xref: /freebsd/sys/amd64/vmm/intel/vmx.c (revision d65cd7a57bf0600b722afc770838a5d0c1c3a8e1)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  * Copyright (c) 2018 Joyent, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_bhyve_snapshot.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/smp.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42 #include <sys/pcpu.h>
43 #include <sys/proc.h>
44 #include <sys/sysctl.h>
45 
46 #include <vm/vm.h>
47 #include <vm/pmap.h>
48 
49 #include <machine/psl.h>
50 #include <machine/cpufunc.h>
51 #include <machine/md_var.h>
52 #include <machine/reg.h>
53 #include <machine/segments.h>
54 #include <machine/smp.h>
55 #include <machine/specialreg.h>
56 #include <machine/vmparam.h>
57 
58 #include <machine/vmm.h>
59 #include <machine/vmm_dev.h>
60 #include <machine/vmm_instruction_emul.h>
61 #include <machine/vmm_snapshot.h>
62 
63 #include "vmm_lapic.h"
64 #include "vmm_host.h"
65 #include "vmm_ioport.h"
66 #include "vmm_ktr.h"
67 #include "vmm_stat.h"
68 #include "vatpic.h"
69 #include "vlapic.h"
70 #include "vlapic_priv.h"
71 
72 #include "ept.h"
73 #include "vmx_cpufunc.h"
74 #include "vmx.h"
75 #include "vmx_msr.h"
76 #include "x86.h"
77 #include "vmx_controls.h"
78 
79 #define	PINBASED_CTLS_ONE_SETTING					\
80 	(PINBASED_EXTINT_EXITING	|				\
81 	 PINBASED_NMI_EXITING		|				\
82 	 PINBASED_VIRTUAL_NMI)
83 #define	PINBASED_CTLS_ZERO_SETTING	0
84 
85 #define PROCBASED_CTLS_WINDOW_SETTING					\
86 	(PROCBASED_INT_WINDOW_EXITING	|				\
87 	 PROCBASED_NMI_WINDOW_EXITING)
88 
89 #define	PROCBASED_CTLS_ONE_SETTING					\
90 	(PROCBASED_SECONDARY_CONTROLS	|				\
91 	 PROCBASED_MWAIT_EXITING	|				\
92 	 PROCBASED_MONITOR_EXITING	|				\
93 	 PROCBASED_IO_EXITING		|				\
94 	 PROCBASED_MSR_BITMAPS		|				\
95 	 PROCBASED_CTLS_WINDOW_SETTING	|				\
96 	 PROCBASED_CR8_LOAD_EXITING	|				\
97 	 PROCBASED_CR8_STORE_EXITING)
98 #define	PROCBASED_CTLS_ZERO_SETTING	\
99 	(PROCBASED_CR3_LOAD_EXITING |	\
100 	PROCBASED_CR3_STORE_EXITING |	\
101 	PROCBASED_IO_BITMAPS)
102 
103 #define	PROCBASED_CTLS2_ONE_SETTING	PROCBASED2_ENABLE_EPT
104 #define	PROCBASED_CTLS2_ZERO_SETTING	0
105 
106 #define	VM_EXIT_CTLS_ONE_SETTING					\
107 	(VM_EXIT_SAVE_DEBUG_CONTROLS		|			\
108 	VM_EXIT_HOST_LMA			|			\
109 	VM_EXIT_SAVE_EFER			|			\
110 	VM_EXIT_LOAD_EFER			|			\
111 	VM_EXIT_ACKNOWLEDGE_INTERRUPT)
112 
113 #define	VM_EXIT_CTLS_ZERO_SETTING	0
114 
115 #define	VM_ENTRY_CTLS_ONE_SETTING					\
116 	(VM_ENTRY_LOAD_DEBUG_CONTROLS		|			\
117 	VM_ENTRY_LOAD_EFER)
118 
119 #define	VM_ENTRY_CTLS_ZERO_SETTING					\
120 	(VM_ENTRY_INTO_SMM			|			\
121 	VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
122 
123 #define	HANDLED		1
124 #define	UNHANDLED	0
125 
126 static MALLOC_DEFINE(M_VMX, "vmx", "vmx");
127 static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic");
128 
129 SYSCTL_DECL(_hw_vmm);
130 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
131     NULL);
132 
133 int vmxon_enabled[MAXCPU];
134 static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
135 
136 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
137 static uint32_t exit_ctls, entry_ctls;
138 
139 static uint64_t cr0_ones_mask, cr0_zeros_mask;
140 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD,
141 	     &cr0_ones_mask, 0, NULL);
142 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD,
143 	     &cr0_zeros_mask, 0, NULL);
144 
145 static uint64_t cr4_ones_mask, cr4_zeros_mask;
146 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD,
147 	     &cr4_ones_mask, 0, NULL);
148 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD,
149 	     &cr4_zeros_mask, 0, NULL);
150 
151 static int vmx_initialized;
152 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD,
153 	   &vmx_initialized, 0, "Intel VMX initialized");
154 
155 /*
156  * Optional capabilities
157  */
158 static SYSCTL_NODE(_hw_vmm_vmx, OID_AUTO, cap,
159     CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
160     NULL);
161 
162 static int cap_halt_exit;
163 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, halt_exit, CTLFLAG_RD, &cap_halt_exit, 0,
164     "HLT triggers a VM-exit");
165 
166 static int cap_pause_exit;
167 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, pause_exit, CTLFLAG_RD, &cap_pause_exit,
168     0, "PAUSE triggers a VM-exit");
169 
170 static int cap_unrestricted_guest;
171 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, unrestricted_guest, CTLFLAG_RD,
172     &cap_unrestricted_guest, 0, "Unrestricted guests");
173 
174 static int cap_monitor_trap;
175 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, monitor_trap, CTLFLAG_RD,
176     &cap_monitor_trap, 0, "Monitor trap flag");
177 
178 static int cap_invpcid;
179 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, invpcid, CTLFLAG_RD, &cap_invpcid,
180     0, "Guests are allowed to use INVPCID");
181 
182 static int tpr_shadowing;
183 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, tpr_shadowing, CTLFLAG_RD,
184     &tpr_shadowing, 0, "TPR shadowing support");
185 
186 static int virtual_interrupt_delivery;
187 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD,
188     &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support");
189 
190 static int posted_interrupts;
191 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, posted_interrupts, CTLFLAG_RD,
192     &posted_interrupts, 0, "APICv posted interrupt support");
193 
194 static int pirvec = -1;
195 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD,
196     &pirvec, 0, "APICv posted interrupt vector");
197 
198 static struct unrhdr *vpid_unr;
199 static u_int vpid_alloc_failed;
200 SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD,
201 	    &vpid_alloc_failed, 0, NULL);
202 
203 int guest_l1d_flush;
204 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush, CTLFLAG_RD,
205     &guest_l1d_flush, 0, NULL);
206 int guest_l1d_flush_sw;
207 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush_sw, CTLFLAG_RD,
208     &guest_l1d_flush_sw, 0, NULL);
209 
210 static struct msr_entry msr_load_list[1] __aligned(16);
211 
212 /*
213  * The definitions of SDT probes for VMX.
214  */
215 
216 SDT_PROBE_DEFINE3(vmm, vmx, exit, entry,
217     "struct vmx *", "int", "struct vm_exit *");
218 
219 SDT_PROBE_DEFINE4(vmm, vmx, exit, taskswitch,
220     "struct vmx *", "int", "struct vm_exit *", "struct vm_task_switch *");
221 
222 SDT_PROBE_DEFINE4(vmm, vmx, exit, craccess,
223     "struct vmx *", "int", "struct vm_exit *", "uint64_t");
224 
225 SDT_PROBE_DEFINE4(vmm, vmx, exit, rdmsr,
226     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
227 
228 SDT_PROBE_DEFINE5(vmm, vmx, exit, wrmsr,
229     "struct vmx *", "int", "struct vm_exit *", "uint32_t", "uint64_t");
230 
231 SDT_PROBE_DEFINE3(vmm, vmx, exit, halt,
232     "struct vmx *", "int", "struct vm_exit *");
233 
234 SDT_PROBE_DEFINE3(vmm, vmx, exit, mtrap,
235     "struct vmx *", "int", "struct vm_exit *");
236 
237 SDT_PROBE_DEFINE3(vmm, vmx, exit, pause,
238     "struct vmx *", "int", "struct vm_exit *");
239 
240 SDT_PROBE_DEFINE3(vmm, vmx, exit, intrwindow,
241     "struct vmx *", "int", "struct vm_exit *");
242 
243 SDT_PROBE_DEFINE4(vmm, vmx, exit, interrupt,
244     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
245 
246 SDT_PROBE_DEFINE3(vmm, vmx, exit, nmiwindow,
247     "struct vmx *", "int", "struct vm_exit *");
248 
249 SDT_PROBE_DEFINE3(vmm, vmx, exit, inout,
250     "struct vmx *", "int", "struct vm_exit *");
251 
252 SDT_PROBE_DEFINE3(vmm, vmx, exit, cpuid,
253     "struct vmx *", "int", "struct vm_exit *");
254 
255 SDT_PROBE_DEFINE5(vmm, vmx, exit, exception,
256     "struct vmx *", "int", "struct vm_exit *", "uint32_t", "int");
257 
258 SDT_PROBE_DEFINE5(vmm, vmx, exit, nestedfault,
259     "struct vmx *", "int", "struct vm_exit *", "uint64_t", "uint64_t");
260 
261 SDT_PROBE_DEFINE4(vmm, vmx, exit, mmiofault,
262     "struct vmx *", "int", "struct vm_exit *", "uint64_t");
263 
264 SDT_PROBE_DEFINE3(vmm, vmx, exit, eoi,
265     "struct vmx *", "int", "struct vm_exit *");
266 
267 SDT_PROBE_DEFINE3(vmm, vmx, exit, apicaccess,
268     "struct vmx *", "int", "struct vm_exit *");
269 
270 SDT_PROBE_DEFINE4(vmm, vmx, exit, apicwrite,
271     "struct vmx *", "int", "struct vm_exit *", "struct vlapic *");
272 
273 SDT_PROBE_DEFINE3(vmm, vmx, exit, xsetbv,
274     "struct vmx *", "int", "struct vm_exit *");
275 
276 SDT_PROBE_DEFINE3(vmm, vmx, exit, monitor,
277     "struct vmx *", "int", "struct vm_exit *");
278 
279 SDT_PROBE_DEFINE3(vmm, vmx, exit, mwait,
280     "struct vmx *", "int", "struct vm_exit *");
281 
282 SDT_PROBE_DEFINE3(vmm, vmx, exit, vminsn,
283     "struct vmx *", "int", "struct vm_exit *");
284 
285 SDT_PROBE_DEFINE4(vmm, vmx, exit, unknown,
286     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
287 
288 SDT_PROBE_DEFINE4(vmm, vmx, exit, return,
289     "struct vmx *", "int", "struct vm_exit *", "int");
290 
291 /*
292  * Use the last page below 4GB as the APIC access address. This address is
293  * occupied by the boot firmware so it is guaranteed that it will not conflict
294  * with a page in system memory.
295  */
296 #define	APIC_ACCESS_ADDRESS	0xFFFFF000
297 
298 static int vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc);
299 static int vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval);
300 static int vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val);
301 static void vmx_inject_pir(struct vlapic *vlapic);
302 #ifdef BHYVE_SNAPSHOT
303 static int vmx_restore_tsc(void *arg, int vcpu, uint64_t now);
304 #endif
305 
306 #ifdef KTR
307 static const char *
308 exit_reason_to_str(int reason)
309 {
310 	static char reasonbuf[32];
311 
312 	switch (reason) {
313 	case EXIT_REASON_EXCEPTION:
314 		return "exception";
315 	case EXIT_REASON_EXT_INTR:
316 		return "extint";
317 	case EXIT_REASON_TRIPLE_FAULT:
318 		return "triplefault";
319 	case EXIT_REASON_INIT:
320 		return "init";
321 	case EXIT_REASON_SIPI:
322 		return "sipi";
323 	case EXIT_REASON_IO_SMI:
324 		return "iosmi";
325 	case EXIT_REASON_SMI:
326 		return "smi";
327 	case EXIT_REASON_INTR_WINDOW:
328 		return "intrwindow";
329 	case EXIT_REASON_NMI_WINDOW:
330 		return "nmiwindow";
331 	case EXIT_REASON_TASK_SWITCH:
332 		return "taskswitch";
333 	case EXIT_REASON_CPUID:
334 		return "cpuid";
335 	case EXIT_REASON_GETSEC:
336 		return "getsec";
337 	case EXIT_REASON_HLT:
338 		return "hlt";
339 	case EXIT_REASON_INVD:
340 		return "invd";
341 	case EXIT_REASON_INVLPG:
342 		return "invlpg";
343 	case EXIT_REASON_RDPMC:
344 		return "rdpmc";
345 	case EXIT_REASON_RDTSC:
346 		return "rdtsc";
347 	case EXIT_REASON_RSM:
348 		return "rsm";
349 	case EXIT_REASON_VMCALL:
350 		return "vmcall";
351 	case EXIT_REASON_VMCLEAR:
352 		return "vmclear";
353 	case EXIT_REASON_VMLAUNCH:
354 		return "vmlaunch";
355 	case EXIT_REASON_VMPTRLD:
356 		return "vmptrld";
357 	case EXIT_REASON_VMPTRST:
358 		return "vmptrst";
359 	case EXIT_REASON_VMREAD:
360 		return "vmread";
361 	case EXIT_REASON_VMRESUME:
362 		return "vmresume";
363 	case EXIT_REASON_VMWRITE:
364 		return "vmwrite";
365 	case EXIT_REASON_VMXOFF:
366 		return "vmxoff";
367 	case EXIT_REASON_VMXON:
368 		return "vmxon";
369 	case EXIT_REASON_CR_ACCESS:
370 		return "craccess";
371 	case EXIT_REASON_DR_ACCESS:
372 		return "draccess";
373 	case EXIT_REASON_INOUT:
374 		return "inout";
375 	case EXIT_REASON_RDMSR:
376 		return "rdmsr";
377 	case EXIT_REASON_WRMSR:
378 		return "wrmsr";
379 	case EXIT_REASON_INVAL_VMCS:
380 		return "invalvmcs";
381 	case EXIT_REASON_INVAL_MSR:
382 		return "invalmsr";
383 	case EXIT_REASON_MWAIT:
384 		return "mwait";
385 	case EXIT_REASON_MTF:
386 		return "mtf";
387 	case EXIT_REASON_MONITOR:
388 		return "monitor";
389 	case EXIT_REASON_PAUSE:
390 		return "pause";
391 	case EXIT_REASON_MCE_DURING_ENTRY:
392 		return "mce-during-entry";
393 	case EXIT_REASON_TPR:
394 		return "tpr";
395 	case EXIT_REASON_APIC_ACCESS:
396 		return "apic-access";
397 	case EXIT_REASON_GDTR_IDTR:
398 		return "gdtridtr";
399 	case EXIT_REASON_LDTR_TR:
400 		return "ldtrtr";
401 	case EXIT_REASON_EPT_FAULT:
402 		return "eptfault";
403 	case EXIT_REASON_EPT_MISCONFIG:
404 		return "eptmisconfig";
405 	case EXIT_REASON_INVEPT:
406 		return "invept";
407 	case EXIT_REASON_RDTSCP:
408 		return "rdtscp";
409 	case EXIT_REASON_VMX_PREEMPT:
410 		return "vmxpreempt";
411 	case EXIT_REASON_INVVPID:
412 		return "invvpid";
413 	case EXIT_REASON_WBINVD:
414 		return "wbinvd";
415 	case EXIT_REASON_XSETBV:
416 		return "xsetbv";
417 	case EXIT_REASON_APIC_WRITE:
418 		return "apic-write";
419 	default:
420 		snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason);
421 		return (reasonbuf);
422 	}
423 }
424 #endif	/* KTR */
425 
426 static int
427 vmx_allow_x2apic_msrs(struct vmx *vmx)
428 {
429 	int i, error;
430 
431 	error = 0;
432 
433 	/*
434 	 * Allow readonly access to the following x2APIC MSRs from the guest.
435 	 */
436 	error += guest_msr_ro(vmx, MSR_APIC_ID);
437 	error += guest_msr_ro(vmx, MSR_APIC_VERSION);
438 	error += guest_msr_ro(vmx, MSR_APIC_LDR);
439 	error += guest_msr_ro(vmx, MSR_APIC_SVR);
440 
441 	for (i = 0; i < 8; i++)
442 		error += guest_msr_ro(vmx, MSR_APIC_ISR0 + i);
443 
444 	for (i = 0; i < 8; i++)
445 		error += guest_msr_ro(vmx, MSR_APIC_TMR0 + i);
446 
447 	for (i = 0; i < 8; i++)
448 		error += guest_msr_ro(vmx, MSR_APIC_IRR0 + i);
449 
450 	error += guest_msr_ro(vmx, MSR_APIC_ESR);
451 	error += guest_msr_ro(vmx, MSR_APIC_LVT_TIMER);
452 	error += guest_msr_ro(vmx, MSR_APIC_LVT_THERMAL);
453 	error += guest_msr_ro(vmx, MSR_APIC_LVT_PCINT);
454 	error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT0);
455 	error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT1);
456 	error += guest_msr_ro(vmx, MSR_APIC_LVT_ERROR);
457 	error += guest_msr_ro(vmx, MSR_APIC_ICR_TIMER);
458 	error += guest_msr_ro(vmx, MSR_APIC_DCR_TIMER);
459 	error += guest_msr_ro(vmx, MSR_APIC_ICR);
460 
461 	/*
462 	 * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest.
463 	 *
464 	 * These registers get special treatment described in the section
465 	 * "Virtualizing MSR-Based APIC Accesses".
466 	 */
467 	error += guest_msr_rw(vmx, MSR_APIC_TPR);
468 	error += guest_msr_rw(vmx, MSR_APIC_EOI);
469 	error += guest_msr_rw(vmx, MSR_APIC_SELF_IPI);
470 
471 	return (error);
472 }
473 
474 u_long
475 vmx_fix_cr0(u_long cr0)
476 {
477 
478 	return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
479 }
480 
481 u_long
482 vmx_fix_cr4(u_long cr4)
483 {
484 
485 	return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
486 }
487 
488 static void
489 vpid_free(int vpid)
490 {
491 	if (vpid < 0 || vpid > 0xffff)
492 		panic("vpid_free: invalid vpid %d", vpid);
493 
494 	/*
495 	 * VPIDs [0,VM_MAXCPU] are special and are not allocated from
496 	 * the unit number allocator.
497 	 */
498 
499 	if (vpid > VM_MAXCPU)
500 		free_unr(vpid_unr, vpid);
501 }
502 
503 static void
504 vpid_alloc(uint16_t *vpid, int num)
505 {
506 	int i, x;
507 
508 	if (num <= 0 || num > VM_MAXCPU)
509 		panic("invalid number of vpids requested: %d", num);
510 
511 	/*
512 	 * If the "enable vpid" execution control is not enabled then the
513 	 * VPID is required to be 0 for all vcpus.
