xref: /freebsd/sys/amd64/vmm/intel/vmx.c (revision d8b88105c2ccf7686552516877f541efb54fb6c8)
1 /*-
2  * Copyright (c) 2011 NetApp, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/smp.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/pcpu.h>
38 #include <sys/proc.h>
39 #include <sys/sysctl.h>
40 
41 #include <vm/vm.h>
42 #include <vm/pmap.h>
43 
44 #include <machine/psl.h>
45 #include <machine/cpufunc.h>
46 #include <machine/md_var.h>
47 #include <machine/segments.h>
48 #include <machine/smp.h>
49 #include <machine/specialreg.h>
50 #include <machine/vmparam.h>
51 
52 #include <machine/vmm.h>
53 #include "vmm_host.h"
54 #include "vmm_ipi.h"
55 #include "vmm_msr.h"
56 #include "vmm_ktr.h"
57 #include "vmm_stat.h"
58 #include "vlapic.h"
59 #include "vlapic_priv.h"
60 
61 #include "vmx_msr.h"
62 #include "ept.h"
63 #include "vmx_cpufunc.h"
64 #include "vmx.h"
65 #include "x86.h"
66 #include "vmx_controls.h"
67 
68 #define	PINBASED_CTLS_ONE_SETTING					\
69 	(PINBASED_EXTINT_EXITING	|				\
70 	 PINBASED_NMI_EXITING		|				\
71 	 PINBASED_VIRTUAL_NMI)
72 #define	PINBASED_CTLS_ZERO_SETTING	0
73 
74 #define PROCBASED_CTLS_WINDOW_SETTING					\
75 	(PROCBASED_INT_WINDOW_EXITING	|				\
76 	 PROCBASED_NMI_WINDOW_EXITING)
77 
78 #define	PROCBASED_CTLS_ONE_SETTING 					\
79 	(PROCBASED_SECONDARY_CONTROLS	|				\
80 	 PROCBASED_IO_EXITING		|				\
81 	 PROCBASED_MSR_BITMAPS		|				\
82 	 PROCBASED_CTLS_WINDOW_SETTING)
83 #define	PROCBASED_CTLS_ZERO_SETTING	\
84 	(PROCBASED_CR3_LOAD_EXITING |	\
85 	PROCBASED_CR3_STORE_EXITING |	\
86 	PROCBASED_IO_BITMAPS)
87 
88 #define	PROCBASED_CTLS2_ONE_SETTING	PROCBASED2_ENABLE_EPT
89 #define	PROCBASED_CTLS2_ZERO_SETTING	0
90 
91 #define VM_EXIT_CTLS_ONE_SETTING_NO_PAT					\
92 	(VM_EXIT_HOST_LMA			|			\
93 	VM_EXIT_SAVE_EFER			|			\
94 	VM_EXIT_LOAD_EFER)
95 
96 #define	VM_EXIT_CTLS_ONE_SETTING					\
97 	(VM_EXIT_CTLS_ONE_SETTING_NO_PAT       	|			\
98 	VM_EXIT_ACKNOWLEDGE_INTERRUPT		|			\
99 	VM_EXIT_SAVE_PAT			|			\
100 	VM_EXIT_LOAD_PAT)
101 #define	VM_EXIT_CTLS_ZERO_SETTING	VM_EXIT_SAVE_DEBUG_CONTROLS
102 
103 #define	VM_ENTRY_CTLS_ONE_SETTING_NO_PAT	VM_ENTRY_LOAD_EFER
104 
105 #define	VM_ENTRY_CTLS_ONE_SETTING					\
106 	(VM_ENTRY_CTLS_ONE_SETTING_NO_PAT     	|			\
107 	VM_ENTRY_LOAD_PAT)
108 #define	VM_ENTRY_CTLS_ZERO_SETTING					\
109 	(VM_ENTRY_LOAD_DEBUG_CONTROLS		|			\
110 	VM_ENTRY_INTO_SMM			|			\
111 	VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
112 
113 #define	guest_msr_rw(vmx, msr) \
114 	msr_bitmap_change_access((vmx)->msr_bitmap, (msr), MSR_BITMAP_ACCESS_RW)
115 
116 #define	HANDLED		1
117 #define	UNHANDLED	0
118 
119 static MALLOC_DEFINE(M_VMX, "vmx", "vmx");
120 static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic");
121 
122 SYSCTL_DECL(_hw_vmm);
123 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW, NULL, NULL);
124 
125 int vmxon_enabled[MAXCPU];
126 static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
127 
128 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
129 static uint32_t exit_ctls, entry_ctls;
130 
131 static uint64_t cr0_ones_mask, cr0_zeros_mask;
132 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD,
133 	     &cr0_ones_mask, 0, NULL);
134 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD,
135 	     &cr0_zeros_mask, 0, NULL);
136 
137 static uint64_t cr4_ones_mask, cr4_zeros_mask;
138 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD,
139 	     &cr4_ones_mask, 0, NULL);
140 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD,
141 	     &cr4_zeros_mask, 0, NULL);
142 
143 static int vmx_no_patmsr;
144 
145 static int vmx_initialized;
146 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD,
147 	   &vmx_initialized, 0, "Intel VMX initialized");
148 
149 /*
150  * Optional capabilities
151  */
152 static int cap_halt_exit;
153 static int cap_pause_exit;
154 static int cap_unrestricted_guest;
155 static int cap_monitor_trap;
156 static int cap_invpcid;
157 
158 static int virtual_interrupt_delivery;
159 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD,
160     &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support");
161 
162 static int posted_interrupts;
163 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupts, CTLFLAG_RD,
164     &posted_interrupts, 0, "APICv posted interrupt support");
165 
166 static int pirvec;
167 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD,
168     &pirvec, 0, "APICv posted interrupt vector");
169 
170 static struct unrhdr *vpid_unr;
171 static u_int vpid_alloc_failed;
172 SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD,
173 	    &vpid_alloc_failed, 0, NULL);
174 
175 /*
176  * Use the last page below 4GB as the APIC access address. This address is
177  * occupied by the boot firmware so it is guaranteed that it will not conflict
178  * with a page in system memory.
179  */
180 #define	APIC_ACCESS_ADDRESS	0xFFFFF000
181 
182 static void vmx_inject_pir(struct vlapic *vlapic);
183 
184 #ifdef KTR
185 static const char *
186 exit_reason_to_str(int reason)
187 {
188 	static char reasonbuf[32];
189 
190 	switch (reason) {
191 	case EXIT_REASON_EXCEPTION:
192 		return "exception";
193 	case EXIT_REASON_EXT_INTR:
194 		return "extint";
195 	case EXIT_REASON_TRIPLE_FAULT:
196 		return "triplefault";
197 	case EXIT_REASON_INIT:
198 		return "init";
199 	case EXIT_REASON_SIPI:
200 		return "sipi";
201 	case EXIT_REASON_IO_SMI:
202 		return "iosmi";
203 	case EXIT_REASON_SMI:
204 		return "smi";
205 	case EXIT_REASON_INTR_WINDOW:
206 		return "intrwindow";
207 	case EXIT_REASON_NMI_WINDOW:
208 		return "nmiwindow";
209 	case EXIT_REASON_TASK_SWITCH:
210 		return "taskswitch";
211 	case EXIT_REASON_CPUID:
212 		return "cpuid";
213 	case EXIT_REASON_GETSEC:
214 		return "getsec";
215 	case EXIT_REASON_HLT:
216 		return "hlt";
217 	case EXIT_REASON_INVD:
218 		return "invd";
219 	case EXIT_REASON_INVLPG:
220 		return "invlpg";
221 	case EXIT_REASON_RDPMC:
222 		return "rdpmc";
223 	case EXIT_REASON_RDTSC:
224 		return "rdtsc";
225 	case EXIT_REASON_RSM:
226 		return "rsm";
227 	case EXIT_REASON_VMCALL:
228 		return "vmcall";
229 	case EXIT_REASON_VMCLEAR:
230 		return "vmclear";
231 	case EXIT_REASON_VMLAUNCH:
232 		return "vmlaunch";
233 	case EXIT_REASON_VMPTRLD:
234 		return "vmptrld";
235 	case EXIT_REASON_VMPTRST:
236 		return "vmptrst";
237 	case EXIT_REASON_VMREAD:
238 		return "vmread";
239 	case EXIT_REASON_VMRESUME:
240 		return "vmresume";
241 	case EXIT_REASON_VMWRITE:
242 		return "vmwrite";
243 	case EXIT_REASON_VMXOFF:
244 		return "vmxoff";
245 	case EXIT_REASON_VMXON:
246 		return "vmxon";
247 	case EXIT_REASON_CR_ACCESS:
248 		return "craccess";
249 	case EXIT_REASON_DR_ACCESS:
250 		return "draccess";
251 	case EXIT_REASON_INOUT:
252 		return "inout";
253 	case EXIT_REASON_RDMSR:
254 		return "rdmsr";
255 	case EXIT_REASON_WRMSR:
256 		return "wrmsr";
257 	case EXIT_REASON_INVAL_VMCS:
258 		return "invalvmcs";
259 	case EXIT_REASON_INVAL_MSR:
260 		return "invalmsr";
261 	case EXIT_REASON_MWAIT:
262 		return "mwait";
263 	case EXIT_REASON_MTF:
264 		return "mtf";
265 	case EXIT_REASON_MONITOR:
266 		return "monitor";
267 	case EXIT_REASON_PAUSE:
268 		return "pause";
269 	case EXIT_REASON_MCE:
270 		return "mce";
271 	case EXIT_REASON_TPR:
272 		return "tpr";
273 	case EXIT_REASON_APIC_ACCESS:
274 		return "apic-access";
275 	case EXIT_REASON_GDTR_IDTR:
276 		return "gdtridtr";
277 	case EXIT_REASON_LDTR_TR:
278 		return "ldtrtr";
279 	case EXIT_REASON_EPT_FAULT:
280 		return "eptfault";
281 	case EXIT_REASON_EPT_MISCONFIG:
282 		return "eptmisconfig";
283 	case EXIT_REASON_INVEPT:
284 		return "invept";
285 	case EXIT_REASON_RDTSCP:
286 		return "rdtscp";
287 	case EXIT_REASON_VMX_PREEMPT:
288 		return "vmxpreempt";
289 	case EXIT_REASON_INVVPID:
290 		return "invvpid";
291 	case EXIT_REASON_WBINVD:
292 		return "wbinvd";
293 	case EXIT_REASON_XSETBV:
294 		return "xsetbv";
295 	case EXIT_REASON_APIC_WRITE:
296 		return "apic-write";
297 	default:
298 		snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason);
299 		return (reasonbuf);
300 	}
301 }
302 #endif	/* KTR */
303 
304 u_long
305 vmx_fix_cr0(u_long cr0)
306 {
307 
308 	return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
309 }
310 
311 u_long
312 vmx_fix_cr4(u_long cr4)
313 {
314 
315 	return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
316 }
317 
318 static void
319 vpid_free(int vpid)
320 {
321 	if (vpid < 0 || vpid > 0xffff)
322 		panic("vpid_free: invalid vpid %d", vpid);
323 
324 	/*
325 	 * VPIDs [0,VM_MAXCPU] are special and are not allocated from
326 	 * the unit number allocator.
327 	 */
328 
329 	if (vpid > VM_MAXCPU)
330 		free_unr(vpid_unr, vpid);
331 }
332 
333 static void
334 vpid_alloc(uint16_t *vpid, int num)
335 {
336 	int i, x;
337 
338 	if (num <= 0 || num > VM_MAXCPU)
339 		panic("invalid number of vpids requested: %d", num);
340 
341 	/*
342 	 * If the "enable vpid" execution control is not enabled then the
343 	 * VPID is required to be 0 for all vcpus.
