xref: /freebsd/sys/amd64/vmm/intel/vmx.c (revision d0bd1251350a0564fb20f0044f061f1c6b6079c2)
1 /*-
2  * Copyright (c) 2011 NetApp, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/smp.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/pcpu.h>
38 #include <sys/proc.h>
39 #include <sys/sysctl.h>
40 
41 #include <vm/vm.h>
42 #include <vm/pmap.h>
43 
44 #include <machine/psl.h>
45 #include <machine/cpufunc.h>
46 #include <machine/md_var.h>
47 #include <machine/segments.h>
48 #include <machine/smp.h>
49 #include <machine/specialreg.h>
50 #include <machine/vmparam.h>
51 
52 #include <machine/vmm.h>
53 #include <machine/vmm_dev.h>
54 #include <machine/vmm_instruction_emul.h>
55 #include "vmm_lapic.h"
56 #include "vmm_host.h"
57 #include "vmm_ioport.h"
58 #include "vmm_ipi.h"
59 #include "vmm_ktr.h"
60 #include "vmm_stat.h"
61 #include "vatpic.h"
62 #include "vlapic.h"
63 #include "vlapic_priv.h"
64 
65 #include "ept.h"
66 #include "vmx_cpufunc.h"
67 #include "vmx.h"
68 #include "vmx_msr.h"
69 #include "x86.h"
70 #include "vmx_controls.h"
71 
72 #define	PINBASED_CTLS_ONE_SETTING					\
73 	(PINBASED_EXTINT_EXITING	|				\
74 	 PINBASED_NMI_EXITING		|				\
75 	 PINBASED_VIRTUAL_NMI)
76 #define	PINBASED_CTLS_ZERO_SETTING	0
77 
78 #define PROCBASED_CTLS_WINDOW_SETTING					\
79 	(PROCBASED_INT_WINDOW_EXITING	|				\
80 	 PROCBASED_NMI_WINDOW_EXITING)
81 
82 #define	PROCBASED_CTLS_ONE_SETTING 					\
83 	(PROCBASED_SECONDARY_CONTROLS	|				\
84 	 PROCBASED_MWAIT_EXITING	|				\
85 	 PROCBASED_MONITOR_EXITING	|				\
86 	 PROCBASED_IO_EXITING		|				\
87 	 PROCBASED_MSR_BITMAPS		|				\
88 	 PROCBASED_CTLS_WINDOW_SETTING	|				\
89 	 PROCBASED_CR8_LOAD_EXITING	|				\
90 	 PROCBASED_CR8_STORE_EXITING)
91 #define	PROCBASED_CTLS_ZERO_SETTING	\
92 	(PROCBASED_CR3_LOAD_EXITING |	\
93 	PROCBASED_CR3_STORE_EXITING |	\
94 	PROCBASED_IO_BITMAPS)
95 
96 #define	PROCBASED_CTLS2_ONE_SETTING	PROCBASED2_ENABLE_EPT
97 #define	PROCBASED_CTLS2_ZERO_SETTING	0
98 
99 #define	VM_EXIT_CTLS_ONE_SETTING					\
100 	(VM_EXIT_HOST_LMA			|			\
101 	VM_EXIT_SAVE_EFER			|			\
102 	VM_EXIT_LOAD_EFER			|			\
103 	VM_EXIT_ACKNOWLEDGE_INTERRUPT		|			\
104 	VM_EXIT_SAVE_PAT			|			\
105 	VM_EXIT_LOAD_PAT)
106 
107 #define	VM_EXIT_CTLS_ZERO_SETTING	VM_EXIT_SAVE_DEBUG_CONTROLS
108 
109 #define	VM_ENTRY_CTLS_ONE_SETTING	(VM_ENTRY_LOAD_EFER | VM_ENTRY_LOAD_PAT)
110 
111 #define	VM_ENTRY_CTLS_ZERO_SETTING					\
112 	(VM_ENTRY_LOAD_DEBUG_CONTROLS		|			\
113 	VM_ENTRY_INTO_SMM			|			\
114 	VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
115 
116 #define	HANDLED		1
117 #define	UNHANDLED	0
118 
119 static MALLOC_DEFINE(M_VMX, "vmx", "vmx");
120 static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic");
121 
122 SYSCTL_DECL(_hw_vmm);
123 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW, NULL, NULL);
124 
125 int vmxon_enabled[MAXCPU];
126 static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
127 
128 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
129 static uint32_t exit_ctls, entry_ctls;
130 
131 static uint64_t cr0_ones_mask, cr0_zeros_mask;
132 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD,
133 	     &cr0_ones_mask, 0, NULL);
134 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD,
135 	     &cr0_zeros_mask, 0, NULL);
136 
137 static uint64_t cr4_ones_mask, cr4_zeros_mask;
138 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD,
139 	     &cr4_ones_mask, 0, NULL);
140 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD,
141 	     &cr4_zeros_mask, 0, NULL);
142 
143 static int vmx_initialized;
144 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD,
145 	   &vmx_initialized, 0, "Intel VMX initialized");
146 
147 /*
148  * Optional capabilities
149  */
150 static SYSCTL_NODE(_hw_vmm_vmx, OID_AUTO, cap, CTLFLAG_RW, NULL, NULL);
151 
152 static int cap_halt_exit;
153 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, halt_exit, CTLFLAG_RD, &cap_halt_exit, 0,
154     "HLT triggers a VM-exit");
155 
156 static int cap_pause_exit;
157 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, pause_exit, CTLFLAG_RD, &cap_pause_exit,
158     0, "PAUSE triggers a VM-exit");
159 
160 static int cap_unrestricted_guest;
161 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, unrestricted_guest, CTLFLAG_RD,
162     &cap_unrestricted_guest, 0, "Unrestricted guests");
163 
164 static int cap_monitor_trap;
165 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, monitor_trap, CTLFLAG_RD,
166     &cap_monitor_trap, 0, "Monitor trap flag");
167 
168 static int cap_invpcid;
169 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, invpcid, CTLFLAG_RD, &cap_invpcid,
170     0, "Guests are allowed to use INVPCID");
171 
172 static int virtual_interrupt_delivery;
173 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD,
174     &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support");
175 
176 static int posted_interrupts;
177 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, posted_interrupts, CTLFLAG_RD,
178     &posted_interrupts, 0, "APICv posted interrupt support");
179 
180 static int pirvec;
181 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD,
182     &pirvec, 0, "APICv posted interrupt vector");
183 
184 static struct unrhdr *vpid_unr;
185 static u_int vpid_alloc_failed;
186 SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD,
187 	    &vpid_alloc_failed, 0, NULL);
188 
189 /*
190  * Use the last page below 4GB as the APIC access address. This address is
191  * occupied by the boot firmware so it is guaranteed that it will not conflict
192  * with a page in system memory.
193  */
194 #define	APIC_ACCESS_ADDRESS	0xFFFFF000
195 
196 static int vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc);
197 static int vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval);
198 static int vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val);
199 static void vmx_inject_pir(struct vlapic *vlapic);
200 
201 #ifdef KTR
202 static const char *
203 exit_reason_to_str(int reason)
204 {
205 	static char reasonbuf[32];
206 
207 	switch (reason) {
208 	case EXIT_REASON_EXCEPTION:
209 		return "exception";
210 	case EXIT_REASON_EXT_INTR:
211 		return "extint";
212 	case EXIT_REASON_TRIPLE_FAULT:
213 		return "triplefault";
214 	case EXIT_REASON_INIT:
215 		return "init";
216 	case EXIT_REASON_SIPI:
217 		return "sipi";
218 	case EXIT_REASON_IO_SMI:
219 		return "iosmi";
220 	case EXIT_REASON_SMI:
221 		return "smi";
222 	case EXIT_REASON_INTR_WINDOW:
223 		return "intrwindow";
224 	case EXIT_REASON_NMI_WINDOW:
225 		return "nmiwindow";
226 	case EXIT_REASON_TASK_SWITCH:
227 		return "taskswitch";
228 	case EXIT_REASON_CPUID:
229 		return "cpuid";
230 	case EXIT_REASON_GETSEC:
231 		return "getsec";
232 	case EXIT_REASON_HLT:
233 		return "hlt";
234 	case EXIT_REASON_INVD:
235 		return "invd";
236 	case EXIT_REASON_INVLPG:
237 		return "invlpg";
238 	case EXIT_REASON_RDPMC:
239 		return "rdpmc";
240 	case EXIT_REASON_RDTSC:
241 		return "rdtsc";
242 	case EXIT_REASON_RSM:
243 		return "rsm";
244 	case EXIT_REASON_VMCALL:
245 		return "vmcall";
246 	case EXIT_REASON_VMCLEAR:
247 		return "vmclear";
248 	case EXIT_REASON_VMLAUNCH:
249 		return "vmlaunch";
250 	case EXIT_REASON_VMPTRLD:
251 		return "vmptrld";
252 	case EXIT_REASON_VMPTRST:
253 		return "vmptrst";
254 	case EXIT_REASON_VMREAD:
255 		return "vmread";
256 	case EXIT_REASON_VMRESUME:
257 		return "vmresume";
258 	case EXIT_REASON_VMWRITE:
259 		return "vmwrite";
260 	case EXIT_REASON_VMXOFF:
261 		return "vmxoff";
262 	case EXIT_REASON_VMXON:
263 		return "vmxon";
264 	case EXIT_REASON_CR_ACCESS:
265 		return "craccess";
266 	case EXIT_REASON_DR_ACCESS:
267 		return "draccess";
268 	case EXIT_REASON_INOUT:
269 		return "inout";
270 	case EXIT_REASON_RDMSR:
271 		return "rdmsr";
272 	case EXIT_REASON_WRMSR:
273 		return "wrmsr";
274 	case EXIT_REASON_INVAL_VMCS:
275 		return "invalvmcs";
276 	case EXIT_REASON_INVAL_MSR:
277 		return "invalmsr";
278 	case EXIT_REASON_MWAIT:
279 		return "mwait";
280 	case EXIT_REASON_MTF:
281 		return "mtf";
282 	case EXIT_REASON_MONITOR:
283 		return "monitor";
284 	case EXIT_REASON_PAUSE:
285 		return "pause";
286 	case EXIT_REASON_MCE_DURING_ENTRY:
287 		return "mce-during-entry";
288 	case EXIT_REASON_TPR:
289 		return "tpr";
290 	case EXIT_REASON_APIC_ACCESS:
291 		return "apic-access";
292 	case EXIT_REASON_GDTR_IDTR:
293 		return "gdtridtr";
294 	case EXIT_REASON_LDTR_TR:
295 		return "ldtrtr";
296 	case EXIT_REASON_EPT_FAULT:
297 		return "eptfault";
298 	case EXIT_REASON_EPT_MISCONFIG:
299 		return "eptmisconfig";
300 	case EXIT_REASON_INVEPT:
301 		return "invept";
302 	case EXIT_REASON_RDTSCP:
303 		return "rdtscp";
304 	case EXIT_REASON_VMX_PREEMPT:
305 		return "vmxpreempt";
306 	case EXIT_REASON_INVVPID:
307 		return "invvpid";
308 	case EXIT_REASON_WBINVD:
309 		return "wbinvd";
310 	case EXIT_REASON_XSETBV:
311 		return "xsetbv";
312 	case EXIT_REASON_APIC_WRITE:
313 		return "apic-write";
314 	default:
315 		snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason);
316 		return (reasonbuf);
317 	}
318 }
319 #endif	/* KTR */
320 
321 static int
322 vmx_allow_x2apic_msrs(struct vmx *vmx)
323 {
324 	int i, error;
325 
326 	error = 0;
327 
328 	/*
329 	 * Allow readonly access to the following x2APIC MSRs from the guest.
330 	 */
331 	error += guest_msr_ro(vmx, MSR_APIC_ID);
332 	error += guest_msr_ro(vmx, MSR_APIC_VERSION);
333 	error += guest_msr_ro(vmx, MSR_APIC_LDR);
334 	error += guest_msr_ro(vmx, MSR_APIC_SVR);
335 
336 	for (i = 0; i < 8; i++)
337 		error += guest_msr_ro(vmx, MSR_APIC_ISR0 + i);
338 
339 	for (i = 0; i < 8; i++)
340 		error += guest_msr_ro(vmx, MSR_APIC_TMR0 + i);
341 
342 	for (i = 0; i < 8; i++)
343 		error += guest_msr_ro(vmx, MSR_APIC_IRR0 + i);
344 
345 	error += guest_msr_ro(vmx, MSR_APIC_ESR);
346 	error += guest_msr_ro(vmx, MSR_APIC_LVT_TIMER);
347 	error += guest_msr_ro(vmx, MSR_APIC_LVT_THERMAL);
348 	error += guest_msr_ro(vmx, MSR_APIC_LVT_PCINT);
349 	error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT0);
350 	error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT1);
351 	error += guest_msr_ro(vmx, MSR_APIC_LVT_ERROR);
352 	error += guest_msr_ro(vmx, MSR_APIC_ICR_TIMER);
353 	error += guest_msr_ro(vmx, MSR_APIC_DCR_TIMER);
354 	error += guest_msr_ro(vmx, MSR_APIC_ICR);
355 
356 	/*
357 	 * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest.
358 	 *
359 	 * These registers get special treatment described in the section
360 	 * "Virtualizing MSR-Based APIC Accesses".
361 	 */
362 	error += guest_msr_rw(vmx, MSR_APIC_TPR);
363 	error += guest_msr_rw(vmx, MSR_APIC_EOI);
364 	error += guest_msr_rw(vmx, MSR_APIC_SELF_IPI);
365 
366 	return (error);
367 }
368 
369 u_long
370 vmx_fix_cr0(u_long cr0)
371 {
372 
373 	return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
374 }
375 
376 u_long
377 vmx_fix_cr4(u_long cr4)
378 {
379 
380 	return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
381 }
382 
383 static void
384 vpid_free(int vpid)
385 {
386 	if (vpid < 0 || vpid > 0xffff)
387 		panic("vpid_free: invalid vpid %d", vpid);
388 
389 	/*
390 	 * VPIDs [0,VM_MAXCPU] are special and are not allocated from
391 	 * the unit number allocator.
392 	 */
393 
394 	if (vpid > VM_MAXCPU)
395 		free_unr(vpid_unr, vpid);
396 }
397 
398 static void
399 vpid_alloc(uint16_t *vpid, int num)
400 {
401 	int i, x;
402 
403 	if (num <= 0 || num > VM_MAXCPU)
404 		panic("invalid number of vpids requested: %d", num);
405 
406 	/*
407 	 * If the "enable vpid" execution control is not enabled then the
408 	 * VPID is required to be 0 for all vcpus.
409 	 */
410 	if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) {
411 		for (i = 0; i < num; i++)
412 			vpid[i] = 0;
413 		return;
414 	}
415 
416 	/*
417 	 * Allocate a unique VPID for each vcpu from the unit number allocator.
418 	 */
419 	for (i = 0; i < num; i++) {
420 		x = alloc_unr(vpid_unr);
421 		if (x == -1)
422 			break;
423 		else
424 			vpid[i] = x;
425 	}
426 
427 	if (i < num) {
428 		atomic_add_int(&vpid_alloc_failed, 1);
429 
430 		/*
431 		 * If the unit number allocator does not have enough unique
432 		 * VPIDs then we need to allocate from the [1,VM_MAXCPU] range.
