vmx, MSR_APIC_ESR); 478 error += guest_msr_ro(vmx, MSR_APIC_LVT_TIMER); 479 error += guest_msr_ro(vmx, MSR_APIC_LVT_THERMAL); 480 error += guest_msr_ro(vmx, MSR_APIC_LVT_PCINT); 481 error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT0); 482 error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT1); 483 error += guest_msr_ro(vmx, MSR_APIC_LVT_ERROR); 484 error += guest_msr_ro(vmx, MSR_APIC_ICR_TIMER); 485 error += guest_msr_ro(vmx, MSR_APIC_DCR_TIMER); 486 error += guest_msr_ro(vmx, MSR_APIC_ICR); 487 488 /* 489 * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest. 490 * 491 * These registers get special treatment described in the section 492 * "Virtualizing MSR-Based APIC Accesses". 493 */ 494 error += guest_msr_rw(vmx, MSR_APIC_TPR); 495 error += guest_msr_rw(vmx, MSR_APIC_EOI); 496 error += guest_msr_rw(vmx, MSR_APIC_SELF_IPI); 497 498 return (error); 499 } 500 501 u_long 502 vmx_fix_cr0(u_long cr0) 503 { 504 505 return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask); 506 } 507 508 u_long 509 vmx_fix_cr4(u_long cr4) 510 { 511 512 return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask); 513 } 514 515 static void 516 vpid_free(int vpid) 517 { 518 if (vpid < 0 || vpid > 0xffff) 519 panic("vpid_free: invalid vpid %d", vpid); 520 521 /* 522 * VPIDs [0,vm_maxcpu] are special and are not allocated from 523 * the unit number allocator. 524 */ 525 526 if (vpid > vm_maxcpu) 527 free_unr(vpid_unr, vpid); 528 } 529 530 static uint16_t 531 vpid_alloc(int vcpuid) 532 { 533 int x; 534 535 /* 536 * If the "enable vpid" execution control is not enabled then the 537 * VPID is required to be 0 for all vcpus. 538 */ 539 if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) 540 return (0); 541 542 /* 543 * Try to allocate a unique VPID for each from the unit number 544 * allocator. 545 */ 546 x = alloc_unr(vpid_unr); 547 548 if (x == -1) { 549 atomic_add_int(&vpid_alloc_failed, 1); 550 551 /* 552 * If the unit number allocator does not have enough unique 553 * VPIDs then we need to allocate from the [1,vm_maxcpu] range. 554 * 555 * These VPIDs are not be unique across VMs but this does not 556 * affect correctness because the combined mappings are also 557 * tagged with the EP4TA which is unique for each VM. 558 * 559 * It is still sub-optimal because the invvpid will invalidate 560 * combined mappings for a particular VPID across all EP4TAs. 561 */ 562 return (vcpuid + 1); 563 } 564 565 return (x); 566 } 567 568 static void 569 vpid_init(void) 570 { 571 /* 572 * VPID 0 is required when the "enable VPID" execution control is 573 * disabled. 574 * 575 * VPIDs [1,vm_maxcpu] are used as the "overflow namespace" when the 576 * unit number allocator does not have sufficient unique VPIDs to 577 * satisfy the allocation. 578 * 579 * The remaining VPIDs are managed by the unit number allocator. 580 */ 581 vpid_unr = new_unrhdr(vm_maxcpu + 1, 0xffff, NULL); 582 } 583 584 static void 585 vmx_disable(void *arg __unused) 586 { 587 struct invvpid_desc invvpid_desc = { 0 }; 588 struct invept_desc invept_desc = { 0 }; 589 590 if (vmxon_enabled[curcpu]) { 591 /* 592 * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b. 593 * 594 * VMXON or VMXOFF are not required to invalidate any TLB 595 * caching structures. This prevents potential retention of 596 * cached information in the TLB between distinct VMX episodes. 597 */ 598 invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc); 599 invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc); 600 vmxoff(); 601 } 602 load_cr4(rcr4() & ~CR4_VMXE); 603 } 604 605 static int 606 vmx_modcleanup(void) 607 { 608 609 if (pirvec >= 0) 610 lapic_ipi_free(pirvec); 611 612 if (vpid_unr != NULL) { 613 delete_unrhdr(vpid_unr); 614 vpid_unr = NULL; 615 } 616 617 if (nmi_flush_l1d_sw == 1) 618 nmi_flush_l1d_sw = 0; 619 620 smp_rendezvous(NULL, vmx_disable, NULL, NULL); 621 622 return (0); 623 } 624 625 static void 626 vmx_enable(void *arg __unused) 627 { 628 int error; 629 uint64_t feature_control; 630 631 feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL); 632 if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 || 633 (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) { 634 wrmsr(MSR_IA32_FEATURE_CONTROL, 635 feature_control | IA32_FEATURE_CONTROL_VMX_EN | 636 IA32_FEATURE_CONTROL_LOCK); 637 } 638 639 load_cr4(rcr4() | CR4_VMXE); 640 641 *(uint32_t *)vmxon_region[curcpu] = vmx_revision(); 642 error = vmxon(vmxon_region[curcpu]); 643 if (error == 0) 644 vmxon_enabled[curcpu] = 1; 645 } 646 647 static void 648 vmx_modresume(void) 649 { 650 651 if (vmxon_enabled[curcpu]) 652 vmxon(vmxon_region[curcpu]); 653 } 654 655 static int 656 vmx_modinit(int ipinum) 657 { 658 int error; 659 uint64_t basic, fixed0, fixed1, feature_control; 660 uint32_t tmp, procbased2_vid_bits; 661 662 /* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */ 663 if (!(cpu_feature2 & CPUID2_VMX)) { 664 printf("vmx_modinit: processor does not support VMX " 665 "operation\n"); 666 return (ENXIO); 667 } 668 669 /* 670 * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits 671 * are set (bits 0 and 2 respectively). 672 */ 673 feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL); 674 if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 1 && 675 (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) { 676 printf("vmx_modinit: VMX operation disabled by BIOS\n"); 677 return (ENXIO); 678 } 679 680 /* 681 * Verify capabilities MSR_VMX_BASIC: 682 * - bit 54 indicates support for INS/OUTS decoding 683 */ 684 basic = rdmsr(MSR_VMX_BASIC); 685 if ((basic & (1UL << 54)) == 0) { 686 printf("vmx_modinit: processor does not support desired basic " 687 "capabilities\n"); 688 return (EINVAL); 689 } 690 691 /* Check support for primary processor-based VM-execution controls */ 692 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 693 MSR_VMX_TRUE_PROCBASED_CTLS, 694 PROCBASED_CTLS_ONE_SETTING, 695 PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls); 696 if (error) { 697 printf("vmx_modinit: processor does not support desired " 698 "primary processor-based controls\n"); 699 return (error); 700 } 701 702 /* Clear the processor-based ctl bits that are set on demand */ 703 procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING; 704 705 /* Check support for secondary processor-based VM-execution controls */ 706 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, 707 MSR_VMX_PROCBASED_CTLS2, 708 PROCBASED_CTLS2_ONE_SETTING, 709 PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2); 710 if (error) { 711 printf("vmx_modinit: processor does not support desired " 712 "secondary processor-based controls\n"); 713 return (error); 714 } 715 716 /* Check support for VPID */ 717 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2, 718 PROCBASED2_ENABLE_VPID, 0, &tmp); 719 if (error == 0) 720 procbased_ctls2 |= PROCBASED2_ENABLE_VPID; 721 722 /* Check support for pin-based VM-execution controls */ 723 error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS, 724 MSR_VMX_TRUE_PINBASED_CTLS, 725 PINBASED_CTLS_ONE_SETTING, 726 PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls); 727 if (error) { 728 printf("vmx_modinit: processor does not support desired " 729 "pin-based controls\n"); 730 return (error); 731 } 732 733 /* Check support for VM-exit controls */ 734 error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS, 735 VM_EXIT_CTLS_ONE_SETTING, 736 VM_EXIT_CTLS_ZERO_SETTING, 737 &exit_ctls); 738 if (error) { 739 printf("vmx_modinit: processor does not support desired " 740 "exit controls\n"); 741 return (error); 742 } 743 744 /* Check support for VM-entry controls */ 745 error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS, 746 VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING, 747 &entry_ctls); 748 if (error) { 749 printf("vmx_modinit: processor does not support desired " 750 "entry controls\n"); 751 return (error); 752 } 753 754 /* 755 * Check support for optional features by testing them 756 * as individual bits 757 */ 758 cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 759 MSR_VMX_TRUE_PROCBASED_CTLS, 760 PROCBASED_HLT_EXITING, 0, 761 &tmp) == 0); 762 763 cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 764 MSR_VMX_PROCBASED_CTLS, 765 PROCBASED_MTF, 0, 766 &tmp) == 0); 767 768 cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 769 MSR_VMX_TRUE_PROCBASED_CTLS, 770 PROCBASED_PAUSE_EXITING, 0, 771 &tmp) == 0); 772 773 cap_wbinvd_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, 774 MSR_VMX_PROCBASED_CTLS2, 775 PROCBASED2_WBINVD_EXITING, 776 0, 777 &tmp) == 0); 778 779 /* 780 * Check support for RDPID and/or RDTSCP. 781 * 782 * Support a pass-through-based implementation of these via the 783 * "enable RDTSCP" VM-execution control and the "RDTSC exiting" 784 * VM-execution control. 785 * 786 * The "enable RDTSCP" VM-execution control applies to both RDPID 787 * and RDTSCP (see SDM volume 3, section 25.3, "Changes to 788 * Instruction Behavior in VMX Non-root operation"); this is why 789 * only this VM-execution control needs to be enabled in order to 790 * enable passing through whichever of RDPID and/or RDTSCP are 791 * supported by the host. 792 * 793 * The "RDTSC exiting" VM-execution control applies to both RDTSC 794 * and RDTSCP (again, per SDM volume 3, section 25.3), and is 795 * already set up for RDTSC and RDTSCP pass-through by the current 796 * implementation of RDTSC. 797 * 798 * Although RDPID and RDTSCP are optional capabilities, since there 799 * does not currently seem to be a use case for enabling/disabling 800 * these via libvmmapi, choose not to support this and, instead, 801 * just statically always enable or always disable this support 802 * across all vCPUs on all VMs. (Note that there may be some 803 * complications to providing this functionality, e.g., the MSR 804 * bitmap is currently per-VM rather than per-vCPU while the 805 * capability API wants to be able to control capabilities on a 806 * per-vCPU basis). 807 */ 808 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, 809 MSR_VMX_PROCBASED_CTLS2, 810 PROCBASED2_ENABLE_RDTSCP, 0, &tmp); 811 cap_rdpid = error == 0 && host_has_rdpid(); 812 cap_rdtscp = error == 0 && host_has_rdtscp(); 813 if (cap_rdpid || cap_rdtscp) { 814 procbased_ctls2 |= PROCBASED2_ENABLE_RDTSCP; 815 vmx_have_msr_tsc_aux = true; 816 } 817 818 cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, 819 MSR_VMX_PROCBASED_CTLS2, 820 PROCBASED2_UNRESTRICTED_GUEST, 0, 821 &tmp) == 0); 822 823 cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, 824 MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0, 825 &tmp) == 0); 826 827 /* 828 * Check support for TPR shadow. 829 */ 830 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 831 MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0, 832 &tmp); 833 if (error == 0) { 834 tpr_shadowing = 1; 835 TUNABLE_INT_FETCH("hw.vmm.vmx.use_tpr_shadowing", 836 &tpr_shadowing); 837 } 838 839 if (tpr_shadowing) { 840 procbased_ctls |= PROCBASED_USE_TPR_SHADOW; 841 procbased_ctls &= ~PROCBASED_CR8_LOAD_EXITING; 842 procbased_ctls &= ~PROCBASED_CR8_STORE_EXITING; 843 } 844 845 /* 846 * Check support for virtual interrupt delivery. 847 */ 848 procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES | 849 PROCBASED2_VIRTUALIZE_X2APIC_MODE | 850 PROCBASED2_APIC_REGISTER_VIRTUALIZATION | 851 PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY); 852 853 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2, 854 procbased2_vid_bits, 0, &tmp); 855 if (error == 0 && tpr_shadowing) { 856 virtual_interrupt_delivery = 1; 857 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid", 858 &virtual_interrupt_delivery); 859 } 860 861 if (virtual_interrupt_delivery) { 862 procbased_ctls |= PROCBASED_USE_TPR_SHADOW; 863 procbased_ctls2 |= procbased2_vid_bits; 864 procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE; 865 866 /* 867 * Check for Posted Interrupts only if Virtual Interrupt 868 * Delivery is enabled. 869 */ 870 error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS, 871 MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0, 872 &tmp); 873 if (error == 0) { 874 pirvec = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) : 875 &IDTVEC(justreturn)); 876 if (pirvec < 0) { 877 if (bootverbose) { 878 printf("vmx_modinit: unable to " 879 "allocate posted interrupt " 880 "vector\n"); 881 } 882 } else { 883 posted_interrupts = 1; 884 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir", 885 &posted_interrupts); 886 } 887 } 888 } 889 890 if (posted_interrupts) 891 pinbased_ctls |= PINBASED_POSTED_INTERRUPT; 892 893 /* Initialize EPT */ 894 error = ept_init(ipinum); 895 if (error) { 896 printf("vmx_modinit: ept initialization failed (%d)\n", error); 897 return (error); 898 } 899 900 guest_l1d_flush = (cpu_ia32_arch_caps & 901 IA32_ARCH_CAP_SKIP_L1DFL_VMENTRY) == 0; 902 TUNABLE_INT_FETCH("hw.vmm.l1d_flush", &guest_l1d_flush); 903 904 /* 905 * L1D cache flush is enabled. Use IA32_FLUSH_CMD MSR when 906 * available. Otherwise fall back to the software flush 907 * method which loads enough data from the kernel text to 908 * flush existing L1D content, both on VMX entry and on NMI 909 * return. 910 */ 911 if (guest_l1d_flush) { 912 if ((cpu_stdext_feature3 & CPUID_STDEXT3_L1D_FLUSH) == 0) { 913 guest_l1d_flush_sw = 1; 914 TUNABLE_INT_FETCH("hw.vmm.l1d_flush_sw", 915 &guest_l1d_flush_sw); 916 } 917 if (guest_l1d_flush_sw) { 918 if (nmi_flush_l1d_sw <= 1) 919 nmi_flush_l1d_sw = 1; 920 } else { 921 msr_load_list[0].index = MSR_IA32_FLUSH_CMD; 922 msr_load_list[0].val = IA32_FLUSH_CMD_L1D; 923 } 924 } 925 926 /* 927 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1 928 */ 929 fixed0 = rdmsr(MSR_VMX_CR0_FIXED0); 930 fixed1 = rdmsr(MSR_VMX_CR0_FIXED1); 931 cr0_ones_mask = fixed0 & fixed1; 932 cr0_zeros_mask = ~fixed0 & ~fixed1; 933 934 /* 935 * CR0_PE and CR0_PG can be set to zero in VMX non-root operation 936 * if unrestricted guest execution is allowed. 