xref: /freebsd/sys/amd64/vmm/intel/vmx.c (revision d184218c18d067f8fd47203f54ab02a7b2ed9b11)
1 /*-
2  * Copyright (c) 2011 NetApp, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/smp.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/pcpu.h>
38 #include <sys/proc.h>
39 
40 #include <vm/vm.h>
41 #include <vm/pmap.h>
42 
43 #include <machine/psl.h>
44 #include <machine/cpufunc.h>
45 #include <machine/md_var.h>
46 #include <machine/pmap.h>
47 #include <machine/segments.h>
48 #include <machine/specialreg.h>
49 #include <machine/vmparam.h>
50 
51 #include <x86/apicreg.h>
52 
53 #include <machine/vmm.h>
54 #include "vmm_host.h"
55 #include "vmm_lapic.h"
56 #include "vmm_msr.h"
57 #include "vmm_ktr.h"
58 #include "vmm_stat.h"
59 
60 #include "vmx_msr.h"
61 #include "ept.h"
62 #include "vmx_cpufunc.h"
63 #include "vmx.h"
64 #include "x86.h"
65 #include "vmx_controls.h"
66 
67 #define	PINBASED_CTLS_ONE_SETTING					\
68 	(PINBASED_EXTINT_EXITING	|				\
69 	 PINBASED_NMI_EXITING		|				\
70 	 PINBASED_VIRTUAL_NMI)
71 #define	PINBASED_CTLS_ZERO_SETTING	0
72 
73 #define PROCBASED_CTLS_WINDOW_SETTING					\
74 	(PROCBASED_INT_WINDOW_EXITING	|				\
75 	 PROCBASED_NMI_WINDOW_EXITING)
76 
77 #define	PROCBASED_CTLS_ONE_SETTING 					\
78 	(PROCBASED_SECONDARY_CONTROLS	|				\
79 	 PROCBASED_IO_EXITING		|				\
80 	 PROCBASED_MSR_BITMAPS		|				\
81 	 PROCBASED_CTLS_WINDOW_SETTING)
82 #define	PROCBASED_CTLS_ZERO_SETTING	\
83 	(PROCBASED_CR3_LOAD_EXITING |	\
84 	PROCBASED_CR3_STORE_EXITING |	\
85 	PROCBASED_IO_BITMAPS)
86 
87 #define	PROCBASED_CTLS2_ONE_SETTING	PROCBASED2_ENABLE_EPT
88 #define	PROCBASED_CTLS2_ZERO_SETTING	0
89 
90 #define VM_EXIT_CTLS_ONE_SETTING_NO_PAT					\
91 	(VM_EXIT_HOST_LMA			|			\
92 	VM_EXIT_SAVE_EFER			|			\
93 	VM_EXIT_LOAD_EFER)
94 
95 #define	VM_EXIT_CTLS_ONE_SETTING					\
96 	(VM_EXIT_CTLS_ONE_SETTING_NO_PAT       	|			\
97 	VM_EXIT_SAVE_PAT			|			\
98 	VM_EXIT_LOAD_PAT)
99 #define	VM_EXIT_CTLS_ZERO_SETTING	VM_EXIT_SAVE_DEBUG_CONTROLS
100 
101 #define	VM_ENTRY_CTLS_ONE_SETTING_NO_PAT	VM_ENTRY_LOAD_EFER
102 
103 #define	VM_ENTRY_CTLS_ONE_SETTING					\
104 	(VM_ENTRY_CTLS_ONE_SETTING_NO_PAT     	|			\
105 	VM_ENTRY_LOAD_PAT)
106 #define	VM_ENTRY_CTLS_ZERO_SETTING					\
107 	(VM_ENTRY_LOAD_DEBUG_CONTROLS		|			\
108 	VM_ENTRY_INTO_SMM			|			\
109 	VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
110 
111 #define	guest_msr_rw(vmx, msr) \
112 	msr_bitmap_change_access((vmx)->msr_bitmap, (msr), MSR_BITMAP_ACCESS_RW)
113 
114 #define	HANDLED		1
115 #define	UNHANDLED	0
116 
117 MALLOC_DEFINE(M_VMX, "vmx", "vmx");
118 
119 int vmxon_enabled[MAXCPU];
120 static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
121 
122 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
123 static uint32_t exit_ctls, entry_ctls;
124 
125 static uint64_t cr0_ones_mask, cr0_zeros_mask;
126 static uint64_t cr4_ones_mask, cr4_zeros_mask;
127 
128 static volatile u_int nextvpid;
129 
130 static int vmx_no_patmsr;
131 
132 /*
133  * Virtual NMI blocking conditions.
134  *
135  * Some processor implementations also require NMI to be blocked if
136  * the STI_BLOCKING bit is set. It is possible to detect this at runtime
137  * based on the (exit_reason,exit_qual) tuple being set to
138  * (EXIT_REASON_INVAL_VMCS, EXIT_QUAL_NMI_WHILE_STI_BLOCKING).
139  *
140  * We take the easy way out and also include STI_BLOCKING as one of the
141  * gating items for vNMI injection.
142  */
143 static uint64_t nmi_blocking_bits = VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING |
144 				    VMCS_INTERRUPTIBILITY_NMI_BLOCKING |
145 				    VMCS_INTERRUPTIBILITY_STI_BLOCKING;
146 
147 /*
148  * Optional capabilities
149  */
150 static int cap_halt_exit;
151 static int cap_pause_exit;
152 static int cap_unrestricted_guest;
153 static int cap_monitor_trap;
154 
155 /* statistics */
156 static VMM_STAT_INTEL(VMEXIT_HLT_IGNORED, "number of times hlt was ignored");
157 
158 #ifdef KTR
159 static const char *
160 exit_reason_to_str(int reason)
161 {
162 	static char reasonbuf[32];
163 
164 	switch (reason) {
165 	case EXIT_REASON_EXCEPTION:
166 		return "exception";
167 	case EXIT_REASON_EXT_INTR:
168 		return "extint";
169 	case EXIT_REASON_TRIPLE_FAULT:
170 		return "triplefault";
171 	case EXIT_REASON_INIT:
172 		return "init";
173 	case EXIT_REASON_SIPI:
174 		return "sipi";
175 	case EXIT_REASON_IO_SMI:
176 		return "iosmi";
177 	case EXIT_REASON_SMI:
178 		return "smi";
179 	case EXIT_REASON_INTR_WINDOW:
180 		return "intrwindow";
181 	case EXIT_REASON_NMI_WINDOW:
182 		return "nmiwindow";
183 	case EXIT_REASON_TASK_SWITCH:
184 		return "taskswitch";
185 	case EXIT_REASON_CPUID:
186 		return "cpuid";
187 	case EXIT_REASON_GETSEC:
188 		return "getsec";
189 	case EXIT_REASON_HLT:
190 		return "hlt";
191 	case EXIT_REASON_INVD:
192 		return "invd";
193 	case EXIT_REASON_INVLPG:
194 		return "invlpg";
195 	case EXIT_REASON_RDPMC:
196 		return "rdpmc";
197 	case EXIT_REASON_RDTSC:
198 		return "rdtsc";
199 	case EXIT_REASON_RSM:
200 		return "rsm";
201 	case EXIT_REASON_VMCALL:
202 		return "vmcall";
203 	case EXIT_REASON_VMCLEAR:
204 		return "vmclear";
205 	case EXIT_REASON_VMLAUNCH:
206 		return "vmlaunch";
207 	case EXIT_REASON_VMPTRLD:
208 		return "vmptrld";
209 	case EXIT_REASON_VMPTRST:
210 		return "vmptrst";
211 	case EXIT_REASON_VMREAD:
212 		return "vmread";
213 	case EXIT_REASON_VMRESUME:
214 		return "vmresume";
215 	case EXIT_REASON_VMWRITE:
216 		return "vmwrite";
217 	case EXIT_REASON_VMXOFF:
218 		return "vmxoff";
219 	case EXIT_REASON_VMXON:
220 		return "vmxon";
221 	case EXIT_REASON_CR_ACCESS:
222 		return "craccess";
223 	case EXIT_REASON_DR_ACCESS:
224 		return "draccess";
225 	case EXIT_REASON_INOUT:
226 		return "inout";
227 	case EXIT_REASON_RDMSR:
228 		return "rdmsr";
229 	case EXIT_REASON_WRMSR:
230 		return "wrmsr";
231 	case EXIT_REASON_INVAL_VMCS:
232 		return "invalvmcs";
233 	case EXIT_REASON_INVAL_MSR:
234 		return "invalmsr";
235 	case EXIT_REASON_MWAIT:
236 		return "mwait";
237 	case EXIT_REASON_MTF:
238 		return "mtf";
239 	case EXIT_REASON_MONITOR:
240 		return "monitor";
241 	case EXIT_REASON_PAUSE:
242 		return "pause";
243 	case EXIT_REASON_MCE:
244 		return "mce";
245 	case EXIT_REASON_TPR:
246 		return "tpr";
247 	case EXIT_REASON_APIC:
248 		return "apic";
249 	case EXIT_REASON_GDTR_IDTR:
250 		return "gdtridtr";
251 	case EXIT_REASON_LDTR_TR:
252 		return "ldtrtr";
253 	case EXIT_REASON_EPT_FAULT:
254 		return "eptfault";
255 	case EXIT_REASON_EPT_MISCONFIG:
256 		return "eptmisconfig";
257 	case EXIT_REASON_INVEPT:
258 		return "invept";
259 	case EXIT_REASON_RDTSCP:
260 		return "rdtscp";
261 	case EXIT_REASON_VMX_PREEMPT:
262 		return "vmxpreempt";
263 	case EXIT_REASON_INVVPID:
264 		return "invvpid";
265 	case EXIT_REASON_WBINVD:
266 		return "wbinvd";
267 	case EXIT_REASON_XSETBV:
268 		return "xsetbv";
269 	default:
270 		snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason);
271 		return (reasonbuf);
272 	}
273 }
274 
275 #ifdef SETJMP_TRACE
276 static const char *
277 vmx_setjmp_rc2str(int rc)
278 {
279 	switch (rc) {
280 	case VMX_RETURN_DIRECT:
281 		return "direct";
282 	case VMX_RETURN_LONGJMP:
283 		return "longjmp";
284 	case VMX_RETURN_VMRESUME:
285 		return "vmresume";
286 	case VMX_RETURN_VMLAUNCH:
287 		return "vmlaunch";
288 	case VMX_RETURN_AST:
289 		return "ast";
290 	default:
291 		return "unknown";
292 	}
293 }
294 
295 #define	SETJMP_TRACE(vmx, vcpu, vmxctx, regname)			  \
296 	VMM_CTR1((vmx)->vm, (vcpu), "setjmp trace " #regname " 0x%016lx", \
297 		 (vmxctx)->regname)
298 
299 static void
300 vmx_setjmp_trace(struct vmx *vmx, int vcpu, struct vmxctx *vmxctx, int rc)
301 {
302 	uint64_t host_rip, host_rsp;
303 
304 	if (vmxctx != &vmx->ctx[vcpu])
305 		panic("vmx_setjmp_trace: invalid vmxctx %p; should be %p",
306 			vmxctx, &vmx->ctx[vcpu]);
307 
308 	VMM_CTR1((vmx)->vm, (vcpu), "vmxctx = %p", vmxctx);
309 	VMM_CTR2((vmx)->vm, (vcpu), "setjmp return code %s(%d)",
310 		 vmx_setjmp_rc2str(rc), rc);
311 
312 	host_rsp = host_rip = ~0;
313 	vmread(VMCS_HOST_RIP, &host_rip);
314 	vmread(VMCS_HOST_RSP, &host_rsp);
315 	VMM_CTR2((vmx)->vm, (vcpu), "vmcs host_rip 0x%016lx, host_rsp 0x%016lx",
316 		 host_rip, host_rsp);
317 
318 	SETJMP_TRACE(vmx, vcpu, vmxctx, host_r15);
319 	SETJMP_TRACE(vmx, vcpu, vmxctx, host_r14);
320 	SETJMP_TRACE(vmx, vcpu, vmxctx, host_r13);
321 	SETJMP_TRACE(vmx, vcpu, vmxctx, host_r12);
322 	SETJMP_TRACE(vmx, vcpu, vmxctx, host_rbp);
323 	SETJMP_TRACE(vmx, vcpu, vmxctx, host_rsp);
324 	SETJMP_TRACE(vmx, vcpu, vmxctx, host_rbx);
325 	SETJMP_TRACE(vmx, vcpu, vmxctx, host_rip);
326 
327 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_rdi);
328 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_rsi);
329 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_rdx);
330 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_rcx);
331 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_r8);
332 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_r9);
333 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_rax);
334 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_rbx);
335 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_rbp);
336 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_r10);
337 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_r11);
338 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_r12);
339 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_r13);
340 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_r14);
341 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_r15);
342 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_cr2);
343 }
344 #endif
345 #else
346 static void __inline
347 vmx_setjmp_trace(struct vmx *vmx, int vcpu, struct vmxctx *vmxctx, int rc)
348 {
349 	return;
350 }
351 #endif	/* KTR */
352 
353 u_long
354 vmx_fix_cr0(u_long cr0)
355 {
356 
357 	return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
358 }
359 
360 u_long
361 vmx_fix_cr4(u_long cr4)
362 {
363 
364 	return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
365 }
366 
367 static void
368 msr_save_area_init(struct msr_entry *g_area, int *g_count)
369 {
370 	int cnt;
371 
372 	static struct msr_entry guest_msrs[] = {
373 		{ MSR_KGSBASE, 0, 0 },
374 	};
375 
376 	cnt = sizeof(guest_msrs) / sizeof(guest_msrs[0]);
377 	if (cnt > GUEST_MSR_MAX_ENTRIES)
378 		panic("guest msr save area overrun");
379 	bcopy(guest_msrs, g_area, sizeof(guest_msrs));
380 	*g_count = cnt;
381 }
382 
383 static void
384 vmx_disable(void *arg __unused)
385 {
386 	struct invvpid_desc invvpid_desc = { 0 };
387 	struct invept_desc invept_desc = { 0 };
388 
389 	if (vmxon_enabled[curcpu]) {
390 		/*
391 		 * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b.
392 		 *
393 		 * VMXON or VMXOFF are not required to invalidate any TLB
394 		 * caching structures. This prevents potential retention of
395 		 * cached information in the TLB between distinct VMX episodes.
396 		 */
397 		invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc);
398 		invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc);
399 		vmxoff();
400 	}
401 	load_cr4(rcr4() & ~CR4_VMXE);
402 }
403 
404 static int
405 vmx_cleanup(void)
406 {
407 
408 	smp_rendezvous(NULL, vmx_disable, NULL, NULL);
409 
410 	return (0);
411 }
412 
413 static void
414 vmx_enable(void *arg __unused)
415 {
416 	int error;
417 
418 	load_cr4(rcr4() | CR4_VMXE);
419 
420 	*(uint32_t *)vmxon_region[curcpu] = vmx_revision();
421 	error = vmxon(vmxon_region[curcpu]);
422 	if (error == 0)
423 		vmxon_enabled[curcpu] = 1;
424 }
425 
426 static int
427 vmx_init(void)
428 {
429 	int error;
430 	uint64_t fixed0, fixed1, feature_control;
431 	uint32_t tmp;
432 
433 	/* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */
434 	if (!(cpu_feature2 & CPUID2_VMX)) {
435 		printf("vmx_init: processor does not support VMX operation\n");
436 		return (ENXIO);
437 	}
438 
439 	/*
440 	 * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits
441 	 * are set (bits 0 and 2 respectively).
