xref: /freebsd/sys/amd64/vmm/intel/vmx.c (revision c5fda9bac0325eb8c5b447717862d279006f318f)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/smp.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/pcpu.h>
40 #include <sys/proc.h>
41 #include <sys/sysctl.h>
42 
43 #include <vm/vm.h>
44 #include <vm/pmap.h>
45 
46 #include <machine/psl.h>
47 #include <machine/cpufunc.h>
48 #include <machine/md_var.h>
49 #include <machine/reg.h>
50 #include <machine/segments.h>
51 #include <machine/smp.h>
52 #include <machine/specialreg.h>
53 #include <machine/vmparam.h>
54 
55 #include <machine/vmm.h>
56 #include <machine/vmm_dev.h>
57 #include <machine/vmm_instruction_emul.h>
58 #include "vmm_lapic.h"
59 #include "vmm_host.h"
60 #include "vmm_ioport.h"
61 #include "vmm_ktr.h"
62 #include "vmm_stat.h"
63 #include "vatpic.h"
64 #include "vlapic.h"
65 #include "vlapic_priv.h"
66 
67 #include "ept.h"
68 #include "vmx_cpufunc.h"
69 #include "vmx.h"
70 #include "vmx_msr.h"
71 #include "x86.h"
72 #include "vmx_controls.h"
73 
74 #define	PINBASED_CTLS_ONE_SETTING					\
75 	(PINBASED_EXTINT_EXITING	|				\
76 	 PINBASED_NMI_EXITING		|				\
77 	 PINBASED_VIRTUAL_NMI)
78 #define	PINBASED_CTLS_ZERO_SETTING	0
79 
80 #define PROCBASED_CTLS_WINDOW_SETTING					\
81 	(PROCBASED_INT_WINDOW_EXITING	|				\
82 	 PROCBASED_NMI_WINDOW_EXITING)
83 
84 #define	PROCBASED_CTLS_ONE_SETTING 					\
85 	(PROCBASED_SECONDARY_CONTROLS	|				\
86 	 PROCBASED_MWAIT_EXITING	|				\
87 	 PROCBASED_MONITOR_EXITING	|				\
88 	 PROCBASED_IO_EXITING		|				\
89 	 PROCBASED_MSR_BITMAPS		|				\
90 	 PROCBASED_CTLS_WINDOW_SETTING	|				\
91 	 PROCBASED_CR8_LOAD_EXITING	|				\
92 	 PROCBASED_CR8_STORE_EXITING)
93 #define	PROCBASED_CTLS_ZERO_SETTING	\
94 	(PROCBASED_CR3_LOAD_EXITING |	\
95 	PROCBASED_CR3_STORE_EXITING |	\
96 	PROCBASED_IO_BITMAPS)
97 
98 #define	PROCBASED_CTLS2_ONE_SETTING	PROCBASED2_ENABLE_EPT
99 #define	PROCBASED_CTLS2_ZERO_SETTING	0
100 
101 #define	VM_EXIT_CTLS_ONE_SETTING					\
102 	(VM_EXIT_SAVE_DEBUG_CONTROLS		|			\
103 	VM_EXIT_HOST_LMA			|			\
104 	VM_EXIT_SAVE_EFER			|			\
105 	VM_EXIT_LOAD_EFER			|			\
106 	VM_EXIT_ACKNOWLEDGE_INTERRUPT)
107 
108 #define	VM_EXIT_CTLS_ZERO_SETTING	0
109 
110 #define	VM_ENTRY_CTLS_ONE_SETTING					\
111 	(VM_ENTRY_LOAD_DEBUG_CONTROLS		|			\
112 	VM_ENTRY_LOAD_EFER)
113 
114 #define	VM_ENTRY_CTLS_ZERO_SETTING					\
115 	(VM_ENTRY_INTO_SMM			|			\
116 	VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
117 
118 #define	HANDLED		1
119 #define	UNHANDLED	0
120 
121 static MALLOC_DEFINE(M_VMX, "vmx", "vmx");
122 static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic");
123 
124 SYSCTL_DECL(_hw_vmm);
125 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW, NULL, NULL);
126 
127 int vmxon_enabled[MAXCPU];
128 static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
129 
130 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
131 static uint32_t exit_ctls, entry_ctls;
132 
133 static uint64_t cr0_ones_mask, cr0_zeros_mask;
134 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD,