937 */ 938 if (cap_unrestricted_guest) 939 cr0_ones_mask &= ~(CR0_PG | CR0_PE); 940 941 /* 942 * Do not allow the guest to set CR0_NW or CR0_CD. 943 */ 944 cr0_zeros_mask |= (CR0_NW | CR0_CD); 945 946 fixed0 = rdmsr(MSR_VMX_CR4_FIXED0); 947 fixed1 = rdmsr(MSR_VMX_CR4_FIXED1); 948 cr4_ones_mask = fixed0 & fixed1; 949 cr4_zeros_mask = ~fixed0 & ~fixed1; 950 951 vpid_init(); 952 953 vmx_msr_init(); 954 955 /* enable VMX operation */ 956 smp_rendezvous(NULL, vmx_enable, NULL, NULL); 957 958 vmx_initialized = 1; 959 960 return (0); 961 } 962 963 static void 964 vmx_trigger_hostintr(int vector) 965 { 966 uintptr_t func; 967 struct gate_descriptor *gd; 968 969 gd = &idt[vector]; 970 971 KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: " 972 "invalid vector %d", vector)); 973 KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present", 974 vector)); 975 KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d " 976 "has invalid type %d", vector, gd->gd_type)); 977 KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d " 978 "has invalid dpl %d", vector, gd->gd_dpl)); 979 KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor " 980 "for vector %d has invalid selector %d", vector, gd->gd_selector)); 981 KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid " 982 "IST %d", vector, gd->gd_ist)); 983 984 func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset); 985 vmx_call_isr(func); 986 } 987 988 static int 989 vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial) 990 { 991 int error, mask_ident, shadow_ident; 992 uint64_t mask_value; 993 994 if (which != 0 && which != 4) 995 panic("vmx_setup_cr_shadow: unknown cr%d", which); 996 997 if (which == 0) { 998 mask_ident = VMCS_CR0_MASK; 999 mask_value = cr0_ones_mask | cr0_zeros_mask; 1000 shadow_ident = VMCS_CR0_SHADOW; 1001 } else { 1002 mask_ident = VMCS_CR4_MASK; 1003 mask_value = cr4_ones_mask | cr4_zeros_mask; 1004 shadow_ident = VMCS_CR4_SHADOW; 1005 } 1006 1007 error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value); 1008 if (error) 1009 return (error); 1010 1011 error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial); 1012 if (error) 1013 return (error); 1014 1015 return (0); 1016 } 1017 #define vmx_setup_cr0_shadow(vmcs,init) vmx_setup_cr_shadow(0, (vmcs), (init)) 1018 #define vmx_setup_cr4_shadow(vmcs,init) vmx_setup_cr_shadow(4, (vmcs), (init)) 1019 1020 static void * 1021 vmx_init(struct vm *vm, pmap_t pmap) 1022 { 1023 int error __diagused; 1024 struct vmx *vmx; 1025 1026 vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO); 1027 vmx->vm = vm; 1028 1029 vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pmltop)); 1030 1031 /* 1032 * Clean up EPTP-tagged guest physical and combined mappings 1033 * 1034 * VMX transitions are not required to invalidate any guest physical 1035 * mappings. So, it may be possible for stale guest physical mappings 1036 * to be present in the processor TLBs. 1037 * 1038 * Combined mappings for this EP4TA are also invalidated for all VPIDs. 1039 */ 1040 ept_invalidate_mappings(vmx->eptp); 1041 1042 vmx->msr_bitmap = malloc_aligned(PAGE_SIZE, PAGE_SIZE, M_VMX, 1043 M_WAITOK | M_ZERO); 1044 msr_bitmap_initialize(vmx->msr_bitmap); 1045 1046 /* 1047 * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE. 1048 * The guest FSBASE and GSBASE are saved and restored during 1049 * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are 1050 * always restored from the vmcs host state area on vm-exit. 1051 * 1052 * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in 1053 * how they are saved/restored so can be directly accessed by the 1054 * guest. 1055 * 1056 * MSR_EFER is saved and restored in the guest VMCS area on a 1057 * VM exit and entry respectively. It is also restored from the 1058 * host VMCS area on a VM exit. 1059 * 1060 * The TSC MSR is exposed read-only. Writes are disallowed as 1061 * that will impact the host TSC. If the guest does a write 1062 * the "use TSC offsetting" execution control is enabled and the 1063 * difference between the host TSC and the guest TSC is written 1064 * into the TSC offset in the VMCS. 1065 * 1066 * Guest TSC_AUX support is enabled if any of guest RDPID and/or 1067 * guest RDTSCP support are enabled (since, as per Table 2-2 in SDM 1068 * volume 4, TSC_AUX is supported if any of RDPID and/or RDTSCP are 1069 * supported). If guest TSC_AUX support is enabled, TSC_AUX is 1070 * exposed read-only so that the VMM can do one fewer MSR read per 1071 * exit than if this register were exposed read-write; the guest 1072 * restore value can be updated during guest writes (expected to be 1073 * rare) instead of during all exits (common). 1074 */ 1075 if (guest_msr_rw(vmx, MSR_GSBASE) || 1076 guest_msr_rw(vmx, MSR_FSBASE) || 1077 guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) || 1078 guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) || 1079 guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) || 1080 guest_msr_rw(vmx, MSR_EFER) || 1081 guest_msr_ro(vmx, MSR_TSC) || 1082 ((cap_rdpid || cap_rdtscp) && guest_msr_ro(vmx, MSR_TSC_AUX))) 1083 panic("vmx_init: error setting guest msr access"); 1084 1085 if (virtual_interrupt_delivery) { 1086 error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE, 1087 APIC_ACCESS_ADDRESS); 1088 /* XXX this should really return an error to the caller */ 1089 KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error)); 1090 } 1091 1092 vmx->pmap = pmap; 1093 return (vmx); 1094 } 1095 1096 static void * 1097 vmx_vcpu_init(void *vmi, struct vcpu *vcpu1, int vcpuid) 1098 { 1099 struct vmx *vmx = vmi; 1100 struct vmcs *vmcs; 1101 struct vmx_vcpu *vcpu; 1102 uint32_t exc_bitmap; 1103 uint16_t vpid; 1104 int error; 1105 1106 vpid = vpid_alloc(vcpuid); 1107 1108 vcpu = malloc(sizeof(*vcpu), M_VMX, M_WAITOK | M_ZERO); 1109 vcpu->vmx = vmx; 1110 vcpu->vcpu = vcpu1; 1111 vcpu->vcpuid = vcpuid; 1112 vcpu->vmcs = malloc_aligned(sizeof(*vmcs), PAGE_SIZE, M_VMX, 1113 M_WAITOK | M_ZERO); 1114 vcpu->apic_page = malloc_aligned(PAGE_SIZE, PAGE_SIZE, M_VMX, 1115 M_WAITOK | M_ZERO); 1116 vcpu->pir_desc = malloc_aligned(sizeof(*vcpu->pir_desc), 64, M_VMX, 1117 M_WAITOK | M_ZERO); 1118 1119 vmcs = vcpu->vmcs; 1120 vmcs->identifier = vmx_revision(); 1121 error = vmclear(vmcs); 1122 if (error != 0) { 1123 panic("vmx_init: vmclear error %d on vcpu %d\n", 1124 error, vcpuid); 1125 } 1126 1127 vmx_msr_guest_init(vmx, vcpu); 1128 1129 error = vmcs_init(vmcs); 1130 KASSERT(error == 0, ("vmcs_init error %d", error)); 1131 1132 VMPTRLD(vmcs); 1133 error = 0; 1134 error += vmwrite(VMCS_HOST_RSP, (u_long)&vcpu->ctx); 1135 error += vmwrite(VMCS_EPTP, vmx->eptp); 1136 error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls); 1137 error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls); 1138 if (vcpu_trap_wbinvd(vcpu->vcpu)) { 1139 KASSERT(cap_wbinvd_exit, ("WBINVD trap not available")); 1140 procbased_ctls2 |= PROCBASED2_WBINVD_EXITING; 1141 } 1142 error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2); 1143 error += vmwrite(VMCS_EXIT_CTLS, exit_ctls); 1144 error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls); 1145 error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap)); 1146 error += vmwrite(VMCS_VPID, vpid); 1147 1148 if (guest_l1d_flush && !guest_l1d_flush_sw) { 1149 vmcs_write(VMCS_ENTRY_MSR_LOAD, pmap_kextract( 1150 (vm_offset_t)&msr_load_list[0])); 1151 vmcs_write(VMCS_ENTRY_MSR_LOAD_COUNT, 1152 nitems(msr_load_list)); 1153 vmcs_write(VMCS_EXIT_MSR_STORE, 0); 1154 vmcs_write(VMCS_EXIT_MSR_STORE_COUNT, 0); 1155 } 1156 1157 /* exception bitmap */ 1158 if (vcpu_trace_exceptions(vcpu->vcpu)) 1159 exc_bitmap = 0xffffffff; 1160 else 1161 exc_bitmap = 1 << IDT_MC; 1162 error += vmwrite(VMCS_EXCEPTION_BITMAP, exc_bitmap); 1163 1164 vcpu->ctx.guest_dr6 = DBREG_DR6_RESERVED1; 1165 error += vmwrite(VMCS_GUEST_DR7, DBREG_DR7_RESERVED1); 1166 1167 if (tpr_shadowing) { 1168 error += vmwrite(VMCS_VIRTUAL_APIC, vtophys(vcpu->apic_page)); 1169 } 1170 1171 if (virtual_interrupt_delivery) { 1172 error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS); 1173 error += vmwrite(VMCS_EOI_EXIT0, 0); 1174 error += vmwrite(VMCS_EOI_EXIT1, 0); 1175 error += vmwrite(VMCS_EOI_EXIT2, 0); 1176 error += vmwrite(VMCS_EOI_EXIT3, 0); 1177 } 1178 if (posted_interrupts) { 1179 error += vmwrite(VMCS_PIR_VECTOR, pirvec); 1180 error += vmwrite(VMCS_PIR_DESC, vtophys(vcpu->pir_desc)); 1181 } 1182 VMCLEAR(vmcs); 1183 KASSERT(error == 0, ("vmx_init: error customizing the vmcs")); 1184 1185 vcpu->cap.set = 0; 1186 vcpu->cap.set |= cap_rdpid != 0 ? 1 << VM_CAP_RDPID : 0; 1187 vcpu->cap.set |= cap_rdtscp != 0 ? 1 << VM_CAP_RDTSCP : 0; 1188 vcpu->cap.proc_ctls = procbased_ctls; 1189 vcpu->cap.proc_ctls2 = procbased_ctls2; 1190 vcpu->cap.exc_bitmap = exc_bitmap; 1191 1192 vcpu->state.nextrip = ~0; 1193 vcpu->state.lastcpu = NOCPU; 1194 vcpu->state.vpid = vpid; 1195 1196 /* 1197 * Set up the CR0/4 shadows, and init the read shadow 1198 * to the power-on register value from the Intel Sys Arch. 1199 * CR0 - 0x60000010 1200 * CR4 - 0 1201 */ 1202 error = vmx_setup_cr0_shadow(vmcs, 0x60000010); 1203 if (error != 0) 1204 panic("vmx_setup_cr0_shadow %d", error); 1205 1206 error = vmx_setup_cr4_shadow(vmcs, 0); 1207 if (error != 0) 1208 panic("vmx_setup_cr4_shadow %d", error); 1209 1210 vcpu->ctx.pmap = vmx->pmap; 1211 1212 return (vcpu); 1213 } 1214 1215 static int 1216 vmx_handle_cpuid(struct vmx_vcpu *vcpu, struct vmxctx *vmxctx) 1217 { 1218 int handled; 1219 1220 handled = x86_emulate_cpuid(vcpu->vcpu, (uint64_t *)&vmxctx->guest_rax, 1221 (uint64_t *)&vmxctx->guest_rbx, (uint64_t *)&vmxctx->guest_rcx, 1222 (uint64_t *)&vmxctx->guest_rdx); 1223 return (handled); 1224 } 1225 1226 static __inline void 1227 vmx_run_trace(struct vmx_vcpu *vcpu) 1228 { 1229 VMX_CTR1(vcpu, "Resume execution at %#lx", vmcs_guest_rip()); 1230 } 1231 1232 static __inline void 1233 vmx_exit_trace(struct vmx_vcpu *vcpu, uint64_t rip, uint32_t exit_reason, 1234 int handled) 1235 { 1236 VMX_CTR3(vcpu, "%s %s vmexit at 0x%0lx", 1237 handled ? "handled" : "unhandled", 1238 exit_reason_to_str(exit_reason), rip); 1239 } 1240 1241 static __inline void 1242 vmx_astpending_trace(struct vmx_vcpu *vcpu, uint64_t rip) 1243 { 1244 VMX_CTR1(vcpu, "astpending vmexit at 0x%0lx", rip); 1245 } 1246 1247 static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved"); 1248 static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done"); 1249 1250 /* 1251 * Invalidate guest mappings identified by its vpid from the TLB. 1252 */ 1253 static __inline void 1254 vmx_invvpid(struct vmx *vmx, struct vmx_vcpu *vcpu, pmap_t pmap, int running) 1255 { 1256 struct vmxstate *vmxstate; 1257 struct invvpid_desc invvpid_desc; 1258 1259 vmxstate = &vcpu->state; 1260 if (vmxstate->vpid == 0) 1261 return; 1262 1263 if (!running) { 1264 /* 1265 * Set the 'lastcpu' to an invalid host cpu. 1266 * 1267 * This will invalidate TLB entries tagged with the vcpu's 1268 * vpid the next time it runs via vmx_set_pcpu_defaults(). 1269 */ 1270 vmxstate->lastcpu = NOCPU; 1271 return; 1272 } 1273 1274 KASSERT(curthread->td_critnest > 0, ("%s: vcpu %d running outside " 1275 "critical section", __func__, vcpu->vcpuid)); 1276 1277 /* 1278 * Invalidate all mappings tagged with 'vpid' 1279 * 1280 * We do this because this vcpu was executing on a different host 1281 * cpu when it last ran. We do not track whether it invalidated 1282 * mappings associated with its 'vpid' during that run. So we must 1283 * assume that the mappings associated with 'vpid' on 'curcpu' are 1284 * stale and invalidate them. 1285 * 1286 * Note that we incur this penalty only when the scheduler chooses to 1287 * move the thread associated with this vcpu between host cpus. 1288 * 1289 * Note also that this will invalidate mappings tagged with 'vpid' 1290 * for "all" EP4TAs. 1291 */ 1292 if (atomic_load_long(&pmap->pm_eptgen) == vmx->eptgen[curcpu]) { 1293 invvpid_desc._res1 = 0; 1294 invvpid_desc._res2 = 0; 1295 invvpid_desc.vpid = vmxstate->vpid; 1296 invvpid_desc.linear_addr = 0; 1297 invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc); 1298 vmm_stat_incr(vcpu->vcpu, VCPU_INVVPID_DONE, 1); 1299 } else { 1300 /* 1301 * The invvpid can be skipped if an invept is going to 1302 * be performed before entering the guest. The invept 1303 * will invalidate combined mappings tagged with 1304 * 'vmx->eptp' for all vpids. 1305 */ 1306 vmm_stat_incr(vcpu->vcpu, VCPU_INVVPID_SAVED, 1); 1307 } 1308 } 1309 1310 static void 1311 vmx_set_pcpu_defaults(struct vmx *vmx, struct vmx_vcpu *vcpu, pmap_t pmap) 1312 { 1313 struct vmxstate *vmxstate; 1314 1315 vmxstate = &vcpu->state; 1316 if (vmxstate->lastcpu == curcpu) 1317 return; 1318 1319 vmxstate->lastcpu = curcpu; 1320 1321 vmm_stat_incr(vcpu->vcpu, VCPU_MIGRATIONS, 1); 1322 1323 vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase()); 1324 vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase()); 1325 vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase()); 1326 vmx_invvpid(vmx, vcpu, pmap, 1); 1327 } 1328 1329 /* 1330 * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set. 1331 */ 1332 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0); 1333 1334 static void __inline 1335 vmx_set_int_window_exiting(struct vmx_vcpu *vcpu) 1336 { 1337 1338 if ((vcpu->cap.proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) { 1339 vcpu->cap.proc_ctls |= PROCBASED_INT_WINDOW_EXITING; 1340 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vcpu->cap.proc_ctls); 1341 VMX_CTR0(vcpu, "Enabling interrupt window exiting"); 1342 } 1343 } 1344 1345 static void __inline 1346 vmx_clear_int_window_exiting(struct vmx_vcpu *vcpu) 1347 { 1348 1349 KASSERT((vcpu->cap.proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0, 1350 ("intr_window_exiting not set: %#x", vcpu->cap.proc_ctls)); 1351 vcpu->cap.proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING; 1352 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vcpu->cap.proc_ctls); 1353 VMX_CTR0(vcpu, "Disabling interrupt window exiting"); 1354 } 1355 1356 static void __inline 1357 vmx_set_nmi_window_exiting(struct vmx_vcpu *vcpu) 1358 { 1359 1360 if ((vcpu->cap.proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) { 1361 vcpu->cap.proc_ctls |= PROCBASED_NMI_WINDOW_EXITING; 1362 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vcpu->cap.proc_ctls); 1363 VMX_CTR0(vcpu, "Enabling NMI window exiting"); 1364 } 1365 } 1366 1367 static void __inline 1368 vmx_clear_nmi_window_exiting(struct vmx_vcpu *vcpu) 1369 { 1370 1371 KASSERT((vcpu->cap.proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0, 1372 ("nmi_window_exiting not set %#x", vcpu->cap.proc_ctls)); 1373 vcpu->cap.proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING; 1374 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vcpu->cap.proc_ctls); 1375 VMX_CTR0(vcpu, "Disabling