433 		 *
434 		 * These VPIDs are not be unique across VMs but this does not
435 		 * affect correctness because the combined mappings are also
436 		 * tagged with the EP4TA which is unique for each VM.
437 		 *
438 		 * It is still sub-optimal because the invvpid will invalidate
439 		 * combined mappings for a particular VPID across all EP4TAs.
440 		 */
441 		while (i-- > 0)
442 			vpid_free(vpid[i]);
443 
444 		for (i = 0; i < num; i++)
445 			vpid[i] = i + 1;
446 	}
447 }
448 
449 static void
450 vpid_init(void)
451 {
452 	/*
453 	 * VPID 0 is required when the "enable VPID" execution control is
454 	 * disabled.
455 	 *
456 	 * VPIDs [1,VM_MAXCPU] are used as the "overflow namespace" when the
457 	 * unit number allocator does not have sufficient unique VPIDs to
458 	 * satisfy the allocation.
459 	 *
460 	 * The remaining VPIDs are managed by the unit number allocator.
461 	 */
462 	vpid_unr = new_unrhdr(VM_MAXCPU + 1, 0xffff, NULL);
463 }
464 
465 static void
466 vmx_disable(void *arg __unused)
467 {
468 	struct invvpid_desc invvpid_desc = { 0 };
469 	struct invept_desc invept_desc = { 0 };
470 
471 	if (vmxon_enabled[curcpu]) {
472 		/*
473 		 * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b.
474 		 *
475 		 * VMXON or VMXOFF are not required to invalidate any TLB
476 		 * caching structures. This prevents potential retention of
477 		 * cached information in the TLB between distinct VMX episodes.
478 		 */
479 		invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc);
480 		invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc);
481 		vmxoff();
482 	}
483 	load_cr4(rcr4() & ~CR4_VMXE);
484 }
485 
486 static int
487 vmx_cleanup(void)
488 {
489 
490 	if (pirvec != 0)
491 		vmm_ipi_free(pirvec);
492 
493 	if (vpid_unr != NULL) {
494 		delete_unrhdr(vpid_unr);
495 		vpid_unr = NULL;
496 	}
497 
498 	smp_rendezvous(NULL, vmx_disable, NULL, NULL);
499 
500 	return (0);
501 }
502 
503 static void
504 vmx_enable(void *arg __unused)
505 {
506 	int error;
507 	uint64_t feature_control;
508 
509 	feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
510 	if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 ||
511 	    (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
512 		wrmsr(MSR_IA32_FEATURE_CONTROL,
513 		    feature_control | IA32_FEATURE_CONTROL_VMX_EN |
514 		    IA32_FEATURE_CONTROL_LOCK);
515 	}
516 
517 	load_cr4(rcr4() | CR4_VMXE);
518 
519 	*(uint32_t *)vmxon_region[curcpu] = vmx_revision();
520 	error = vmxon(vmxon_region[curcpu]);
521 	if (error == 0)
522 		vmxon_enabled[curcpu] = 1;
523 }
524 
525 static void
526 vmx_restore(void)
527 {
528 
529 	if (vmxon_enabled[curcpu])
530 		vmxon(vmxon_region[curcpu]);
531 }
532 
533 static int
534 vmx_init(int ipinum)
535 {
536 	int error, use_tpr_shadow;
537 	uint64_t basic, fixed0, fixed1, feature_control;
538 	uint32_t tmp, procbased2_vid_bits;
539 
540 	/* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */
541 	if (!(cpu_feature2 & CPUID2_VMX)) {
542 		printf("vmx_init: processor does not support VMX operation\n");
543 		return (ENXIO);
544 	}
545 
546 	/*
547 	 * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits
548 	 * are set (bits 0 and 2 respectively).
549 	 */
550 	feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
551 	if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 1 &&
552 	    (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
553 		printf("vmx_init: VMX operation disabled by BIOS\n");
554 		return (ENXIO);
555 	}
556 
557 	/*
558 	 * Verify capabilities MSR_VMX_BASIC:
559 	 * - bit 54 indicates support for INS/OUTS decoding
560 	 */
561 	basic = rdmsr(MSR_VMX_BASIC);
562 	if ((basic & (1UL << 54)) == 0) {
563 		printf("vmx_init: processor does not support desired basic "
564 		    "capabilities\n");
565 		return (EINVAL);
566 	}
567 
568 	/* Check support for primary processor-based VM-execution controls */
569 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
570 			       MSR_VMX_TRUE_PROCBASED_CTLS,
571 			       PROCBASED_CTLS_ONE_SETTING,
572 			       PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
573 	if (error) {
574 		printf("vmx_init: processor does not support desired primary "
575 		       "processor-based controls\n");
576 		return (error);
577 	}
578 
579 	/* Clear the processor-based ctl bits that are set on demand */
580 	procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
581 
582 	/* Check support for secondary processor-based VM-execution controls */
583 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
584 			       MSR_VMX_PROCBASED_CTLS2,
585 			       PROCBASED_CTLS2_ONE_SETTING,
586 			       PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
587 	if (error) {
588 		printf("vmx_init: processor does not support desired secondary "
589 		       "processor-based controls\n");
590 		return (error);
591 	}
592 
593 	/* Check support for VPID */
594 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
595 			       PROCBASED2_ENABLE_VPID, 0, &tmp);
596 	if (error == 0)
597 		procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
598 
599 	/* Check support for pin-based VM-execution controls */
600 	error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
601 			       MSR_VMX_TRUE_PINBASED_CTLS,
602 			       PINBASED_CTLS_ONE_SETTING,
603 			       PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
604 	if (error) {
605 		printf("vmx_init: processor does not support desired "
606 		       "pin-based controls\n");
607 		return (error);
608 	}
609 
610 	/* Check support for VM-exit controls */
611 	error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
612 			       VM_EXIT_CTLS_ONE_SETTING,
613 			       VM_EXIT_CTLS_ZERO_SETTING,
614 			       &exit_ctls);
615 	if (error) {
616 		printf("vmx_init: processor does not support desired "
617 		    "exit controls\n");
618 		return (error);
619 	}
620 
621 	/* Check support for VM-entry controls */
622 	error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS,
623 	    VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING,
624 	    &entry_ctls);
625 	if (error) {
626 		printf("vmx_init: processor does not support desired "
627 		    "entry controls\n");
628 		return (error);
629 	}
630 
631 	/*
632 	 * Check support for optional features by testing them
633 	 * as individual bits
634 	 */
635 	cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
636 					MSR_VMX_TRUE_PROCBASED_CTLS,
637 					PROCBASED_HLT_EXITING, 0,
638 					&tmp) == 0);
639 
640 	cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
641 					MSR_VMX_PROCBASED_CTLS,
642 					PROCBASED_MTF, 0,
643 					&tmp) == 0);
644 
645 	cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
646 					 MSR_VMX_TRUE_PROCBASED_CTLS,
647 					 PROCBASED_PAUSE_EXITING, 0,
648 					 &tmp) == 0);
649 
650 	cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
651 					MSR_VMX_PROCBASED_CTLS2,
652 					PROCBASED2_UNRESTRICTED_GUEST, 0,
653 				        &tmp) == 0);
654 
655 	cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
656 	    MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
657 	    &tmp) == 0);
658 
659 	/*
660 	 * Check support for virtual interrupt delivery.
661 	 */
662 	procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
663 	    PROCBASED2_VIRTUALIZE_X2APIC_MODE |
664 	    PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
665 	    PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY);
666 
667 	use_tpr_shadow = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
668 	    MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0,
669 	    &tmp) == 0);
670 
671 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
672 	    procbased2_vid_bits, 0, &tmp);
673 	if (error == 0 && use_tpr_shadow) {
674 		virtual_interrupt_delivery = 1;
675 		TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid",
676 		    &virtual_interrupt_delivery);
677 	}
678 
679 	if (virtual_interrupt_delivery) {
680 		procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
681 		procbased_ctls2 |= procbased2_vid_bits;
682 		procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE;
683 
684 		/*
685 		 * No need to emulate accesses to %CR8 if virtual
686 		 * interrupt delivery is enabled.
687 		 */
688 		procbased_ctls &= ~PROCBASED_CR8_LOAD_EXITING;
689 		procbased_ctls &= ~PROCBASED_CR8_STORE_EXITING;
690 
691 		/*
692 		 * Check for Posted Interrupts only if Virtual Interrupt
693 		 * Delivery is enabled.
694 		 */
695 		error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
696 		    MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0,
697 		    &tmp);
698 		if (error == 0) {
699 			pirvec = vmm_ipi_alloc();
700 			if (pirvec == 0) {
701 				if (bootverbose) {
702 					printf("vmx_init: unable to allocate "
703 					    "posted interrupt vector\n");
704 				}
705 			} else {
706 				posted_interrupts = 1;
707 				TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir",
708 				    &posted_interrupts);
709 			}
710 		}
711 	}
712 
713 	if (posted_interrupts)
714 		    pinbased_ctls |= PINBASED_POSTED_INTERRUPT;
715 
716 	/* Initialize EPT */
717 	error = ept_init(ipinum);
718 	if (error) {
719 		printf("vmx_init: ept initialization failed (%d)\n", error);
720 		return (error);
721 	}
722 
723 	/*
724 	 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
725 	 */
726 	fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
727 	fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
728 	cr0_ones_mask = fixed0 & fixed1;
729 	cr0_zeros_mask = ~fixed0 & ~fixed1;
730 
731 	/*
732 	 * CR0_PE and CR0_PG can be set to zero in VMX non-root operation
733 	 * if unrestricted guest execution is allowed.
734 	 */
735 	if (cap_unrestricted_guest)
736 		cr0_ones_mask &= ~(CR0_PG | CR0_PE);
737 
738 	/*
739 	 * Do not allow the guest to set CR0_NW or CR0_CD.
740 	 */
741 	cr0_zeros_mask |= (CR0_NW | CR0_CD);
742 
743 	fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
744 	fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
745 	cr4_ones_mask = fixed0 & fixed1;
746 	cr4_zeros_mask = ~fixed0 & ~fixed1;
747 
748 	vpid_init();
749 
750 	vmx_msr_init();
751 
752 	/* enable VMX operation */
753 	smp_rendezvous(NULL, vmx_enable, NULL, NULL);
754 
755 	vmx_initialized = 1;
756 
757 	return (0);
758 }
759 
760 static void
761 vmx_trigger_hostintr(int vector)
762 {
763 	uintptr_t func;
764 	struct gate_descriptor *gd;
765 
766 	gd = &idt[vector];
767 
768 	KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: "
769 	    "invalid vector %d", vector));
770 	KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present",
771 	    vector));
772 	KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d "
773 	    "has invalid type %d", vector, gd->gd_type));
774 	KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d "
775 	    "has invalid dpl %d", vector, gd->gd_dpl));
776 	KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor "
777 	    "for vector %d has invalid selector %d", vector, gd->gd_selector));
778 	KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid "
779 	    "IST %d", vector, gd->gd_ist));
780 
781 	func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset);
782 	vmx_call_isr(func);
783 }
784 
785 static int
786 vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial)
787 {
788 	int error, mask_ident, shadow_ident;
789 	uint64_t mask_value;
790 
791 	if (which != 0 && which != 4)
792 		panic("vmx_setup_cr_shadow: unknown cr%d", which);
793 
794 	if (which == 0) {
795 		mask_ident = VMCS_CR0_MASK;
796 		mask_value = cr0_ones_mask | cr0_zeros_mask;
797 		shadow_ident = VMCS_CR0_SHADOW;
798 	} else {
799 		mask_ident = VMCS_CR4_MASK;
800 		mask_value = cr4_ones_mask | cr4_zeros_mask;
801 		shadow_ident = VMCS_CR4_SHADOW;
802 	}
803 
804 	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value);
805 	if (error)
806 		return (error);
807 
808 	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial);
809 	if (error)
810 		return (error);
811 
812 	return (0);
813 }
814 #define	vmx_setup_cr0_shadow(vmcs,init)	vmx_setup_cr_shadow(0, (vmcs), (init))
815 #define	vmx_setup_cr4_shadow(vmcs,init)	vmx_setup_cr_shadow(4, (vmcs), (init))
816 
817 static void *
818 vmx_vminit(struct vm *vm, pmap_t pmap)
819 {
820 	uint16_t vpid[VM_MAXCPU];
821 	int i, error;
822 	struct vmx *vmx;
823 	struct vmcs *vmcs;
824 	uint32_t exc_bitmap;
825 
826 	vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO);
827 	if ((uintptr_t)vmx & PAGE_MASK) {
828 		panic("malloc of struct vmx not aligned on %d byte boundary",
829 		      PAGE_SIZE);
830 	}
831 	vmx->vm = vm;
832 
833 	vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pml4));
834 
835 	/*
836 	 * Clean up EPTP-tagged guest physical and combined mappings
837 	 *
838 	 * VMX transitions are not required to invalidate any guest physical
839 	 * mappings. So, it may be possible for stale guest physical mappings
840 	 * to be present in the processor TLBs.
841 	 *
842 	 * Combined mappings for this EP4TA are also invalidated for all VPIDs.
843 	 */
844 	ept_invalidate_mappings(vmx->eptp);
845 
846 	msr_bitmap_initialize(vmx->msr_bitmap);
847 
848 	/*
849 	 * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE.
850 	 * The guest FSBASE and GSBASE are saved and restored during
851 	 * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are
852 	 * always restored from the vmcs host state area on vm-exit.
853 	 *
854 	 * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in
855 	 * how they are saved/restored so can be directly accessed by the
856 	 * guest.
857 	 *
858 	 * MSR_EFER is saved and restored in the guest VMCS area on a
859 	 * VM exit and entry respectively. It is also restored from the
860 	 * host VMCS area on a VM exit.
861 	 *
862 	 * MSR_PAT is saved and restored in the guest VMCS are on a VM exit
863 	 * and entry respectively. It is also restored from the host VMCS
864 	 * area on a VM exit.
865 	 *
866 	 * The TSC MSR is exposed read-only. Writes are disallowed as that
867 	 * will impact the host TSC.
868 	 * XXX Writes would be implemented with a wrmsr trap, and
869 	 * then modifying the TSC offset in the VMCS.