442 	 */
443 	feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
444 	if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 ||
445 	    (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
446 		printf("vmx_init: VMX operation disabled by BIOS\n");
447 		return (ENXIO);
448 	}
449 
450 	/* Check support for primary processor-based VM-execution controls */
451 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
452 			       MSR_VMX_TRUE_PROCBASED_CTLS,
453 			       PROCBASED_CTLS_ONE_SETTING,
454 			       PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
455 	if (error) {
456 		printf("vmx_init: processor does not support desired primary "
457 		       "processor-based controls\n");
458 		return (error);
459 	}
460 
461 	/* Clear the processor-based ctl bits that are set on demand */
462 	procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
463 
464 	/* Check support for secondary processor-based VM-execution controls */
465 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
466 			       MSR_VMX_PROCBASED_CTLS2,
467 			       PROCBASED_CTLS2_ONE_SETTING,
468 			       PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
469 	if (error) {
470 		printf("vmx_init: processor does not support desired secondary "
471 		       "processor-based controls\n");
472 		return (error);
473 	}
474 
475 	/* Check support for VPID */
476 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
477 			       PROCBASED2_ENABLE_VPID, 0, &tmp);
478 	if (error == 0)
479 		procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
480 
481 	/* Check support for pin-based VM-execution controls */
482 	error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
483 			       MSR_VMX_TRUE_PINBASED_CTLS,
484 			       PINBASED_CTLS_ONE_SETTING,
485 			       PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
486 	if (error) {
487 		printf("vmx_init: processor does not support desired "
488 		       "pin-based controls\n");
489 		return (error);
490 	}
491 
492 	/* Check support for VM-exit controls */
493 	error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
494 			       VM_EXIT_CTLS_ONE_SETTING,
495 			       VM_EXIT_CTLS_ZERO_SETTING,
496 			       &exit_ctls);
497 	if (error) {
498 		/* Try again without the PAT MSR bits */
499 		error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS,
500 				       MSR_VMX_TRUE_EXIT_CTLS,
501 				       VM_EXIT_CTLS_ONE_SETTING_NO_PAT,
502 				       VM_EXIT_CTLS_ZERO_SETTING,
503 				       &exit_ctls);
504 		if (error) {
505 			printf("vmx_init: processor does not support desired "
506 			       "exit controls\n");
507 			return (error);
508 		} else {
509 			if (bootverbose)
510 				printf("vmm: PAT MSR access not supported\n");
511 			guest_msr_valid(MSR_PAT);
512 			vmx_no_patmsr = 1;
513 		}
514 	}
515 
516 	/* Check support for VM-entry controls */
517 	if (!vmx_no_patmsr) {
518 		error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS,
519 				       MSR_VMX_TRUE_ENTRY_CTLS,
520 				       VM_ENTRY_CTLS_ONE_SETTING,
521 				       VM_ENTRY_CTLS_ZERO_SETTING,
522 				       &entry_ctls);
523 	} else {
524 		error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS,
525 				       MSR_VMX_TRUE_ENTRY_CTLS,
526 				       VM_ENTRY_CTLS_ONE_SETTING_NO_PAT,
527 				       VM_ENTRY_CTLS_ZERO_SETTING,
528 				       &entry_ctls);
529 	}
530 
531 	if (error) {
532 		printf("vmx_init: processor does not support desired "
533 		       "entry controls\n");
534 		       return (error);
535 	}
536 
537 	/*
538 	 * Check support for optional features by testing them
539 	 * as individual bits
540 	 */
541 	cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
542 					MSR_VMX_TRUE_PROCBASED_CTLS,
543 					PROCBASED_HLT_EXITING, 0,
544 					&tmp) == 0);
545 
546 	cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
547 					MSR_VMX_PROCBASED_CTLS,
548 					PROCBASED_MTF, 0,
549 					&tmp) == 0);
550 
551 	cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
552 					 MSR_VMX_TRUE_PROCBASED_CTLS,
553 					 PROCBASED_PAUSE_EXITING, 0,
554 					 &tmp) == 0);
555 
556 	cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
557 					MSR_VMX_PROCBASED_CTLS2,
558 					PROCBASED2_UNRESTRICTED_GUEST, 0,
559 				        &tmp) == 0);
560 
561 	/* Initialize EPT */
562 	error = ept_init();
563 	if (error) {
564 		printf("vmx_init: ept initialization failed (%d)\n", error);
565 		return (error);
566 	}
567 
568 	/*
569 	 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
570 	 */
571 	fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
572 	fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
573 	cr0_ones_mask = fixed0 & fixed1;
574 	cr0_zeros_mask = ~fixed0 & ~fixed1;
575 
576 	/*
577 	 * CR0_PE and CR0_PG can be set to zero in VMX non-root operation
578 	 * if unrestricted guest execution is allowed.
579 	 */
580 	if (cap_unrestricted_guest)
581 		cr0_ones_mask &= ~(CR0_PG | CR0_PE);
582 
583 	/*
584 	 * Do not allow the guest to set CR0_NW or CR0_CD.
585 	 */
586 	cr0_zeros_mask |= (CR0_NW | CR0_CD);
587 
588 	fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
589 	fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
590 	cr4_ones_mask = fixed0 & fixed1;
591 	cr4_zeros_mask = ~fixed0 & ~fixed1;
592 
593 	/* enable VMX operation */
594 	smp_rendezvous(NULL, vmx_enable, NULL, NULL);
595 
596 	return (0);
597 }
598 
599 /*
600  * If this processor does not support VPIDs then simply return 0.
601  *
602  * Otherwise generate the next value of VPID to use. Any value is alright
603  * as long as it is non-zero.
604  *
605  * We always execute in VMX non-root context with EPT enabled. Thus all
606  * combined mappings are tagged with the (EP4TA, VPID, PCID) tuple. This
607  * in turn means that multiple VMs can share the same VPID as long as
608  * they have distinct EPT page tables.
609  *
610  * XXX
611  * We should optimize this so that it returns VPIDs that are not in
612  * use. Then we will not unnecessarily invalidate mappings in
613  * vmx_set_pcpu_defaults() just because two or more vcpus happen to
614  * use the same 'vpid'.
615  */
616 static uint16_t
617 vmx_vpid(void)
618 {
619 	uint16_t vpid = 0;
620 
621 	if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) != 0) {
622 		do {
623 			vpid = atomic_fetchadd_int(&nextvpid, 1);
624 		} while (vpid == 0);
625 	}
626 
627 	return (vpid);
628 }
629 
630 static int
631 vmx_setup_cr_shadow(int which, struct vmcs *vmcs)
632 {
633 	int error, mask_ident, shadow_ident;
634 	uint64_t mask_value, shadow_value;
635 
636 	if (which != 0 && which != 4)
637 		panic("vmx_setup_cr_shadow: unknown cr%d", which);
638 
639 	if (which == 0) {
640 		mask_ident = VMCS_CR0_MASK;
641 		mask_value = cr0_ones_mask | cr0_zeros_mask;
642 		shadow_ident = VMCS_CR0_SHADOW;
643 		shadow_value = cr0_ones_mask;
644 	} else {
645 		mask_ident = VMCS_CR4_MASK;
646 		mask_value = cr4_ones_mask | cr4_zeros_mask;
647 		shadow_ident = VMCS_CR4_SHADOW;
648 		shadow_value = cr4_ones_mask;
649 	}
650 
651 	error = vmcs_setreg(vmcs, VMCS_IDENT(mask_ident), mask_value);
652 	if (error)
653 		return (error);
654 
655 	error = vmcs_setreg(vmcs, VMCS_IDENT(shadow_ident), shadow_value);
656 	if (error)
657 		return (error);
658 
659 	return (0);
660 }
661 #define	vmx_setup_cr0_shadow(vmcs)	vmx_setup_cr_shadow(0, (vmcs))
662 #define	vmx_setup_cr4_shadow(vmcs)	vmx_setup_cr_shadow(4, (vmcs))
663 
664 static void *
665 vmx_vminit(struct vm *vm)
666 {
667 	uint16_t vpid;
668 	int i, error, guest_msr_count;
669 	struct vmx *vmx;
670 
671 	vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO);
672 	if ((uintptr_t)vmx & PAGE_MASK) {
673 		panic("malloc of struct vmx not aligned on %d byte boundary",
674 		      PAGE_SIZE);
675 	}
676 	vmx->vm = vm;
677 
678 	/*
679 	 * Clean up EPTP-tagged guest physical and combined mappings
680 	 *
681 	 * VMX transitions are not required to invalidate any guest physical
682 	 * mappings. So, it may be possible for stale guest physical mappings
683 	 * to be present in the processor TLBs.
684 	 *
685 	 * Combined mappings for this EP4TA are also invalidated for all VPIDs.
686 	 */
687 	ept_invalidate_mappings(vtophys(vmx->pml4ept));
688 
689 	msr_bitmap_initialize(vmx->msr_bitmap);
690 
691 	/*
692 	 * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE.
693 	 * The guest FSBASE and GSBASE are saved and restored during
694 	 * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are
695 	 * always restored from the vmcs host state area on vm-exit.
696 	 *
697 	 * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in
698 	 * how they are saved/restored so can be directly accessed by the
699 	 * guest.
700 	 *
701 	 * Guest KGSBASE is saved and restored in the guest MSR save area.
702 	 * Host KGSBASE is restored before returning to userland from the pcb.
703 	 * There will be a window of time when we are executing in the host
704 	 * kernel context with a value of KGSBASE from the guest. This is ok
705 	 * because the value of KGSBASE is inconsequential in kernel context.