NMI window exiting"); 1376 } 1377 1378 int 1379 vmx_set_tsc_offset(struct vmx_vcpu *vcpu, uint64_t offset) 1380 { 1381 int error; 1382 1383 if ((vcpu->cap.proc_ctls & PROCBASED_TSC_OFFSET) == 0) { 1384 vcpu->cap.proc_ctls |= PROCBASED_TSC_OFFSET; 1385 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vcpu->cap.proc_ctls); 1386 VMX_CTR0(vcpu, "Enabling TSC offsetting"); 1387 } 1388 1389 error = vmwrite(VMCS_TSC_OFFSET, offset); 1390 #ifdef BHYVE_SNAPSHOT 1391 if (error == 0) 1392 vm_set_tsc_offset(vcpu->vcpu, offset); 1393 #endif 1394 return (error); 1395 } 1396 1397 #define NMI_BLOCKING (VMCS_INTERRUPTIBILITY_NMI_BLOCKING | \ 1398 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING) 1399 #define HWINTR_BLOCKING (VMCS_INTERRUPTIBILITY_STI_BLOCKING | \ 1400 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING) 1401 1402 static void 1403 vmx_inject_nmi(struct vmx_vcpu *vcpu) 1404 { 1405 uint32_t gi __diagused, info; 1406 1407 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1408 KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest " 1409 "interruptibility-state %#x", gi)); 1410 1411 info = vmcs_read(VMCS_ENTRY_INTR_INFO); 1412 KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid " 1413 "VM-entry interruption information %#x", info)); 1414 1415 /* 1416 * Inject the virtual NMI. The vector must be the NMI IDT entry 1417 * or the VMCS entry check will fail. 1418 */ 1419 info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID; 1420 vmcs_write(VMCS_ENTRY_INTR_INFO, info); 1421 1422 VMX_CTR0(vcpu, "Injecting vNMI"); 1423 1424 /* Clear the request */ 1425 vm_nmi_clear(vcpu->vcpu); 1426 } 1427 1428 static void 1429 vmx_inject_interrupts(struct vmx_vcpu *vcpu, struct vlapic *vlapic, 1430 uint64_t guestrip) 1431 { 1432 int vector, need_nmi_exiting, extint_pending; 1433 uint64_t rflags, entryinfo; 1434 uint32_t gi, info; 1435 1436 if (vcpu->state.nextrip != guestrip) { 1437 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1438 if (gi & HWINTR_BLOCKING) { 1439 VMX_CTR2(vcpu, "Guest interrupt blocking " 1440 "cleared due to rip change: %#lx/%#lx", 1441 vcpu->state.nextrip, guestrip); 1442 gi &= ~HWINTR_BLOCKING; 1443 vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi); 1444 } 1445 } 1446 1447 if (vm_entry_intinfo(vcpu->vcpu, &entryinfo)) { 1448 KASSERT((entryinfo & VMCS_INTR_VALID) != 0, ("%s: entry " 1449 "intinfo is not valid: %#lx", __func__, entryinfo)); 1450 1451 info = vmcs_read(VMCS_ENTRY_INTR_INFO); 1452 KASSERT((info & VMCS_INTR_VALID) == 0, ("%s: cannot inject " 1453 "pending exception: %#lx/%#x", __func__, entryinfo, info)); 1454 1455 info = entryinfo; 1456 vector = info & 0xff; 1457 if (vector == IDT_BP || vector == IDT_OF) { 1458 /* 1459 * VT-x requires #BP and #OF to be injected as software 1460 * exceptions. 1461 */ 1462 info &= ~VMCS_INTR_T_MASK; 1463 info |= VMCS_INTR_T_SWEXCEPTION; 1464 } 1465 1466 if (info & VMCS_INTR_DEL_ERRCODE) 1467 vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, entryinfo >> 32); 1468 1469 vmcs_write(VMCS_ENTRY_INTR_INFO, info); 1470 } 1471 1472 if (vm_nmi_pending(vcpu->vcpu)) { 1473 /* 1474 * If there are no conditions blocking NMI injection then 1475 * inject it directly here otherwise enable "NMI window 1476 * exiting" to inject it as soon as we can. 1477 * 1478 * We also check for STI_BLOCKING because some implementations 1479 * don't allow NMI injection in this case. If we are running 1480 * on a processor that doesn't have this restriction it will 1481 * immediately exit and the NMI will be injected in the 1482 * "NMI window exiting" handler. 1483 */ 1484 need_nmi_exiting = 1; 1485 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1486 if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) { 1487 info = vmcs_read(VMCS_ENTRY_INTR_INFO); 1488 if ((info & VMCS_INTR_VALID) == 0) { 1489 vmx_inject_nmi(vcpu); 1490 need_nmi_exiting = 0; 1491 } else { 1492 VMX_CTR1(vcpu, "Cannot inject NMI " 1493 "due to VM-entry intr info %#x", info); 1494 } 1495 } else { 1496 VMX_CTR1(vcpu, "Cannot inject NMI due to " 1497 "Guest Interruptibility-state %#x", gi); 1498 } 1499 1500 if (need_nmi_exiting) 1501 vmx_set_nmi_window_exiting(vcpu); 1502 } 1503 1504 extint_pending = vm_extint_pending(vcpu->vcpu); 1505 1506 if (!extint_pending && virtual_interrupt_delivery) { 1507 vmx_inject_pir(vlapic); 1508 return; 1509 } 1510 1511 /* 1512 * If interrupt-window exiting is already in effect then don't bother 1513 * checking for pending interrupts. This is just an optimization and 1514 * not needed for correctness. 1515 */ 1516 if ((vcpu->cap.proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0) { 1517 VMX_CTR0(vcpu, "Skip interrupt injection due to " 1518 "pending int_window_exiting"); 1519 return; 1520 } 1521 1522 if (!extint_pending) { 1523 /* Ask the local apic for a vector to inject */ 1524 if (!vlapic_pending_intr(vlapic, &vector)) 1525 return; 1526 1527 /* 1528 * From the Intel SDM, Volume 3, Section "Maskable 1529 * Hardware Interrupts": 1530 * - maskable interrupt vectors [16,255] can be delivered 1531 * through the local APIC. 1532 */ 1533 KASSERT(vector >= 16 && vector <= 255, 1534 ("invalid vector %d from local APIC", vector)); 1535 } else { 1536 /* Ask the legacy pic for a vector to inject */ 1537 vatpic_pending_intr(vcpu->vmx->vm, &vector); 1538 1539 /* 1540 * From the Intel SDM, Volume 3, Section "Maskable 1541 * Hardware Interrupts": 1542 * - maskable interrupt vectors [0,255] can be delivered 1543 * through the INTR pin. 1544 */ 1545 KASSERT(vector >= 0 && vector <= 255, 1546 ("invalid vector %d from INTR", vector)); 1547 } 1548 1549 /* Check RFLAGS.IF and the interruptibility state of the guest */ 1550 rflags = vmcs_read(VMCS_GUEST_RFLAGS); 1551 if ((rflags & PSL_I) == 0) { 1552 VMX_CTR2(vcpu, "Cannot inject vector %d due to " 1553 "rflags %#lx", vector, rflags); 1554 goto cantinject; 1555 } 1556 1557 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1558 if (gi & HWINTR_BLOCKING) { 1559 VMX_CTR2(vcpu, "Cannot inject vector %d due to " 1560 "Guest Interruptibility-state %#x", vector, gi); 1561 goto cantinject; 1562 } 1563 1564 info = vmcs_read(VMCS_ENTRY_INTR_INFO); 1565 if (info & VMCS_INTR_VALID) { 1566 /* 1567 * This is expected and could happen for multiple reasons: 1568 * - A vectoring VM-entry was aborted due to astpending 1569 * - A VM-exit happened during event injection. 1570 * - An exception was injected above. 1571 * - An NMI was injected above or after "NMI window exiting" 1572 */ 1573 VMX_CTR2(vcpu, "Cannot inject vector %d due to " 1574 "VM-entry intr info %#x", vector, info); 1575 goto cantinject; 1576 } 1577 1578 /* Inject the interrupt */ 1579 info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID; 1580 info |= vector; 1581 vmcs_write(VMCS_ENTRY_INTR_INFO, info); 1582 1583 if (!extint_pending) { 1584 /* Update the Local APIC ISR */ 1585 vlapic_intr_accepted(vlapic, vector); 1586 } else { 1587 vm_extint_clear(vcpu->vcpu); 1588 vatpic_intr_accepted(vcpu->vmx->vm, vector); 1589 1590 /* 1591 * After we accepted the current ExtINT the PIC may 1592 * have posted another one. If that is the case, set 1593 * the Interrupt Window Exiting execution control so 1594 * we can inject that one too. 1595 * 1596 * Also, interrupt window exiting allows us to inject any 1597 * pending APIC vector that was preempted by the ExtINT 1598 * as soon as possible. This applies both for the software 1599 * emulated vlapic and the hardware assisted virtual APIC. 1600 */ 1601 vmx_set_int_window_exiting(vcpu); 1602 } 1603 1604 VMX_CTR1(vcpu, "Injecting hwintr at vector %d", vector); 1605 1606 return; 1607 1608 cantinject: 1609 /* 1610 * Set the Interrupt Window Exiting execution control so we can inject 1611 * the interrupt as soon as blocking condition goes away. 1612 */ 1613 vmx_set_int_window_exiting(vcpu); 1614 } 1615 1616 /* 1617 * If the Virtual NMIs execution control is '1' then the logical processor 1618 * tracks virtual-NMI blocking in the Guest Interruptibility-state field of 1619 * the VMCS. An IRET instruction in VMX non-root operation will remove any 1620 * virtual-NMI blocking. 1621 * 1622 * This unblocking occurs even if the IRET causes a fault. In this case the 1623 * hypervisor needs to restore virtual-NMI blocking before resuming the guest. 1624 */ 1625 static void 1626 vmx_restore_nmi_blocking(struct vmx_vcpu *vcpu) 1627 { 1628 uint32_t gi; 1629 1630 VMX_CTR0(vcpu, "Restore Virtual-NMI blocking"); 1631 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1632 gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING; 1633 vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi); 1634 } 1635 1636 static void 1637 vmx_clear_nmi_blocking(struct vmx_vcpu *vcpu) 1638 { 1639 uint32_t gi; 1640 1641 VMX_CTR0(vcpu, "Clear Virtual-NMI blocking"); 1642 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1643 gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING; 1644 vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi); 1645 } 1646 1647 static void 1648 vmx_assert_nmi_blocking(struct vmx_vcpu *vcpu) 1649 { 1650 uint32_t gi __diagused; 1651 1652 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1653 KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING, 1654 ("NMI blocking is not in effect %#x", gi)); 1655 } 1656 1657 static int 1658 vmx_emulate_xsetbv(struct vmx *vmx, struct vmx_vcpu *vcpu, 1659 struct vm_exit *vmexit) 1660 { 1661 struct vmxctx *vmxctx; 1662 uint64_t xcrval; 1663 const struct xsave_limits *limits; 1664 1665 vmxctx = &vcpu->ctx; 1666 limits = vmm_get_xsave_limits(); 1667 1668 /* 1669 * Note that the processor raises a GP# fault on its own if 1670 * xsetbv is executed for CPL != 0, so we do not have to 1671 * emulate that fault here. 1672 */ 1673 1674 /* Only xcr0 is supported. */ 1675 if (vmxctx->guest_rcx != 0) { 1676 vm_inject_gp(vcpu->vcpu); 1677 return (HANDLED); 1678 } 1679 1680 /* We only handle xcr0 if both the host and guest have XSAVE enabled. */ 1681 if (!limits->xsave_enabled || !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) { 1682 vm_inject_ud(vcpu->vcpu); 1683 return (HANDLED); 1684 } 1685 1686 xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff); 1687 if ((xcrval & ~limits->xcr0_allowed) != 0) { 1688 vm_inject_gp(vcpu->vcpu); 1689 return (HANDLED); 1690 } 1691 1692 if (!(xcrval & XFEATURE_ENABLED_X87)) { 1693 vm_inject_gp(vcpu->vcpu); 1694 return (HANDLED); 1695 } 1696 1697 /* AVX (YMM_Hi128) requires SSE. */ 1698 if (xcrval & XFEATURE_ENABLED_AVX && 1699 (xcrval & XFEATURE_AVX) != XFEATURE_AVX) { 1700 vm_inject_gp(vcpu->vcpu); 1701 return (HANDLED); 1702 } 1703 1704 /* 1705 * AVX512 requires base AVX (YMM_Hi128) as well as OpMask, 1706 * ZMM_Hi256, and Hi16_ZMM. 1707 */ 1708 if (xcrval & XFEATURE_AVX512 && 1709 (xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) != 1710 (XFEATURE_AVX512 | XFEATURE_AVX)) { 1711 vm_inject_gp(vcpu->vcpu); 1712 return (HANDLED); 1713 } 1714 1715 /* 1716 * Intel MPX requires both bound register state flags to be 1717 * set. 1718 */ 1719 if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) != 1720 ((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) { 1721 vm_inject_gp(vcpu->vcpu); 1722 return (HANDLED); 1723 } 1724 1725 /* 1726 * This runs "inside" vmrun() with the guest's FPU state, so 1727 * modifying xcr0 directly modifies the guest's xcr0, not the 1728 * host's. 1729 */ 1730 load_xcr(0, xcrval); 1731 return (HANDLED); 1732 } 1733 1734 static uint64_t 1735 vmx_get_guest_reg(struct vmx_vcpu *vcpu, int ident) 1736 { 1737 const struct vmxctx *vmxctx; 1738 1739 vmxctx = &vcpu->ctx; 1740 1741 switch (ident) { 1742 case 0: 1743 return (vmxctx->guest_rax); 1744 case 1: 1745 return (vmxctx->guest_rcx); 1746 case 2: 1747 return (vmxctx->guest_rdx); 1748 case 3: 1749 return (vmxctx->guest_rbx); 1750 case 4: 1751 return (vmcs_read(VMCS_GUEST_RSP)); 1752 case 5: 1753 return (vmxctx->guest_rbp); 1754 case 6: 1755 return (vmxctx->guest_rsi); 1756 case 7: 1757 return (vmxctx->guest_rdi); 1758 case 8: 1759 return (vmxctx->guest_r8); 1760 case 9: 1761 return (vmxctx->guest_r9); 1762 case 10: 1763 return (vmxctx->guest_r10); 1764 case 11: 1765 return (vmxctx->guest_r11); 1766 case 12: 1767 return (vmxctx->guest_r12); 1768 case 13: 1769 return (vmxctx->guest_r13); 1770 case 14: 1771 return (vmxctx->guest_r14); 1772 case 15: 1773 return (vmxctx->guest_r15); 1774 default: 1775 panic("invalid vmx register %d", ident); 1776 } 1777 } 1778 1779 static void 1780 vmx_set_guest_reg(struct vmx_vcpu *vcpu, int ident, uint64_t regval) 1781 { 1782 struct vmxctx *vmxctx; 1783 1784 vmxctx = &vcpu->ctx; 1785 1786 switch (ident) { 1787 case 0: 1788 vmxctx->guest_rax = regval; 1789 break; 1790 case 1: 1791 vmxctx->guest_rcx = regval; 1792 break; 1793 case 2: 1794 vmxctx->guest_rdx = regval; 1795 break; 1796 case 3: 1797 vmxctx->guest_rbx = regval; 1798 break; 1799 case 4: 1800 vmcs_write(VMCS_GUEST_RSP, regval); 1801 break; 1802 case 5: 1803 vmxctx->guest_rbp = regval; 1804 break; 1805 case 6: 1806 vmxctx->guest_rsi = regval; 1807 break; 1808 case 7: 1809 vmxctx->guest_rdi = regval; 1810 break; 1811 case 8: 1812 vmxctx->guest_r8 = regval; 1813 break; 1814 case 9: 1815 vmxctx->guest_r9 = regval; 1816 break; 1817 case 10: 1818 vmxctx->guest_r10 = regval; 1819 break; 1820 case 11: 1821 vmxctx->guest_r11 = regval; 1822 break; 1823 case 12: 1824 vmxctx->guest_r12 = regval; 1825 break; 1826 case 13: 1827 vmxctx->guest_r13 = regval; 1828 break; 1829 case 14: 1830 vmxctx->guest_r14 = regval; 1831 break; 1832 case 15: 1833 vmxctx->guest_r15 = regval; 1834 break; 1835 default: 1836 panic("invalid vmx register %d", ident); 1837 } 1838 } 1839 1840 static int 1841 vmx_emulate_cr0_access(struct vmx_vcpu *vcpu, uint64_t exitqual) 1842 { 1843 uint64_t crval, regval; 1844 1845 /* We only handle mov to %cr0 at this time */ 1846 if ((exitqual & 0xf0) != 0x00) 1847 return (UNHANDLED); 1848 1849 regval = vmx_get_guest_reg(vcpu, (exitqual >> 8) & 0xf); 1850 1851 vmcs_write(VMCS_CR0_SHADOW, regval); 1852 1853 crval = regval | cr0_ones_mask; 1854 crval &= ~cr0_zeros_mask; 1855 vmcs_write(VMCS_GUEST_CR0, crval); 1856 1857 if (regval & CR0_PG) { 1858 uint64_t efer, entry_ctls; 1859 1860 /* 1861 * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and 1862 * the "IA-32e mode guest" bit in VM-entry control must be 1863 * equal. 