870 	 */
871 	if (guest_msr_rw(vmx, MSR_GSBASE) ||
872 	    guest_msr_rw(vmx, MSR_FSBASE) ||
873 	    guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) ||
874 	    guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) ||
875 	    guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) ||
876 	    guest_msr_rw(vmx, MSR_EFER) ||
877 	    guest_msr_rw(vmx, MSR_PAT) ||
878 	    guest_msr_ro(vmx, MSR_TSC))
879 		panic("vmx_vminit: error setting guest msr access");
880 
881 	vpid_alloc(vpid, VM_MAXCPU);
882 
883 	if (virtual_interrupt_delivery) {
884 		error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE,
885 		    APIC_ACCESS_ADDRESS);
886 		/* XXX this should really return an error to the caller */
887 		KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error));
888 	}
889 
890 	for (i = 0; i < VM_MAXCPU; i++) {
891 		vmcs = &vmx->vmcs[i];
892 		vmcs->identifier = vmx_revision();
893 		error = vmclear(vmcs);
894 		if (error != 0) {
895 			panic("vmx_vminit: vmclear error %d on vcpu %d\n",
896 			      error, i);
897 		}
898 
899 		vmx_msr_guest_init(vmx, i);
900 
901 		error = vmcs_init(vmcs);
902 		KASSERT(error == 0, ("vmcs_init error %d", error));
903 
904 		VMPTRLD(vmcs);
905 		error = 0;
906 		error += vmwrite(VMCS_HOST_RSP, (u_long)&vmx->ctx[i]);
907 		error += vmwrite(VMCS_EPTP, vmx->eptp);
908 		error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls);
909 		error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls);
910 		error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2);
911 		error += vmwrite(VMCS_EXIT_CTLS, exit_ctls);
912 		error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls);
913 		error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap));
914 		error += vmwrite(VMCS_VPID, vpid[i]);
915 
916 		/* exception bitmap */
917 		if (vcpu_trace_exceptions(vm, i))
918 			exc_bitmap = 0xffffffff;
919 		else
920 			exc_bitmap = 1 << IDT_MC;
921 		error += vmwrite(VMCS_EXCEPTION_BITMAP, exc_bitmap);
922 
923 		if (virtual_interrupt_delivery) {
924 			error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS);
925 			error += vmwrite(VMCS_VIRTUAL_APIC,
926 			    vtophys(&vmx->apic_page[i]));
927 			error += vmwrite(VMCS_EOI_EXIT0, 0);
928 			error += vmwrite(VMCS_EOI_EXIT1, 0);
929 			error += vmwrite(VMCS_EOI_EXIT2, 0);
930 			error += vmwrite(VMCS_EOI_EXIT3, 0);
931 		}
932 		if (posted_interrupts) {
933 			error += vmwrite(VMCS_PIR_VECTOR, pirvec);
934 			error += vmwrite(VMCS_PIR_DESC,
935 			    vtophys(&vmx->pir_desc[i]));
936 		}
937 		VMCLEAR(vmcs);
938 		KASSERT(error == 0, ("vmx_vminit: error customizing the vmcs"));
939 
940 		vmx->cap[i].set = 0;
941 		vmx->cap[i].proc_ctls = procbased_ctls;
942 		vmx->cap[i].proc_ctls2 = procbased_ctls2;
943 
944 		vmx->state[i].lastcpu = NOCPU;
945 		vmx->state[i].vpid = vpid[i];
946 
947 		/*
948 		 * Set up the CR0/4 shadows, and init the read shadow
949 		 * to the power-on register value from the Intel Sys Arch.
950 		 *  CR0 - 0x60000010
951 		 *  CR4 - 0
952 		 */
953 		error = vmx_setup_cr0_shadow(vmcs, 0x60000010);
954 		if (error != 0)
955 			panic("vmx_setup_cr0_shadow %d", error);
956 
957 		error = vmx_setup_cr4_shadow(vmcs, 0);
958 		if (error != 0)
959 			panic("vmx_setup_cr4_shadow %d", error);
960 
961 		vmx->ctx[i].pmap = pmap;
962 	}
963 
964 	return (vmx);
965 }
966 
967 static int
968 vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx)
969 {
970 	int handled, func;
971 
972 	func = vmxctx->guest_rax;
973 
974 	handled = x86_emulate_cpuid(vm, vcpu,
975 				    (uint32_t*)(&vmxctx->guest_rax),
976 				    (uint32_t*)(&vmxctx->guest_rbx),
977 				    (uint32_t*)(&vmxctx->guest_rcx),
978 				    (uint32_t*)(&vmxctx->guest_rdx));
979 	return (handled);
980 }
981 
982 static __inline void
983 vmx_run_trace(struct vmx *vmx, int vcpu)
984 {
985 #ifdef KTR
986 	VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %#lx", vmcs_guest_rip());
987 #endif
988 }
989 
990 static __inline void
991 vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason,
992 	       int handled)
993 {
994 #ifdef KTR
995 	VCPU_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx",
996 		 handled ? "handled" : "unhandled",
997 		 exit_reason_to_str(exit_reason), rip);
998 #endif
999 }
1000 
1001 static __inline void
1002 vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip)
1003 {
1004 #ifdef KTR
1005 	VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip);
1006 #endif
1007 }
1008 
1009 static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved");
1010 static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done");
1011 
1012 /*
1013  * Invalidate guest mappings identified by its vpid from the TLB.
1014  */
1015 static __inline void
1016 vmx_invvpid(struct vmx *vmx, int vcpu, pmap_t pmap, int running)
1017 {
1018 	struct vmxstate *vmxstate;
1019 	struct invvpid_desc invvpid_desc;
1020 
1021 	vmxstate = &vmx->state[vcpu];
1022 	if (vmxstate->vpid == 0)
1023 		return;
1024 
1025 	if (!running) {
1026 		/*
1027 		 * Set the 'lastcpu' to an invalid host cpu.
1028 		 *
1029 		 * This will invalidate TLB entries tagged with the vcpu's
1030 		 * vpid the next time it runs via vmx_set_pcpu_defaults().
1031 		 */
1032 		vmxstate->lastcpu = NOCPU;
1033 		return;
1034 	}
1035 
1036 	KASSERT(curthread->td_critnest > 0, ("%s: vcpu %d running outside "
1037 	    "critical section", __func__, vcpu));
1038 
1039 	/*
1040 	 * Invalidate all mappings tagged with 'vpid'
1041 	 *
1042 	 * We do this because this vcpu was executing on a different host
1043 	 * cpu when it last ran. We do not track whether it invalidated
1044 	 * mappings associated with its 'vpid' during that run. So we must
1045 	 * assume that the mappings associated with 'vpid' on 'curcpu' are
1046 	 * stale and invalidate them.
1047 	 *
1048 	 * Note that we incur this penalty only when the scheduler chooses to
1049 	 * move the thread associated with this vcpu between host cpus.
1050 	 *
1051 	 * Note also that this will invalidate mappings tagged with 'vpid'
1052 	 * for "all" EP4TAs.
1053 	 */
1054 	if (pmap->pm_eptgen == vmx->eptgen[curcpu]) {
1055 		invvpid_desc._res1 = 0;
1056 		invvpid_desc._res2 = 0;
1057 		invvpid_desc.vpid = vmxstate->vpid;
1058 		invvpid_desc.linear_addr = 0;
1059 		invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
1060 		vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_DONE, 1);
1061 	} else {
1062 		/*
1063 		 * The invvpid can be skipped if an invept is going to
1064 		 * be performed before entering the guest. The invept
1065 		 * will invalidate combined mappings tagged with
1066 		 * 'vmx->eptp' for all vpids.
1067 		 */
1068 		vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_SAVED, 1);
1069 	}
1070 }
1071 
1072 static void
1073 vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu, pmap_t pmap)
1074 {
1075 	struct vmxstate *vmxstate;
1076 
1077 	vmxstate = &vmx->state[vcpu];
1078 	if (vmxstate->lastcpu == curcpu)
1079 		return;
1080 
1081 	vmxstate->lastcpu = curcpu;
1082 
1083 	vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1);
1084 
1085 	vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
1086 	vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
1087 	vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
1088 	vmx_invvpid(vmx, vcpu, pmap, 1);
1089 }
1090 
1091 /*
1092  * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
1093  */
1094 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
1095 
1096 static void __inline
1097 vmx_set_int_window_exiting(struct vmx *vmx, int vcpu)
1098 {
1099 
1100 	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) {
1101 		vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
1102 		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1103 		VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting");
1104 	}
1105 }
1106 
1107 static void __inline
1108 vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu)
1109 {
1110 
1111 	KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0,
1112 	    ("intr_window_exiting not set: %#x", vmx->cap[vcpu].proc_ctls));
1113 	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
1114 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1115 	VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting");
1116 }
1117 
1118 static void __inline
1119 vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu)
1120 {
1121 
1122 	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) {
1123 		vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
1124 		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1125 		VCPU_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting");
1126 	}
1127 }
1128 
1129 static void __inline
1130 vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu)
1131 {
1132 
1133 	KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0,
1134 	    ("nmi_window_exiting not set %#x", vmx->cap[vcpu].proc_ctls));
1135 	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
1136 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1137 	VCPU_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting");
1138 }
1139 
1140 #define	NMI_BLOCKING	(VMCS_INTERRUPTIBILITY_NMI_BLOCKING |		\
1141 			 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1142 #define	HWINTR_BLOCKING	(VMCS_INTERRUPTIBILITY_STI_BLOCKING |		\
1143 			 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1144 
1145 static void
1146 vmx_inject_nmi(struct vmx *vmx, int vcpu)
1147 {
1148 	uint32_t gi, info;
1149 
1150 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1151 	KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest "
1152 	    "interruptibility-state %#x", gi));
1153 
1154 	info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1155 	KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid "
1156 	    "VM-entry interruption information %#x", info));
1157 
1158 	/*
1159 	 * Inject the virtual NMI. The vector must be the NMI IDT entry
1160 	 * or the VMCS entry check will fail.
1161 	 */
1162 	info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID;
1163 	vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1164 
1165 	VCPU_CTR0(vmx->vm, vcpu, "Injecting vNMI");
1166 
1167 	/* Clear the request */
1168 	vm_nmi_clear(vmx->vm, vcpu);
1169 }
1170 
1171 static void
1172 vmx_inject_interrupts(struct vmx *vmx, int vcpu, struct vlapic *vlapic)
1173 {
1174 	int vector, need_nmi_exiting, extint_pending;
1175 	uint64_t rflags, entryinfo;
1176 	uint32_t gi, info;
1177 
1178 	if (vm_entry_intinfo(vmx->vm, vcpu, &entryinfo)) {
1179 		KASSERT((entryinfo & VMCS_INTR_VALID) != 0, ("%s: entry "
1180 		    "intinfo is not valid: %#lx", __func__, entryinfo));
1181 
1182 		info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1183 		KASSERT((info & VMCS_INTR_VALID) == 0, ("%s: cannot inject "
1184 		     "pending exception: %#lx/%#x", __func__, entryinfo, info));
1185 
1186 		info = entryinfo;
1187 		vector = info & 0xff;
1188 		if (vector == IDT_BP || vector == IDT_OF) {
1189 			/*
1190 			 * VT-x requires #BP and #OF to be injected as software
1191 			 * exceptions.
1192 			 */
1193 			info &= ~VMCS_INTR_T_MASK;
1194 			info |= VMCS_INTR_T_SWEXCEPTION;
1195 		}
1196 
1197 		if (info & VMCS_INTR_DEL_ERRCODE)
1198 			vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, entryinfo >> 32);
1199 
1200 		vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1201 	}
1202 
1203 	if (vm_nmi_pending(vmx->vm, vcpu)) {
1204 		/*
1205 		 * If there are no conditions blocking NMI injection then
1206 		 * inject it directly here otherwise enable "NMI window
1207 		 * exiting" to inject it as soon as we can.
1208 		 *
1209 		 * We also check for STI_BLOCKING because some implementations
1210 		 * don't allow NMI injection in this case. If we are running
1211 		 * on a processor that doesn't have this restriction it will
1212 		 * immediately exit and the NMI will be injected in the
1213 		 * "NMI window exiting" handler.
1214 		 */
1215 		need_nmi_exiting = 1;
1216 		gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1217 		if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) {
1218 			info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1219 			if ((info & VMCS_INTR_VALID) == 0) {
1220 				vmx_inject_nmi(vmx, vcpu);
1221 				need_nmi_exiting = 0;
1222 			} else {
1223 				VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI "
1224 				    "due to VM-entry intr info %#x", info);
1225 			}
1226 		} else {
1227 			VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI due to "
1228 			    "Guest Interruptibility-state %#x", gi);
1229 		}
1230 
1231 		if (need_nmi_exiting)
1232 			vmx_set_nmi_window_exiting(vmx, vcpu);
1233 	}
1234 
1235 	extint_pending = vm_extint_pending(vmx->vm, vcpu);
1236 
1237 	if (!extint_pending && virtual_interrupt_delivery) {
1238 		vmx_inject_pir(vlapic);
1239 		return;
1240 	}
1241 
1242 	/*
1243 	 * If interrupt-window exiting is already in effect then don't bother
1244 	 * checking for pending interrupts. This is just an optimization and
1245 	 * not needed for correctness.
1246 	 */
1247 	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0) {
1248 		VCPU_CTR0(vmx->vm, vcpu, "Skip interrupt injection due to "
1249 		    "pending int_window_exiting");
1250 		return;
1251 	}
1252 
1253 	if (!extint_pending) {
1254 		/* Ask the local apic for a vector to inject */
1255 		if (!vlapic_pending_intr(vlapic, &vector))
1256 			return;
1257 
1258 		/*
1259 		 * From the Intel SDM, Volume 3, Section "Maskable
1260 		 * Hardware Interrupts":
1261 		 * - maskable interrupt vectors [16,255] can be delivered
1262 		 *   through the local APIC.
1263 		*/
1264 		KASSERT(vector >= 16 && vector <= 255,
1265 		    ("invalid vector %d from local APIC", vector));
1266 	} else {
1267 		/* Ask the legacy pic for a vector to inject */
1268 		vatpic_pending_intr(vmx->vm, &vector);
1269 
1270 		/*
1271 		 * From the Intel SDM, Volume 3, Section "Maskable
1272 		 * Hardware Interrupts":
1273 		 * - maskable interrupt vectors [0,255] can be delivered
1274 		 *   through the INTR pin.
1275 		 */
1276 		KASSERT(vector >= 0 && vector <= 255,
1277 		    ("invalid vector %d from INTR", vector));
1278 	}
1279 
1280 	/* Check RFLAGS.IF and the interruptibility state of the guest */
1281 	rflags = vmcs_read(VMCS_GUEST_RFLAGS);
1282 	if ((rflags & PSL_I) == 0) {
1283 		VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1284 		    "rflags %#lx", vector, rflags);
1285 		goto cantinject;
1286 	}
1287 
1288 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1289 	if (gi & HWINTR_BLOCKING) {
1290 		VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1291 		    "Guest Interruptibility-state %#x", vector, gi);
1292 		goto cantinject;
1293 	}
1294 
1295 	info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1296 	if (info & VMCS_INTR_VALID) {
1297 		/*
1298 		 * This is expected and could happen for multiple reasons:
1299 		 * - A vectoring VM-entry was aborted due to astpending
1300 		 * - A VM-exit happened during event injection.
1301 		 * - An exception was injected above.
1302 		 * - An NMI was injected above or after "NMI window exiting"
1303 		 */
1304 		VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1305 		    "VM-entry intr info %#x", vector, info);
1306 		goto cantinject;
1307 	}
1308 
1309 	/* Inject the interrupt */
1310 	info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID;
1311 	info |= vector;
1312 	vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1313 
1314 	if (!extint_pending) {
1315 		/* Update the Local APIC ISR */
1316 		vlapic_intr_accepted(vlapic, vector);
1317 	} else {
1318 		vm_extint_clear(vmx->vm, vcpu);
1319 		vatpic_intr_accepted(vmx->vm, vector);
1320 
1321 		/*
1322 		 * After we accepted the current ExtINT the PIC may
1323 		 * have posted another one.  If that is the case, set
1324 		 * the Interrupt Window Exiting execution control so
1325 		 * we can inject that one too.
1326 		 *
1327 		 * Also, interrupt window exiting allows us to inject any
1328 		 * pending APIC vector that was preempted by the ExtINT
1329 		 * as soon as possible. This applies both for the software
1330 		 * emulated vlapic and the hardware assisted virtual APIC.