706 	 *
707 	 * MSR_EFER is saved and restored in the guest VMCS area on a
708 	 * VM exit and entry respectively. It is also restored from the
709 	 * host VMCS area on a VM exit.
710 	 */
711 	if (guest_msr_rw(vmx, MSR_GSBASE) ||
712 	    guest_msr_rw(vmx, MSR_FSBASE) ||
713 	    guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) ||
714 	    guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) ||
715 	    guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) ||
716 	    guest_msr_rw(vmx, MSR_KGSBASE) ||
717 	    guest_msr_rw(vmx, MSR_EFER))
718 		panic("vmx_vminit: error setting guest msr access");
719 
720 	/*
721 	 * MSR_PAT is saved and restored in the guest VMCS are on a VM exit
722 	 * and entry respectively. It is also restored from the host VMCS
723 	 * area on a VM exit. However, if running on a system with no
724 	 * MSR_PAT save/restore support, leave access disabled so accesses
725 	 * will be trapped.
726 	 */
727 	if (!vmx_no_patmsr && guest_msr_rw(vmx, MSR_PAT))
728 		panic("vmx_vminit: error setting guest pat msr access");
729 
730 	for (i = 0; i < VM_MAXCPU; i++) {
731 		vmx->vmcs[i].identifier = vmx_revision();
732 		error = vmclear(&vmx->vmcs[i]);
733 		if (error != 0) {
734 			panic("vmx_vminit: vmclear error %d on vcpu %d\n",
735 			      error, i);
736 		}
737 
738 		vpid = vmx_vpid();
739 
740 		error = vmcs_set_defaults(&vmx->vmcs[i],
741 					  (u_long)vmx_longjmp,
742 					  (u_long)&vmx->ctx[i],
743 					  vtophys(vmx->pml4ept),
744 					  pinbased_ctls,
745 					  procbased_ctls,
746 					  procbased_ctls2,
747 					  exit_ctls, entry_ctls,
748 					  vtophys(vmx->msr_bitmap),
749 					  vpid);
750 
751 		if (error != 0)
752 			panic("vmx_vminit: vmcs_set_defaults error %d", error);
753 
754 		vmx->cap[i].set = 0;
755 		vmx->cap[i].proc_ctls = procbased_ctls;
756 
757 		vmx->state[i].lastcpu = -1;
758 		vmx->state[i].vpid = vpid;
759 
760 		msr_save_area_init(vmx->guest_msrs[i], &guest_msr_count);
761 
762 		error = vmcs_set_msr_save(&vmx->vmcs[i],
763 					  vtophys(vmx->guest_msrs[i]),
764 					  guest_msr_count);
765 		if (error != 0)
766 			panic("vmcs_set_msr_save error %d", error);
767 
768 		error = vmx_setup_cr0_shadow(&vmx->vmcs[i]);
769 		if (error != 0)
770 			panic("vmx_setup_cr0_shadow %d", error);
771 
772 		error = vmx_setup_cr4_shadow(&vmx->vmcs[i]);
773 		if (error != 0)
774 			panic("vmx_setup_cr4_shadow %d", error);
775 	}
776 
777 	return (vmx);
778 }
779 
780 static int
781 vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx)
782 {
783 	int handled, func;
784 
785 	func = vmxctx->guest_rax;
786 
787 	handled = x86_emulate_cpuid(vm, vcpu,
788 				    (uint32_t*)(&vmxctx->guest_rax),
789 				    (uint32_t*)(&vmxctx->guest_rbx),
790 				    (uint32_t*)(&vmxctx->guest_rcx),
791 				    (uint32_t*)(&vmxctx->guest_rdx));
792 	return (handled);
793 }
794 
795 static __inline void
796 vmx_run_trace(struct vmx *vmx, int vcpu)
797 {
798 #ifdef KTR
799 	VMM_CTR1(vmx->vm, vcpu, "Resume execution at 0x%0lx", vmcs_guest_rip());
800 #endif
801 }
802 
803 static __inline void
804 vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason,
805 	       int handled)
806 {
807 #ifdef KTR
808 	VMM_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx",
809 		 handled ? "handled" : "unhandled",
810 		 exit_reason_to_str(exit_reason), rip);
811 #endif
812 }
813 
814 static __inline void
815 vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip)
816 {
817 #ifdef KTR
818 	VMM_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip);
819 #endif
820 }
821 
822 static int
823 vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu)
824 {
825 	int error, lastcpu;
826 	struct vmxstate *vmxstate;
827 	struct invvpid_desc invvpid_desc = { 0 };
828 
829 	vmxstate = &vmx->state[vcpu];
830 	lastcpu = vmxstate->lastcpu;
831 	vmxstate->lastcpu = curcpu;
832 
833 	if (lastcpu == curcpu) {
834 		error = 0;
835 		goto done;
836 	}
837 
838 	vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1);
839 
840 	error = vmwrite(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
841 	if (error != 0)
842 		goto done;
843 
844 	error = vmwrite(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
845 	if (error != 0)
846 		goto done;
847 
848 	error = vmwrite(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
849 	if (error != 0)
850 		goto done;
851 
852 	/*
853 	 * If we are using VPIDs then invalidate all mappings tagged with 'vpid'
854 	 *
855 	 * We do this because this vcpu was executing on a different host
856 	 * cpu when it last ran. We do not track whether it invalidated
857 	 * mappings associated with its 'vpid' during that run. So we must
858 	 * assume that the mappings associated with 'vpid' on 'curcpu' are
859 	 * stale and invalidate them.
860 	 *
861 	 * Note that we incur this penalty only when the scheduler chooses to
862 	 * move the thread associated with this vcpu between host cpus.
863 	 *
864 	 * Note also that this will invalidate mappings tagged with 'vpid'
865 	 * for "all" EP4TAs.
866 	 */
867 	if (vmxstate->vpid != 0) {
868 		invvpid_desc.vpid = vmxstate->vpid;
869 		invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
870 	}
871 done:
872 	return (error);
873 }
874 
875 static void
876 vm_exit_update_rip(struct vm_exit *vmexit)
877 {
878 	int error;
879 
880 	error = vmwrite(VMCS_GUEST_RIP, vmexit->rip + vmexit->inst_length);
881 	if (error)
882 		panic("vmx_run: error %d writing to VMCS_GUEST_RIP", error);
883 }
884 
885 /*
886  * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
887  */
888 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
889 
890 static void __inline
891 vmx_set_int_window_exiting(struct vmx *vmx, int vcpu)
892 {
893 	int error;
894 
895 	vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
896 
897 	error = vmwrite(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
898 	if (error)
899 		panic("vmx_set_int_window_exiting: vmwrite error %d", error);
900 }
901 
902 static void __inline
903 vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu)
904 {
905 	int error;
906 
907 	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
908 
909 	error = vmwrite(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
910 	if (error)
911 		panic("vmx_clear_int_window_exiting: vmwrite error %d", error);
912 }
913 
914 static void __inline
915 vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu)
916 {
917 	int error;
918 
919 	vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
920 
921 	error = vmwrite(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
922 	if (error)
923 		panic("vmx_set_nmi_window_exiting: vmwrite error %d", error);
924 }
925 
926 static void __inline
927 vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu)
928 {
929 	int error;
930 
931 	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
932 
933 	error = vmwrite(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
934 	if (error)
935 		panic("vmx_clear_nmi_window_exiting: vmwrite error %d", error);
936 }
937 
938 static int
939 vmx_inject_nmi(struct vmx *vmx, int vcpu)
940 {
941 	int error;
942 	uint64_t info, interruptibility;
943 
944 	/* Bail out if no NMI requested */
945 	if (!vm_nmi_pending(vmx->vm, vcpu))
946 		return (0);
947 
948 	error = vmread(VMCS_GUEST_INTERRUPTIBILITY, &interruptibility);
949 	if (error) {
950 		panic("vmx_inject_nmi: vmread(interruptibility) %d",
951 			error);
952 	}
953 	if (interruptibility & nmi_blocking_bits)
954 		goto nmiblocked;
955 
956 	/*
957 	 * Inject the virtual NMI. The vector must be the NMI IDT entry
958 	 * or the VMCS entry check will fail.
