1 /*- 2 * Copyright (c) 2011 NetApp, Inc. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD$ 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/smp.h> 35 #include <sys/kernel.h> 36 #include <sys/malloc.h> 37 #include <sys/pcpu.h> 38 #include <sys/proc.h> 39 #include <sys/sysctl.h> 40 41 #include <vm/vm.h> 42 #include <vm/pmap.h> 43 44 #include <machine/psl.h> 45 #include <machine/cpufunc.h> 46 #include <machine/md_var.h> 47 #include <machine/segments.h> 48 #include <machine/smp.h> 49 #include <machine/specialreg.h> 50 #include <machine/vmparam.h> 51 52 #include <machine/vmm.h> 53 #include <machine/vmm_dev.h> 54 #include <machine/vmm_instruction_emul.h> 55 #include "vmm_lapic.h" 56 #include "vmm_host.h" 57 #include "vmm_ioport.h" 58 #include "vmm_ipi.h" 59 #include "vmm_ktr.h" 60 #include "vmm_stat.h" 61 #include "vatpic.h" 62 #include "vlapic.h" 63 #include "vlapic_priv.h" 64 65 #include "ept.h" 66 #include "vmx_cpufunc.h" 67 #include "vmx.h" 68 #include "vmx_msr.h" 69 #include "x86.h" 70 #include "vmx_controls.h" 71 72 #define PINBASED_CTLS_ONE_SETTING \ 73 (PINBASED_EXTINT_EXITING | \ 74 PINBASED_NMI_EXITING | \ 75 PINBASED_VIRTUAL_NMI) 76 #define PINBASED_CTLS_ZERO_SETTING 0 77 78 #define PROCBASED_CTLS_WINDOW_SETTING \ 79 (PROCBASED_INT_WINDOW_EXITING | \ 80 PROCBASED_NMI_WINDOW_EXITING) 81 82 #define PROCBASED_CTLS_ONE_SETTING \ 83 (PROCBASED_SECONDARY_CONTROLS | \ 84 PROCBASED_MWAIT_EXITING | \ 85 PROCBASED_MONITOR_EXITING | \ 86 PROCBASED_IO_EXITING | \ 87 PROCBASED_MSR_BITMAPS | \ 88 PROCBASED_CTLS_WINDOW_SETTING | \ 89 PROCBASED_CR8_LOAD_EXITING | \ 90 PROCBASED_CR8_STORE_EXITING) 91 #define PROCBASED_CTLS_ZERO_SETTING \ 92 (PROCBASED_CR3_LOAD_EXITING | \ 93 PROCBASED_CR3_STORE_EXITING | \ 94 PROCBASED_IO_BITMAPS) 95 96 #define PROCBASED_CTLS2_ONE_SETTING PROCBASED2_ENABLE_EPT 97 #define PROCBASED_CTLS2_ZERO_SETTING 0 98 99 #define VM_EXIT_CTLS_ONE_SETTING \ 100 (VM_EXIT_HOST_LMA | \ 101 VM_EXIT_SAVE_EFER | \ 102 VM_EXIT_LOAD_EFER | \ 103 VM_EXIT_ACKNOWLEDGE_INTERRUPT | \ 104 VM_EXIT_SAVE_PAT | \ 105 VM_EXIT_LOAD_PAT) 106 107 #define VM_EXIT_CTLS_ZERO_SETTING VM_EXIT_SAVE_DEBUG_CONTROLS 108 109 #define VM_ENTRY_CTLS_ONE_SETTING (VM_ENTRY_LOAD_EFER | VM_ENTRY_LOAD_PAT) 110 111 #define VM_ENTRY_CTLS_ZERO_SETTING \ 112 (VM_ENTRY_LOAD_DEBUG_CONTROLS | \ 113 VM_ENTRY_INTO_SMM | \ 114 VM_ENTRY_DEACTIVATE_DUAL_MONITOR) 115 116 #define HANDLED 1 117 #define UNHANDLED 0 118 119 static MALLOC_DEFINE(M_VMX, "vmx", "vmx"); 120 static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic"); 121 122 SYSCTL_DECL(_hw_vmm); 123 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW, NULL, NULL); 124 125 int vmxon_enabled[MAXCPU]; 126 static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE); 127 128 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2; 129 static uint32_t exit_ctls, entry_ctls; 130 131 static uint64_t cr0_ones_mask, cr0_zeros_mask; 132 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD, 133 &cr0_ones_mask, 0, NULL); 134 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD, 135 &cr0_zeros_mask, 0, NULL); 136 137 static uint64_t cr4_ones_mask, cr4_zeros_mask; 138 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD, 139 &cr4_ones_mask, 0, NULL); 140 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD, 141 &cr4_zeros_mask, 0, NULL); 142 143 static int vmx_initialized; 144 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD, 145 &vmx_initialized, 0, "Intel VMX initialized"); 146 147 /* 148 * Optional capabilities 149 */ 150 static SYSCTL_NODE(_hw_vmm_vmx, OID_AUTO, cap, CTLFLAG_RW, NULL, NULL); 151 152 static int cap_halt_exit; 153 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, halt_exit, CTLFLAG_RD, &cap_halt_exit, 0, 154 "HLT triggers a VM-exit"); 155 156 static int cap_pause_exit; 157 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, pause_exit, CTLFLAG_RD, &cap_pause_exit, 158 0, "PAUSE triggers a VM-exit"); 159 160 static int cap_unrestricted_guest; 161 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, unrestricted_guest, CTLFLAG_RD, 162 &cap_unrestricted_guest, 0, "Unrestricted guests"); 163 164 static int cap_monitor_trap; 165 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, monitor_trap, CTLFLAG_RD, 166 &cap_monitor_trap, 0, "Monitor trap flag"); 167 168 static int cap_invpcid; 169 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, invpcid, CTLFLAG_RD, &cap_invpcid, 170 0, "Guests are allowed to use INVPCID"); 171 172 static int virtual_interrupt_delivery; 173 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD, 174 &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support"); 175 176 static int posted_interrupts; 177 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, posted_interrupts, CTLFLAG_RD, 178 &posted_interrupts, 0, "APICv posted interrupt support"); 179 180 static int pirvec; 181 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD, 182 &pirvec, 0, "APICv posted interrupt vector"); 183 184 static struct unrhdr *vpid_unr; 185 static u_int vpid_alloc_failed; 186 SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD, 187 &vpid_alloc_failed, 0, NULL); 188 189 /* 190 * Use the last page below 4GB as the APIC access address. This address is 191 * occupied by the boot firmware so it is guaranteed that it will not conflict 192 * with a page in system memory. 193 */ 194 #define APIC_ACCESS_ADDRESS 0xFFFFF000 195 196 static int vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc); 197 static int vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval); 198 static int vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val); 199 static void vmx_inject_pir(struct vlapic *vlapic); 200 201 #ifdef KTR 202 static const char * 203 exit_reason_to_str(int reason) 204 { 205 static char reasonbuf[32]; 206 207 switch (reason) { 208 case EXIT_REASON_EXCEPTION: 209 return "exception"; 210 case EXIT_REASON_EXT_INTR: 211 return "extint"; 212 case EXIT_REASON_TRIPLE_FAULT: 213 return "triplefault"; 214 case EXIT_REASON_INIT: 215 return "init"; 216 case EXIT_REASON_SIPI: 217 return "sipi"; 218 case EXIT_REASON_IO_SMI: 219 return "iosmi"; 220 case EXIT_REASON_SMI: 221 return "smi"; 222 case EXIT_REASON_INTR_WINDOW: 223 return "intrwindow"; 224 case EXIT_REASON_NMI_WINDOW: 225 return "nmiwindow"; 226 case EXIT_REASON_TASK_SWITCH: 227 return "taskswitch"; 228 case EXIT_REASON_CPUID: 229 return "cpuid"; 230 case EXIT_REASON_GETSEC: 231 return "getsec"; 232 case EXIT_REASON_HLT: 233 return "hlt"; 234 case EXIT_REASON_INVD: 235 return "invd"; 236 case EXIT_REASON_INVLPG: 237 return "invlpg"; 238 case EXIT_REASON_RDPMC: 239 return "rdpmc"; 240 case EXIT_REASON_RDTSC: 241 return "rdtsc"; 242 case EXIT_REASON_RSM: 243 return "rsm"; 244 case EXIT_REASON_VMCALL: 245 return "vmcall"; 246 case EXIT_REASON_VMCLEAR: 247 return "vmclear"; 248 case EXIT_REASON_VMLAUNCH: 249 return "vmlaunch"; 250 case EXIT_REASON_VMPTRLD: 251 return "vmptrld"; 252 case EXIT_REASON_VMPTRST: 253 return "vmptrst"; 254 case EXIT_REASON_VMREAD: 255 return "vmread"; 256 case EXIT_REASON_VMRESUME: 257 return "vmresume"; 258 case EXIT_REASON_VMWRITE: 259 return "vmwrite"; 260 case EXIT_REASON_VMXOFF: 261 return "vmxoff"; 262 case EXIT_REASON_VMXON: 263 return "vmxon"; 264 case EXIT_REASON_CR_ACCESS: 265 return "craccess"; 266 case EXIT_REASON_DR_ACCESS: 267 return "draccess"; 268 case EXIT_REASON_INOUT: 269 return "inout"; 270 case EXIT_REASON_RDMSR: 271 return "rdmsr"; 272 case EXIT_REASON_WRMSR: 273 return "wrmsr"; 274 case EXIT_REASON_INVAL_VMCS: 275 return "invalvmcs"; 276 case EXIT_REASON_INVAL_MSR: 277 return "invalmsr"; 278 case EXIT_REASON_MWAIT: 279 return "mwait"; 280 case EXIT_REASON_MTF: 281 return "mtf"; 282 case EXIT_REASON_MONITOR: 283 return "monitor"; 284 case EXIT_REASON_PAUSE: 285 return "pause"; 286 case EXIT_REASON_MCE_DURING_ENTRY: 287 return "mce-during-entry"; 288 case EXIT_REASON_TPR: 289 return "tpr"; 290 case EXIT_REASON_APIC_ACCESS: 291 return "apic-access"; 292 case EXIT_REASON_GDTR_IDTR: 293 return "gdtridtr"; 294 case EXIT_REASON_LDTR_TR: 295 return "ldtrtr"; 296 case EXIT_REASON_EPT_FAULT: 297 return "eptfault"; 298 case EXIT_REASON_EPT_MISCONFIG: 299 return "eptmisconfig"; 300 case EXIT_REASON_INVEPT: 301 return "invept"; 302 case EXIT_REASON_RDTSCP: 303 return "rdtscp"; 304 case EXIT_REASON_VMX_PREEMPT: 305 return "vmxpreempt"; 306 case EXIT_REASON_INVVPID: 307 return "invvpid"; 308 case EXIT_REASON_WBINVD: 309 return "wbinvd"; 310 case EXIT_REASON_XSETBV: 311 return "xsetbv"; 312 case EXIT_REASON_APIC_WRITE: 313 return "apic-write"; 314 default: 315 snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason); 316 return (reasonbuf); 317 } 318 } 319 #endif /* KTR */ 320 321 static int 322 vmx_allow_x2apic_msrs(struct vmx *vmx) 323 { 324 int i, error; 325 326 error = 0; 327 328 /* 329 * Allow readonly access to the following x2APIC MSRs from the guest. 330 */ 331 error += guest_msr_ro(vmx, MSR_APIC_ID); 332 error += guest_msr_ro(vmx, MSR_APIC_VERSION); 333 error += guest_msr_ro(vmx, MSR_APIC_LDR); 334 error += guest_msr_ro(vmx, MSR_APIC_SVR); 335 336 for (i = 0; i < 8; i++) 337 error += guest_msr_ro(vmx, MSR_APIC_ISR0 + i); 338 339 for (i = 0; i < 8; i++) 340 error += guest_msr_ro(vmx, MSR_APIC_TMR0 + i); 341 342 for (i = 0; i < 8; i++) 343 error += guest_msr_ro(vmx, MSR_APIC_IRR0 + i); 344 345 error += guest_msr_ro(vmx, MSR_APIC_ESR); 346 error += guest_msr_ro(vmx, MSR_APIC_LVT_TIMER); 347 error += guest_msr_ro(vmx, MSR_APIC_LVT_THERMAL); 348 error += guest_msr_ro(vmx, MSR_APIC_LVT_PCINT); 349 error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT0); 350 error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT1); 351 error += guest_msr_ro(vmx, MSR_APIC_LVT_ERROR); 352 error += guest_msr_ro(vmx, MSR_APIC_ICR_TIMER); 353 error += guest_msr_ro(vmx, MSR_APIC_DCR_TIMER); 354 error += guest_msr_ro(vmx, MSR_APIC_ICR); 355 356 /* 357 * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest. 358 * 359 * These registers get special treatment described in the section 360 * "Virtualizing MSR-Based APIC Accesses". 361 */ 362 error += guest_msr_rw(vmx, MSR_APIC_TPR); 363 error += guest_msr_rw(vmx, MSR_APIC_EOI); 364 error += guest_msr_rw(vmx, MSR_APIC_SELF_IPI); 365 366 return (error); 367 } 368 369 u_long 370 vmx_fix_cr0(u_long cr0) 371 { 372 373 return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask); 374 } 375 376 u_long 377 vmx_fix_cr4(u_long cr4) 378 { 379 380 return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask); 381 } 382 383 static void 384 vpid_free(int vpid) 385 { 386 if (vpid < 0 || vpid > 0xffff) 387 panic("vpid_free: invalid vpid %d", vpid); 388 389 /* 390 * VPIDs [0,VM_MAXCPU] are special and are not allocated from 391 * the unit number allocator. 392 */ 393 394 if (vpid > VM_MAXCPU) 395 free_unr(vpid_unr, vpid); 396 } 397 398 static void 399 vpid_alloc(uint16_t *vpid, int num) 400 { 401 int i, x; 402 403 if (num <= 0 || num > VM_MAXCPU) 404 panic("invalid number of vpids requested: %d", num); 405 406 /* 407 * If the "enable vpid" execution control is not enabled then the 408 * VPID is required to be 0 for all vcpus. 409 */ 410 if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) { 411 for (i = 0; i < num; i++) 412 vpid[i] = 0; 413 return; 414 } 415 416 /* 417 * Allocate a unique VPID for each vcpu from the unit number allocator. 418 */ 419 for (i = 0; i < num; i++) { 420 x = alloc_unr(vpid_unr); 421 if (x == -1) 422 break; 423 else 424 vpid[i] = x; 425 } 426 427 if (i < num) { 428 atomic_add_int(&vpid_alloc_failed, 1); 429 430 /* 431 * If the unit number allocator does not have enough unique 432 * VPIDs then we need to allocate from the [1,VM_MAXCPU] range. 433 * 434 * These VPIDs are not be unique across VMs but this does not 435 * affect correctness because the combined mappings are also 436 * tagged with the EP4TA which is unique for each VM. 437 * 438 * It is still sub-optimal because the invvpid will invalidate 439 * combined mappings for a particular VPID across all EP4TAs. 440 */ 441 while (i-- > 0) 442 vpid_free(vpid[i]); 443 444 for (i = 0; i < num; i++) 445 vpid[i] = i + 1; 446 } 447 } 448 449 static void 450 vpid_init(void) 451 { 452 /* 453 * VPID 0 is required when the "enable VPID" execution control is 454 * disabled. 455 * 456 * VPIDs [1,VM_MAXCPU] are used as the "overflow namespace" when the 457 * unit number allocator does not have sufficient unique VPIDs to 458 * satisfy the allocation. 459 * 460 * The remaining VPIDs are managed by the unit number allocator. 