1331 		 */
1332 		vmx_set_int_window_exiting(vmx, vcpu);
1333 	}
1334 
1335 	VCPU_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector);
1336 
1337 	return;
1338 
1339 cantinject:
1340 	/*
1341 	 * Set the Interrupt Window Exiting execution control so we can inject
1342 	 * the interrupt as soon as blocking condition goes away.
1343 	 */
1344 	vmx_set_int_window_exiting(vmx, vcpu);
1345 }
1346 
1347 /*
1348  * If the Virtual NMIs execution control is '1' then the logical processor
1349  * tracks virtual-NMI blocking in the Guest Interruptibility-state field of
1350  * the VMCS. An IRET instruction in VMX non-root operation will remove any
1351  * virtual-NMI blocking.
1352  *
1353  * This unblocking occurs even if the IRET causes a fault. In this case the
1354  * hypervisor needs to restore virtual-NMI blocking before resuming the guest.
1355  */
1356 static void
1357 vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid)
1358 {
1359 	uint32_t gi;
1360 
1361 	VCPU_CTR0(vmx->vm, vcpuid, "Restore Virtual-NMI blocking");
1362 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1363 	gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1364 	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1365 }
1366 
1367 static void
1368 vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid)
1369 {
1370 	uint32_t gi;
1371 
1372 	VCPU_CTR0(vmx->vm, vcpuid, "Clear Virtual-NMI blocking");
1373 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1374 	gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1375 	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1376 }
1377 
1378 static void
1379 vmx_assert_nmi_blocking(struct vmx *vmx, int vcpuid)
1380 {
1381 	uint32_t gi;
1382 
1383 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1384 	KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING,
1385 	    ("NMI blocking is not in effect %#x", gi));
1386 }
1387 
1388 static int
1389 vmx_emulate_xsetbv(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1390 {
1391 	struct vmxctx *vmxctx;
1392 	uint64_t xcrval;
1393 	const struct xsave_limits *limits;
1394 
1395 	vmxctx = &vmx->ctx[vcpu];
1396 	limits = vmm_get_xsave_limits();
1397 
1398 	/*
1399 	 * Note that the processor raises a GP# fault on its own if
1400 	 * xsetbv is executed for CPL != 0, so we do not have to
1401 	 * emulate that fault here.
1402 	 */
1403 
1404 	/* Only xcr0 is supported. */
1405 	if (vmxctx->guest_rcx != 0) {
1406 		vm_inject_gp(vmx->vm, vcpu);
1407 		return (HANDLED);
1408 	}
1409 
1410 	/* We only handle xcr0 if both the host and guest have XSAVE enabled. */
1411 	if (!limits->xsave_enabled || !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) {
1412 		vm_inject_ud(vmx->vm, vcpu);
1413 		return (HANDLED);
1414 	}
1415 
1416 	xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff);
1417 	if ((xcrval & ~limits->xcr0_allowed) != 0) {
1418 		vm_inject_gp(vmx->vm, vcpu);
1419 		return (HANDLED);
1420 	}
1421 
1422 	if (!(xcrval & XFEATURE_ENABLED_X87)) {
1423 		vm_inject_gp(vmx->vm, vcpu);
1424 		return (HANDLED);
1425 	}
1426 
1427 	/* AVX (YMM_Hi128) requires SSE. */
1428 	if (xcrval & XFEATURE_ENABLED_AVX &&
1429 	    (xcrval & XFEATURE_AVX) != XFEATURE_AVX) {
1430 		vm_inject_gp(vmx->vm, vcpu);
1431 		return (HANDLED);
1432 	}
1433 
1434 	/*
1435 	 * AVX512 requires base AVX (YMM_Hi128) as well as OpMask,
1436 	 * ZMM_Hi256, and Hi16_ZMM.
1437 	 */
1438 	if (xcrval & XFEATURE_AVX512 &&
1439 	    (xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) !=
1440 	    (XFEATURE_AVX512 | XFEATURE_AVX)) {
1441 		vm_inject_gp(vmx->vm, vcpu);
1442 		return (HANDLED);
1443 	}
1444 
1445 	/*
1446 	 * Intel MPX requires both bound register state flags to be
1447 	 * set.
1448 	 */
1449 	if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) !=
1450 	    ((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) {
1451 		vm_inject_gp(vmx->vm, vcpu);
1452 		return (HANDLED);
1453 	}
1454 
1455 	/*
1456 	 * This runs "inside" vmrun() with the guest's FPU state, so
1457 	 * modifying xcr0 directly modifies the guest's xcr0, not the
1458 	 * host's.
1459 	 */
1460 	load_xcr(0, xcrval);
1461 	return (HANDLED);
1462 }
1463 
1464 static uint64_t
1465 vmx_get_guest_reg(struct vmx *vmx, int vcpu, int ident)
1466 {
1467 	const struct vmxctx *vmxctx;
1468 
1469 	vmxctx = &vmx->ctx[vcpu];
1470 
1471 	switch (ident) {
1472 	case 0:
1473 		return (vmxctx->guest_rax);
1474 	case 1:
1475 		return (vmxctx->guest_rcx);
1476 	case 2:
1477 		return (vmxctx->guest_rdx);
1478 	case 3:
1479 		return (vmxctx->guest_rbx);
1480 	case 4:
1481 		return (vmcs_read(VMCS_GUEST_RSP));
1482 	case 5:
1483 		return (vmxctx->guest_rbp);
1484 	case 6:
1485 		return (vmxctx->guest_rsi);
1486 	case 7:
1487 		return (vmxctx->guest_rdi);
1488 	case 8:
1489 		return (vmxctx->guest_r8);
1490 	case 9:
1491 		return (vmxctx->guest_r9);
1492 	case 10:
1493 		return (vmxctx->guest_r10);
1494 	case 11:
1495 		return (vmxctx->guest_r11);
1496 	case 12:
1497 		return (vmxctx->guest_r12);
1498 	case 13:
1499 		return (vmxctx->guest_r13);
1500 	case 14:
1501 		return (vmxctx->guest_r14);
1502 	case 15:
1503 		return (vmxctx->guest_r15);
1504 	default:
1505 		panic("invalid vmx register %d", ident);
1506 	}
1507 }
1508 
1509 static void
1510 vmx_set_guest_reg(struct vmx *vmx, int vcpu, int ident, uint64_t regval)
1511 {
1512 	struct vmxctx *vmxctx;
1513 
1514 	vmxctx = &vmx->ctx[vcpu];
1515 
1516 	switch (ident) {
1517 	case 0:
1518 		vmxctx->guest_rax = regval;
1519 		break;
1520 	case 1:
1521 		vmxctx->guest_rcx = regval;
1522 		break;
1523 	case 2:
1524 		vmxctx->guest_rdx = regval;
1525 		break;
1526 	case 3:
1527 		vmxctx->guest_rbx = regval;
1528 		break;
1529 	case 4:
1530 		vmcs_write(VMCS_GUEST_RSP, regval);
1531 		break;
1532 	case 5:
1533 		vmxctx->guest_rbp = regval;
1534 		break;
1535 	case 6:
1536 		vmxctx->guest_rsi = regval;
1537 		break;
1538 	case 7:
1539 		vmxctx->guest_rdi = regval;
1540 		break;
1541 	case 8:
1542 		vmxctx->guest_r8 = regval;
1543 		break;
1544 	case 9:
1545 		vmxctx->guest_r9 = regval;
1546 		break;
1547 	case 10:
1548 		vmxctx->guest_r10 = regval;
1549 		break;
1550 	case 11:
1551 		vmxctx->guest_r11 = regval;
1552 		break;
1553 	case 12:
1554 		vmxctx->guest_r12 = regval;
1555 		break;
1556 	case 13:
1557 		vmxctx->guest_r13 = regval;
1558 		break;
1559 	case 14:
1560 		vmxctx->guest_r14 = regval;
1561 		break;
1562 	case 15:
1563 		vmxctx->guest_r15 = regval;
1564 		break;
1565 	default:
1566 		panic("invalid vmx register %d", ident);
1567 	}
1568 }
1569 
1570 static int
1571 vmx_emulate_cr0_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1572 {
1573 	uint64_t crval, regval;
1574 
1575 	/* We only handle mov to %cr0 at this time */
1576 	if ((exitqual & 0xf0) != 0x00)
1577 		return (UNHANDLED);
1578 
1579 	regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1580 
1581 	vmcs_write(VMCS_CR0_SHADOW, regval);
1582 
1583 	crval = regval | cr0_ones_mask;
1584 	crval &= ~cr0_zeros_mask;
1585 	vmcs_write(VMCS_GUEST_CR0, crval);
1586 
1587 	if (regval & CR0_PG) {
1588 		uint64_t efer, entry_ctls;
1589 
1590 		/*
1591 		 * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and
1592 		 * the "IA-32e mode guest" bit in VM-entry control must be
1593 		 * equal.
1594 		 */
1595 		efer = vmcs_read(VMCS_GUEST_IA32_EFER);
1596 		if (efer & EFER_LME) {
1597 			efer |= EFER_LMA;
1598 			vmcs_write(VMCS_GUEST_IA32_EFER, efer);
1599 			entry_ctls = vmcs_read(VMCS_ENTRY_CTLS);
1600 			entry_ctls |= VM_ENTRY_GUEST_LMA;
1601 			vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
1602 		}
1603 	}
1604 
1605 	return (HANDLED);
1606 }
1607 
1608 static int
1609 vmx_emulate_cr4_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1610 {
1611 	uint64_t crval, regval;
1612 
1613 	/* We only handle mov to %cr4 at this time */
1614 	if ((exitqual & 0xf0) != 0x00)
1615 		return (UNHANDLED);
1616 
1617 	regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1618 
1619 	vmcs_write(VMCS_CR4_SHADOW, regval);
1620 
1621 	crval = regval | cr4_ones_mask;
1622 	crval &= ~cr4_zeros_mask;
1623 	vmcs_write(VMCS_GUEST_CR4, crval);
1624 
1625 	return (HANDLED);
1626 }
1627 
1628 static int
1629 vmx_emulate_cr8_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1630 {
1631 	struct vlapic *vlapic;
1632 	uint64_t cr8;
1633 	int regnum;
1634 
1635 	/* We only handle mov %cr8 to/from a register at this time. */
1636 	if ((exitqual & 0xe0) != 0x00) {
1637 		return (UNHANDLED);
1638 	}
1639 
1640 	vlapic = vm_lapic(vmx->vm, vcpu);
1641 	regnum = (exitqual >> 8) & 0xf;
1642 	if (exitqual & 0x10) {
1643 		cr8 = vlapic_get_cr8(vlapic);
1644 		vmx_set_guest_reg(vmx, vcpu, regnum, cr8);
1645 	} else {
1646 		cr8 = vmx_get_guest_reg(vmx, vcpu, regnum);
1647 		vlapic_set_cr8(vlapic, cr8);
1648 	}
1649 
1650 	return (HANDLED);
1651 }
1652 
1653 /*
1654  * From section "Guest Register State" in the Intel SDM: CPL = SS.DPL
1655  */
1656 static int
1657 vmx_cpl(void)
1658 {
1659 	uint32_t ssar;
1660 
1661 	ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS);
1662 	return ((ssar >> 5) & 0x3);
1663 }
1664 
1665 static enum vm_cpu_mode
1666 vmx_cpu_mode(void)
1667 {
1668 	uint32_t csar;
1669 
1670 	if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) {
1671 		csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1672 		if (csar & 0x2000)
1673 			return (CPU_MODE_64BIT);	/* CS.L = 1 */
1674 		else
1675 			return (CPU_MODE_COMPATIBILITY);
1676 	} else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) {
1677 		return (CPU_MODE_PROTECTED);
1678 	} else {
1679 		return (CPU_MODE_REAL);
1680 	}
1681 }
1682 
1683 static enum vm_paging_mode
1684 vmx_paging_mode(void)
1685 {
1686 
1687 	if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG))
1688 		return (PAGING_MODE_FLAT);
1689 	if (!(vmcs_read(VMCS_GUEST_CR4) & CR4_PAE))
1690 		return (PAGING_MODE_32);
1691 	if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME)
1692 		return (PAGING_MODE_64);
1693 	else
1694 		return (PAGING_MODE_PAE);
1695 }
1696 
1697 static uint64_t
1698 inout_str_index(struct vmx *vmx, int vcpuid, int in)
1699 {
1700 	uint64_t val;
1701 	int error;
1702 	enum vm_reg_name reg;
1703 
1704 	reg = in ? VM_REG_GUEST_RDI : VM_REG_GUEST_RSI;
1705 	error = vmx_getreg(vmx, vcpuid, reg, &val);
1706 	KASSERT(error == 0, ("%s: vmx_getreg error %d", __func__, error));
1707 	return (val);
1708 }
1709 
1710 static uint64_t
1711 inout_str_count(struct vmx *vmx, int vcpuid, int rep)
1712 {
1713 	uint64_t val;
1714 	int error;
1715 
1716 	if (rep) {
1717 		error = vmx_getreg(vmx, vcpuid, VM_REG_GUEST_RCX, &val);
1718 		KASSERT(!error, ("%s: vmx_getreg error %d", __func__, error));
1719 	} else {
1720 		val = 1;
1721 	}
1722 	return (val);
1723 }
1724 
1725 static int
1726 inout_str_addrsize(uint32_t inst_info)
1727 {
1728 	uint32_t size;
1729 
1730 	size = (inst_info >> 7) & 0x7;
1731 	switch (size) {
1732 	case 0:
1733 		return (2);	/* 16 bit */
1734 	case 1:
1735 		return (4);	/* 32 bit */
1736 	case 2:
1737 		return (8);	/* 64 bit */
1738 	default:
1739 		panic("%s: invalid size encoding %d", __func__, size);
1740 	}
1741 }
1742 
1743 static void
1744 inout_str_seginfo(struct vmx *vmx, int vcpuid, uint32_t inst_info, int in,
1745     struct vm_inout_str *vis)
1746 {
1747 	int error, s;
1748 
1749 	if (in) {
1750 		vis->seg_name = VM_REG_GUEST_ES;
1751 	} else {
1752 		s = (inst_info >> 15) & 0x7;
1753 		vis->seg_name = vm_segment_name(s);
1754 	}
1755 
1756 	error = vmx_getdesc(vmx, vcpuid, vis->seg_name, &vis->seg_desc);
1757 	KASSERT(error == 0, ("%s: vmx_getdesc error %d", __func__, error));
1758 }
1759 
1760 static void
1761 vmx_paging_info(struct vm_guest_paging *paging)
1762 {
1763 	paging->cr3 = vmcs_guest_cr3();
1764 	paging->cpl = vmx_cpl();
1765 	paging->cpu_mode = vmx_cpu_mode();
1766 	paging->paging_mode = vmx_paging_mode();
1767 }
1768 
1769 static void
1770 vmexit_inst_emul(struct vm_exit *vmexit, uint64_t gpa, uint64_t gla)
1771 {
1772 	struct vm_guest_paging *paging;
1773 	uint32_t csar;
1774 
1775 	paging = &vmexit->u.inst_emul.paging;
1776 
1777 	vmexit->exitcode = VM_EXITCODE_INST_EMUL;
1778 	vmexit->u.inst_emul.gpa = gpa;
1779 	vmexit->u.inst_emul.gla = gla;
1780 	vmx_paging_info(paging);
1781 	switch (paging->cpu_mode) {
1782 	case CPU_MODE_PROTECTED:
1783 	case CPU_MODE_COMPATIBILITY:
1784 		csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1785 		vmexit->u.inst_emul.cs_d = SEG_DESC_DEF32(csar);
1786 		break;
1787 	default:
1788 		vmexit->u.inst_emul.cs_d = 0;
1789 		break;
1790 	}
1791 	vie_init(&vmexit->u.inst_emul.vie, NULL, 0);
1792 }
1793 
1794 static int
1795 ept_fault_type(uint64_t ept_qual)
1796 {
1797 	int fault_type;
1798 
1799 	if (ept_qual & EPT_VIOLATION_DATA_WRITE)
1800 		fault_type = VM_PROT_WRITE;
1801 	else if (ept_qual & EPT_VIOLATION_INST_FETCH)
1802 		fault_type = VM_PROT_EXECUTE;
1803 	else
1804 		fault_type= VM_PROT_READ;
1805 
1806 	return (fault_type);
1807 }
1808 
1809 static boolean_t
1810 ept_emulation_fault(uint64_t ept_qual)
1811 {
1812 	int read, write;
1813 
1814 	/* EPT fault on an instruction fetch doesn't make sense here */
1815 	if (ept_qual & EPT_VIOLATION_INST_FETCH)
1816 		return (FALSE);
1817 
1818 	/* EPT fault must be a read fault or a write fault */
1819 	read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
1820 	write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
1821 	if ((read | write) == 0)
1822 		return (FALSE);
1823 
1824 	/*
1825 	 * The EPT violation must have been caused by accessing a
1826 	 * guest-physical address that is a translation of a guest-linear
1827 	 * address.