959 	 */
960 	info = VMCS_INTERRUPTION_INFO_NMI | VMCS_INTERRUPTION_INFO_VALID;
961 	info |= IDT_NMI;
962 
963 	error = vmwrite(VMCS_ENTRY_INTR_INFO, info);
964 	if (error)
965 		panic("vmx_inject_nmi: vmwrite(intrinfo) %d", error);
966 
967 	VMM_CTR0(vmx->vm, vcpu, "Injecting vNMI");
968 
969 	/* Clear the request */
970 	vm_nmi_clear(vmx->vm, vcpu);
971 	return (1);
972 
973 nmiblocked:
974 	/*
975 	 * Set the NMI Window Exiting execution control so we can inject
976 	 * the virtual NMI as soon as blocking condition goes away.
977 	 */
978 	vmx_set_nmi_window_exiting(vmx, vcpu);
979 
980 	VMM_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting");
981 	return (1);
982 }
983 
984 static void
985 vmx_inject_interrupts(struct vmx *vmx, int vcpu)
986 {
987 	int error, vector;
988 	uint64_t info, rflags, interruptibility;
989 
990 	const int HWINTR_BLOCKED = VMCS_INTERRUPTIBILITY_STI_BLOCKING |
991 				   VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING;
992 
993 	/*
994 	 * If there is already an interrupt pending then just return.
995 	 *
996 	 * This could happen if an interrupt was injected on a prior
997 	 * VM entry but the actual entry into guest mode was aborted
998 	 * because of a pending AST.
999 	 */
1000 	error = vmread(VMCS_ENTRY_INTR_INFO, &info);
1001 	if (error)
1002 		panic("vmx_inject_interrupts: vmread(intrinfo) %d", error);
1003 	if (info & VMCS_INTERRUPTION_INFO_VALID)
1004 		return;
1005 
1006 	/*
1007 	 * NMI injection has priority so deal with those first
1008 	 */
1009 	if (vmx_inject_nmi(vmx, vcpu))
1010 		return;
1011 
1012 	/* Ask the local apic for a vector to inject */
1013 	vector = lapic_pending_intr(vmx->vm, vcpu);
1014 	if (vector < 0)
1015 		return;
1016 
1017 	if (vector < 32 || vector > 255)
1018 		panic("vmx_inject_interrupts: invalid vector %d\n", vector);
1019 
1020 	/* Check RFLAGS.IF and the interruptibility state of the guest */
1021 	error = vmread(VMCS_GUEST_RFLAGS, &rflags);
1022 	if (error)
1023 		panic("vmx_inject_interrupts: vmread(rflags) %d", error);
1024 
1025 	if ((rflags & PSL_I) == 0)
1026 		goto cantinject;
1027 
1028 	error = vmread(VMCS_GUEST_INTERRUPTIBILITY, &interruptibility);
1029 	if (error) {
1030 		panic("vmx_inject_interrupts: vmread(interruptibility) %d",
1031 			error);
1032 	}
1033 	if (interruptibility & HWINTR_BLOCKED)
1034 		goto cantinject;
1035 
1036 	/* Inject the interrupt */
1037 	info = VMCS_INTERRUPTION_INFO_HW_INTR | VMCS_INTERRUPTION_INFO_VALID;
1038 	info |= vector;
1039 	error = vmwrite(VMCS_ENTRY_INTR_INFO, info);
1040 	if (error)
1041 		panic("vmx_inject_interrupts: vmwrite(intrinfo) %d", error);
1042 
1043 	/* Update the Local APIC ISR */
1044 	lapic_intr_accepted(vmx->vm, vcpu, vector);
1045 
1046 	VMM_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector);
1047 
1048 	return;
1049 
1050 cantinject:
1051 	/*
1052 	 * Set the Interrupt Window Exiting execution control so we can inject
1053 	 * the interrupt as soon as blocking condition goes away.
1054 	 */
1055 	vmx_set_int_window_exiting(vmx, vcpu);
1056 
1057 	VMM_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting");
1058 }
1059 
1060 static int
1061 vmx_emulate_cr_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1062 {
1063 	int error, cr, vmcs_guest_cr;
1064 	uint64_t regval, ones_mask, zeros_mask;
1065 	const struct vmxctx *vmxctx;
1066 
1067 	/* We only handle mov to %cr0 or %cr4 at this time */
1068 	if ((exitqual & 0xf0) != 0x00)
1069 		return (UNHANDLED);
1070 
1071 	cr = exitqual & 0xf;
1072 	if (cr != 0 && cr != 4)
1073 		return (UNHANDLED);
1074 
1075 	vmxctx = &vmx->ctx[vcpu];
1076 
1077 	/*
1078 	 * We must use vmwrite() directly here because vmcs_setreg() will
1079 	 * call vmclear(vmcs) as a side-effect which we certainly don't want.
1080 	 */
1081 	switch ((exitqual >> 8) & 0xf) {
1082 	case 0:
1083 		regval = vmxctx->guest_rax;
1084 		break;
1085 	case 1:
1086 		regval = vmxctx->guest_rcx;
1087 		break;
1088 	case 2:
1089 		regval = vmxctx->guest_rdx;
1090 		break;
1091 	case 3:
1092 		regval = vmxctx->guest_rbx;
1093 		break;
1094 	case 4:
1095 		error = vmread(VMCS_GUEST_RSP, &regval);
1096 		if (error) {
1097 			panic("vmx_emulate_cr_access: "
1098 			      "error %d reading guest rsp", error);
1099 		}
1100 		break;
1101 	case 5:
1102 		regval = vmxctx->guest_rbp;
1103 		break;
1104 	case 6:
1105 		regval = vmxctx->guest_rsi;
1106 		break;
1107 	case 7:
1108 		regval = vmxctx->guest_rdi;
1109 		break;
1110 	case 8:
1111 		regval = vmxctx->guest_r8;
1112 		break;
1113 	case 9:
1114 		regval = vmxctx->guest_r9;
1115 		break;
1116 	case 10:
1117 		regval = vmxctx->guest_r10;
1118 		break;
1119 	case 11:
1120 		regval = vmxctx->guest_r11;
1121 		break;
1122 	case 12:
1123 		regval = vmxctx->guest_r12;
1124 		break;
1125 	case 13:
1126 		regval = vmxctx->guest_r13;
1127 		break;
1128 	case 14:
1129 		regval = vmxctx->guest_r14;
1130 		break;
1131 	case 15:
1132 		regval = vmxctx->guest_r15;
1133 		break;
1134 	}
1135 
1136 	if (cr == 0) {
1137 		ones_mask = cr0_ones_mask;
1138 		zeros_mask = cr0_zeros_mask;
1139 		vmcs_guest_cr = VMCS_GUEST_CR0;
1140 	} else {
1141 		ones_mask = cr4_ones_mask;
1142 		zeros_mask = cr4_zeros_mask;
1143 		vmcs_guest_cr = VMCS_GUEST_CR4;
1144 	}
1145 	regval |= ones_mask;
1146 	regval &= ~zeros_mask;
1147 	error = vmwrite(vmcs_guest_cr, regval);
1148 	if (error) {
1149 		panic("vmx_emulate_cr_access: error %d writing cr%d",
1150 		      error, cr);
1151 	}
1152 
1153 	return (HANDLED);
1154 }
1155 
1156 static int
1157 vmx_ept_fault(struct vm *vm, int cpu,
1158 	      uint64_t gla, uint64_t gpa, uint64_t rip, int inst_length,
1159 	      uint64_t cr3, uint64_t ept_qual, struct vie *vie)
1160 {
1161 	int read, write, error;
1162 
1163 	/* EPT violation on an instruction fetch doesn't make sense here */
1164 	if (ept_qual & EPT_VIOLATION_INST_FETCH)
1165 		return (UNHANDLED);
1166 
1167 	/* EPT violation must be a read fault or a write fault */
1168 	read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
1169 	write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
1170 	if ((read | write) == 0)
1171 		return (UNHANDLED);
1172 
1173 	/*
1174 	 * The EPT violation must have been caused by accessing a
1175 	 * guest-physical address that is a translation of a guest-linear
1176 	 * address.