514 	 */
515 	if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) {
516 		for (i = 0; i < num; i++)
517 			vpid[i] = 0;
518 		return;
519 	}
520 
521 	/*
522 	 * Allocate a unique VPID for each vcpu from the unit number allocator.
523 	 */
524 	for (i = 0; i < num; i++) {
525 		x = alloc_unr(vpid_unr);
526 		if (x == -1)
527 			break;
528 		else
529 			vpid[i] = x;
530 	}
531 
532 	if (i < num) {
533 		atomic_add_int(&vpid_alloc_failed, 1);
534 
535 		/*
536 		 * If the unit number allocator does not have enough unique
537 		 * VPIDs then we need to allocate from the [1,VM_MAXCPU] range.
538 		 *
539 		 * These VPIDs are not be unique across VMs but this does not
540 		 * affect correctness because the combined mappings are also
541 		 * tagged with the EP4TA which is unique for each VM.
542 		 *
543 		 * It is still sub-optimal because the invvpid will invalidate
544 		 * combined mappings for a particular VPID across all EP4TAs.
545 		 */
546 		while (i-- > 0)
547 			vpid_free(vpid[i]);
548 
549 		for (i = 0; i < num; i++)
550 			vpid[i] = i + 1;
551 	}
552 }
553 
554 static void
555 vpid_init(void)
556 {
557 	/*
558 	 * VPID 0 is required when the "enable VPID" execution control is
559 	 * disabled.
560 	 *
561 	 * VPIDs [1,VM_MAXCPU] are used as the "overflow namespace" when the
562 	 * unit number allocator does not have sufficient unique VPIDs to
563 	 * satisfy the allocation.
564 	 *
565 	 * The remaining VPIDs are managed by the unit number allocator.
566 	 */
567 	vpid_unr = new_unrhdr(VM_MAXCPU + 1, 0xffff, NULL);
568 }
569 
570 static void
571 vmx_disable(void *arg __unused)
572 {
573 	struct invvpid_desc invvpid_desc = { 0 };
574 	struct invept_desc invept_desc = { 0 };
575 
576 	if (vmxon_enabled[curcpu]) {
577 		/*
578 		 * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b.
579 		 *
580 		 * VMXON or VMXOFF are not required to invalidate any TLB
581 		 * caching structures. This prevents potential retention of
582 		 * cached information in the TLB between distinct VMX episodes.
583 		 */
584 		invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc);
585 		invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc);
586 		vmxoff();
587 	}
588 	load_cr4(rcr4() & ~CR4_VMXE);
589 }
590 
591 static int
592 vmx_cleanup(void)
593 {
594 
595 	if (pirvec >= 0)
596 		lapic_ipi_free(pirvec);
597 
598 	if (vpid_unr != NULL) {
599 		delete_unrhdr(vpid_unr);
600 		vpid_unr = NULL;
601 	}
602 
603 	if (nmi_flush_l1d_sw == 1)
604 		nmi_flush_l1d_sw = 0;
605 
606 	smp_rendezvous(NULL, vmx_disable, NULL, NULL);
607 
608 	return (0);
609 }
610 
611 static void
612 vmx_enable(void *arg __unused)
613 {
614 	int error;
615 	uint64_t feature_control;
616 
617 	feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
618 	if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 ||
619 	    (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
620 		wrmsr(MSR_IA32_FEATURE_CONTROL,
621 		    feature_control | IA32_FEATURE_CONTROL_VMX_EN |
622 		    IA32_FEATURE_CONTROL_LOCK);
623 	}
624 
625 	load_cr4(rcr4() | CR4_VMXE);
626 
627 	*(uint32_t *)vmxon_region[curcpu] = vmx_revision();
628 	error = vmxon(vmxon_region[curcpu]);
629 	if (error == 0)
630 		vmxon_enabled[curcpu] = 1;
631 }
632 
633 static void
634 vmx_restore(void)
635 {
636 
637 	if (vmxon_enabled[curcpu])
638 		vmxon(vmxon_region[curcpu]);
639 }
640 
641 static int
642 vmx_init(int ipinum)
643 {
644 	int error;
645 	uint64_t basic, fixed0, fixed1, feature_control;
646 	uint32_t tmp, procbased2_vid_bits;
647 
648 	/* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */
649 	if (!(cpu_feature2 & CPUID2_VMX)) {
650 		printf("vmx_init: processor does not support VMX operation\n");
651 		return (ENXIO);
652 	}
653 
654 	/*
655 	 * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits
656 	 * are set (bits 0 and 2 respectively).
657 	 */
658 	feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
659 	if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 1 &&
660 	    (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
661 		printf("vmx_init: VMX operation disabled by BIOS\n");
662 		return (ENXIO);
663 	}
664 
665 	/*
666 	 * Verify capabilities MSR_VMX_BASIC:
667 	 * - bit 54 indicates support for INS/OUTS decoding
668 	 */
669 	basic = rdmsr(MSR_VMX_BASIC);
670 	if ((basic & (1UL << 54)) == 0) {
671 		printf("vmx_init: processor does not support desired basic "
672 		    "capabilities\n");
673 		return (EINVAL);
674 	}
675 
676 	/* Check support for primary processor-based VM-execution controls */
677 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
678 			       MSR_VMX_TRUE_PROCBASED_CTLS,
679 			       PROCBASED_CTLS_ONE_SETTING,
680 			       PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
681 	if (error) {
682 		printf("vmx_init: processor does not support desired primary "
683 		       "processor-based controls\n");
684 		return (error);
685 	}
686 
687 	/* Clear the processor-based ctl bits that are set on demand */
688 	procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
689 
690 	/* Check support for secondary processor-based VM-execution controls */
691 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
692 			       MSR_VMX_PROCBASED_CTLS2,
693 			       PROCBASED_CTLS2_ONE_SETTING,
694 			       PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
695 	if (error) {
696 		printf("vmx_init: processor does not support desired secondary "
697 		       "processor-based controls\n");
698 		return (error);
699 	}
700 
701 	/* Check support for VPID */
702 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
703 			       PROCBASED2_ENABLE_VPID, 0, &tmp);
704 	if (error == 0)
705 		procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
706 
707 	/* Check support for pin-based VM-execution controls */
708 	error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
709 			       MSR_VMX_TRUE_PINBASED_CTLS,
710 			       PINBASED_CTLS_ONE_SETTING,
711 			       PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
712 	if (error) {
713 		printf("vmx_init: processor does not support desired "
714 		       "pin-based controls\n");
715 		return (error);
716 	}
717 
718 	/* Check support for VM-exit controls */
719 	error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
720 			       VM_EXIT_CTLS_ONE_SETTING,
721 			       VM_EXIT_CTLS_ZERO_SETTING,
722 			       &exit_ctls);
723 	if (error) {
724 		printf("vmx_init: processor does not support desired "
725 		    "exit controls\n");
726 		return (error);
727 	}
728 
729 	/* Check support for VM-entry controls */
730 	error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS,
731 	    VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING,
732 	    &entry_ctls);
733 	if (error) {
734 		printf("vmx_init: processor does not support desired "
735 		    "entry controls\n");
736 		return (error);
737 	}
738 
739 	/*
740 	 * Check support for optional features by testing them
741 	 * as individual bits
742 	 */
743 	cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
744 					MSR_VMX_TRUE_PROCBASED_CTLS,
745 					PROCBASED_HLT_EXITING, 0,
746 					&tmp) == 0);
747 
748 	cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
749 					MSR_VMX_PROCBASED_CTLS,
750 					PROCBASED_MTF, 0,
751 					&tmp) == 0);
752 
753 	cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
754 					 MSR_VMX_TRUE_PROCBASED_CTLS,
755 					 PROCBASED_PAUSE_EXITING, 0,
756 					 &tmp) == 0);
757 
758 	cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
759 					MSR_VMX_PROCBASED_CTLS2,
760 					PROCBASED2_UNRESTRICTED_GUEST, 0,
761 				        &tmp) == 0);
762 
763 	cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
764 	    MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
765 	    &tmp) == 0);
766 
767 	/*
768 	 * Check support for TPR shadow.
769 	 */
770 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
771 	    MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0,
772 	    &tmp);
773 	if (error == 0) {
774 		tpr_shadowing = 1;
775 		TUNABLE_INT_FETCH("hw.vmm.vmx.use_tpr_shadowing",
776 		    &tpr_shadowing);
777 	}
778 
779 	if (tpr_shadowing) {
780 		procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
781 		procbased_ctls &= ~PROCBASED_CR8_LOAD_EXITING;
782 		procbased_ctls &= ~PROCBASED_CR8_STORE_EXITING;
783 	}
784 
785 	/*
786 	 * Check support for virtual interrupt delivery.
787 	 */
788 	procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
789 	    PROCBASED2_VIRTUALIZE_X2APIC_MODE |
790 	    PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
791 	    PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY);
792 
793 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
794 	    procbased2_vid_bits, 0, &tmp);
795 	if (error == 0 && tpr_shadowing) {
796 		virtual_interrupt_delivery = 1;
797 		TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid",
798 		    &virtual_interrupt_delivery);
799 	}
800 
801 	if (virtual_interrupt_delivery) {
802 		procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
803 		procbased_ctls2 |= procbased2_vid_bits;
804 		procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE;
805 
806 		/*
807 		 * Check for Posted Interrupts only if Virtual Interrupt
808 		 * Delivery is enabled.
809 		 */
810 		error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
811 		    MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0,
812 		    &tmp);
813 		if (error == 0) {
814 			pirvec = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) :
815 			    &IDTVEC(justreturn));
816 			if (pirvec < 0) {
817 				if (bootverbose) {
818 					printf("vmx_init: unable to allocate "
819 					    "posted interrupt vector\n");
820 				}
821 			} else {
822 				posted_interrupts = 1;
823 				TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir",
824 				    &posted_interrupts);
825 			}
826 		}
827 	}
828 
829 	if (posted_interrupts)
830 		    pinbased_ctls |= PINBASED_POSTED_INTERRUPT;
831 
832 	/* Initialize EPT */
833 	error = ept_init(ipinum);
834 	if (error) {
835 		printf("vmx_init: ept initialization failed (%d)\n", error);
836 		return (error);
837 	}
838 
839 	guest_l1d_flush = (cpu_ia32_arch_caps &
840 	    IA32_ARCH_CAP_SKIP_L1DFL_VMENTRY) == 0;
841 	TUNABLE_INT_FETCH("hw.vmm.l1d_flush", &guest_l1d_flush);
842 
843 	/*
844 	 * L1D cache flush is enabled.  Use IA32_FLUSH_CMD MSR when
845 	 * available.  Otherwise fall back to the software flush
846 	 * method which loads enough data from the kernel text to
847 	 * flush existing L1D content, both on VMX entry and on NMI
848 	 * return.
849 	 */
850 	if (guest_l1d_flush) {
851 		if ((cpu_stdext_feature3 & CPUID_STDEXT3_L1D_FLUSH) == 0) {
852 			guest_l1d_flush_sw = 1;
853 			TUNABLE_INT_FETCH("hw.vmm.l1d_flush_sw",
854 			    &guest_l1d_flush_sw);
855 		}
856 		if (guest_l1d_flush_sw) {
857 			if (nmi_flush_l1d_sw <= 1)
858 				nmi_flush_l1d_sw = 1;
859 		} else {
860 			msr_load_list[0].index = MSR_IA32_FLUSH_CMD;
861 			msr_load_list[0].val = IA32_FLUSH_CMD_L1D;
862 		}
863 	}
864 
865 	/*
866 	 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
867 	 */
868 	fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
869 	fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
870 	cr0_ones_mask = fixed0 & fixed1;
871 	cr0_zeros_mask = ~fixed0 & ~fixed1;
872 
873 	/*
874 	 * CR0_PE and CR0_PG can be set to zero in VMX non-root operation
875 	 * if unrestricted guest execution is allowed.
876 	 */
877 	if (cap_unrestricted_guest)
878 		cr0_ones_mask &= ~(CR0_PG | CR0_PE);
879 
880 	/*
881 	 * Do not allow the guest to set CR0_NW or CR0_CD.
882 	 */
883 	cr0_zeros_mask |= (CR0_NW | CR0_CD);
884 
885 	fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
886 	fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
887 	cr4_ones_mask = fixed0 & fixed1;
888 	cr4_zeros_mask = ~fixed0 & ~fixed1;
889 
890 	vpid_init();
891 
892 	vmx_msr_init();
893 
894 	/* enable VMX operation */
895 	smp_rendezvous(NULL, vmx_enable, NULL, NULL);
896 
897 	vmx_initialized = 1;
898 
899 	return (0);
900 }
901 
902 static void
903 vmx_trigger_hostintr(int vector)
904 {
905 	uintptr_t func;
906 	struct gate_descriptor *gd;
907 
908 	gd = &idt[vector];
909 
910 	KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: "
911 	    "invalid vector %d", vector));
912 	KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present",
913 	    vector));
914 	KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d "
915 	    "has invalid type %d", vector, gd->gd_type));
916 	KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d "
917 	    "has invalid dpl %d", vector, gd->gd_dpl));
918 	KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor "
919 	    "for vector %d has invalid selector %d", vector, gd->gd_selector));
920 	KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid "
921 	    "IST %d", vector, gd->gd_ist));
922 
923 	func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset);
924 	vmx_call_isr(func);
925 }
926 
927 static int
928 vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial)
929 {
930 	int error, mask_ident, shadow_ident;
931 	uint64_t mask_value;
932 
933 	if (which != 0 && which != 4)
934 		panic("vmx_setup_cr_shadow: unknown cr%d", which);
935 
936 	if (which == 0) {
937 		mask_ident = VMCS_CR0_MASK;
938 		mask_value = cr0_ones_mask | cr0_zeros_mask;
939 		shadow_ident = VMCS_CR0_SHADOW;
940 	} else {
941 		mask_ident = VMCS_CR4_MASK;
942 		mask_value = cr4_ones_mask | cr4_zeros_mask;
943 		shadow_ident = VMCS_CR4_SHADOW;
944 	}
945 
946 	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value);
947 	if (error)
948 		return (error);
949 
950 	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial);
951 	if (error)
952 		return (error);
953 
954 	return (0);
955 }
956 #define	vmx_setup_cr0_shadow(vmcs,init)	vmx_setup_cr_shadow(0, (vmcs), (init))
957 #define	vmx_setup_cr4_shadow(vmcs,init)	vmx_setup_cr_shadow(4, (vmcs), (init))
958 
959 static void *
960 vmx_vminit(struct vm *vm, pmap_t pmap)
961 {
962 	uint16_t vpid[VM_MAXCPU];
963 	int i, error;
964 	struct vmx *vmx;
965 	struct vmcs *vmcs;
966 	uint32_t exc_bitmap;
967 	uint16_t maxcpus;
968 
969 	vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO);
970 	if ((uintptr_t)vmx & PAGE_MASK) {
971 		panic("malloc of struct vmx not aligned on %d byte boundary",
972 		      PAGE_SIZE);
973 	}
974 	vmx->vm = vm;
975 
976 	vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pml4));
977 
978 	/*
979 	 * Clean up EPTP-tagged guest physical and combined mappings
980 	 *
981 	 * VMX transitions are not required to invalidate any guest physical
982 	 * mappings. So, it may be possible for stale guest physical mappings
983 	 * to be present in the processor TLBs.
984 	 *
985 	 * Combined mappings for this EP4TA are also invalidated for all VPIDs.
986 	 */
987 	ept_invalidate_mappings(vmx->eptp);
988 
989 	msr_bitmap_initialize(vmx->msr_bitmap);
990 
991 	/*
992 	 * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE.
993 	 * The guest FSBASE and GSBASE are saved and restored during
994 	 * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are
995 	 * always restored from the vmcs host state area on vm-exit.
996 	 *
997 	 * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in
998 	 * how they are saved/restored so can be directly accessed by the
999 	 * guest.
1000 	 *
1001 	 * MSR_EFER is saved and restored in the guest VMCS area on a
1002 	 * VM exit and entry respectively. It is also restored from the
1003 	 * host VMCS area on a VM exit.
1004 	 *
1005 	 * The TSC MSR is exposed read-only. Writes are disallowed as
1006 	 * that will impact the host TSC.  If the guest does a write
1007 	 * the "use TSC offsetting" execution control is enabled and the
1008 	 * difference between the host TSC and the guest TSC is written
1009 	 * into the TSC offset in the VMCS.
1010 	 */
1011 	if (guest_msr_rw(vmx, MSR_GSBASE) ||
1012 	    guest_msr_rw(vmx, MSR_FSBASE) ||
1013 	    guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) ||
1014 	    guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) ||
1015 	    guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) ||
1016 	    guest_msr_rw(vmx, MSR_EFER) ||
1017 	    guest_msr_ro(vmx, MSR_TSC))
1018 		panic("vmx_vminit: error setting guest msr access");
1019 
1020 	vpid_alloc(vpid, VM_MAXCPU);
1021 
1022 	if (virtual_interrupt_delivery) {
1023 		error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE,
1024 		    APIC_ACCESS_ADDRESS);
1025 		/* XXX this should really return an error to the caller */
1026 		KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error));
1027 	}
1028 
1029 	maxcpus = vm_get_maxcpus(vm);
1030 	for (i = 0; i < maxcpus; i++) {
1031 		vmcs = &vmx->vmcs[i];
1032 		vmcs->identifier = vmx_revision();
1033 		error = vmclear(vmcs);
1034 		if (error != 0) {
1035 			panic("vmx_vminit: vmclear error %d on vcpu %d\n",
1036 			      error, i);
1037 		}
1038 
1039 		vmx_msr_guest_init(vmx, i);
1040 
1041 		error = vmcs_init(vmcs);
1042 		KASSERT(error == 0, ("vmcs_init error %d", error));
1043 
1044 		VMPTRLD(vmcs);
1045 		error = 0;
1046 		error += vmwrite(VMCS_HOST_RSP, (u_long)&vmx->ctx[i]);
1047 		error += vmwrite(VMCS_EPTP, vmx->eptp);
1048 		error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls);
1049 		error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls);
1050 		error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2);
1051 		error += vmwrite(VMCS_EXIT_CTLS, exit_ctls);
1052 		error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls);
1053 		error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap));
1054 		error += vmwrite(VMCS_VPID, vpid[i]);
1055 
1056 		if (guest_l1d_flush && !guest_l1d_flush_sw) {
1057 			vmcs_write(VMCS_ENTRY_MSR_LOAD, pmap_kextract(
1058 			    (vm_offset_t)&msr_load_list[0]));
1059 			vmcs_write(VMCS_ENTRY_MSR_LOAD_COUNT,
1060 			    nitems(msr_load_list));
1061 			vmcs_write(VMCS_EXIT_MSR_STORE, 0);
1062 			vmcs_write(VMCS_EXIT_MSR_STORE_COUNT, 0);
1063 		}
1064 
1065 		/* exception bitmap */
1066 		if (vcpu_trace_exceptions(vm, i))
1067 			exc_bitmap = 0xffffffff;
1068 		else
1069 			exc_bitmap = 1 << IDT_MC;
1070 		error += vmwrite(VMCS_EXCEPTION_BITMAP, exc_bitmap);
1071 
1072 		vmx->ctx[i].guest_dr6 = DBREG_DR6_RESERVED1;
1073 		error += vmwrite(VMCS_GUEST_DR7, DBREG_DR7_RESERVED1);
1074 
1075 		if (tpr_shadowing) {
1076 			error += vmwrite(VMCS_VIRTUAL_APIC,
1077 			    vtophys(&vmx->apic_page[i]));
1078 		}
1079 
1080 		if (virtual_interrupt_delivery) {
1081 			error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS);
1082 			error += vmwrite(VMCS_EOI_EXIT0, 0);
1083 			error += vmwrite(VMCS_EOI_EXIT1, 0);
1084 			error += vmwrite(VMCS_EOI_EXIT2, 0);
1085 			error += vmwrite(VMCS_EOI_EXIT3, 0);
1086 		}
1087 		if (posted_interrupts) {
1088 			error += vmwrite(VMCS_PIR_VECTOR, pirvec);
1089 			error += vmwrite(VMCS_PIR_DESC,
1090 			    vtophys(&vmx->pir_desc[i]));
1091 		}
1092 		VMCLEAR(vmcs);
1093 		KASSERT(error == 0, ("vmx_vminit: error customizing the vmcs"));
1094 
1095 		vmx->cap[i].set = 0;
1096 		vmx->cap[i].proc_ctls = procbased_ctls;
1097 		vmx->cap[i].proc_ctls2 = procbased_ctls2;
1098 		vmx->cap[i].exc_bitmap = exc_bitmap;
1099 
1100 		vmx->state[i].nextrip = ~0;
1101 		vmx->state[i].lastcpu = NOCPU;
1102 		vmx->state[i].vpid = vpid[i];
1103 
1104 		/*
1105 		 * Set up the CR0/4 shadows, and init the read shadow
1106 		 * to the power-on register value from the Intel Sys Arch.