461 */ 462 vpid_unr = new_unrhdr(VM_MAXCPU + 1, 0xffff, NULL); 463 } 464 465 static void 466 vmx_disable(void *arg __unused) 467 { 468 struct invvpid_desc invvpid_desc = { 0 }; 469 struct invept_desc invept_desc = { 0 }; 470 471 if (vmxon_enabled[curcpu]) { 472 /* 473 * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b. 474 * 475 * VMXON or VMXOFF are not required to invalidate any TLB 476 * caching structures. This prevents potential retention of 477 * cached information in the TLB between distinct VMX episodes. 478 */ 479 invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc); 480 invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc); 481 vmxoff(); 482 } 483 load_cr4(rcr4() & ~CR4_VMXE); 484 } 485 486 static int 487 vmx_cleanup(void) 488 { 489 490 if (pirvec != 0) 491 vmm_ipi_free(pirvec); 492 493 if (vpid_unr != NULL) { 494 delete_unrhdr(vpid_unr); 495 vpid_unr = NULL; 496 } 497 498 smp_rendezvous(NULL, vmx_disable, NULL, NULL); 499 500 return (0); 501 } 502 503 static void 504 vmx_enable(void *arg __unused) 505 { 506 int error; 507 uint64_t feature_control; 508 509 feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL); 510 if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 || 511 (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) { 512 wrmsr(MSR_IA32_FEATURE_CONTROL, 513 feature_control | IA32_FEATURE_CONTROL_VMX_EN | 514 IA32_FEATURE_CONTROL_LOCK); 515 } 516 517 load_cr4(rcr4() | CR4_VMXE); 518 519 *(uint32_t *)vmxon_region[curcpu] = vmx_revision(); 520 error = vmxon(vmxon_region[curcpu]); 521 if (error == 0) 522 vmxon_enabled[curcpu] = 1; 523 } 524 525 static void 526 vmx_restore(void) 527 { 528 529 if (vmxon_enabled[curcpu]) 530 vmxon(vmxon_region[curcpu]); 531 } 532 533 static int 534 vmx_init(int ipinum) 535 { 536 int error, use_tpr_shadow; 537 uint64_t basic, fixed0, fixed1, feature_control; 538 uint32_t tmp, procbased2_vid_bits; 539 540 /* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */ 541 if (!(cpu_feature2 & CPUID2_VMX)) { 542 printf("vmx_init: processor does not support VMX operation\n"); 543 return (ENXIO); 544 } 545 546 /* 547 * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits 548 * are set (bits 0 and 2 respectively). 549 */ 550 feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL); 551 if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 1 && 552 (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) { 553 printf("vmx_init: VMX operation disabled by BIOS\n"); 554 return (ENXIO); 555 } 556 557 /* 558 * Verify capabilities MSR_VMX_BASIC: 559 * - bit 54 indicates support for INS/OUTS decoding 560 */ 561 basic = rdmsr(MSR_VMX_BASIC); 562 if ((basic & (1UL << 54)) == 0) { 563 printf("vmx_init: processor does not support desired basic " 564 "capabilities\n"); 565 return (EINVAL); 566 } 567 568 /* Check support for primary processor-based VM-execution controls */ 569 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 570 MSR_VMX_TRUE_PROCBASED_CTLS, 571 PROCBASED_CTLS_ONE_SETTING, 572 PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls); 573 if (error) { 574 printf("vmx_init: processor does not support desired primary " 575 "processor-based controls\n"); 576 return (error); 577 } 578 579 /* Clear the processor-based ctl bits that are set on demand */ 580 procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING; 581 582 /* Check support for secondary processor-based VM-execution controls */ 583 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, 584 MSR_VMX_PROCBASED_CTLS2, 585 PROCBASED_CTLS2_ONE_SETTING, 586 PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2); 587 if (error) { 588 printf("vmx_init: processor does not support desired secondary " 589 "processor-based controls\n"); 590 return (error); 591 } 592 593 /* Check support for VPID */ 594 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2, 595 PROCBASED2_ENABLE_VPID, 0, &tmp); 596 if (error == 0) 597 procbased_ctls2 |= PROCBASED2_ENABLE_VPID; 598 599 /* Check support for pin-based VM-execution controls */ 600 error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS, 601 MSR_VMX_TRUE_PINBASED_CTLS, 602 PINBASED_CTLS_ONE_SETTING, 603 PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls); 604 if (error) { 605 printf("vmx_init: processor does not support desired " 606 "pin-based controls\n"); 607 return (error); 608 } 609 610 /* Check support for VM-exit controls */ 611 error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS, 612 VM_EXIT_CTLS_ONE_SETTING, 613 VM_EXIT_CTLS_ZERO_SETTING, 614 &exit_ctls); 615 if (error) { 616 printf("vmx_init: processor does not support desired " 617 "exit controls\n"); 618 return (error); 619 } 620 621 /* Check support for VM-entry controls */ 622 error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS, 623 VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING, 624 &entry_ctls); 625 if (error) { 626 printf("vmx_init: processor does not support desired " 627 "entry controls\n"); 628 return (error); 629 } 630 631 /* 632 * Check support for optional features by testing them 633 * as individual bits 634 */ 635 cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 636 MSR_VMX_TRUE_PROCBASED_CTLS, 637 PROCBASED_HLT_EXITING, 0, 638 &tmp) == 0); 639 640 cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 641 MSR_VMX_PROCBASED_CTLS, 642 PROCBASED_MTF, 0, 643 &tmp) == 0); 644 645 cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 646 MSR_VMX_TRUE_PROCBASED_CTLS, 647 PROCBASED_PAUSE_EXITING, 0, 648 &tmp) == 0); 649 650 cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, 651 MSR_VMX_PROCBASED_CTLS2, 652 PROCBASED2_UNRESTRICTED_GUEST, 0, 653 &tmp) == 0); 654 655 cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, 656 MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0, 657 &tmp) == 0); 658 659 /* 660 * Check support for virtual interrupt delivery. 661 */ 662 procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES | 663 PROCBASED2_VIRTUALIZE_X2APIC_MODE | 664 PROCBASED2_APIC_REGISTER_VIRTUALIZATION | 665 PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY); 666 667 use_tpr_shadow = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 668 MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0, 669 &tmp) == 0); 670 671 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2, 672 procbased2_vid_bits, 0, &tmp); 673 if (error == 0 && use_tpr_shadow) { 674 virtual_interrupt_delivery = 1; 675 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid", 676 &virtual_interrupt_delivery); 677 } 678 679 if (virtual_interrupt_delivery) { 680 procbased_ctls |= PROCBASED_USE_TPR_SHADOW; 681 procbased_ctls2 |= procbased2_vid_bits; 682 procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE; 683 684 /* 685 * No need to emulate accesses to %CR8 if virtual 686 * interrupt delivery is enabled. 687 */ 688 procbased_ctls &= ~PROCBASED_CR8_LOAD_EXITING; 689 procbased_ctls &= ~PROCBASED_CR8_STORE_EXITING; 690 691 /* 692 * Check for Posted Interrupts only if Virtual Interrupt 693 * Delivery is enabled. 694 */ 695 error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS, 696 MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0, 697 &tmp); 698 if (error == 0) { 699 pirvec = vmm_ipi_alloc(); 700 if (pirvec == 0) { 701 if (bootverbose) { 702 printf("vmx_init: unable to allocate " 703 "posted interrupt vector\n"); 704 } 705 } else { 706 posted_interrupts = 1; 707 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir", 708 &posted_interrupts); 709 } 710 } 711 } 712 713 if (posted_interrupts) 714 pinbased_ctls |= PINBASED_POSTED_INTERRUPT; 715 716 /* Initialize EPT */ 717 error = ept_init(ipinum); 718 if (error) { 719 printf("vmx_init: ept initialization failed (%d)\n", error); 720 return (error); 721 } 722 723 /* 724 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1 725 */ 726 fixed0 = rdmsr(MSR_VMX_CR0_FIXED0); 727 fixed1 = rdmsr(MSR_VMX_CR0_FIXED1); 728 cr0_ones_mask = fixed0 & fixed1; 729 cr0_zeros_mask = ~fixed0 & ~fixed1; 730 731 /* 732 * CR0_PE and CR0_PG can be set to zero in VMX non-root operation 733 * if unrestricted guest execution is allowed. 734 */ 735 if (cap_unrestricted_guest) 736 cr0_ones_mask &= ~(CR0_PG | CR0_PE); 737 738 /* 739 * Do not allow the guest to set CR0_NW or CR0_CD. 740 */ 741 cr0_zeros_mask |= (CR0_NW | CR0_CD); 742 743 fixed0 = rdmsr(MSR_VMX_CR4_FIXED0); 744 fixed1 = rdmsr(MSR_VMX_CR4_FIXED1); 745 cr4_ones_mask = fixed0 & fixed1; 746 cr4_zeros_mask = ~fixed0 & ~fixed1; 747 748 vpid_init(); 749 750 vmx_msr_init(); 751 752 /* enable VMX operation */ 753 smp_rendezvous(NULL, vmx_enable, NULL, NULL); 754 755 vmx_initialized = 1; 756 757 return (0); 758 } 759 760 static void 761 vmx_trigger_hostintr(int vector) 762 { 763 uintptr_t func; 764 struct gate_descriptor *gd; 765 766 gd = &idt[vector]; 767 768 KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: " 769 "invalid vector %d", vector)); 770 KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present", 771 vector)); 772 KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d " 773 "has invalid type %d", vector, gd->gd_type)); 774 KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d " 775 "has invalid dpl %d", vector, gd->gd_dpl)); 776 KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor " 777 "for vector %d has invalid selector %d", vector, gd->gd_selector)); 778 KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid " 779 "IST %d", vector, gd->gd_ist)); 780 781 func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset); 782 vmx_call_isr(func); 783 } 784 785 static int 786 vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial) 787 { 788 int error, mask_ident, shadow_ident; 789 uint64_t mask_value; 790 791 if (which != 0 && which != 4) 792 panic("vmx_setup_cr_shadow: unknown cr%d", which); 793 794 if (which == 0) { 795 mask_ident = VMCS_CR0_MASK; 796 mask_value = cr0_ones_mask | cr0_zeros_mask; 797 shadow_ident = VMCS_CR0_SHADOW; 798 } else { 799 mask_ident = VMCS_CR4_MASK; 800 mask_value = cr4_ones_mask | cr4_zeros_mask; 801 shadow_ident = VMCS_CR4_SHADOW; 802 } 803 804 error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value); 805 if (error) 806 return (error); 807 808 error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial); 809 if (error) 810 return (error); 811 812 return (0); 813 } 814 #define vmx_setup_cr0_shadow(vmcs,init) vmx_setup_cr_shadow(0, (vmcs), (init)) 815 #define vmx_setup_cr4_shadow(vmcs,init) vmx_setup_cr_shadow(4, (vmcs), (init)) 816 817 static void * 818 vmx_vminit(struct vm *vm, pmap_t pmap) 819 { 820 uint16_t vpid[VM_MAXCPU]; 821 int i, error; 822 struct vmx *vmx; 823 struct vmcs *vmcs; 824 uint32_t exc_bitmap; 825 826 vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO); 827 if ((uintptr_t)vmx & PAGE_MASK) { 828 panic("malloc of struct vmx not aligned on %d byte boundary", 829 PAGE_SIZE); 830 } 831 vmx->vm = vm; 832 833 vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pml4)); 834 835 /* 836 * Clean up EPTP-tagged guest physical and combined mappings 837 * 838 * VMX transitions are not required to invalidate any guest physical 839 * mappings. So, it may be possible for stale guest physical mappings 840 * to be present in the processor TLBs. 841 * 842 * Combined mappings for this EP4TA are also invalidated for all VPIDs. 843 */ 844 ept_invalidate_mappings(vmx->eptp); 845 846 msr_bitmap_initialize(vmx->msr_bitmap); 847 848 /* 849 * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE. 850 * The guest FSBASE and GSBASE are saved and restored during 851 * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are 852 * always restored from the vmcs host state area on vm-exit. 853 * 854 * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in 855 * how they are saved/restored so can be directly accessed by the 856 * guest. 