1177 	 */
1178 	if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
1179 	    (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
1180 		return (UNHANDLED);
1181 	}
1182 
1183 	/* Fetch, decode and emulate the faulting instruction */
1184 	if (vmm_fetch_instruction(vm, cpu, rip, inst_length, cr3, vie) != 0)
1185 		return (UNHANDLED);
1186 
1187 	if (vmm_decode_instruction(vm, cpu, gla, vie) != 0)
1188 		return (UNHANDLED);
1189 
1190 	/*
1191 	 * Check if this is a local apic access
1192 	 */
1193 	if (gpa < DEFAULT_APIC_BASE || gpa >= DEFAULT_APIC_BASE + PAGE_SIZE)
1194 		return (UNHANDLED);
1195 
1196 	error = vmm_emulate_instruction(vm, cpu, gpa, vie,
1197 					lapic_mmio_read, lapic_mmio_write, 0);
1198 
1199 	return (error ? UNHANDLED : HANDLED);
1200 }
1201 
1202 static int
1203 vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1204 {
1205 	int error, handled;
1206 	struct vmcs *vmcs;
1207 	struct vmxctx *vmxctx;
1208 	uint32_t eax, ecx, edx;
1209 	uint64_t qual, gla, gpa, cr3, intr_info;
1210 
1211 	handled = 0;
1212 	vmcs = &vmx->vmcs[vcpu];
1213 	vmxctx = &vmx->ctx[vcpu];
1214 	qual = vmexit->u.vmx.exit_qualification;
1215 	vmexit->exitcode = VM_EXITCODE_BOGUS;
1216 
1217 	vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1);
1218 
1219 	switch (vmexit->u.vmx.exit_reason) {
1220 	case EXIT_REASON_CR_ACCESS:
1221 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1);
1222 		handled = vmx_emulate_cr_access(vmx, vcpu, qual);
1223 		break;
1224 	case EXIT_REASON_RDMSR:
1225 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1);
1226 		ecx = vmxctx->guest_rcx;
1227 		error = emulate_rdmsr(vmx->vm, vcpu, ecx);
1228 		if (error) {
1229 			vmexit->exitcode = VM_EXITCODE_RDMSR;
1230 			vmexit->u.msr.code = ecx;
1231 		} else
1232 			handled = 1;
1233 		break;
1234 	case EXIT_REASON_WRMSR:
1235 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1);
1236 		eax = vmxctx->guest_rax;
1237 		ecx = vmxctx->guest_rcx;
1238 		edx = vmxctx->guest_rdx;
1239 		error = emulate_wrmsr(vmx->vm, vcpu, ecx,
1240 					(uint64_t)edx << 32 | eax);
1241 		if (error) {
1242 			vmexit->exitcode = VM_EXITCODE_WRMSR;
1243 			vmexit->u.msr.code = ecx;
1244 			vmexit->u.msr.wval = (uint64_t)edx << 32 | eax;
1245 		} else
1246 			handled = 1;
1247 		break;
1248 	case EXIT_REASON_HLT:
1249 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1);
1250 		/*
1251 		 * If there is an event waiting to be injected then there is
1252 		 * no need to 'hlt'.
1253 		 */
1254 		error = vmread(VMCS_ENTRY_INTR_INFO, &intr_info);
1255 		if (error)
1256 			panic("vmx_exit_process: vmread(intrinfo) %d", error);
1257 
1258 		if (intr_info & VMCS_INTERRUPTION_INFO_VALID) {
1259 			handled = 1;
1260 			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT_IGNORED, 1);
1261 		} else
1262 			vmexit->exitcode = VM_EXITCODE_HLT;
1263 		break;
1264 	case EXIT_REASON_MTF:
1265 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1);
1266 		vmexit->exitcode = VM_EXITCODE_MTRAP;
1267 		break;
1268 	case EXIT_REASON_PAUSE:
1269 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1);
1270 		vmexit->exitcode = VM_EXITCODE_PAUSE;
1271 		break;
1272 	case EXIT_REASON_INTR_WINDOW:
1273 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1);
1274 		vmx_clear_int_window_exiting(vmx, vcpu);
1275 		VMM_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting");
1276 		return (1);
1277 	case EXIT_REASON_EXT_INTR:
1278 		/*
1279 		 * External interrupts serve only to cause VM exits and allow
1280 		 * the host interrupt handler to run.
1281 		 *
1282 		 * If this external interrupt triggers a virtual interrupt
1283 		 * to a VM, then that state will be recorded by the
1284 		 * host interrupt handler in the VM's softc. We will inject
1285 		 * this virtual interrupt during the subsequent VM enter.
1286 		 */
1287 
1288 		/*
1289 		 * This is special. We want to treat this as an 'handled'
1290 		 * VM-exit but not increment the instruction pointer.
1291 		 */
1292 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1);
1293 		return (1);
1294 	case EXIT_REASON_NMI_WINDOW:
1295 		/* Exit to allow the pending virtual NMI to be injected */
1296 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1);
1297 		vmx_clear_nmi_window_exiting(vmx, vcpu);
1298 		VMM_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting");
1299 		return (1);
1300 	case EXIT_REASON_INOUT:
1301 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1);
1302 		vmexit->exitcode = VM_EXITCODE_INOUT;
1303 		vmexit->u.inout.bytes = (qual & 0x7) + 1;
1304 		vmexit->u.inout.in = (qual & 0x8) ? 1 : 0;
1305 		vmexit->u.inout.string = (qual & 0x10) ? 1 : 0;
1306 		vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0;
1307 		vmexit->u.inout.port = (uint16_t)(qual >> 16);
1308 		vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax);
1309 		break;
1310 	case EXIT_REASON_CPUID:
1311 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1);
1312 		handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx);
1313 		break;
1314 	case EXIT_REASON_EPT_FAULT:
1315 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EPT_FAULT, 1);
1316 		gla = vmcs_gla();
1317 		gpa = vmcs_gpa();
1318 		cr3 = vmcs_guest_cr3();
1319 		handled = vmx_ept_fault(vmx->vm, vcpu, gla, gpa,
1320 					vmexit->rip, vmexit->inst_length,
1321 					cr3, qual, &vmexit->u.paging.vie);
1322 		if (!handled) {
1323 			vmexit->exitcode = VM_EXITCODE_PAGING;
1324 			vmexit->u.paging.gpa = gpa;
1325 		}
1326 		break;
1327 	default:
1328 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1);
1329 		break;
1330 	}
1331 
1332 	if (handled) {
1333 		/*
1334 		 * It is possible that control is returned to userland
1335 		 * even though we were able to handle the VM exit in the
1336 		 * kernel.
1337 		 *
1338 		 * In such a case we want to make sure that the userland
1339 		 * restarts guest execution at the instruction *after*
1340 		 * the one we just processed. Therefore we update the
1341 		 * guest rip in the VMCS and in 'vmexit'.
1342 		 */
1343 		vm_exit_update_rip(vmexit);
1344 		vmexit->rip += vmexit->inst_length;
1345 		vmexit->inst_length = 0;
1346 
1347 		/*
1348 		 * Special case for spinning up an AP - exit to userspace to
1349 		 * give the controlling process a chance to intercept and
1350 		 * spin up a thread for the AP.
1351 		 */
1352 		if (vmexit->exitcode == VM_EXITCODE_SPINUP_AP)
1353 			handled = 0;
1354 	} else {
1355 		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
1356 			/*
1357 			 * If this VM exit was not claimed by anybody then
1358 			 * treat it as a generic VMX exit.
1359 			 */
1360 			vmexit->exitcode = VM_EXITCODE_VMX;
1361 			vmexit->u.vmx.error = 0;
1362 		} else {
1363 			/*
1364 			 * The exitcode and collateral have been populated.
1365 			 * The VM exit will be processed further in userland.
1366 			 */
1367 		}
1368 	}
1369 	return (handled);
1370 }
1371 
1372 static int
1373 vmx_run(void *arg, int vcpu, register_t rip)
1374 {
1375 	int error, vie, rc, handled, astpending;
1376 	uint32_t exit_reason;
1377 	struct vmx *vmx;
1378 	struct vmxctx *vmxctx;
1379 	struct vmcs *vmcs;
1380 	struct vm_exit *vmexit;
1381 
1382 	vmx = arg;
1383 	vmcs = &vmx->vmcs[vcpu];
1384 	vmxctx = &vmx->ctx[vcpu];
1385 	vmxctx->launched = 0;
1386 
1387 	astpending = 0;
1388 	vmexit = vm_exitinfo(vmx->vm, vcpu);
1389 
1390 	/*
1391 	 * XXX Can we avoid doing this every time we do a vm run?
1392 	 */
1393 	VMPTRLD(vmcs);
1394 
1395 	/*
1396 	 * XXX
1397 	 * We do this every time because we may setup the virtual machine
1398 	 * from a different process than the one that actually runs it.
1399 	 *
1400 	 * If the life of a virtual machine was spent entirely in the context
1401 	 * of a single process we could do this once in vmcs_set_defaults().