1107 		 *  CR0 - 0x60000010
1108 		 *  CR4 - 0
1109 		 */
1110 		error = vmx_setup_cr0_shadow(vmcs, 0x60000010);
1111 		if (error != 0)
1112 			panic("vmx_setup_cr0_shadow %d", error);
1113 
1114 		error = vmx_setup_cr4_shadow(vmcs, 0);
1115 		if (error != 0)
1116 			panic("vmx_setup_cr4_shadow %d", error);
1117 
1118 		vmx->ctx[i].pmap = pmap;
1119 	}
1120 
1121 	return (vmx);
1122 }
1123 
1124 static int
1125 vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx)
1126 {
1127 	int handled, func;
1128 
1129 	func = vmxctx->guest_rax;
1130 
1131 	handled = x86_emulate_cpuid(vm, vcpu,
1132 				    (uint32_t*)(&vmxctx->guest_rax),
1133 				    (uint32_t*)(&vmxctx->guest_rbx),
1134 				    (uint32_t*)(&vmxctx->guest_rcx),
1135 				    (uint32_t*)(&vmxctx->guest_rdx));
1136 	return (handled);
1137 }
1138 
1139 static __inline void
1140 vmx_run_trace(struct vmx *vmx, int vcpu)
1141 {
1142 #ifdef KTR
1143 	VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %#lx", vmcs_guest_rip());
1144 #endif
1145 }
1146 
1147 static __inline void
1148 vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason,
1149 	       int handled)
1150 {
1151 #ifdef KTR
1152 	VCPU_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx",
1153 		 handled ? "handled" : "unhandled",
1154 		 exit_reason_to_str(exit_reason), rip);
1155 #endif
1156 }
1157 
1158 static __inline void
1159 vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip)
1160 {
1161 #ifdef KTR
1162 	VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip);
1163 #endif
1164 }
1165 
1166 static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved");
1167 static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done");
1168 
1169 /*
1170  * Invalidate guest mappings identified by its vpid from the TLB.
1171  */
1172 static __inline void
1173 vmx_invvpid(struct vmx *vmx, int vcpu, pmap_t pmap, int running)
1174 {
1175 	struct vmxstate *vmxstate;
1176 	struct invvpid_desc invvpid_desc;
1177 
1178 	vmxstate = &vmx->state[vcpu];
1179 	if (vmxstate->vpid == 0)
1180 		return;
1181 
1182 	if (!running) {
1183 		/*
1184 		 * Set the 'lastcpu' to an invalid host cpu.
1185 		 *
1186 		 * This will invalidate TLB entries tagged with the vcpu's
1187 		 * vpid the next time it runs via vmx_set_pcpu_defaults().
1188 		 */
1189 		vmxstate->lastcpu = NOCPU;
1190 		return;
1191 	}
1192 
1193 	KASSERT(curthread->td_critnest > 0, ("%s: vcpu %d running outside "
1194 	    "critical section", __func__, vcpu));
1195 
1196 	/*
1197 	 * Invalidate all mappings tagged with 'vpid'
1198 	 *
1199 	 * We do this because this vcpu was executing on a different host
1200 	 * cpu when it last ran. We do not track whether it invalidated
1201 	 * mappings associated with its 'vpid' during that run. So we must
1202 	 * assume that the mappings associated with 'vpid' on 'curcpu' are
1203 	 * stale and invalidate them.
1204 	 *
1205 	 * Note that we incur this penalty only when the scheduler chooses to
1206 	 * move the thread associated with this vcpu between host cpus.
1207 	 *
1208 	 * Note also that this will invalidate mappings tagged with 'vpid'
1209 	 * for "all" EP4TAs.
1210 	 */
1211 	if (pmap->pm_eptgen == vmx->eptgen[curcpu]) {
1212 		invvpid_desc._res1 = 0;
1213 		invvpid_desc._res2 = 0;
1214 		invvpid_desc.vpid = vmxstate->vpid;
1215 		invvpid_desc.linear_addr = 0;
1216 		invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
1217 		vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_DONE, 1);
1218 	} else {
1219 		/*
1220 		 * The invvpid can be skipped if an invept is going to
1221 		 * be performed before entering the guest. The invept
1222 		 * will invalidate combined mappings tagged with
1223 		 * 'vmx->eptp' for all vpids.
1224 		 */
1225 		vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_SAVED, 1);
1226 	}
1227 }
1228 
1229 static void
1230 vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu, pmap_t pmap)
1231 {
1232 	struct vmxstate *vmxstate;
1233 
1234 	vmxstate = &vmx->state[vcpu];
1235 	if (vmxstate->lastcpu == curcpu)
1236 		return;
1237 
1238 	vmxstate->lastcpu = curcpu;
1239 
1240 	vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1);
1241 
1242 	vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
1243 	vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
1244 	vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
1245 	vmx_invvpid(vmx, vcpu, pmap, 1);
1246 }
1247 
1248 /*
1249  * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
1250  */
1251 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
1252 
1253 static void __inline
1254 vmx_set_int_window_exiting(struct vmx *vmx, int vcpu)
1255 {
1256 
1257 	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) {
1258 		vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
1259 		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1260 		VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting");
1261 	}
1262 }
1263 
1264 static void __inline
1265 vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu)
1266 {
1267 
1268 	KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0,
1269 	    ("intr_window_exiting not set: %#x", vmx->cap[vcpu].proc_ctls));
1270 	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
1271 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1272 	VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting");
1273 }
1274 
1275 static void __inline
1276 vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu)
1277 {
1278 
1279 	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) {
1280 		vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
1281 		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1282 		VCPU_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting");
1283 	}
1284 }
1285 
1286 static void __inline
1287 vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu)
1288 {
1289 
1290 	KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0,
1291 	    ("nmi_window_exiting not set %#x", vmx->cap[vcpu].proc_ctls));
1292 	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
1293 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1294 	VCPU_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting");
1295 }
1296 
1297 int
1298 vmx_set_tsc_offset(struct vmx *vmx, int vcpu, uint64_t offset)
1299 {
1300 	int error;
1301 
1302 	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_TSC_OFFSET) == 0) {
1303 		vmx->cap[vcpu].proc_ctls |= PROCBASED_TSC_OFFSET;
1304 		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1305 		VCPU_CTR0(vmx->vm, vcpu, "Enabling TSC offsetting");
1306 	}
1307 
1308 	error = vmwrite(VMCS_TSC_OFFSET, offset);
1309 #ifdef BHYVE_SNAPSHOT
1310 	if (error == 0)
1311 		error = vm_set_tsc_offset(vmx->vm, vcpu, offset);
1312 #endif
1313 	return (error);
1314 }
1315 
1316 #define	NMI_BLOCKING	(VMCS_INTERRUPTIBILITY_NMI_BLOCKING |		\
1317 			 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1318 #define	HWINTR_BLOCKING	(VMCS_INTERRUPTIBILITY_STI_BLOCKING |		\
1319 			 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1320 
1321 static void
1322 vmx_inject_nmi(struct vmx *vmx, int vcpu)
1323 {
1324 	uint32_t gi, info;
1325 
1326 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1327 	KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest "
1328 	    "interruptibility-state %#x", gi));
1329 
1330 	info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1331 	KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid "
1332 	    "VM-entry interruption information %#x", info));
1333 
1334 	/*
1335 	 * Inject the virtual NMI. The vector must be the NMI IDT entry
1336 	 * or the VMCS entry check will fail.
1337 	 */
1338 	info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID;
1339 	vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1340 
1341 	VCPU_CTR0(vmx->vm, vcpu, "Injecting vNMI");
1342 
1343 	/* Clear the request */
1344 	vm_nmi_clear(vmx->vm, vcpu);
1345 }
1346 
1347 static void
1348 vmx_inject_interrupts(struct vmx *vmx, int vcpu, struct vlapic *vlapic,
1349     uint64_t guestrip)
1350 {
1351 	int vector, need_nmi_exiting, extint_pending;
1352 	uint64_t rflags, entryinfo;
1353 	uint32_t gi, info;
1354 
1355 	if (vmx->state[vcpu].nextrip != guestrip) {
1356 		gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1357 		if (gi & HWINTR_BLOCKING) {
1358 			VCPU_CTR2(vmx->vm, vcpu, "Guest interrupt blocking "
1359 			    "cleared due to rip change: %#lx/%#lx",
1360 			    vmx->state[vcpu].nextrip, guestrip);
1361 			gi &= ~HWINTR_BLOCKING;
1362 			vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1363 		}
1364 	}
1365 
1366 	if (vm_entry_intinfo(vmx->vm, vcpu, &entryinfo)) {
1367 		KASSERT((entryinfo & VMCS_INTR_VALID) != 0, ("%s: entry "
1368 		    "intinfo is not valid: %#lx", __func__, entryinfo));
1369 
1370 		info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1371 		KASSERT((info & VMCS_INTR_VALID) == 0, ("%s: cannot inject "
1372 		     "pending exception: %#lx/%#x", __func__, entryinfo, info));
1373 
1374 		info = entryinfo;
1375 		vector = info & 0xff;
1376 		if (vector == IDT_BP || vector == IDT_OF) {
1377 			/*
1378 			 * VT-x requires #BP and #OF to be injected as software
1379 			 * exceptions.
1380 			 */
1381 			info &= ~VMCS_INTR_T_MASK;
1382 			info |= VMCS_INTR_T_SWEXCEPTION;
1383 		}
1384 
1385 		if (info & VMCS_INTR_DEL_ERRCODE)
1386 			vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, entryinfo >> 32);
1387 
1388 		vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1389 	}
1390 
1391 	if (vm_nmi_pending(vmx->vm, vcpu)) {
1392 		/*
1393 		 * If there are no conditions blocking NMI injection then
1394 		 * inject it directly here otherwise enable "NMI window
1395 		 * exiting" to inject it as soon as we can.
1396 		 *
1397 		 * We also check for STI_BLOCKING because some implementations
1398 		 * don't allow NMI injection in this case. If we are running
1399 		 * on a processor that doesn't have this restriction it will
1400 		 * immediately exit and the NMI will be injected in the
1401 		 * "NMI window exiting" handler.
1402 		 */
1403 		need_nmi_exiting = 1;
1404 		gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1405 		if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) {
1406 			info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1407 			if ((info & VMCS_INTR_VALID) == 0) {
1408 				vmx_inject_nmi(vmx, vcpu);
1409 				need_nmi_exiting = 0;
1410 			} else {
1411 				VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI "
1412 				    "due to VM-entry intr info %#x", info);
1413 			}
1414 		} else {
1415 			VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI due to "
1416 			    "Guest Interruptibility-state %#x", gi);
1417 		}
1418 
1419 		if (need_nmi_exiting)
1420 			vmx_set_nmi_window_exiting(vmx, vcpu);
1421 	}
1422 
1423 	extint_pending = vm_extint_pending(vmx->vm, vcpu);
1424 
1425 	if (!extint_pending && virtual_interrupt_delivery) {
1426 		vmx_inject_pir(vlapic);
1427 		return;
1428 	}
1429 
1430 	/*
1431 	 * If interrupt-window exiting is already in effect then don't bother
1432 	 * checking for pending interrupts. This is just an optimization and
1433 	 * not needed for correctness.
1434 	 */
1435 	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0) {
1436 		VCPU_CTR0(vmx->vm, vcpu, "Skip interrupt injection due to "
1437 		    "pending int_window_exiting");
1438 		return;
1439 	}
1440 
1441 	if (!extint_pending) {
1442 		/* Ask the local apic for a vector to inject */
1443 		if (!vlapic_pending_intr(vlapic, &vector))
1444 			return;
1445 
1446 		/*
1447 		 * From the Intel SDM, Volume 3, Section "Maskable
1448 		 * Hardware Interrupts":
1449 		 * - maskable interrupt vectors [16,255] can be delivered
1450 		 *   through the local APIC.
1451 		*/
1452 		KASSERT(vector >= 16 && vector <= 255,
1453 		    ("invalid vector %d from local APIC", vector));
1454 	} else {
1455 		/* Ask the legacy pic for a vector to inject */
1456 		vatpic_pending_intr(vmx->vm, &vector);
1457 
1458 		/*
1459 		 * From the Intel SDM, Volume 3, Section "Maskable
1460 		 * Hardware Interrupts":
1461 		 * - maskable interrupt vectors [0,255] can be delivered
1462 		 *   through the INTR pin.
1463 		 */
1464 		KASSERT(vector >= 0 && vector <= 255,
1465 		    ("invalid vector %d from INTR", vector));
1466 	}
1467 
1468 	/* Check RFLAGS.IF and the interruptibility state of the guest */
1469 	rflags = vmcs_read(VMCS_GUEST_RFLAGS);
1470 	if ((rflags & PSL_I) == 0) {
1471 		VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1472 		    "rflags %#lx", vector, rflags);
1473 		goto cantinject;
1474 	}
1475 
1476 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1477 	if (gi & HWINTR_BLOCKING) {
1478 		VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1479 		    "Guest Interruptibility-state %#x", vector, gi);
1480 		goto cantinject;
1481 	}
1482 
1483 	info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1484 	if (info & VMCS_INTR_VALID) {
1485 		/*
1486 		 * This is expected and could happen for multiple reasons:
1487 		 * - A vectoring VM-entry was aborted due to astpending
1488 		 * - A VM-exit happened during event injection.
1489 		 * - An exception was injected above.
1490 		 * - An NMI was injected above or after "NMI window exiting"
1491 		 */
1492 		VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1493 		    "VM-entry intr info %#x", vector, info);
1494 		goto cantinject;
1495 	}
1496 
1497 	/* Inject the interrupt */
1498 	info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID;
1499 	info |= vector;
1500 	vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1501 
1502 	if (!extint_pending) {
1503 		/* Update the Local APIC ISR */
1504 		vlapic_intr_accepted(vlapic, vector);
1505 	} else {
1506 		vm_extint_clear(vmx->vm, vcpu);
1507 		vatpic_intr_accepted(vmx->vm, vector);
1508 
1509 		/*
1510 		 * After we accepted the current ExtINT the PIC may
1511 		 * have posted another one.  If that is the case, set
1512 		 * the Interrupt Window Exiting execution control so
1513 		 * we can inject that one too.
1514 		 *
1515 		 * Also, interrupt window exiting allows us to inject any
1516 		 * pending APIC vector that was preempted by the ExtINT
1517 		 * as soon as possible. This applies both for the software
1518 		 * emulated vlapic and the hardware assisted virtual APIC.
1519 		 */
1520 		vmx_set_int_window_exiting(vmx, vcpu);
1521 	}
1522 
1523 	VCPU_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector);
1524 
1525 	return;
1526 
1527 cantinject:
1528 	/*
1529 	 * Set the Interrupt Window Exiting execution control so we can inject
1530 	 * the interrupt as soon as blocking condition goes away.
1531 	 */
1532 	vmx_set_int_window_exiting(vmx, vcpu);
1533 }
1534 
1535 /*
1536  * If the Virtual NMIs execution control is '1' then the logical processor
1537  * tracks virtual-NMI blocking in the Guest Interruptibility-state field of
1538  * the VMCS. An IRET instruction in VMX non-root operation will remove any
1539  * virtual-NMI blocking.
1540  *
1541  * This unblocking occurs even if the IRET causes a fault. In this case the
1542  * hypervisor needs to restore virtual-NMI blocking before resuming the guest.
1543  */
1544 static void
1545 vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid)
1546 {
1547 	uint32_t gi;
1548 
1549 	VCPU_CTR0(vmx->vm, vcpuid, "Restore Virtual-NMI blocking");
1550 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1551 	gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1552 	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1553 }
1554 
1555 static void
1556 vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid)
1557 {
1558 	uint32_t gi;
1559 
1560 	VCPU_CTR0(vmx->vm, vcpuid, "Clear Virtual-NMI blocking");
1561 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1562 	gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1563 	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1564 }
1565 
1566 static void
1567 vmx_assert_nmi_blocking(struct vmx *vmx, int vcpuid)
1568 {
1569 	uint32_t gi;
1570 
1571 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1572 	KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING,
1573 	    ("NMI blocking is not in effect %#x", gi));
1574 }
1575 
1576 static int
1577 vmx_emulate_xsetbv(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1578 {
1579 	struct vmxctx *vmxctx;
1580 	uint64_t xcrval;
1581 	const struct xsave_limits *limits;
1582 
1583 	vmxctx = &vmx->ctx[vcpu];
1584 	limits = vmm_get_xsave_limits();
1585 
1586 	/*
1587 	 * Note that the processor raises a GP# fault on its own if
1588 	 * xsetbv is executed for CPL != 0, so we do not have to
1589 	 * emulate that fault here.