344 	 */
345 	if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) {
346 		for (i = 0; i < num; i++)
347 			vpid[i] = 0;
348 		return;
349 	}
350 
351 	/*
352 	 * Allocate a unique VPID for each vcpu from the unit number allocator.
353 	 */
354 	for (i = 0; i < num; i++) {
355 		x = alloc_unr(vpid_unr);
356 		if (x == -1)
357 			break;
358 		else
359 			vpid[i] = x;
360 	}
361 
362 	if (i < num) {
363 		atomic_add_int(&vpid_alloc_failed, 1);
364 
365 		/*
366 		 * If the unit number allocator does not have enough unique
367 		 * VPIDs then we need to allocate from the [1,VM_MAXCPU] range.
368 		 *
369 		 * These VPIDs are not be unique across VMs but this does not
370 		 * affect correctness because the combined mappings are also
371 		 * tagged with the EP4TA which is unique for each VM.
372 		 *
373 		 * It is still sub-optimal because the invvpid will invalidate
374 		 * combined mappings for a particular VPID across all EP4TAs.
375 		 */
376 		while (i-- > 0)
377 			vpid_free(vpid[i]);
378 
379 		for (i = 0; i < num; i++)
380 			vpid[i] = i + 1;
381 	}
382 }
383 
384 static void
385 vpid_init(void)
386 {
387 	/*
388 	 * VPID 0 is required when the "enable VPID" execution control is
389 	 * disabled.
390 	 *
391 	 * VPIDs [1,VM_MAXCPU] are used as the "overflow namespace" when the
392 	 * unit number allocator does not have sufficient unique VPIDs to
393 	 * satisfy the allocation.
394 	 *
395 	 * The remaining VPIDs are managed by the unit number allocator.
396 	 */
397 	vpid_unr = new_unrhdr(VM_MAXCPU + 1, 0xffff, NULL);
398 }
399 
400 static void
401 msr_save_area_init(struct msr_entry *g_area, int *g_count)
402 {
403 	int cnt;
404 
405 	static struct msr_entry guest_msrs[] = {
406 		{ MSR_KGSBASE, 0, 0 },
407 	};
408 
409 	cnt = sizeof(guest_msrs) / sizeof(guest_msrs[0]);
410 	if (cnt > GUEST_MSR_MAX_ENTRIES)
411 		panic("guest msr save area overrun");
412 	bcopy(guest_msrs, g_area, sizeof(guest_msrs));
413 	*g_count = cnt;
414 }
415 
416 static void
417 vmx_disable(void *arg __unused)
418 {
419 	struct invvpid_desc invvpid_desc = { 0 };
420 	struct invept_desc invept_desc = { 0 };
421 
422 	if (vmxon_enabled[curcpu]) {
423 		/*
424 		 * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b.
425 		 *
426 		 * VMXON or VMXOFF are not required to invalidate any TLB
427 		 * caching structures. This prevents potential retention of
428 		 * cached information in the TLB between distinct VMX episodes.
429 		 */
430 		invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc);
431 		invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc);
432 		vmxoff();
433 	}
434 	load_cr4(rcr4() & ~CR4_VMXE);
435 }
436 
437 static int
438 vmx_cleanup(void)
439 {
440 
441 	if (pirvec != 0)
442 		vmm_ipi_free(pirvec);
443 
444 	if (vpid_unr != NULL) {
445 		delete_unrhdr(vpid_unr);
446 		vpid_unr = NULL;
447 	}
448 
449 	smp_rendezvous(NULL, vmx_disable, NULL, NULL);
450 
451 	return (0);
452 }
453 
454 static void
455 vmx_enable(void *arg __unused)
456 {
457 	int error;
458 
459 	load_cr4(rcr4() | CR4_VMXE);
460 
461 	*(uint32_t *)vmxon_region[curcpu] = vmx_revision();
462 	error = vmxon(vmxon_region[curcpu]);
463 	if (error == 0)
464 		vmxon_enabled[curcpu] = 1;
465 }
466 
467 static void
468 vmx_restore(void)
469 {
470 
471 	if (vmxon_enabled[curcpu])
472 		vmxon(vmxon_region[curcpu]);
473 }
474 
475 static int
476 vmx_init(int ipinum)
477 {
478 	int error, use_tpr_shadow;
479 	uint64_t fixed0, fixed1, feature_control;
480 	uint32_t tmp, procbased2_vid_bits;
481 
482 	/* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */
483 	if (!(cpu_feature2 & CPUID2_VMX)) {
484 		printf("vmx_init: processor does not support VMX operation\n");
485 		return (ENXIO);
486 	}
487 
488 	/*
489 	 * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits
490 	 * are set (bits 0 and 2 respectively).
491 	 */
492 	feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
493 	if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 ||
494 	    (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
495 		printf("vmx_init: VMX operation disabled by BIOS\n");
496 		return (ENXIO);
497 	}
498 
499 	/* Check support for primary processor-based VM-execution controls */
500 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
501 			       MSR_VMX_TRUE_PROCBASED_CTLS,
502 			       PROCBASED_CTLS_ONE_SETTING,
503 			       PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
504 	if (error) {
505 		printf("vmx_init: processor does not support desired primary "
506 		       "processor-based controls\n");
507 		return (error);
508 	}
509 
510 	/* Clear the processor-based ctl bits that are set on demand */
511 	procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
512 
513 	/* Check support for secondary processor-based VM-execution controls */
514 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
515 			       MSR_VMX_PROCBASED_CTLS2,
516 			       PROCBASED_CTLS2_ONE_SETTING,
517 			       PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
518 	if (error) {
519 		printf("vmx_init: processor does not support desired secondary "
520 		       "processor-based controls\n");
521 		return (error);
522 	}
523 
524 	/* Check support for VPID */
525 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
526 			       PROCBASED2_ENABLE_VPID, 0, &tmp);
527 	if (error == 0)
528 		procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
529 
530 	/* Check support for pin-based VM-execution controls */
531 	error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
532 			       MSR_VMX_TRUE_PINBASED_CTLS,
533 			       PINBASED_CTLS_ONE_SETTING,
534 			       PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
535 	if (error) {
536 		printf("vmx_init: processor does not support desired "
537 		       "pin-based controls\n");
538 		return (error);
539 	}
540 
541 	/* Check support for VM-exit controls */
542 	error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
543 			       VM_EXIT_CTLS_ONE_SETTING,
544 			       VM_EXIT_CTLS_ZERO_SETTING,
545 			       &exit_ctls);
546 	if (error) {
547 		/* Try again without the PAT MSR bits */
548 		error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS,
549 				       MSR_VMX_TRUE_EXIT_CTLS,
550 				       VM_EXIT_CTLS_ONE_SETTING_NO_PAT,
551 				       VM_EXIT_CTLS_ZERO_SETTING,
552 				       &exit_ctls);
553 		if (error) {
554 			printf("vmx_init: processor does not support desired "
555 			       "exit controls\n");
556 			return (error);
557 		} else {
558 			if (bootverbose)
559 				printf("vmm: PAT MSR access not supported\n");
560 			guest_msr_valid(MSR_PAT);
561 			vmx_no_patmsr = 1;
562 		}
563 	}
564 
565 	/* Check support for VM-entry controls */
566 	if (!vmx_no_patmsr) {
567 		error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS,
568 				       MSR_VMX_TRUE_ENTRY_CTLS,
569 				       VM_ENTRY_CTLS_ONE_SETTING,
570 				       VM_ENTRY_CTLS_ZERO_SETTING,
571 				       &entry_ctls);
572 	} else {
573 		error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS,
574 				       MSR_VMX_TRUE_ENTRY_CTLS,
575 				       VM_ENTRY_CTLS_ONE_SETTING_NO_PAT,
576 				       VM_ENTRY_CTLS_ZERO_SETTING,
577 				       &entry_ctls);
578 	}
579 
580 	if (error) {
581 		printf("vmx_init: processor does not support desired "
582 		       "entry controls\n");
583 		       return (error);
584 	}
585 
586 	/*
587 	 * Check support for optional features by testing them
588 	 * as individual bits
589 	 */
590 	cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
591 					MSR_VMX_TRUE_PROCBASED_CTLS,
592 					PROCBASED_HLT_EXITING, 0,
593 					&tmp) == 0);
594 
595 	cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
596 					MSR_VMX_PROCBASED_CTLS,
597 					PROCBASED_MTF, 0,
598 					&tmp) == 0);
599 
600 	cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
601 					 MSR_VMX_TRUE_PROCBASED_CTLS,
602 					 PROCBASED_PAUSE_EXITING, 0,
603 					 &tmp) == 0);
604 
605 	cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
606 					MSR_VMX_PROCBASED_CTLS2,
607 					PROCBASED2_UNRESTRICTED_GUEST, 0,
608 				        &tmp) == 0);
609 
610 	cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
611 	    MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
612 	    &tmp) == 0);
613 
614 	/*
615 	 * Check support for virtual interrupt delivery.
616 	 */
617 	procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
618 	    PROCBASED2_VIRTUALIZE_X2APIC_MODE |
619 	    PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
620 	    PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY);
621 
622 	use_tpr_shadow = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
623 	    MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0,
624 	    &tmp) == 0);
625 
626 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
627 	    procbased2_vid_bits, 0, &tmp);
628 	if (error == 0 && use_tpr_shadow) {
629 		virtual_interrupt_delivery = 1;
630 		TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid",
631 		    &virtual_interrupt_delivery);
632 	}
633 
634 	if (virtual_interrupt_delivery) {
635 		procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
636 		procbased_ctls2 |= procbased2_vid_bits;
637 		procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE;
638 
639 		/*
640 		 * Check for Posted Interrupts only if Virtual Interrupt
641 		 * Delivery is enabled.
642 		 */
643 		error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
644 		    MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0,
645 		    &tmp);
646 		if (error == 0) {
647 			pirvec = vmm_ipi_alloc();
648 			if (pirvec == 0) {
649 				if (bootverbose) {
650 					printf("vmx_init: unable to allocate "
651 					    "posted interrupt vector\n");
652 				}
653 			} else {
654 				posted_interrupts = 1;
655 				TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir",
656 				    &posted_interrupts);
657 			}
658 		}
659 	}
660 
661 	if (posted_interrupts)
662 		    pinbased_ctls |= PINBASED_POSTED_INTERRUPT;
663 
664 	/* Initialize EPT */
665 	error = ept_init(ipinum);
666 	if (error) {
667 		printf("vmx_init: ept initialization failed (%d)\n", error);
668 		return (error);
669 	}
670 
671 	/*
672 	 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
673 	 */
674 	fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
675 	fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
676 	cr0_ones_mask = fixed0 & fixed1;
677 	cr0_zeros_mask = ~fixed0 & ~fixed1;
678 
679 	/*
680 	 * CR0_PE and CR0_PG can be set to zero in VMX non-root operation
681 	 * if unrestricted guest execution is allowed.
682 	 */
683 	if (cap_unrestricted_guest)
684 		cr0_ones_mask &= ~(CR0_PG | CR0_PE);
685 
686 	/*
687 	 * Do not allow the guest to set CR0_NW or CR0_CD.