1402 	 */
1403 	if ((error = vmwrite(VMCS_HOST_CR3, rcr3())) != 0)
1404 		panic("vmx_run: error %d writing to VMCS_HOST_CR3", error);
1405 
1406 	if ((error = vmwrite(VMCS_GUEST_RIP, rip)) != 0)
1407 		panic("vmx_run: error %d writing to VMCS_GUEST_RIP", error);
1408 
1409 	if ((error = vmx_set_pcpu_defaults(vmx, vcpu)) != 0)
1410 		panic("vmx_run: error %d setting up pcpu defaults", error);
1411 
1412 	do {
1413 		lapic_timer_tick(vmx->vm, vcpu);
1414 		vmx_inject_interrupts(vmx, vcpu);
1415 		vmx_run_trace(vmx, vcpu);
1416 		rc = vmx_setjmp(vmxctx);
1417 #ifdef SETJMP_TRACE
1418 		vmx_setjmp_trace(vmx, vcpu, vmxctx, rc);
1419 #endif
1420 		switch (rc) {
1421 		case VMX_RETURN_DIRECT:
1422 			if (vmxctx->launched == 0) {
1423 				vmxctx->launched = 1;
1424 				vmx_launch(vmxctx);
1425 			} else
1426 				vmx_resume(vmxctx);
1427 			panic("vmx_launch/resume should not return");
1428 			break;
1429 		case VMX_RETURN_LONGJMP:
1430 			break;			/* vm exit */
1431 		case VMX_RETURN_AST:
1432 			astpending = 1;
1433 			break;
1434 		case VMX_RETURN_VMRESUME:
1435 			vie = vmcs_instruction_error();
1436 			if (vmxctx->launch_error == VM_FAIL_INVALID ||
1437 			    vie != VMRESUME_WITH_NON_LAUNCHED_VMCS) {
1438 				printf("vmresume error %d vmcs inst error %d\n",
1439 					vmxctx->launch_error, vie);
1440 				goto err_exit;
1441 			}
1442 			vmx_launch(vmxctx);	/* try to launch the guest */
1443 			panic("vmx_launch should not return");
1444 			break;
1445 		case VMX_RETURN_VMLAUNCH:
1446 			vie = vmcs_instruction_error();
1447 #if 1
1448 			printf("vmlaunch error %d vmcs inst error %d\n",
1449 				vmxctx->launch_error, vie);
1450 #endif
1451 			goto err_exit;
1452 		default:
1453 			panic("vmx_setjmp returned %d", rc);
1454 		}
1455 
1456 		/* enable interrupts */
1457 		enable_intr();
1458 
1459 		/* collect some basic information for VM exit processing */
1460 		vmexit->rip = rip = vmcs_guest_rip();
1461 		vmexit->inst_length = vmexit_instruction_length();
1462 		vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
1463 		vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
1464 
1465 		if (astpending) {
1466 			handled = 1;
1467 			vmexit->inst_length = 0;
1468 			vmexit->exitcode = VM_EXITCODE_BOGUS;
1469 			vmx_astpending_trace(vmx, vcpu, rip);
1470 			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_ASTPENDING, 1);
1471 			break;
1472 		}
1473 
1474 		handled = vmx_exit_process(vmx, vcpu, vmexit);
1475 		vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled);
1476 
1477 	} while (handled);
1478 
1479 	/*
1480 	 * If a VM exit has been handled then the exitcode must be BOGUS
1481 	 * If a VM exit is not handled then the exitcode must not be BOGUS
1482 	 */
1483 	if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) ||
1484 	    (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) {
1485 		panic("Mismatch between handled (%d) and exitcode (%d)",
1486 		      handled, vmexit->exitcode);
1487 	}
1488 
1489 	if (!handled)
1490 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_USERSPACE, 1);
1491 
1492 	VMM_CTR1(vmx->vm, vcpu, "goto userland: exitcode %d",vmexit->exitcode);
1493 
1494 	/*
1495 	 * XXX
1496 	 * We need to do this to ensure that any VMCS state cached by the
1497 	 * processor is flushed to memory. We need to do this in case the
1498 	 * VM moves to a different cpu the next time it runs.
1499 	 *
1500 	 * Can we avoid doing this?
1501 	 */
1502 	VMCLEAR(vmcs);
1503 	return (0);
1504 
1505 err_exit:
1506 	vmexit->exitcode = VM_EXITCODE_VMX;
1507 	vmexit->u.vmx.exit_reason = (uint32_t)-1;
1508 	vmexit->u.vmx.exit_qualification = (uint32_t)-1;
1509 	vmexit->u.vmx.error = vie;
1510 	VMCLEAR(vmcs);
1511 	return (ENOEXEC);
1512 }
1513 
1514 static void
1515 vmx_vmcleanup(void *arg)
1516 {
1517 	int error;
1518 	struct vmx *vmx = arg;
1519 
1520 	/*
1521 	 * XXXSMP we also need to clear the VMCS active on the other vcpus.
1522 	 */
1523 	error = vmclear(&vmx->vmcs[0]);
1524 	if (error != 0)
1525 		panic("vmx_vmcleanup: vmclear error %d on vcpu 0", error);
1526 
1527 	ept_vmcleanup(vmx);
1528 	free(vmx, M_VMX);
1529 
1530 	return;
1531 }
1532 
1533 static register_t *
1534 vmxctx_regptr(struct vmxctx *vmxctx, int reg)
1535 {
1536 
1537 	switch (reg) {
1538 	case VM_REG_GUEST_RAX:
1539 		return (&vmxctx->guest_rax);
1540 	case VM_REG_GUEST_RBX:
1541 		return (&vmxctx->guest_rbx);
1542 	case VM_REG_GUEST_RCX:
1543 		return (&vmxctx->guest_rcx);
1544 	case VM_REG_GUEST_RDX:
1545 		return (&vmxctx->guest_rdx);
1546 	case VM_REG_GUEST_RSI:
1547 		return (&vmxctx->guest_rsi);
1548 	case VM_REG_GUEST_RDI:
1549 		return (&vmxctx->guest_rdi);
1550 	case VM_REG_GUEST_RBP:
1551 		return (&vmxctx->guest_rbp);
1552 	case VM_REG_GUEST_R8:
1553 		return (&vmxctx->guest_r8);
1554 	case VM_REG_GUEST_R9:
1555 		return (&vmxctx->guest_r9);
1556 	case VM_REG_GUEST_R10:
1557 		return (&vmxctx->guest_r10);
1558 	case VM_REG_GUEST_R11:
1559 		return (&vmxctx->guest_r11);
1560 	case VM_REG_GUEST_R12:
1561 		return (&vmxctx->guest_r12);
1562 	case VM_REG_GUEST_R13:
1563 		return (&vmxctx->guest_r13);
1564 	case VM_REG_GUEST_R14:
1565 		return (&vmxctx->guest_r14);
1566 	case VM_REG_GUEST_R15:
1567 		return (&vmxctx->guest_r15);
1568 	default:
1569 		break;
1570 	}
1571 	return (NULL);
1572 }
1573 
1574 static int
1575 vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval)
1576 {
1577 	register_t *regp;
1578 
1579 	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
1580 		*retval = *regp;
1581 		return (0);
1582 	} else
1583 		return (EINVAL);
1584 }
1585 
1586 static int
1587 vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val)
1588 {
1589 	register_t *regp;
1590 
1591 	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
1592 		*regp = val;
1593 		return (0);
1594 	} else
1595 		return (EINVAL);
1596 }
1597 
1598 static int
1599 vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval)
1600 {
1601 	struct vmx *vmx = arg;
1602 
1603 	if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0)
1604 		return (0);
1605 
1606 	/*
1607 	 * If the vcpu is running then don't mess with the VMCS.
1608 	 *
1609 	 * vmcs_getreg will VMCLEAR the vmcs when it is done which will cause
1610 	 * the subsequent vmlaunch/vmresume to fail.
1611 	 */
1612 	if (vcpu_is_running(vmx->vm, vcpu))
1613 		panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu);
1614 
1615 	return (vmcs_getreg(&vmx->vmcs[vcpu], reg, retval));
1616 }
1617 
1618 static int
1619 vmx_setreg(void *arg, int vcpu, int reg, uint64_t val)
1620 {
1621 	int error;
1622 	uint64_t ctls;
1623 	struct vmx *vmx = arg;
1624 
1625 	/*
1626 	 * XXX Allow caller to set contents of the guest registers saved in
1627 	 * the 'vmxctx' even though the vcpu might be running. We need this
1628 	 * specifically to support the rdmsr emulation that will set the
1629 	 * %eax and %edx registers during vm exit processing.