1590 	 */
1591 
1592 	/* Only xcr0 is supported. */
1593 	if (vmxctx->guest_rcx != 0) {
1594 		vm_inject_gp(vmx->vm, vcpu);
1595 		return (HANDLED);
1596 	}
1597 
1598 	/* We only handle xcr0 if both the host and guest have XSAVE enabled. */
1599 	if (!limits->xsave_enabled || !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) {
1600 		vm_inject_ud(vmx->vm, vcpu);
1601 		return (HANDLED);
1602 	}
1603 
1604 	xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff);
1605 	if ((xcrval & ~limits->xcr0_allowed) != 0) {
1606 		vm_inject_gp(vmx->vm, vcpu);
1607 		return (HANDLED);
1608 	}
1609 
1610 	if (!(xcrval & XFEATURE_ENABLED_X87)) {
1611 		vm_inject_gp(vmx->vm, vcpu);
1612 		return (HANDLED);
1613 	}
1614 
1615 	/* AVX (YMM_Hi128) requires SSE. */
1616 	if (xcrval & XFEATURE_ENABLED_AVX &&
1617 	    (xcrval & XFEATURE_AVX) != XFEATURE_AVX) {
1618 		vm_inject_gp(vmx->vm, vcpu);
1619 		return (HANDLED);
1620 	}
1621 
1622 	/*
1623 	 * AVX512 requires base AVX (YMM_Hi128) as well as OpMask,
1624 	 * ZMM_Hi256, and Hi16_ZMM.
1625 	 */
1626 	if (xcrval & XFEATURE_AVX512 &&
1627 	    (xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) !=
1628 	    (XFEATURE_AVX512 | XFEATURE_AVX)) {
1629 		vm_inject_gp(vmx->vm, vcpu);
1630 		return (HANDLED);
1631 	}
1632 
1633 	/*
1634 	 * Intel MPX requires both bound register state flags to be
1635 	 * set.
1636 	 */
1637 	if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) !=
1638 	    ((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) {
1639 		vm_inject_gp(vmx->vm, vcpu);
1640 		return (HANDLED);
1641 	}
1642 
1643 	/*
1644 	 * This runs "inside" vmrun() with the guest's FPU state, so
1645 	 * modifying xcr0 directly modifies the guest's xcr0, not the
1646 	 * host's.
1647 	 */
1648 	load_xcr(0, xcrval);
1649 	return (HANDLED);
1650 }
1651 
1652 static uint64_t
1653 vmx_get_guest_reg(struct vmx *vmx, int vcpu, int ident)
1654 {
1655 	const struct vmxctx *vmxctx;
1656 
1657 	vmxctx = &vmx->ctx[vcpu];
1658 
1659 	switch (ident) {
1660 	case 0:
1661 		return (vmxctx->guest_rax);
1662 	case 1:
1663 		return (vmxctx->guest_rcx);
1664 	case 2:
1665 		return (vmxctx->guest_rdx);
1666 	case 3:
1667 		return (vmxctx->guest_rbx);
1668 	case 4:
1669 		return (vmcs_read(VMCS_GUEST_RSP));
1670 	case 5:
1671 		return (vmxctx->guest_rbp);
1672 	case 6:
1673 		return (vmxctx->guest_rsi);
1674 	case 7:
1675 		return (vmxctx->guest_rdi);
1676 	case 8:
1677 		return (vmxctx->guest_r8);
1678 	case 9:
1679 		return (vmxctx->guest_r9);
1680 	case 10:
1681 		return (vmxctx->guest_r10);
1682 	case 11:
1683 		return (vmxctx->guest_r11);
1684 	case 12:
1685 		return (vmxctx->guest_r12);
1686 	case 13:
1687 		return (vmxctx->guest_r13);
1688 	case 14:
1689 		return (vmxctx->guest_r14);
1690 	case 15:
1691 		return (vmxctx->guest_r15);
1692 	default:
1693 		panic("invalid vmx register %d", ident);
1694 	}
1695 }
1696 
1697 static void
1698 vmx_set_guest_reg(struct vmx *vmx, int vcpu, int ident, uint64_t regval)
1699 {
1700 	struct vmxctx *vmxctx;
1701 
1702 	vmxctx = &vmx->ctx[vcpu];
1703 
1704 	switch (ident) {
1705 	case 0:
1706 		vmxctx->guest_rax = regval;
1707 		break;
1708 	case 1:
1709 		vmxctx->guest_rcx = regval;
1710 		break;
1711 	case 2:
1712 		vmxctx->guest_rdx = regval;
1713 		break;
1714 	case 3:
1715 		vmxctx->guest_rbx = regval;
1716 		break;
1717 	case 4:
1718 		vmcs_write(VMCS_GUEST_RSP, regval);
1719 		break;
1720 	case 5:
1721 		vmxctx->guest_rbp = regval;
1722 		break;
1723 	case 6:
1724 		vmxctx->guest_rsi = regval;
1725 		break;
1726 	case 7:
1727 		vmxctx->guest_rdi = regval;
1728 		break;
1729 	case 8:
1730 		vmxctx->guest_r8 = regval;
1731 		break;
1732 	case 9:
1733 		vmxctx->guest_r9 = regval;
1734 		break;
1735 	case 10:
1736 		vmxctx->guest_r10 = regval;
1737 		break;
1738 	case 11:
1739 		vmxctx->guest_r11 = regval;
1740 		break;
1741 	case 12:
1742 		vmxctx->guest_r12 = regval;
1743 		break;
1744 	case 13:
1745 		vmxctx->guest_r13 = regval;
1746 		break;
1747 	case 14:
1748 		vmxctx->guest_r14 = regval;
1749 		break;
1750 	case 15:
1751 		vmxctx->guest_r15 = regval;
1752 		break;
1753 	default:
1754 		panic("invalid vmx register %d", ident);
1755 	}
1756 }
1757 
1758 static int
1759 vmx_emulate_cr0_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1760 {
1761 	uint64_t crval, regval;
1762 
1763 	/* We only handle mov to %cr0 at this time */
1764 	if ((exitqual & 0xf0) != 0x00)
1765 		return (UNHANDLED);
1766 
1767 	regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1768 
1769 	vmcs_write(VMCS_CR0_SHADOW, regval);
1770 
1771 	crval = regval | cr0_ones_mask;
1772 	crval &= ~cr0_zeros_mask;
1773 	vmcs_write(VMCS_GUEST_CR0, crval);
1774 
1775 	if (regval & CR0_PG) {
1776 		uint64_t efer, entry_ctls;
1777 
1778 		/*
1779 		 * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and
1780 		 * the "IA-32e mode guest" bit in VM-entry control must be
1781 		 * equal.
1782 		 */
1783 		efer = vmcs_read(VMCS_GUEST_IA32_EFER);
1784 		if (efer & EFER_LME) {
1785 			efer |= EFER_LMA;
1786 			vmcs_write(VMCS_GUEST_IA32_EFER, efer);
1787 			entry_ctls = vmcs_read(VMCS_ENTRY_CTLS);
1788 			entry_ctls |= VM_ENTRY_GUEST_LMA;
1789 			vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
1790 		}
1791 	}
1792 
1793 	return (HANDLED);
1794 }
1795 
1796 static int
1797 vmx_emulate_cr4_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1798 {
1799 	uint64_t crval, regval;
1800 
1801 	/* We only handle mov to %cr4 at this time */
1802 	if ((exitqual & 0xf0) != 0x00)
1803 		return (UNHANDLED);
1804 
1805 	regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1806 
1807 	vmcs_write(VMCS_CR4_SHADOW, regval);
1808 
1809 	crval = regval | cr4_ones_mask;
1810 	crval &= ~cr4_zeros_mask;
1811 	vmcs_write(VMCS_GUEST_CR4, crval);
1812 
1813 	return (HANDLED);
1814 }
1815 
1816 static int
1817 vmx_emulate_cr8_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1818 {
1819 	struct vlapic *vlapic;
1820 	uint64_t cr8;
1821 	int regnum;
1822 
1823 	/* We only handle mov %cr8 to/from a register at this time. */
1824 	if ((exitqual & 0xe0) != 0x00) {
1825 		return (UNHANDLED);
1826 	}
1827 
1828 	vlapic = vm_lapic(vmx->vm, vcpu);
1829 	regnum = (exitqual >> 8) & 0xf;
1830 	if (exitqual & 0x10) {
1831 		cr8 = vlapic_get_cr8(vlapic);
1832 		vmx_set_guest_reg(vmx, vcpu, regnum, cr8);
1833 	} else {
1834 		cr8 = vmx_get_guest_reg(vmx, vcpu, regnum);
1835 		vlapic_set_cr8(vlapic, cr8);
1836 	}
1837 
1838 	return (HANDLED);
1839 }
1840 
1841 /*
1842  * From section "Guest Register State" in the Intel SDM: CPL = SS.DPL
1843  */
1844 static int
1845 vmx_cpl(void)
1846 {
1847 	uint32_t ssar;
1848 
1849 	ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS);
1850 	return ((ssar >> 5) & 0x3);
1851 }
1852 
1853 static enum vm_cpu_mode
1854 vmx_cpu_mode(void)
1855 {
1856 	uint32_t csar;
1857 
1858 	if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) {
1859 		csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1860 		if (csar & 0x2000)
1861 			return (CPU_MODE_64BIT);	/* CS.L = 1 */
1862 		else
1863 			return (CPU_MODE_COMPATIBILITY);
1864 	} else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) {
1865 		return (CPU_MODE_PROTECTED);
1866 	} else {
1867 		return (CPU_MODE_REAL);
1868 	}
1869 }
1870 
1871 static enum vm_paging_mode
1872 vmx_paging_mode(void)
1873 {
1874 
1875 	if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG))
1876 		return (PAGING_MODE_FLAT);
1877 	if (!(vmcs_read(VMCS_GUEST_CR4) & CR4_PAE))
1878 		return (PAGING_MODE_32);
1879 	if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME)
1880 		return (PAGING_MODE_64);
1881 	else
1882 		return (PAGING_MODE_PAE);
1883 }
1884 
1885 static uint64_t
1886 inout_str_index(struct vmx *vmx, int vcpuid, int in)
1887 {
1888 	uint64_t val;
1889 	int error;
1890 	enum vm_reg_name reg;
1891 
1892 	reg = in ? VM_REG_GUEST_RDI : VM_REG_GUEST_RSI;
1893 	error = vmx_getreg(vmx, vcpuid, reg, &val);
1894 	KASSERT(error == 0, ("%s: vmx_getreg error %d", __func__, error));
1895 	return (val);
1896 }
1897 
1898 static uint64_t
1899 inout_str_count(struct vmx *vmx, int vcpuid, int rep)
1900 {
1901 	uint64_t val;
1902 	int error;
1903 
1904 	if (rep) {
1905 		error = vmx_getreg(vmx, vcpuid, VM_REG_GUEST_RCX, &val);
1906 		KASSERT(!error, ("%s: vmx_getreg error %d", __func__, error));
1907 	} else {
1908 		val = 1;
1909 	}
1910 	return (val);
1911 }
1912 
1913 static int
1914 inout_str_addrsize(uint32_t inst_info)
1915 {
1916 	uint32_t size;
1917 
1918 	size = (inst_info >> 7) & 0x7;
1919 	switch (size) {
1920 	case 0:
1921 		return (2);	/* 16 bit */
1922 	case 1:
1923 		return (4);	/* 32 bit */
1924 	case 2:
1925 		return (8);	/* 64 bit */
1926 	default:
1927 		panic("%s: invalid size encoding %d", __func__, size);
1928 	}
1929 }
1930 
1931 static void
1932 inout_str_seginfo(struct vmx *vmx, int vcpuid, uint32_t inst_info, int in,
1933     struct vm_inout_str *vis)
1934 {
1935 	int error, s;
1936 
1937 	if (in) {
1938 		vis->seg_name = VM_REG_GUEST_ES;
1939 	} else {
1940 		s = (inst_info >> 15) & 0x7;
1941 		vis->seg_name = vm_segment_name(s);
1942 	}
1943 
1944 	error = vmx_getdesc(vmx, vcpuid, vis->seg_name, &vis->seg_desc);
1945 	KASSERT(error == 0, ("%s: vmx_getdesc error %d", __func__, error));
1946 }
1947 
1948 static void
1949 vmx_paging_info(struct vm_guest_paging *paging)
1950 {
1951 	paging->cr3 = vmcs_guest_cr3();
1952 	paging->cpl = vmx_cpl();
1953 	paging->cpu_mode = vmx_cpu_mode();
1954 	paging->paging_mode = vmx_paging_mode();
1955 }
1956 
1957 static void
1958 vmexit_inst_emul(struct vm_exit *vmexit, uint64_t gpa, uint64_t gla)
1959 {
1960 	struct vm_guest_paging *paging;
1961 	uint32_t csar;
1962 
1963 	paging = &vmexit->u.inst_emul.paging;
1964 
1965 	vmexit->exitcode = VM_EXITCODE_INST_EMUL;
1966 	vmexit->inst_length = 0;
1967 	vmexit->u.inst_emul.gpa = gpa;
1968 	vmexit->u.inst_emul.gla = gla;
1969 	vmx_paging_info(paging);
1970 	switch (paging->cpu_mode) {
1971 	case CPU_MODE_REAL:
1972 		vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
1973 		vmexit->u.inst_emul.cs_d = 0;
1974 		break;
1975 	case CPU_MODE_PROTECTED:
1976 	case CPU_MODE_COMPATIBILITY:
1977 		vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
1978 		csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1979 		vmexit->u.inst_emul.cs_d = SEG_DESC_DEF32(csar);
1980 		break;
1981 	default:
1982 		vmexit->u.inst_emul.cs_base = 0;
1983 		vmexit->u.inst_emul.cs_d = 0;
1984 		break;
1985 	}
1986 	vie_init(&vmexit->u.inst_emul.vie, NULL, 0);
1987 }
1988 
1989 static int
1990 ept_fault_type(uint64_t ept_qual)
1991 {
1992 	int fault_type;
1993 
1994 	if (ept_qual & EPT_VIOLATION_DATA_WRITE)
1995 		fault_type = VM_PROT_WRITE;
1996 	else if (ept_qual & EPT_VIOLATION_INST_FETCH)
1997 		fault_type = VM_PROT_EXECUTE;
1998 	else
1999 		fault_type= VM_PROT_READ;
2000 
2001 	return (fault_type);
2002 }
2003 
2004 static bool
2005 ept_emulation_fault(uint64_t ept_qual)
2006 {
2007 	int read, write;
2008 
2009 	/* EPT fault on an instruction fetch doesn't make sense here */
2010 	if (ept_qual & EPT_VIOLATION_INST_FETCH)
2011 		return (false);
2012 
2013 	/* EPT fault must be a read fault or a write fault */
2014 	read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
2015 	write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
2016 	if ((read | write) == 0)
2017 		return (false);
2018 
2019 	/*
2020 	 * The EPT violation must have been caused by accessing a
2021 	 * guest-physical address that is a translation of a guest-linear
2022 	 * address.
2023 	 */
2024 	if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
2025 	    (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
2026 		return (false);
2027 	}
2028 
2029 	return (true);
2030 }
2031 
2032 static __inline int
2033 apic_access_virtualization(struct vmx *vmx, int vcpuid)
2034 {
2035 	uint32_t proc_ctls2;
2036 
2037 	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
2038 	return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0);
2039 }
2040 
2041 static __inline int
2042 x2apic_virtualization(struct vmx *vmx, int vcpuid)
2043 {
2044 	uint32_t proc_ctls2;
2045 
2046 	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
2047 	return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0);
2048 }
2049 
2050 static int
2051 vmx_handle_apic_write(struct vmx *vmx, int vcpuid, struct vlapic *vlapic,
2052     uint64_t qual)
2053 {
2054 	int error, handled, offset;
2055 	uint32_t *apic_regs, vector;
2056 	bool retu;
2057 
2058 	handled = HANDLED;
2059 	offset = APIC_WRITE_OFFSET(qual);
2060 
2061 	if (!apic_access_virtualization(vmx, vcpuid)) {
2062 		/*
2063 		 * In general there should not be any APIC write VM-exits
2064 		 * unless APIC-access virtualization is enabled.
2065 		 *
2066 		 * However self-IPI virtualization can legitimately trigger
2067 		 * an APIC-write VM-exit so treat it specially.
2068 		 */
2069 		if (x2apic_virtualization(vmx, vcpuid) &&
2070 		    offset == APIC_OFFSET_SELF_IPI) {
2071 			apic_regs = (uint32_t *)(vlapic->apic_page);
2072 			vector = apic_regs[APIC_OFFSET_SELF_IPI / 4];
2073 			vlapic_self_ipi_handler(vlapic, vector);
2074 			return (HANDLED);
2075 		} else
2076 			return (UNHANDLED);
2077 	}
2078 
2079 	switch (offset) {
2080 	case APIC_OFFSET_ID:
2081 		vlapic_id_write_handler(vlapic);
2082 		break;
2083 	case APIC_OFFSET_LDR:
2084 		vlapic_ldr_write_handler(vlapic);
2085 		break;
2086 	case APIC_OFFSET_DFR:
2087 		vlapic_dfr_write_handler(vlapic);
2088 		break;
2089 	case APIC_OFFSET_SVR:
2090 		vlapic_svr_write_handler(vlapic);
2091 		break;
2092 	case APIC_OFFSET_ESR:
2093 		vlapic_esr_write_handler(vlapic);
2094 		break;
2095 	case APIC_OFFSET_ICR_LOW:
2096 		retu = false;
2097 		error = vlapic_icrlo_write_handler(vlapic, &retu);
2098 		if (error != 0 || retu)
2099 			handled = UNHANDLED;
2100 		break;
2101 	case APIC_OFFSET_CMCI_LVT:
2102 	case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT:
2103 		vlapic_lvt_write_handler(vlapic, offset);
2104 		break;
2105 	case APIC_OFFSET_TIMER_ICR:
2106 		vlapic_icrtmr_write_handler(vlapic);
2107 		break;
2108 	case APIC_OFFSET_TIMER_DCR:
2109 		vlapic_dcr_write_handler(vlapic);
2110 		break;
2111 	default:
2112 		handled = UNHANDLED;
2113 		break;
2114 	}
2115 	return (handled);
2116 }
2117 
2118 static bool
2119 apic_access_fault(struct vmx *vmx, int vcpuid, uint64_t gpa)
2120 {
2121 
2122 	if (apic_access_virtualization(vmx, vcpuid) &&
2123 	    (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE))
2124 		return (true);
2125 	else
2126 		return (false);
2127 }
2128 
2129 static int
2130 vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
2131 {
2132 	uint64_t qual;
2133 	int access_type, offset, allowed;
2134 
2135 	if (!apic_access_virtualization(vmx, vcpuid))
2136 		return (UNHANDLED);
2137 
2138 	qual = vmexit->u.vmx.exit_qualification;
2139 	access_type = APIC_ACCESS_TYPE(qual);
2140 	offset = APIC_ACCESS_OFFSET(qual);
2141 
2142 	allowed = 0;
2143 	if (access_type == 0) {
2144 		/*
2145 		 * Read data access to the following registers is expected.
2146 		 */
2147 		switch (offset) {
2148 		case APIC_OFFSET_APR:
2149 		case APIC_OFFSET_PPR:
2150 		case APIC_OFFSET_RRR:
2151 		case APIC_OFFSET_CMCI_LVT:
2152 		case APIC_OFFSET_TIMER_CCR:
2153 			allowed = 1;
2154 			break;
2155 		default:
2156 			break;
2157 		}
2158 	} else if (access_type == 1) {
2159 		/*
2160 		 * Write data access to the following registers is expected.