1864 */ 1865 efer = vmcs_read(VMCS_GUEST_IA32_EFER); 1866 if (efer & EFER_LME) { 1867 efer |= EFER_LMA; 1868 vmcs_write(VMCS_GUEST_IA32_EFER, efer); 1869 entry_ctls = vmcs_read(VMCS_ENTRY_CTLS); 1870 entry_ctls |= VM_ENTRY_GUEST_LMA; 1871 vmcs_write(VMCS_ENTRY_CTLS, entry_ctls); 1872 } 1873 } 1874 1875 return (HANDLED); 1876 } 1877 1878 static int 1879 vmx_emulate_cr4_access(struct vmx_vcpu *vcpu, uint64_t exitqual) 1880 { 1881 uint64_t crval, regval; 1882 1883 /* We only handle mov to %cr4 at this time */ 1884 if ((exitqual & 0xf0) != 0x00) 1885 return (UNHANDLED); 1886 1887 regval = vmx_get_guest_reg(vcpu, (exitqual >> 8) & 0xf); 1888 1889 vmcs_write(VMCS_CR4_SHADOW, regval); 1890 1891 crval = regval | cr4_ones_mask; 1892 crval &= ~cr4_zeros_mask; 1893 vmcs_write(VMCS_GUEST_CR4, crval); 1894 1895 return (HANDLED); 1896 } 1897 1898 static int 1899 vmx_emulate_cr8_access(struct vmx *vmx, struct vmx_vcpu *vcpu, 1900 uint64_t exitqual) 1901 { 1902 struct vlapic *vlapic; 1903 uint64_t cr8; 1904 int regnum; 1905 1906 /* We only handle mov %cr8 to/from a register at this time. */ 1907 if ((exitqual & 0xe0) != 0x00) { 1908 return (UNHANDLED); 1909 } 1910 1911 vlapic = vm_lapic(vcpu->vcpu); 1912 regnum = (exitqual >> 8) & 0xf; 1913 if (exitqual & 0x10) { 1914 cr8 = vlapic_get_cr8(vlapic); 1915 vmx_set_guest_reg(vcpu, regnum, cr8); 1916 } else { 1917 cr8 = vmx_get_guest_reg(vcpu, regnum); 1918 vlapic_set_cr8(vlapic, cr8); 1919 } 1920 1921 return (HANDLED); 1922 } 1923 1924 /* 1925 * From section "Guest Register State" in the Intel SDM: CPL = SS.DPL 1926 */ 1927 static int 1928 vmx_cpl(void) 1929 { 1930 uint32_t ssar; 1931 1932 ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS); 1933 return ((ssar >> 5) & 0x3); 1934 } 1935 1936 static enum vm_cpu_mode 1937 vmx_cpu_mode(void) 1938 { 1939 uint32_t csar; 1940 1941 if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) { 1942 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS); 1943 if (csar & 0x2000) 1944 return (CPU_MODE_64BIT); /* CS.L = 1 */ 1945 else 1946 return (CPU_MODE_COMPATIBILITY); 1947 } else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) { 1948 return (CPU_MODE_PROTECTED); 1949 } else { 1950 return (CPU_MODE_REAL); 1951 } 1952 } 1953 1954 static enum vm_paging_mode 1955 vmx_paging_mode(void) 1956 { 1957 uint64_t cr4; 1958 1959 if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG)) 1960 return (PAGING_MODE_FLAT); 1961 cr4 = vmcs_read(VMCS_GUEST_CR4); 1962 if (!(cr4 & CR4_PAE)) 1963 return (PAGING_MODE_32); 1964 if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME) { 1965 if (!(cr4 & CR4_LA57)) 1966 return (PAGING_MODE_64); 1967 return (PAGING_MODE_64_LA57); 1968 } else 1969 return (PAGING_MODE_PAE); 1970 } 1971 1972 static uint64_t 1973 inout_str_index(struct vmx_vcpu *vcpu, int in) 1974 { 1975 uint64_t val; 1976 int error __diagused; 1977 enum vm_reg_name reg; 1978 1979 reg = in ? VM_REG_GUEST_RDI : VM_REG_GUEST_RSI; 1980 error = vmx_getreg(vcpu, reg, &val); 1981 KASSERT(error == 0, ("%s: vmx_getreg error %d", __func__, error)); 1982 return (val); 1983 } 1984 1985 static uint64_t 1986 inout_str_count(struct vmx_vcpu *vcpu, int rep) 1987 { 1988 uint64_t val; 1989 int error __diagused; 1990 1991 if (rep) { 1992 error = vmx_getreg(vcpu, VM_REG_GUEST_RCX, &val); 1993 KASSERT(!error, ("%s: vmx_getreg error %d", __func__, error)); 1994 } else { 1995 val = 1; 1996 } 1997 return (val); 1998 } 1999 2000 static int 2001 inout_str_addrsize(uint32_t inst_info) 2002 { 2003 uint32_t size; 2004 2005 size = (inst_info >> 7) & 0x7; 2006 switch (size) { 2007 case 0: 2008 return (2); /* 16 bit */ 2009 case 1: 2010 return (4); /* 32 bit */ 2011 case 2: 2012 return (8); /* 64 bit */ 2013 default: 2014 panic("%s: invalid size encoding %d", __func__, size); 2015 } 2016 } 2017 2018 static void 2019 inout_str_seginfo(struct vmx_vcpu *vcpu, uint32_t inst_info, int in, 2020 struct vm_inout_str *vis) 2021 { 2022 int error __diagused, s; 2023 2024 if (in) { 2025 vis->seg_name = VM_REG_GUEST_ES; 2026 } else { 2027 s = (inst_info >> 15) & 0x7; 2028 vis->seg_name = vm_segment_name(s); 2029 } 2030 2031 error = vmx_getdesc(vcpu, vis->seg_name, &vis->seg_desc); 2032 KASSERT(error == 0, ("%s: vmx_getdesc error %d", __func__, error)); 2033 } 2034 2035 static void 2036 vmx_paging_info(struct vm_guest_paging *paging) 2037 { 2038 paging->cr3 = vmcs_guest_cr3(); 2039 paging->cpl = vmx_cpl(); 2040 paging->cpu_mode = vmx_cpu_mode(); 2041 paging->paging_mode = vmx_paging_mode(); 2042 } 2043 2044 static void 2045 vmexit_inst_emul(struct vm_exit *vmexit, uint64_t gpa, uint64_t gla) 2046 { 2047 struct vm_guest_paging *paging; 2048 uint32_t csar; 2049 2050 paging = &vmexit->u.inst_emul.paging; 2051 2052 vmexit->exitcode = VM_EXITCODE_INST_EMUL; 2053 vmexit->inst_length = 0; 2054 vmexit->u.inst_emul.gpa = gpa; 2055 vmexit->u.inst_emul.gla = gla; 2056 vmx_paging_info(paging); 2057 switch (paging->cpu_mode) { 2058 case CPU_MODE_REAL: 2059 vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE); 2060 vmexit->u.inst_emul.cs_d = 0; 2061 break; 2062 case CPU_MODE_PROTECTED: 2063 case CPU_MODE_COMPATIBILITY: 2064 vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE); 2065 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS); 2066 vmexit->u.inst_emul.cs_d = SEG_DESC_DEF32(csar); 2067 break; 2068 default: 2069 vmexit->u.inst_emul.cs_base = 0; 2070 vmexit->u.inst_emul.cs_d = 0; 2071 break; 2072 } 2073 vie_init(&vmexit->u.inst_emul.vie, NULL, 0); 2074 } 2075 2076 static int 2077 ept_fault_type(uint64_t ept_qual) 2078 { 2079 int fault_type; 2080 2081 if (ept_qual & EPT_VIOLATION_DATA_WRITE) 2082 fault_type = VM_PROT_WRITE; 2083 else if (ept_qual & EPT_VIOLATION_INST_FETCH) 2084 fault_type = VM_PROT_EXECUTE; 2085 else 2086 fault_type= VM_PROT_READ; 2087 2088 return (fault_type); 2089 } 2090 2091 static bool 2092 ept_emulation_fault(uint64_t ept_qual) 2093 { 2094 int read, write; 2095 2096 /* EPT fault on an instruction fetch doesn't make sense here */ 2097 if (ept_qual & EPT_VIOLATION_INST_FETCH) 2098 return (false); 2099 2100 /* EPT fault must be a read fault or a write fault */ 2101 read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0; 2102 write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0; 2103 if ((read | write) == 0) 2104 return (false); 2105 2106 /* 2107 * The EPT violation must have been caused by accessing a 2108 * guest-physical address that is a translation of a guest-linear 2109 * address. 2110 */ 2111 if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 || 2112 (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) { 2113 return (false); 2114 } 2115 2116 return (true); 2117 } 2118 2119 static __inline int 2120 apic_access_virtualization(struct vmx_vcpu *vcpu) 2121 { 2122 uint32_t proc_ctls2; 2123 2124 proc_ctls2 = vcpu->cap.proc_ctls2; 2125 return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0); 2126 } 2127 2128 static __inline int 2129 x2apic_virtualization(struct vmx_vcpu *vcpu) 2130 { 2131 uint32_t proc_ctls2; 2132 2133 proc_ctls2 = vcpu->cap.proc_ctls2; 2134 return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0); 2135 } 2136 2137 static int 2138 vmx_handle_apic_write(struct vmx_vcpu *vcpu, struct vlapic *vlapic, 2139 uint64_t qual) 2140 { 2141 int error, handled, offset; 2142 uint32_t *apic_regs, vector; 2143 bool retu; 2144 2145 handled = HANDLED; 2146 offset = APIC_WRITE_OFFSET(qual); 2147 2148 if (!apic_access_virtualization(vcpu)) { 2149 /* 2150 * In general there should not be any APIC write VM-exits 2151 * unless APIC-access virtualization is enabled. 2152 * 2153 * However self-IPI virtualization can legitimately trigger 2154 * an APIC-write VM-exit so treat it specially. 2155 */ 2156 if (x2apic_virtualization(vcpu) && 2157 offset == APIC_OFFSET_SELF_IPI) { 2158 apic_regs = (uint32_t *)(vlapic->apic_page); 2159 vector = apic_regs[APIC_OFFSET_SELF_IPI / 4]; 2160 vlapic_self_ipi_handler(vlapic, vector); 2161 return (HANDLED); 2162 } else 2163 return (UNHANDLED); 2164 } 2165 2166 switch (offset) { 2167 case APIC_OFFSET_ID: 2168 vlapic_id_write_handler(vlapic); 2169 break; 2170 case APIC_OFFSET_LDR: 2171 vlapic_ldr_write_handler(vlapic); 2172 break; 2173 case APIC_OFFSET_DFR: 2174 vlapic_dfr_write_handler(vlapic); 2175 break; 2176 case APIC_OFFSET_SVR: 2177 vlapic_svr_write_handler(vlapic); 2178 break; 2179 case APIC_OFFSET_ESR: 2180 vlapic_esr_write_handler(vlapic); 2181 break; 2182 case APIC_OFFSET_ICR_LOW: 2183 retu = false; 2184 error = vlapic_icrlo_write_handler(vlapic, &retu); 2185 if (error != 0 || retu) 2186 handled = UNHANDLED; 2187 break; 2188 case APIC_OFFSET_CMCI_LVT: 2189 case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT: 2190 vlapic_lvt_write_handler(vlapic, offset); 2191 break; 2192 case APIC_OFFSET_TIMER_ICR: 2193 vlapic_icrtmr_write_handler(vlapic); 2194 break; 2195 case APIC_OFFSET_TIMER_DCR: 2196 vlapic_dcr_write_handler(vlapic); 2197 break; 2198 default: 2199 handled = UNHANDLED; 2200 break; 2201 } 2202 return (handled); 2203 } 2204 2205 static bool 2206 apic_access_fault(struct vmx_vcpu *vcpu, uint64_t gpa) 2207 { 2208 2209 if (apic_access_virtualization(vcpu) && 2210 (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE)) 2211 return (true); 2212 else 2213 return (false); 2214 } 2215 2216 static int 2217 vmx_handle_apic_access(struct vmx_vcpu *vcpu, struct vm_exit *vmexit) 2218 { 2219 uint64_t qual; 2220 int access_type, offset, allowed; 2221 2222 if (!apic_access_virtualization(vcpu)) 2223 return (UNHANDLED); 2224 2225 qual = vmexit->u.vmx.exit_qualification; 2226 access_type = APIC_ACCESS_TYPE(qual); 2227 offset = APIC_ACCESS_OFFSET(qual); 2228 2229 allowed = 0; 2230 if (access_type == 0) { 2231 /* 2232 * Read data access to the following registers is expected. 2233 */ 2234 switch (offset) { 2235 case APIC_OFFSET_APR: 2236 case APIC_OFFSET_PPR: 2237 case APIC_OFFSET_RRR: 2238 case APIC_OFFSET_CMCI_LVT: 2239 case APIC_OFFSET_TIMER_CCR: 2240 allowed = 1; 2241 break; 2242 default: 2243 break; 2244 } 2245 } else if (access_type == 1) { 2246 /* 2247 * Write data access to the following registers is expected. 2248 */ 2249 switch (offset) { 2250 case APIC_OFFSET_VER: 2251 case APIC_OFFSET_APR: 2252 case APIC_OFFSET_PPR: 2253 case APIC_OFFSET_RRR: 2254 case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7: 2255 case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7: 2256 case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7: 2257 case APIC_OFFSET_CMCI_LVT: 2258 case APIC_OFFSET_TIMER_CCR: 2259 allowed = 1; 2260 break; 2261 default: 2262 break; 2263 } 2264 } 2265 2266 if (allowed) { 2267 vmexit_inst_emul(vmexit, DEFAULT_APIC_BASE + offset, 2268 VIE_INVALID_GLA); 2269 } 2270 2271 /* 2272 * Regardless of whether the APIC-access is allowed this handler 2273 * always returns UNHANDLED: 2274 * - if the access is allowed then it is handled by emulating the 2275 * instruction that caused the VM-exit (outside the critical section) 2276 * - if the access is not allowed then it will be converted to an 2277 * exitcode of VM_EXITCODE_VMX and will be dealt with in userland. 2278 */ 2279 return (UNHANDLED); 2280 } 2281 2282 static enum task_switch_reason 2283 vmx_task_switch_reason(uint64_t qual) 2284 { 2285 int reason; 2286 2287 reason = (qual >> 30) & 0x3; 2288 switch (reason) { 2289 case 0: 2290 return (TSR_CALL); 2291 case 1: 2292 return (TSR_IRET); 2293 case 2: 2294 return (TSR_JMP); 2295 case 3: 2296 return (TSR_IDT_GATE); 2297 default: 2298 panic("%s: invalid reason %d", __func__, reason); 2299 } 2300 } 2301 2302 static int 2303 emulate_wrmsr(struct vmx_vcpu *vcpu, u_int num, uint64_t val, bool *retu) 2304 { 2305 int error; 2306 2307 if (lapic_msr(num)) 2308 error = lapic_wrmsr(vcpu->vcpu, num, val, retu); 2309 else 2310 error = vmx_wrmsr(vcpu, num, val, retu); 2311 2312 return (error); 2313 } 2314 2315 static int 2316 emulate_rdmsr(struct vmx_vcpu *vcpu, u_int num, bool *retu) 2317 { 2318 struct vmxctx *vmxctx; 2319 uint64_t result; 2320 uint32_t eax, edx; 2321 int error; 2322 2323 if (lapic_msr(num)) 2324 error = lapic_rdmsr(vcpu->vcpu, num, &result, retu); 2325 else 2326 error = vmx_rdmsr(vcpu, num, &result, retu); 2327 2328 if (error == 0) { 2329 eax = result; 2330 vmxctx = &vcpu->ctx; 2331 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RAX, eax); 2332 KASSERT(error == 0, ("vmxctx_setreg(rax) error %d", error)); 2333 2334 edx = result >> 32; 2335 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RDX, edx); 2336 KASSERT(error == 0, ("vmxctx_setreg(rdx) error %d", error)); 2337 } 2338 2339 return (error); 2340 } 2341 2342 static int 2343 vmx_exit_process(struct vmx *vmx, struct vmx_vcpu *vcpu, struct vm_exit *vmexit) 2344 { 2345 int error, errcode, errcode_valid, handled, in; 2346 struct vmxctx *vmxctx; 2347 struct vlapic *vlapic; 2348 struct vm_inout_str *vis; 2349 struct vm_task_switch *ts; 2350 uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, inst_info; 2351 uint32_t intr_type, intr_vec, reason; 2352 uint64_t exitintinfo, qual, gpa; 2353 #ifdef KDTRACE_HOOKS 2354 int vcpuid; 2355 #endif 2356 bool retu; 2357 2358 CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0); 2359 CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0); 2360 2361 handled = UNHANDLED; 2362 vmxctx = &vcpu->ctx; 2363 #ifdef KDTRACE_HOOKS 2364 vcpuid = vcpu->vcpuid; 2365 #endif 2366 2367 qual = vmexit->u.vmx.exit_qualification; 2368 reason = vmexit->u.vmx.exit_reason; 2369 vmexit->exitcode = VM_EXITCODE_BOGUS; 2370 2371 vmm_stat_incr(vcpu->vcpu, VMEXIT_COUNT, 1); 2372 SDT_PROBE3(vmm, vmx, exit, entry, vmx, vcpuid, vmexit); 2373 2374 /* 2375 * VM-entry failures during or after loading guest state. 2376 * 2377 * These VM-exits are uncommon but must be handled specially 2378 * as most VM-exit fields are not populated as usual. 2379 */ 2380 if (__predict_false(reason == EXIT_REASON_MCE_DURING_ENTRY)) { 2381 VMX_CTR0(vcpu, "Handling MCE during VM-entry"); 2382 __asm __volatile("int $18"); 2383 return (1); 2384 } 2385 2386 /* 2387 * VM exits that can be triggered during event delivery need to 2388 * be handled specially by re-injecting the event if the IDT 2389 * vectoring information field's valid bit is set. 2390 * 2391 * See "Information for VM Exits During Event Delivery" in Intel SDM 2392 * for details. 