1630 	 */
1631 	if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0)
1632 		return (0);
1633 
1634 	/*
1635 	 * If the vcpu is running then don't mess with the VMCS.
1636 	 *
1637 	 * vmcs_setreg will VMCLEAR the vmcs when it is done which will cause
1638 	 * the subsequent vmlaunch/vmresume to fail.
1639 	 */
1640 	if (vcpu_is_running(vmx->vm, vcpu))
1641 		panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu);
1642 
1643 	error = vmcs_setreg(&vmx->vmcs[vcpu], reg, val);
1644 
1645 	if (error == 0) {
1646 		/*
1647 		 * If the "load EFER" VM-entry control is 1 then the
1648 		 * value of EFER.LMA must be identical to "IA-32e mode guest"
1649 		 * bit in the VM-entry control.
1650 		 */
1651 		if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 &&
1652 		    (reg == VM_REG_GUEST_EFER)) {
1653 			vmcs_getreg(&vmx->vmcs[vcpu],
1654 				    VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls);
1655 			if (val & EFER_LMA)
1656 				ctls |= VM_ENTRY_GUEST_LMA;
1657 			else
1658 				ctls &= ~VM_ENTRY_GUEST_LMA;
1659 			vmcs_setreg(&vmx->vmcs[vcpu],
1660 				    VMCS_IDENT(VMCS_ENTRY_CTLS), ctls);
1661 		}
1662 	}
1663 
1664 	return (error);
1665 }
1666 
1667 static int
1668 vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
1669 {
1670 	struct vmx *vmx = arg;
1671 
1672 	return (vmcs_getdesc(&vmx->vmcs[vcpu], reg, desc));
1673 }
1674 
1675 static int
1676 vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
1677 {
1678 	struct vmx *vmx = arg;
1679 
1680 	return (vmcs_setdesc(&vmx->vmcs[vcpu], reg, desc));
1681 }
1682 
1683 static int
1684 vmx_inject(void *arg, int vcpu, int type, int vector, uint32_t code,
1685 	   int code_valid)
1686 {
1687 	int error;
1688 	uint64_t info;
1689 	struct vmx *vmx = arg;
1690 	struct vmcs *vmcs = &vmx->vmcs[vcpu];
1691 
1692 	static uint32_t type_map[VM_EVENT_MAX] = {
1693 		0x1,		/* VM_EVENT_NONE */
1694 		0x0,		/* VM_HW_INTR */
1695 		0x2,		/* VM_NMI */
1696 		0x3,		/* VM_HW_EXCEPTION */
1697 		0x4,		/* VM_SW_INTR */
1698 		0x5,		/* VM_PRIV_SW_EXCEPTION */
1699 		0x6,		/* VM_SW_EXCEPTION */
1700 	};
1701 
1702 	/*
1703 	 * If there is already an exception pending to be delivered to the
1704 	 * vcpu then just return.
1705 	 */
1706 	error = vmcs_getreg(vmcs, VMCS_IDENT(VMCS_ENTRY_INTR_INFO), &info);
1707 	if (error)
1708 		return (error);
1709 
1710 	if (info & VMCS_INTERRUPTION_INFO_VALID)
1711 		return (EAGAIN);
1712 
1713 	info = vector | (type_map[type] << 8) | (code_valid ? 1 << 11 : 0);
1714 	info |= VMCS_INTERRUPTION_INFO_VALID;
1715 	error = vmcs_setreg(vmcs, VMCS_IDENT(VMCS_ENTRY_INTR_INFO), info);
1716 	if (error != 0)
1717 		return (error);
1718 
1719 	if (code_valid) {
1720 		error = vmcs_setreg(vmcs,
1721 				    VMCS_IDENT(VMCS_ENTRY_EXCEPTION_ERROR),
1722 				    code);
1723 	}
1724 	return (error);
1725 }
1726 
1727 static int
1728 vmx_getcap(void *arg, int vcpu, int type, int *retval)
1729 {
1730 	struct vmx *vmx = arg;
1731 	int vcap;
1732 	int ret;
1733 
1734 	ret = ENOENT;
1735 
1736 	vcap = vmx->cap[vcpu].set;
1737 
1738 	switch (type) {
1739 	case VM_CAP_HALT_EXIT:
1740 		if (cap_halt_exit)
1741 			ret = 0;
1742 		break;
1743 	case VM_CAP_PAUSE_EXIT:
1744 		if (cap_pause_exit)
1745 			ret = 0;
1746 		break;
1747 	case VM_CAP_MTRAP_EXIT:
1748 		if (cap_monitor_trap)
1749 			ret = 0;
1750 		break;
1751 	case VM_CAP_UNRESTRICTED_GUEST:
1752 		if (cap_unrestricted_guest)
1753 			ret = 0;
1754 		break;
1755 	default:
1756 		break;
1757 	}
1758 
1759 	if (ret == 0)
1760 		*retval = (vcap & (1 << type)) ? 1 : 0;
1761 
1762 	return (ret);
1763 }
1764 
1765 static int
1766 vmx_setcap(void *arg, int vcpu, int type, int val)
1767 {
1768 	struct vmx *vmx = arg;
1769 	struct vmcs *vmcs = &vmx->vmcs[vcpu];
1770 	uint32_t baseval;
1771 	uint32_t *pptr;
1772 	int error;
1773 	int flag;
1774 	int reg;
1775 	int retval;
1776 
1777 	retval = ENOENT;
1778 	pptr = NULL;
1779 
1780 	switch (type) {
1781 	case VM_CAP_HALT_EXIT:
1782 		if (cap_halt_exit) {
1783 			retval = 0;
1784 			pptr = &vmx->cap[vcpu].proc_ctls;
1785 			baseval = *pptr;
1786 			flag = PROCBASED_HLT_EXITING;
1787 			reg = VMCS_PRI_PROC_BASED_CTLS;
1788 		}
1789 		break;
1790 	case VM_CAP_MTRAP_EXIT:
1791 		if (cap_monitor_trap) {
1792 			retval = 0;
1793 			pptr = &vmx->cap[vcpu].proc_ctls;
1794 			baseval = *pptr;
1795 			flag = PROCBASED_MTF;
1796 			reg = VMCS_PRI_PROC_BASED_CTLS;
1797 		}
1798 		break;
1799 	case VM_CAP_PAUSE_EXIT:
1800 		if (cap_pause_exit) {
1801 			retval = 0;
1802 			pptr = &vmx->cap[vcpu].proc_ctls;
1803 			baseval = *pptr;
1804 			flag = PROCBASED_PAUSE_EXITING;
1805 			reg = VMCS_PRI_PROC_BASED_CTLS;
1806 		}
1807 		break;
1808 	case VM_CAP_UNRESTRICTED_GUEST:
1809 		if (cap_unrestricted_guest) {
1810 			retval = 0;
1811 			baseval = procbased_ctls2;
1812 			flag = PROCBASED2_UNRESTRICTED_GUEST;
1813 			reg = VMCS_SEC_PROC_BASED_CTLS;
1814 		}
1815 		break;
1816 	default:
1817 		break;
1818 	}
1819 
1820 	if (retval == 0) {
1821 		if (val) {
1822 			baseval |= flag;
1823 		} else {
1824 			baseval &= ~flag;
1825 		}
1826 		VMPTRLD(vmcs);
1827 		error = vmwrite(reg, baseval);
1828 		VMCLEAR(vmcs);
1829 
1830 		if (error) {
1831 			retval = error;
1832 		} else {
1833 			/*
1834 			 * Update optional stored flags, and record
1835 			 * setting
1836 			 */
1837 			if (pptr != NULL) {
1838 				*pptr = baseval;
1839 			}
1840 
1841 			if (val) {
1842 				vmx->cap[vcpu].set |= (1 << type);
1843 			} else {
1844 				vmx->cap[vcpu].set &= ~(1 << type);
1845 			}
1846 		}
1847 	}
1848 
1849         return (retval);
1850 }
1851 
1852 struct vmm_ops vmm_ops_intel = {
1853 	vmx_init,
1854 	vmx_cleanup,
1855 	vmx_vminit,
1856 	vmx_run,
1857 	vmx_vmcleanup,
1858 	ept_vmmmap_set,
1859 	ept_vmmmap_get,
1860 	vmx_getreg,
1861 	vmx_setreg,
1862 	vmx_getdesc,
1863 	vmx_setdesc,
1864 	vmx_inject,
1865 	vmx_getcap,
1866 	vmx_setcap
1867 };
1868