857 * 858 * MSR_EFER is saved and restored in the guest VMCS area on a 859 * VM exit and entry respectively. It is also restored from the 860 * host VMCS area on a VM exit. 861 * 862 * MSR_PAT is saved and restored in the guest VMCS are on a VM exit 863 * and entry respectively. It is also restored from the host VMCS 864 * area on a VM exit. 865 * 866 * The TSC MSR is exposed read-only. Writes are disallowed as that 867 * will impact the host TSC. 868 * XXX Writes would be implemented with a wrmsr trap, and 869 * then modifying the TSC offset in the VMCS. 870 */ 871 if (guest_msr_rw(vmx, MSR_GSBASE) || 872 guest_msr_rw(vmx, MSR_FSBASE) || 873 guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) || 874 guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) || 875 guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) || 876 guest_msr_rw(vmx, MSR_EFER) || 877 guest_msr_rw(vmx, MSR_PAT) || 878 guest_msr_ro(vmx, MSR_TSC)) 879 panic("vmx_vminit: error setting guest msr access"); 880 881 vpid_alloc(vpid, VM_MAXCPU); 882 883 if (virtual_interrupt_delivery) { 884 error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE, 885 APIC_ACCESS_ADDRESS); 886 /* XXX this should really return an error to the caller */ 887 KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error)); 888 } 889 890 for (i = 0; i < VM_MAXCPU; i++) { 891 vmcs = &vmx->vmcs[i]; 892 vmcs->identifier = vmx_revision(); 893 error = vmclear(vmcs); 894 if (error != 0) { 895 panic("vmx_vminit: vmclear error %d on vcpu %d\n", 896 error, i); 897 } 898 899 vmx_msr_guest_init(vmx, i); 900 901 error = vmcs_init(vmcs); 902 KASSERT(error == 0, ("vmcs_init error %d", error)); 903 904 VMPTRLD(vmcs); 905 error = 0; 906 error += vmwrite(VMCS_HOST_RSP, (u_long)&vmx->ctx[i]); 907 error += vmwrite(VMCS_EPTP, vmx->eptp); 908 error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls); 909 error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls); 910 error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2); 911 error += vmwrite(VMCS_EXIT_CTLS, exit_ctls); 912 error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls); 913 error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap)); 914 error += vmwrite(VMCS_VPID, vpid[i]); 915 916 /* exception bitmap */ 917 if (vcpu_trace_exceptions(vm, i)) 918 exc_bitmap = 0xffffffff; 919 else 920 exc_bitmap = 1 << IDT_MC; 921 error += vmwrite(VMCS_EXCEPTION_BITMAP, exc_bitmap); 922 923 if (virtual_interrupt_delivery) { 924 error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS); 925 error += vmwrite(VMCS_VIRTUAL_APIC, 926 vtophys(&vmx->apic_page[i])); 927 error += vmwrite(VMCS_EOI_EXIT0, 0); 928 error += vmwrite(VMCS_EOI_EXIT1, 0); 929 error += vmwrite(VMCS_EOI_EXIT2, 0); 930 error += vmwrite(VMCS_EOI_EXIT3, 0); 931 } 932 if (posted_interrupts) { 933 error += vmwrite(VMCS_PIR_VECTOR, pirvec); 934 error += vmwrite(VMCS_PIR_DESC, 935 vtophys(&vmx->pir_desc[i])); 936 } 937 VMCLEAR(vmcs); 938 KASSERT(error == 0, ("vmx_vminit: error customizing the vmcs")); 939 940 vmx->cap[i].set = 0; 941 vmx->cap[i].proc_ctls = procbased_ctls; 942 vmx->cap[i].proc_ctls2 = procbased_ctls2; 943 944 vmx->state[i].lastcpu = NOCPU; 945 vmx->state[i].vpid = vpid[i]; 946 947 /* 948 * Set up the CR0/4 shadows, and init the read shadow 949 * to the power-on register value from the Intel Sys Arch. 950 * CR0 - 0x60000010 951 * CR4 - 0 952 */ 953 error = vmx_setup_cr0_shadow(vmcs, 0x60000010); 954 if (error != 0) 955 panic("vmx_setup_cr0_shadow %d", error); 956 957 error = vmx_setup_cr4_shadow(vmcs, 0); 958 if (error != 0) 959 panic("vmx_setup_cr4_shadow %d", error); 960 961 vmx->ctx[i].pmap = pmap; 962 } 963 964 return (vmx); 965 } 966 967 static int 968 vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx) 969 { 970 int handled, func; 971 972 func = vmxctx->guest_rax; 973 974 handled = x86_emulate_cpuid(vm, vcpu, 975 (uint32_t*)(&vmxctx->guest_rax), 976 (uint32_t*)(&vmxctx->guest_rbx), 977 (uint32_t*)(&vmxctx->guest_rcx), 978 (uint32_t*)(&vmxctx->guest_rdx)); 979 return (handled); 980 } 981 982 static __inline void 983 vmx_run_trace(struct vmx *vmx, int vcpu) 984 { 985 #ifdef KTR 986 VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %#lx", vmcs_guest_rip()); 987 #endif 988 } 989 990 static __inline void 991 vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason, 992 int handled) 993 { 994 #ifdef KTR 995 VCPU_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx", 996 handled ? "handled" : "unhandled", 997 exit_reason_to_str(exit_reason), rip); 998 #endif 999 } 1000 1001 static __inline void 1002 vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip) 1003 { 1004 #ifdef KTR 1005 VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip); 1006 #endif 1007 } 1008 1009 static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved"); 1010 static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done"); 1011 1012 /* 1013 * Invalidate guest mappings identified by its vpid from the TLB. 1014 */ 1015 static __inline void 1016 vmx_invvpid(struct vmx *vmx, int vcpu, pmap_t pmap, int running) 1017 { 1018 struct vmxstate *vmxstate; 1019 struct invvpid_desc invvpid_desc; 1020 1021 vmxstate = &vmx->state[vcpu]; 1022 if (vmxstate->vpid == 0) 1023 return; 1024 1025 if (!running) { 1026 /* 1027 * Set the 'lastcpu' to an invalid host cpu. 1028 * 1029 * This will invalidate TLB entries tagged with the vcpu's 1030 * vpid the next time it runs via vmx_set_pcpu_defaults(). 1031 */ 1032 vmxstate->lastcpu = NOCPU; 1033 return; 1034 } 1035 1036 KASSERT(curthread->td_critnest > 0, ("%s: vcpu %d running outside " 1037 "critical section", __func__, vcpu)); 1038 1039 /* 1040 * Invalidate all mappings tagged with 'vpid' 1041 * 1042 * We do this because this vcpu was executing on a different host 1043 * cpu when it last ran. We do not track whether it invalidated 1044 * mappings associated with its 'vpid' during that run. So we must 1045 * assume that the mappings associated with 'vpid' on 'curcpu' are 1046 * stale and invalidate them. 1047 * 1048 * Note that we incur this penalty only when the scheduler chooses to 1049 * move the thread associated with this vcpu between host cpus. 1050 * 1051 * Note also that this will invalidate mappings tagged with 'vpid' 1052 * for "all" EP4TAs. 1053 */ 1054 if (pmap->pm_eptgen == vmx->eptgen[curcpu]) { 1055 invvpid_desc._res1 = 0; 1056 invvpid_desc._res2 = 0; 1057 invvpid_desc.vpid = vmxstate->vpid; 1058 invvpid_desc.linear_addr = 0; 1059 invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc); 1060 vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_DONE, 1); 1061 } else { 1062 /* 1063 * The invvpid can be skipped if an invept is going to 1064 * be performed before entering the guest. The invept 1065 * will invalidate combined mappings tagged with 1066 * 'vmx->eptp' for all vpids. 1067 */ 1068 vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_SAVED, 1); 1069 } 1070 } 1071 1072 static void 1073 vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu, pmap_t pmap) 1074 { 1075 struct vmxstate *vmxstate; 1076 1077 vmxstate = &vmx->state[vcpu]; 1078 if (vmxstate->lastcpu == curcpu) 1079 return; 1080 1081 vmxstate->lastcpu = curcpu; 1082 1083 vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1); 1084 1085 vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase()); 1086 vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase()); 1087 vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase()); 1088 vmx_invvpid(vmx, vcpu, pmap, 1); 1089 } 1090 1091 /* 1092 * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set. 1093 */ 1094 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0); 1095 1096 static void __inline 1097 vmx_set_int_window_exiting(struct vmx *vmx, int vcpu) 1098 { 1099 1100 if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) { 1101 vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING; 1102 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); 1103 VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting"); 1104 } 1105 } 1106 1107 static void __inline 1108 vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu) 1109 { 1110 1111 KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0, 1112 ("intr_window_exiting not set: %#x", vmx->cap[vcpu].proc_ctls)); 1113 vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING; 1114 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); 1115 VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting"); 1116 } 1117 1118 static void __inline 1119 vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu) 1120 { 1121 1122 if ((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) { 1123 vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING; 1124 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); 1125 VCPU_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting"); 1126 } 1127 } 1128 1129 static void __inline 1130 vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu) 1131 { 1132 1133 KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0, 1134 ("nmi_window_exiting not set %#x", vmx->cap[vcpu].proc_ctls)); 1135 vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING; 1136 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); 1137 VCPU_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting"); 1138 } 1139 1140 #define NMI_BLOCKING (VMCS_INTERRUPTIBILITY_NMI_BLOCKING | \ 1141 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING) 1142 #define HWINTR_BLOCKING (VMCS_INTERRUPTIBILITY_STI_BLOCKING | \ 1143 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING) 1144 1145 static void 1146 vmx_inject_nmi(struct vmx *vmx, int vcpu) 1147 { 1148 uint32_t gi, info; 1149 1150 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1151 KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest " 1152 "interruptibility-state %#x", gi)); 1153 1154 info = vmcs_read(VMCS_ENTRY_INTR_INFO); 1155 KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid " 1156 "VM-entry interruption information %#x", info)); 1157 1158 /* 1159 * Inject the virtual NMI. The vector must be the NMI IDT entry 1160 * or the VMCS entry check will fail. 1161 */ 1162 info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID; 1163 vmcs_write(VMCS_ENTRY_INTR_INFO, info); 1164 1165 VCPU_CTR0(vmx->vm, vcpu, "Injecting vNMI"); 1166 1167 /* Clear the request */ 1168 vm_nmi_clear(vmx->vm, vcpu); 1169 } 1170 1171 static void 1172 vmx_inject_interrupts(struct vmx *vmx, int vcpu, struct vlapic *vlapic) 1173 { 1174 int vector, need_nmi_exiting, extint_pending; 1175 uint64_t rflags, entryinfo; 1176 uint32_t gi, info; 1177 1178 if (vm_entry_intinfo(vmx->vm, vcpu, &entryinfo)) { 1179 KASSERT((entryinfo & VMCS_INTR_VALID) != 0, ("%s: entry " 1180 "intinfo is not valid: %#lx", __func__, entryinfo)); 1181 1182 info = vmcs_read(VMCS_ENTRY_INTR_INFO); 1183 KASSERT((info & VMCS_INTR_VALID) == 0, ("%s: cannot inject " 1184 "pending exception: %#lx/%#x", __func__, entryinfo, info)); 1185 1186 info = entryinfo; 1187 vector = info & 0xff; 1188 if (vector == IDT_BP || vector == IDT_OF) { 1189 /* 1190 * VT-x requires #BP and #OF to be injected as software 1191 * exceptions. 1192 */ 1193 info &= ~VMCS_INTR_T_MASK; 1194 info |= VMCS_INTR_T_SWEXCEPTION; 1195 } 1196 1197 if (info & VMCS_INTR_DEL_ERRCODE) 1198 vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, entryinfo >> 32); 1199 1200 vmcs_write(VMCS_ENTRY_INTR_INFO, info); 1201 } 1202 1203 if (vm_nmi_pending(vmx->vm, vcpu)) { 1204 /* 1205 * If there are no conditions blocking NMI injection then 1206 * inject it directly here otherwise enable "NMI window 1207 * exiting" to inject it as soon as we can. 1208 * 1209 * We also check for STI_BLOCKING because some implementations 1210 * don't allow NMI injection in this case. If we are running 1211 * on a processor that doesn't have this restriction it will 1212 * immediately exit and the NMI will be injected in the 1213 * "NMI window exiting" handler. 1214 */ 1215 need_nmi_exiting = 1; 1216 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1217 if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) { 1218 info = vmcs_read(VMCS_ENTRY_INTR_INFO); 1219 if ((info & VMCS_INTR_VALID) == 0) { 1220 vmx_inject_nmi(vmx, vcpu); 1221 need_nmi_exiting = 0; 1222 } else { 1223 VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI " 1224 "due to VM-entry intr info %#x", info); 1225 } 1226 } else { 1227 VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI due to " 1228 "Guest Interruptibility-state %#x", gi); 1229 } 1230 1231 if (need_nmi_exiting) 1232 vmx_set_nmi_window_exiting(vmx, vcpu); 1233 } 1234 1235 extint_pending = vm_extint_pending(vmx->vm, vcpu); 1236 1237 if (!extint_pending && virtual_interrupt_delivery) { 1238 vmx_inject_pir(vlapic); 1239 return; 1240 } 1241 1242 /* 1243 * If interrupt-window exiting is already in effect then don't bother 1244 * checking for pending interrupts. This is just an optimization and 1245 * not needed for correctness. 