2393 */ 2394 idtvec_info = vmcs_idt_vectoring_info(); 2395 if (idtvec_info & VMCS_IDT_VEC_VALID) { 2396 idtvec_info &= ~(1 << 12); /* clear undefined bit */ 2397 exitintinfo = idtvec_info; 2398 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) { 2399 idtvec_err = vmcs_idt_vectoring_err(); 2400 exitintinfo |= (uint64_t)idtvec_err << 32; 2401 } 2402 error = vm_exit_intinfo(vcpu->vcpu, exitintinfo); 2403 KASSERT(error == 0, ("%s: vm_set_intinfo error %d", 2404 __func__, error)); 2405 2406 /* 2407 * If 'virtual NMIs' are being used and the VM-exit 2408 * happened while injecting an NMI during the previous 2409 * VM-entry, then clear "blocking by NMI" in the 2410 * Guest Interruptibility-State so the NMI can be 2411 * reinjected on the subsequent VM-entry. 2412 * 2413 * However, if the NMI was being delivered through a task 2414 * gate, then the new task must start execution with NMIs 2415 * blocked so don't clear NMI blocking in this case. 2416 */ 2417 intr_type = idtvec_info & VMCS_INTR_T_MASK; 2418 if (intr_type == VMCS_INTR_T_NMI) { 2419 if (reason != EXIT_REASON_TASK_SWITCH) 2420 vmx_clear_nmi_blocking(vcpu); 2421 else 2422 vmx_assert_nmi_blocking(vcpu); 2423 } 2424 2425 /* 2426 * Update VM-entry instruction length if the event being 2427 * delivered was a software interrupt or software exception. 2428 */ 2429 if (intr_type == VMCS_INTR_T_SWINTR || 2430 intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION || 2431 intr_type == VMCS_INTR_T_SWEXCEPTION) { 2432 vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length); 2433 } 2434 } 2435 2436 switch (reason) { 2437 case EXIT_REASON_TASK_SWITCH: 2438 ts = &vmexit->u.task_switch; 2439 ts->tsssel = qual & 0xffff; 2440 ts->reason = vmx_task_switch_reason(qual); 2441 ts->ext = 0; 2442 ts->errcode_valid = 0; 2443 vmx_paging_info(&ts->paging); 2444 /* 2445 * If the task switch was due to a CALL, JMP, IRET, software 2446 * interrupt (INT n) or software exception (INT3, INTO), 2447 * then the saved %rip references the instruction that caused 2448 * the task switch. The instruction length field in the VMCS 2449 * is valid in this case. 2450 * 2451 * In all other cases (e.g., NMI, hardware exception) the 2452 * saved %rip is one that would have been saved in the old TSS 2453 * had the task switch completed normally so the instruction 2454 * length field is not needed in this case and is explicitly 2455 * set to 0. 2456 */ 2457 if (ts->reason == TSR_IDT_GATE) { 2458 KASSERT(idtvec_info & VMCS_IDT_VEC_VALID, 2459 ("invalid idtvec_info %#x for IDT task switch", 2460 idtvec_info)); 2461 intr_type = idtvec_info & VMCS_INTR_T_MASK; 2462 if (intr_type != VMCS_INTR_T_SWINTR && 2463 intr_type != VMCS_INTR_T_SWEXCEPTION && 2464 intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) { 2465 /* Task switch triggered by external event */ 2466 ts->ext = 1; 2467 vmexit->inst_length = 0; 2468 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) { 2469 ts->errcode_valid = 1; 2470 ts->errcode = vmcs_idt_vectoring_err(); 2471 } 2472 } 2473 } 2474 vmexit->exitcode = VM_EXITCODE_TASK_SWITCH; 2475 SDT_PROBE4(vmm, vmx, exit, taskswitch, vmx, vcpuid, vmexit, ts); 2476 VMX_CTR4(vcpu, "task switch reason %d, tss 0x%04x, " 2477 "%s errcode 0x%016lx", ts->reason, ts->tsssel, 2478 ts->ext ? "external" : "internal", 2479 ((uint64_t)ts->errcode << 32) | ts->errcode_valid); 2480 break; 2481 case EXIT_REASON_CR_ACCESS: 2482 vmm_stat_incr(vcpu->vcpu, VMEXIT_CR_ACCESS, 1); 2483 SDT_PROBE4(vmm, vmx, exit, craccess, vmx, vcpuid, vmexit, qual); 2484 switch (qual & 0xf) { 2485 case 0: 2486 handled = vmx_emulate_cr0_access(vcpu, qual); 2487 break; 2488 case 4: 2489 handled = vmx_emulate_cr4_access(vcpu, qual); 2490 break; 2491 case 8: 2492 handled = vmx_emulate_cr8_access(vmx, vcpu, qual); 2493 break; 2494 } 2495 break; 2496 case EXIT_REASON_RDMSR: 2497 vmm_stat_incr(vcpu->vcpu, VMEXIT_RDMSR, 1); 2498 retu = false; 2499 ecx = vmxctx->guest_rcx; 2500 VMX_CTR1(vcpu, "rdmsr 0x%08x", ecx); 2501 SDT_PROBE4(vmm, vmx, exit, rdmsr, vmx, vcpuid, vmexit, ecx); 2502 error = emulate_rdmsr(vcpu, ecx, &retu); 2503 if (error) { 2504 vmexit->exitcode = VM_EXITCODE_RDMSR; 2505 vmexit->u.msr.code = ecx; 2506 } else if (!retu) { 2507 handled = HANDLED; 2508 } else { 2509 /* Return to userspace with a valid exitcode */ 2510 KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS, 2511 ("emulate_rdmsr retu with bogus exitcode")); 2512 } 2513 break; 2514 case EXIT_REASON_WRMSR: 2515 vmm_stat_incr(vcpu->vcpu, VMEXIT_WRMSR, 1); 2516 retu = false; 2517 eax = vmxctx->guest_rax; 2518 ecx = vmxctx->guest_rcx; 2519 edx = vmxctx->guest_rdx; 2520 VMX_CTR2(vcpu, "wrmsr 0x%08x value 0x%016lx", 2521 ecx, (uint64_t)edx << 32 | eax); 2522 SDT_PROBE5(vmm, vmx, exit, wrmsr, vmx, vmexit, vcpuid, ecx, 2523 (uint64_t)edx << 32 | eax); 2524 error = emulate_wrmsr(vcpu, ecx, (uint64_t)edx << 32 | eax, 2525 &retu); 2526 if (error) { 2527 vmexit->exitcode = VM_EXITCODE_WRMSR; 2528 vmexit->u.msr.code = ecx; 2529 vmexit->u.msr.wval = (uint64_t)edx << 32 | eax; 2530 } else if (!retu) { 2531 handled = HANDLED; 2532 } else { 2533 /* Return to userspace with a valid exitcode */ 2534 KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS, 2535 ("emulate_wrmsr retu with bogus exitcode")); 2536 } 2537 break; 2538 case EXIT_REASON_HLT: 2539 vmm_stat_incr(vcpu->vcpu, VMEXIT_HLT, 1); 2540 SDT_PROBE3(vmm, vmx, exit, halt, vmx, vcpuid, vmexit); 2541 vmexit->exitcode = VM_EXITCODE_HLT; 2542 vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS); 2543 if (virtual_interrupt_delivery) 2544 vmexit->u.hlt.intr_status = 2545 vmcs_read(VMCS_GUEST_INTR_STATUS); 2546 else 2547 vmexit->u.hlt.intr_status = 0; 2548 break; 2549 case EXIT_REASON_MTF: 2550 vmm_stat_incr(vcpu->vcpu, VMEXIT_MTRAP, 1); 2551 SDT_PROBE3(vmm, vmx, exit, mtrap, vmx, vcpuid, vmexit); 2552 vmexit->exitcode = VM_EXITCODE_MTRAP; 2553 vmexit->inst_length = 0; 2554 break; 2555 case EXIT_REASON_PAUSE: 2556 vmm_stat_incr(vcpu->vcpu, VMEXIT_PAUSE, 1); 2557 SDT_PROBE3(vmm, vmx, exit, pause, vmx, vcpuid, vmexit); 2558 vmexit->exitcode = VM_EXITCODE_PAUSE; 2559 break; 2560 case EXIT_REASON_INTR_WINDOW: 2561 vmm_stat_incr(vcpu->vcpu, VMEXIT_INTR_WINDOW, 1); 2562 SDT_PROBE3(vmm, vmx, exit, intrwindow, vmx, vcpuid, vmexit); 2563 vmx_clear_int_window_exiting(vcpu); 2564 return (1); 2565 case EXIT_REASON_EXT_INTR: 2566 /* 2567 * External interrupts serve only to cause VM exits and allow 2568 * the host interrupt handler to run. 2569 * 2570 * If this external interrupt triggers a virtual interrupt 2571 * to a VM, then that state will be recorded by the 2572 * host interrupt handler in the VM's softc. We will inject 2573 * this virtual interrupt during the subsequent VM enter. 2574 */ 2575 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO); 2576 SDT_PROBE4(vmm, vmx, exit, interrupt, 2577 vmx, vcpuid, vmexit, intr_info); 2578 2579 /* 2580 * XXX: Ignore this exit if VMCS_INTR_VALID is not set. 2581 * This appears to be a bug in VMware Fusion? 2582 */ 2583 if (!(intr_info & VMCS_INTR_VALID)) 2584 return (1); 2585 KASSERT((intr_info & VMCS_INTR_VALID) != 0 && 2586 (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR, 2587 ("VM exit interruption info invalid: %#x", intr_info)); 2588 vmx_trigger_hostintr(intr_info & 0xff); 2589 2590 /* 2591 * This is special. We want to treat this as an 'handled' 2592 * VM-exit but not increment the instruction pointer. 2593 */ 2594 vmm_stat_incr(vcpu->vcpu, VMEXIT_EXTINT, 1); 2595 return (1); 2596 case EXIT_REASON_NMI_WINDOW: 2597 SDT_PROBE3(vmm, vmx, exit, nmiwindow, vmx, vcpuid, vmexit); 2598 /* Exit to allow the pending virtual NMI to be injected */ 2599 if (vm_nmi_pending(vcpu->vcpu)) 2600 vmx_inject_nmi(vcpu); 2601 vmx_clear_nmi_window_exiting(vcpu); 2602 vmm_stat_incr(vcpu->vcpu, VMEXIT_NMI_WINDOW, 1); 2603 return (1); 2604 case EXIT_REASON_INOUT: 2605 vmm_stat_incr(vcpu->vcpu, VMEXIT_INOUT, 1); 2606 vmexit->exitcode = VM_EXITCODE_INOUT; 2607 vmexit->u.inout.bytes = (qual & 0x7) + 1; 2608 vmexit->u.inout.in = in = (qual & 0x8) ? 1 : 0; 2609 vmexit->u.inout.string = (qual & 0x10) ? 1 : 0; 2610 vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0; 2611 vmexit->u.inout.port = (uint16_t)(qual >> 16); 2612 vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax); 2613 if (vmexit->u.inout.string) { 2614 inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO); 2615 vmexit->exitcode = VM_EXITCODE_INOUT_STR; 2616 vis = &vmexit->u.inout_str; 2617 vmx_paging_info(&vis->paging); 2618 vis->rflags = vmcs_read(VMCS_GUEST_RFLAGS); 2619 vis->cr0 = vmcs_read(VMCS_GUEST_CR0); 2620 vis->index = inout_str_index(vcpu, in); 2621 vis->count = inout_str_count(vcpu, vis->inout.rep); 2622 vis->addrsize = inout_str_addrsize(inst_info); 2623 inout_str_seginfo(vcpu, inst_info, in, vis); 2624 } 2625 SDT_PROBE3(vmm, vmx, exit, inout, vmx, vcpuid, vmexit); 2626 break; 2627 case EXIT_REASON_CPUID: 2628 vmm_stat_incr(vcpu->vcpu, VMEXIT_CPUID, 1); 2629 SDT_PROBE3(vmm, vmx, exit, cpuid, vmx, vcpuid, vmexit); 2630 handled = vmx_handle_cpuid(vcpu, vmxctx); 2631 break; 2632 case EXIT_REASON_EXCEPTION: 2633 vmm_stat_incr(vcpu->vcpu, VMEXIT_EXCEPTION, 1); 2634 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO); 2635 KASSERT((intr_info & VMCS_INTR_VALID) != 0, 2636 ("VM exit interruption info invalid: %#x", intr_info)); 2637 2638 intr_vec = intr_info & 0xff; 2639 intr_type = intr_info & VMCS_INTR_T_MASK; 2640 2641 /* 2642 * If Virtual NMIs control is 1 and the VM-exit is due to a 2643 * fault encountered during the execution of IRET then we must 2644 * restore the state of "virtual-NMI blocking" before resuming 2645 * the guest. 2646 * 2647 * See "Resuming Guest Software after Handling an Exception". 2648 * See "Information for VM Exits Due to Vectored Events". 2649 */ 2650 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 && 2651 (intr_vec != IDT_DF) && 2652 (intr_info & EXIT_QUAL_NMIUDTI) != 0) 2653 vmx_restore_nmi_blocking(vcpu); 2654 2655 /* 2656 * The NMI has already been handled in vmx_exit_handle_nmi(). 2657 */ 2658 if (intr_type == VMCS_INTR_T_NMI) 2659 return (1); 2660 2661 /* 2662 * Call the machine check handler by hand. Also don't reflect 2663 * the machine check back into the guest. 2664 */ 2665 if (intr_vec == IDT_MC) { 2666 VMX_CTR0(vcpu, "Vectoring to MCE handler"); 2667 __asm __volatile("int $18"); 2668 return (1); 2669 } 2670 2671 /* 2672 * If the hypervisor has requested user exits for 2673 * debug exceptions, bounce them out to userland. 2674 */ 2675 if (intr_type == VMCS_INTR_T_SWEXCEPTION && intr_vec == IDT_BP && 2676 (vcpu->cap.set & (1 << VM_CAP_BPT_EXIT))) { 2677 vmexit->exitcode = VM_EXITCODE_BPT; 2678 vmexit->u.bpt.inst_length = vmexit->inst_length; 2679 vmexit->inst_length = 0; 2680 break; 2681 } 2682 2683 if (intr_vec == IDT_PF) { 2684 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_CR2, qual); 2685 KASSERT(error == 0, ("%s: vmxctx_setreg(cr2) error %d", 2686 __func__, error)); 2687 } 2688 2689 /* 2690 * Software exceptions exhibit trap-like behavior. This in 2691 * turn requires populating the VM-entry instruction length 2692 * so that the %rip in the trap frame is past the INT3/INTO 2693 * instruction. 2694 */ 2695 if (intr_type == VMCS_INTR_T_SWEXCEPTION) 2696 vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length); 2697 2698 /* Reflect all other exceptions back into the guest */ 2699 errcode_valid = errcode = 0; 2700 if (intr_info & VMCS_INTR_DEL_ERRCODE) { 2701 errcode_valid = 1; 2702 errcode = vmcs_read(VMCS_EXIT_INTR_ERRCODE); 2703 } 2704 VMX_CTR2(vcpu, "Reflecting exception %d/%#x into " 2705 "the guest", intr_vec, errcode); 2706 SDT_PROBE5(vmm, vmx, exit, exception, 2707 vmx, vcpuid, vmexit, intr_vec, errcode); 2708 error = vm_inject_exception(vcpu->vcpu, intr_vec, 2709 errcode_valid, errcode, 0); 2710 KASSERT(error == 0, ("%s: vm_inject_exception error %d", 2711 __func__, error)); 2712 return (1); 2713 2714 case EXIT_REASON_EPT_FAULT: 2715 /* 2716 * If 'gpa' lies within the address space allocated to 2717 * memory then this must be a nested page fault otherwise 2718 * this must be an instruction that accesses MMIO space. 2719 */ 2720 gpa = vmcs_gpa(); 2721 if (vm_mem_allocated(vcpu->vcpu, gpa) || 2722 apic_access_fault(vcpu, gpa)) { 2723 vmexit->exitcode = VM_EXITCODE_PAGING; 2724 vmexit->inst_length = 0; 2725 vmexit->u.paging.gpa = gpa; 2726 vmexit->u.paging.fault_type = ept_fault_type(qual); 2727 vmm_stat_incr(vcpu->vcpu, VMEXIT_NESTED_FAULT, 1); 2728 SDT_PROBE5(vmm, vmx, exit, nestedfault, 2729 vmx, vcpuid, vmexit, gpa, qual); 2730 } else if (ept_emulation_fault(qual)) { 2731 vmexit_inst_emul(vmexit, gpa, vmcs_gla()); 2732 vmm_stat_incr(vcpu->vcpu, VMEXIT_INST_EMUL, 1); 2733 SDT_PROBE4(vmm, vmx, exit, mmiofault, 2734 vmx, vcpuid, vmexit, gpa); 2735 } 2736 /* 2737 * If Virtual NMIs control is 1 and the VM-exit is due to an 2738 * EPT fault during the execution of IRET then we must restore 2739 * the state of "virtual-NMI blocking" before resuming. 2740 * 2741 * See description of "NMI unblocking due to IRET" in 2742 * "Exit Qualification for EPT Violations". 2743 */ 2744 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 && 2745 (qual & EXIT_QUAL_NMIUDTI) != 0) 2746 vmx_restore_nmi_blocking(vcpu); 2747 break; 2748 case EXIT_REASON_VIRTUALIZED_EOI: 2749 vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI; 2750 vmexit->u.ioapic_eoi.vector = qual & 0xFF; 2751 SDT_PROBE3(vmm, vmx, exit, eoi, vmx, vcpuid, vmexit); 2752 vmexit->inst_length = 0; /* trap-like */ 2753 break; 2754 case EXIT_REASON_APIC_ACCESS: 2755 SDT_PROBE3(vmm, vmx, exit, apicaccess, vmx, vcpuid, vmexit); 2756 handled = vmx_handle_apic_access(vcpu, vmexit); 2757 break; 2758 case EXIT_REASON_APIC_WRITE: 2759 /* 2760 * APIC-write VM exit is trap-like so the %rip is already 2761 * pointing to the next instruction. 