688 	 */
689 	cr0_zeros_mask |= (CR0_NW | CR0_CD);
690 
691 	fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
692 	fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
693 	cr4_ones_mask = fixed0 & fixed1;
694 	cr4_zeros_mask = ~fixed0 & ~fixed1;
695 
696 	vpid_init();
697 
698 	/* enable VMX operation */
699 	smp_rendezvous(NULL, vmx_enable, NULL, NULL);
700 
701 	vmx_initialized = 1;
702 
703 	return (0);
704 }
705 
706 static void
707 vmx_trigger_hostintr(int vector)
708 {
709 	uintptr_t func;
710 	struct gate_descriptor *gd;
711 
712 	gd = &idt[vector];
713 
714 	KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: "
715 	    "invalid vector %d", vector));
716 	KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present",
717 	    vector));
718 	KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d "
719 	    "has invalid type %d", vector, gd->gd_type));
720 	KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d "
721 	    "has invalid dpl %d", vector, gd->gd_dpl));
722 	KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor "
723 	    "for vector %d has invalid selector %d", vector, gd->gd_selector));
724 	KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid "
725 	    "IST %d", vector, gd->gd_ist));
726 
727 	func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset);
728 	vmx_call_isr(func);
729 }
730 
731 static int
732 vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial)
733 {
734 	int error, mask_ident, shadow_ident;
735 	uint64_t mask_value;
736 
737 	if (which != 0 && which != 4)
738 		panic("vmx_setup_cr_shadow: unknown cr%d", which);
739 
740 	if (which == 0) {
741 		mask_ident = VMCS_CR0_MASK;
742 		mask_value = cr0_ones_mask | cr0_zeros_mask;
743 		shadow_ident = VMCS_CR0_SHADOW;
744 	} else {
745 		mask_ident = VMCS_CR4_MASK;
746 		mask_value = cr4_ones_mask | cr4_zeros_mask;
747 		shadow_ident = VMCS_CR4_SHADOW;
748 	}
749 
750 	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value);
751 	if (error)
752 		return (error);
753 
754 	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial);
755 	if (error)
756 		return (error);
757 
758 	return (0);
759 }
760 #define	vmx_setup_cr0_shadow(vmcs,init)	vmx_setup_cr_shadow(0, (vmcs), (init))
761 #define	vmx_setup_cr4_shadow(vmcs,init)	vmx_setup_cr_shadow(4, (vmcs), (init))
762 
763 static void *
764 vmx_vminit(struct vm *vm, pmap_t pmap)
765 {
766 	uint16_t vpid[VM_MAXCPU];
767 	int i, error, guest_msr_count;
768 	struct vmx *vmx;
769 	struct vmcs *vmcs;
770 
771 	vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO);
772 	if ((uintptr_t)vmx & PAGE_MASK) {
773 		panic("malloc of struct vmx not aligned on %d byte boundary",
774 		      PAGE_SIZE);
775 	}
776 	vmx->vm = vm;
777 
778 	vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pml4));
779 
780 	/*
781 	 * Clean up EPTP-tagged guest physical and combined mappings
782 	 *
783 	 * VMX transitions are not required to invalidate any guest physical
784 	 * mappings. So, it may be possible for stale guest physical mappings
785 	 * to be present in the processor TLBs.
786 	 *
787 	 * Combined mappings for this EP4TA are also invalidated for all VPIDs.
788 	 */
789 	ept_invalidate_mappings(vmx->eptp);
790 
791 	msr_bitmap_initialize(vmx->msr_bitmap);
792 
793 	/*
794 	 * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE.
795 	 * The guest FSBASE and GSBASE are saved and restored during
796 	 * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are
797 	 * always restored from the vmcs host state area on vm-exit.
798 	 *
799 	 * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in
800 	 * how they are saved/restored so can be directly accessed by the
801 	 * guest.
802 	 *
803 	 * Guest KGSBASE is saved and restored in the guest MSR save area.
804 	 * Host KGSBASE is restored before returning to userland from the pcb.
805 	 * There will be a window of time when we are executing in the host
806 	 * kernel context with a value of KGSBASE from the guest. This is ok
807 	 * because the value of KGSBASE is inconsequential in kernel context.
808 	 *
809 	 * MSR_EFER is saved and restored in the guest VMCS area on a
810 	 * VM exit and entry respectively. It is also restored from the
811 	 * host VMCS area on a VM exit.
812 	 */
813 	if (guest_msr_rw(vmx, MSR_GSBASE) ||
814 	    guest_msr_rw(vmx, MSR_FSBASE) ||
815 	    guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) ||
816 	    guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) ||
817 	    guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) ||
818 	    guest_msr_rw(vmx, MSR_KGSBASE) ||
819 	    guest_msr_rw(vmx, MSR_EFER))
820 		panic("vmx_vminit: error setting guest msr access");
821 
822 	/*
823 	 * MSR_PAT is saved and restored in the guest VMCS are on a VM exit
824 	 * and entry respectively. It is also restored from the host VMCS
825 	 * area on a VM exit. However, if running on a system with no
826 	 * MSR_PAT save/restore support, leave access disabled so accesses
827 	 * will be trapped.
828 	 */
829 	if (!vmx_no_patmsr && guest_msr_rw(vmx, MSR_PAT))
830 		panic("vmx_vminit: error setting guest pat msr access");
831 
832 	vpid_alloc(vpid, VM_MAXCPU);
833 
834 	if (virtual_interrupt_delivery) {
835 		error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE,
836 		    APIC_ACCESS_ADDRESS);
837 		/* XXX this should really return an error to the caller */
838 		KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error));
839 	}
840 
841 	for (i = 0; i < VM_MAXCPU; i++) {
842 		vmcs = &vmx->vmcs[i];
843 		vmcs->identifier = vmx_revision();
844 		error = vmclear(vmcs);
845 		if (error != 0) {
846 			panic("vmx_vminit: vmclear error %d on vcpu %d\n",
847 			      error, i);
848 		}
849 
850 		error = vmcs_init(vmcs);
851 		KASSERT(error == 0, ("vmcs_init error %d", error));
852 
853 		VMPTRLD(vmcs);
854 		error = 0;
855 		error += vmwrite(VMCS_HOST_RSP, (u_long)&vmx->ctx[i]);
856 		error += vmwrite(VMCS_EPTP, vmx->eptp);
857 		error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls);
858 		error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls);
859 		error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2);
860 		error += vmwrite(VMCS_EXIT_CTLS, exit_ctls);
861 		error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls);
862 		error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap));
863 		error += vmwrite(VMCS_VPID, vpid[i]);
864 		if (virtual_interrupt_delivery) {
865 			error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS);
866 			error += vmwrite(VMCS_VIRTUAL_APIC,
867 			    vtophys(&vmx->apic_page[i]));
868 			error += vmwrite(VMCS_EOI_EXIT0, 0);
869 			error += vmwrite(VMCS_EOI_EXIT1, 0);
870 			error += vmwrite(VMCS_EOI_EXIT2, 0);
871 			error += vmwrite(VMCS_EOI_EXIT3, 0);
872 		}
873 		if (posted_interrupts) {
874 			error += vmwrite(VMCS_PIR_VECTOR, pirvec);
875 			error += vmwrite(VMCS_PIR_DESC,
876 			    vtophys(&vmx->pir_desc[i]));
877 		}
878 		VMCLEAR(vmcs);
879 		KASSERT(error == 0, ("vmx_vminit: error customizing the vmcs"));
880 
881 		vmx->cap[i].set = 0;
882 		vmx->cap[i].proc_ctls = procbased_ctls;
883 		vmx->cap[i].proc_ctls2 = procbased_ctls2;
884 
885 		vmx->state[i].lastcpu = -1;
886 		vmx->state[i].vpid = vpid[i];
887 
888 		msr_save_area_init(vmx->guest_msrs[i], &guest_msr_count);
889 
890 		error = vmcs_set_msr_save(vmcs, vtophys(vmx->guest_msrs[i]),
891 		    guest_msr_count);
892 		if (error != 0)
893 			panic("vmcs_set_msr_save error %d", error);
894 
895 		/*
896 		 * Set up the CR0/4 shadows, and init the read shadow
897 		 * to the power-on register value from the Intel Sys Arch.
898 		 *  CR0 - 0x60000010
899 		 *  CR4 - 0
900 		 */
901 		error = vmx_setup_cr0_shadow(vmcs, 0x60000010);
902 		if (error != 0)
903 			panic("vmx_setup_cr0_shadow %d", error);
904 
905 		error = vmx_setup_cr4_shadow(vmcs, 0);
906 		if (error != 0)
907 			panic("vmx_setup_cr4_shadow %d", error);
908 
909 		vmx->ctx[i].pmap = pmap;
910 		vmx->ctx[i].eptp = vmx->eptp;
911 	}
912 
913 	return (vmx);
914 }
915 
916 static int
917 vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx)
918 {
919 	int handled, func;
920 
921 	func = vmxctx->guest_rax;
922 
923 	handled = x86_emulate_cpuid(vm, vcpu,
924 				    (uint32_t*)(&vmxctx->guest_rax),
925 				    (uint32_t*)(&vmxctx->guest_rbx),
926 				    (uint32_t*)(&vmxctx->guest_rcx),
927 				    (uint32_t*)(&vmxctx->guest_rdx));
928 	return (handled);
929 }
930 
931 static __inline void
932 vmx_run_trace(struct vmx *vmx, int vcpu)
933 {
934 #ifdef KTR
935 	VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %#lx", vmcs_guest_rip());
936 #endif
937 }
938 
939 static __inline void
940 vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason,
941 	       int handled)
942 {
943 #ifdef KTR
944 	VCPU_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx",
945 		 handled ? "handled" : "unhandled",
946 		 exit_reason_to_str(exit_reason), rip);
947 #endif
948 }
949 
950 static __inline void
951 vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip)
952 {
953 #ifdef KTR
954 	VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip);
955 #endif
956 }
957 
958 static void
959 vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu)
960 {
961 	int lastcpu;
962 	struct vmxstate *vmxstate;
963 	struct invvpid_desc invvpid_desc = { 0 };
964 
965 	vmxstate = &vmx->state[vcpu];
966 	lastcpu = vmxstate->lastcpu;
967 	vmxstate->lastcpu = curcpu;
968 
969 	if (lastcpu == curcpu)
970 		return;
971 
972 	vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1);
973 
974 	vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
975 	vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
976 	vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
977 
978 	/*
979 	 * If we are using VPIDs then invalidate all mappings tagged with 'vpid'
980 	 *
981 	 * We do this because this vcpu was executing on a different host
982 	 * cpu when it last ran. We do not track whether it invalidated
983 	 * mappings associated with its 'vpid' during that run. So we must
984 	 * assume that the mappings associated with 'vpid' on 'curcpu' are
985 	 * stale and invalidate them.
986 	 *
987 	 * Note that we incur this penalty only when the scheduler chooses to
988 	 * move the thread associated with this vcpu between host cpus.
989 	 *
990 	 * Note also that this will invalidate mappings tagged with 'vpid'
991 	 * for "all" EP4TAs.