1246 */ 1247 if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0) { 1248 VCPU_CTR0(vmx->vm, vcpu, "Skip interrupt injection due to " 1249 "pending int_window_exiting"); 1250 return; 1251 } 1252 1253 if (!extint_pending) { 1254 /* Ask the local apic for a vector to inject */ 1255 if (!vlapic_pending_intr(vlapic, &vector)) 1256 return; 1257 1258 /* 1259 * From the Intel SDM, Volume 3, Section "Maskable 1260 * Hardware Interrupts": 1261 * - maskable interrupt vectors [16,255] can be delivered 1262 * through the local APIC. 1263 */ 1264 KASSERT(vector >= 16 && vector <= 255, 1265 ("invalid vector %d from local APIC", vector)); 1266 } else { 1267 /* Ask the legacy pic for a vector to inject */ 1268 vatpic_pending_intr(vmx->vm, &vector); 1269 1270 /* 1271 * From the Intel SDM, Volume 3, Section "Maskable 1272 * Hardware Interrupts": 1273 * - maskable interrupt vectors [0,255] can be delivered 1274 * through the INTR pin. 1275 */ 1276 KASSERT(vector >= 0 && vector <= 255, 1277 ("invalid vector %d from INTR", vector)); 1278 } 1279 1280 /* Check RFLAGS.IF and the interruptibility state of the guest */ 1281 rflags = vmcs_read(VMCS_GUEST_RFLAGS); 1282 if ((rflags & PSL_I) == 0) { 1283 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to " 1284 "rflags %#lx", vector, rflags); 1285 goto cantinject; 1286 } 1287 1288 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1289 if (gi & HWINTR_BLOCKING) { 1290 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to " 1291 "Guest Interruptibility-state %#x", vector, gi); 1292 goto cantinject; 1293 } 1294 1295 info = vmcs_read(VMCS_ENTRY_INTR_INFO); 1296 if (info & VMCS_INTR_VALID) { 1297 /* 1298 * This is expected and could happen for multiple reasons: 1299 * - A vectoring VM-entry was aborted due to astpending 1300 * - A VM-exit happened during event injection. 1301 * - An exception was injected above. 1302 * - An NMI was injected above or after "NMI window exiting" 1303 */ 1304 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to " 1305 "VM-entry intr info %#x", vector, info); 1306 goto cantinject; 1307 } 1308 1309 /* Inject the interrupt */ 1310 info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID; 1311 info |= vector; 1312 vmcs_write(VMCS_ENTRY_INTR_INFO, info); 1313 1314 if (!extint_pending) { 1315 /* Update the Local APIC ISR */ 1316 vlapic_intr_accepted(vlapic, vector); 1317 } else { 1318 vm_extint_clear(vmx->vm, vcpu); 1319 vatpic_intr_accepted(vmx->vm, vector); 1320 1321 /* 1322 * After we accepted the current ExtINT the PIC may 1323 * have posted another one. If that is the case, set 1324 * the Interrupt Window Exiting execution control so 1325 * we can inject that one too. 1326 * 1327 * Also, interrupt window exiting allows us to inject any 1328 * pending APIC vector that was preempted by the ExtINT 1329 * as soon as possible. This applies both for the software 1330 * emulated vlapic and the hardware assisted virtual APIC. 1331 */ 1332 vmx_set_int_window_exiting(vmx, vcpu); 1333 } 1334 1335 VCPU_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector); 1336 1337 return; 1338 1339 cantinject: 1340 /* 1341 * Set the Interrupt Window Exiting execution control so we can inject 1342 * the interrupt as soon as blocking condition goes away. 1343 */ 1344 vmx_set_int_window_exiting(vmx, vcpu); 1345 } 1346 1347 /* 1348 * If the Virtual NMIs execution control is '1' then the logical processor 1349 * tracks virtual-NMI blocking in the Guest Interruptibility-state field of 1350 * the VMCS. An IRET instruction in VMX non-root operation will remove any 1351 * virtual-NMI blocking. 1352 * 1353 * This unblocking occurs even if the IRET causes a fault. In this case the 1354 * hypervisor needs to restore virtual-NMI blocking before resuming the guest. 1355 */ 1356 static void 1357 vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid) 1358 { 1359 uint32_t gi; 1360 1361 VCPU_CTR0(vmx->vm, vcpuid, "Restore Virtual-NMI blocking"); 1362 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1363 gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING; 1364 vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi); 1365 } 1366 1367 static void 1368 vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid) 1369 { 1370 uint32_t gi; 1371 1372 VCPU_CTR0(vmx->vm, vcpuid, "Clear Virtual-NMI blocking"); 1373 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1374 gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING; 1375 vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi); 1376 } 1377 1378 static void 1379 vmx_assert_nmi_blocking(struct vmx *vmx, int vcpuid) 1380 { 1381 uint32_t gi; 1382 1383 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1384 KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING, 1385 ("NMI blocking is not in effect %#x", gi)); 1386 } 1387 1388 static int 1389 vmx_emulate_xsetbv(struct vmx *vmx, int vcpu, struct vm_exit *vmexit) 1390 { 1391 struct vmxctx *vmxctx; 1392 uint64_t xcrval; 1393 const struct xsave_limits *limits; 1394 1395 vmxctx = &vmx->ctx[vcpu]; 1396 limits = vmm_get_xsave_limits(); 1397 1398 /* 1399 * Note that the processor raises a GP# fault on its own if 1400 * xsetbv is executed for CPL != 0, so we do not have to 1401 * emulate that fault here. 1402 */ 1403 1404 /* Only xcr0 is supported. */ 1405 if (vmxctx->guest_rcx != 0) { 1406 vm_inject_gp(vmx->vm, vcpu); 1407 return (HANDLED); 1408 } 1409 1410 /* We only handle xcr0 if both the host and guest have XSAVE enabled. */ 1411 if (!limits->xsave_enabled || !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) { 1412 vm_inject_ud(vmx->vm, vcpu); 1413 return (HANDLED); 1414 } 1415 1416 xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff); 1417 if ((xcrval & ~limits->xcr0_allowed) != 0) { 1418 vm_inject_gp(vmx->vm, vcpu); 1419 return (HANDLED); 1420 } 1421 1422 if (!(xcrval & XFEATURE_ENABLED_X87)) { 1423 vm_inject_gp(vmx->vm, vcpu); 1424 return (HANDLED); 1425 } 1426 1427 /* AVX (YMM_Hi128) requires SSE. */ 1428 if (xcrval & XFEATURE_ENABLED_AVX && 1429 (xcrval & XFEATURE_AVX) != XFEATURE_AVX) { 1430 vm_inject_gp(vmx->vm, vcpu); 1431 return (HANDLED); 1432 } 1433 1434 /* 1435 * AVX512 requires base AVX (YMM_Hi128) as well as OpMask, 1436 * ZMM_Hi256, and Hi16_ZMM. 1437 */ 1438 if (xcrval & XFEATURE_AVX512 && 1439 (xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) != 1440 (XFEATURE_AVX512 | XFEATURE_AVX)) { 1441 vm_inject_gp(vmx->vm, vcpu); 1442 return (HANDLED); 1443 } 1444 1445 /* 1446 * Intel MPX requires both bound register state flags to be 1447 * set. 1448 */ 1449 if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) != 1450 ((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) { 1451 vm_inject_gp(vmx->vm, vcpu); 1452 return (HANDLED); 1453 } 1454 1455 /* 1456 * This runs "inside" vmrun() with the guest's FPU state, so 1457 * modifying xcr0 directly modifies the guest's xcr0, not the 1458 * host's. 1459 */ 1460 load_xcr(0, xcrval); 1461 return (HANDLED); 1462 } 1463 1464 static uint64_t 1465 vmx_get_guest_reg(struct vmx *vmx, int vcpu, int ident) 1466 { 1467 const struct vmxctx *vmxctx; 1468 1469 vmxctx = &vmx->ctx[vcpu]; 1470 1471 switch (ident) { 1472 case 0: 1473 return (vmxctx->guest_rax); 1474 case 1: 1475 return (vmxctx->guest_rcx); 1476 case 2: 1477 return (vmxctx->guest_rdx); 1478 case 3: 1479 return (vmxctx->guest_rbx); 1480 case 4: 1481 return (vmcs_read(VMCS_GUEST_RSP)); 1482 case 5: 1483 return (vmxctx->guest_rbp); 1484 case 6: 1485 return (vmxctx->guest_rsi); 1486 case 7: 1487 return (vmxctx->guest_rdi); 1488 case 8: 1489 return (vmxctx->guest_r8); 1490 case 9: 1491 return (vmxctx->guest_r9); 1492 case 10: 1493 return (vmxctx->guest_r10); 1494 case 11: 1495 return (vmxctx->guest_r11); 1496 case 12: 1497 return (vmxctx->guest_r12); 1498 case 13: 1499 return (vmxctx->guest_r13); 1500 case 14: 1501 return (vmxctx->guest_r14); 1502 case 15: 1503 return (vmxctx->guest_r15); 1504 default: 1505 panic("invalid vmx register %d", ident); 1506 } 1507 } 1508 1509 static void 1510 vmx_set_guest_reg(struct vmx *vmx, int vcpu, int ident, uint64_t regval) 1511 { 1512 struct vmxctx *vmxctx; 1513 1514 vmxctx = &vmx->ctx[vcpu]; 1515 1516 switch (ident) { 1517 case 0: 1518 vmxctx->guest_rax = regval; 1519 break; 1520 case 1: 1521 vmxctx->guest_rcx = regval; 1522 break; 1523 case 2: 1524 vmxctx->guest_rdx = regval; 1525 break; 1526 case 3: 1527 vmxctx->guest_rbx = regval; 1528 break; 1529 case 4: 1530 vmcs_write(VMCS_GUEST_RSP, regval); 1531 break; 1532 case 5: 1533 vmxctx->guest_rbp = regval; 1534 break; 1535 case 6: 1536 vmxctx->guest_rsi = regval; 1537 break; 1538 case 7: 1539 vmxctx->guest_rdi = regval; 1540 break; 1541 case 8: 1542 vmxctx->guest_r8 = regval; 1543 break; 1544 case 9: 1545 vmxctx->guest_r9 = regval; 1546 break; 1547 case 10: 1548 vmxctx->guest_r10 = regval; 1549 break; 1550 case 11: 1551 vmxctx->guest_r11 = regval; 1552 break; 1553 case 12: 1554 vmxctx->guest_r12 = regval; 1555 break; 1556 case 13: 1557 vmxctx->guest_r13 = regval; 1558 break; 1559 case 14: 1560 vmxctx->guest_r14 = regval; 1561 break; 1562 case 15: 1563 vmxctx->guest_r15 = regval; 1564 break; 1565 default: 1566 panic("invalid vmx register %d", ident); 1567 } 1568 } 1569 1570 static int 1571 vmx_emulate_cr0_access(struct vmx *vmx, int vcpu, uint64_t exitqual) 1572 { 1573 uint64_t crval, regval; 1574 1575 /* We only handle mov to %cr0 at this time */ 1576 if ((exitqual & 0xf0) != 0x00) 1577 return (UNHANDLED); 1578 1579 regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf); 1580 1581 vmcs_write(VMCS_CR0_SHADOW, regval); 1582 1583 crval = regval | cr0_ones_mask; 1584 crval &= ~cr0_zeros_mask; 1585 vmcs_write(VMCS_GUEST_CR0, crval); 1586 1587 if (regval & CR0_PG) { 1588 uint64_t efer, entry_ctls; 1589 1590 /* 1591 * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and 1592 * the "IA-32e mode guest" bit in VM-entry control must be 1593 * equal. 1594 */ 1595 efer = vmcs_read(VMCS_GUEST_IA32_EFER); 1596 if (efer & EFER_LME) { 1597 efer |= EFER_LMA; 1598 vmcs_write(VMCS_GUEST_IA32_EFER, efer); 1599 entry_ctls = vmcs_read(VMCS_ENTRY_CTLS); 1600 entry_ctls |= VM_ENTRY_GUEST_LMA; 1601 vmcs_write(VMCS_ENTRY_CTLS, entry_ctls); 1602 } 1603 } 1604 1605 return (HANDLED); 1606 } 1607 1608 static int 1609 vmx_emulate_cr4_access(struct vmx *vmx, int vcpu, uint64_t exitqual) 1610 { 1611 uint64_t crval, regval; 1612 1613 /* We only handle mov to %cr4 at this time */ 1614 if ((exitqual & 0xf0) != 0x00) 1615 return (UNHANDLED); 1616 1617 regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf); 1618 1619 vmcs_write(VMCS_CR4_SHADOW, regval); 1620 1621 crval = regval | cr4_ones_mask; 1622 crval &= ~cr4_zeros_mask; 1623 vmcs_write(VMCS_GUEST_CR4, crval); 1624 1625 return (HANDLED); 1626 } 1627 1628 static int 1629 vmx_emulate_cr8_access(struct vmx *vmx, int vcpu, uint64_t exitqual) 1630 { 1631 struct vlapic *vlapic; 1632 uint64_t cr8; 1633 int regnum; 1634 1635 /* We only handle mov %cr8 to/from a register at this time. */ 1636 if ((exitqual & 0xe0) != 0x00) { 1637 return (UNHANDLED); 1638 } 1639 1640 vlapic = vm_lapic(vmx->vm, vcpu); 1641 regnum = (exitqual >> 8) & 0xf; 1642 if (exitqual & 0x10) { 1643 cr8 = vlapic_get_cr8(vlapic); 1644 vmx_set_guest_reg(vmx, vcpu, regnum, cr8); 1645 } else { 1646 cr8 = vmx_get_guest_reg(vmx, vcpu, regnum); 1647 vlapic_set_cr8(vlapic, cr8); 1648 } 1649 1650 return (HANDLED); 1651 } 1652 1653 /* 1654 * From section "Guest Register State" in the Intel SDM: CPL = SS.DPL 1655 */ 1656 static int 1657 vmx_cpl(void) 1658 { 1659 uint32_t ssar; 1660 1661 ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS); 1662 return ((ssar >> 5) & 0x3); 1663 } 1664 1665 static enum vm_cpu_mode 1666 vmx_cpu_mode(void) 1667 { 1668 uint32_t csar; 1669 1670 if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) { 1671 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS); 1672 if (csar & 0x2000) 1673 return (CPU_MODE_64BIT); /* CS.L = 1 */ 1674 else 1675 return (CPU_MODE_COMPATIBILITY); 1676 } else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) { 1677 return (CPU_MODE_PROTECTED); 1678 } else { 1679 return (CPU_MODE_REAL); 1680 } 1681 } 1682 1683 static enum vm_paging_mode 1684 vmx_paging_mode(void) 1685 { 1686 1687 if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG)) 1688 return (PAGING_MODE_FLAT); 1689 if (!