2762 */ 2763 vmexit->inst_length = 0; 2764 vlapic = vm_lapic(vcpu->vcpu); 2765 SDT_PROBE4(vmm, vmx, exit, apicwrite, 2766 vmx, vcpuid, vmexit, vlapic); 2767 handled = vmx_handle_apic_write(vcpu, vlapic, qual); 2768 break; 2769 case EXIT_REASON_XSETBV: 2770 SDT_PROBE3(vmm, vmx, exit, xsetbv, vmx, vcpuid, vmexit); 2771 handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit); 2772 break; 2773 case EXIT_REASON_MONITOR: 2774 SDT_PROBE3(vmm, vmx, exit, monitor, vmx, vcpuid, vmexit); 2775 vmexit->exitcode = VM_EXITCODE_MONITOR; 2776 break; 2777 case EXIT_REASON_MWAIT: 2778 SDT_PROBE3(vmm, vmx, exit, mwait, vmx, vcpuid, vmexit); 2779 vmexit->exitcode = VM_EXITCODE_MWAIT; 2780 break; 2781 case EXIT_REASON_TPR: 2782 vlapic = vm_lapic(vcpu->vcpu); 2783 vlapic_sync_tpr(vlapic); 2784 vmexit->inst_length = 0; 2785 handled = HANDLED; 2786 break; 2787 case EXIT_REASON_VMCALL: 2788 case EXIT_REASON_VMCLEAR: 2789 case EXIT_REASON_VMLAUNCH: 2790 case EXIT_REASON_VMPTRLD: 2791 case EXIT_REASON_VMPTRST: 2792 case EXIT_REASON_VMREAD: 2793 case EXIT_REASON_VMRESUME: 2794 case EXIT_REASON_VMWRITE: 2795 case EXIT_REASON_VMXOFF: 2796 case EXIT_REASON_VMXON: 2797 SDT_PROBE3(vmm, vmx, exit, vminsn, vmx, vcpuid, vmexit); 2798 vmexit->exitcode = VM_EXITCODE_VMINSN; 2799 break; 2800 case EXIT_REASON_INVD: 2801 case EXIT_REASON_WBINVD: 2802 /* ignore exit */ 2803 handled = HANDLED; 2804 break; 2805 default: 2806 SDT_PROBE4(vmm, vmx, exit, unknown, 2807 vmx, vcpuid, vmexit, reason); 2808 vmm_stat_incr(vcpu->vcpu, VMEXIT_UNKNOWN, 1); 2809 break; 2810 } 2811 2812 if (handled) { 2813 /* 2814 * It is possible that control is returned to userland 2815 * even though we were able to handle the VM exit in the 2816 * kernel. 2817 * 2818 * In such a case we want to make sure that the userland 2819 * restarts guest execution at the instruction *after* 2820 * the one we just processed. Therefore we update the 2821 * guest rip in the VMCS and in 'vmexit'. 2822 */ 2823 vmexit->rip += vmexit->inst_length; 2824 vmexit->inst_length = 0; 2825 vmcs_write(VMCS_GUEST_RIP, vmexit->rip); 2826 } else { 2827 if (vmexit->exitcode == VM_EXITCODE_BOGUS) { 2828 /* 2829 * If this VM exit was not claimed by anybody then 2830 * treat it as a generic VMX exit. 2831 */ 2832 vmexit->exitcode = VM_EXITCODE_VMX; 2833 vmexit->u.vmx.status = VM_SUCCESS; 2834 vmexit->u.vmx.inst_type = 0; 2835 vmexit->u.vmx.inst_error = 0; 2836 } else { 2837 /* 2838 * The exitcode and collateral have been populated. 2839 * The VM exit will be processed further in userland. 2840 */ 2841 } 2842 } 2843 2844 SDT_PROBE4(vmm, vmx, exit, return, 2845 vmx, vcpuid, vmexit, handled); 2846 return (handled); 2847 } 2848 2849 static __inline void 2850 vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit) 2851 { 2852 2853 KASSERT(vmxctx->inst_fail_status != VM_SUCCESS, 2854 ("vmx_exit_inst_error: invalid inst_fail_status %d", 2855 vmxctx->inst_fail_status)); 2856 2857 vmexit->inst_length = 0; 2858 vmexit->exitcode = VM_EXITCODE_VMX; 2859 vmexit->u.vmx.status = vmxctx->inst_fail_status; 2860 vmexit->u.vmx.inst_error = vmcs_instruction_error(); 2861 vmexit->u.vmx.exit_reason = ~0; 2862 vmexit->u.vmx.exit_qualification = ~0; 2863 2864 switch (rc) { 2865 case VMX_VMRESUME_ERROR: 2866 case VMX_VMLAUNCH_ERROR: 2867 vmexit->u.vmx.inst_type = rc; 2868 break; 2869 default: 2870 panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc); 2871 } 2872 } 2873 2874 /* 2875 * If the NMI-exiting VM execution control is set to '1' then an NMI in 2876 * non-root operation causes a VM-exit. NMI blocking is in effect so it is 2877 * sufficient to simply vector to the NMI handler via a software interrupt. 2878 * However, this must be done before maskable interrupts are enabled 2879 * otherwise the "iret" issued by an interrupt handler will incorrectly 2880 * clear NMI blocking. 2881 */ 2882 static __inline void 2883 vmx_exit_handle_nmi(struct vmx_vcpu *vcpu, struct vm_exit *vmexit) 2884 { 2885 uint32_t intr_info; 2886 2887 KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled")); 2888 2889 if (vmexit->u.vmx.exit_reason != EXIT_REASON_EXCEPTION) 2890 return; 2891 2892 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO); 2893 KASSERT((intr_info & VMCS_INTR_VALID) != 0, 2894 ("VM exit interruption info invalid: %#x", intr_info)); 2895 2896 if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) { 2897 KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due " 2898 "to NMI has invalid vector: %#x", intr_info)); 2899 VMX_CTR0(vcpu, "Vectoring to NMI handler"); 2900 __asm __volatile("int $2"); 2901 } 2902 } 2903 2904 static __inline void 2905 vmx_dr_enter_guest(struct vmxctx *vmxctx) 2906 { 2907 register_t rflags; 2908 2909 /* Save host control debug registers. */ 2910 vmxctx->host_dr7 = rdr7(); 2911 vmxctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR); 2912 2913 /* 2914 * Disable debugging in DR7 and DEBUGCTL to avoid triggering 2915 * exceptions in the host based on the guest DRx values. The 2916 * guest DR7 and DEBUGCTL are saved/restored in the VMCS. 2917 */ 2918 load_dr7(0); 2919 wrmsr(MSR_DEBUGCTLMSR, 0); 2920 2921 /* 2922 * Disable single stepping the kernel to avoid corrupting the 2923 * guest DR6. A debugger might still be able to corrupt the 2924 * guest DR6 by setting a breakpoint after this point and then 2925 * single stepping. 2926 */ 2927 rflags = read_rflags(); 2928 vmxctx->host_tf = rflags & PSL_T; 2929 write_rflags(rflags & ~PSL_T); 2930 2931 /* Save host debug registers. */ 2932 vmxctx->host_dr0 = rdr0(); 2933 vmxctx->host_dr1 = rdr1(); 2934 vmxctx->host_dr2 = rdr2(); 2935 vmxctx->host_dr3 = rdr3(); 2936 vmxctx->host_dr6 = rdr6(); 2937 2938 /* Restore guest debug registers. */ 2939 load_dr0(vmxctx->guest_dr0); 2940 load_dr1(vmxctx->guest_dr1); 2941 load_dr2(vmxctx->guest_dr2); 2942 load_dr3(vmxctx->guest_dr3); 2943 load_dr6(vmxctx->guest_dr6); 2944 } 2945 2946 static __inline void 2947 vmx_dr_leave_guest(struct vmxctx *vmxctx) 2948 { 2949 2950 /* Save guest debug registers. */ 2951 vmxctx->guest_dr0 = rdr0(); 2952 vmxctx->guest_dr1 = rdr1(); 2953 vmxctx->guest_dr2 = rdr2(); 2954 vmxctx->guest_dr3 = rdr3(); 2955 vmxctx->guest_dr6 = rdr6(); 2956 2957 /* 2958 * Restore host debug registers. Restore DR7, DEBUGCTL, and 2959 * PSL_T last. 2960 */ 2961 load_dr0(vmxctx->host_dr0); 2962 load_dr1(vmxctx->host_dr1); 2963 load_dr2(vmxctx->host_dr2); 2964 load_dr3(vmxctx->host_dr3); 2965 load_dr6(vmxctx->host_dr6); 2966 wrmsr(MSR_DEBUGCTLMSR, vmxctx->host_debugctl); 2967 load_dr7(vmxctx->host_dr7); 2968 write_rflags(read_rflags() | vmxctx->host_tf); 2969 } 2970 2971 static __inline void 2972 vmx_pmap_activate(struct vmx *vmx, pmap_t pmap) 2973 { 2974 long eptgen; 2975 int cpu; 2976 2977 cpu = curcpu; 2978 2979 CPU_SET_ATOMIC(cpu, &pmap->pm_active); 2980 smr_enter(pmap->pm_eptsmr); 2981 eptgen = atomic_load_long(&pmap->pm_eptgen); 2982 if (eptgen != vmx->eptgen[cpu]) { 2983 vmx->eptgen[cpu] = eptgen; 2984 invept(INVEPT_TYPE_SINGLE_CONTEXT, 2985 (struct invept_desc){ .eptp = vmx->eptp, ._res = 0 }); 2986 } 2987 } 2988 2989 static __inline void 2990 vmx_pmap_deactivate(struct vmx *vmx, pmap_t pmap) 2991 { 2992 smr_exit(pmap->pm_eptsmr); 2993 CPU_CLR_ATOMIC(curcpu, &pmap->pm_active); 2994 } 2995 2996 static int 2997 vmx_run(void *vcpui, register_t rip, pmap_t pmap, struct vm_eventinfo *evinfo) 2998 { 2999 int rc, handled, launched; 3000 struct vmx *vmx; 3001 struct vmx_vcpu *vcpu; 3002 struct vmxctx *vmxctx; 3003 struct vmcs *vmcs; 3004 struct vm_exit *vmexit; 3005 struct vlapic *vlapic; 3006 uint32_t exit_reason; 3007 struct region_descriptor gdtr, idtr; 3008 uint16_t ldt_sel; 3009 3010 vcpu = vcpui; 3011 vmx = vcpu->vmx; 3012 vmcs = vcpu->vmcs; 3013 vmxctx = &vcpu->ctx; 3014 vlapic = vm_lapic(vcpu->vcpu); 3015 vmexit = vm_exitinfo(vcpu->vcpu); 3016 launched = 0; 3017 3018 KASSERT(vmxctx->pmap == pmap, 3019 ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap)); 3020 3021 vmx_msr_guest_enter(vcpu); 3022 3023 VMPTRLD(vmcs); 3024 3025 /* 3026 * XXX 3027 * We do this every time because we may setup the virtual machine 3028 * from a different process than the one that actually runs it. 3029 * 3030 * If the life of a virtual machine was spent entirely in the context 3031 * of a single process we could do this once in vmx_init(). 3032 */ 3033 vmcs_write(VMCS_HOST_CR3, rcr3()); 3034 3035 vmcs_write(VMCS_GUEST_RIP, rip); 3036 vmx_set_pcpu_defaults(vmx, vcpu, pmap); 3037 do { 3038 KASSERT(vmcs_guest_rip() == rip, ("%s: vmcs guest rip mismatch " 3039 "%#lx/%#lx", __func__, vmcs_guest_rip(), rip)); 3040 3041 handled = UNHANDLED; 3042 /* 3043 * Interrupts are disabled from this point on until the 3044 * guest starts executing. This is done for the following 3045 * reasons: 3046 * 3047 * If an AST is asserted on this thread after the check below, 3048 * then the IPI_AST notification will not be lost, because it 3049 * will cause a VM exit due to external interrupt as soon as 3050 * the guest state is loaded. 3051 * 3052 * A posted interrupt after 'vmx_inject_interrupts()' will 3053 * not be "lost" because it will be held pending in the host 3054 * APIC because interrupts are disabled. The pending interrupt 3055 * will be recognized as soon as the guest state is loaded. 3056 * 3057 * The same reasoning applies to the IPI generated by 3058 * pmap_invalidate_ept(). 3059 */ 3060 disable_intr(); 3061 vmx_inject_interrupts(vcpu, vlapic, rip); 3062 3063 /* 3064 * Check for vcpu suspension after injecting events because 3065 * vmx_inject_interrupts() can suspend the vcpu due to a 3066 * triple fault. 3067 */ 3068 if (vcpu_suspended(evinfo)) { 3069 enable_intr(); 3070 vm_exit_suspended(vcpu->vcpu, rip); 3071 break; 3072 } 3073 3074 if (vcpu_rendezvous_pending(vcpu->vcpu, evinfo)) { 3075 enable_intr(); 3076 vm_exit_rendezvous(vcpu->vcpu, rip); 3077 break; 3078 } 3079 3080 if (vcpu_reqidle(evinfo)) { 3081 enable_intr(); 3082 vm_exit_reqidle(vcpu->vcpu, rip); 3083 break; 3084 } 3085 3086 if (vcpu_should_yield(vcpu->vcpu)) { 3087 enable_intr(); 3088 vm_exit_astpending(vcpu->vcpu, rip); 3089 vmx_astpending_trace(vcpu, rip); 3090 handled = HANDLED; 3091 break; 3092 } 3093 3094 if (vcpu_debugged(vcpu->vcpu)) { 3095 enable_intr(); 3096 vm_exit_debug(vcpu->vcpu, rip); 3097 break; 3098 } 3099 3100 /* 3101 * If TPR Shadowing is enabled, the TPR Threshold 3102 * must be updated right before entering the guest. 3103 */ 3104 if (tpr_shadowing && !virtual_interrupt_delivery) { 3105 if ((vcpu->cap.proc_ctls & PROCBASED_USE_TPR_SHADOW) != 0) { 3106 vmcs_write(VMCS_TPR_THRESHOLD, vlapic_get_cr8(vlapic)); 3107 } 3108 } 3109 3110 /* 3111 * VM exits restore the base address but not the 3112 * limits of GDTR and IDTR. The VMCS only stores the 3113 * base address, so VM exits set the limits to 0xffff. 3114 * Save and restore the full GDTR and IDTR to restore 3115 * the limits. 3116 * 3117 * The VMCS does not save the LDTR at all, and VM 3118 * exits clear LDTR as if a NULL selector were loaded. 3119 * The userspace hypervisor probably doesn't use a 3120 * LDT, but save and restore it to be safe. 3121 */ 3122 sgdt(&gdtr); 3123 sidt(&idtr); 3124 ldt_sel = sldt(); 3125 3126 /* 3127 * The TSC_AUX MSR must be saved/restored while interrupts 3128 * are disabled so that it is not possible for the guest 3129 * TSC_AUX MSR value to be overwritten by the resume 3130 * portion of the IPI_SUSPEND codepath. This is why the 3131 * transition of this MSR is handled separately from those 3132 * handled by vmx_msr_guest_{enter,exit}(), which are ok to 3133 * be transitioned with preemption disabled but interrupts 3134 * enabled. 3135 * 3136 * These vmx_msr_guest_{enter,exit}_tsc_aux() calls can be 3137 * anywhere in this loop so long as they happen with 3138 * interrupts disabled. This location is chosen for 3139 * simplicity. 3140 */ 3141 vmx_msr_guest_enter_tsc_aux(vmx, vcpu); 3142 3143 vmx_dr_enter_guest(vmxctx); 3144 3145 /* 3146 * Mark the EPT as active on this host CPU and invalidate 3147 * EPTP-tagged TLB entries if required. 3148 */ 3149 vmx_pmap_activate(vmx, pmap); 3150 3151 vmx_run_trace(vcpu); 3152 rc = vmx_enter_guest(vmxctx, vmx, launched); 3153 3154 vmx_pmap_deactivate(vmx, pmap); 3155 vmx_dr_leave_guest(vmxctx); 3156 vmx_msr_guest_exit_tsc_aux(vmx, vcpu); 3157 3158 bare_lgdt(&gdtr); 3159 lidt(&idtr); 3160 lldt(ldt_sel); 3161 3162 /* Collect some information for VM exit processing */ 3163 vmexit->rip = rip = vmcs_guest_rip(); 3164 vmexit->inst_length = vmexit_instruction_length(); 3165 vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason(); 3166 vmexit->u.vmx.exit_qualification = vmcs_exit_qualification(); 3167 3168 /* Update 'nextrip' */ 3169 vcpu->state.nextrip = rip; 3170 3171 if (rc == VMX_GUEST_VMEXIT) { 3172 vmx_exit_handle_nmi(vcpu, vmexit); 3173 enable_intr(); 3174 handled = vmx_exit_process(vmx, vcpu, vmexit); 3175 } else { 3176 enable_intr(); 3177 vmx_exit_inst_error(vmxctx, rc, vmexit); 3178 } 3179 launched = 1; 3180 vmx_exit_trace(vcpu, rip, exit_reason, handled); 3181 rip = vmexit->rip; 3182 } while (handled); 3183 3184 /* 3185 * If a VM exit has been handled then the exitcode must be BOGUS 3186 * If a VM exit is not handled then the exitcode must not be BOGUS 3187 */ 3188 if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) || 3189 (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) { 3190 panic("Mismatch between handled (%d) and exitcode (%d)", 3191 handled, vmexit->exitcode); 3192 } 3193 3194 VMX_CTR1(vcpu, "returning from vmx_run: exitcode %d", 3195 vmexit->exitcode); 3196 3197 VMCLEAR(vmcs); 3198 vmx_msr_guest_exit(vcpu); 3199 3200 return (0); 3201 } 3202 3203 static void 3204 vmx_vcpu_cleanup(void *vcpui) 3205 { 3206 struct vmx_vcpu *vcpu = vcpui; 3207 3208 vpid_free(vcpu->state.vpid); 3209 free(vcpu->pir_desc, M_VMX); 3210 free(vcpu->apic_page, M_VMX); 3211 free(vcpu->vmcs, M_VMX); 3212 free(vcpu, M_VMX); 3213 } 3214 3215 static void 3216 vmx_cleanup(void *vmi) 3217 { 3218 struct vmx *vmx = vmi; 3219 3220 if (virtual_interrupt_delivery) 3221 vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE); 3222 3223 free(vmx->msr_bitmap, M_VMX); 3224 free(vmx, M_VMX); 3225 3226 return; 3227 } 3228 3229 static register_t * 3230 vmxctx_regptr(struct vmxctx *vmxctx, int reg) 3231 { 3232 3233 switch (reg) { 3234 case VM_REG_GUEST_RAX: 3235 return (&vmxctx->guest_rax); 3236 case VM_REG_GUEST_RBX: 3237 return (&vmxctx->guest_rbx); 3238 case VM_REG_GUEST_RCX: 3239 return (&vmxctx->guest_rcx); 3240 case VM_REG_GUEST_RDX: 3241 return (&vmxctx->guest_rdx); 3242 case VM_REG_GUEST_RSI: 3243 return (&vmxctx->guest_rsi); 3244 case VM_REG_GUEST_RDI: 3245 return (&vmxctx->guest_rdi); 3246 case VM_REG_GUEST_RBP: 3247 return (&vmxctx->guest_rbp); 3248 case VM_REG_GUEST_R8: 3249 return (&vmxctx->guest_r8); 3250 case VM_REG_GUEST_R9: 3251 return (&vmxctx->guest_r9); 3252 case VM_REG_GUEST_R10: 3253 return (&vmxctx->guest_r10); 3254 case VM_REG_GUEST_R11: 3255 return (&vmxctx->guest_r11); 3256 case VM_REG_GUEST_R12: 3257 return (&vmxctx->guest_r12); 3258 case VM_REG_GUEST_R13: 3259 return (&vmxctx->guest_r13); 3260 case VM_REG_GUEST_R14: 3261 return (&vmxctx->guest_r14); 3262 case VM_REG_GUEST_R15: 3263 return (&vmxctx->guest_r15); 3264 case VM_REG_GUEST_CR2: 3265 return (&vmxctx->guest_cr2); 3266 case VM_REG_GUEST_DR0: 3267 return (&vmxctx->guest_dr0); 3268 case VM_REG_GUEST_DR1: 3269 return (&vmxctx->guest_dr1); 3270 case VM_REG_GUEST_DR2: 3271 return (&vmxctx->guest_dr2); 3272 case VM_REG_GUEST_DR3: 3273 return (&vmxctx->guest_dr3); 3274 case VM_REG_GUEST_DR6: 3275 return (&vmxctx->guest_dr6); 3276 default: 3277 break; 3278 } 3279 return (NULL); 3280 } 3281 3282 static int 3283 vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval) 3284 { 3285 register_t *regp; 3286 3287 if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) { 3288 *retval = *regp; 3289 return (0); 3290 } else 3291 return (EINVAL); 3292 } 3293 3294 static int 3295 vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val) 3296 { 3297 register_t *regp; 3298 3299 if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) { 3300 *regp = val; 3301 return (0); 3302 } else 3303 return (EINVAL); 3304 } 3305 3306 static int 3307 vmx_get_intr_shadow(struct vmx_vcpu *vcpu, int running, uint64_t *retval) 3308 { 3309 uint64_t gi; 3310 int error; 3311 3312 error = vmcs_getreg(vcpu->vmcs, running, 3313 VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY), &gi); 3314 *retval = (gi & HWINTR_BLOCKING) ? 