992 	 */
993 	if (vmxstate->vpid != 0) {
994 		invvpid_desc.vpid = vmxstate->vpid;
995 		invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
996 	}
997 }
998 
999 /*
1000  * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
1001  */
1002 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
1003 
1004 static void __inline
1005 vmx_set_int_window_exiting(struct vmx *vmx, int vcpu)
1006 {
1007 
1008 	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) {
1009 		vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
1010 		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1011 		VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting");
1012 	}
1013 }
1014 
1015 static void __inline
1016 vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu)
1017 {
1018 
1019 	KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0,
1020 	    ("intr_window_exiting not set: %#x", vmx->cap[vcpu].proc_ctls));
1021 	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
1022 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1023 	VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting");
1024 }
1025 
1026 static void __inline
1027 vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu)
1028 {
1029 
1030 	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) {
1031 		vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
1032 		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1033 		VCPU_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting");
1034 	}
1035 }
1036 
1037 static void __inline
1038 vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu)
1039 {
1040 
1041 	KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0,
1042 	    ("nmi_window_exiting not set %#x", vmx->cap[vcpu].proc_ctls));
1043 	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
1044 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1045 	VCPU_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting");
1046 }
1047 
1048 #define	NMI_BLOCKING	(VMCS_INTERRUPTIBILITY_NMI_BLOCKING |		\
1049 			 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1050 #define	HWINTR_BLOCKING	(VMCS_INTERRUPTIBILITY_STI_BLOCKING |		\
1051 			 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1052 
1053 static void
1054 vmx_inject_nmi(struct vmx *vmx, int vcpu)
1055 {
1056 	uint32_t gi, info;
1057 
1058 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1059 	KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest "
1060 	    "interruptibility-state %#x", gi));
1061 
1062 	info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1063 	KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid "
1064 	    "VM-entry interruption information %#x", info));
1065 
1066 	/*
1067 	 * Inject the virtual NMI. The vector must be the NMI IDT entry
1068 	 * or the VMCS entry check will fail.
1069 	 */
1070 	info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID;
1071 	vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1072 
1073 	VCPU_CTR0(vmx->vm, vcpu, "Injecting vNMI");
1074 
1075 	/* Clear the request */
1076 	vm_nmi_clear(vmx->vm, vcpu);
1077 }
1078 
1079 static void
1080 vmx_inject_interrupts(struct vmx *vmx, int vcpu, struct vlapic *vlapic)
1081 {
1082 	int vector, need_nmi_exiting;
1083 	uint64_t rflags;
1084 	uint32_t gi, info;
1085 
1086 	if (vm_nmi_pending(vmx->vm, vcpu)) {
1087 		/*
1088 		 * If there are no conditions blocking NMI injection then
1089 		 * inject it directly here otherwise enable "NMI window
1090 		 * exiting" to inject it as soon as we can.
1091 		 *
1092 		 * We also check for STI_BLOCKING because some implementations
1093 		 * don't allow NMI injection in this case. If we are running
1094 		 * on a processor that doesn't have this restriction it will
1095 		 * immediately exit and the NMI will be injected in the
1096 		 * "NMI window exiting" handler.
1097 		 */
1098 		need_nmi_exiting = 1;
1099 		gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1100 		if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) {
1101 			info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1102 			if ((info & VMCS_INTR_VALID) == 0) {
1103 				vmx_inject_nmi(vmx, vcpu);
1104 				need_nmi_exiting = 0;
1105 			} else {
1106 				VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI "
1107 				    "due to VM-entry intr info %#x", info);
1108 			}
1109 		} else {
1110 			VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI due to "
1111 			    "Guest Interruptibility-state %#x", gi);
1112 		}
1113 
1114 		if (need_nmi_exiting)
1115 			vmx_set_nmi_window_exiting(vmx, vcpu);
1116 	}
1117 
1118 	if (virtual_interrupt_delivery) {
1119 		vmx_inject_pir(vlapic);
1120 		return;
1121 	}
1122 
1123 	/*
1124 	 * If interrupt-window exiting is already in effect then don't bother
1125 	 * checking for pending interrupts. This is just an optimization and
1126 	 * not needed for correctness.
1127 	 */
1128 	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0) {
1129 		VCPU_CTR0(vmx->vm, vcpu, "Skip interrupt injection due to "
1130 		    "pending int_window_exiting");
1131 		return;
1132 	}
1133 
1134 	/* Ask the local apic for a vector to inject */
1135 	if (!vlapic_pending_intr(vlapic, &vector))
1136 		return;
1137 
1138 	KASSERT(vector >= 32 && vector <= 255, ("invalid vector %d", vector));
1139 
1140 	/* Check RFLAGS.IF and the interruptibility state of the guest */
1141 	rflags = vmcs_read(VMCS_GUEST_RFLAGS);
1142 	if ((rflags & PSL_I) == 0) {
1143 		VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1144 		    "rflags %#lx", vector, rflags);
1145 		goto cantinject;
1146 	}
1147 
1148 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1149 	if (gi & HWINTR_BLOCKING) {
1150 		VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1151 		    "Guest Interruptibility-state %#x", vector, gi);
1152 		goto cantinject;
1153 	}
1154 
1155 	info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1156 	if (info & VMCS_INTR_VALID) {
1157 		/*
1158 		 * This is expected and could happen for multiple reasons:
1159 		 * - A vectoring VM-entry was aborted due to astpending
1160 		 * - A VM-exit happened during event injection.
1161 		 * - An NMI was injected above or after "NMI window exiting"
1162 		 */
1163 		VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1164 		    "VM-entry intr info %#x", vector, info);
1165 		goto cantinject;
1166 	}
1167 
1168 	/* Inject the interrupt */
1169 	info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID;
1170 	info |= vector;
1171 	vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1172 
1173 	/* Update the Local APIC ISR */
1174 	vlapic_intr_accepted(vlapic, vector);
1175 
1176 	VCPU_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector);
1177 
1178 	return;
1179 
1180 cantinject:
1181 	/*
1182 	 * Set the Interrupt Window Exiting execution control so we can inject
1183 	 * the interrupt as soon as blocking condition goes away.
1184 	 */
1185 	vmx_set_int_window_exiting(vmx, vcpu);
1186 }
1187 
1188 /*
1189  * If the Virtual NMIs execution control is '1' then the logical processor
1190  * tracks virtual-NMI blocking in the Guest Interruptibility-state field of
1191  * the VMCS. An IRET instruction in VMX non-root operation will remove any
1192  * virtual-NMI blocking.
1193  *
1194  * This unblocking occurs even if the IRET causes a fault. In this case the
1195  * hypervisor needs to restore virtual-NMI blocking before resuming the guest.
1196  */
1197 static void
1198 vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid)
1199 {
1200 	uint32_t gi;
1201 
1202 	VCPU_CTR0(vmx->vm, vcpuid, "Restore Virtual-NMI blocking");
1203 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1204 	gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1205 	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1206 }
1207 
1208 static void
1209 vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid)
1210 {
1211 	uint32_t gi;
1212 
1213 	VCPU_CTR0(vmx->vm, vcpuid, "Clear Virtual-NMI blocking");
1214 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1215 	gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1216 	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1217 }
1218 
1219 static int
1220 vmx_emulate_cr_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1221 {
1222 	int cr, vmcs_guest_cr, vmcs_shadow_cr;
1223 	uint64_t crval, regval, ones_mask, zeros_mask;
1224 	const struct vmxctx *vmxctx;
1225 
1226 	/* We only handle mov to %cr0 or %cr4 at this time */
1227 	if ((exitqual & 0xf0) != 0x00)
1228 		return (UNHANDLED);
1229 
1230 	cr = exitqual & 0xf;
1231 	if (cr != 0 && cr != 4)
1232 		return (UNHANDLED);
1233 
1234 	regval = 0; /* silence gcc */
1235 	vmxctx = &vmx->ctx[vcpu];
1236 
1237 	/*
1238 	 * We must use vmcs_write() directly here because vmcs_setreg() will
1239 	 * call vmclear(vmcs) as a side-effect which we certainly don't want.
1240 	 */
1241 	switch ((exitqual >> 8) & 0xf) {
1242 	case 0:
1243 		regval = vmxctx->guest_rax;
1244 		break;
1245 	case 1:
1246 		regval = vmxctx->guest_rcx;
1247 		break;
1248 	case 2:
1249 		regval = vmxctx->guest_rdx;
1250 		break;
1251 	case 3:
1252 		regval = vmxctx->guest_rbx;
1253 		break;
1254 	case 4:
1255 		regval = vmcs_read(VMCS_GUEST_RSP);
1256 		break;
1257 	case 5:
1258 		regval = vmxctx->guest_rbp;
1259 		break;
1260 	case 6:
1261 		regval = vmxctx->guest_rsi;
1262 		break;
1263 	case 7:
1264 		regval = vmxctx->guest_rdi;
1265 		break;
1266 	case 8:
1267 		regval = vmxctx->guest_r8;
1268 		break;
1269 	case 9:
1270 		regval = vmxctx->guest_r9;
1271 		break;
1272 	case 10:
1273 		regval = vmxctx->guest_r10;
1274 		break;
1275 	case 11:
1276 		regval = vmxctx->guest_r11;
1277 		break;
1278 	case 12:
1279 		regval = vmxctx->guest_r12;
1280 		break;
1281 	case 13:
1282 		regval = vmxctx->guest_r13;
1283 		break;
1284 	case 14:
1285 		regval = vmxctx->guest_r14;
1286 		break;
1287 	case 15:
1288 		regval = vmxctx->guest_r15;
1289 		break;
1290 	}
1291 
1292 	if (cr == 0) {
1293 		ones_mask = cr0_ones_mask;
1294 		zeros_mask = cr0_zeros_mask;
1295 		vmcs_guest_cr = VMCS_GUEST_CR0;
1296 		vmcs_shadow_cr = VMCS_CR0_SHADOW;
1297 	} else {
1298 		ones_mask = cr4_ones_mask;
1299 		zeros_mask = cr4_zeros_mask;
1300 		vmcs_guest_cr = VMCS_GUEST_CR4;
1301 		vmcs_shadow_cr = VMCS_CR4_SHADOW;
1302 	}
1303 	vmcs_write(vmcs_shadow_cr, regval);
1304 
1305 	crval = regval | ones_mask;
1306 	crval &= ~zeros_mask;
1307 	vmcs_write(vmcs_guest_cr, crval);
1308 
1309 	if (cr == 0 && regval & CR0_PG) {
1310 		uint64_t efer, entry_ctls;
1311 
1312 		/*
1313 		 * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and
1314 		 * the "IA-32e mode guest" bit in VM-entry control must be
1315 		 * equal.
1316 		 */
1317 		efer = vmcs_read(VMCS_GUEST_IA32_EFER);
1318 		if (efer & EFER_LME) {
1319 			efer |= EFER_LMA;
1320 			vmcs_write(VMCS_GUEST_IA32_EFER, efer);
1321 			entry_ctls = vmcs_read(VMCS_ENTRY_CTLS);
1322 			entry_ctls |= VM_ENTRY_GUEST_LMA;
1323 			vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
1324 		}
1325 	}
1326 
1327 	return (HANDLED);
1328 }
1329 
1330 static int
1331 ept_fault_type(uint64_t ept_qual)
1332 {
1333 	int fault_type;
1334 
1335 	if (ept_qual & EPT_VIOLATION_DATA_WRITE)
1336 		fault_type = VM_PROT_WRITE;
1337 	else if (ept_qual & EPT_VIOLATION_INST_FETCH)
1338 		fault_type = VM_PROT_EXECUTE;
1339 	else
1340 		fault_type= VM_PROT_READ;
1341 
1342 	return (fault_type);
1343 }
1344 
1345 static boolean_t
1346 ept_emulation_fault(uint64_t ept_qual)
1347 {
1348 	int read, write;
1349 
1350 	/* EPT fault on an instruction fetch doesn't make sense here */
1351 	if (ept_qual & EPT_VIOLATION_INST_FETCH)
1352 		return (FALSE);
1353 
1354 	/* EPT fault must be a read fault or a write fault */
1355 	read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
1356 	write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
1357 	if ((read | write) == 0)
1358 		return (FALSE);
1359 
1360 	/*
1361 	 * The EPT violation must have been caused by accessing a
1362 	 * guest-physical address that is a translation of a guest-linear
1363 	 * address.