2161 		 */
2162 		switch (offset) {
2163 		case APIC_OFFSET_VER:
2164 		case APIC_OFFSET_APR:
2165 		case APIC_OFFSET_PPR:
2166 		case APIC_OFFSET_RRR:
2167 		case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7:
2168 		case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7:
2169 		case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7:
2170 		case APIC_OFFSET_CMCI_LVT:
2171 		case APIC_OFFSET_TIMER_CCR:
2172 			allowed = 1;
2173 			break;
2174 		default:
2175 			break;
2176 		}
2177 	}
2178 
2179 	if (allowed) {
2180 		vmexit_inst_emul(vmexit, DEFAULT_APIC_BASE + offset,
2181 		    VIE_INVALID_GLA);
2182 	}
2183 
2184 	/*
2185 	 * Regardless of whether the APIC-access is allowed this handler
2186 	 * always returns UNHANDLED:
2187 	 * - if the access is allowed then it is handled by emulating the
2188 	 *   instruction that caused the VM-exit (outside the critical section)
2189 	 * - if the access is not allowed then it will be converted to an
2190 	 *   exitcode of VM_EXITCODE_VMX and will be dealt with in userland.
2191 	 */
2192 	return (UNHANDLED);
2193 }
2194 
2195 static enum task_switch_reason
2196 vmx_task_switch_reason(uint64_t qual)
2197 {
2198 	int reason;
2199 
2200 	reason = (qual >> 30) & 0x3;
2201 	switch (reason) {
2202 	case 0:
2203 		return (TSR_CALL);
2204 	case 1:
2205 		return (TSR_IRET);
2206 	case 2:
2207 		return (TSR_JMP);
2208 	case 3:
2209 		return (TSR_IDT_GATE);
2210 	default:
2211 		panic("%s: invalid reason %d", __func__, reason);
2212 	}
2213 }
2214 
2215 static int
2216 emulate_wrmsr(struct vmx *vmx, int vcpuid, u_int num, uint64_t val, bool *retu)
2217 {
2218 	int error;
2219 
2220 	if (lapic_msr(num))
2221 		error = lapic_wrmsr(vmx->vm, vcpuid, num, val, retu);
2222 	else
2223 		error = vmx_wrmsr(vmx, vcpuid, num, val, retu);
2224 
2225 	return (error);
2226 }
2227 
2228 static int
2229 emulate_rdmsr(struct vmx *vmx, int vcpuid, u_int num, bool *retu)
2230 {
2231 	struct vmxctx *vmxctx;
2232 	uint64_t result;
2233 	uint32_t eax, edx;
2234 	int error;
2235 
2236 	if (lapic_msr(num))
2237 		error = lapic_rdmsr(vmx->vm, vcpuid, num, &result, retu);
2238 	else
2239 		error = vmx_rdmsr(vmx, vcpuid, num, &result, retu);
2240 
2241 	if (error == 0) {
2242 		eax = result;
2243 		vmxctx = &vmx->ctx[vcpuid];
2244 		error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RAX, eax);
2245 		KASSERT(error == 0, ("vmxctx_setreg(rax) error %d", error));
2246 
2247 		edx = result >> 32;
2248 		error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RDX, edx);
2249 		KASSERT(error == 0, ("vmxctx_setreg(rdx) error %d", error));
2250 	}
2251 
2252 	return (error);
2253 }
2254 
2255 static int
2256 vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
2257 {
2258 	int error, errcode, errcode_valid, handled, in;
2259 	struct vmxctx *vmxctx;
2260 	struct vlapic *vlapic;
2261 	struct vm_inout_str *vis;
2262 	struct vm_task_switch *ts;
2263 	uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, inst_info;
2264 	uint32_t intr_type, intr_vec, reason;
2265 	uint64_t exitintinfo, qual, gpa;
2266 	bool retu;
2267 
2268 	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0);
2269 	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0);
2270 
2271 	handled = UNHANDLED;
2272 	vmxctx = &vmx->ctx[vcpu];
2273 
2274 	qual = vmexit->u.vmx.exit_qualification;
2275 	reason = vmexit->u.vmx.exit_reason;
2276 	vmexit->exitcode = VM_EXITCODE_BOGUS;
2277 
2278 	vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1);
2279 	SDT_PROBE3(vmm, vmx, exit, entry, vmx, vcpu, vmexit);
2280 
2281 	/*
2282 	 * VM-entry failures during or after loading guest state.
2283 	 *
2284 	 * These VM-exits are uncommon but must be handled specially
2285 	 * as most VM-exit fields are not populated as usual.
2286 	 */
2287 	if (__predict_false(reason == EXIT_REASON_MCE_DURING_ENTRY)) {
2288 		VCPU_CTR0(vmx->vm, vcpu, "Handling MCE during VM-entry");
2289 		__asm __volatile("int $18");
2290 		return (1);
2291 	}
2292 
2293 	/*
2294 	 * VM exits that can be triggered during event delivery need to
2295 	 * be handled specially by re-injecting the event if the IDT
2296 	 * vectoring information field's valid bit is set.
2297 	 *
2298 	 * See "Information for VM Exits During Event Delivery" in Intel SDM
2299 	 * for details.
2300 	 */
2301 	idtvec_info = vmcs_idt_vectoring_info();
2302 	if (idtvec_info & VMCS_IDT_VEC_VALID) {
2303 		idtvec_info &= ~(1 << 12); /* clear undefined bit */
2304 		exitintinfo = idtvec_info;
2305 		if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2306 			idtvec_err = vmcs_idt_vectoring_err();
2307 			exitintinfo |= (uint64_t)idtvec_err << 32;
2308 		}
2309 		error = vm_exit_intinfo(vmx->vm, vcpu, exitintinfo);
2310 		KASSERT(error == 0, ("%s: vm_set_intinfo error %d",
2311 		    __func__, error));
2312 
2313 		/*
2314 		 * If 'virtual NMIs' are being used and the VM-exit
2315 		 * happened while injecting an NMI during the previous
2316 		 * VM-entry, then clear "blocking by NMI" in the
2317 		 * Guest Interruptibility-State so the NMI can be
2318 		 * reinjected on the subsequent VM-entry.
2319 		 *
2320 		 * However, if the NMI was being delivered through a task
2321 		 * gate, then the new task must start execution with NMIs
2322 		 * blocked so don't clear NMI blocking in this case.
2323 		 */
2324 		intr_type = idtvec_info & VMCS_INTR_T_MASK;
2325 		if (intr_type == VMCS_INTR_T_NMI) {
2326 			if (reason != EXIT_REASON_TASK_SWITCH)
2327 				vmx_clear_nmi_blocking(vmx, vcpu);
2328 			else
2329 				vmx_assert_nmi_blocking(vmx, vcpu);
2330 		}
2331 
2332 		/*
2333 		 * Update VM-entry instruction length if the event being
2334 		 * delivered was a software interrupt or software exception.
2335 		 */
2336 		if (intr_type == VMCS_INTR_T_SWINTR ||
2337 		    intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION ||
2338 		    intr_type == VMCS_INTR_T_SWEXCEPTION) {
2339 			vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2340 		}
2341 	}
2342 
2343 	switch (reason) {
2344 	case EXIT_REASON_TASK_SWITCH:
2345 		ts = &vmexit->u.task_switch;
2346 		ts->tsssel = qual & 0xffff;
2347 		ts->reason = vmx_task_switch_reason(qual);
2348 		ts->ext = 0;
2349 		ts->errcode_valid = 0;
2350 		vmx_paging_info(&ts->paging);
2351 		/*
2352 		 * If the task switch was due to a CALL, JMP, IRET, software
2353 		 * interrupt (INT n) or software exception (INT3, INTO),
2354 		 * then the saved %rip references the instruction that caused
2355 		 * the task switch. The instruction length field in the VMCS
2356 		 * is valid in this case.
2357 		 *
2358 		 * In all other cases (e.g., NMI, hardware exception) the
2359 		 * saved %rip is one that would have been saved in the old TSS
2360 		 * had the task switch completed normally so the instruction
2361 		 * length field is not needed in this case and is explicitly
2362 		 * set to 0.
2363 		 */
2364 		if (ts->reason == TSR_IDT_GATE) {
2365 			KASSERT(idtvec_info & VMCS_IDT_VEC_VALID,
2366 			    ("invalid idtvec_info %#x for IDT task switch",
2367 			    idtvec_info));
2368 			intr_type = idtvec_info & VMCS_INTR_T_MASK;
2369 			if (intr_type != VMCS_INTR_T_SWINTR &&
2370 			    intr_type != VMCS_INTR_T_SWEXCEPTION &&
2371 			    intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) {
2372 				/* Task switch triggered by external event */
2373 				ts->ext = 1;
2374 				vmexit->inst_length = 0;
2375 				if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2376 					ts->errcode_valid = 1;
2377 					ts->errcode = vmcs_idt_vectoring_err();
2378 				}
2379 			}
2380 		}
2381 		vmexit->exitcode = VM_EXITCODE_TASK_SWITCH;
2382 		SDT_PROBE4(vmm, vmx, exit, taskswitch, vmx, vcpu, vmexit, ts);
2383 		VCPU_CTR4(vmx->vm, vcpu, "task switch reason %d, tss 0x%04x, "
2384 		    "%s errcode 0x%016lx", ts->reason, ts->tsssel,
2385 		    ts->ext ? "external" : "internal",
2386 		    ((uint64_t)ts->errcode << 32) | ts->errcode_valid);
2387 		break;
2388 	case EXIT_REASON_CR_ACCESS:
2389 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1);
2390 		SDT_PROBE4(vmm, vmx, exit, craccess, vmx, vcpu, vmexit, qual);
2391 		switch (qual & 0xf) {
2392 		case 0:
2393 			handled = vmx_emulate_cr0_access(vmx, vcpu, qual);
2394 			break;
2395 		case 4:
2396 			handled = vmx_emulate_cr4_access(vmx, vcpu, qual);
2397 			break;
2398 		case 8:
2399 			handled = vmx_emulate_cr8_access(vmx, vcpu, qual);
2400 			break;
2401 		}
2402 		break;
2403 	case EXIT_REASON_RDMSR:
2404 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1);
2405 		retu = false;
2406 		ecx = vmxctx->guest_rcx;
2407 		VCPU_CTR1(vmx->vm, vcpu, "rdmsr 0x%08x", ecx);
2408 		SDT_PROBE4(vmm, vmx, exit, rdmsr, vmx, vcpu, vmexit, ecx);
2409 		error = emulate_rdmsr(vmx, vcpu, ecx, &retu);
2410 		if (error) {
2411 			vmexit->exitcode = VM_EXITCODE_RDMSR;
2412 			vmexit->u.msr.code = ecx;
2413 		} else if (!retu) {
2414 			handled = HANDLED;
2415 		} else {
2416 			/* Return to userspace with a valid exitcode */
2417 			KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2418 			    ("emulate_rdmsr retu with bogus exitcode"));
2419 		}
2420 		break;
2421 	case EXIT_REASON_WRMSR:
2422 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1);
2423 		retu = false;
2424 		eax = vmxctx->guest_rax;
2425 		ecx = vmxctx->guest_rcx;
2426 		edx = vmxctx->guest_rdx;
2427 		VCPU_CTR2(vmx->vm, vcpu, "wrmsr 0x%08x value 0x%016lx",
2428 		    ecx, (uint64_t)edx << 32 | eax);
2429 		SDT_PROBE5(vmm, vmx, exit, wrmsr, vmx, vmexit, vcpu, ecx,
2430 		    (uint64_t)edx << 32 | eax);
2431 		error = emulate_wrmsr(vmx, vcpu, ecx,
2432 		    (uint64_t)edx << 32 | eax, &retu);
2433 		if (error) {
2434 			vmexit->exitcode = VM_EXITCODE_WRMSR;
2435 			vmexit->u.msr.code = ecx;
2436 			vmexit->u.msr.wval = (uint64_t)edx << 32 | eax;
2437 		} else if (!retu) {
2438 			handled = HANDLED;
2439 		} else {
2440 			/* Return to userspace with a valid exitcode */
2441 			KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2442 			    ("emulate_wrmsr retu with bogus exitcode"));
2443 		}
2444 		break;
2445 	case EXIT_REASON_HLT:
2446 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1);
2447 		SDT_PROBE3(vmm, vmx, exit, halt, vmx, vcpu, vmexit);
2448 		vmexit->exitcode = VM_EXITCODE_HLT;
2449 		vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2450 		if (virtual_interrupt_delivery)
2451 			vmexit->u.hlt.intr_status =
2452 			    vmcs_read(VMCS_GUEST_INTR_STATUS);
2453 		else
2454 			vmexit->u.hlt.intr_status = 0;
2455 		break;
2456 	case EXIT_REASON_MTF:
2457 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1);
2458 		SDT_PROBE3(vmm, vmx, exit, mtrap, vmx, vcpu, vmexit);
2459 		vmexit->exitcode = VM_EXITCODE_MTRAP;
2460 		vmexit->inst_length = 0;
2461 		break;
2462 	case EXIT_REASON_PAUSE:
2463 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1);
2464 		SDT_PROBE3(vmm, vmx, exit, pause, vmx, vcpu, vmexit);
2465 		vmexit->exitcode = VM_EXITCODE_PAUSE;
2466 		break;
2467 	case EXIT_REASON_INTR_WINDOW:
2468 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1);
2469 		SDT_PROBE3(vmm, vmx, exit, intrwindow, vmx, vcpu, vmexit);
2470 		vmx_clear_int_window_exiting(vmx, vcpu);
2471 		return (1);
2472 	case EXIT_REASON_EXT_INTR:
2473 		/*
2474 		 * External interrupts serve only to cause VM exits and allow
2475 		 * the host interrupt handler to run.
2476 		 *
2477 		 * If this external interrupt triggers a virtual interrupt
2478 		 * to a VM, then that state will be recorded by the
2479 		 * host interrupt handler in the VM's softc. We will inject
2480 		 * this virtual interrupt during the subsequent VM enter.
2481 		 */
2482 		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2483 		SDT_PROBE4(vmm, vmx, exit, interrupt,
2484 		    vmx, vcpu, vmexit, intr_info);
2485 
2486 		/*
2487 		 * XXX: Ignore this exit if VMCS_INTR_VALID is not set.
2488 		 * This appears to be a bug in VMware Fusion?
2489 		 */
2490 		if (!(intr_info & VMCS_INTR_VALID))
2491 			return (1);
2492 		KASSERT((intr_info & VMCS_INTR_VALID) != 0 &&
2493 		    (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR,
2494 		    ("VM exit interruption info invalid: %#x", intr_info));
2495 		vmx_trigger_hostintr(intr_info & 0xff);
2496 
2497 		/*
2498 		 * This is special. We want to treat this as an 'handled'
2499 		 * VM-exit but not increment the instruction pointer.
2500 		 */
2501 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1);
2502 		return (1);
2503 	case EXIT_REASON_NMI_WINDOW:
2504 		SDT_PROBE3(vmm, vmx, exit, nmiwindow, vmx, vcpu, vmexit);
2505 		/* Exit to allow the pending virtual NMI to be injected */
2506 		if (vm_nmi_pending(vmx->vm, vcpu))
2507 			vmx_inject_nmi(vmx, vcpu);
2508 		vmx_clear_nmi_window_exiting(vmx, vcpu);
2509 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1);
2510 		return (1);
2511 	case EXIT_REASON_INOUT:
2512 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1);
2513 		vmexit->exitcode = VM_EXITCODE_INOUT;
2514 		vmexit->u.inout.bytes = (qual & 0x7) + 1;
2515 		vmexit->u.inout.in = in = (qual & 0x8) ? 1 : 0;
2516 		vmexit->u.inout.string = (qual & 0x10) ? 1 : 0;
2517 		vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0;
2518 		vmexit->u.inout.port = (uint16_t)(qual >> 16);
2519 		vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax);
2520 		if (vmexit->u.inout.string) {
2521 			inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO);
2522 			vmexit->exitcode = VM_EXITCODE_INOUT_STR;
2523 			vis = &vmexit->u.inout_str;
2524 			vmx_paging_info(&vis->paging);
2525 			vis->rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2526 			vis->cr0 = vmcs_read(VMCS_GUEST_CR0);
2527 			vis->index = inout_str_index(vmx, vcpu, in);
2528 			vis->count = inout_str_count(vmx, vcpu, vis->inout.rep);
2529 			vis->addrsize = inout_str_addrsize(inst_info);
2530 			inout_str_seginfo(vmx, vcpu, inst_info, in, vis);
2531 		}
2532 		SDT_PROBE3(vmm, vmx, exit, inout, vmx, vcpu, vmexit);
2533 		break;
2534 	case EXIT_REASON_CPUID:
2535 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1);
2536 		SDT_PROBE3(vmm, vmx, exit, cpuid, vmx, vcpu, vmexit);
2537 		handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx);
2538 		break;
2539 	case EXIT_REASON_EXCEPTION:
2540 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXCEPTION, 1);
2541 		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2542 		KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2543 		    ("VM exit interruption info invalid: %#x", intr_info));
2544 
2545 		intr_vec = intr_info & 0xff;
2546 		intr_type = intr_info & VMCS_INTR_T_MASK;
2547 
2548 		/*
2549 		 * If Virtual NMIs control is 1 and the VM-exit is due to a
2550 		 * fault encountered during the execution of IRET then we must
2551 		 * restore the state of "virtual-NMI blocking" before resuming
2552 		 * the guest.
2553 		 *
2554 		 * See "Resuming Guest Software after Handling an Exception".
2555 		 * See "Information for VM Exits Due to Vectored Events".
2556 		 */
2557 		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2558 		    (intr_vec != IDT_DF) &&
2559 		    (intr_info & EXIT_QUAL_NMIUDTI) != 0)
2560 			vmx_restore_nmi_blocking(vmx, vcpu);
2561 
2562 		/*
2563 		 * The NMI has already been handled in vmx_exit_handle_nmi().
2564 		 */
2565 		if (intr_type == VMCS_INTR_T_NMI)
2566 			return (1);
2567 
2568 		/*
2569 		 * Call the machine check handler by hand. Also don't reflect
2570 		 * the machine check back into the guest.
2571 		 */
2572 		if (intr_vec == IDT_MC) {
2573 			VCPU_CTR0(vmx->vm, vcpu, "Vectoring to MCE handler");
2574 			__asm __volatile("int $18");
2575 			return (1);
2576 		}
2577 
2578 		/*
2579 		 * If the hypervisor has requested user exits for
2580 		 * debug exceptions, bounce them out to userland.