135 	     &cr0_ones_mask, 0, NULL);
136 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD,
137 	     &cr0_zeros_mask, 0, NULL);
138 
139 static uint64_t cr4_ones_mask, cr4_zeros_mask;
140 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD,
141 	     &cr4_ones_mask, 0, NULL);
142 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD,
143 	     &cr4_zeros_mask, 0, NULL);
144 
145 static int vmx_initialized;
146 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD,
147 	   &vmx_initialized, 0, "Intel VMX initialized");
148 
149 /*
150  * Optional capabilities
151  */
152 static SYSCTL_NODE(_hw_vmm_vmx, OID_AUTO, cap, CTLFLAG_RW, NULL, NULL);
153 
154 static int cap_halt_exit;
155 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, halt_exit, CTLFLAG_RD, &cap_halt_exit, 0,
156     "HLT triggers a VM-exit");
157 
158 static int cap_pause_exit;
159 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, pause_exit, CTLFLAG_RD, &cap_pause_exit,
160     0, "PAUSE triggers a VM-exit");
161 
162 static int cap_unrestricted_guest;
163 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, unrestricted_guest, CTLFLAG_RD,
164     &cap_unrestricted_guest, 0, "Unrestricted guests");
165 
166 static int cap_monitor_trap;
167 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, monitor_trap, CTLFLAG_RD,
168     &cap_monitor_trap, 0, "Monitor trap flag");
169 
170 static int cap_invpcid;
171 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, invpcid, CTLFLAG_RD, &cap_invpcid,
172     0, "Guests are allowed to use INVPCID");
173 
174 static int virtual_interrupt_delivery;
175 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD,
176     &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support");
177 
178 static int posted_interrupts;
179 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, posted_interrupts, CTLFLAG_RD,
180     &posted_interrupts, 0, "APICv posted interrupt support");
181 
182 static int pirvec = -1;
183 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD,
184     &pirvec, 0, "APICv posted interrupt vector");
185 
186 static struct unrhdr *vpid_unr;
187 static u_int vpid_alloc_failed;
188 SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD,
189 	    &vpid_alloc_failed, 0, NULL);
190 
191 /*
192  * The definitions of SDT probes for VMX.
193  */
194 
195 SDT_PROBE_DEFINE3(vmm, vmx, exit, entry,
196     "struct vmx *", "int", "struct vm_exit *");
197 
198 SDT_PROBE_DEFINE4(vmm, vmx, exit, taskswitch,
199     "struct vmx *", "int", "struct vm_exit *", "struct vm_task_switch *");
200 
201 SDT_PROBE_DEFINE4(vmm, vmx, exit, craccess,
202     "struct vmx *", "int", "struct vm_exit *", "uint64_t");
203 
204 SDT_PROBE_DEFINE4(vmm, vmx, exit, rdmsr,
205     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
206 
207 SDT_PROBE_DEFINE5(vmm, vmx, exit, wrmsr,
208     "struct vmx *", "int", "struct vm_exit *", "uint32_t", "uint64_t");
209 
210 SDT_PROBE_DEFINE3(vmm, vmx, exit, halt,
211     "struct vmx *", "int", "struct vm_exit *");