1364 	 */
1365 	if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
1366 	    (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
1367 		return (FALSE);
1368 	}
1369 
1370 	return (TRUE);
1371 }
1372 
1373 static int
1374 vmx_handle_apic_write(struct vlapic *vlapic, uint64_t qual)
1375 {
1376 	int error, handled, offset;
1377 	bool retu;
1378 
1379 	if (!virtual_interrupt_delivery)
1380 		return (UNHANDLED);
1381 
1382 	handled = 1;
1383 	offset = APIC_WRITE_OFFSET(qual);
1384 	switch (offset) {
1385 	case APIC_OFFSET_ID:
1386 		vlapic_id_write_handler(vlapic);
1387 		break;
1388 	case APIC_OFFSET_LDR:
1389 		vlapic_ldr_write_handler(vlapic);
1390 		break;
1391 	case APIC_OFFSET_DFR:
1392 		vlapic_dfr_write_handler(vlapic);
1393 		break;
1394 	case APIC_OFFSET_SVR:
1395 		vlapic_svr_write_handler(vlapic);
1396 		break;
1397 	case APIC_OFFSET_ESR:
1398 		vlapic_esr_write_handler(vlapic);
1399 		break;
1400 	case APIC_OFFSET_ICR_LOW:
1401 		retu = false;
1402 		error = vlapic_icrlo_write_handler(vlapic, &retu);
1403 		if (error != 0 || retu)
1404 			handled = 0;
1405 		break;
1406 	case APIC_OFFSET_CMCI_LVT:
1407 	case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT:
1408 		vlapic_lvt_write_handler(vlapic, offset);
1409 		break;
1410 	case APIC_OFFSET_TIMER_ICR:
1411 		vlapic_icrtmr_write_handler(vlapic);
1412 		break;
1413 	case APIC_OFFSET_TIMER_DCR:
1414 		vlapic_dcr_write_handler(vlapic);
1415 		break;
1416 	default:
1417 		handled = 0;
1418 		break;
1419 	}
1420 	return (handled);
1421 }
1422 
1423 static bool
1424 apic_access_fault(uint64_t gpa)
1425 {
1426 
1427 	if (virtual_interrupt_delivery &&
1428 	    (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE))
1429 		return (true);
1430 	else
1431 		return (false);
1432 }
1433 
1434 static int
1435 vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
1436 {
1437 	uint64_t qual;
1438 	int access_type, offset, allowed;
1439 
1440 	if (!virtual_interrupt_delivery)
1441 		return (UNHANDLED);
1442 
1443 	qual = vmexit->u.vmx.exit_qualification;
1444 	access_type = APIC_ACCESS_TYPE(qual);
1445 	offset = APIC_ACCESS_OFFSET(qual);
1446 
1447 	allowed = 0;
1448 	if (access_type == 0) {
1449 		/*
1450 		 * Read data access to the following registers is expected.
1451 		 */
1452 		switch (offset) {
1453 		case APIC_OFFSET_APR:
1454 		case APIC_OFFSET_PPR:
1455 		case APIC_OFFSET_RRR:
1456 		case APIC_OFFSET_CMCI_LVT:
1457 		case APIC_OFFSET_TIMER_CCR:
1458 			allowed = 1;
1459 			break;
1460 		default:
1461 			break;
1462 		}
1463 	} else if (access_type == 1) {
1464 		/*
1465 		 * Write data access to the following registers is expected.
1466 		 */
1467 		switch (offset) {
1468 		case APIC_OFFSET_VER:
1469 		case APIC_OFFSET_APR:
1470 		case APIC_OFFSET_PPR:
1471 		case APIC_OFFSET_RRR:
1472 		case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7:
1473 		case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7:
1474 		case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7:
1475 		case APIC_OFFSET_CMCI_LVT:
1476 		case APIC_OFFSET_TIMER_CCR:
1477 			allowed = 1;
1478 			break;
1479 		default:
1480 			break;
1481 		}
1482 	}
1483 
1484 	if (allowed) {
1485 		vmexit->exitcode = VM_EXITCODE_INST_EMUL;
1486 		vmexit->u.inst_emul.gpa = DEFAULT_APIC_BASE + offset;
1487 		vmexit->u.inst_emul.gla = VIE_INVALID_GLA;
1488 		vmexit->u.inst_emul.cr3 = vmcs_guest_cr3();
1489 	}
1490 
1491 	/*
1492 	 * Regardless of whether the APIC-access is allowed this handler
1493 	 * always returns UNHANDLED:
1494 	 * - if the access is allowed then it is handled by emulating the
1495 	 *   instruction that caused the VM-exit (outside the critical section)
1496 	 * - if the access is not allowed then it will be converted to an
1497 	 *   exitcode of VM_EXITCODE_VMX and will be dealt with in userland.
1498 	 */
1499 	return (UNHANDLED);
1500 }
1501 
1502 static int
1503 vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1504 {
1505 	int error, handled;
1506 	struct vmxctx *vmxctx;
1507 	struct vlapic *vlapic;
1508 	uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, reason;
1509 	uint64_t qual, gpa;
1510 	bool retu;
1511 
1512 	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0);
1513 	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0);
1514 
1515 	handled = 0;
1516 	vmxctx = &vmx->ctx[vcpu];
1517 
1518 	qual = vmexit->u.vmx.exit_qualification;
1519 	reason = vmexit->u.vmx.exit_reason;
1520 	vmexit->exitcode = VM_EXITCODE_BOGUS;
1521 
1522 	vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1);
1523 
1524 	/*
1525 	 * VM exits that could be triggered during event injection on the
1526 	 * previous VM entry need to be handled specially by re-injecting
1527 	 * the event.
1528 	 *
1529 	 * See "Information for VM Exits During Event Delivery" in Intel SDM
1530 	 * for details.
1531 	 */
1532 	switch (reason) {
1533 	case EXIT_REASON_EPT_FAULT:
1534 	case EXIT_REASON_EPT_MISCONFIG:
1535 	case EXIT_REASON_APIC_ACCESS:
1536 	case EXIT_REASON_TASK_SWITCH:
1537 	case EXIT_REASON_EXCEPTION:
1538 		idtvec_info = vmcs_idt_vectoring_info();
1539 		if (idtvec_info & VMCS_IDT_VEC_VALID) {
1540 			idtvec_info &= ~(1 << 12); /* clear undefined bit */
1541 			vmcs_write(VMCS_ENTRY_INTR_INFO, idtvec_info);
1542 			if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
1543 				idtvec_err = vmcs_idt_vectoring_err();
1544 				vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR,
1545 				    idtvec_err);
1546 			}
1547 			/*
1548 			 * If 'virtual NMIs' are being used and the VM-exit
1549 			 * happened while injecting an NMI during the previous
1550 			 * VM-entry, then clear "blocking by NMI" in the Guest
1551 			 * Interruptibility-state.
1552 			 */
1553 			if ((idtvec_info & VMCS_INTR_T_MASK) ==
1554 			    VMCS_INTR_T_NMI) {
1555 				 vmx_clear_nmi_blocking(vmx, vcpu);
1556 			}
1557 			vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
1558 		}
1559 	default:
1560 		idtvec_info = 0;
1561 		break;
1562 	}
1563 
1564 	switch (reason) {
1565 	case EXIT_REASON_CR_ACCESS:
1566 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1);
1567 		handled = vmx_emulate_cr_access(vmx, vcpu, qual);
1568 		break;
1569 	case EXIT_REASON_RDMSR:
1570 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1);
1571 		retu = false;
1572 		ecx = vmxctx->guest_rcx;
1573 		error = emulate_rdmsr(vmx->vm, vcpu, ecx, &retu);
1574 		if (error) {
1575 			vmexit->exitcode = VM_EXITCODE_RDMSR;
1576 			vmexit->u.msr.code = ecx;
1577 		} else if (!retu) {
1578 			handled = 1;
1579 		} else {
1580 			/* Return to userspace with a valid exitcode */
1581 			KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1582 			    ("emulate_wrmsr retu with bogus exitcode"));
1583 		}
1584 		break;
1585 	case EXIT_REASON_WRMSR:
1586 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1);
1587 		retu = false;
1588 		eax = vmxctx->guest_rax;
1589 		ecx = vmxctx->guest_rcx;
1590 		edx = vmxctx->guest_rdx;
1591 		error = emulate_wrmsr(vmx->vm, vcpu, ecx,
1592 		    (uint64_t)edx << 32 | eax, &retu);
1593 		if (error) {
1594 			vmexit->exitcode = VM_EXITCODE_WRMSR;
1595 			vmexit->u.msr.code = ecx;
1596 			vmexit->u.msr.wval = (uint64_t)edx << 32 | eax;
1597 		} else if (!retu) {
1598 			handled = 1;
1599 		} else {
1600 			/* Return to userspace with a valid exitcode */
1601 			KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1602 			    ("emulate_wrmsr retu with bogus exitcode"));
1603 		}
1604 		break;
1605 	case EXIT_REASON_HLT:
1606 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1);
1607 		vmexit->exitcode = VM_EXITCODE_HLT;
1608 		vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS);
1609 		break;
1610 	case EXIT_REASON_MTF:
1611 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1);
1612 		vmexit->exitcode = VM_EXITCODE_MTRAP;
1613 		break;
1614 	case EXIT_REASON_PAUSE:
1615 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1);
1616 		vmexit->exitcode = VM_EXITCODE_PAUSE;
1617 		break;
1618 	case EXIT_REASON_INTR_WINDOW:
1619 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1);
1620 		vmx_clear_int_window_exiting(vmx, vcpu);
1621 		return (1);
1622 	case EXIT_REASON_EXT_INTR:
1623 		/*
1624 		 * External interrupts serve only to cause VM exits and allow
1625 		 * the host interrupt handler to run.
1626 		 *
1627 		 * If this external interrupt triggers a virtual interrupt
1628 		 * to a VM, then that state will be recorded by the
1629 		 * host interrupt handler in the VM's softc. We will inject
1630 		 * this virtual interrupt during the subsequent VM enter.
1631 		 */
1632 		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
1633 		KASSERT((intr_info & VMCS_INTR_VALID) != 0 &&
1634 		    (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR,
1635 		    ("VM exit interruption info invalid: %#x", intr_info));
1636 		vmx_trigger_hostintr(intr_info & 0xff);
1637 
1638 		/*
1639 		 * This is special. We want to treat this as an 'handled'
1640 		 * VM-exit but not increment the instruction pointer.
1641 		 */
1642 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1);
1643 		return (1);
1644 	case EXIT_REASON_NMI_WINDOW:
1645 		/* Exit to allow the pending virtual NMI to be injected */
1646 		if (vm_nmi_pending(vmx->vm, vcpu))
1647 			vmx_inject_nmi(vmx, vcpu);
1648 		vmx_clear_nmi_window_exiting(vmx, vcpu);
1649 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1);
1650 		return (1);
1651 	case EXIT_REASON_INOUT:
1652 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1);
1653 		vmexit->exitcode = VM_EXITCODE_INOUT;
1654 		vmexit->u.inout.bytes = (qual & 0x7) + 1;
1655 		vmexit->u.inout.in = (qual & 0x8) ? 1 : 0;
1656 		vmexit->u.inout.string = (qual & 0x10) ? 1 : 0;
1657 		vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0;
1658 		vmexit->u.inout.port = (uint16_t)(qual >> 16);
1659 		vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax);
1660 		break;
1661 	case EXIT_REASON_CPUID:
1662 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1);
1663 		handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx);
1664 		break;
1665 	case EXIT_REASON_EXCEPTION:
1666 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXCEPTION, 1);
1667 		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
1668 		KASSERT((intr_info & VMCS_INTR_VALID) != 0,
1669 		    ("VM exit interruption info invalid: %#x", intr_info));
1670 
1671 		/*
1672 		 * If Virtual NMIs control is 1 and the VM-exit is due to a
1673 		 * fault encountered during the execution of IRET then we must
1674 		 * restore the state of "virtual-NMI blocking" before resuming
1675 		 * the guest.