2581 		 */
2582 		if (intr_type == VMCS_INTR_T_SWEXCEPTION && intr_vec == IDT_BP &&
2583 		    (vmx->cap[vcpu].set & (1 << VM_CAP_BPT_EXIT))) {
2584 			vmexit->exitcode = VM_EXITCODE_BPT;
2585 			vmexit->u.bpt.inst_length = vmexit->inst_length;
2586 			vmexit->inst_length = 0;
2587 			break;
2588 		}
2589 
2590 		if (intr_vec == IDT_PF) {
2591 			error = vmxctx_setreg(vmxctx, VM_REG_GUEST_CR2, qual);
2592 			KASSERT(error == 0, ("%s: vmxctx_setreg(cr2) error %d",
2593 			    __func__, error));
2594 		}
2595 
2596 		/*
2597 		 * Software exceptions exhibit trap-like behavior. This in
2598 		 * turn requires populating the VM-entry instruction length
2599 		 * so that the %rip in the trap frame is past the INT3/INTO
2600 		 * instruction.
2601 		 */
2602 		if (intr_type == VMCS_INTR_T_SWEXCEPTION)
2603 			vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2604 
2605 		/* Reflect all other exceptions back into the guest */
2606 		errcode_valid = errcode = 0;
2607 		if (intr_info & VMCS_INTR_DEL_ERRCODE) {
2608 			errcode_valid = 1;
2609 			errcode = vmcs_read(VMCS_EXIT_INTR_ERRCODE);
2610 		}
2611 		VCPU_CTR2(vmx->vm, vcpu, "Reflecting exception %d/%#x into "
2612 		    "the guest", intr_vec, errcode);
2613 		SDT_PROBE5(vmm, vmx, exit, exception,
2614 		    vmx, vcpu, vmexit, intr_vec, errcode);
2615 		error = vm_inject_exception(vmx->vm, vcpu, intr_vec,
2616 		    errcode_valid, errcode, 0);
2617 		KASSERT(error == 0, ("%s: vm_inject_exception error %d",
2618 		    __func__, error));
2619 		return (1);
2620 
2621 	case EXIT_REASON_EPT_FAULT:
2622 		/*
2623 		 * If 'gpa' lies within the address space allocated to
2624 		 * memory then this must be a nested page fault otherwise
2625 		 * this must be an instruction that accesses MMIO space.
2626 		 */
2627 		gpa = vmcs_gpa();
2628 		if (vm_mem_allocated(vmx->vm, vcpu, gpa) ||
2629 		    apic_access_fault(vmx, vcpu, gpa)) {
2630 			vmexit->exitcode = VM_EXITCODE_PAGING;
2631 			vmexit->inst_length = 0;
2632 			vmexit->u.paging.gpa = gpa;
2633 			vmexit->u.paging.fault_type = ept_fault_type(qual);
2634 			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
2635 			SDT_PROBE5(vmm, vmx, exit, nestedfault,
2636 			    vmx, vcpu, vmexit, gpa, qual);
2637 		} else if (ept_emulation_fault(qual)) {
2638 			vmexit_inst_emul(vmexit, gpa, vmcs_gla());
2639 			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INST_EMUL, 1);
2640 			SDT_PROBE4(vmm, vmx, exit, mmiofault,
2641 			    vmx, vcpu, vmexit, gpa);
2642 		}
2643 		/*
2644 		 * If Virtual NMIs control is 1 and the VM-exit is due to an
2645 		 * EPT fault during the execution of IRET then we must restore
2646 		 * the state of "virtual-NMI blocking" before resuming.
2647 		 *
2648 		 * See description of "NMI unblocking due to IRET" in
2649 		 * "Exit Qualification for EPT Violations".
2650 		 */
2651 		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2652 		    (qual & EXIT_QUAL_NMIUDTI) != 0)
2653 			vmx_restore_nmi_blocking(vmx, vcpu);
2654 		break;
2655 	case EXIT_REASON_VIRTUALIZED_EOI:
2656 		vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI;
2657 		vmexit->u.ioapic_eoi.vector = qual & 0xFF;
2658 		SDT_PROBE3(vmm, vmx, exit, eoi, vmx, vcpu, vmexit);
2659 		vmexit->inst_length = 0;	/* trap-like */
2660 		break;
2661 	case EXIT_REASON_APIC_ACCESS:
2662 		SDT_PROBE3(vmm, vmx, exit, apicaccess, vmx, vcpu, vmexit);
2663 		handled = vmx_handle_apic_access(vmx, vcpu, vmexit);
2664 		break;
2665 	case EXIT_REASON_APIC_WRITE:
2666 		/*
2667 		 * APIC-write VM exit is trap-like so the %rip is already
2668 		 * pointing to the next instruction.
2669 		 */
2670 		vmexit->inst_length = 0;
2671 		vlapic = vm_lapic(vmx->vm, vcpu);
2672 		SDT_PROBE4(vmm, vmx, exit, apicwrite,
2673 		    vmx, vcpu, vmexit, vlapic);
2674 		handled = vmx_handle_apic_write(vmx, vcpu, vlapic, qual);
2675 		break;
2676 	case EXIT_REASON_XSETBV:
2677 		SDT_PROBE3(vmm, vmx, exit, xsetbv, vmx, vcpu, vmexit);
2678 		handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit);
2679 		break;
2680 	case EXIT_REASON_MONITOR:
2681 		SDT_PROBE3(vmm, vmx, exit, monitor, vmx, vcpu, vmexit);
2682 		vmexit->exitcode = VM_EXITCODE_MONITOR;
2683 		break;
2684 	case EXIT_REASON_MWAIT:
2685 		SDT_PROBE3(vmm, vmx, exit, mwait, vmx, vcpu, vmexit);
2686 		vmexit->exitcode = VM_EXITCODE_MWAIT;
2687 		break;
2688 	case EXIT_REASON_TPR:
2689 		vlapic = vm_lapic(vmx->vm, vcpu);
2690 		vlapic_sync_tpr(vlapic);
2691 		vmexit->inst_length = 0;
2692 		handled = HANDLED;
2693 		break;
2694 	case EXIT_REASON_VMCALL:
2695 	case EXIT_REASON_VMCLEAR:
2696 	case EXIT_REASON_VMLAUNCH:
2697 	case EXIT_REASON_VMPTRLD:
2698 	case EXIT_REASON_VMPTRST:
2699 	case EXIT_REASON_VMREAD:
2700 	case EXIT_REASON_VMRESUME:
2701 	case EXIT_REASON_VMWRITE:
2702 	case EXIT_REASON_VMXOFF:
2703 	case EXIT_REASON_VMXON:
2704 		SDT_PROBE3(vmm, vmx, exit, vminsn, vmx, vcpu, vmexit);
2705 		vmexit->exitcode = VM_EXITCODE_VMINSN;
2706 		break;
2707 	default:
2708 		SDT_PROBE4(vmm, vmx, exit, unknown,
2709 		    vmx, vcpu, vmexit, reason);
2710 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1);
2711 		break;
2712 	}
2713 
2714 	if (handled) {
2715 		/*
2716 		 * It is possible that control is returned to userland
2717 		 * even though we were able to handle the VM exit in the
2718 		 * kernel.
2719 		 *
2720 		 * In such a case we want to make sure that the userland
2721 		 * restarts guest execution at the instruction *after*
2722 		 * the one we just processed. Therefore we update the
2723 		 * guest rip in the VMCS and in 'vmexit'.
2724 		 */
2725 		vmexit->rip += vmexit->inst_length;
2726 		vmexit->inst_length = 0;
2727 		vmcs_write(VMCS_GUEST_RIP, vmexit->rip);
2728 	} else {
2729 		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
2730 			/*
2731 			 * If this VM exit was not claimed by anybody then
2732 			 * treat it as a generic VMX exit.
2733 			 */
2734 			vmexit->exitcode = VM_EXITCODE_VMX;
2735 			vmexit->u.vmx.status = VM_SUCCESS;
2736 			vmexit->u.vmx.inst_type = 0;
2737 			vmexit->u.vmx.inst_error = 0;
2738 		} else {
2739 			/*
2740 			 * The exitcode and collateral have been populated.
2741 			 * The VM exit will be processed further in userland.
2742 			 */
2743 		}
2744 	}
2745 
2746 	SDT_PROBE4(vmm, vmx, exit, return,
2747 	    vmx, vcpu, vmexit, handled);
2748 	return (handled);
2749 }
2750 
2751 static __inline void
2752 vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit)
2753 {
2754 
2755 	KASSERT(vmxctx->inst_fail_status != VM_SUCCESS,
2756 	    ("vmx_exit_inst_error: invalid inst_fail_status %d",
2757 	    vmxctx->inst_fail_status));
2758 
2759 	vmexit->inst_length = 0;
2760 	vmexit->exitcode = VM_EXITCODE_VMX;
2761 	vmexit->u.vmx.status = vmxctx->inst_fail_status;
2762 	vmexit->u.vmx.inst_error = vmcs_instruction_error();
2763 	vmexit->u.vmx.exit_reason = ~0;
2764 	vmexit->u.vmx.exit_qualification = ~0;
2765 
2766 	switch (rc) {
2767 	case VMX_VMRESUME_ERROR:
2768 	case VMX_VMLAUNCH_ERROR:
2769 	case VMX_INVEPT_ERROR:
2770 		vmexit->u.vmx.inst_type = rc;
2771 		break;
2772 	default:
2773 		panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc);
2774 	}
2775 }
2776 
2777 /*
2778  * If the NMI-exiting VM execution control is set to '1' then an NMI in
2779  * non-root operation causes a VM-exit. NMI blocking is in effect so it is
2780  * sufficient to simply vector to the NMI handler via a software interrupt.
2781  * However, this must be done before maskable interrupts are enabled
2782  * otherwise the "iret" issued by an interrupt handler will incorrectly
2783  * clear NMI blocking.
2784  */
2785 static __inline void
2786 vmx_exit_handle_nmi(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
2787 {
2788 	uint32_t intr_info;
2789 
2790 	KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled"));
2791 
2792 	if (vmexit->u.vmx.exit_reason != EXIT_REASON_EXCEPTION)
2793 		return;
2794 
2795 	intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2796 	KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2797 	    ("VM exit interruption info invalid: %#x", intr_info));
2798 
2799 	if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) {
2800 		KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due "
2801 		    "to NMI has invalid vector: %#x", intr_info));
2802 		VCPU_CTR0(vmx->vm, vcpuid, "Vectoring to NMI handler");
2803 		__asm __volatile("int $2");
2804 	}
2805 }
2806 
2807 static __inline void
2808 vmx_dr_enter_guest(struct vmxctx *vmxctx)
2809 {
2810 	register_t rflags;
2811 
2812 	/* Save host control debug registers. */
2813 	vmxctx->host_dr7 = rdr7();
2814 	vmxctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR);
2815 
2816 	/*
2817 	 * Disable debugging in DR7 and DEBUGCTL to avoid triggering
2818 	 * exceptions in the host based on the guest DRx values.  The
2819 	 * guest DR7 and DEBUGCTL are saved/restored in the VMCS.
2820 	 */
2821 	load_dr7(0);
2822 	wrmsr(MSR_DEBUGCTLMSR, 0);
2823 
2824 	/*
2825 	 * Disable single stepping the kernel to avoid corrupting the
2826 	 * guest DR6.  A debugger might still be able to corrupt the
2827 	 * guest DR6 by setting a breakpoint after this point and then
2828 	 * single stepping.
2829 	 */
2830 	rflags = read_rflags();
2831 	vmxctx->host_tf = rflags & PSL_T;
2832 	write_rflags(rflags & ~PSL_T);
2833 
2834 	/* Save host debug registers. */
2835 	vmxctx->host_dr0 = rdr0();
2836 	vmxctx->host_dr1 = rdr1();
2837 	vmxctx->host_dr2 = rdr2();
2838 	vmxctx->host_dr3 = rdr3();
2839 	vmxctx->host_dr6 = rdr6();
2840 
2841 	/* Restore guest debug registers. */
2842 	load_dr0(vmxctx->guest_dr0);
2843 	load_dr1(vmxctx->guest_dr1);
2844 	load_dr2(vmxctx->guest_dr2);
2845 	load_dr3(vmxctx->guest_dr3);
2846 	load_dr6(vmxctx->guest_dr6);
2847 }
2848 
2849 static __inline void
2850 vmx_dr_leave_guest(struct vmxctx *vmxctx)
2851 {
2852 
2853 	/* Save guest debug registers. */
2854 	vmxctx->guest_dr0 = rdr0();
2855 	vmxctx->guest_dr1 = rdr1();
2856 	vmxctx->guest_dr2 = rdr2();
2857 	vmxctx->guest_dr3 = rdr3();
2858 	vmxctx->guest_dr6 = rdr6();
2859 
2860 	/*
2861 	 * Restore host debug registers.  Restore DR7, DEBUGCTL, and
2862 	 * PSL_T last.
2863 	 */
2864 	load_dr0(vmxctx->host_dr0);
2865 	load_dr1(vmxctx->host_dr1);
2866 	load_dr2(vmxctx->host_dr2);
2867 	load_dr3(vmxctx->host_dr3);
2868 	load_dr6(vmxctx->host_dr6);
2869 	wrmsr(MSR_DEBUGCTLMSR, vmxctx->host_debugctl);
2870 	load_dr7(vmxctx->host_dr7);
2871 	write_rflags(read_rflags() | vmxctx->host_tf);
2872 }
2873 
2874 static int
2875 vmx_run(void *arg, int vcpu, register_t rip, pmap_t pmap,
2876     struct vm_eventinfo *evinfo)
2877 {
2878 	int rc, handled, launched;
2879 	struct vmx *vmx;
2880 	struct vm *vm;
2881 	struct vmxctx *vmxctx;
2882 	struct vmcs *vmcs;
2883 	struct vm_exit *vmexit;
2884 	struct vlapic *vlapic;
2885 	uint32_t exit_reason;
2886 	struct region_descriptor gdtr, idtr;
2887 	uint16_t ldt_sel;
2888 
2889 	vmx = arg;
2890 	vm = vmx->vm;
2891 	vmcs = &vmx->vmcs[vcpu];
2892 	vmxctx = &vmx->ctx[vcpu];
2893 	vlapic = vm_lapic(vm, vcpu);
2894 	vmexit = vm_exitinfo(vm, vcpu);
2895 	launched = 0;
2896 
2897 	KASSERT(vmxctx->pmap == pmap,
2898 	    ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap));
2899 
2900 	vmx_msr_guest_enter(vmx, vcpu);
2901 
2902 	VMPTRLD(vmcs);
2903 
2904 	/*
2905 	 * XXX
2906 	 * We do this every time because we may setup the virtual machine
2907 	 * from a different process than the one that actually runs it.
2908 	 *
2909 	 * If the life of a virtual machine was spent entirely in the context
2910 	 * of a single process we could do this once in vmx_vminit().
2911 	 */
2912 	vmcs_write(VMCS_HOST_CR3, rcr3());
2913 
2914 	vmcs_write(VMCS_GUEST_RIP, rip);
2915 	vmx_set_pcpu_defaults(vmx, vcpu, pmap);
2916 	do {
2917 		KASSERT(vmcs_guest_rip() == rip, ("%s: vmcs guest rip mismatch "
2918 		    "%#lx/%#lx", __func__, vmcs_guest_rip(), rip));
2919 
2920 		handled = UNHANDLED;
2921 		/*
2922 		 * Interrupts are disabled from this point on until the
2923 		 * guest starts executing. This is done for the following
2924 		 * reasons:
2925 		 *
2926 		 * If an AST is asserted on this thread after the check below,
2927 		 * then the IPI_AST notification will not be lost, because it
2928 		 * will cause a VM exit due to external interrupt as soon as
2929 		 * the guest state is loaded.
2930 		 *
2931 		 * A posted interrupt after 'vmx_inject_interrupts()' will
2932 		 * not be "lost" because it will be held pending in the host
2933 		 * APIC because interrupts are disabled. The pending interrupt
2934 		 * will be recognized as soon as the guest state is loaded.
2935 		 *
2936 		 * The same reasoning applies to the IPI generated by
2937 		 * pmap_invalidate_ept().
2938 		 */
2939 		disable_intr();
2940 		vmx_inject_interrupts(vmx, vcpu, vlapic, rip);
2941 
2942 		/*
2943 		 * Check for vcpu suspension after injecting events because
2944 		 * vmx_inject_interrupts() can suspend the vcpu due to a
2945 		 * triple fault.
2946 		 */
2947 		if (vcpu_suspended(evinfo)) {
2948 			enable_intr();
2949 			vm_exit_suspended(vmx->vm, vcpu, rip);
2950 			break;
2951 		}
2952 
2953 		if (vcpu_rendezvous_pending(evinfo)) {
2954 			enable_intr();
2955 			vm_exit_rendezvous(vmx->vm, vcpu, rip);
2956 			break;
2957 		}
2958 
2959 		if (vcpu_reqidle(evinfo)) {
2960 			enable_intr();
2961 			vm_exit_reqidle(vmx->vm, vcpu, rip);
2962 			break;
2963 		}
2964 
2965 		if (vcpu_should_yield(vm, vcpu)) {
2966 			enable_intr();
2967 			vm_exit_astpending(vmx->vm, vcpu, rip);
2968 			vmx_astpending_trace(vmx, vcpu, rip);
2969 			handled = HANDLED;
2970 			break;
2971 		}
2972 
2973 		if (vcpu_debugged(vm, vcpu)) {
2974 			enable_intr();
2975 			vm_exit_debug(vmx->vm, vcpu, rip);
2976 			break;
2977 		}
2978 
2979 		/*
2980 		 * If TPR Shadowing is enabled, the TPR Threshold
2981 		 * must be updated right before entering the guest.
2982 		 */
2983 		if (tpr_shadowing && !virtual_interrupt_delivery) {
2984 			if ((vmx->cap[vcpu].proc_ctls & PROCBASED_USE_TPR_SHADOW) != 0) {
2985 				vmcs_write(VMCS_TPR_THRESHOLD, vlapic_get_cr8(vlapic));
2986 			}
2987 		}
2988 
2989 		/*
2990 		 * VM exits restore the base address but not the
2991 		 * limits of GDTR and IDTR.  The VMCS only stores the
2992 		 * base address, so VM exits set the limits to 0xffff.
2993 		 * Save and restore the full GDTR and IDTR to restore
2994 		 * the limits.
2995 		 *
2996 		 * The VMCS does not save the LDTR at all, and VM
2997 		 * exits clear LDTR as if a NULL selector were loaded.
2998 		 * The userspace hypervisor probably doesn't use a
2999 		 * LDT, but save and restore it to be safe.