1828 	 */
1829 	if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
1830 	    (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
1831 		return (FALSE);
1832 	}
1833 
1834 	return (TRUE);
1835 }
1836 
1837 static __inline int
1838 apic_access_virtualization(struct vmx *vmx, int vcpuid)
1839 {
1840 	uint32_t proc_ctls2;
1841 
1842 	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
1843 	return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0);
1844 }
1845 
1846 static __inline int
1847 x2apic_virtualization(struct vmx *vmx, int vcpuid)
1848 {
1849 	uint32_t proc_ctls2;
1850 
1851 	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
1852 	return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0);
1853 }
1854 
1855 static int
1856 vmx_handle_apic_write(struct vmx *vmx, int vcpuid, struct vlapic *vlapic,
1857     uint64_t qual)
1858 {
1859 	int error, handled, offset;
1860 	uint32_t *apic_regs, vector;
1861 	bool retu;
1862 
1863 	handled = HANDLED;
1864 	offset = APIC_WRITE_OFFSET(qual);
1865 
1866 	if (!apic_access_virtualization(vmx, vcpuid)) {
1867 		/*
1868 		 * In general there should not be any APIC write VM-exits
1869 		 * unless APIC-access virtualization is enabled.
1870 		 *
1871 		 * However self-IPI virtualization can legitimately trigger
1872 		 * an APIC-write VM-exit so treat it specially.
1873 		 */
1874 		if (x2apic_virtualization(vmx, vcpuid) &&
1875 		    offset == APIC_OFFSET_SELF_IPI) {
1876 			apic_regs = (uint32_t *)(vlapic->apic_page);
1877 			vector = apic_regs[APIC_OFFSET_SELF_IPI / 4];
1878 			vlapic_self_ipi_handler(vlapic, vector);
1879 			return (HANDLED);
1880 		} else
1881 			return (UNHANDLED);
1882 	}
1883 
1884 	switch (offset) {
1885 	case APIC_OFFSET_ID:
1886 		vlapic_id_write_handler(vlapic);
1887 		break;
1888 	case APIC_OFFSET_LDR:
1889 		vlapic_ldr_write_handler(vlapic);
1890 		break;
1891 	case APIC_OFFSET_DFR:
1892 		vlapic_dfr_write_handler(vlapic);
1893 		break;
1894 	case APIC_OFFSET_SVR:
1895 		vlapic_svr_write_handler(vlapic);
1896 		break;
1897 	case APIC_OFFSET_ESR:
1898 		vlapic_esr_write_handler(vlapic);
1899 		break;
1900 	case APIC_OFFSET_ICR_LOW:
1901 		retu = false;
1902 		error = vlapic_icrlo_write_handler(vlapic, &retu);
1903 		if (error != 0 || retu)
1904 			handled = UNHANDLED;
1905 		break;
1906 	case APIC_OFFSET_CMCI_LVT:
1907 	case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT:
1908 		vlapic_lvt_write_handler(vlapic, offset);
1909 		break;
1910 	case APIC_OFFSET_TIMER_ICR:
1911 		vlapic_icrtmr_write_handler(vlapic);
1912 		break;
1913 	case APIC_OFFSET_TIMER_DCR:
1914 		vlapic_dcr_write_handler(vlapic);
1915 		break;
1916 	default:
1917 		handled = UNHANDLED;
1918 		break;
1919 	}
1920 	return (handled);
1921 }
1922 
1923 static bool
1924 apic_access_fault(struct vmx *vmx, int vcpuid, uint64_t gpa)
1925 {
1926 
1927 	if (apic_access_virtualization(vmx, vcpuid) &&
1928 	    (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE))
1929 		return (true);
1930 	else
1931 		return (false);
1932 }
1933 
1934 static int
1935 vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
1936 {
1937 	uint64_t qual;
1938 	int access_type, offset, allowed;
1939 
1940 	if (!apic_access_virtualization(vmx, vcpuid))
1941 		return (UNHANDLED);
1942 
1943 	qual = vmexit->u.vmx.exit_qualification;
1944 	access_type = APIC_ACCESS_TYPE(qual);
1945 	offset = APIC_ACCESS_OFFSET(qual);
1946 
1947 	allowed = 0;
1948 	if (access_type == 0) {
1949 		/*
1950 		 * Read data access to the following registers is expected.
1951 		 */
1952 		switch (offset) {
1953 		case APIC_OFFSET_APR:
1954 		case APIC_OFFSET_PPR:
1955 		case APIC_OFFSET_RRR:
1956 		case APIC_OFFSET_CMCI_LVT:
1957 		case APIC_OFFSET_TIMER_CCR:
1958 			allowed = 1;
1959 			break;
1960 		default:
1961 			break;
1962 		}
1963 	} else if (access_type == 1) {
1964 		/*
1965 		 * Write data access to the following registers is expected.
1966 		 */
1967 		switch (offset) {
1968 		case APIC_OFFSET_VER:
1969 		case APIC_OFFSET_APR:
1970 		case APIC_OFFSET_PPR:
1971 		case APIC_OFFSET_RRR:
1972 		case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7:
1973 		case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7:
1974 		case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7:
1975 		case APIC_OFFSET_CMCI_LVT:
1976 		case APIC_OFFSET_TIMER_CCR:
1977 			allowed = 1;
1978 			break;
1979 		default:
1980 			break;
1981 		}
1982 	}
1983 
1984 	if (allowed) {
1985 		vmexit_inst_emul(vmexit, DEFAULT_APIC_BASE + offset,
1986 		    VIE_INVALID_GLA);
1987 	}
1988 
1989 	/*
1990 	 * Regardless of whether the APIC-access is allowed this handler
1991 	 * always returns UNHANDLED:
1992 	 * - if the access is allowed then it is handled by emulating the
1993 	 *   instruction that caused the VM-exit (outside the critical section)
1994 	 * - if the access is not allowed then it will be converted to an
1995 	 *   exitcode of VM_EXITCODE_VMX and will be dealt with in userland.
1996 	 */
1997 	return (UNHANDLED);
1998 }
1999 
2000 static enum task_switch_reason
2001 vmx_task_switch_reason(uint64_t qual)
2002 {
2003 	int reason;
2004 
2005 	reason = (qual >> 30) & 0x3;
2006 	switch (reason) {
2007 	case 0:
2008 		return (TSR_CALL);
2009 	case 1:
2010 		return (TSR_IRET);
2011 	case 2:
2012 		return (TSR_JMP);
2013 	case 3:
2014 		return (TSR_IDT_GATE);
2015 	default:
2016 		panic("%s: invalid reason %d", __func__, reason);
2017 	}
2018 }
2019 
2020 static int
2021 emulate_wrmsr(struct vmx *vmx, int vcpuid, u_int num, uint64_t val, bool *retu)
2022 {
2023 	int error;
2024 
2025 	if (lapic_msr(num))
2026 		error = lapic_wrmsr(vmx->vm, vcpuid, num, val, retu);
2027 	else
2028 		error = vmx_wrmsr(vmx, vcpuid, num, val, retu);
2029 
2030 	return (error);
2031 }
2032 
2033 static int
2034 emulate_rdmsr(struct vmx *vmx, int vcpuid, u_int num, bool *retu)
2035 {
2036 	struct vmxctx *vmxctx;
2037 	uint64_t result;
2038 	uint32_t eax, edx;
2039 	int error;
2040 
2041 	if (lapic_msr(num))
2042 		error = lapic_rdmsr(vmx->vm, vcpuid, num, &result, retu);
2043 	else
2044 		error = vmx_rdmsr(vmx, vcpuid, num, &result, retu);
2045 
2046 	if (error == 0) {
2047 		eax = result;
2048 		vmxctx = &vmx->ctx[vcpuid];
2049 		error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RAX, eax);
2050 		KASSERT(error == 0, ("vmxctx_setreg(rax) error %d", error));
2051 
2052 		edx = result >> 32;
2053 		error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RDX, edx);
2054 		KASSERT(error == 0, ("vmxctx_setreg(rdx) error %d", error));
2055 	}
2056 
2057 	return (error);
2058 }
2059 
2060 static int
2061 vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
2062 {
2063 	int error, handled, in;
2064 	struct vmxctx *vmxctx;
2065 	struct vlapic *vlapic;
2066 	struct vm_inout_str *vis;
2067 	struct vm_task_switch *ts;
2068 	struct vm_exception vmexc;
2069 	uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, inst_info;
2070 	uint32_t intr_type, intr_vec, reason;
2071 	uint64_t exitintinfo, qual, gpa;
2072 	bool retu;
2073 
2074 	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0);
2075 	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0);
2076 
2077 	handled = UNHANDLED;
2078 	vmxctx = &vmx->ctx[vcpu];
2079 
2080 	qual = vmexit->u.vmx.exit_qualification;
2081 	reason = vmexit->u.vmx.exit_reason;
2082 	vmexit->exitcode = VM_EXITCODE_BOGUS;
2083 
2084 	vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1);
2085 
2086 	/*
2087 	 * VM-entry failures during or after loading guest state.
2088 	 *
2089 	 * These VM-exits are uncommon but must be handled specially
2090 	 * as most VM-exit fields are not populated as usual.
2091 	 */
2092 	if (__predict_false(reason == EXIT_REASON_MCE_DURING_ENTRY)) {
2093 		VCPU_CTR0(vmx->vm, vcpu, "Handling MCE during VM-entry");
2094 		__asm __volatile("int $18");
2095 		return (1);
2096 	}
2097 
2098 	/*
2099 	 * VM exits that can be triggered during event delivery need to
2100 	 * be handled specially by re-injecting the event if the IDT
2101 	 * vectoring information field's valid bit is set.
2102 	 *
2103 	 * See "Information for VM Exits During Event Delivery" in Intel SDM
2104 	 * for details.
2105 	 */
2106 	idtvec_info = vmcs_idt_vectoring_info();
2107 	if (idtvec_info & VMCS_IDT_VEC_VALID) {
2108 		idtvec_info &= ~(1 << 12); /* clear undefined bit */
2109 		exitintinfo = idtvec_info;
2110 		if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2111 			idtvec_err = vmcs_idt_vectoring_err();
2112 			exitintinfo |= (uint64_t)idtvec_err << 32;
2113 		}
2114 		error = vm_exit_intinfo(vmx->vm, vcpu, exitintinfo);
2115 		KASSERT(error == 0, ("%s: vm_set_intinfo error %d",
2116 		    __func__, error));
2117 
2118 		/*
2119 		 * If 'virtual NMIs' are being used and the VM-exit
2120 		 * happened while injecting an NMI during the previous
2121 		 * VM-entry, then clear "blocking by NMI" in the
2122 		 * Guest Interruptibility-State so the NMI can be
2123 		 * reinjected on the subsequent VM-entry.
2124 		 *
2125 		 * However, if the NMI was being delivered through a task
2126 		 * gate, then the new task must start execution with NMIs
2127 		 * blocked so don't clear NMI blocking in this case.
2128 		 */
2129 		intr_type = idtvec_info & VMCS_INTR_T_MASK;
2130 		if (intr_type == VMCS_INTR_T_NMI) {
2131 			if (reason != EXIT_REASON_TASK_SWITCH)
2132 				vmx_clear_nmi_blocking(vmx, vcpu);
2133 			else
2134 				vmx_assert_nmi_blocking(vmx, vcpu);
2135 		}
2136 
2137 		/*
2138 		 * Update VM-entry instruction length if the event being
2139 		 * delivered was a software interrupt or software exception.
2140 		 */
2141 		if (intr_type == VMCS_INTR_T_SWINTR ||
2142 		    intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION ||
2143 		    intr_type == VMCS_INTR_T_SWEXCEPTION) {
2144 			vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2145 		}
2146 	}
2147 
2148 	switch (reason) {
2149 	case EXIT_REASON_TASK_SWITCH:
2150 		ts = &vmexit->u.task_switch;
2151 		ts->tsssel = qual & 0xffff;
2152 		ts->reason = vmx_task_switch_reason(qual);
2153 		ts->ext = 0;
2154 		ts->errcode_valid = 0;
2155 		vmx_paging_info(&ts->paging);
2156 		/*
2157 		 * If the task switch was due to a CALL, JMP, IRET, software
2158 		 * interrupt (INT n) or software exception (INT3, INTO),
2159 		 * then the saved %rip references the instruction that caused
2160 		 * the task switch. The instruction length field in the VMCS
2161 		 * is valid in this case.
2162 		 *
2163 		 * In all other cases (e.g., NMI, hardware exception) the
2164 		 * saved %rip is one that would have been saved in the old TSS
2165 		 * had the task switch completed normally so the instruction
2166 		 * length field is not needed in this case and is explicitly
2167 		 * set to 0.