1676 		 *
1677 		 * See "Resuming Guest Software after Handling an Exception".
1678 		 */
1679 		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
1680 		    (intr_info & 0xff) != IDT_DF &&
1681 		    (intr_info & EXIT_QUAL_NMIUDTI) != 0)
1682 			vmx_restore_nmi_blocking(vmx, vcpu);
1683 
1684 		/*
1685 		 * If the NMI-exiting VM execution control is set to '1'
1686 		 * then an NMI in non-root operation causes a VM-exit.
1687 		 * NMI blocking is in effect for this logical processor so
1688 		 * it is sufficient to simply vector to the NMI handler via
1689 		 * a software interrupt.
1690 		 */
1691 		if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) {
1692 			KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due "
1693 			    "to NMI has invalid vector: %#x", intr_info));
1694 			VCPU_CTR0(vmx->vm, vcpu, "Vectoring to NMI handler");
1695 			__asm __volatile("int $2");
1696 			return (1);
1697 		}
1698 		break;
1699 	case EXIT_REASON_EPT_FAULT:
1700 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EPT_FAULT, 1);
1701 		/*
1702 		 * If 'gpa' lies within the address space allocated to
1703 		 * memory then this must be a nested page fault otherwise
1704 		 * this must be an instruction that accesses MMIO space.
1705 		 */
1706 		gpa = vmcs_gpa();
1707 		if (vm_mem_allocated(vmx->vm, gpa) || apic_access_fault(gpa)) {
1708 			vmexit->exitcode = VM_EXITCODE_PAGING;
1709 			vmexit->u.paging.gpa = gpa;
1710 			vmexit->u.paging.fault_type = ept_fault_type(qual);
1711 		} else if (ept_emulation_fault(qual)) {
1712 			vmexit->exitcode = VM_EXITCODE_INST_EMUL;
1713 			vmexit->u.inst_emul.gpa = gpa;
1714 			vmexit->u.inst_emul.gla = vmcs_gla();
1715 			vmexit->u.inst_emul.cr3 = vmcs_guest_cr3();
1716 		}
1717 		/*
1718 		 * If Virtual NMIs control is 1 and the VM-exit is due to an
1719 		 * EPT fault during the execution of IRET then we must restore
1720 		 * the state of "virtual-NMI blocking" before resuming.
1721 		 *
1722 		 * See description of "NMI unblocking due to IRET" in
1723 		 * "Exit Qualification for EPT Violations".
1724 		 */
1725 		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
1726 		    (qual & EXIT_QUAL_NMIUDTI) != 0)
1727 			vmx_restore_nmi_blocking(vmx, vcpu);
1728 		break;
1729 	case EXIT_REASON_VIRTUALIZED_EOI:
1730 		vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI;
1731 		vmexit->u.ioapic_eoi.vector = qual & 0xFF;
1732 		vmexit->inst_length = 0;	/* trap-like */
1733 		break;
1734 	case EXIT_REASON_APIC_ACCESS:
1735 		handled = vmx_handle_apic_access(vmx, vcpu, vmexit);
1736 		break;
1737 	case EXIT_REASON_APIC_WRITE:
1738 		/*
1739 		 * APIC-write VM exit is trap-like so the %rip is already
1740 		 * pointing to the next instruction.
1741 		 */
1742 		vmexit->inst_length = 0;
1743 		vlapic = vm_lapic(vmx->vm, vcpu);
1744 		handled = vmx_handle_apic_write(vlapic, qual);
1745 		break;
1746 	default:
1747 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1);
1748 		break;
1749 	}
1750 
1751 	if (handled) {
1752 		/*
1753 		 * It is possible that control is returned to userland
1754 		 * even though we were able to handle the VM exit in the
1755 		 * kernel.
1756 		 *
1757 		 * In such a case we want to make sure that the userland
1758 		 * restarts guest execution at the instruction *after*
1759 		 * the one we just processed. Therefore we update the
1760 		 * guest rip in the VMCS and in 'vmexit'.
1761 		 */
1762 		vmexit->rip += vmexit->inst_length;
1763 		vmexit->inst_length = 0;
1764 		vmcs_write(VMCS_GUEST_RIP, vmexit->rip);
1765 	} else {
1766 		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
1767 			/*
1768 			 * If this VM exit was not claimed by anybody then
1769 			 * treat it as a generic VMX exit.
1770 			 */
1771 			vmexit->exitcode = VM_EXITCODE_VMX;
1772 			vmexit->u.vmx.status = VM_SUCCESS;
1773 			vmexit->u.vmx.inst_type = 0;
1774 			vmexit->u.vmx.inst_error = 0;
1775 		} else {
1776 			/*
1777 			 * The exitcode and collateral have been populated.
1778 			 * The VM exit will be processed further in userland.
1779 			 */
1780 		}
1781 	}
1782 	return (handled);
1783 }
1784 
1785 static __inline int
1786 vmx_exit_astpending(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1787 {
1788 
1789 	vmexit->rip = vmcs_guest_rip();
1790 	vmexit->inst_length = 0;
1791 	vmexit->exitcode = VM_EXITCODE_BOGUS;
1792 	vmx_astpending_trace(vmx, vcpu, vmexit->rip);
1793 	vmm_stat_incr(vmx->vm, vcpu, VMEXIT_ASTPENDING, 1);
1794 
1795 	return (HANDLED);
1796 }
1797 
1798 static __inline int
1799 vmx_exit_rendezvous(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1800 {
1801 
1802 	vmexit->rip = vmcs_guest_rip();
1803 	vmexit->inst_length = 0;
1804 	vmexit->exitcode = VM_EXITCODE_RENDEZVOUS;
1805 	vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RENDEZVOUS, 1);
1806 
1807 	return (UNHANDLED);
1808 }
1809 
1810 static __inline int
1811 vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit)
1812 {
1813 
1814 	KASSERT(vmxctx->inst_fail_status != VM_SUCCESS,
1815 	    ("vmx_exit_inst_error: invalid inst_fail_status %d",
1816 	    vmxctx->inst_fail_status));
1817 
1818 	vmexit->inst_length = 0;
1819 	vmexit->exitcode = VM_EXITCODE_VMX;
1820 	vmexit->u.vmx.status = vmxctx->inst_fail_status;
1821 	vmexit->u.vmx.inst_error = vmcs_instruction_error();
1822 	vmexit->u.vmx.exit_reason = ~0;
1823 	vmexit->u.vmx.exit_qualification = ~0;
1824 
1825 	switch (rc) {
1826 	case VMX_VMRESUME_ERROR:
1827 	case VMX_VMLAUNCH_ERROR:
1828 	case VMX_INVEPT_ERROR:
1829 		vmexit->u.vmx.inst_type = rc;
1830 		break;
1831 	default:
1832 		panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc);
1833 	}
1834 
1835 	return (UNHANDLED);
1836 }
1837 
1838 static int
1839 vmx_run(void *arg, int vcpu, register_t startrip, pmap_t pmap,
1840     void *rendezvous_cookie)
1841 {
1842 	int rc, handled, launched;
1843 	struct vmx *vmx;
1844 	struct vm *vm;
1845 	struct vmxctx *vmxctx;
1846 	struct vmcs *vmcs;
1847 	struct vm_exit *vmexit;
1848 	struct vlapic *vlapic;
1849 	uint64_t rip;
1850 	uint32_t exit_reason;
1851 
1852 	vmx = arg;
1853 	vm = vmx->vm;
1854 	vmcs = &vmx->vmcs[vcpu];
1855 	vmxctx = &vmx->ctx[vcpu];
1856 	vlapic = vm_lapic(vm, vcpu);
1857 	vmexit = vm_exitinfo(vm, vcpu);
1858 	launched = 0;
1859 
1860 	KASSERT(vmxctx->pmap == pmap,
1861 	    ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap));
1862 	KASSERT(vmxctx->eptp == vmx->eptp,
1863 	    ("eptp %p different than ctx eptp %#lx", eptp, vmxctx->eptp));
1864 
1865 	VMPTRLD(vmcs);
1866 
1867 	/*
1868 	 * XXX
1869 	 * We do this every time because we may setup the virtual machine
1870 	 * from a different process than the one that actually runs it.
1871 	 *
1872 	 * If the life of a virtual machine was spent entirely in the context
1873 	 * of a single process we could do this once in vmx_vminit().
1874 	 */
1875 	vmcs_write(VMCS_HOST_CR3, rcr3());
1876 
1877 	vmcs_write(VMCS_GUEST_RIP, startrip);
1878 	vmx_set_pcpu_defaults(vmx, vcpu);
1879 	do {
1880 		/*
1881 		 * Interrupts are disabled from this point on until the
1882 		 * guest starts executing. This is done for the following
1883 		 * reasons:
1884 		 *
1885 		 * If an AST is asserted on this thread after the check below,
1886 		 * then the IPI_AST notification will not be lost, because it
1887 		 * will cause a VM exit due to external interrupt as soon as
1888 		 * the guest state is loaded.
1889 		 *
1890 		 * A posted interrupt after 'vmx_inject_interrupts()' will
1891 		 * not be "lost" because it will be held pending in the host
1892 		 * APIC because interrupts are disabled. The pending interrupt
1893 		 * will be recognized as soon as the guest state is loaded.
1894 		 *
1895 		 * The same reasoning applies to the IPI generated by
1896 		 * pmap_invalidate_ept().
1897 		 */
1898 		disable_intr();
1899 		if (curthread->td_flags & (TDF_ASTPENDING | TDF_NEEDRESCHED)) {
1900 			enable_intr();
1901 			handled = vmx_exit_astpending(vmx, vcpu, vmexit);
1902 			break;
1903 		}
1904 
1905 		if (vcpu_rendezvous_pending(rendezvous_cookie)) {
1906 			enable_intr();
1907 			handled = vmx_exit_rendezvous(vmx, vcpu, vmexit);
1908 			break;
1909 		}
1910 
1911 		vmx_inject_interrupts(vmx, vcpu, vlapic);
1912 		vmx_run_trace(vmx, vcpu);
1913 		rc = vmx_enter_guest(vmxctx, launched);
1914 
1915 		enable_intr();
1916 
1917 		/* Collect some information for VM exit processing */
1918 		vmexit->rip = rip = vmcs_guest_rip();
1919 		vmexit->inst_length = vmexit_instruction_length();
1920 		vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
1921 		vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
1922 
1923 		if (rc == VMX_GUEST_VMEXIT) {
1924 			launched = 1;
1925 			handled = vmx_exit_process(vmx, vcpu, vmexit);
1926 		} else {
1927 			handled = vmx_exit_inst_error(vmxctx, rc, vmexit);
1928 		}
1929 
1930 		vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled);
1931 	} while (handled);
1932 
1933 	/*
1934 	 * If a VM exit has been handled then the exitcode must be BOGUS
1935 	 * If a VM exit is not handled then the exitcode must not be BOGUS
1936 	 */
1937 	if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) ||
1938 	    (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) {
1939 		panic("Mismatch between handled (%d) and exitcode (%d)",
1940 		      handled, vmexit->exitcode);
1941 	}
1942 
1943 	if (!handled)
1944 		vmm_stat_incr(vm, vcpu, VMEXIT_USERSPACE, 1);
1945 
1946 	VCPU_CTR1(vm, vcpu, "returning from vmx_run: exitcode %d",
1947 	    vmexit->exitcode);
1948 
1949 	VMCLEAR(vmcs);
1950 	return (0);
1951 }
1952 
1953 static void
1954 vmx_vmcleanup(void *arg)
1955 {
1956 	int i, error;
1957 	struct vmx *vmx = arg;
1958 
1959 	if (virtual_interrupt_delivery)
1960 		vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
1961 
1962 	for (i = 0; i < VM_MAXCPU; i++)
1963 		vpid_free(vmx->state[i].vpid);
1964 
1965 	/*
1966 	 * XXXSMP we also need to clear the VMCS active on the other vcpus.