3000 		 */
3001 		sgdt(&gdtr);
3002 		sidt(&idtr);
3003 		ldt_sel = sldt();
3004 
3005 		vmx_run_trace(vmx, vcpu);
3006 		vmx_dr_enter_guest(vmxctx);
3007 		rc = vmx_enter_guest(vmxctx, vmx, launched);
3008 		vmx_dr_leave_guest(vmxctx);
3009 
3010 		bare_lgdt(&gdtr);
3011 		lidt(&idtr);
3012 		lldt(ldt_sel);
3013 
3014 		/* Collect some information for VM exit processing */
3015 		vmexit->rip = rip = vmcs_guest_rip();
3016 		vmexit->inst_length = vmexit_instruction_length();
3017 		vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
3018 		vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
3019 
3020 		/* Update 'nextrip' */
3021 		vmx->state[vcpu].nextrip = rip;
3022 
3023 		if (rc == VMX_GUEST_VMEXIT) {
3024 			vmx_exit_handle_nmi(vmx, vcpu, vmexit);
3025 			enable_intr();
3026 			handled = vmx_exit_process(vmx, vcpu, vmexit);
3027 		} else {
3028 			enable_intr();
3029 			vmx_exit_inst_error(vmxctx, rc, vmexit);
3030 		}
3031 		launched = 1;
3032 		vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled);
3033 		rip = vmexit->rip;
3034 	} while (handled);
3035 
3036 	/*
3037 	 * If a VM exit has been handled then the exitcode must be BOGUS
3038 	 * If a VM exit is not handled then the exitcode must not be BOGUS
3039 	 */
3040 	if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) ||
3041 	    (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) {
3042 		panic("Mismatch between handled (%d) and exitcode (%d)",
3043 		      handled, vmexit->exitcode);
3044 	}
3045 
3046 	if (!handled)
3047 		vmm_stat_incr(vm, vcpu, VMEXIT_USERSPACE, 1);
3048 
3049 	VCPU_CTR1(vm, vcpu, "returning from vmx_run: exitcode %d",
3050 	    vmexit->exitcode);
3051 
3052 	VMCLEAR(vmcs);
3053 	vmx_msr_guest_exit(vmx, vcpu);
3054 
3055 	return (0);
3056 }
3057 
3058 static void
3059 vmx_vmcleanup(void *arg)
3060 {
3061 	int i;
3062 	struct vmx *vmx = arg;
3063 	uint16_t maxcpus;
3064 
3065 	if (apic_access_virtualization(vmx, 0))
3066 		vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
3067 
3068 	maxcpus = vm_get_maxcpus(vmx->vm);
3069 	for (i = 0; i < maxcpus; i++)
3070 		vpid_free(vmx->state[i].vpid);
3071 
3072 	free(vmx, M_VMX);
3073 
3074 	return;
3075 }
3076 
3077 static register_t *
3078 vmxctx_regptr(struct vmxctx *vmxctx, int reg)
3079 {
3080 
3081 	switch (reg) {
3082 	case VM_REG_GUEST_RAX:
3083 		return (&vmxctx->guest_rax);
3084 	case VM_REG_GUEST_RBX:
3085 		return (&vmxctx->guest_rbx);
3086 	case VM_REG_GUEST_RCX:
3087 		return (&vmxctx->guest_rcx);
3088 	case VM_REG_GUEST_RDX:
3089 		return (&vmxctx->guest_rdx);
3090 	case VM_REG_GUEST_RSI:
3091 		return (&vmxctx->guest_rsi);
3092 	case VM_REG_GUEST_RDI:
3093 		return (&vmxctx->guest_rdi);
3094 	case VM_REG_GUEST_RBP:
3095 		return (&vmxctx->guest_rbp);
3096 	case VM_REG_GUEST_R8:
3097 		return (&vmxctx->guest_r8);
3098 	case VM_REG_GUEST_R9:
3099 		return (&vmxctx->guest_r9);
3100 	case VM_REG_GUEST_R10:
3101 		return (&vmxctx->guest_r10);
3102 	case VM_REG_GUEST_R11:
3103 		return (&vmxctx->guest_r11);
3104 	case VM_REG_GUEST_R12:
3105 		return (&vmxctx->guest_r12);
3106 	case VM_REG_GUEST_R13:
3107 		return (&vmxctx->guest_r13);
3108 	case VM_REG_GUEST_R14:
3109 		return (&vmxctx->guest_r14);
3110 	case VM_REG_GUEST_R15:
3111 		return (&vmxctx->guest_r15);
3112 	case VM_REG_GUEST_CR2:
3113 		return (&vmxctx->guest_cr2);
3114 	case VM_REG_GUEST_DR0:
3115 		return (&vmxctx->guest_dr0);
3116 	case VM_REG_GUEST_DR1:
3117 		return (&vmxctx->guest_dr1);
3118 	case VM_REG_GUEST_DR2:
3119 		return (&vmxctx->guest_dr2);
3120 	case VM_REG_GUEST_DR3:
3121 		return (&vmxctx->guest_dr3);
3122 	case VM_REG_GUEST_DR6:
3123 		return (&vmxctx->guest_dr6);
3124 	default:
3125 		break;
3126 	}
3127 	return (NULL);
3128 }
3129 
3130 static int
3131 vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval)
3132 {
3133 	register_t *regp;
3134 
3135 	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
3136 		*retval = *regp;
3137 		return (0);
3138 	} else
3139 		return (EINVAL);
3140 }
3141 
3142 static int
3143 vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val)
3144 {
3145 	register_t *regp;
3146 
3147 	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
3148 		*regp = val;
3149 		return (0);
3150 	} else
3151 		return (EINVAL);
3152 }
3153 
3154 static int
3155 vmx_get_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t *retval)
3156 {
3157 	uint64_t gi;
3158 	int error;
3159 
3160 	error = vmcs_getreg(&vmx->vmcs[vcpu], running,
3161 	    VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY), &gi);
3162 	*retval = (gi & HWINTR_BLOCKING) ? 1 : 0;
3163 	return (error);
3164 }
3165 
3166 static int
3167 vmx_modify_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t val)
3168 {
3169 	struct vmcs *vmcs;
3170 	uint64_t gi;
3171 	int error, ident;
3172 
3173 	/*
3174 	 * Forcing the vcpu into an interrupt shadow is not supported.
3175 	 */
3176 	if (val) {
3177 		error = EINVAL;
3178 		goto done;
3179 	}
3180 
3181 	vmcs = &vmx->vmcs[vcpu];
3182 	ident = VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY);
3183 	error = vmcs_getreg(vmcs, running, ident, &gi);
3184 	if (error == 0) {
3185 		gi &= ~HWINTR_BLOCKING;
3186 		error = vmcs_setreg(vmcs, running, ident, gi);
3187 	}
3188 done:
3189 	VCPU_CTR2(vmx->vm, vcpu, "Setting intr_shadow to %#lx %s", val,
3190 	    error ? "failed" : "succeeded");
3191 	return (error);
3192 }
3193 
3194 static int
3195 vmx_shadow_reg(int reg)
3196 {
3197 	int shreg;
3198 
3199 	shreg = -1;
3200 
3201 	switch (reg) {
3202 	case VM_REG_GUEST_CR0:
3203 		shreg = VMCS_CR0_SHADOW;
3204 		break;
3205 	case VM_REG_GUEST_CR4:
3206 		shreg = VMCS_CR4_SHADOW;
3207 		break;
3208 	default:
3209 		break;
3210 	}
3211 
3212 	return (shreg);
3213 }
3214 
3215 static int
3216 vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval)
3217 {
3218 	int running, hostcpu;
3219 	struct vmx *vmx = arg;
3220 
3221 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3222 	if (running && hostcpu != curcpu)
3223 		panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu);
3224 
3225 	if (reg == VM_REG_GUEST_INTR_SHADOW)
3226 		return (vmx_get_intr_shadow(vmx, vcpu, running, retval));
3227 
3228 	if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0)
3229 		return (0);
3230 
3231 	return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval));
3232 }
3233 
3234 static int
3235 vmx_setreg(void *arg, int vcpu, int reg, uint64_t val)
3236 {
3237 	int error, hostcpu, running, shadow;
3238 	uint64_t ctls;
3239 	pmap_t pmap;
3240 	struct vmx *vmx = arg;
3241 
3242 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3243 	if (running && hostcpu != curcpu)
3244 		panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu);
3245 
3246 	if (reg == VM_REG_GUEST_INTR_SHADOW)
3247 		return (vmx_modify_intr_shadow(vmx, vcpu, running, val));
3248 
3249 	if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0)
3250 		return (0);
3251 
3252 	error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val);
3253 
3254 	if (error == 0) {
3255 		/*
3256 		 * If the "load EFER" VM-entry control is 1 then the
3257 		 * value of EFER.LMA must be identical to "IA-32e mode guest"
3258 		 * bit in the VM-entry control.
3259 		 */
3260 		if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 &&
3261 		    (reg == VM_REG_GUEST_EFER)) {
3262 			vmcs_getreg(&vmx->vmcs[vcpu], running,
3263 				    VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls);
3264 			if (val & EFER_LMA)
3265 				ctls |= VM_ENTRY_GUEST_LMA;
3266 			else
3267 				ctls &= ~VM_ENTRY_GUEST_LMA;
3268 			vmcs_setreg(&vmx->vmcs[vcpu], running,
3269 				    VMCS_IDENT(VMCS_ENTRY_CTLS), ctls);
3270 		}
3271 
3272 		shadow = vmx_shadow_reg(reg);
3273 		if (shadow > 0) {
3274 			/*
3275 			 * Store the unmodified value in the shadow
3276 			 */
3277 			error = vmcs_setreg(&vmx->vmcs[vcpu], running,
3278 				    VMCS_IDENT(shadow), val);
3279 		}
3280 
3281 		if (reg == VM_REG_GUEST_CR3) {
3282 			/*
3283 			 * Invalidate the guest vcpu's TLB mappings to emulate
3284 			 * the behavior of updating %cr3.
3285 			 *
3286 			 * XXX the processor retains global mappings when %cr3
3287 			 * is updated but vmx_invvpid() does not.
3288 			 */
3289 			pmap = vmx->ctx[vcpu].pmap;
3290 			vmx_invvpid(vmx, vcpu, pmap, running);
3291 		}
3292 	}
3293 
3294 	return (error);
3295 }
3296 
3297 static int
3298 vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
3299 {
3300 	int hostcpu, running;
3301 	struct vmx *vmx = arg;
3302 
3303 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3304 	if (running && hostcpu != curcpu)
3305 		panic("vmx_getdesc: %s%d is running", vm_name(vmx->vm), vcpu);
3306 
3307 	return (vmcs_getdesc(&vmx->vmcs[vcpu], running, reg, desc));
3308 }
3309 
3310 static int
3311 vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
3312 {
3313 	int hostcpu, running;
3314 	struct vmx *vmx = arg;
3315 
3316 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3317 	if (running && hostcpu != curcpu)
3318 		panic("vmx_setdesc: %s%d is running", vm_name(vmx->vm), vcpu);
3319 
3320 	return (vmcs_setdesc(&vmx->vmcs[vcpu], running, reg, desc));
3321 }
3322 
3323 static int
3324 vmx_getcap(void *arg, int vcpu, int type, int *retval)
3325 {
3326 	struct vmx *vmx = arg;
3327 	int vcap;
3328 	int ret;
3329 
3330 	ret = ENOENT;
3331 
3332 	vcap = vmx->cap[vcpu].set;
3333 
3334 	switch (type) {
3335 	case VM_CAP_HALT_EXIT:
3336 		if (cap_halt_exit)
3337 			ret = 0;
3338 		break;
3339 	case VM_CAP_PAUSE_EXIT:
3340 		if (cap_pause_exit)
3341 			ret = 0;
3342 		break;
3343 	case VM_CAP_MTRAP_EXIT:
3344 		if (cap_monitor_trap)
3345 			ret = 0;
3346 		break;
3347 	case VM_CAP_UNRESTRICTED_GUEST:
3348 		if (cap_unrestricted_guest)
3349 			ret = 0;
3350 		break;
3351 	case VM_CAP_ENABLE_INVPCID:
3352 		if (cap_invpcid)
3353 			ret = 0;
3354 		break;
3355 	case VM_CAP_BPT_EXIT:
3356 		ret = 0;
3357 		break;
3358 	default:
3359 		break;
3360 	}
3361 
3362 	if (ret == 0)
3363 		*retval = (vcap & (1 << type)) ? 1 : 0;
3364 
3365 	return (ret);
3366 }
3367 
3368 static int
3369 vmx_setcap(void *arg, int vcpu, int type, int val)
3370 {
3371 	struct vmx *vmx = arg;
3372 	struct vmcs *vmcs = &vmx->vmcs[vcpu];
3373 	uint32_t baseval;
3374 	uint32_t *pptr;
3375 	int error;
3376 	int flag;
3377 	int reg;
3378 	int retval;
3379 
3380 	retval = ENOENT;
3381 	pptr = NULL;
3382 
3383 	switch (type) {
3384 	case VM_CAP_HALT_EXIT:
3385 		if (cap_halt_exit) {
3386 			retval = 0;
3387 			pptr = &vmx->cap[vcpu].proc_ctls;
3388 			baseval = *pptr;
3389 			flag = PROCBASED_HLT_EXITING;
3390 			reg = VMCS_PRI_PROC_BASED_CTLS;
3391 		}
3392 		break;
3393 	case VM_CAP_MTRAP_EXIT:
3394 		if (cap_monitor_trap) {
3395 			retval = 0;
3396 			pptr = &vmx->cap[vcpu].proc_ctls;
3397 			baseval = *pptr;
3398 			flag = PROCBASED_MTF;
3399 			reg = VMCS_PRI_PROC_BASED_CTLS;
3400 		}
3401 		break;
3402 	case VM_CAP_PAUSE_EXIT:
3403 		if (cap_pause_exit) {
3404 			retval = 0;
3405 			pptr = &vmx->cap[vcpu].proc_ctls;
3406 			baseval = *pptr;
3407 			flag = PROCBASED_PAUSE_EXITING;
3408 			reg = VMCS_PRI_PROC_BASED_CTLS;
3409 		}
3410 		break;
3411 	case VM_CAP_UNRESTRICTED_GUEST:
3412 		if (cap_unrestricted_guest) {
3413 			retval = 0;
3414 			pptr = &vmx->cap[vcpu].proc_ctls2;
3415 			baseval = *pptr;
3416 			flag = PROCBASED2_UNRESTRICTED_GUEST;
3417 			reg = VMCS_SEC_PROC_BASED_CTLS;
3418 		}
3419 		break;
3420 	case VM_CAP_ENABLE_INVPCID:
3421 		if (cap_invpcid) {
3422 			retval = 0;
3423 			pptr = &vmx->cap[vcpu].proc_ctls2;
3424 			baseval = *pptr;
3425 			flag = PROCBASED2_ENABLE_INVPCID;
3426 			reg = VMCS_SEC_PROC_BASED_CTLS;
3427 		}
3428 		break;
3429 	case VM_CAP_BPT_EXIT:
3430 		retval = 0;
3431 
3432 		/* Don't change the bitmap if we are tracing all exceptions. */
3433 		if (vmx->cap[vcpu].exc_bitmap != 0xffffffff) {
3434 			pptr = &vmx->cap[vcpu].exc_bitmap;
3435 			baseval = *pptr;
3436 			flag = (1 << IDT_BP);
3437 			reg = VMCS_EXCEPTION_BITMAP;
3438 		}
3439 		break;
3440 	default:
3441 		break;
3442 	}
3443 
3444 	if (retval)
3445 		return (retval);
3446 
3447 	if (pptr != NULL) {
3448 		if (val) {
3449 			baseval |= flag;
3450 		} else {
3451 			baseval &= ~flag;
3452 		}
3453 		VMPTRLD(vmcs);
3454 		error = vmwrite(reg, baseval);
3455 		VMCLEAR(vmcs);
3456 
3457 		if (error)
3458 			return (error);
3459 
3460 		/*
3461 		 * Update optional stored flags, and record
3462 		 * setting
3463 		 */
3464 		*pptr = baseval;
3465 	}
3466 
3467 	if (val) {
3468 		vmx->cap[vcpu].set |= (1 << type);
3469 	} else {
3470 		vmx->cap[vcpu].set &= ~(1 << type);
3471 	}
3472 
3473 	return (0);
3474 }
3475 
3476 struct vlapic_vtx {
3477 	struct vlapic	vlapic;
3478 	struct pir_desc	*pir_desc;
3479 	struct vmx	*vmx;
3480 	u_int	pending_prio;
3481 };
3482 
3483 #define VPR_PRIO_BIT(vpr)	(1 << ((vpr) >> 4))
3484 
3485 #define	VMX_CTR_PIR(vm, vcpuid, pir_desc, notify, vector, level, msg)	\
3486 do {									\
3487 	VCPU_CTR2(vm, vcpuid, msg " assert %s-triggered vector %d",	\
3488 	    level ? "level" : "edge", vector);				\
3489 	VCPU_CTR1(vm, vcpuid, msg " pir0 0x%016lx", pir_desc->pir[0]);	\
3490 	VCPU_CTR1(vm, vcpuid, msg " pir1 0x%016lx", pir_desc->pir[1]);	\
3491 	VCPU_CTR1(vm, vcpuid, msg " pir2 0x%016lx", pir_desc->pir[2]);	\
3492 	VCPU_CTR1(vm, vcpuid, msg " pir3 0x%016lx", pir_desc->pir[3]);	\
3493 	VCPU_CTR1(vm, vcpuid, msg " notify: %s", notify ? "yes" : "no");\
3494 } while (0)
3495 
3496 /*
3497  * vlapic->ops handlers that utilize the APICv hardware assist described in
3498  * Chapter 29 of the Intel SDM.
3499  */
3500 static int
3501 vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level)
3502 {
3503 	struct vlapic_vtx *vlapic_vtx;
3504 	struct pir_desc *pir_desc;
3505 	uint64_t mask;
3506 	int idx, notify = 0;
3507 
3508 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3509 	pir_desc = vlapic_vtx->pir_desc;
3510 
3511 	/*
3512 	 * Keep track of interrupt requests in the PIR descriptor. This is
3513 	 * because the virtual APIC page pointed to by the VMCS cannot be
3514 	 * modified if the vcpu is running.
3515 	 */
3516 	idx = vector / 64;
3517 	mask = 1UL << (vector % 64);
3518 	atomic_set_long(&pir_desc->pir[idx], mask);
3519 
3520 	/*
3521 	 * A notification is required whenever the 'pending' bit makes a
3522 	 * transition from 0->1.
3523 	 *
3524 	 * Even if the 'pending' bit is already asserted, notification about
3525 	 * the incoming interrupt may still be necessary.  For example, if a
3526 	 * vCPU is HLTed with a high PPR, a low priority interrupt would cause
3527 	 * the 0->1 'pending' transition with a notification, but the vCPU
3528 	 * would ignore the interrupt for the time being.  The same vCPU would
3529 	 * need to then be notified if a high-priority interrupt arrived which
3530 	 * satisfied the PPR.
3531 	 *
3532 	 * The priorities of interrupts injected while 'pending' is asserted
3533 	 * are tracked in a custom bitfield 'pending_prio'.  Should the
3534 	 * to-be-injected interrupt exceed the priorities already present, the
3535 	 * notification is sent.  The priorities recorded in 'pending_prio' are
3536 	 * cleared whenever the 'pending' bit makes another 0->1 transition.