(vmcs_read(VMCS_GUEST_CR4) & CR4_PAE)) 1690 return (PAGING_MODE_32); 1691 if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME) 1692 return (PAGING_MODE_64); 1693 else 1694 return (PAGING_MODE_PAE); 1695 } 1696 1697 static uint64_t 1698 inout_str_index(struct vmx *vmx, int vcpuid, int in) 1699 { 1700 uint64_t val; 1701 int error; 1702 enum vm_reg_name reg; 1703 1704 reg = in ? VM_REG_GUEST_RDI : VM_REG_GUEST_RSI; 1705 error = vmx_getreg(vmx, vcpuid, reg, &val); 1706 KASSERT(error == 0, ("%s: vmx_getreg error %d", __func__, error)); 1707 return (val); 1708 } 1709 1710 static uint64_t 1711 inout_str_count(struct vmx *vmx, int vcpuid, int rep) 1712 { 1713 uint64_t val; 1714 int error; 1715 1716 if (rep) { 1717 error = vmx_getreg(vmx, vcpuid, VM_REG_GUEST_RCX, &val); 1718 KASSERT(!error, ("%s: vmx_getreg error %d", __func__, error)); 1719 } else { 1720 val = 1; 1721 } 1722 return (val); 1723 } 1724 1725 static int 1726 inout_str_addrsize(uint32_t inst_info) 1727 { 1728 uint32_t size; 1729 1730 size = (inst_info >> 7) & 0x7; 1731 switch (size) { 1732 case 0: 1733 return (2); /* 16 bit */ 1734 case 1: 1735 return (4); /* 32 bit */ 1736 case 2: 1737 return (8); /* 64 bit */ 1738 default: 1739 panic("%s: invalid size encoding %d", __func__, size); 1740 } 1741 } 1742 1743 static void 1744 inout_str_seginfo(struct vmx *vmx, int vcpuid, uint32_t inst_info, int in, 1745 struct vm_inout_str *vis) 1746 { 1747 int error, s; 1748 1749 if (in) { 1750 vis->seg_name = VM_REG_GUEST_ES; 1751 } else { 1752 s = (inst_info >> 15) & 0x7; 1753 vis->seg_name = vm_segment_name(s); 1754 } 1755 1756 error = vmx_getdesc(vmx, vcpuid, vis->seg_name, &vis->seg_desc); 1757 KASSERT(error == 0, ("%s: vmx_getdesc error %d", __func__, error)); 1758 } 1759 1760 static void 1761 vmx_paging_info(struct vm_guest_paging *paging) 1762 { 1763 paging->cr3 = vmcs_guest_cr3(); 1764 paging->cpl = vmx_cpl(); 1765 paging->cpu_mode = vmx_cpu_mode(); 1766 paging->paging_mode = vmx_paging_mode(); 1767 } 1768 1769 static void 1770 vmexit_inst_emul(struct vm_exit *vmexit, uint64_t gpa, uint64_t gla) 1771 { 1772 struct vm_guest_paging *paging; 1773 uint32_t csar; 1774 1775 paging = &vmexit->u.inst_emul.paging; 1776 1777 vmexit->exitcode = VM_EXITCODE_INST_EMUL; 1778 vmexit->u.inst_emul.gpa = gpa; 1779 vmexit->u.inst_emul.gla = gla; 1780 vmx_paging_info(paging); 1781 switch (paging->cpu_mode) { 1782 case CPU_MODE_PROTECTED: 1783 case CPU_MODE_COMPATIBILITY: 1784 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS); 1785 vmexit->u.inst_emul.cs_d = SEG_DESC_DEF32(csar); 1786 break; 1787 default: 1788 vmexit->u.inst_emul.cs_d = 0; 1789 break; 1790 } 1791 vie_init(&vmexit->u.inst_emul.vie, NULL, 0); 1792 } 1793 1794 static int 1795 ept_fault_type(uint64_t ept_qual) 1796 { 1797 int fault_type; 1798 1799 if (ept_qual & EPT_VIOLATION_DATA_WRITE) 1800 fault_type = VM_PROT_WRITE; 1801 else if (ept_qual & EPT_VIOLATION_INST_FETCH) 1802 fault_type = VM_PROT_EXECUTE; 1803 else 1804 fault_type= VM_PROT_READ; 1805 1806 return (fault_type); 1807 } 1808 1809 static boolean_t 1810 ept_emulation_fault(uint64_t ept_qual) 1811 { 1812 int read, write; 1813 1814 /* EPT fault on an instruction fetch doesn't make sense here */ 1815 if (ept_qual & EPT_VIOLATION_INST_FETCH) 1816 return (FALSE); 1817 1818 /* EPT fault must be a read fault or a write fault */ 1819 read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0; 1820 write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0; 1821 if ((read | write) == 0) 1822 return (FALSE); 1823 1824 /* 1825 * The EPT violation must have been caused by accessing a 1826 * guest-physical address that is a translation of a guest-linear 1827 * address. 1828 */ 1829 if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 || 1830 (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) { 1831 return (FALSE); 1832 } 1833 1834 return (TRUE); 1835 } 1836 1837 static __inline int 1838 apic_access_virtualization(struct vmx *vmx, int vcpuid) 1839 { 1840 uint32_t proc_ctls2; 1841 1842 proc_ctls2 = vmx->cap[vcpuid].proc_ctls2; 1843 return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0); 1844 } 1845 1846 static __inline int 1847 x2apic_virtualization(struct vmx *vmx, int vcpuid) 1848 { 1849 uint32_t proc_ctls2; 1850 1851 proc_ctls2 = vmx->cap[vcpuid].proc_ctls2; 1852 return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0); 1853 } 1854 1855 static int 1856 vmx_handle_apic_write(struct vmx *vmx, int vcpuid, struct vlapic *vlapic, 1857 uint64_t qual) 1858 { 1859 int error, handled, offset; 1860 uint32_t *apic_regs, vector; 1861 bool retu; 1862 1863 handled = HANDLED; 1864 offset = APIC_WRITE_OFFSET(qual); 1865 1866 if (!apic_access_virtualization(vmx, vcpuid)) { 1867 /* 1868 * In general there should not be any APIC write VM-exits 1869 * unless APIC-access virtualization is enabled. 1870 * 1871 * However self-IPI virtualization can legitimately trigger 1872 * an APIC-write VM-exit so treat it specially. 1873 */ 1874 if (x2apic_virtualization(vmx, vcpuid) && 1875 offset == APIC_OFFSET_SELF_IPI) { 1876 apic_regs = (uint32_t *)(vlapic->apic_page); 1877 vector = apic_regs[APIC_OFFSET_SELF_IPI / 4]; 1878 vlapic_self_ipi_handler(vlapic, vector); 1879 return (HANDLED); 1880 } else 1881 return (UNHANDLED); 1882 } 1883 1884 switch (offset) { 1885 case APIC_OFFSET_ID: 1886 vlapic_id_write_handler(vlapic); 1887 break; 1888 case APIC_OFFSET_LDR: 1889 vlapic_ldr_write_handler(vlapic); 1890 break; 1891 case APIC_OFFSET_DFR: 1892 vlapic_dfr_write_handler(vlapic); 1893 break; 1894 case APIC_OFFSET_SVR: 1895 vlapic_svr_write_handler(vlapic); 1896 break; 1897 case APIC_OFFSET_ESR: 1898 vlapic_esr_write_handler(vlapic); 1899 break; 1900 case APIC_OFFSET_ICR_LOW: 1901 retu = false; 1902 error = vlapic_icrlo_write_handler(vlapic, &retu); 1903 if (error != 0 || retu) 1904 handled = UNHANDLED; 1905 break; 1906 case APIC_OFFSET_CMCI_LVT: 1907 case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT: 1908 vlapic_lvt_write_handler(vlapic, offset); 1909 break; 1910 case APIC_OFFSET_TIMER_ICR: 1911 vlapic_icrtmr_write_handler(vlapic); 1912 break; 1913 case APIC_OFFSET_TIMER_DCR: 1914 vlapic_dcr_write_handler(vlapic); 1915 break; 1916 default: 1917 handled = UNHANDLED; 1918 break; 1919 } 1920 return (handled); 1921 } 1922 1923 static bool 1924 apic_access_fault(struct vmx *vmx, int vcpuid, uint64_t gpa) 1925 { 1926 1927 if (apic_access_virtualization(vmx, vcpuid) && 1928 (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE)) 1929 return (true); 1930 else 1931 return (false); 1932 } 1933 1934 static int 1935 vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit) 1936 { 1937 uint64_t qual; 1938 int access_type, offset, allowed; 1939 1940 if (!apic_access_virtualization(vmx, vcpuid)) 1941 return (UNHANDLED); 1942 1943 qual = vmexit->u.vmx.exit_qualification; 1944 access_type = APIC_ACCESS_TYPE(qual); 1945 offset = APIC_ACCESS_OFFSET(qual); 1946 1947 allowed = 0; 1948 if (access_type == 0) { 1949 /* 1950 * Read data access to the following registers is expected. 1951 */ 1952 switch (offset) { 1953 case APIC_OFFSET_APR: 1954 case APIC_OFFSET_PPR: 1955 case APIC_OFFSET_RRR: 1956 case APIC_OFFSET_CMCI_LVT: 1957 case APIC_OFFSET_TIMER_CCR: 1958 allowed = 1; 1959 break; 1960 default: 1961 break; 1962 } 1963 } else if (access_type == 1) { 1964 /* 1965 * Write data access to the following registers is expected. 1966 */ 1967 switch (offset) { 1968 case APIC_OFFSET_VER: 1969 case APIC_OFFSET_APR: 1970 case APIC_OFFSET_PPR: 1971 case APIC_OFFSET_RRR: 1972 case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7: 1973 case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7: 1974 case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7: 1975 case APIC_OFFSET_CMCI_LVT: 1976 case APIC_OFFSET_TIMER_CCR: 1977 allowed = 1; 1978 break; 1979 default: 1980 break; 1981 } 1982 } 1983 1984 if (allowed) { 1985 vmexit_inst_emul(vmexit, DEFAULT_APIC_BASE + offset, 1986 VIE_INVALID_GLA); 1987 } 1988 1989 /* 1990 * Regardless of whether the APIC-access is allowed this handler 1991 * always returns UNHANDLED: 1992 * - if the access is allowed then it is handled by emulating the 1993 * instruction that caused the VM-exit (outside the critical section) 1994 * - if the access is not allowed then it will be converted to an 1995 * exitcode of VM_EXITCODE_VMX and will be dealt with in userland. 1996 */ 1997 return (UNHANDLED); 1998 } 1999 2000 static enum task_switch_reason 2001 vmx_task_switch_reason(uint64_t qual) 2002 { 2003 int reason; 2004 2005 reason = (qual >> 30) & 0x3; 2006 switch (reason) { 2007 case 0: 2008 return (TSR_CALL); 2009 case 1: 2010 return (TSR_IRET); 2011 case 2: 2012 return (TSR_JMP); 2013 case 3: 2014 return (TSR_IDT_GATE); 2015 default: 2016 panic("%s: invalid reason %d", __func__, reason); 2017 } 2018 } 2019 2020 static int 2021 emulate_wrmsr(struct vmx *vmx, int vcpuid, u_int num, uint64_t val, bool *retu) 2022 { 2023 int error; 2024 2025 if (lapic_msr(num)) 2026 error = lapic_wrmsr(vmx->vm, vcpuid, num, val, retu); 2027 else 2028 error = vmx_wrmsr(vmx, vcpuid, num, val, retu); 2029 2030 return (error); 2031 } 2032 2033 static int 2034 emulate_rdmsr(struct vmx *vmx, int vcpuid, u_int num, bool *retu) 2035 { 2036 struct vmxctx *vmxctx; 2037 uint64_t result; 2038 uint32_t eax, edx; 2039 int error; 2040 2041 if (lapic_msr(num)) 2042 error = lapic_rdmsr(vmx->vm, vcpuid, num, &result, retu); 2043 else 2044 error = vmx_rdmsr(vmx, vcpuid, num, &result, retu); 2045 2046 if (error == 0) { 2047 eax = result; 2048 vmxctx = &vmx->ctx[vcpuid]; 2049 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RAX, eax); 2050 KASSERT(error == 0, ("vmxctx_setreg(rax) error %d", error)); 2051 2052 edx = result >> 32; 2053 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RDX, edx); 2054 KASSERT(error == 0, ("vmxctx_setreg(rdx) error %d", error)); 2055 } 2056 2057 return (error); 2058 } 2059 2060 static int 2061 vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit) 2062 { 2063 int error, handled, in; 2064 struct vmxctx *vmxctx; 2065 struct vlapic *vlapic; 2066 struct vm_inout_str *vis; 2067 struct vm_task_switch *ts; 2068 struct vm_exception vmexc; 2069 uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, inst_info; 2070 uint32_t intr_type, intr_vec, reason; 2071 uint64_t exitintinfo, qual, gpa; 2072 bool retu; 2073 2074 CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0); 2075 CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0); 2076 2077 handled = UNHANDLED; 2078 vmxctx = &vmx->ctx[vcpu]; 2079 2080 qual = vmexit->u.vmx.exit_qualification; 2081 reason = vmexit->u.vmx.exit_reason; 2082 vmexit->exitcode = VM_EXITCODE_BOGUS; 2083 2084 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1); 2085 2086 /* 2087 * VM-entry failures during or after loading guest state. 2088 * 2089 * These VM-exits are uncommon but must be handled specially 2090 * as most VM-exit fields are not populated as usual. 2091 */ 2092 if (__predict_false(reason == EXIT_REASON_MCE_DURING_ENTRY)) { 2093 VCPU_CTR0(vmx->vm, vcpu, "Handling MCE during VM-entry"); 2094 __asm __volatile("int $18"); 2095 return (1); 2096 } 2097 2098 /* 2099 * VM exits that can be triggered during event delivery need to 2100 * be handled specially by re-injecting the event if the IDT 2101 * vectoring information field's valid bit is set. 2102 * 2103 * See "Information for VM Exits During Event Delivery" in Intel SDM 2104 * for details. 2105 */ 2106 idtvec_info = vmcs_idt_vectoring_info(); 2107 if (idtvec_info & VMCS_IDT_VEC_VALID) { 2108 idtvec_info &= ~(1 << 12); /* clear undefined bit */ 2109 exitintinfo = idtvec_info; 2110 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) { 2111 idtvec_err = vmcs_idt_vectoring_err(); 2112 exitintinfo |= (uint64_t)idtvec_err << 32; 2113 } 2114 error = vm_exit_intinfo(vmx->vm, vcpu, exitintinfo); 2115 KASSERT(error == 0, ("%s: vm_set_intinfo error %d", 2116 __func__, error)); 2117 2118 /* 2119 * If 'virtual NMIs' are being used and the VM-exit 2120 * happened while injecting an NMI during the previous 2121 * VM-entry, then clear "blocking by NMI" in the 2122 * Guest Interruptibility-State so the NMI can be 2123 * reinjected on the subsequent VM-entry. 2124 * 2125 * However, if the NMI was being delivered through a task 2126 * gate, then the new task must start execution with NMIs 2127 * blocked so don't clear NMI blocking in this case. 2128 */ 2129 intr_type = idtvec_info & VMCS_INTR_T_MASK; 2130 if (intr_type == VMCS_INTR_T_NMI) { 2131 if (reason != EXIT_REASON_TASK_SWITCH) 2132 vmx_clear_nmi_blocking(vmx, vcpu); 2133 else 2134 vmx_assert_nmi_blocking(vmx, vcpu); 2135 } 2136 2137 /* 2138 * Update VM-entry instruction length if the event being 2139 * delivered was a software interrupt or software exception. 