2168 		 */
2169 		if (ts->reason == TSR_IDT_GATE) {
2170 			KASSERT(idtvec_info & VMCS_IDT_VEC_VALID,
2171 			    ("invalid idtvec_info %#x for IDT task switch",
2172 			    idtvec_info));
2173 			intr_type = idtvec_info & VMCS_INTR_T_MASK;
2174 			if (intr_type != VMCS_INTR_T_SWINTR &&
2175 			    intr_type != VMCS_INTR_T_SWEXCEPTION &&
2176 			    intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) {
2177 				/* Task switch triggered by external event */
2178 				ts->ext = 1;
2179 				vmexit->inst_length = 0;
2180 				if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2181 					ts->errcode_valid = 1;
2182 					ts->errcode = vmcs_idt_vectoring_err();
2183 				}
2184 			}
2185 		}
2186 		vmexit->exitcode = VM_EXITCODE_TASK_SWITCH;
2187 		VCPU_CTR4(vmx->vm, vcpu, "task switch reason %d, tss 0x%04x, "
2188 		    "%s errcode 0x%016lx", ts->reason, ts->tsssel,
2189 		    ts->ext ? "external" : "internal",
2190 		    ((uint64_t)ts->errcode << 32) | ts->errcode_valid);
2191 		break;
2192 	case EXIT_REASON_CR_ACCESS:
2193 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1);
2194 		switch (qual & 0xf) {
2195 		case 0:
2196 			handled = vmx_emulate_cr0_access(vmx, vcpu, qual);
2197 			break;
2198 		case 4:
2199 			handled = vmx_emulate_cr4_access(vmx, vcpu, qual);
2200 			break;
2201 		case 8:
2202 			handled = vmx_emulate_cr8_access(vmx, vcpu, qual);
2203 			break;
2204 		}
2205 		break;
2206 	case EXIT_REASON_RDMSR:
2207 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1);
2208 		retu = false;
2209 		ecx = vmxctx->guest_rcx;
2210 		VCPU_CTR1(vmx->vm, vcpu, "rdmsr 0x%08x", ecx);
2211 		error = emulate_rdmsr(vmx, vcpu, ecx, &retu);
2212 		if (error) {
2213 			vmexit->exitcode = VM_EXITCODE_RDMSR;
2214 			vmexit->u.msr.code = ecx;
2215 		} else if (!retu) {
2216 			handled = HANDLED;
2217 		} else {
2218 			/* Return to userspace with a valid exitcode */
2219 			KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2220 			    ("emulate_rdmsr retu with bogus exitcode"));
2221 		}
2222 		break;
2223 	case EXIT_REASON_WRMSR:
2224 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1);
2225 		retu = false;
2226 		eax = vmxctx->guest_rax;
2227 		ecx = vmxctx->guest_rcx;
2228 		edx = vmxctx->guest_rdx;
2229 		VCPU_CTR2(vmx->vm, vcpu, "wrmsr 0x%08x value 0x%016lx",
2230 		    ecx, (uint64_t)edx << 32 | eax);
2231 		error = emulate_wrmsr(vmx, vcpu, ecx,
2232 		    (uint64_t)edx << 32 | eax, &retu);
2233 		if (error) {
2234 			vmexit->exitcode = VM_EXITCODE_WRMSR;
2235 			vmexit->u.msr.code = ecx;
2236 			vmexit->u.msr.wval = (uint64_t)edx << 32 | eax;
2237 		} else if (!retu) {
2238 			handled = HANDLED;
2239 		} else {
2240 			/* Return to userspace with a valid exitcode */
2241 			KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2242 			    ("emulate_wrmsr retu with bogus exitcode"));
2243 		}
2244 		break;
2245 	case EXIT_REASON_HLT:
2246 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1);
2247 		vmexit->exitcode = VM_EXITCODE_HLT;
2248 		vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2249 		break;
2250 	case EXIT_REASON_MTF:
2251 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1);
2252 		vmexit->exitcode = VM_EXITCODE_MTRAP;
2253 		break;
2254 	case EXIT_REASON_PAUSE:
2255 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1);
2256 		vmexit->exitcode = VM_EXITCODE_PAUSE;
2257 		break;
2258 	case EXIT_REASON_INTR_WINDOW:
2259 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1);
2260 		vmx_clear_int_window_exiting(vmx, vcpu);
2261 		return (1);
2262 	case EXIT_REASON_EXT_INTR:
2263 		/*
2264 		 * External interrupts serve only to cause VM exits and allow
2265 		 * the host interrupt handler to run.
2266 		 *
2267 		 * If this external interrupt triggers a virtual interrupt
2268 		 * to a VM, then that state will be recorded by the
2269 		 * host interrupt handler in the VM's softc. We will inject
2270 		 * this virtual interrupt during the subsequent VM enter.
2271 		 */
2272 		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2273 
2274 		/*
2275 		 * XXX: Ignore this exit if VMCS_INTR_VALID is not set.
2276 		 * This appears to be a bug in VMware Fusion?
2277 		 */
2278 		if (!(intr_info & VMCS_INTR_VALID))
2279 			return (1);
2280 		KASSERT((intr_info & VMCS_INTR_VALID) != 0 &&
2281 		    (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR,
2282 		    ("VM exit interruption info invalid: %#x", intr_info));
2283 		vmx_trigger_hostintr(intr_info & 0xff);
2284 
2285 		/*
2286 		 * This is special. We want to treat this as an 'handled'
2287 		 * VM-exit but not increment the instruction pointer.
2288 		 */
2289 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1);
2290 		return (1);
2291 	case EXIT_REASON_NMI_WINDOW:
2292 		/* Exit to allow the pending virtual NMI to be injected */
2293 		if (vm_nmi_pending(vmx->vm, vcpu))
2294 			vmx_inject_nmi(vmx, vcpu);
2295 		vmx_clear_nmi_window_exiting(vmx, vcpu);
2296 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1);
2297 		return (1);
2298 	case EXIT_REASON_INOUT:
2299 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1);
2300 		vmexit->exitcode = VM_EXITCODE_INOUT;
2301 		vmexit->u.inout.bytes = (qual & 0x7) + 1;
2302 		vmexit->u.inout.in = in = (qual & 0x8) ? 1 : 0;
2303 		vmexit->u.inout.string = (qual & 0x10) ? 1 : 0;
2304 		vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0;
2305 		vmexit->u.inout.port = (uint16_t)(qual >> 16);
2306 		vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax);
2307 		if (vmexit->u.inout.string) {
2308 			inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO);
2309 			vmexit->exitcode = VM_EXITCODE_INOUT_STR;
2310 			vis = &vmexit->u.inout_str;
2311 			vmx_paging_info(&vis->paging);
2312 			vis->rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2313 			vis->cr0 = vmcs_read(VMCS_GUEST_CR0);
2314 			vis->index = inout_str_index(vmx, vcpu, in);
2315 			vis->count = inout_str_count(vmx, vcpu, vis->inout.rep);
2316 			vis->addrsize = inout_str_addrsize(inst_info);
2317 			inout_str_seginfo(vmx, vcpu, inst_info, in, vis);
2318 		}
2319 		break;
2320 	case EXIT_REASON_CPUID:
2321 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1);
2322 		handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx);
2323 		break;
2324 	case EXIT_REASON_EXCEPTION:
2325 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXCEPTION, 1);
2326 		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2327 		KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2328 		    ("VM exit interruption info invalid: %#x", intr_info));
2329 
2330 		intr_vec = intr_info & 0xff;
2331 		intr_type = intr_info & VMCS_INTR_T_MASK;
2332 
2333 		/*
2334 		 * If Virtual NMIs control is 1 and the VM-exit is due to a
2335 		 * fault encountered during the execution of IRET then we must
2336 		 * restore the state of "virtual-NMI blocking" before resuming
2337 		 * the guest.
2338 		 *
2339 		 * See "Resuming Guest Software after Handling an Exception".
2340 		 * See "Information for VM Exits Due to Vectored Events".
2341 		 */
2342 		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2343 		    (intr_vec != IDT_DF) &&
2344 		    (intr_info & EXIT_QUAL_NMIUDTI) != 0)
2345 			vmx_restore_nmi_blocking(vmx, vcpu);
2346 
2347 		/*
2348 		 * The NMI has already been handled in vmx_exit_handle_nmi().
2349 		 */
2350 		if (intr_type == VMCS_INTR_T_NMI)
2351 			return (1);
2352 
2353 		/*
2354 		 * Call the machine check handler by hand. Also don't reflect
2355 		 * the machine check back into the guest.
2356 		 */
2357 		if (intr_vec == IDT_MC) {
2358 			VCPU_CTR0(vmx->vm, vcpu, "Vectoring to MCE handler");
2359 			__asm __volatile("int $18");
2360 			return (1);
2361 		}
2362 
2363 		if (intr_vec == IDT_PF) {
2364 			error = vmxctx_setreg(vmxctx, VM_REG_GUEST_CR2, qual);
2365 			KASSERT(error == 0, ("%s: vmxctx_setreg(cr2) error %d",
2366 			    __func__, error));
2367 		}
2368 
2369 		/*
2370 		 * Software exceptions exhibit trap-like behavior. This in
2371 		 * turn requires populating the VM-entry instruction length
2372 		 * so that the %rip in the trap frame is past the INT3/INTO
2373 		 * instruction.
2374 		 */
2375 		if (intr_type == VMCS_INTR_T_SWEXCEPTION)
2376 			vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2377 
2378 		/* Reflect all other exceptions back into the guest */
2379 		bzero(&vmexc, sizeof(struct vm_exception));
2380 		vmexc.vector = intr_vec;
2381 		if (intr_info & VMCS_INTR_DEL_ERRCODE) {
2382 			vmexc.error_code_valid = 1;
2383 			vmexc.error_code = vmcs_read(VMCS_EXIT_INTR_ERRCODE);
2384 		}
2385 		VCPU_CTR2(vmx->vm, vcpu, "Reflecting exception %d/%#x into "
2386 		    "the guest", vmexc.vector, vmexc.error_code);
2387 		error = vm_inject_exception(vmx->vm, vcpu, &vmexc);
2388 		KASSERT(error == 0, ("%s: vm_inject_exception error %d",
2389 		    __func__, error));
2390 		return (1);
2391 
2392 	case EXIT_REASON_EPT_FAULT:
2393 		/*
2394 		 * If 'gpa' lies within the address space allocated to
2395 		 * memory then this must be a nested page fault otherwise
2396 		 * this must be an instruction that accesses MMIO space.
2397 		 */
2398 		gpa = vmcs_gpa();
2399 		if (vm_mem_allocated(vmx->vm, gpa) ||
2400 		    apic_access_fault(vmx, vcpu, gpa)) {
2401 			vmexit->exitcode = VM_EXITCODE_PAGING;
2402 			vmexit->u.paging.gpa = gpa;
2403 			vmexit->u.paging.fault_type = ept_fault_type(qual);
2404 			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
2405 		} else if (ept_emulation_fault(qual)) {
2406 			vmexit_inst_emul(vmexit, gpa, vmcs_gla());
2407 			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INST_EMUL, 1);
2408 		}
2409 		/*
2410 		 * If Virtual NMIs control is 1 and the VM-exit is due to an
2411 		 * EPT fault during the execution of IRET then we must restore
2412 		 * the state of "virtual-NMI blocking" before resuming.
2413 		 *
2414 		 * See description of "NMI unblocking due to IRET" in
2415 		 * "Exit Qualification for EPT Violations".
2416 		 */
2417 		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2418 		    (qual & EXIT_QUAL_NMIUDTI) != 0)
2419 			vmx_restore_nmi_blocking(vmx, vcpu);
2420 		break;
2421 	case EXIT_REASON_VIRTUALIZED_EOI:
2422 		vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI;
2423 		vmexit->u.ioapic_eoi.vector = qual & 0xFF;
2424 		vmexit->inst_length = 0;	/* trap-like */
2425 		break;
2426 	case EXIT_REASON_APIC_ACCESS:
2427 		handled = vmx_handle_apic_access(vmx, vcpu, vmexit);
2428 		break;
2429 	case EXIT_REASON_APIC_WRITE:
2430 		/*
2431 		 * APIC-write VM exit is trap-like so the %rip is already
2432 		 * pointing to the next instruction.
2433 		 */
2434 		vmexit->inst_length = 0;
2435 		vlapic = vm_lapic(vmx->vm, vcpu);
2436 		handled = vmx_handle_apic_write(vmx, vcpu, vlapic, qual);
2437 		break;
2438 	case EXIT_REASON_XSETBV:
2439 		handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit);
2440 		break;
2441 	case EXIT_REASON_MONITOR:
2442 		vmexit->exitcode = VM_EXITCODE_MONITOR;
2443 		break;
2444 	case EXIT_REASON_MWAIT:
2445 		vmexit->exitcode = VM_EXITCODE_MWAIT;
2446 		break;
2447 	default:
2448 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1);
2449 		break;
2450 	}
2451 
2452 	if (handled) {
2453 		/*
2454 		 * It is possible that control is returned to userland
2455 		 * even though we were able to handle the VM exit in the
2456 		 * kernel.
2457 		 *
2458 		 * In such a case we want to make sure that the userland
2459 		 * restarts guest execution at the instruction *after*
2460 		 * the one we just processed. Therefore we update the
2461 		 * guest rip in the VMCS and in 'vmexit'.
2462 		 */
2463 		vmexit->rip += vmexit->inst_length;
2464 		vmexit->inst_length = 0;
2465 		vmcs_write(VMCS_GUEST_RIP, vmexit->rip);
2466 	} else {
2467 		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
2468 			/*
2469 			 * If this VM exit was not claimed by anybody then
2470 			 * treat it as a generic VMX exit.
2471 			 */
2472 			vmexit->exitcode = VM_EXITCODE_VMX;
2473 			vmexit->u.vmx.status = VM_SUCCESS;
2474 			vmexit->u.vmx.inst_type = 0;
2475 			vmexit->u.vmx.inst_error = 0;
2476 		} else {
2477 			/*
2478 			 * The exitcode and collateral have been populated.
2479 			 * The VM exit will be processed further in userland.
2480 			 */
2481 		}
2482 	}
2483 	return (handled);
2484 }
2485 
2486 static __inline void
2487 vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit)
2488 {
2489 
2490 	KASSERT(vmxctx->inst_fail_status != VM_SUCCESS,
2491 	    ("vmx_exit_inst_error: invalid inst_fail_status %d",
2492 	    vmxctx->inst_fail_status));
2493 
2494 	vmexit->inst_length = 0;
2495 	vmexit->exitcode = VM_EXITCODE_VMX;
2496 	vmexit->u.vmx.status = vmxctx->inst_fail_status;
2497 	vmexit->u.vmx.inst_error = vmcs_instruction_error();
2498 	vmexit->u.vmx.exit_reason = ~0;
2499 	vmexit->u.vmx.exit_qualification = ~0;
2500 
2501 	switch (rc) {
2502 	case VMX_VMRESUME_ERROR:
2503 	case VMX_VMLAUNCH_ERROR:
2504 	case VMX_INVEPT_ERROR:
2505 		vmexit->u.vmx.inst_type = rc;
2506 		break;
2507 	default:
2508 		panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc);
2509 	}
2510 }
2511 
2512 /*
2513  * If the NMI-exiting VM execution control is set to '1' then an NMI in
2514  * non-root operation causes a VM-exit. NMI blocking is in effect so it is
2515  * sufficient to simply vector to the NMI handler via a software interrupt.
2516  * However, this must be done before maskable interrupts are enabled
2517  * otherwise the "iret" issued by an interrupt handler will incorrectly
2518  * clear NMI blocking.