1 : 0; 3315 return (error); 3316 } 3317 3318 static int 3319 vmx_modify_intr_shadow(struct vmx_vcpu *vcpu, int running, uint64_t val) 3320 { 3321 struct vmcs *vmcs; 3322 uint64_t gi; 3323 int error, ident; 3324 3325 /* 3326 * Forcing the vcpu into an interrupt shadow is not supported. 3327 */ 3328 if (val) { 3329 error = EINVAL; 3330 goto done; 3331 } 3332 3333 vmcs = vcpu->vmcs; 3334 ident = VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY); 3335 error = vmcs_getreg(vmcs, running, ident, &gi); 3336 if (error == 0) { 3337 gi &= ~HWINTR_BLOCKING; 3338 error = vmcs_setreg(vmcs, running, ident, gi); 3339 } 3340 done: 3341 VMX_CTR2(vcpu, "Setting intr_shadow to %#lx %s", val, 3342 error ? "failed" : "succeeded"); 3343 return (error); 3344 } 3345 3346 static int 3347 vmx_shadow_reg(int reg) 3348 { 3349 int shreg; 3350 3351 shreg = -1; 3352 3353 switch (reg) { 3354 case VM_REG_GUEST_CR0: 3355 shreg = VMCS_CR0_SHADOW; 3356 break; 3357 case VM_REG_GUEST_CR4: 3358 shreg = VMCS_CR4_SHADOW; 3359 break; 3360 default: 3361 break; 3362 } 3363 3364 return (shreg); 3365 } 3366 3367 static int 3368 vmx_getreg(void *vcpui, int reg, uint64_t *retval) 3369 { 3370 int running, hostcpu; 3371 struct vmx_vcpu *vcpu = vcpui; 3372 struct vmx *vmx = vcpu->vmx; 3373 3374 running = vcpu_is_running(vcpu->vcpu, &hostcpu); 3375 if (running && hostcpu != curcpu) 3376 panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), 3377 vcpu->vcpuid); 3378 3379 if (reg == VM_REG_GUEST_INTR_SHADOW) 3380 return (vmx_get_intr_shadow(vcpu, running, retval)); 3381 3382 if (vmxctx_getreg(&vcpu->ctx, reg, retval) == 0) 3383 return (0); 3384 3385 return (vmcs_getreg(vcpu->vmcs, running, reg, retval)); 3386 } 3387 3388 static int 3389 vmx_setreg(void *vcpui, int reg, uint64_t val) 3390 { 3391 int error, hostcpu, running, shadow; 3392 uint64_t ctls; 3393 pmap_t pmap; 3394 struct vmx_vcpu *vcpu = vcpui; 3395 struct vmx *vmx = vcpu->vmx; 3396 3397 running = vcpu_is_running(vcpu->vcpu, &hostcpu); 3398 if (running && hostcpu != curcpu) 3399 panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), 3400 vcpu->vcpuid); 3401 3402 if (reg == VM_REG_GUEST_INTR_SHADOW) 3403 return (vmx_modify_intr_shadow(vcpu, running, val)); 3404 3405 if (vmxctx_setreg(&vcpu->ctx, reg, val) == 0) 3406 return (0); 3407 3408 /* Do not permit user write access to VMCS fields by offset. */ 3409 if (reg < 0) 3410 return (EINVAL); 3411 3412 error = vmcs_setreg(vcpu->vmcs, running, reg, val); 3413 3414 if (error == 0) { 3415 /* 3416 * If the "load EFER" VM-entry control is 1 then the 3417 * value of EFER.LMA must be identical to "IA-32e mode guest" 3418 * bit in the VM-entry control. 3419 */ 3420 if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 && 3421 (reg == VM_REG_GUEST_EFER)) { 3422 vmcs_getreg(vcpu->vmcs, running, 3423 VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls); 3424 if (val & EFER_LMA) 3425 ctls |= VM_ENTRY_GUEST_LMA; 3426 else 3427 ctls &= ~VM_ENTRY_GUEST_LMA; 3428 vmcs_setreg(vcpu->vmcs, running, 3429 VMCS_IDENT(VMCS_ENTRY_CTLS), ctls); 3430 } 3431 3432 shadow = vmx_shadow_reg(reg); 3433 if (shadow > 0) { 3434 /* 3435 * Store the unmodified value in the shadow 3436 */ 3437 error = vmcs_setreg(vcpu->vmcs, running, 3438 VMCS_IDENT(shadow), val); 3439 } 3440 3441 if (reg == VM_REG_GUEST_CR3) { 3442 /* 3443 * Invalidate the guest vcpu's TLB mappings to emulate 3444 * the behavior of updating %cr3. 3445 * 3446 * XXX the processor retains global mappings when %cr3 3447 * is updated but vmx_invvpid() does not. 3448 */ 3449 pmap = vcpu->ctx.pmap; 3450 vmx_invvpid(vmx, vcpu, pmap, running); 3451 } 3452 } 3453 3454 return (error); 3455 } 3456 3457 static int 3458 vmx_getdesc(void *vcpui, int reg, struct seg_desc *desc) 3459 { 3460 int hostcpu, running; 3461 struct vmx_vcpu *vcpu = vcpui; 3462 struct vmx *vmx = vcpu->vmx; 3463 3464 running = vcpu_is_running(vcpu->vcpu, &hostcpu); 3465 if (running && hostcpu != curcpu) 3466 panic("vmx_getdesc: %s%d is running", vm_name(vmx->vm), 3467 vcpu->vcpuid); 3468 3469 return (vmcs_getdesc(vcpu->vmcs, running, reg, desc)); 3470 } 3471 3472 static int 3473 vmx_setdesc(void *vcpui, int reg, struct seg_desc *desc) 3474 { 3475 int hostcpu, running; 3476 struct vmx_vcpu *vcpu = vcpui; 3477 struct vmx *vmx = vcpu->vmx; 3478 3479 running = vcpu_is_running(vcpu->vcpu, &hostcpu); 3480 if (running && hostcpu != curcpu) 3481 panic("vmx_setdesc: %s%d is running", vm_name(vmx->vm), 3482 vcpu->vcpuid); 3483 3484 return (vmcs_setdesc(vcpu->vmcs, running, reg, desc)); 3485 } 3486 3487 static int 3488 vmx_getcap(void *vcpui, int type, int *retval) 3489 { 3490 struct vmx_vcpu *vcpu = vcpui; 3491 int vcap; 3492 int ret; 3493 3494 ret = ENOENT; 3495 3496 vcap = vcpu->cap.set; 3497 3498 switch (type) { 3499 case VM_CAP_HALT_EXIT: 3500 if (cap_halt_exit) 3501 ret = 0; 3502 break; 3503 case VM_CAP_PAUSE_EXIT: 3504 if (cap_pause_exit) 3505 ret = 0; 3506 break; 3507 case VM_CAP_MTRAP_EXIT: 3508 if (cap_monitor_trap) 3509 ret = 0; 3510 break; 3511 case VM_CAP_RDPID: 3512 if (cap_rdpid) 3513 ret = 0; 3514 break; 3515 case VM_CAP_RDTSCP: 3516 if (cap_rdtscp) 3517 ret = 0; 3518 break; 3519 case VM_CAP_UNRESTRICTED_GUEST: 3520 if (cap_unrestricted_guest) 3521 ret = 0; 3522 break; 3523 case VM_CAP_ENABLE_INVPCID: 3524 if (cap_invpcid) 3525 ret = 0; 3526 break; 3527 case VM_CAP_BPT_EXIT: 3528 case VM_CAP_IPI_EXIT: 3529 ret = 0; 3530 break; 3531 default: 3532 break; 3533 } 3534 3535 if (ret == 0) 3536 *retval = (vcap & (1 << type)) ? 1 : 0; 3537 3538 return (ret); 3539 } 3540 3541 static int 3542 vmx_setcap(void *vcpui, int type, int val) 3543 { 3544 struct vmx_vcpu *vcpu = vcpui; 3545 struct vmcs *vmcs = vcpu->vmcs; 3546 struct vlapic *vlapic; 3547 uint32_t baseval; 3548 uint32_t *pptr; 3549 int error; 3550 int flag; 3551 int reg; 3552 int retval; 3553 3554 retval = ENOENT; 3555 pptr = NULL; 3556 3557 switch (type) { 3558 case VM_CAP_HALT_EXIT: 3559 if (cap_halt_exit) { 3560 retval = 0; 3561 pptr = &vcpu->cap.proc_ctls; 3562 baseval = *pptr; 3563 flag = PROCBASED_HLT_EXITING; 3564 reg = VMCS_PRI_PROC_BASED_CTLS; 3565 } 3566 break; 3567 case VM_CAP_MTRAP_EXIT: 3568 if (cap_monitor_trap) { 3569 retval = 0; 3570 pptr = &vcpu->cap.proc_ctls; 3571 baseval = *pptr; 3572 flag = PROCBASED_MTF; 3573 reg = VMCS_PRI_PROC_BASED_CTLS; 3574 } 3575 break; 3576 case VM_CAP_PAUSE_EXIT: 3577 if (cap_pause_exit) { 3578 retval = 0; 3579 pptr = &vcpu->cap.proc_ctls; 3580 baseval = *pptr; 3581 flag = PROCBASED_PAUSE_EXITING; 3582 reg = VMCS_PRI_PROC_BASED_CTLS; 3583 } 3584 break; 3585 case VM_CAP_RDPID: 3586 case VM_CAP_RDTSCP: 3587 if (cap_rdpid || cap_rdtscp) 3588 /* 3589 * Choose not to support enabling/disabling 3590 * RDPID/RDTSCP via libvmmapi since, as per the 3591 * discussion in vmx_modinit(), RDPID/RDTSCP are 3592 * either always enabled or always disabled. 3593 */ 3594 error = EOPNOTSUPP; 3595 break; 3596 case VM_CAP_UNRESTRICTED_GUEST: 3597 if (cap_unrestricted_guest) { 3598 retval = 0; 3599 pptr = &vcpu->cap.proc_ctls2; 3600 baseval = *pptr; 3601 flag = PROCBASED2_UNRESTRICTED_GUEST; 3602 reg = VMCS_SEC_PROC_BASED_CTLS; 3603 } 3604 break; 3605 case VM_CAP_ENABLE_INVPCID: 3606 if (cap_invpcid) { 3607 retval = 0; 3608 pptr = &vcpu->cap.proc_ctls2; 3609 baseval = *pptr; 3610 flag = PROCBASED2_ENABLE_INVPCID; 3611 reg = VMCS_SEC_PROC_BASED_CTLS; 3612 } 3613 break; 3614 case VM_CAP_BPT_EXIT: 3615 retval = 0; 3616 3617 /* Don't change the bitmap if we are tracing all exceptions. */ 3618 if (vcpu->cap.exc_bitmap != 0xffffffff) { 3619 pptr = &vcpu->cap.exc_bitmap; 3620 baseval = *pptr; 3621 flag = (1 << IDT_BP); 3622 reg = VMCS_EXCEPTION_BITMAP; 3623 } 3624 break; 3625 case VM_CAP_IPI_EXIT: 3626 retval = 0; 3627 3628 vlapic = vm_lapic(vcpu->vcpu); 3629 vlapic->ipi_exit = val; 3630 break; 3631 default: 3632 break; 3633 } 3634 3635 if (retval) 3636 return (retval); 3637 3638 if (pptr != NULL) { 3639 if (val) { 3640 baseval |= flag; 3641 } else { 3642 baseval &= ~flag; 3643 } 3644 VMPTRLD(vmcs); 3645 error = vmwrite(reg, baseval); 3646 VMCLEAR(vmcs); 3647 3648 if (error) 3649 return (error); 3650 3651 /* 3652 * Update optional stored flags, and record 3653 * setting 3654 */ 3655 *pptr = baseval; 3656 } 3657 3658 if (val) { 3659 vcpu->cap.set |= (1 << type); 3660 } else { 3661 vcpu->cap.set &= ~(1 << type); 3662 } 3663 3664 return (0); 3665 } 3666 3667 static struct vmspace * 3668 vmx_vmspace_alloc(vm_offset_t min, vm_offset_t max) 3669 { 3670 return (ept_vmspace_alloc(min, max)); 3671 } 3672 3673 static void 3674 vmx_vmspace_free(struct vmspace *vmspace) 3675 { 3676 ept_vmspace_free(vmspace); 3677 } 3678 3679 struct vlapic_vtx { 3680 struct vlapic vlapic; 3681 struct pir_desc *pir_desc; 3682 struct vmx_vcpu *vcpu; 3683 u_int pending_prio; 3684 }; 3685 3686 #define VPR_PRIO_BIT(vpr) (1 << ((vpr) >> 4)) 3687 3688 #define VMX_CTR_PIR(vlapic, pir_desc, notify, vector, level, msg) \ 3689 do { \ 3690 VLAPIC_CTR2(vlapic, msg " assert %s-triggered vector %d", \ 3691 level ? "level" : "edge", vector); \ 3692 VLAPIC_CTR1(vlapic, msg " pir0 0x%016lx", pir_desc->pir[0]); \ 3693 VLAPIC_CTR1(vlapic, msg " pir1 0x%016lx", pir_desc->pir[1]); \ 3694 VLAPIC_CTR1(vlapic, msg " pir2 0x%016lx", pir_desc->pir[2]); \ 3695 VLAPIC_CTR1(vlapic, msg " pir3 0x%016lx", pir_desc->pir[3]); \ 3696 VLAPIC_CTR1(vlapic, msg " notify: %s", notify ? "yes" : "no"); \ 3697 } while (0) 3698 3699 /* 3700 * vlapic->ops handlers that utilize the APICv hardware assist described in 3701 * Chapter 29 of the Intel SDM. 3702 */ 3703 static int 3704 vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level) 3705 { 3706 struct vlapic_vtx *vlapic_vtx; 3707 struct pir_desc *pir_desc; 3708 uint64_t mask; 3709 int idx, notify = 0; 3710 3711 vlapic_vtx = (struct vlapic_vtx *)vlapic; 3712 pir_desc = vlapic_vtx->pir_desc; 3713 3714 /* 3715 * Keep track of interrupt requests in the PIR descriptor. This is 3716 * because the virtual APIC page pointed to by the VMCS cannot be 3717 * modified if the vcpu is running. 3718 */ 3719 idx = vector / 64; 3720 mask = 1UL << (vector % 64); 3721 atomic_set_long(&pir_desc->pir[idx], mask); 3722 3723 /* 3724 * A notification is required whenever the 'pending' bit makes a 3725 * transition from 0->1. 3726 * 3727 * Even if the 'pending' bit is already asserted, notification about 3728 * the incoming interrupt may still be necessary. For example, if a 3729 * vCPU is HLTed with a high PPR, a low priority interrupt would cause 3730 * the 0->1 'pending' transition with a notification, but the vCPU 3731 * would ignore the interrupt for the time being. The same vCPU would 3732 * need to then be notified if a high-priority interrupt arrived which 3733 * satisfied the PPR. 3734 * 3735 * The priorities of interrupts injected while 'pending' is asserted 3736 * are tracked in a custom bitfield 'pending_prio'. Should the 3737 * to-be-injected interrupt exceed the priorities already present, the 3738 * notification is sent. The priorities recorded in 'pending_prio' are 3739 * cleared whenever the 'pending' bit makes another 0->1 transition. 3740 */ 3741 if (atomic_cmpset_long(&pir_desc->pending, 0, 1) != 0) { 3742 notify = 1; 3743 vlapic_vtx->pending_prio = 0; 3744 } else { 3745 const u_int old_prio = vlapic_vtx->pending_prio; 3746 const u_int prio_bit = VPR_PRIO_BIT(vector & APIC_TPR_INT); 3747 3748 if ((old_prio & prio_bit) == 0 && prio_bit > old_prio) { 3749 atomic_set_int(&vlapic_vtx->pending_prio, prio_bit); 3750 notify = 1; 3751 } 3752 } 3753 3754 VMX_CTR_PIR(vlapic, pir_desc, notify, vector, level, 3755 "vmx_set_intr_ready"); 3756 return (notify); 3757 } 3758 3759 static int 3760 vmx_pending_intr(struct vlapic *vlapic, int *vecptr) 3761 { 3762 struct vlapic_vtx *vlapic_vtx; 3763 struct pir_desc *pir_desc; 3764 struct LAPIC *lapic; 3765 uint64_t pending, pirval; 3766 uint32_t ppr, vpr; 3767 int i; 3768 3769 /* 3770 * This function is only expected to be called from the 'HLT' exit 3771 * handler which does not care about the vector that is pending. 3772 */ 3773 KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL")); 3774 3775 vlapic_vtx = (struct vlapic_vtx *)vlapic; 3776 pir_desc = vlapic_vtx->pir_desc; 3777 3778 pending = atomic_load_acq_long(&pir_desc->pending); 3779 if (!pending) { 3780 /* 3781 * While a virtual interrupt may have already been 3782 * processed the actual delivery maybe pending the 3783 * interruptibility of the guest. Recognize a pending 3784 * interrupt by reevaluating virtual interrupts 3785 * following Section 29.2.1 in the Intel SDM Volume 3. 3786 */ 3787 struct vm_exit *vmexit; 3788 uint8_t rvi, ppr; 3789 3790 vmexit = vm_exitinfo(vlapic->vcpu); 3791 KASSERT(vmexit->exitcode == VM_EXITCODE_HLT, 3792 ("vmx_pending_intr: exitcode not 'HLT'")); 3793 rvi = vmexit->u.hlt.intr_status & APIC_TPR_INT; 3794 lapic = vlapic->apic_page; 3795 ppr = lapic->ppr & APIC_TPR_INT; 3796 if (rvi > ppr) { 3797 return (1); 3798 } 3799 3800 return (0); 3801 } 3802 3803 /* 3804 * If there is an interrupt pending then it will be recognized only 3805 * if its priority is greater than the processor priority. 3806 * 3807 * Special case: if the processor priority is zero then any pending 3808 * interrupt will be recognized. 