2140 */ 2141 if (intr_type == VMCS_INTR_T_SWINTR || 2142 intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION || 2143 intr_type == VMCS_INTR_T_SWEXCEPTION) { 2144 vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length); 2145 } 2146 } 2147 2148 switch (reason) { 2149 case EXIT_REASON_TASK_SWITCH: 2150 ts = &vmexit->u.task_switch; 2151 ts->tsssel = qual & 0xffff; 2152 ts->reason = vmx_task_switch_reason(qual); 2153 ts->ext = 0; 2154 ts->errcode_valid = 0; 2155 vmx_paging_info(&ts->paging); 2156 /* 2157 * If the task switch was due to a CALL, JMP, IRET, software 2158 * interrupt (INT n) or software exception (INT3, INTO), 2159 * then the saved %rip references the instruction that caused 2160 * the task switch. The instruction length field in the VMCS 2161 * is valid in this case. 2162 * 2163 * In all other cases (e.g., NMI, hardware exception) the 2164 * saved %rip is one that would have been saved in the old TSS 2165 * had the task switch completed normally so the instruction 2166 * length field is not needed in this case and is explicitly 2167 * set to 0. 2168 */ 2169 if (ts->reason == TSR_IDT_GATE) { 2170 KASSERT(idtvec_info & VMCS_IDT_VEC_VALID, 2171 ("invalid idtvec_info %#x for IDT task switch", 2172 idtvec_info)); 2173 intr_type = idtvec_info & VMCS_INTR_T_MASK; 2174 if (intr_type != VMCS_INTR_T_SWINTR && 2175 intr_type != VMCS_INTR_T_SWEXCEPTION && 2176 intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) { 2177 /* Task switch triggered by external event */ 2178 ts->ext = 1; 2179 vmexit->inst_length = 0; 2180 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) { 2181 ts->errcode_valid = 1; 2182 ts->errcode = vmcs_idt_vectoring_err(); 2183 } 2184 } 2185 } 2186 vmexit->exitcode = VM_EXITCODE_TASK_SWITCH; 2187 VCPU_CTR4(vmx->vm, vcpu, "task switch reason %d, tss 0x%04x, " 2188 "%s errcode 0x%016lx", ts->reason, ts->tsssel, 2189 ts->ext ? "external" : "internal", 2190 ((uint64_t)ts->errcode << 32) | ts->errcode_valid); 2191 break; 2192 case EXIT_REASON_CR_ACCESS: 2193 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1); 2194 switch (qual & 0xf) { 2195 case 0: 2196 handled = vmx_emulate_cr0_access(vmx, vcpu, qual); 2197 break; 2198 case 4: 2199 handled = vmx_emulate_cr4_access(vmx, vcpu, qual); 2200 break; 2201 case 8: 2202 handled = vmx_emulate_cr8_access(vmx, vcpu, qual); 2203 break; 2204 } 2205 break; 2206 case EXIT_REASON_RDMSR: 2207 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1); 2208 retu = false; 2209 ecx = vmxctx->guest_rcx; 2210 VCPU_CTR1(vmx->vm, vcpu, "rdmsr 0x%08x", ecx); 2211 error = emulate_rdmsr(vmx, vcpu, ecx, &retu); 2212 if (error) { 2213 vmexit->exitcode = VM_EXITCODE_RDMSR; 2214 vmexit->u.msr.code = ecx; 2215 } else if (!retu) { 2216 handled = HANDLED; 2217 } else { 2218 /* Return to userspace with a valid exitcode */ 2219 KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS, 2220 ("emulate_rdmsr retu with bogus exitcode")); 2221 } 2222 break; 2223 case EXIT_REASON_WRMSR: 2224 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1); 2225 retu = false; 2226 eax = vmxctx->guest_rax; 2227 ecx = vmxctx->guest_rcx; 2228 edx = vmxctx->guest_rdx; 2229 VCPU_CTR2(vmx->vm, vcpu, "wrmsr 0x%08x value 0x%016lx", 2230 ecx, (uint64_t)edx << 32 | eax); 2231 error = emulate_wrmsr(vmx, vcpu, ecx, 2232 (uint64_t)edx << 32 | eax, &retu); 2233 if (error) { 2234 vmexit->exitcode = VM_EXITCODE_WRMSR; 2235 vmexit->u.msr.code = ecx; 2236 vmexit->u.msr.wval = (uint64_t)edx << 32 | eax; 2237 } else if (!retu) { 2238 handled = HANDLED; 2239 } else { 2240 /* Return to userspace with a valid exitcode */ 2241 KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS, 2242 ("emulate_wrmsr retu with bogus exitcode")); 2243 } 2244 break; 2245 case EXIT_REASON_HLT: 2246 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1); 2247 vmexit->exitcode = VM_EXITCODE_HLT; 2248 vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS); 2249 break; 2250 case EXIT_REASON_MTF: 2251 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1); 2252 vmexit->exitcode = VM_EXITCODE_MTRAP; 2253 break; 2254 case EXIT_REASON_PAUSE: 2255 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1); 2256 vmexit->exitcode = VM_EXITCODE_PAUSE; 2257 break; 2258 case EXIT_REASON_INTR_WINDOW: 2259 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1); 2260 vmx_clear_int_window_exiting(vmx, vcpu); 2261 return (1); 2262 case EXIT_REASON_EXT_INTR: 2263 /* 2264 * External interrupts serve only to cause VM exits and allow 2265 * the host interrupt handler to run. 2266 * 2267 * If this external interrupt triggers a virtual interrupt 2268 * to a VM, then that state will be recorded by the 2269 * host interrupt handler in the VM's softc. We will inject 2270 * this virtual interrupt during the subsequent VM enter. 2271 */ 2272 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO); 2273 2274 /* 2275 * XXX: Ignore this exit if VMCS_INTR_VALID is not set. 2276 * This appears to be a bug in VMware Fusion? 2277 */ 2278 if (!(intr_info & VMCS_INTR_VALID)) 2279 return (1); 2280 KASSERT((intr_info & VMCS_INTR_VALID) != 0 && 2281 (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR, 2282 ("VM exit interruption info invalid: %#x", intr_info)); 2283 vmx_trigger_hostintr(intr_info & 0xff); 2284 2285 /* 2286 * This is special. We want to treat this as an 'handled' 2287 * VM-exit but not increment the instruction pointer. 2288 */ 2289 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1); 2290 return (1); 2291 case EXIT_REASON_NMI_WINDOW: 2292 /* Exit to allow the pending virtual NMI to be injected */ 2293 if (vm_nmi_pending(vmx->vm, vcpu)) 2294 vmx_inject_nmi(vmx, vcpu); 2295 vmx_clear_nmi_window_exiting(vmx, vcpu); 2296 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1); 2297 return (1); 2298 case EXIT_REASON_INOUT: 2299 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1); 2300 vmexit->exitcode = VM_EXITCODE_INOUT; 2301 vmexit->u.inout.bytes = (qual & 0x7) + 1; 2302 vmexit->u.inout.in = in = (qual & 0x8) ? 1 : 0; 2303 vmexit->u.inout.string = (qual & 0x10) ? 1 : 0; 2304 vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0; 2305 vmexit->u.inout.port = (uint16_t)(qual >> 16); 2306 vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax); 2307 if (vmexit->u.inout.string) { 2308 inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO); 2309 vmexit->exitcode = VM_EXITCODE_INOUT_STR; 2310 vis = &vmexit->u.inout_str; 2311 vmx_paging_info(&vis->paging); 2312 vis->rflags = vmcs_read(VMCS_GUEST_RFLAGS); 2313 vis->cr0 = vmcs_read(VMCS_GUEST_CR0); 2314 vis->index = inout_str_index(vmx, vcpu, in); 2315 vis->count = inout_str_count(vmx, vcpu, vis->inout.rep); 2316 vis->addrsize = inout_str_addrsize(inst_info); 2317 inout_str_seginfo(vmx, vcpu, inst_info, in, vis); 2318 } 2319 break; 2320 case EXIT_REASON_CPUID: 2321 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1); 2322 handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx); 2323 break; 2324 case EXIT_REASON_EXCEPTION: 2325 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXCEPTION, 1); 2326 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO); 2327 KASSERT((intr_info & VMCS_INTR_VALID) != 0, 2328 ("VM exit interruption info invalid: %#x", intr_info)); 2329 2330 intr_vec = intr_info & 0xff; 2331 intr_type = intr_info & VMCS_INTR_T_MASK; 2332 2333 /* 2334 * If Virtual NMIs control is 1 and the VM-exit is due to a 2335 * fault encountered during the execution of IRET then we must 2336 * restore the state of "virtual-NMI blocking" before resuming 2337 * the guest. 2338 * 2339 * See "Resuming Guest Software after Handling an Exception". 2340 * See "Information for VM Exits Due to Vectored Events". 2341 */ 2342 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 && 2343 (intr_vec != IDT_DF) && 2344 (intr_info & EXIT_QUAL_NMIUDTI) != 0) 2345 vmx_restore_nmi_blocking(vmx, vcpu); 2346 2347 /* 2348 * The NMI has already been handled in vmx_exit_handle_nmi(). 2349 */ 2350 if (intr_type == VMCS_INTR_T_NMI) 2351 return (1); 2352 2353 /* 2354 * Call the machine check handler by hand. Also don't reflect 2355 * the machine check back into the guest. 2356 */ 2357 if (intr_vec == IDT_MC) { 2358 VCPU_CTR0(vmx->vm, vcpu, "Vectoring to MCE handler"); 2359 __asm __volatile("int $18"); 2360 return (1); 2361 } 2362 2363 if (intr_vec == IDT_PF) { 2364 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_CR2, qual); 2365 KASSERT(error == 0, ("%s: vmxctx_setreg(cr2) error %d", 2366 __func__, error)); 2367 } 2368 2369 /* 2370 * Software exceptions exhibit trap-like behavior. This in 2371 * turn requires populating the VM-entry instruction length 2372 * so that the %rip in the trap frame is past the INT3/INTO 2373 * instruction. 2374 */ 2375 if (intr_type == VMCS_INTR_T_SWEXCEPTION) 2376 vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length); 2377 2378 /* Reflect all other exceptions back into the guest */ 2379 bzero(&vmexc, sizeof(struct vm_exception)); 2380 vmexc.vector = intr_vec; 2381 if (intr_info & VMCS_INTR_DEL_ERRCODE) { 2382 vmexc.error_code_valid = 1; 2383 vmexc.error_code = vmcs_read(VMCS_EXIT_INTR_ERRCODE); 2384 } 2385 VCPU_CTR2(vmx->vm, vcpu, "Reflecting exception %d/%#x into " 2386 "the guest", vmexc.vector, vmexc.error_code); 2387 error = vm_inject_exception(vmx->vm, vcpu, &vmexc); 2388 KASSERT(error == 0, ("%s: vm_inject_exception error %d", 2389 __func__, error)); 2390 return (1); 2391 2392 case EXIT_REASON_EPT_FAULT: 2393 /* 2394 * If 'gpa' lies within the address space allocated to 2395 * memory then this must be a nested page fault otherwise 2396 * this must be an instruction that accesses MMIO space. 2397 */ 2398 gpa = vmcs_gpa(); 2399 if (vm_mem_allocated(vmx->vm, gpa) || 2400 apic_access_fault(vmx, vcpu, gpa)) { 2401 vmexit->exitcode = VM_EXITCODE_PAGING; 2402 vmexit->u.paging.gpa = gpa; 2403 vmexit->u.paging.fault_type = ept_fault_type(qual); 2404 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NESTED_FAULT, 1); 2405 } else if (ept_emulation_fault(qual)) { 2406 vmexit_inst_emul(vmexit, gpa, vmcs_gla()); 2407 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INST_EMUL, 1); 2408 } 2409 /* 2410 * If Virtual NMIs control is 1 and the VM-exit is due to an 2411 * EPT fault during the execution of IRET then we must restore 2412 * the state of "virtual-NMI blocking" before resuming. 2413 * 2414 * See description of "NMI unblocking due to IRET" in 2415 * "Exit Qualification for EPT Violations". 2416 */ 2417 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 && 2418 (qual & EXIT_QUAL_NMIUDTI) != 0) 2419 vmx_restore_nmi_blocking(vmx, vcpu); 2420 break; 2421 case EXIT_REASON_VIRTUALIZED_EOI: 2422 vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI; 2423 vmexit->u.ioapic_eoi.vector = qual & 0xFF; 2424 vmexit->inst_length = 0; /* trap-like */ 2425 break; 2426 case EXIT_REASON_APIC_ACCESS: 2427 handled = vmx_handle_apic_access(vmx, vcpu, vmexit); 2428 break; 2429 case EXIT_REASON_APIC_WRITE: 2430 /* 2431 * APIC-write VM exit is trap-like so the %rip is already 2432 * pointing to the next instruction. 2433 */ 2434 vmexit->inst_length = 0; 2435 vlapic = vm_lapic(vmx->vm, vcpu); 2436 handled = vmx_handle_apic_write(vmx, vcpu, vlapic, qual); 2437 break; 2438 case EXIT_REASON_XSETBV: 2439 handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit); 2440 break; 2441 case EXIT_REASON_MONITOR: 2442 vmexit->exitcode = VM_EXITCODE_MONITOR; 2443 break; 2444 case EXIT_REASON_MWAIT: 2445 vmexit->exitcode = VM_EXITCODE_MWAIT; 2446 break; 2447 default: 2448 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1); 2449 break; 2450 } 2451 2452 if (handled) { 2453 /* 2454 * It is possible that control is returned to userland 2455 * even though we were able to handle the VM exit in the 2456 * kernel. 2457 * 2458 * In such a case we want to make sure that the userland 2459 * restarts guest execution at the instruction *after* 2460 * the one we just processed. Therefore we update the 2461 * guest rip in the VMCS and in 'vmexit'. 2462 */ 2463 vmexit->rip += vmexit->inst_length; 2464 vmexit->inst_length = 0; 2465 vmcs_write(VMCS_GUEST_RIP, vmexit->rip); 2466 } else { 2467 if (vmexit->exitcode == VM_EXITCODE_BOGUS) { 2468 /* 2469 * If this VM exit was not claimed by anybody then 2470 * treat it as a generic VMX exit. 2471 */ 2472 vmexit->exitcode = VM_EXITCODE_VMX; 2473 vmexit->u.vmx.status = VM_SUCCESS; 2474 vmexit->u.vmx.inst_type = 0; 2475 vmexit->u.vmx.inst_error = 0; 2476 } else { 2477 /* 2478 * The exitcode and collateral have been populated. 2479 * The VM exit will be processed further in userland. 