3537 	 */
3538 	if (atomic_cmpset_long(&pir_desc->pending, 0, 1) != 0) {
3539 		notify = 1;
3540 		vlapic_vtx->pending_prio = 0;
3541 	} else {
3542 		const u_int old_prio = vlapic_vtx->pending_prio;
3543 		const u_int prio_bit = VPR_PRIO_BIT(vector & APIC_TPR_INT);
3544 
3545 		if ((old_prio & prio_bit) == 0 && prio_bit > old_prio) {
3546 			atomic_set_int(&vlapic_vtx->pending_prio, prio_bit);
3547 			notify = 1;
3548 		}
3549 	}
3550 
3551 	VMX_CTR_PIR(vlapic->vm, vlapic->vcpuid, pir_desc, notify, vector,
3552 	    level, "vmx_set_intr_ready");
3553 	return (notify);
3554 }
3555 
3556 static int
3557 vmx_pending_intr(struct vlapic *vlapic, int *vecptr)
3558 {
3559 	struct vlapic_vtx *vlapic_vtx;
3560 	struct pir_desc *pir_desc;
3561 	struct LAPIC *lapic;
3562 	uint64_t pending, pirval;
3563 	uint32_t ppr, vpr;
3564 	int i;
3565 
3566 	/*
3567 	 * This function is only expected to be called from the 'HLT' exit
3568 	 * handler which does not care about the vector that is pending.
3569 	 */
3570 	KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL"));
3571 
3572 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3573 	pir_desc = vlapic_vtx->pir_desc;
3574 
3575 	pending = atomic_load_acq_long(&pir_desc->pending);
3576 	if (!pending) {
3577 		/*
3578 		 * While a virtual interrupt may have already been
3579 		 * processed the actual delivery maybe pending the
3580 		 * interruptibility of the guest.  Recognize a pending
3581 		 * interrupt by reevaluating virtual interrupts
3582 		 * following Section 29.2.1 in the Intel SDM Volume 3.
3583 		 */
3584 		struct vm_exit *vmexit;
3585 		uint8_t rvi, ppr;
3586 
3587 		vmexit = vm_exitinfo(vlapic->vm, vlapic->vcpuid);
3588 		KASSERT(vmexit->exitcode == VM_EXITCODE_HLT,
3589 		    ("vmx_pending_intr: exitcode not 'HLT'"));
3590 		rvi = vmexit->u.hlt.intr_status & APIC_TPR_INT;
3591 		lapic = vlapic->apic_page;
3592 		ppr = lapic->ppr & APIC_TPR_INT;
3593 		if (rvi > ppr) {
3594 			return (1);
3595 		}
3596 
3597 		return (0);
3598 	}
3599 
3600 	/*
3601 	 * If there is an interrupt pending then it will be recognized only
3602 	 * if its priority is greater than the processor priority.
3603 	 *
3604 	 * Special case: if the processor priority is zero then any pending
3605 	 * interrupt will be recognized.
3606 	 */
3607 	lapic = vlapic->apic_page;
3608 	ppr = lapic->ppr & APIC_TPR_INT;
3609 	if (ppr == 0)
3610 		return (1);
3611 
3612 	VCPU_CTR1(vlapic->vm, vlapic->vcpuid, "HLT with non-zero PPR %d",
3613 	    lapic->ppr);
3614 
3615 	vpr = 0;
3616 	for (i = 3; i >= 0; i--) {
3617 		pirval = pir_desc->pir[i];
3618 		if (pirval != 0) {
3619 			vpr = (i * 64 + flsl(pirval) - 1) & APIC_TPR_INT;
3620 			break;
3621 		}
3622 	}
3623 
3624 	/*
3625 	 * If the highest-priority pending interrupt falls short of the
3626 	 * processor priority of this vCPU, ensure that 'pending_prio' does not
3627 	 * have any stale bits which would preclude a higher-priority interrupt
3628 	 * from incurring a notification later.
3629 	 */
3630 	if (vpr <= ppr) {
3631 		const u_int prio_bit = VPR_PRIO_BIT(vpr);
3632 		const u_int old = vlapic_vtx->pending_prio;
3633 
3634 		if (old > prio_bit && (old & prio_bit) == 0) {
3635 			vlapic_vtx->pending_prio = prio_bit;
3636 		}
3637 		return (0);
3638 	}
3639 	return (1);
3640 }
3641 
3642 static void
3643 vmx_intr_accepted(struct vlapic *vlapic, int vector)
3644 {
3645 
3646 	panic("vmx_intr_accepted: not expected to be called");
3647 }
3648 
3649 static void
3650 vmx_set_tmr(struct vlapic *vlapic, int vector, bool level)
3651 {
3652 	struct vlapic_vtx *vlapic_vtx;
3653 	struct vmx *vmx;
3654 	struct vmcs *vmcs;
3655 	uint64_t mask, val;
3656 
3657 	KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d", vector));
3658 	KASSERT(!vcpu_is_running(vlapic->vm, vlapic->vcpuid, NULL),
3659 	    ("vmx_set_tmr: vcpu cannot be running"));
3660 
3661 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3662 	vmx = vlapic_vtx->vmx;
3663 	vmcs = &vmx->vmcs[vlapic->vcpuid];
3664 	mask = 1UL << (vector % 64);
3665 
3666 	VMPTRLD(vmcs);
3667 	val = vmcs_read(VMCS_EOI_EXIT(vector));
3668 	if (level)
3669 		val |= mask;
3670 	else
3671 		val &= ~mask;
3672 	vmcs_write(VMCS_EOI_EXIT(vector), val);
3673 	VMCLEAR(vmcs);
3674 }
3675 
3676 static void
3677 vmx_enable_x2apic_mode_ts(struct vlapic *vlapic)
3678 {
3679 	struct vmx *vmx;
3680 	struct vmcs *vmcs;
3681 	uint32_t proc_ctls;
3682 	int vcpuid;
3683 
3684 	vcpuid = vlapic->vcpuid;
3685 	vmx = ((struct vlapic_vtx *)vlapic)->vmx;
3686 	vmcs = &vmx->vmcs[vcpuid];
3687 
3688 	proc_ctls = vmx->cap[vcpuid].proc_ctls;
3689 	proc_ctls &= ~PROCBASED_USE_TPR_SHADOW;
3690 	proc_ctls |= PROCBASED_CR8_LOAD_EXITING;
3691 	proc_ctls |= PROCBASED_CR8_STORE_EXITING;
3692 	vmx->cap[vcpuid].proc_ctls = proc_ctls;
3693 
3694 	VMPTRLD(vmcs);
3695 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, proc_ctls);
3696 	VMCLEAR(vmcs);
3697 }
3698 
3699 static void
3700 vmx_enable_x2apic_mode_vid(struct vlapic *vlapic)
3701 {
3702 	struct vmx *vmx;
3703 	struct vmcs *vmcs;
3704 	uint32_t proc_ctls2;
3705 	int vcpuid, error;
3706 
3707 	vcpuid = vlapic->vcpuid;
3708 	vmx = ((struct vlapic_vtx *)vlapic)->vmx;
3709 	vmcs = &vmx->vmcs[vcpuid];
3710 
3711 	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
3712 	KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0,
3713 	    ("%s: invalid proc_ctls2 %#x", __func__, proc_ctls2));
3714 
3715 	proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES;
3716 	proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE;
3717 	vmx->cap[vcpuid].proc_ctls2 = proc_ctls2;
3718 
3719 	VMPTRLD(vmcs);
3720 	vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2);
3721 	VMCLEAR(vmcs);
3722 
3723 	if (vlapic->vcpuid == 0) {
3724 		/*
3725 		 * The nested page table mappings are shared by all vcpus
3726 		 * so unmap the APIC access page just once.
3727 		 */
3728 		error = vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
3729 		KASSERT(error == 0, ("%s: vm_unmap_mmio error %d",
3730 		    __func__, error));
3731 
3732 		/*
3733 		 * The MSR bitmap is shared by all vcpus so modify it only
3734 		 * once in the context of vcpu 0.
3735 		 */
3736 		error = vmx_allow_x2apic_msrs(vmx);
3737 		KASSERT(error == 0, ("%s: vmx_allow_x2apic_msrs error %d",
3738 		    __func__, error));
3739 	}
3740 }
3741 
3742 static void
3743 vmx_post_intr(struct vlapic *vlapic, int hostcpu)
3744 {
3745 
3746 	ipi_cpu(hostcpu, pirvec);
3747 }
3748 
3749 /*
3750  * Transfer the pending interrupts in the PIR descriptor to the IRR
3751  * in the virtual APIC page.
3752  */
3753 static void
3754 vmx_inject_pir(struct vlapic *vlapic)
3755 {
3756 	struct vlapic_vtx *vlapic_vtx;
3757 	struct pir_desc *pir_desc;
3758 	struct LAPIC *lapic;
3759 	uint64_t val, pirval;
3760 	int rvi, pirbase = -1;
3761 	uint16_t intr_status_old, intr_status_new;
3762 
3763 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3764 	pir_desc = vlapic_vtx->pir_desc;
3765 	if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) {
3766 		VCPU_CTR0(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
3767 		    "no posted interrupt pending");
3768 		return;
3769 	}
3770 
3771 	pirval = 0;
3772 	pirbase = -1;
3773 	lapic = vlapic->apic_page;
3774 
3775 	val = atomic_readandclear_long(&pir_desc->pir[0]);
3776 	if (val != 0) {
3777 		lapic->irr0 |= val;
3778 		lapic->irr1 |= val >> 32;
3779 		pirbase = 0;
3780 		pirval = val;
3781 	}
3782 
3783 	val = atomic_readandclear_long(&pir_desc->pir[1]);
3784 	if (val != 0) {
3785 		lapic->irr2 |= val;
3786 		lapic->irr3 |= val >> 32;
3787 		pirbase = 64;
3788 		pirval = val;
3789 	}
3790 
3791 	val = atomic_readandclear_long(&pir_desc->pir[2]);
3792 	if (val != 0) {
3793 		lapic->irr4 |= val;
3794 		lapic->irr5 |= val >> 32;
3795 		pirbase = 128;
3796 		pirval = val;
3797 	}
3798 
3799 	val = atomic_readandclear_long(&pir_desc->pir[3]);
3800 	if (val != 0) {
3801 		lapic->irr6 |= val;
3802 		lapic->irr7 |= val >> 32;
3803 		pirbase = 192;
3804 		pirval = val;
3805 	}
3806 
3807 	VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir");
3808 
3809 	/*
3810 	 * Update RVI so the processor can evaluate pending virtual
3811 	 * interrupts on VM-entry.
3812 	 *
3813 	 * It is possible for pirval to be 0 here, even though the
3814 	 * pending bit has been set. The scenario is:
3815 	 * CPU-Y is sending a posted interrupt to CPU-X, which
3816 	 * is running a guest and processing posted interrupts in h/w.
3817 	 * CPU-X will eventually exit and the state seen in s/w is
3818 	 * the pending bit set, but no PIR bits set.
3819 	 *
3820 	 *      CPU-X                      CPU-Y
3821 	 *   (vm running)                (host running)
3822 	 *   rx posted interrupt
3823 	 *   CLEAR pending bit
3824 	 *				 SET PIR bit
3825 	 *   READ/CLEAR PIR bits
3826 	 *				 SET pending bit
3827 	 *   (vm exit)
3828 	 *   pending bit set, PIR 0
3829 	 */
3830 	if (pirval != 0) {
3831 		rvi = pirbase + flsl(pirval) - 1;
3832 		intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS);
3833 		intr_status_new = (intr_status_old & 0xFF00) | rvi;
3834 		if (intr_status_new > intr_status_old) {
3835 			vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new);
3836 			VCPU_CTR2(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
3837 			    "guest_intr_status changed from 0x%04x to 0x%04x",
3838 			    intr_status_old, intr_status_new);
3839 		}
3840 	}
3841 }
3842 
3843 static struct vlapic *
3844 vmx_vlapic_init(void *arg, int vcpuid)
3845 {
3846 	struct vmx *vmx;
3847 	struct vlapic *vlapic;
3848 	struct vlapic_vtx *vlapic_vtx;
3849 
3850 	vmx = arg;
3851 
3852 	vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO);
3853 	vlapic->vm = vmx->vm;
3854 	vlapic->vcpuid = vcpuid;
3855 	vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid];
3856 
3857 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3858 	vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid];
3859 	vlapic_vtx->vmx = vmx;
3860 
3861 	if (tpr_shadowing) {
3862 		vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_ts;
3863 	}
3864 
3865 	if (virtual_interrupt_delivery) {
3866 		vlapic->ops.set_intr_ready = vmx_set_intr_ready;
3867 		vlapic->ops.pending_intr = vmx_pending_intr;
3868 		vlapic->ops.intr_accepted = vmx_intr_accepted;
3869 		vlapic->ops.set_tmr = vmx_set_tmr;
3870 		vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_vid;
3871 	}
3872 
3873 	if (posted_interrupts)
3874 		vlapic->ops.post_intr = vmx_post_intr;
3875 
3876 	vlapic_init(vlapic);
3877 
3878 	return (vlapic);
3879 }
3880 
3881 static void
3882 vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic)
3883 {
3884 
3885 	vlapic_cleanup(vlapic);
3886 	free(vlapic, M_VLAPIC);
3887 }
3888 
3889 #ifdef BHYVE_SNAPSHOT
3890 static int
3891 vmx_snapshot_vmi(void *arg, struct vm_snapshot_meta *meta)
3892 {
3893 	struct vmx *vmx;
3894 	struct vmxctx *vmxctx;
3895 	int i;
3896 	int ret;
3897 
3898 	vmx = arg;
3899 
3900 	KASSERT(vmx != NULL, ("%s: arg was NULL", __func__));
3901 
3902 	for (i = 0; i < VM_MAXCPU; i++) {
3903 		SNAPSHOT_BUF_OR_LEAVE(vmx->guest_msrs[i],
3904 		      sizeof(vmx->guest_msrs[i]), meta, ret, done);
3905 
3906 		vmxctx = &vmx->ctx[i];
3907 		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rdi, meta, ret, done);
3908 		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rsi, meta, ret, done);
3909 		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rdx, meta, ret, done);
3910 		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rcx, meta, ret, done);
3911 		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r8, meta, ret, done);
3912 		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r9, meta, ret, done);
3913 		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rax, meta, ret, done);
3914 		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rbx, meta, ret, done);
3915 		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rbp, meta, ret, done);
3916 		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r10, meta, ret, done);
3917 		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r11, meta, ret, done);
3918 		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r12, meta, ret, done);
3919 		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r13, meta, ret, done);
3920 		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r14, meta, ret, done);
3921 		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r15, meta, ret, done);
3922 		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_cr2, meta, ret, done);
3923 		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr0, meta, ret, done);
3924 		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr1, meta, ret, done);
3925 		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr2, meta, ret, done);
3926 		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr3, meta, ret, done);
3927 		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr6, meta, ret, done);
3928 	}
3929 
3930 done:
3931 	return (ret);
3932 }
3933 
3934 static int
3935 vmx_snapshot_vmcx(void *arg, struct vm_snapshot_meta *meta, int vcpu)
3936 {
3937 	struct vmcs *vmcs;
3938 	struct vmx *vmx;
3939 	int err, run, hostcpu;
3940 
3941 	vmx = (struct vmx *)arg;
3942 	err = 0;
3943 
3944 	KASSERT(arg != NULL, ("%s: arg was NULL", __func__));
3945 	vmcs = &vmx->vmcs[vcpu];
3946 
3947 	run = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3948 	if (run && hostcpu != curcpu) {
3949 		printf("%s: %s%d is running", __func__, vm_name(vmx->vm), vcpu);
3950 		return (EINVAL);
3951 	}
3952 
3953 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR0, meta);
3954 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR3, meta);
3955 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR4, meta);
3956 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_DR7, meta);
3957 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RSP, meta);
3958 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RIP, meta);
3959 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RFLAGS, meta);
3960 
3961 	/* Guest segments */
3962 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_ES, meta);
3963 	err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_ES, meta);
3964 
3965 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CS, meta);
3966 	err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_CS, meta);
3967 
3968 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_SS, meta);
3969 	err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_SS, meta);
3970 
3971 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_DS, meta);
3972 	err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_DS, meta);
3973 
3974 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_FS, meta);
3975 	err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_FS, meta);
3976 
3977 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_GS, meta);
3978 	err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_GS, meta);
3979 
3980 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_TR, meta);
3981 	err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_TR, meta);
3982 
3983 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_LDTR, meta);
3984 	err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_LDTR, meta);
3985 
3986 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_EFER, meta);
3987 
3988 	err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_IDTR, meta);
3989 	err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_GDTR, meta);
3990 
3991 	/* Guest page tables */
3992 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE0, meta);
3993 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE1, meta);
3994 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE2, meta);
3995 	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE3, meta);
3996 
3997 	/* Other guest state */
3998 	err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_CS, meta);
3999 	err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_ESP, meta);
4000 	err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_EIP, meta);
4001 	err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_INTERRUPTIBILITY, meta);
4002 	err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_ACTIVITY, meta);
4003 	err += vmcs_snapshot_any(vmcs, run, VMCS_ENTRY_CTLS, meta);
4004 	err += vmcs_snapshot_any(vmcs, run, VMCS_EXIT_CTLS, meta);
4005 
4006 	return (err);
4007 }
4008 
4009 static int
4010 vmx_restore_tsc(void *arg, int vcpu, uint64_t offset)
4011 {
4012 	struct vmcs *vmcs;
4013 	struct vmx *vmx = (struct vmx *)arg;
4014 	int error, running, hostcpu;
4015 
4016 	KASSERT(arg != NULL, ("%s: arg was NULL", __func__));
4017 	vmcs = &vmx->vmcs[vcpu];
4018 
4019 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
4020 	if (running && hostcpu != curcpu) {
4021 		printf("%s: %s%d is running", __func__, vm_name(vmx->vm), vcpu);
4022 		return (EINVAL);
4023 	}
4024 
4025 	if (!running)
4026 		VMPTRLD(vmcs);
4027 
4028 	error = vmx_set_tsc_offset(vmx, vcpu, offset);
4029 
4030 	if (!running)
4031 		VMCLEAR(vmcs);
4032 	return (error);
4033 }
4034 #endif
4035 
4036 struct vmm_ops vmm_ops_intel = {
4037 	.init		= vmx_init,
4038 	.cleanup	= vmx_cleanup,
4039 	.resume		= vmx_restore,
4040 	.vminit		= vmx_vminit,
4041 	.vmrun		= vmx_run,
4042 	.vmcleanup	= vmx_vmcleanup,
4043 	.vmgetreg	= vmx_getreg,
4044 	.vmsetreg	= vmx_setreg,
4045 	.vmgetdesc	= vmx_getdesc,
4046 	.vmsetdesc	= vmx_setdesc,
4047 	.vmgetcap	= vmx_getcap,
4048 	.vmsetcap	= vmx_setcap,
4049 	.vmspace_alloc	= ept_vmspace_alloc,
4050 	.vmspace_free	= ept_vmspace_free,
4051 	.vlapic_init	= vmx_vlapic_init,
4052 	.vlapic_cleanup	= vmx_vlapic_cleanup,
4053 #ifdef BHYVE_SNAPSHOT
4054 	.vmsnapshot	= vmx_snapshot_vmi,
4055 	.vmcx_snapshot	= vmx_snapshot_vmcx,
4056 	.vm_restore_tsc	= vmx_restore_tsc,
4057 #endif
4058 };
4059