2519  */
2520 static __inline void
2521 vmx_exit_handle_nmi(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
2522 {
2523 	uint32_t intr_info;
2524 
2525 	KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled"));
2526 
2527 	if (vmexit->u.vmx.exit_reason != EXIT_REASON_EXCEPTION)
2528 		return;
2529 
2530 	intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2531 	KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2532 	    ("VM exit interruption info invalid: %#x", intr_info));
2533 
2534 	if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) {
2535 		KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due "
2536 		    "to NMI has invalid vector: %#x", intr_info));
2537 		VCPU_CTR0(vmx->vm, vcpuid, "Vectoring to NMI handler");
2538 		__asm __volatile("int $2");
2539 	}
2540 }
2541 
2542 static int
2543 vmx_run(void *arg, int vcpu, register_t startrip, pmap_t pmap,
2544     void *rendezvous_cookie, void *suspend_cookie)
2545 {
2546 	int rc, handled, launched;
2547 	struct vmx *vmx;
2548 	struct vm *vm;
2549 	struct vmxctx *vmxctx;
2550 	struct vmcs *vmcs;
2551 	struct vm_exit *vmexit;
2552 	struct vlapic *vlapic;
2553 	uint64_t rip;
2554 	uint32_t exit_reason;
2555 
2556 	vmx = arg;
2557 	vm = vmx->vm;
2558 	vmcs = &vmx->vmcs[vcpu];
2559 	vmxctx = &vmx->ctx[vcpu];
2560 	vlapic = vm_lapic(vm, vcpu);
2561 	vmexit = vm_exitinfo(vm, vcpu);
2562 	launched = 0;
2563 
2564 	KASSERT(vmxctx->pmap == pmap,
2565 	    ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap));
2566 
2567 	vmx_msr_guest_enter(vmx, vcpu);
2568 
2569 	VMPTRLD(vmcs);
2570 
2571 	/*
2572 	 * XXX
2573 	 * We do this every time because we may setup the virtual machine
2574 	 * from a different process than the one that actually runs it.
2575 	 *
2576 	 * If the life of a virtual machine was spent entirely in the context
2577 	 * of a single process we could do this once in vmx_vminit().
2578 	 */
2579 	vmcs_write(VMCS_HOST_CR3, rcr3());
2580 
2581 	vmcs_write(VMCS_GUEST_RIP, startrip);
2582 	vmx_set_pcpu_defaults(vmx, vcpu, pmap);
2583 	do {
2584 		handled = UNHANDLED;
2585 
2586 		/*
2587 		 * Interrupts are disabled from this point on until the
2588 		 * guest starts executing. This is done for the following
2589 		 * reasons:
2590 		 *
2591 		 * If an AST is asserted on this thread after the check below,
2592 		 * then the IPI_AST notification will not be lost, because it
2593 		 * will cause a VM exit due to external interrupt as soon as
2594 		 * the guest state is loaded.
2595 		 *
2596 		 * A posted interrupt after 'vmx_inject_interrupts()' will
2597 		 * not be "lost" because it will be held pending in the host
2598 		 * APIC because interrupts are disabled. The pending interrupt
2599 		 * will be recognized as soon as the guest state is loaded.
2600 		 *
2601 		 * The same reasoning applies to the IPI generated by
2602 		 * pmap_invalidate_ept().
2603 		 */
2604 		disable_intr();
2605 		vmx_inject_interrupts(vmx, vcpu, vlapic);
2606 
2607 		/*
2608 		 * Check for vcpu suspension after injecting events because
2609 		 * vmx_inject_interrupts() can suspend the vcpu due to a
2610 		 * triple fault.
2611 		 */
2612 		if (vcpu_suspended(suspend_cookie)) {
2613 			enable_intr();
2614 			vm_exit_suspended(vmx->vm, vcpu, vmcs_guest_rip());
2615 			break;
2616 		}
2617 
2618 		if (vcpu_rendezvous_pending(rendezvous_cookie)) {
2619 			enable_intr();
2620 			vm_exit_rendezvous(vmx->vm, vcpu, vmcs_guest_rip());
2621 			break;
2622 		}
2623 
2624 		if (vcpu_should_yield(vm, vcpu)) {
2625 			enable_intr();
2626 			vm_exit_astpending(vmx->vm, vcpu, vmcs_guest_rip());
2627 			vmx_astpending_trace(vmx, vcpu, vmexit->rip);
2628 			handled = HANDLED;
2629 			break;
2630 		}
2631 
2632 		vmx_run_trace(vmx, vcpu);
2633 		rc = vmx_enter_guest(vmxctx, vmx, launched);
2634 
2635 		/* Collect some information for VM exit processing */
2636 		vmexit->rip = rip = vmcs_guest_rip();
2637 		vmexit->inst_length = vmexit_instruction_length();
2638 		vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
2639 		vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
2640 
2641 		if (rc == VMX_GUEST_VMEXIT) {
2642 			vmx_exit_handle_nmi(vmx, vcpu, vmexit);
2643 			enable_intr();
2644 			handled = vmx_exit_process(vmx, vcpu, vmexit);
2645 		} else {
2646 			enable_intr();
2647 			vmx_exit_inst_error(vmxctx, rc, vmexit);
2648 		}
2649 		launched = 1;
2650 		vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled);
2651 	} while (handled);
2652 
2653 	/*
2654 	 * If a VM exit has been handled then the exitcode must be BOGUS
2655 	 * If a VM exit is not handled then the exitcode must not be BOGUS
2656 	 */
2657 	if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) ||
2658 	    (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) {
2659 		panic("Mismatch between handled (%d) and exitcode (%d)",
2660 		      handled, vmexit->exitcode);
2661 	}
2662 
2663 	if (!handled)
2664 		vmm_stat_incr(vm, vcpu, VMEXIT_USERSPACE, 1);
2665 
2666 	VCPU_CTR1(vm, vcpu, "returning from vmx_run: exitcode %d",
2667 	    vmexit->exitcode);
2668 
2669 	VMCLEAR(vmcs);
2670 	vmx_msr_guest_exit(vmx, vcpu);
2671 
2672 	return (0);
2673 }
2674 
2675 static void
2676 vmx_vmcleanup(void *arg)
2677 {
2678 	int i;
2679 	struct vmx *vmx = arg;
2680 
2681 	if (apic_access_virtualization(vmx, 0))
2682 		vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
2683 
2684 	for (i = 0; i < VM_MAXCPU; i++)
2685 		vpid_free(vmx->state[i].vpid);
2686 
2687 	free(vmx, M_VMX);
2688 
2689 	return;
2690 }
2691 
2692 static register_t *
2693 vmxctx_regptr(struct vmxctx *vmxctx, int reg)
2694 {
2695 
2696 	switch (reg) {
2697 	case VM_REG_GUEST_RAX:
2698 		return (&vmxctx->guest_rax);
2699 	case VM_REG_GUEST_RBX:
2700 		return (&vmxctx->guest_rbx);
2701 	case VM_REG_GUEST_RCX:
2702 		return (&vmxctx->guest_rcx);
2703 	case VM_REG_GUEST_RDX:
2704 		return (&vmxctx->guest_rdx);
2705 	case VM_REG_GUEST_RSI:
2706 		return (&vmxctx->guest_rsi);
2707 	case VM_REG_GUEST_RDI:
2708 		return (&vmxctx->guest_rdi);
2709 	case VM_REG_GUEST_RBP:
2710 		return (&vmxctx->guest_rbp);
2711 	case VM_REG_GUEST_R8:
2712 		return (&vmxctx->guest_r8);
2713 	case VM_REG_GUEST_R9:
2714 		return (&vmxctx->guest_r9);
2715 	case VM_REG_GUEST_R10:
2716 		return (&vmxctx->guest_r10);
2717 	case VM_REG_GUEST_R11:
2718 		return (&vmxctx->guest_r11);
2719 	case VM_REG_GUEST_R12:
2720 		return (&vmxctx->guest_r12);
2721 	case VM_REG_GUEST_R13:
2722 		return (&vmxctx->guest_r13);
2723 	case VM_REG_GUEST_R14:
2724 		return (&vmxctx->guest_r14);
2725 	case VM_REG_GUEST_R15:
2726 		return (&vmxctx->guest_r15);
2727 	case VM_REG_GUEST_CR2:
2728 		return (&vmxctx->guest_cr2);
2729 	default:
2730 		break;
2731 	}
2732 	return (NULL);
2733 }
2734 
2735 static int
2736 vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval)
2737 {
2738 	register_t *regp;
2739 
2740 	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
2741 		*retval = *regp;
2742 		return (0);
2743 	} else
2744 		return (EINVAL);
2745 }
2746 
2747 static int
2748 vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val)
2749 {
2750 	register_t *regp;
2751 
2752 	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
2753 		*regp = val;
2754 		return (0);
2755 	} else
2756 		return (EINVAL);
2757 }
2758 
2759 static int
2760 vmx_get_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t *retval)
2761 {
2762 	uint64_t gi;
2763 	int error;
2764 
2765 	error = vmcs_getreg(&vmx->vmcs[vcpu], running,
2766 	    VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY), &gi);
2767 	*retval = (gi & HWINTR_BLOCKING) ? 1 : 0;
2768 	return (error);
2769 }
2770 
2771 static int
2772 vmx_modify_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t val)
2773 {
2774 	struct vmcs *vmcs;
2775 	uint64_t gi;
2776 	int error, ident;
2777 
2778 	/*
2779 	 * Forcing the vcpu into an interrupt shadow is not supported.
2780 	 */
2781 	if (val) {
2782 		error = EINVAL;
2783 		goto done;
2784 	}
2785 
2786 	vmcs = &vmx->vmcs[vcpu];
2787 	ident = VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY);
2788 	error = vmcs_getreg(vmcs, running, ident, &gi);
2789 	if (error == 0) {
2790 		gi &= ~HWINTR_BLOCKING;
2791 		error = vmcs_setreg(vmcs, running, ident, gi);
2792 	}
2793 done:
2794 	VCPU_CTR2(vmx->vm, vcpu, "Setting intr_shadow to %#lx %s", val,
2795 	    error ? "failed" : "succeeded");
2796 	return (error);
2797 }
2798 
2799 static int
2800 vmx_shadow_reg(int reg)
2801 {
2802 	int shreg;
2803 
2804 	shreg = -1;
2805 
2806 	switch (reg) {
2807 	case VM_REG_GUEST_CR0:
2808 		shreg = VMCS_CR0_SHADOW;
2809                 break;
2810         case VM_REG_GUEST_CR4:
2811 		shreg = VMCS_CR4_SHADOW;
2812 		break;
2813 	default:
2814 		break;
2815 	}
2816 
2817 	return (shreg);
2818 }
2819 
2820 static int
2821 vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval)
2822 {
2823 	int running, hostcpu;
2824 	struct vmx *vmx = arg;
2825 
2826 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2827 	if (running && hostcpu != curcpu)
2828 		panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu);
2829 
2830 	if (reg == VM_REG_GUEST_INTR_SHADOW)
2831 		return (vmx_get_intr_shadow(vmx, vcpu, running, retval));
2832 
2833 	if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0)
2834 		return (0);
2835 
2836 	return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval));
2837 }
2838 
2839 static int
2840 vmx_setreg(void *arg, int vcpu, int reg, uint64_t val)
2841 {
2842 	int error, hostcpu, running, shadow;
2843 	uint64_t ctls;
2844 	pmap_t pmap;
2845 	struct vmx *vmx = arg;
2846 
2847 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2848 	if (running && hostcpu != curcpu)
2849 		panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu);
2850 
2851 	if (reg == VM_REG_GUEST_INTR_SHADOW)
2852 		return (vmx_modify_intr_shadow(vmx, vcpu, running, val));
2853 
2854 	if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0)
2855 		return (0);
2856 
2857 	error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val);
2858 
2859 	if (error == 0) {
2860 		/*
2861 		 * If the "load EFER" VM-entry control is 1 then the
2862 		 * value of EFER.LMA must be identical to "IA-32e mode guest"
2863 		 * bit in the VM-entry control.
2864 		 */
2865 		if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 &&
2866 		    (reg == VM_REG_GUEST_EFER)) {
2867 			vmcs_getreg(&vmx->vmcs[vcpu], running,
2868 				    VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls);
2869 			if (val & EFER_LMA)
2870 				ctls |= VM_ENTRY_GUEST_LMA;
2871 			else
2872 				ctls &= ~VM_ENTRY_GUEST_LMA;
2873 			vmcs_setreg(&vmx->vmcs[vcpu], running,
2874 				    VMCS_IDENT(VMCS_ENTRY_CTLS), ctls);
2875 		}
2876 
2877 		shadow = vmx_shadow_reg(reg);
2878 		if (shadow > 0) {
2879 			/*
2880 			 * Store the unmodified value in the shadow
2881 			 */
2882 			error = vmcs_setreg(&vmx->vmcs[vcpu], running,
2883 				    VMCS_IDENT(shadow), val);
2884 		}
2885 
2886 		if (reg == VM_REG_GUEST_CR3) {
2887 			/*
2888 			 * Invalidate the guest vcpu's TLB mappings to emulate
2889 			 * the behavior of updating %cr3.
2890 			 *
2891 			 * XXX the processor retains global mappings when %cr3
2892 			 * is updated but vmx_invvpid() does not.