2480 */ 2481 } 2482 } 2483 return (handled); 2484 } 2485 2486 static __inline void 2487 vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit) 2488 { 2489 2490 KASSERT(vmxctx->inst_fail_status != VM_SUCCESS, 2491 ("vmx_exit_inst_error: invalid inst_fail_status %d", 2492 vmxctx->inst_fail_status)); 2493 2494 vmexit->inst_length = 0; 2495 vmexit->exitcode = VM_EXITCODE_VMX; 2496 vmexit->u.vmx.status = vmxctx->inst_fail_status; 2497 vmexit->u.vmx.inst_error = vmcs_instruction_error(); 2498 vmexit->u.vmx.exit_reason = ~0; 2499 vmexit->u.vmx.exit_qualification = ~0; 2500 2501 switch (rc) { 2502 case VMX_VMRESUME_ERROR: 2503 case VMX_VMLAUNCH_ERROR: 2504 case VMX_INVEPT_ERROR: 2505 vmexit->u.vmx.inst_type = rc; 2506 break; 2507 default: 2508 panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc); 2509 } 2510 } 2511 2512 /* 2513 * If the NMI-exiting VM execution control is set to '1' then an NMI in 2514 * non-root operation causes a VM-exit. NMI blocking is in effect so it is 2515 * sufficient to simply vector to the NMI handler via a software interrupt. 2516 * However, this must be done before maskable interrupts are enabled 2517 * otherwise the "iret" issued by an interrupt handler will incorrectly 2518 * clear NMI blocking. 2519 */ 2520 static __inline void 2521 vmx_exit_handle_nmi(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit) 2522 { 2523 uint32_t intr_info; 2524 2525 KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled")); 2526 2527 if (vmexit->u.vmx.exit_reason != EXIT_REASON_EXCEPTION) 2528 return; 2529 2530 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO); 2531 KASSERT((intr_info & VMCS_INTR_VALID) != 0, 2532 ("VM exit interruption info invalid: %#x", intr_info)); 2533 2534 if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) { 2535 KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due " 2536 "to NMI has invalid vector: %#x", intr_info)); 2537 VCPU_CTR0(vmx->vm, vcpuid, "Vectoring to NMI handler"); 2538 __asm __volatile("int $2"); 2539 } 2540 } 2541 2542 static int 2543 vmx_run(void *arg, int vcpu, register_t startrip, pmap_t pmap, 2544 void *rendezvous_cookie, void *suspend_cookie) 2545 { 2546 int rc, handled, launched; 2547 struct vmx *vmx; 2548 struct vm *vm; 2549 struct vmxctx *vmxctx; 2550 struct vmcs *vmcs; 2551 struct vm_exit *vmexit; 2552 struct vlapic *vlapic; 2553 uint64_t rip; 2554 uint32_t exit_reason; 2555 2556 vmx = arg; 2557 vm = vmx->vm; 2558 vmcs = &vmx->vmcs[vcpu]; 2559 vmxctx = &vmx->ctx[vcpu]; 2560 vlapic = vm_lapic(vm, vcpu); 2561 vmexit = vm_exitinfo(vm, vcpu); 2562 launched = 0; 2563 2564 KASSERT(vmxctx->pmap == pmap, 2565 ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap)); 2566 2567 vmx_msr_guest_enter(vmx, vcpu); 2568 2569 VMPTRLD(vmcs); 2570 2571 /* 2572 * XXX 2573 * We do this every time because we may setup the virtual machine 2574 * from a different process than the one that actually runs it. 2575 * 2576 * If the life of a virtual machine was spent entirely in the context 2577 * of a single process we could do this once in vmx_vminit(). 2578 */ 2579 vmcs_write(VMCS_HOST_CR3, rcr3()); 2580 2581 vmcs_write(VMCS_GUEST_RIP, startrip); 2582 vmx_set_pcpu_defaults(vmx, vcpu, pmap); 2583 do { 2584 handled = UNHANDLED; 2585 2586 /* 2587 * Interrupts are disabled from this point on until the 2588 * guest starts executing. This is done for the following 2589 * reasons: 2590 * 2591 * If an AST is asserted on this thread after the check below, 2592 * then the IPI_AST notification will not be lost, because it 2593 * will cause a VM exit due to external interrupt as soon as 2594 * the guest state is loaded. 2595 * 2596 * A posted interrupt after 'vmx_inject_interrupts()' will 2597 * not be "lost" because it will be held pending in the host 2598 * APIC because interrupts are disabled. The pending interrupt 2599 * will be recognized as soon as the guest state is loaded. 2600 * 2601 * The same reasoning applies to the IPI generated by 2602 * pmap_invalidate_ept(). 2603 */ 2604 disable_intr(); 2605 vmx_inject_interrupts(vmx, vcpu, vlapic); 2606 2607 /* 2608 * Check for vcpu suspension after injecting events because 2609 * vmx_inject_interrupts() can suspend the vcpu due to a 2610 * triple fault. 2611 */ 2612 if (vcpu_suspended(suspend_cookie)) { 2613 enable_intr(); 2614 vm_exit_suspended(vmx->vm, vcpu, vmcs_guest_rip()); 2615 break; 2616 } 2617 2618 if (vcpu_rendezvous_pending(rendezvous_cookie)) { 2619 enable_intr(); 2620 vm_exit_rendezvous(vmx->vm, vcpu, vmcs_guest_rip()); 2621 break; 2622 } 2623 2624 if (vcpu_should_yield(vm, vcpu)) { 2625 enable_intr(); 2626 vm_exit_astpending(vmx->vm, vcpu, vmcs_guest_rip()); 2627 vmx_astpending_trace(vmx, vcpu, vmexit->rip); 2628 handled = HANDLED; 2629 break; 2630 } 2631 2632 vmx_run_trace(vmx, vcpu); 2633 rc = vmx_enter_guest(vmxctx, vmx, launched); 2634 2635 /* Collect some information for VM exit processing */ 2636 vmexit->rip = rip = vmcs_guest_rip(); 2637 vmexit->inst_length = vmexit_instruction_length(); 2638 vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason(); 2639 vmexit->u.vmx.exit_qualification = vmcs_exit_qualification(); 2640 2641 if (rc == VMX_GUEST_VMEXIT) { 2642 vmx_exit_handle_nmi(vmx, vcpu, vmexit); 2643 enable_intr(); 2644 handled = vmx_exit_process(vmx, vcpu, vmexit); 2645 } else { 2646 enable_intr(); 2647 vmx_exit_inst_error(vmxctx, rc, vmexit); 2648 } 2649 launched = 1; 2650 vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled); 2651 } while (handled); 2652 2653 /* 2654 * If a VM exit has been handled then the exitcode must be BOGUS 2655 * If a VM exit is not handled then the exitcode must not be BOGUS 2656 */ 2657 if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) || 2658 (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) { 2659 panic("Mismatch between handled (%d) and exitcode (%d)", 2660 handled, vmexit->exitcode); 2661 } 2662 2663 if (!handled) 2664 vmm_stat_incr(vm, vcpu, VMEXIT_USERSPACE, 1); 2665 2666 VCPU_CTR1(vm, vcpu, "returning from vmx_run: exitcode %d", 2667 vmexit->exitcode); 2668 2669 VMCLEAR(vmcs); 2670 vmx_msr_guest_exit(vmx, vcpu); 2671 2672 return (0); 2673 } 2674 2675 static void 2676 vmx_vmcleanup(void *arg) 2677 { 2678 int i; 2679 struct vmx *vmx = arg; 2680 2681 if (apic_access_virtualization(vmx, 0)) 2682 vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE); 2683 2684 for (i = 0; i < VM_MAXCPU; i++) 2685 vpid_free(vmx->state[i].vpid); 2686 2687 free(vmx, M_VMX); 2688 2689 return; 2690 } 2691 2692 static register_t * 2693 vmxctx_regptr(struct vmxctx *vmxctx, int reg) 2694 { 2695 2696 switch (reg) { 2697 case VM_REG_GUEST_RAX: 2698 return (&vmxctx->guest_rax); 2699 case VM_REG_GUEST_RBX: 2700 return (&vmxctx->guest_rbx); 2701 case VM_REG_GUEST_RCX: 2702 return (&vmxctx->guest_rcx); 2703 case VM_REG_GUEST_RDX: 2704 return (&vmxctx->guest_rdx); 2705 case VM_REG_GUEST_RSI: 2706 return (&vmxctx->guest_rsi); 2707 case VM_REG_GUEST_RDI: 2708 return (&vmxctx->guest_rdi); 2709 case VM_REG_GUEST_RBP: 2710 return (&vmxctx->guest_rbp); 2711 case VM_REG_GUEST_R8: 2712 return (&vmxctx->guest_r8); 2713 case VM_REG_GUEST_R9: 2714 return (&vmxctx->guest_r9); 2715 case VM_REG_GUEST_R10: 2716 return (&vmxctx->guest_r10); 2717 case VM_REG_GUEST_R11: 2718 return (&vmxctx->guest_r11); 2719 case VM_REG_GUEST_R12: 2720 return (&vmxctx->guest_r12); 2721 case VM_REG_GUEST_R13: 2722 return (&vmxctx->guest_r13); 2723 case VM_REG_GUEST_R14: 2724 return (&vmxctx->guest_r14); 2725 case VM_REG_GUEST_R15: 2726 return (&vmxctx->guest_r15); 2727 case VM_REG_GUEST_CR2: 2728 return (&vmxctx->guest_cr2); 2729 default: 2730 break; 2731 } 2732 return (NULL); 2733 } 2734 2735 static int 2736 vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval) 2737 { 2738 register_t *regp; 2739 2740 if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) { 2741 *retval = *regp; 2742 return (0); 2743 } else 2744 return (EINVAL); 2745 } 2746 2747 static int 2748 vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val) 2749 { 2750 register_t *regp; 2751 2752 if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) { 2753 *regp = val; 2754 return (0); 2755 } else 2756 return (EINVAL); 2757 } 2758 2759 static int 2760 vmx_get_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t *retval) 2761 { 2762 uint64_t gi; 2763 int error; 2764 2765 error = vmcs_getreg(&vmx->vmcs[vcpu], running, 2766 VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY), &gi); 2767 *retval = (gi & HWINTR_BLOCKING) ? 1 : 0; 2768 return (error); 2769 } 2770 2771 static int 2772 vmx_modify_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t val) 2773 { 2774 struct vmcs *vmcs; 2775 uint64_t gi; 2776 int error, ident; 2777 2778 /* 2779 * Forcing the vcpu into an interrupt shadow is not supported. 2780 */ 2781 if (val) { 2782 error = EINVAL; 2783 goto done; 2784 } 2785 2786 vmcs = &vmx->vmcs[vcpu]; 2787 ident = VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY); 2788 error = vmcs_getreg(vmcs, running, ident, &gi); 2789 if (error == 0) { 2790 gi &= ~HWINTR_BLOCKING; 2791 error = vmcs_setreg(vmcs, running, ident, gi); 2792 } 2793 done: 2794 VCPU_CTR2(vmx->vm, vcpu, "Setting intr_shadow to %#lx %s", val, 2795 error ? "failed" : "succeeded"); 2796 return (error); 2797 } 2798 2799 static int 2800 vmx_shadow_reg(int reg) 2801 { 2802 int shreg; 2803 2804 shreg = -1; 2805 2806 switch (reg) { 2807 case VM_REG_GUEST_CR0: 2808 shreg = VMCS_CR0_SHADOW; 2809 break; 2810 case VM_REG_GUEST_CR4: 2811 shreg = VMCS_CR4_SHADOW; 2812 break; 2813 default: 2814 break; 2815 } 2816 2817 return (shreg); 2818 } 2819 2820 static int 2821 vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval) 2822 { 2823 int running, hostcpu; 2824 struct vmx *vmx = arg; 2825 2826 running = vcpu_is_running(vmx->vm, vcpu, &hostcpu); 2827 if (running && hostcpu != curcpu) 2828 panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu); 2829 2830 if (reg == VM_REG_GUEST_INTR_SHADOW) 2831 return (vmx_get_intr_shadow(vmx, vcpu, running, retval)); 2832 2833 if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0) 2834 return (0); 2835 2836 return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval)); 2837 } 2838 2839 static int 2840 vmx_setreg(void *arg, int vcpu, int reg, uint64_t val) 2841 { 2842 int error, hostcpu, running, shadow; 2843 uint64_t ctls; 2844 pmap_t pmap; 2845 struct vmx *vmx = arg; 2846 2847 running = vcpu_is_running(vmx->vm, vcpu, &hostcpu); 2848 if (running && hostcpu != curcpu) 2849 panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu); 2850 2851 if (reg == VM_REG_GUEST_INTR_SHADOW) 2852 return (vmx_modify_intr_shadow(vmx, vcpu, running, val)); 2853 2854 if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0) 2855 return (0); 2856 2857 error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val); 2858 2859 if (error == 0) { 2860 /* 2861 * If the "load EFER" VM-entry control is 1 then the 2862 * value of EFER.LMA must be identical to "IA-32e mode guest" 2863 * bit in the VM-entry control. 2864 */ 2865 if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 && 2866 (reg == VM_REG_GUEST_EFER)) { 2867 vmcs_getreg(&vmx->vmcs[vcpu], running, 2868 VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls); 2869 if (val & EFER_LMA) 2870 ctls |= VM_ENTRY_GUEST_LMA; 2871 else 2872 ctls &= ~VM_ENTRY_GUEST_LMA; 2873 vmcs_setreg(&vmx->vmcs[vcpu], running, 2874 VMCS_IDENT(VMCS_ENTRY_CTLS), ctls); 2875 } 2876 2877 shadow = vmx_shadow_reg(reg); 2878 if (shadow > 0) { 2879 /* 2880 * Store the unmodified value in the shadow 2881 */ 2882 error = vmcs_setreg(&vmx->vmcs[vcpu], running, 2883 VMCS_IDENT(shadow), val); 2884 } 2885 2886 if (reg == VM_REG_GUEST_CR3) { 2887 /* 2888 * Invalidate the guest vcpu's TLB mappings to emulate 2889 * the behavior of updating %cr3. 2890 * 2891 * XXX the processor retains global mappings when %cr3 2892 * is updated but vmx_invvpid() does not. 2893 */ 2894 pmap = vmx->ctx[vcpu].pmap; 2895 vmx_invvpid(vmx, vcpu, pmap, running); 2896 } 2897 } 2898 2899 return (error); 2900 } 2901 2902 static int 2903 vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc) 2904 { 2905 int hostcpu, running; 2906 struct vmx *vmx = arg; 2907 2908 running = vcpu_is_running(vmx->vm, vcpu, &hostcpu); 2909 if (running && hostcpu != curcpu) 2910 panic("vmx_getdesc: %s%d is running", vm_name(vmx->vm), vcpu); 2911 2912 return (vmcs_getdesc(&vmx->vmcs[vcpu], running, reg, desc)); 2913 } 2914 2915 static int 2916 vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc) 2917 { 2918 int hostcpu, running; 2919 struct vmx *vmx = arg; 2920 2921 running = vcpu_is_running(vmx->vm, vcpu, &hostcpu); 2922 if (running && hostcpu != curcpu) 2923 panic("vmx_setdesc: %s%d is running", vm_name(vmx->vm), vcpu); 2924 2925 return (vmcs_setdesc(&vmx->vmcs[vcpu], running, reg, desc)); 2926 } 2927 2928 static int 2929 vmx_getcap(void *arg, int vcpu, int type, int *retval) 2930 { 2931 struct vmx *vmx = arg; 2932 int vcap; 2933 int ret; 2934 2935 ret = ENOENT; 2936 2937 vcap = vmx->cap[vcpu].set; 2938 2939 switch (type) { 2940 case VM_CAP_HALT_EXIT: 2941 if (cap_halt_exit) 2942 ret = 0; 2943 break; 2944 case VM_CAP_PAUSE_EXIT: 2945 if (cap_pause_exit) 2946 ret = 0; 2947 break; 2948 case VM_CAP_MTRAP_EXIT: 2949 if (cap_monitor_trap) 2950 ret = 0; 2951 break; 2952 case VM_CAP_UNRESTRICTED_GUEST: 2953 if (cap_unrestricted_guest) 2954 ret = 0; 2955 break; 2956 case VM_CAP_ENABLE_INVPCID: 2957 if (cap_invpcid) 2958 ret = 0; 2959 break; 2960 default: 2961 break; 2962 } 2963 2964 if (ret == 0) 2965 *retval = (vcap & (1 << type)) ? 