3809 */ 3810 lapic = vlapic->apic_page; 3811 ppr = lapic->ppr & APIC_TPR_INT; 3812 if (ppr == 0) 3813 return (1); 3814 3815 VLAPIC_CTR1(vlapic, "HLT with non-zero PPR %d", lapic->ppr); 3816 3817 vpr = 0; 3818 for (i = 3; i >= 0; i--) { 3819 pirval = pir_desc->pir[i]; 3820 if (pirval != 0) { 3821 vpr = (i * 64 + flsl(pirval) - 1) & APIC_TPR_INT; 3822 break; 3823 } 3824 } 3825 3826 /* 3827 * If the highest-priority pending interrupt falls short of the 3828 * processor priority of this vCPU, ensure that 'pending_prio' does not 3829 * have any stale bits which would preclude a higher-priority interrupt 3830 * from incurring a notification later. 3831 */ 3832 if (vpr <= ppr) { 3833 const u_int prio_bit = VPR_PRIO_BIT(vpr); 3834 const u_int old = vlapic_vtx->pending_prio; 3835 3836 if (old > prio_bit && (old & prio_bit) == 0) { 3837 vlapic_vtx->pending_prio = prio_bit; 3838 } 3839 return (0); 3840 } 3841 return (1); 3842 } 3843 3844 static void 3845 vmx_intr_accepted(struct vlapic *vlapic, int vector) 3846 { 3847 3848 panic("vmx_intr_accepted: not expected to be called"); 3849 } 3850 3851 static void 3852 vmx_set_tmr(struct vlapic *vlapic, int vector, bool level) 3853 { 3854 struct vlapic_vtx *vlapic_vtx; 3855 struct vmcs *vmcs; 3856 uint64_t mask, val; 3857 3858 KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d", vector)); 3859 KASSERT(!vcpu_is_running(vlapic->vcpu, NULL), 3860 ("vmx_set_tmr: vcpu cannot be running")); 3861 3862 vlapic_vtx = (struct vlapic_vtx *)vlapic; 3863 vmcs = vlapic_vtx->vcpu->vmcs; 3864 mask = 1UL << (vector % 64); 3865 3866 VMPTRLD(vmcs); 3867 val = vmcs_read(VMCS_EOI_EXIT(vector)); 3868 if (level) 3869 val |= mask; 3870 else 3871 val &= ~mask; 3872 vmcs_write(VMCS_EOI_EXIT(vector), val); 3873 VMCLEAR(vmcs); 3874 } 3875 3876 static void 3877 vmx_enable_x2apic_mode_ts(struct vlapic *vlapic) 3878 { 3879 struct vlapic_vtx *vlapic_vtx; 3880 struct vmx_vcpu *vcpu; 3881 struct vmcs *vmcs; 3882 uint32_t proc_ctls; 3883 3884 vlapic_vtx = (struct vlapic_vtx *)vlapic; 3885 vcpu = vlapic_vtx->vcpu; 3886 vmcs = vcpu->vmcs; 3887 3888 proc_ctls = vcpu->cap.proc_ctls; 3889 proc_ctls &= ~PROCBASED_USE_TPR_SHADOW; 3890 proc_ctls |= PROCBASED_CR8_LOAD_EXITING; 3891 proc_ctls |= PROCBASED_CR8_STORE_EXITING; 3892 vcpu->cap.proc_ctls = proc_ctls; 3893 3894 VMPTRLD(vmcs); 3895 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, proc_ctls); 3896 VMCLEAR(vmcs); 3897 } 3898 3899 static void 3900 vmx_enable_x2apic_mode_vid(struct vlapic *vlapic) 3901 { 3902 struct vlapic_vtx *vlapic_vtx; 3903 struct vmx *vmx; 3904 struct vmx_vcpu *vcpu; 3905 struct vmcs *vmcs; 3906 uint32_t proc_ctls2; 3907 int error __diagused; 3908 3909 vlapic_vtx = (struct vlapic_vtx *)vlapic; 3910 vcpu = vlapic_vtx->vcpu; 3911 vmx = vcpu->vmx; 3912 vmcs = vcpu->vmcs; 3913 3914 proc_ctls2 = vcpu->cap.proc_ctls2; 3915 KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0, 3916 ("%s: invalid proc_ctls2 %#x", __func__, proc_ctls2)); 3917 3918 proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES; 3919 proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE; 3920 vcpu->cap.proc_ctls2 = proc_ctls2; 3921 3922 VMPTRLD(vmcs); 3923 vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2); 3924 VMCLEAR(vmcs); 3925 3926 if (vlapic->vcpuid == 0) { 3927 /* 3928 * The nested page table mappings are shared by all vcpus 3929 * so unmap the APIC access page just once. 3930 */ 3931 error = vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE); 3932 KASSERT(error == 0, ("%s: vm_unmap_mmio error %d", 3933 __func__, error)); 3934 3935 /* 3936 * The MSR bitmap is shared by all vcpus so modify it only 3937 * once in the context of vcpu 0. 3938 */ 3939 error = vmx_allow_x2apic_msrs(vmx); 3940 KASSERT(error == 0, ("%s: vmx_allow_x2apic_msrs error %d", 3941 __func__, error)); 3942 } 3943 } 3944 3945 static void 3946 vmx_post_intr(struct vlapic *vlapic, int hostcpu) 3947 { 3948 3949 ipi_cpu(hostcpu, pirvec); 3950 } 3951 3952 /* 3953 * Transfer the pending interrupts in the PIR descriptor to the IRR 3954 * in the virtual APIC page. 3955 */ 3956 static void 3957 vmx_inject_pir(struct vlapic *vlapic) 3958 { 3959 struct vlapic_vtx *vlapic_vtx; 3960 struct pir_desc *pir_desc; 3961 struct LAPIC *lapic; 3962 uint64_t val, pirval; 3963 int rvi, pirbase = -1; 3964 uint16_t intr_status_old, intr_status_new; 3965 3966 vlapic_vtx = (struct vlapic_vtx *)vlapic; 3967 pir_desc = vlapic_vtx->pir_desc; 3968 if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) { 3969 VLAPIC_CTR0(vlapic, "vmx_inject_pir: " 3970 "no posted interrupt pending"); 3971 return; 3972 } 3973 3974 pirval = 0; 3975 pirbase = -1; 3976 lapic = vlapic->apic_page; 3977 3978 val = atomic_readandclear_long(&pir_desc->pir[0]); 3979 if (val != 0) { 3980 lapic->irr0 |= val; 3981 lapic->irr1 |= val >> 32; 3982 pirbase = 0; 3983 pirval = val; 3984 } 3985 3986 val = atomic_readandclear_long(&pir_desc->pir[1]); 3987 if (val != 0) { 3988 lapic->irr2 |= val; 3989 lapic->irr3 |= val >> 32; 3990 pirbase = 64; 3991 pirval = val; 3992 } 3993 3994 val = atomic_readandclear_long(&pir_desc->pir[2]); 3995 if (val != 0) { 3996 lapic->irr4 |= val; 3997 lapic->irr5 |= val >> 32; 3998 pirbase = 128; 3999 pirval = val; 4000 } 4001 4002 val = atomic_readandclear_long(&pir_desc->pir[3]); 4003 if (val != 0) { 4004 lapic->irr6 |= val; 4005 lapic->irr7 |= val >> 32; 4006 pirbase = 192; 4007 pirval = val; 4008 } 4009 4010 VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir"); 4011 4012 /* 4013 * Update RVI so the processor can evaluate pending virtual 4014 * interrupts on VM-entry. 4015 * 4016 * It is possible for pirval to be 0 here, even though the 4017 * pending bit has been set. The scenario is: 4018 * CPU-Y is sending a posted interrupt to CPU-X, which 4019 * is running a guest and processing posted interrupts in h/w. 4020 * CPU-X will eventually exit and the state seen in s/w is 4021 * the pending bit set, but no PIR bits set. 4022 * 4023 * CPU-X CPU-Y 4024 * (vm running) (host running) 4025 * rx posted interrupt 4026 * CLEAR pending bit 4027 * SET PIR bit 4028 * READ/CLEAR PIR bits 4029 * SET pending bit 4030 * (vm exit) 4031 * pending bit set, PIR 0 4032 */ 4033 if (pirval != 0) { 4034 rvi = pirbase + flsl(pirval) - 1; 4035 intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS); 4036 intr_status_new = (intr_status_old & 0xFF00) | rvi; 4037 if (intr_status_new > intr_status_old) { 4038 vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new); 4039 VLAPIC_CTR2(vlapic, "vmx_inject_pir: " 4040 "guest_intr_status changed from 0x%04x to 0x%04x", 4041 intr_status_old, intr_status_new); 4042 } 4043 } 4044 } 4045 4046 static struct vlapic * 4047 vmx_vlapic_init(void *vcpui) 4048 { 4049 struct vmx *vmx; 4050 struct vmx_vcpu *vcpu; 4051 struct vlapic *vlapic; 4052 struct vlapic_vtx *vlapic_vtx; 4053 4054 vcpu = vcpui; 4055 vmx = vcpu->vmx; 4056 4057 vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO); 4058 vlapic->vm = vmx->vm; 4059 vlapic->vcpu = vcpu->vcpu; 4060 vlapic->vcpuid = vcpu->vcpuid; 4061 vlapic->apic_page = (struct LAPIC *)vcpu->apic_page; 4062 4063 vlapic_vtx = (struct vlapic_vtx *)vlapic; 4064 vlapic_vtx->pir_desc = vcpu->pir_desc; 4065 vlapic_vtx->vcpu = vcpu; 4066 4067 if (tpr_shadowing) { 4068 vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_ts; 4069 } 4070 4071 if (virtual_interrupt_delivery) { 4072 vlapic->ops.set_intr_ready = vmx_set_intr_ready; 4073 vlapic->ops.pending_intr = vmx_pending_intr; 4074 vlapic->ops.intr_accepted = vmx_intr_accepted; 4075 vlapic->ops.set_tmr = vmx_set_tmr; 4076 vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_vid; 4077 } 4078 4079 if (posted_interrupts) 4080 vlapic->ops.post_intr = vmx_post_intr; 4081 4082 vlapic_init(vlapic); 4083 4084 return (vlapic); 4085 } 4086 4087 static void 4088 vmx_vlapic_cleanup(struct vlapic *vlapic) 4089 { 4090 4091 vlapic_cleanup(vlapic); 4092 free(vlapic, M_VLAPIC); 4093 } 4094 4095 #ifdef BHYVE_SNAPSHOT 4096 static int 4097 vmx_vcpu_snapshot(void *vcpui, struct vm_snapshot_meta *meta) 4098 { 4099 struct vmcs *vmcs; 4100 struct vmx *vmx; 4101 struct vmx_vcpu *vcpu; 4102 struct vmxctx *vmxctx; 4103 int err, run, hostcpu; 4104 4105 err = 0; 4106 vcpu = vcpui; 4107 vmx = vcpu->vmx; 4108 vmcs = vcpu->vmcs; 4109 4110 run = vcpu_is_running(vcpu->vcpu, &hostcpu); 4111 if (run && hostcpu != curcpu) { 4112 printf("%s: %s%d is running", __func__, vm_name(vmx->vm), 4113 vcpu->vcpuid); 4114 return (EINVAL); 4115 } 4116 4117 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR0, meta); 4118 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR3, meta); 4119 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR4, meta); 4120 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_DR7, meta); 4121 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RSP, meta); 4122 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RIP, meta); 4123 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RFLAGS, meta); 4124 4125 /* Guest segments */ 4126 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_ES, meta); 4127 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_ES, meta); 4128 4129 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CS, meta); 4130 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_CS, meta); 4131 4132 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_SS, meta); 4133 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_SS, meta); 4134 4135 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_DS, meta); 4136 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_DS, meta); 4137 4138 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_FS, meta); 4139 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_FS, meta); 4140 4141 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_GS, meta); 4142 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_GS, meta); 4143 4144 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_TR, meta); 4145 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_TR, meta); 4146 4147 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_LDTR, meta); 4148 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_LDTR, meta); 4149 4150 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_EFER, meta); 4151 4152 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_IDTR, meta); 4153 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_GDTR, meta); 4154 4155 /* Guest page tables */ 4156 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE0, meta); 4157 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE1, meta); 4158 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE2, meta); 4159 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE3, meta); 4160 4161 /* Other guest state */ 4162 err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_CS, meta); 4163 err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_ESP, meta); 4164 err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_EIP, meta); 4165 err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_INTERRUPTIBILITY, meta); 4166 err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_ACTIVITY, meta); 4167 err += vmcs_snapshot_any(vmcs, run, VMCS_ENTRY_CTLS, meta); 4168 err += vmcs_snapshot_any(vmcs, run, VMCS_EXIT_CTLS, meta); 4169 if (err != 0) 4170 goto done; 4171 4172 SNAPSHOT_BUF_OR_LEAVE(vcpu->guest_msrs, 4173 sizeof(vcpu->guest_msrs), meta, err, done); 4174 4175 vmxctx = &vcpu->ctx; 4176 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rdi, meta, err, done); 4177 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rsi, meta, err, done); 4178 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rdx, meta, err, done); 4179 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rcx, meta, err, done); 4180 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r8, meta, err, done); 4181 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r9, meta, err, done); 4182 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rax, meta, err, done); 4183 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rbx, meta, err, done); 4184 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rbp, meta, err, done); 4185 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r10, meta, err, done); 4186 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r11, meta, err, done); 4187 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r12, meta, err, done); 4188 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r13, meta, err, done); 4189 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r14, meta, err, done); 4190 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r15, meta, err, done); 4191 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_cr2, meta, err, done); 4192 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr0, meta, err, done); 4193 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr1, meta, err, done); 4194 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr2, meta, err, done); 4195 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr3, meta, err, done); 4196 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr6, meta, err, done); 4197 4198 done: 4199 return (err); 4200 } 4201 4202 static int 4203 vmx_restore_tsc(void *vcpui, uint64_t offset) 4204 { 4205 struct vmx_vcpu *vcpu = vcpui; 4206 struct vmcs *vmcs; 4207 struct vmx *vmx; 4208 int error, running, hostcpu; 4209 4210 vmx = vcpu->vmx; 4211 vmcs = vcpu->vmcs; 4212 4213 running = vcpu_is_running(vcpu->vcpu, &hostcpu); 4214 if (running && hostcpu != curcpu) { 4215 printf("%s: %s%d is running", __func__, vm_name(vmx->vm), 4216 vcpu->vcpuid); 4217 return (EINVAL); 4218 } 4219 4220 if (!running) 4221 VMPTRLD(vmcs); 4222 4223 error = vmx_set_tsc_offset(vcpu, offset); 4224 4225 if (!running) 4226 VMCLEAR(vmcs); 4227 return (error); 4228 } 4229 #endif 4230 4231 const struct vmm_ops vmm_ops_intel = { 4232 .modinit = vmx_modinit, 4233 .modcleanup = vmx_modcleanup, 4234 .modresume = vmx_modresume, 4235 .init = vmx_init, 4236 .run = vmx_run, 4237 .cleanup = vmx_cleanup, 4238 .vcpu_init = vmx_vcpu_init, 4239 .vcpu_cleanup = vmx_vcpu_cleanup, 4240 .getreg = vmx_getreg, 4241 .setreg = vmx_setreg, 4242 .getdesc = vmx_getdesc, 4243 .setdesc = vmx_setdesc, 4244 .getcap = vmx_getcap, 4245 .setcap = vmx_setcap, 4246 .vmspace_alloc = vmx_vmspace_alloc, 4247 .vmspace_free = vmx_vmspace_free, 4248 .vlapic_init = vmx_vlapic_init, 4249 .vlapic_cleanup = vmx_vlapic_cleanup, 4250 #ifdef BHYVE_SNAPSHOT 4251 .vcpu_snapshot = vmx_vcpu_snapshot, 4252 .restore_tsc = vmx_restore_tsc, 4253 #endif 4254 }; 4255