1967 	 */
1968 	error = vmclear(&vmx->vmcs[0]);
1969 	if (error != 0)
1970 		panic("vmx_vmcleanup: vmclear error %d on vcpu 0", error);
1971 
1972 	free(vmx, M_VMX);
1973 
1974 	return;
1975 }
1976 
1977 static register_t *
1978 vmxctx_regptr(struct vmxctx *vmxctx, int reg)
1979 {
1980 
1981 	switch (reg) {
1982 	case VM_REG_GUEST_RAX:
1983 		return (&vmxctx->guest_rax);
1984 	case VM_REG_GUEST_RBX:
1985 		return (&vmxctx->guest_rbx);
1986 	case VM_REG_GUEST_RCX:
1987 		return (&vmxctx->guest_rcx);
1988 	case VM_REG_GUEST_RDX:
1989 		return (&vmxctx->guest_rdx);
1990 	case VM_REG_GUEST_RSI:
1991 		return (&vmxctx->guest_rsi);
1992 	case VM_REG_GUEST_RDI:
1993 		return (&vmxctx->guest_rdi);
1994 	case VM_REG_GUEST_RBP:
1995 		return (&vmxctx->guest_rbp);
1996 	case VM_REG_GUEST_R8:
1997 		return (&vmxctx->guest_r8);
1998 	case VM_REG_GUEST_R9:
1999 		return (&vmxctx->guest_r9);
2000 	case VM_REG_GUEST_R10:
2001 		return (&vmxctx->guest_r10);
2002 	case VM_REG_GUEST_R11:
2003 		return (&vmxctx->guest_r11);
2004 	case VM_REG_GUEST_R12:
2005 		return (&vmxctx->guest_r12);
2006 	case VM_REG_GUEST_R13:
2007 		return (&vmxctx->guest_r13);
2008 	case VM_REG_GUEST_R14:
2009 		return (&vmxctx->guest_r14);
2010 	case VM_REG_GUEST_R15:
2011 		return (&vmxctx->guest_r15);
2012 	default:
2013 		break;
2014 	}
2015 	return (NULL);
2016 }
2017 
2018 static int
2019 vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval)
2020 {
2021 	register_t *regp;
2022 
2023 	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
2024 		*retval = *regp;
2025 		return (0);
2026 	} else
2027 		return (EINVAL);
2028 }
2029 
2030 static int
2031 vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val)
2032 {
2033 	register_t *regp;
2034 
2035 	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
2036 		*regp = val;
2037 		return (0);
2038 	} else
2039 		return (EINVAL);
2040 }
2041 
2042 static int
2043 vmx_shadow_reg(int reg)
2044 {
2045 	int shreg;
2046 
2047 	shreg = -1;
2048 
2049 	switch (reg) {
2050 	case VM_REG_GUEST_CR0:
2051 		shreg = VMCS_CR0_SHADOW;
2052                 break;
2053         case VM_REG_GUEST_CR4:
2054 		shreg = VMCS_CR4_SHADOW;
2055 		break;
2056 	default:
2057 		break;
2058 	}
2059 
2060 	return (shreg);
2061 }
2062 
2063 static int
2064 vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval)
2065 {
2066 	int running, hostcpu;
2067 	struct vmx *vmx = arg;
2068 
2069 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2070 	if (running && hostcpu != curcpu)
2071 		panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu);
2072 
2073 	if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0)
2074 		return (0);
2075 
2076 	return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval));
2077 }
2078 
2079 static int
2080 vmx_setreg(void *arg, int vcpu, int reg, uint64_t val)
2081 {
2082 	int error, hostcpu, running, shadow;
2083 	uint64_t ctls;
2084 	struct vmx *vmx = arg;
2085 
2086 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2087 	if (running && hostcpu != curcpu)
2088 		panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu);
2089 
2090 	if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0)
2091 		return (0);
2092 
2093 	error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val);
2094 
2095 	if (error == 0) {
2096 		/*
2097 		 * If the "load EFER" VM-entry control is 1 then the
2098 		 * value of EFER.LMA must be identical to "IA-32e mode guest"
2099 		 * bit in the VM-entry control.
2100 		 */
2101 		if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 &&
2102 		    (reg == VM_REG_GUEST_EFER)) {
2103 			vmcs_getreg(&vmx->vmcs[vcpu], running,
2104 				    VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls);
2105 			if (val & EFER_LMA)
2106 				ctls |= VM_ENTRY_GUEST_LMA;
2107 			else
2108 				ctls &= ~VM_ENTRY_GUEST_LMA;
2109 			vmcs_setreg(&vmx->vmcs[vcpu], running,
2110 				    VMCS_IDENT(VMCS_ENTRY_CTLS), ctls);
2111 		}
2112 
2113 		shadow = vmx_shadow_reg(reg);
2114 		if (shadow > 0) {
2115 			/*
2116 			 * Store the unmodified value in the shadow
2117 			 */
2118 			error = vmcs_setreg(&vmx->vmcs[vcpu], running,
2119 				    VMCS_IDENT(shadow), val);
2120 		}
2121 	}
2122 
2123 	return (error);
2124 }
2125 
2126 static int
2127 vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
2128 {
2129 	struct vmx *vmx = arg;
2130 
2131 	return (vmcs_getdesc(&vmx->vmcs[vcpu], reg, desc));
2132 }
2133 
2134 static int
2135 vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
2136 {
2137 	struct vmx *vmx = arg;
2138 
2139 	return (vmcs_setdesc(&vmx->vmcs[vcpu], reg, desc));
2140 }
2141 
2142 static int
2143 vmx_inject(void *arg, int vcpu, int type, int vector, uint32_t code,
2144 	   int code_valid)
2145 {
2146 	int error;
2147 	uint64_t info;
2148 	struct vmx *vmx = arg;
2149 	struct vmcs *vmcs = &vmx->vmcs[vcpu];
2150 
2151 	static uint32_t type_map[VM_EVENT_MAX] = {
2152 		0x1,		/* VM_EVENT_NONE */
2153 		0x0,		/* VM_HW_INTR */
2154 		0x2,		/* VM_NMI */
2155 		0x3,		/* VM_HW_EXCEPTION */
2156 		0x4,		/* VM_SW_INTR */
2157 		0x5,		/* VM_PRIV_SW_EXCEPTION */
2158 		0x6,		/* VM_SW_EXCEPTION */
2159 	};
2160 
2161 	/*
2162 	 * If there is already an exception pending to be delivered to the
2163 	 * vcpu then just return.
2164 	 */
2165 	error = vmcs_getreg(vmcs, 0, VMCS_IDENT(VMCS_ENTRY_INTR_INFO), &info);
2166 	if (error)
2167 		return (error);
2168 
2169 	if (info & VMCS_INTR_VALID)
2170 		return (EAGAIN);
2171 
2172 	info = vector | (type_map[type] << 8) | (code_valid ? 1 << 11 : 0);
2173 	info |= VMCS_INTR_VALID;
2174 	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(VMCS_ENTRY_INTR_INFO), info);
2175 	if (error != 0)
2176 		return (error);
2177 
2178 	if (code_valid) {
2179 		error = vmcs_setreg(vmcs, 0,
2180 				    VMCS_IDENT(VMCS_ENTRY_EXCEPTION_ERROR),
2181 				    code);
2182 	}
2183 	return (error);
2184 }
2185 
2186 static int
2187 vmx_getcap(void *arg, int vcpu, int type, int *retval)
2188 {
2189 	struct vmx *vmx = arg;
2190 	int vcap;
2191 	int ret;
2192 
2193 	ret = ENOENT;
2194 
2195 	vcap = vmx->cap[vcpu].set;
2196 
2197 	switch (type) {
2198 	case VM_CAP_HALT_EXIT:
2199 		if (cap_halt_exit)
2200 			ret = 0;
2201 		break;
2202 	case VM_CAP_PAUSE_EXIT:
2203 		if (cap_pause_exit)
2204 			ret = 0;
2205 		break;
2206 	case VM_CAP_MTRAP_EXIT:
2207 		if (cap_monitor_trap)
2208 			ret = 0;
2209 		break;
2210 	case VM_CAP_UNRESTRICTED_GUEST:
2211 		if (cap_unrestricted_guest)
2212 			ret = 0;
2213 		break;
2214 	case VM_CAP_ENABLE_INVPCID:
2215 		if (cap_invpcid)
2216 			ret = 0;
2217 		break;
2218 	default:
2219 		break;
2220 	}
2221 
2222 	if (ret == 0)
2223 		*retval = (vcap & (1 << type)) ? 1 : 0;
2224 
2225 	return (ret);
2226 }
2227 
2228 static int
2229 vmx_setcap(void *arg, int vcpu, int type, int val)
2230 {
2231 	struct vmx *vmx = arg;
2232 	struct vmcs *vmcs = &vmx->vmcs[vcpu];
2233 	uint32_t baseval;
2234 	uint32_t *pptr;
2235 	int error;
2236 	int flag;
2237 	int reg;
2238 	int retval;
2239 
2240 	retval = ENOENT;
2241 	pptr = NULL;
2242 
2243 	switch (type) {
2244 	case VM_CAP_HALT_EXIT:
2245 		if (cap_halt_exit) {
2246 			retval = 0;
2247 			pptr = &vmx->cap[vcpu].proc_ctls;
2248 			baseval = *pptr;
2249 			flag = PROCBASED_HLT_EXITING;
2250 			reg = VMCS_PRI_PROC_BASED_CTLS;
2251 		}
2252 		break;
2253 	case VM_CAP_MTRAP_EXIT:
2254 		if (cap_monitor_trap) {
2255 			retval = 0;
2256 			pptr = &vmx->cap[vcpu].proc_ctls;
2257 			baseval = *pptr;
2258 			flag = PROCBASED_MTF;
2259 			reg = VMCS_PRI_PROC_BASED_CTLS;
2260 		}
2261 		break;
2262 	case VM_CAP_PAUSE_EXIT:
2263 		if (cap_pause_exit) {
2264 			retval = 0;
2265 			pptr = &vmx->cap[vcpu].proc_ctls;
2266 			baseval = *pptr;
2267 			flag = PROCBASED_PAUSE_EXITING;
2268 			reg = VMCS_PRI_PROC_BASED_CTLS;
2269 		}
2270 		break;
2271 	case VM_CAP_UNRESTRICTED_GUEST:
2272 		if (cap_unrestricted_guest) {
2273 			retval = 0;
2274 			pptr = &vmx->cap[vcpu].proc_ctls2;
2275 			baseval = *pptr;
2276 			flag = PROCBASED2_UNRESTRICTED_GUEST;
2277 			reg = VMCS_SEC_PROC_BASED_CTLS;
2278 		}
2279 		break;
2280 	case VM_CAP_ENABLE_INVPCID:
2281 		if (cap_invpcid) {
2282 			retval = 0;
2283 			pptr = &vmx->cap[vcpu].proc_ctls2;
2284 			baseval = *pptr;
2285 			flag = PROCBASED2_ENABLE_INVPCID;
2286 			reg = VMCS_SEC_PROC_BASED_CTLS;
2287 		}
2288 		break;
2289 	default:
2290 		break;
2291 	}
2292 
2293 	if (retval == 0) {
2294 		if (val) {
2295 			baseval |= flag;
2296 		} else {
2297 			baseval &= ~flag;
2298 		}
2299 		VMPTRLD(vmcs);
2300 		error = vmwrite(reg, baseval);
2301 		VMCLEAR(vmcs);
2302 
2303 		if (error) {
2304 			retval = error;
2305 		} else {
2306 			/*
2307 			 * Update optional stored flags, and record
2308 			 * setting
2309 			 */
2310 			if (pptr != NULL) {
2311 				*pptr = baseval;
2312 			}
2313 
2314 			if (val) {
2315 				vmx->cap[vcpu].set |= (1 << type);
2316 			} else {
2317 				vmx->cap[vcpu].set &= ~(1 << type);
2318 			}
2319 		}
2320 	}
2321 
2322         return (retval);
2323 }
2324 
2325 struct vlapic_vtx {
2326 	struct vlapic	vlapic;
2327 	struct pir_desc	*pir_desc;
2328 	struct vmx	*vmx;
2329 };
2330 
2331 #define	VMX_CTR_PIR(vm, vcpuid, pir_desc, notify, vector, level, msg)	\
2332 do {									\
2333 	VCPU_CTR2(vm, vcpuid, msg " assert %s-triggered vector %d",	\
2334 	    level ? "level" : "edge", vector);				\
2335 	VCPU_CTR1(vm, vcpuid, msg " pir0 0x%016lx", pir_desc->pir[0]);	\
2336 	VCPU_CTR1(vm, vcpuid, msg " pir1 0x%016lx", pir_desc->pir[1]);	\
2337 	VCPU_CTR1(vm, vcpuid, msg " pir2 0x%016lx", pir_desc->pir[2]);	\
2338 	VCPU_CTR1(vm, vcpuid, msg " pir3 0x%016lx", pir_desc->pir[3]);	\
2339 	VCPU_CTR1(vm, vcpuid, msg " notify: %s", notify ? "yes" : "no");\
2340 } while (0)
2341 
2342 /*
2343  * vlapic->ops handlers that utilize the APICv hardware assist described in
2344  * Chapter 29 of the Intel SDM.