1 : 0; 2966 2967 return (ret); 2968 } 2969 2970 static int 2971 vmx_setcap(void *arg, int vcpu, int type, int val) 2972 { 2973 struct vmx *vmx = arg; 2974 struct vmcs *vmcs = &vmx->vmcs[vcpu]; 2975 uint32_t baseval; 2976 uint32_t *pptr; 2977 int error; 2978 int flag; 2979 int reg; 2980 int retval; 2981 2982 retval = ENOENT; 2983 pptr = NULL; 2984 2985 switch (type) { 2986 case VM_CAP_HALT_EXIT: 2987 if (cap_halt_exit) { 2988 retval = 0; 2989 pptr = &vmx->cap[vcpu].proc_ctls; 2990 baseval = *pptr; 2991 flag = PROCBASED_HLT_EXITING; 2992 reg = VMCS_PRI_PROC_BASED_CTLS; 2993 } 2994 break; 2995 case VM_CAP_MTRAP_EXIT: 2996 if (cap_monitor_trap) { 2997 retval = 0; 2998 pptr = &vmx->cap[vcpu].proc_ctls; 2999 baseval = *pptr; 3000 flag = PROCBASED_MTF; 3001 reg = VMCS_PRI_PROC_BASED_CTLS; 3002 } 3003 break; 3004 case VM_CAP_PAUSE_EXIT: 3005 if (cap_pause_exit) { 3006 retval = 0; 3007 pptr = &vmx->cap[vcpu].proc_ctls; 3008 baseval = *pptr; 3009 flag = PROCBASED_PAUSE_EXITING; 3010 reg = VMCS_PRI_PROC_BASED_CTLS; 3011 } 3012 break; 3013 case VM_CAP_UNRESTRICTED_GUEST: 3014 if (cap_unrestricted_guest) { 3015 retval = 0; 3016 pptr = &vmx->cap[vcpu].proc_ctls2; 3017 baseval = *pptr; 3018 flag = PROCBASED2_UNRESTRICTED_GUEST; 3019 reg = VMCS_SEC_PROC_BASED_CTLS; 3020 } 3021 break; 3022 case VM_CAP_ENABLE_INVPCID: 3023 if (cap_invpcid) { 3024 retval = 0; 3025 pptr = &vmx->cap[vcpu].proc_ctls2; 3026 baseval = *pptr; 3027 flag = PROCBASED2_ENABLE_INVPCID; 3028 reg = VMCS_SEC_PROC_BASED_CTLS; 3029 } 3030 break; 3031 default: 3032 break; 3033 } 3034 3035 if (retval == 0) { 3036 if (val) { 3037 baseval |= flag; 3038 } else { 3039 baseval &= ~flag; 3040 } 3041 VMPTRLD(vmcs); 3042 error = vmwrite(reg, baseval); 3043 VMCLEAR(vmcs); 3044 3045 if (error) { 3046 retval = error; 3047 } else { 3048 /* 3049 * Update optional stored flags, and record 3050 * setting 3051 */ 3052 if (pptr != NULL) { 3053 *pptr = baseval; 3054 } 3055 3056 if (val) { 3057 vmx->cap[vcpu].set |= (1 << type); 3058 } else { 3059 vmx->cap[vcpu].set &= ~(1 << type); 3060 } 3061 } 3062 } 3063 3064 return (retval); 3065 } 3066 3067 struct vlapic_vtx { 3068 struct vlapic vlapic; 3069 struct pir_desc *pir_desc; 3070 struct vmx *vmx; 3071 }; 3072 3073 #define VMX_CTR_PIR(vm, vcpuid, pir_desc, notify, vector, level, msg) \ 3074 do { \ 3075 VCPU_CTR2(vm, vcpuid, msg " assert %s-triggered vector %d", \ 3076 level ? "level" : "edge", vector); \ 3077 VCPU_CTR1(vm, vcpuid, msg " pir0 0x%016lx", pir_desc->pir[0]); \ 3078 VCPU_CTR1(vm, vcpuid, msg " pir1 0x%016lx", pir_desc->pir[1]); \ 3079 VCPU_CTR1(vm, vcpuid, msg " pir2 0x%016lx", pir_desc->pir[2]); \ 3080 VCPU_CTR1(vm, vcpuid, msg " pir3 0x%016lx", pir_desc->pir[3]); \ 3081 VCPU_CTR1(vm, vcpuid, msg " notify: %s", notify ? "yes" : "no");\ 3082 } while (0) 3083 3084 /* 3085 * vlapic->ops handlers that utilize the APICv hardware assist described in 3086 * Chapter 29 of the Intel SDM. 3087 */ 3088 static int 3089 vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level) 3090 { 3091 struct vlapic_vtx *vlapic_vtx; 3092 struct pir_desc *pir_desc; 3093 uint64_t mask; 3094 int idx, notify; 3095 3096 vlapic_vtx = (struct vlapic_vtx *)vlapic; 3097 pir_desc = vlapic_vtx->pir_desc; 3098 3099 /* 3100 * Keep track of interrupt requests in the PIR descriptor. This is 3101 * because the virtual APIC page pointed to by the VMCS cannot be 3102 * modified if the vcpu is running. 3103 */ 3104 idx = vector / 64; 3105 mask = 1UL << (vector % 64); 3106 atomic_set_long(&pir_desc->pir[idx], mask); 3107 notify = atomic_cmpset_long(&pir_desc->pending, 0, 1); 3108 3109 VMX_CTR_PIR(vlapic->vm, vlapic->vcpuid, pir_desc, notify, vector, 3110 level, "vmx_set_intr_ready"); 3111 return (notify); 3112 } 3113 3114 static int 3115 vmx_pending_intr(struct vlapic *vlapic, int *vecptr) 3116 { 3117 struct vlapic_vtx *vlapic_vtx; 3118 struct pir_desc *pir_desc; 3119 struct LAPIC *lapic; 3120 uint64_t pending, pirval; 3121 uint32_t ppr, vpr; 3122 int i; 3123 3124 /* 3125 * This function is only expected to be called from the 'HLT' exit 3126 * handler which does not care about the vector that is pending. 3127 */ 3128 KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL")); 3129 3130 vlapic_vtx = (struct vlapic_vtx *)vlapic; 3131 pir_desc = vlapic_vtx->pir_desc; 3132 3133 pending = atomic_load_acq_long(&pir_desc->pending); 3134 if (!pending) 3135 return (0); /* common case */ 3136 3137 /* 3138 * If there is an interrupt pending then it will be recognized only 3139 * if its priority is greater than the processor priority. 3140 * 3141 * Special case: if the processor priority is zero then any pending 3142 * interrupt will be recognized. 3143 */ 3144 lapic = vlapic->apic_page; 3145 ppr = lapic->ppr & 0xf0; 3146 if (ppr == 0) 3147 return (1); 3148 3149 VCPU_CTR1(vlapic->vm, vlapic->vcpuid, "HLT with non-zero PPR %d", 3150 lapic->ppr); 3151 3152 for (i = 3; i >= 0; i--) { 3153 pirval = pir_desc->pir[i]; 3154 if (pirval != 0) { 3155 vpr = (i * 64 + flsl(pirval) - 1) & 0xf0; 3156 return (vpr > ppr); 3157 } 3158 } 3159 return (0); 3160 } 3161 3162 static void 3163 vmx_intr_accepted(struct vlapic *vlapic, int vector) 3164 { 3165 3166 panic("vmx_intr_accepted: not expected to be called"); 3167 } 3168 3169 static void 3170 vmx_set_tmr(struct vlapic *vlapic, int vector, bool level) 3171 { 3172 struct vlapic_vtx *vlapic_vtx; 3173 struct vmx *vmx; 3174 struct vmcs *vmcs; 3175 uint64_t mask, val; 3176 3177 KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d", vector)); 3178 KASSERT(!vcpu_is_running(vlapic->vm, vlapic->vcpuid, NULL), 3179 ("vmx_set_tmr: vcpu cannot be running")); 3180 3181 vlapic_vtx = (struct vlapic_vtx *)vlapic; 3182 vmx = vlapic_vtx->vmx; 3183 vmcs = &vmx->vmcs[vlapic->vcpuid]; 3184 mask = 1UL << (vector % 64); 3185 3186 VMPTRLD(vmcs); 3187 val = vmcs_read(VMCS_EOI_EXIT(vector)); 3188 if (level) 3189 val |= mask; 3190 else 3191 val &= ~mask; 3192 vmcs_write(VMCS_EOI_EXIT(vector), val); 3193 VMCLEAR(vmcs); 3194 } 3195 3196 static void 3197 vmx_enable_x2apic_mode(struct vlapic *vlapic) 3198 { 3199 struct vmx *vmx; 3200 struct vmcs *vmcs; 3201 uint32_t proc_ctls2; 3202 int vcpuid, error; 3203 3204 vcpuid = vlapic->vcpuid; 3205 vmx = ((struct vlapic_vtx *)vlapic)->vmx; 3206 vmcs = &vmx->vmcs[vcpuid]; 3207 3208 proc_ctls2 = vmx->cap[vcpuid].proc_ctls2; 3209 KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0, 3210 ("%s: invalid proc_ctls2 %#x", __func__, proc_ctls2)); 3211 3212 proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES; 3213 proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE; 3214 vmx->cap[vcpuid].proc_ctls2 = proc_ctls2; 3215 3216 VMPTRLD(vmcs); 3217 vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2); 3218 VMCLEAR(vmcs); 3219 3220 if (vlapic->vcpuid == 0) { 3221 /* 3222 * The nested page table mappings are shared by all vcpus 3223 * so unmap the APIC access page just once. 3224 */ 3225 error = vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE); 3226 KASSERT(error == 0, ("%s: vm_unmap_mmio error %d", 3227 __func__, error)); 3228 3229 /* 3230 * The MSR bitmap is shared by all vcpus so modify it only 3231 * once in the context of vcpu 0. 3232 */ 3233 error = vmx_allow_x2apic_msrs(vmx); 3234 KASSERT(error == 0, ("%s: vmx_allow_x2apic_msrs error %d", 3235 __func__, error)); 3236 } 3237 } 3238 3239 static void 3240 vmx_post_intr(struct vlapic *vlapic, int hostcpu) 3241 { 3242 3243 ipi_cpu(hostcpu, pirvec); 3244 } 3245 3246 /* 3247 * Transfer the pending interrupts in the PIR descriptor to the IRR 3248 * in the virtual APIC page. 3249 */ 3250 static void 3251 vmx_inject_pir(struct vlapic *vlapic) 3252 { 3253 struct vlapic_vtx *vlapic_vtx; 3254 struct pir_desc *pir_desc; 3255 struct LAPIC *lapic; 3256 uint64_t val, pirval; 3257 int rvi, pirbase = -1; 3258 uint16_t intr_status_old, intr_status_new; 3259 3260 vlapic_vtx = (struct vlapic_vtx *)vlapic; 3261 pir_desc = vlapic_vtx->pir_desc; 3262 if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) { 3263 VCPU_CTR0(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: " 3264 "no posted interrupt pending"); 3265 return; 3266 } 3267 3268 pirval = 0; 3269 pirbase = -1; 3270 lapic = vlapic->apic_page; 3271 3272 val = atomic_readandclear_long(&pir_desc->pir[0]); 3273 if (val != 0) { 3274 lapic->irr0 |= val; 3275 lapic->irr1 |= val >> 32; 3276 pirbase = 0; 3277 pirval = val; 3278 } 3279 3280 val = atomic_readandclear_long(&pir_desc->pir[1]); 3281 if (val != 0) { 3282 lapic->irr2 |= val; 3283 lapic->irr3 |= val >> 32; 3284 pirbase = 64; 3285 pirval = val; 3286 } 3287 3288 val = atomic_readandclear_long(&pir_desc->pir[2]); 3289 if (val != 0) { 3290 lapic->irr4 |= val; 3291 lapic->irr5 |= val >> 32; 3292 pirbase = 128; 3293 pirval = val; 3294 } 3295 3296 val = atomic_readandclear_long(&pir_desc->pir[3]); 3297 if (val != 0) { 3298 lapic->irr6 |= val; 3299 lapic->irr7 |= val >> 32; 3300 pirbase = 192; 3301 pirval = val; 3302 } 3303 3304 VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir"); 3305 3306 /* 3307 * Update RVI so the processor can evaluate pending virtual 3308 * interrupts on VM-entry. 3309 * 3310 * It is possible for pirval to be 0 here, even though the 3311 * pending bit has been set. The scenario is: 3312 * CPU-Y is sending a posted interrupt to CPU-X, which 3313 * is running a guest and processing posted interrupts in h/w. 3314 * CPU-X will eventually exit and the state seen in s/w is 3315 * the pending bit set, but no PIR bits set. 3316 * 3317 * CPU-X CPU-Y 3318 * (vm running) (host running) 3319 * rx posted interrupt 3320 * CLEAR pending bit 3321 * SET PIR bit 3322 * READ/CLEAR PIR bits 3323 * SET pending bit 3324 * (vm exit) 3325 * pending bit set, PIR 0 3326 */ 3327 if (pirval != 0) { 3328 rvi = pirbase + flsl(pirval) - 1; 3329 intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS); 3330 intr_status_new = (intr_status_old & 0xFF00) | rvi; 3331 if (intr_status_new > intr_status_old) { 3332 vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new); 3333 VCPU_CTR2(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: " 3334 "guest_intr_status changed from 0x%04x to 0x%04x", 3335 intr_status_old, intr_status_new); 3336 } 3337 } 3338 } 3339 3340 static struct vlapic * 3341 vmx_vlapic_init(void *arg, int vcpuid) 3342 { 3343 struct vmx *vmx; 3344 struct vlapic *vlapic; 3345 struct vlapic_vtx *vlapic_vtx; 3346 3347 vmx = arg; 3348 3349 vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO); 3350 vlapic->vm = vmx->vm; 3351 vlapic->vcpuid = vcpuid; 3352 vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid]; 3353 3354 vlapic_vtx = (struct vlapic_vtx *)vlapic; 3355 vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid]; 3356 vlapic_vtx->vmx = vmx; 3357 3358 if (virtual_interrupt_delivery) { 3359 vlapic->ops.set_intr_ready = vmx_set_intr_ready; 3360 vlapic->ops.pending_intr = vmx_pending_intr; 3361 vlapic->ops.intr_accepted = vmx_intr_accepted; 3362 vlapic->ops.set_tmr = vmx_set_tmr; 3363 vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode; 3364 } 3365 3366 if (posted_interrupts) 3367 vlapic->ops.post_intr = vmx_post_intr; 3368 3369 vlapic_init(vlapic); 3370 3371 return (vlapic); 3372 } 3373 3374 static void 3375 vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic) 3376 { 3377 3378 vlapic_cleanup(vlapic); 3379 free(vlapic, M_VLAPIC); 3380 } 3381 3382 struct vmm_ops vmm_ops_intel = { 3383 vmx_init, 3384 vmx_cleanup, 3385 vmx_restore, 3386 vmx_vminit, 3387 vmx_run, 3388 vmx_vmcleanup, 3389 vmx_getreg, 3390 vmx_setreg, 3391 vmx_getdesc, 3392 vmx_setdesc, 3393 vmx_getcap, 3394 vmx_setcap, 3395 ept_vmspace_alloc, 3396 ept_vmspace_free, 3397 vmx_vlapic_init, 3398 vmx_vlapic_cleanup, 3399 }; 3400