2893 			 */
2894 			pmap = vmx->ctx[vcpu].pmap;
2895 			vmx_invvpid(vmx, vcpu, pmap, running);
2896 		}
2897 	}
2898 
2899 	return (error);
2900 }
2901 
2902 static int
2903 vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
2904 {
2905 	int hostcpu, running;
2906 	struct vmx *vmx = arg;
2907 
2908 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2909 	if (running && hostcpu != curcpu)
2910 		panic("vmx_getdesc: %s%d is running", vm_name(vmx->vm), vcpu);
2911 
2912 	return (vmcs_getdesc(&vmx->vmcs[vcpu], running, reg, desc));
2913 }
2914 
2915 static int
2916 vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
2917 {
2918 	int hostcpu, running;
2919 	struct vmx *vmx = arg;
2920 
2921 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2922 	if (running && hostcpu != curcpu)
2923 		panic("vmx_setdesc: %s%d is running", vm_name(vmx->vm), vcpu);
2924 
2925 	return (vmcs_setdesc(&vmx->vmcs[vcpu], running, reg, desc));
2926 }
2927 
2928 static int
2929 vmx_getcap(void *arg, int vcpu, int type, int *retval)
2930 {
2931 	struct vmx *vmx = arg;
2932 	int vcap;
2933 	int ret;
2934 
2935 	ret = ENOENT;
2936 
2937 	vcap = vmx->cap[vcpu].set;
2938 
2939 	switch (type) {
2940 	case VM_CAP_HALT_EXIT:
2941 		if (cap_halt_exit)
2942 			ret = 0;
2943 		break;
2944 	case VM_CAP_PAUSE_EXIT:
2945 		if (cap_pause_exit)
2946 			ret = 0;
2947 		break;
2948 	case VM_CAP_MTRAP_EXIT:
2949 		if (cap_monitor_trap)
2950 			ret = 0;
2951 		break;
2952 	case VM_CAP_UNRESTRICTED_GUEST:
2953 		if (cap_unrestricted_guest)
2954 			ret = 0;
2955 		break;
2956 	case VM_CAP_ENABLE_INVPCID:
2957 		if (cap_invpcid)
2958 			ret = 0;
2959 		break;
2960 	default:
2961 		break;
2962 	}
2963 
2964 	if (ret == 0)
2965 		*retval = (vcap & (1 << type)) ? 1 : 0;
2966 
2967 	return (ret);
2968 }
2969 
2970 static int
2971 vmx_setcap(void *arg, int vcpu, int type, int val)
2972 {
2973 	struct vmx *vmx = arg;
2974 	struct vmcs *vmcs = &vmx->vmcs[vcpu];
2975 	uint32_t baseval;
2976 	uint32_t *pptr;
2977 	int error;
2978 	int flag;
2979 	int reg;
2980 	int retval;
2981 
2982 	retval = ENOENT;
2983 	pptr = NULL;
2984 
2985 	switch (type) {
2986 	case VM_CAP_HALT_EXIT:
2987 		if (cap_halt_exit) {
2988 			retval = 0;
2989 			pptr = &vmx->cap[vcpu].proc_ctls;
2990 			baseval = *pptr;
2991 			flag = PROCBASED_HLT_EXITING;
2992 			reg = VMCS_PRI_PROC_BASED_CTLS;
2993 		}
2994 		break;
2995 	case VM_CAP_MTRAP_EXIT:
2996 		if (cap_monitor_trap) {
2997 			retval = 0;
2998 			pptr = &vmx->cap[vcpu].proc_ctls;
2999 			baseval = *pptr;
3000 			flag = PROCBASED_MTF;
3001 			reg = VMCS_PRI_PROC_BASED_CTLS;
3002 		}
3003 		break;
3004 	case VM_CAP_PAUSE_EXIT:
3005 		if (cap_pause_exit) {
3006 			retval = 0;
3007 			pptr = &vmx->cap[vcpu].proc_ctls;
3008 			baseval = *pptr;
3009 			flag = PROCBASED_PAUSE_EXITING;
3010 			reg = VMCS_PRI_PROC_BASED_CTLS;
3011 		}
3012 		break;
3013 	case VM_CAP_UNRESTRICTED_GUEST:
3014 		if (cap_unrestricted_guest) {
3015 			retval = 0;
3016 			pptr = &vmx->cap[vcpu].proc_ctls2;
3017 			baseval = *pptr;
3018 			flag = PROCBASED2_UNRESTRICTED_GUEST;
3019 			reg = VMCS_SEC_PROC_BASED_CTLS;
3020 		}
3021 		break;
3022 	case VM_CAP_ENABLE_INVPCID:
3023 		if (cap_invpcid) {
3024 			retval = 0;
3025 			pptr = &vmx->cap[vcpu].proc_ctls2;
3026 			baseval = *pptr;
3027 			flag = PROCBASED2_ENABLE_INVPCID;
3028 			reg = VMCS_SEC_PROC_BASED_CTLS;
3029 		}
3030 		break;
3031 	default:
3032 		break;
3033 	}
3034 
3035 	if (retval == 0) {
3036 		if (val) {
3037 			baseval |= flag;
3038 		} else {
3039 			baseval &= ~flag;
3040 		}
3041 		VMPTRLD(vmcs);
3042 		error = vmwrite(reg, baseval);
3043 		VMCLEAR(vmcs);
3044 
3045 		if (error) {
3046 			retval = error;
3047 		} else {
3048 			/*
3049 			 * Update optional stored flags, and record
3050 			 * setting
3051 			 */
3052 			if (pptr != NULL) {
3053 				*pptr = baseval;
3054 			}
3055 
3056 			if (val) {
3057 				vmx->cap[vcpu].set |= (1 << type);
3058 			} else {
3059 				vmx->cap[vcpu].set &= ~(1 << type);
3060 			}
3061 		}
3062 	}
3063 
3064         return (retval);
3065 }
3066 
3067 struct vlapic_vtx {
3068 	struct vlapic	vlapic;
3069 	struct pir_desc	*pir_desc;
3070 	struct vmx	*vmx;
3071 };
3072 
3073 #define	VMX_CTR_PIR(vm, vcpuid, pir_desc, notify, vector, level, msg)	\
3074 do {									\
3075 	VCPU_CTR2(vm, vcpuid, msg " assert %s-triggered vector %d",	\
3076 	    level ? "level" : "edge", vector);				\
3077 	VCPU_CTR1(vm, vcpuid, msg " pir0 0x%016lx", pir_desc->pir[0]);	\
3078 	VCPU_CTR1(vm, vcpuid, msg " pir1 0x%016lx", pir_desc->pir[1]);	\
3079 	VCPU_CTR1(vm, vcpuid, msg " pir2 0x%016lx", pir_desc->pir[2]);	\
3080 	VCPU_CTR1(vm, vcpuid, msg " pir3 0x%016lx", pir_desc->pir[3]);	\
3081 	VCPU_CTR1(vm, vcpuid, msg " notify: %s", notify ? "yes" : "no");\
3082 } while (0)
3083 
3084 /*
3085  * vlapic->ops handlers that utilize the APICv hardware assist described in
3086  * Chapter 29 of the Intel SDM.
3087  */
3088 static int
3089 vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level)
3090 {
3091 	struct vlapic_vtx *vlapic_vtx;
3092 	struct pir_desc *pir_desc;
3093 	uint64_t mask;
3094 	int idx, notify;
3095 
3096 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3097 	pir_desc = vlapic_vtx->pir_desc;
3098 
3099 	/*
3100 	 * Keep track of interrupt requests in the PIR descriptor. This is
3101 	 * because the virtual APIC page pointed to by the VMCS cannot be
3102 	 * modified if the vcpu is running.
3103 	 */
3104 	idx = vector / 64;
3105 	mask = 1UL << (vector % 64);
3106 	atomic_set_long(&pir_desc->pir[idx], mask);
3107 	notify = atomic_cmpset_long(&pir_desc->pending, 0, 1);
3108 
3109 	VMX_CTR_PIR(vlapic->vm, vlapic->vcpuid, pir_desc, notify, vector,
3110 	    level, "vmx_set_intr_ready");
3111 	return (notify);
3112 }
3113 
3114 static int
3115 vmx_pending_intr(struct vlapic *vlapic, int *vecptr)
3116 {
3117 	struct vlapic_vtx *vlapic_vtx;
3118 	struct pir_desc *pir_desc;
3119 	struct LAPIC *lapic;
3120 	uint64_t pending, pirval;
3121 	uint32_t ppr, vpr;
3122 	int i;
3123 
3124 	/*
3125 	 * This function is only expected to be called from the 'HLT' exit
3126 	 * handler which does not care about the vector that is pending.
3127 	 */
3128 	KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL"));
3129 
3130 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3131 	pir_desc = vlapic_vtx->pir_desc;
3132 
3133 	pending = atomic_load_acq_long(&pir_desc->pending);
3134 	if (!pending)
3135 		return (0);	/* common case */
3136 
3137 	/*
3138 	 * If there is an interrupt pending then it will be recognized only
3139 	 * if its priority is greater than the processor priority.
3140 	 *
3141 	 * Special case: if the processor priority is zero then any pending
3142 	 * interrupt will be recognized.
3143 	 */
3144 	lapic = vlapic->apic_page;
3145 	ppr = lapic->ppr & 0xf0;
3146 	if (ppr == 0)
3147 		return (1);
3148 
3149 	VCPU_CTR1(vlapic->vm, vlapic->vcpuid, "HLT with non-zero PPR %d",
3150 	    lapic->ppr);
3151 
3152 	for (i = 3; i >= 0; i--) {
3153 		pirval = pir_desc->pir[i];
3154 		if (pirval != 0) {
3155 			vpr = (i * 64 + flsl(pirval) - 1) & 0xf0;
3156 			return (vpr > ppr);
3157 		}
3158 	}
3159 	return (0);
3160 }
3161 
3162 static void
3163 vmx_intr_accepted(struct vlapic *vlapic, int vector)
3164 {
3165 
3166 	panic("vmx_intr_accepted: not expected to be called");
3167 }
3168 
3169 static void
3170 vmx_set_tmr(struct vlapic *vlapic, int vector, bool level)
3171 {
3172 	struct vlapic_vtx *vlapic_vtx;
3173 	struct vmx *vmx;
3174 	struct vmcs *vmcs;
3175 	uint64_t mask, val;
3176 
3177 	KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d", vector));
3178 	KASSERT(!vcpu_is_running(vlapic->vm, vlapic->vcpuid, NULL),
3179 	    ("vmx_set_tmr: vcpu cannot be running"));
3180 
3181 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3182 	vmx = vlapic_vtx->vmx;
3183 	vmcs = &vmx->vmcs[vlapic->vcpuid];
3184 	mask = 1UL << (vector % 64);
3185 
3186 	VMPTRLD(vmcs);
3187 	val = vmcs_read(VMCS_EOI_EXIT(vector));
3188 	if (level)
3189 		val |= mask;
3190 	else
3191 		val &= ~mask;
3192 	vmcs_write(VMCS_EOI_EXIT(vector), val);
3193 	VMCLEAR(vmcs);
3194 }
3195 
3196 static void
3197 vmx_enable_x2apic_mode(struct vlapic *vlapic)
3198 {
3199 	struct vmx *vmx;
3200 	struct vmcs *vmcs;
3201 	uint32_t proc_ctls2;
3202 	int vcpuid, error;
3203 
3204 	vcpuid = vlapic->vcpuid;
3205 	vmx = ((struct vlapic_vtx *)vlapic)->vmx;
3206 	vmcs = &vmx->vmcs[vcpuid];
3207 
3208 	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
3209 	KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0,
3210 	    ("%s: invalid proc_ctls2 %#x", __func__, proc_ctls2));
3211 
3212 	proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES;
3213 	proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE;
3214 	vmx->cap[vcpuid].proc_ctls2 = proc_ctls2;
3215 
3216 	VMPTRLD(vmcs);
3217 	vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2);
3218 	VMCLEAR(vmcs);
3219 
3220 	if (vlapic->vcpuid == 0) {
3221 		/*
3222 		 * The nested page table mappings are shared by all vcpus
3223 		 * so unmap the APIC access page just once.
3224 		 */
3225 		error = vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
3226 		KASSERT(error == 0, ("%s: vm_unmap_mmio error %d",
3227 		    __func__, error));
3228 
3229 		/*
3230 		 * The MSR bitmap is shared by all vcpus so modify it only
3231 		 * once in the context of vcpu 0.
3232 		 */
3233 		error = vmx_allow_x2apic_msrs(vmx);
3234 		KASSERT(error == 0, ("%s: vmx_allow_x2apic_msrs error %d",
3235 		    __func__, error));
3236 	}
3237 }
3238 
3239 static void
3240 vmx_post_intr(struct vlapic *vlapic, int hostcpu)
3241 {
3242 
3243 	ipi_cpu(hostcpu, pirvec);
3244 }
3245 
3246 /*
3247  * Transfer the pending interrupts in the PIR descriptor to the IRR
3248  * in the virtual APIC page.
3249  */
3250 static void
3251 vmx_inject_pir(struct vlapic *vlapic)
3252 {
3253 	struct vlapic_vtx *vlapic_vtx;
3254 	struct pir_desc *pir_desc;
3255 	struct LAPIC *lapic;
3256 	uint64_t val, pirval;
3257 	int rvi, pirbase = -1;
3258 	uint16_t intr_status_old, intr_status_new;
3259 
3260 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3261 	pir_desc = vlapic_vtx->pir_desc;
3262 	if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) {
3263 		VCPU_CTR0(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
3264 		    "no posted interrupt pending");
3265 		return;
3266 	}
3267 
3268 	pirval = 0;
3269 	pirbase = -1;
3270 	lapic = vlapic->apic_page;
3271 
3272 	val = atomic_readandclear_long(&pir_desc->pir[0]);
3273 	if (val != 0) {
3274 		lapic->irr0 |= val;
3275 		lapic->irr1 |= val >> 32;
3276 		pirbase = 0;
3277 		pirval = val;
3278 	}
3279 
3280 	val = atomic_readandclear_long(&pir_desc->pir[1]);
3281 	if (val != 0) {
3282 		lapic->irr2 |= val;
3283 		lapic->irr3 |= val >> 32;
3284 		pirbase = 64;
3285 		pirval = val;
3286 	}
3287 
3288 	val = atomic_readandclear_long(&pir_desc->pir[2]);
3289 	if (val != 0) {
3290 		lapic->irr4 |= val;
3291 		lapic->irr5 |= val >> 32;
3292 		pirbase = 128;
3293 		pirval = val;
3294 	}
3295 
3296 	val = atomic_readandclear_long(&pir_desc->pir[3]);
3297 	if (val != 0) {
3298 		lapic->irr6 |= val;
3299 		lapic->irr7 |= val >> 32;
3300 		pirbase = 192;
3301 		pirval = val;
3302 	}
3303 
3304 	VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir");
3305 
3306 	/*
3307 	 * Update RVI so the processor can evaluate pending virtual
3308 	 * interrupts on VM-entry.
3309 	 *
3310 	 * It is possible for pirval to be 0 here, even though the
3311 	 * pending bit has been set. The scenario is:
3312 	 * CPU-Y is sending a posted interrupt to CPU-X, which
3313 	 * is running a guest and processing posted interrupts in h/w.
3314 	 * CPU-X will eventually exit and the state seen in s/w is
3315 	 * the pending bit set, but no PIR bits set.
3316 	 *
3317 	 *      CPU-X                      CPU-Y
3318 	 *   (vm running)                (host running)
3319 	 *   rx posted interrupt
3320 	 *   CLEAR pending bit
3321 	 *				 SET PIR bit
3322 	 *   READ/CLEAR PIR bits
3323 	 *				 SET pending bit
3324 	 *   (vm exit)
3325 	 *   pending bit set, PIR 0
3326 	 */
3327 	if (pirval != 0) {
3328 		rvi = pirbase + flsl(pirval) - 1;
3329 		intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS);
3330 		intr_status_new = (intr_status_old & 0xFF00) | rvi;
3331 		if (intr_status_new > intr_status_old) {
3332 			vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new);
3333 			VCPU_CTR2(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
3334 			    "guest_intr_status changed from 0x%04x to 0x%04x",
3335 			    intr_status_old, intr_status_new);
3336 		}
3337 	}
3338 }
3339 
3340 static struct vlapic *
3341 vmx_vlapic_init(void *arg, int vcpuid)
3342 {
3343 	struct vmx *vmx;
3344 	struct vlapic *vlapic;
3345 	struct vlapic_vtx *vlapic_vtx;
3346 
3347 	vmx = arg;
3348 
3349 	vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO);
3350 	vlapic->vm = vmx->vm;
3351 	vlapic->vcpuid = vcpuid;
3352 	vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid];
3353 
3354 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3355 	vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid];
3356 	vlapic_vtx->vmx = vmx;
3357 
3358 	if (virtual_interrupt_delivery) {
3359 		vlapic->ops.set_intr_ready = vmx_set_intr_ready;
3360 		vlapic->ops.pending_intr = vmx_pending_intr;
3361 		vlapic->ops.intr_accepted = vmx_intr_accepted;
3362 		vlapic->ops.set_tmr = vmx_set_tmr;
3363 		vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode;
3364 	}
3365 
3366 	if (posted_interrupts)
3367 		vlapic->ops.post_intr = vmx_post_intr;
3368 
3369 	vlapic_init(vlapic);
3370 
3371 	return (vlapic);
3372 }
3373 
3374 static void
3375 vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic)
3376 {
3377 
3378 	vlapic_cleanup(vlapic);
3379 	free(vlapic, M_VLAPIC);
3380 }
3381 
3382 struct vmm_ops vmm_ops_intel = {
3383 	vmx_init,
3384 	vmx_cleanup,
3385 	vmx_restore,
3386 	vmx_vminit,
3387 	vmx_run,
3388 	vmx_vmcleanup,
3389 	vmx_getreg,
3390 	vmx_setreg,
3391 	vmx_getdesc,
3392 	vmx_setdesc,
3393 	vmx_getcap,
3394 	vmx_setcap,
3395 	ept_vmspace_alloc,
3396 	ept_vmspace_free,
3397 	vmx_vlapic_init,
3398 	vmx_vlapic_cleanup,
3399 };
3400