2345  */
2346 static int
2347 vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level)
2348 {
2349 	struct vlapic_vtx *vlapic_vtx;
2350 	struct pir_desc *pir_desc;
2351 	uint64_t mask;
2352 	int idx, notify;
2353 
2354 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
2355 	pir_desc = vlapic_vtx->pir_desc;
2356 
2357 	/*
2358 	 * Keep track of interrupt requests in the PIR descriptor. This is
2359 	 * because the virtual APIC page pointed to by the VMCS cannot be
2360 	 * modified if the vcpu is running.
2361 	 */
2362 	idx = vector / 64;
2363 	mask = 1UL << (vector % 64);
2364 	atomic_set_long(&pir_desc->pir[idx], mask);
2365 	notify = atomic_cmpset_long(&pir_desc->pending, 0, 1);
2366 
2367 	VMX_CTR_PIR(vlapic->vm, vlapic->vcpuid, pir_desc, notify, vector,
2368 	    level, "vmx_set_intr_ready");
2369 	return (notify);
2370 }
2371 
2372 static int
2373 vmx_pending_intr(struct vlapic *vlapic, int *vecptr)
2374 {
2375 	struct vlapic_vtx *vlapic_vtx;
2376 	struct pir_desc *pir_desc;
2377 	struct LAPIC *lapic;
2378 	uint64_t pending, pirval;
2379 	uint32_t ppr, vpr;
2380 	int i;
2381 
2382 	/*
2383 	 * This function is only expected to be called from the 'HLT' exit
2384 	 * handler which does not care about the vector that is pending.
2385 	 */
2386 	KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL"));
2387 
2388 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
2389 	pir_desc = vlapic_vtx->pir_desc;
2390 
2391 	pending = atomic_load_acq_long(&pir_desc->pending);
2392 	if (!pending)
2393 		return (0);	/* common case */
2394 
2395 	/*
2396 	 * If there is an interrupt pending then it will be recognized only
2397 	 * if its priority is greater than the processor priority.
2398 	 *
2399 	 * Special case: if the processor priority is zero then any pending
2400 	 * interrupt will be recognized.
2401 	 */
2402 	lapic = vlapic->apic_page;
2403 	ppr = lapic->ppr & 0xf0;
2404 	if (ppr == 0)
2405 		return (1);
2406 
2407 	VCPU_CTR1(vlapic->vm, vlapic->vcpuid, "HLT with non-zero PPR %d",
2408 	    lapic->ppr);
2409 
2410 	for (i = 3; i >= 0; i--) {
2411 		pirval = pir_desc->pir[i];
2412 		if (pirval != 0) {
2413 			vpr = (i * 64 + flsl(pirval) - 1) & 0xf0;
2414 			return (vpr > ppr);
2415 		}
2416 	}
2417 	return (0);
2418 }
2419 
2420 static void
2421 vmx_intr_accepted(struct vlapic *vlapic, int vector)
2422 {
2423 
2424 	panic("vmx_intr_accepted: not expected to be called");
2425 }
2426 
2427 static void
2428 vmx_set_tmr(struct vlapic *vlapic, int vector, bool level)
2429 {
2430 	struct vlapic_vtx *vlapic_vtx;
2431 	struct vmx *vmx;
2432 	struct vmcs *vmcs;
2433 	uint64_t mask, val;
2434 
2435 	KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d", vector));
2436 	KASSERT(!vcpu_is_running(vlapic->vm, vlapic->vcpuid, NULL),
2437 	    ("vmx_set_tmr: vcpu cannot be running"));
2438 
2439 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
2440 	vmx = vlapic_vtx->vmx;
2441 	vmcs = &vmx->vmcs[vlapic->vcpuid];
2442 	mask = 1UL << (vector % 64);
2443 
2444 	VMPTRLD(vmcs);
2445 	val = vmcs_read(VMCS_EOI_EXIT(vector));
2446 	if (level)
2447 		val |= mask;
2448 	else
2449 		val &= ~mask;
2450 	vmcs_write(VMCS_EOI_EXIT(vector), val);
2451 	VMCLEAR(vmcs);
2452 }
2453 
2454 static void
2455 vmx_post_intr(struct vlapic *vlapic, int hostcpu)
2456 {
2457 
2458 	ipi_cpu(hostcpu, pirvec);
2459 }
2460 
2461 /*
2462  * Transfer the pending interrupts in the PIR descriptor to the IRR
2463  * in the virtual APIC page.
2464  */
2465 static void
2466 vmx_inject_pir(struct vlapic *vlapic)
2467 {
2468 	struct vlapic_vtx *vlapic_vtx;
2469 	struct pir_desc *pir_desc;
2470 	struct LAPIC *lapic;
2471 	uint64_t val, pirval;
2472 	int rvi, pirbase;
2473 	uint16_t intr_status_old, intr_status_new;
2474 
2475 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
2476 	pir_desc = vlapic_vtx->pir_desc;
2477 	if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) {
2478 		VCPU_CTR0(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
2479 		    "no posted interrupt pending");
2480 		return;
2481 	}
2482 
2483 	pirval = 0;
2484 	lapic = vlapic->apic_page;
2485 
2486 	val = atomic_readandclear_long(&pir_desc->pir[0]);
2487 	if (val != 0) {
2488 		lapic->irr0 |= val;
2489 		lapic->irr1 |= val >> 32;
2490 		pirbase = 0;
2491 		pirval = val;
2492 	}
2493 
2494 	val = atomic_readandclear_long(&pir_desc->pir[1]);
2495 	if (val != 0) {
2496 		lapic->irr2 |= val;
2497 		lapic->irr3 |= val >> 32;
2498 		pirbase = 64;
2499 		pirval = val;
2500 	}
2501 
2502 	val = atomic_readandclear_long(&pir_desc->pir[2]);
2503 	if (val != 0) {
2504 		lapic->irr4 |= val;
2505 		lapic->irr5 |= val >> 32;
2506 		pirbase = 128;
2507 		pirval = val;
2508 	}
2509 
2510 	val = atomic_readandclear_long(&pir_desc->pir[3]);
2511 	if (val != 0) {
2512 		lapic->irr6 |= val;
2513 		lapic->irr7 |= val >> 32;
2514 		pirbase = 192;
2515 		pirval = val;
2516 	}
2517 	VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir");
2518 
2519 	/*
2520 	 * Update RVI so the processor can evaluate pending virtual
2521 	 * interrupts on VM-entry.
2522 	 */
2523 	if (pirval != 0) {
2524 		rvi = pirbase + flsl(pirval) - 1;
2525 		intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS);
2526 		intr_status_new = (intr_status_old & 0xFF00) | rvi;
2527 		if (intr_status_new > intr_status_old) {
2528 			vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new);
2529 			VCPU_CTR2(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
2530 			    "guest_intr_status changed from 0x%04x to 0x%04x",
2531 			    intr_status_old, intr_status_new);
2532 		}
2533 	}
2534 }
2535 
2536 static struct vlapic *
2537 vmx_vlapic_init(void *arg, int vcpuid)
2538 {
2539 	struct vmx *vmx;
2540 	struct vlapic *vlapic;
2541 	struct vlapic_vtx *vlapic_vtx;
2542 
2543 	vmx = arg;
2544 
2545 	vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO);
2546 	vlapic->vm = vmx->vm;
2547 	vlapic->vcpuid = vcpuid;
2548 	vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid];
2549 
2550 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
2551 	vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid];
2552 	vlapic_vtx->vmx = vmx;
2553 
2554 	if (virtual_interrupt_delivery) {
2555 		vlapic->ops.set_intr_ready = vmx_set_intr_ready;
2556 		vlapic->ops.pending_intr = vmx_pending_intr;
2557 		vlapic->ops.intr_accepted = vmx_intr_accepted;
2558 		vlapic->ops.set_tmr = vmx_set_tmr;
2559 	}
2560 
2561 	if (posted_interrupts)
2562 		vlapic->ops.post_intr = vmx_post_intr;
2563 
2564 	vlapic_init(vlapic);
2565 
2566 	return (vlapic);
2567 }
2568 
2569 static void
2570 vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic)
2571 {
2572 
2573 	vlapic_cleanup(vlapic);
2574 	free(vlapic, M_VLAPIC);
2575 }
2576 
2577 struct vmm_ops vmm_ops_intel = {
2578 	vmx_init,
2579 	vmx_cleanup,
2580 	vmx_restore,
2581 	vmx_vminit,
2582 	vmx_run,
2583 	vmx_vmcleanup,
2584 	vmx_getreg,
2585 	vmx_setreg,
2586 	vmx_getdesc,
2587 	vmx_setdesc,
2588 	vmx_inject,
2589 	vmx_getcap,
2590 	vmx_setcap,
2591 	ept_vmspace_alloc,
2592 	ept_vmspace_free,
2593 	vmx_vlapic_init,
2594 	vmx_vlapic_cleanup,
2595 };
2596