212 
213 SDT_PROBE_DEFINE3(vmm, vmx, exit, mtrap,
214     "struct vmx *", "int", "struct vm_exit *");
215 
216 SDT_PROBE_DEFINE3(vmm, vmx, exit, pause,
217     "struct vmx *", "int", "struct vm_exit *");
218 
219 SDT_PROBE_DEFINE3(vmm, vmx, exit, intrwindow,
220     "struct vmx *", "int", "struct vm_exit *");
221 
222 SDT_PROBE_DEFINE4(vmm, vmx, exit, interrupt,
223     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
224 
225 SDT_PROBE_DEFINE3(vmm, vmx, exit, nmiwindow,
226     "struct vmx *", "int", "struct vm_exit *");
227 
228 SDT_PROBE_DEFINE3(vmm, vmx, exit, inout,
229     "struct vmx *", "int", "struct vm_exit *");
230 
231 SDT_PROBE_DEFINE3(vmm, vmx, exit, cpuid,
232     "struct vmx *", "int", "struct vm_exit *");
233 
234 SDT_PROBE_DEFINE5(vmm, vmx, exit, exception,
235     "struct vmx *", "int", "struct vm_exit *", "uint32_t", "int");
236 
237 SDT_PROBE_DEFINE5(vmm, vmx, exit, nestedfault,
238     "struct vmx *", "int", "struct vm_exit *", "uint64_t", "uint64_t");
239 
240 SDT_PROBE_DEFINE4(vmm, vmx, exit, mmiofault,
241     "struct vmx *", "int", "struct vm_exit *", "uint64_t");
242 
243 SDT_PROBE_DEFINE3(vmm, vmx, exit, eoi,
244     "struct vmx *", "int", "struct vm_exit *");
245 
246 SDT_PROBE_DEFINE3(vmm, vmx, exit, apicaccess,
247     "struct vmx *", "int", "struct vm_exit *");
248 
249 SDT_PROBE_DEFINE4(vmm, vmx, exit, apicwrite,
250     "struct vmx *", "int", "struct vm_exit *", "struct vlapic *");
251 
252 SDT_PROBE_DEFINE3(vmm, vmx, exit, xsetbv,
253     "struct vmx *", "int", "struct vm_exit *");
254 
255 SDT_PROBE_DEFINE3(vmm, vmx, exit, monitor,
256     "struct vmx *", "int", "struct vm_exit *");
257 
258 SDT_PROBE_DEFINE3(vmm, vmx, exit, mwait,
259     "struct vmx *", "int", "struct vm_exit *");
260 
261 SDT_PROBE_DEFINE4(vmm, vmx, exit, unknown,
262     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
263 
264 SDT_PROBE_DEFINE4(vmm, vmx, exit, return,
265     "struct vmx *", "int", "struct vm_exit *", "int");
266 
267 /*
268  * Use the last page below 4GB as the APIC access address. This address is
269  * occupied by the boot firmware so it is guaranteed that it will not conflict
270  * with a page in system memory.
271  */
272 #define	APIC_ACCESS_ADDRESS	0xFFFFF000
273 
274 static int vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc);
275 static int vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval);
276 static int vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val);
277 static void vmx_inject_pir(struct vlapic *vlapic);
278 
279 #ifdef KTR
280 static const char *
281 exit_reason_to_str(int reason)
282 {
283 	static char reasonbuf[32];
284 
285 	switch (reason) {
286 	case EXIT_REASON_EXCEPTION:
287 		return "exception";
288 	case EXIT_REASON_EXT_INTR:
289 		return "extint";
290 	case EXIT_REASON_TRIPLE_FAULT:
291 		return "triplefault";
292 	case EXIT_REASON_INIT:
293 		return "init";
294 	case EXIT_REASON_SIPI:
295 		return "sipi";
296 	case EXIT_REASON_IO_SMI:
297 		return "iosmi";
298 	case EXIT_REASON_SMI:
299 		return "smi";
300 	case EXIT_REASON_INTR_WINDOW:
301 		return "intrwindow";
302 	case EXIT_REASON_NMI_WINDOW:
303 		return "nmiwindow";
304 	case EXIT_REASON_TASK_SWITCH:
305 		return "taskswitch";
306 	case EXIT_REASON_CPUID:
307 		return "cpuid";
308 	case EXIT_REASON_GETSEC:
309 		return "getsec";
310 	case EXIT_REASON_HLT:
311 		return "hlt";
312 	case EXIT_REASON_INVD:
313 		return "invd";
314 	case EXIT_REASON_INVLPG:
315 		return "invlpg";
316 	case EXIT_REASON_RDPMC:
317 		return "rdpmc";
318 	case EXIT_REASON_RDTSC:
319 		return "rdtsc";
320 	case EXIT_REASON_RSM:
321 		return "rsm";
322 	case EXIT_REASON_VMCALL:
323 		return "vmcall";
324 	case EXIT_REASON_VMCLEAR:
325 		return "vmclear";
326 	case EXIT_REASON_VMLAUNCH:
327 		return "vmlaunch";
328 	case EXIT_REASON_VMPTRLD:
329 		return "vmptrld";
330 	case EXIT_REASON_VMPTRST:
331 		return "vmptrst";
332 	case EXIT_REASON_VMREAD:
333 		return "vmread";
334 	case EXIT_REASON_VMRESUME:
335 		return "vmresume";
336 	case EXIT_REASON_VMWRITE:
337 		return "vmwrite";
338 	case EXIT_REASON_VMXOFF:
339 		return "vmxoff";
340 	case EXIT_REASON_VMXON:
341 		return "vmxon";
342 	case EXIT_REASON_CR_ACCESS:
343 		return "craccess";
344 	case EXIT_REASON_DR_ACCESS:
345 		return "draccess";
346 	case EXIT_REASON_INOUT:
347 		return "inout";
348 	case EXIT_REASON_RDMSR:
349 		return "rdmsr";
350 	case EXIT_REASON_WRMSR:
351 		return "wrmsr";
352 	case EXIT_REASON_INVAL_VMCS:
353 		return "invalvmcs";
354 	case EXIT_REASON_INVAL_MSR:
355 		return "invalmsr";
356 	case EXIT_REASON_MWAIT:
357 		return "mwait";
358 	case EXIT_REASON_MTF:
359 		return "mtf";
360 	case EXIT_REASON_MONITOR:
361 		return "monitor";
362 	case EXIT_REASON_PAUSE:
363 		return "pause";
364 	case EXIT_REASON_MCE_DURING_ENTRY:
365 		return "mce-during-entry";
366 	case EXIT_REASON_TPR:
367 		return "tpr";
368 	case EXIT_REASON_APIC_ACCESS:
369 		return "apic-access";
370 	case EXIT_REASON_GDTR_IDTR:
371 		return "gdtridtr";
372 	case EXIT_REASON_LDTR_TR:
373 		return "ldtrtr";
374 	case EXIT_REASON_EPT_FAULT:
375 		return "eptfault";
376 	case EXIT_REASON_EPT_MISCONFIG:
377 		return "eptmisconfig";
378 	case EXIT_REASON_INVEPT:
379 		return "invept";
380 	case EXIT_REASON_RDTSCP:
381 		return "rdtscp";
382 	case EXIT_REASON_VMX_PREEMPT:
383 		return "vmxpreempt";
384 	case EXIT_REASON_INVVPID:
385 		return "invvpid";
386 	case EXIT_REASON_WBINVD:
387 		return "wbinvd";
388 	case EXIT_REASON_XSETBV:
389 		return "xsetbv";
390 	case EXIT_REASON_APIC_WRITE:
391 		return "apic-write";
392 	default:
393 		snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason);
394 		return (reasonbuf);
395 	}
396 }
397 #endif	/* KTR */
398 
399 static int
400 vmx_allow_x2apic_msrs(struct vmx *vmx)
401 {
402 	int i, error;
403 
404 	error = 0;
405 
406 	/*
407 	 * Allow readonly access to the following x2APIC MSRs from the guest.
408 	 */
409 	error += guest_msr_ro(vmx, MSR_APIC_ID);
410 	error += guest_msr_ro(vmx, MSR_APIC_VERSION);
411 	error += guest_msr_ro(vmx, MSR_APIC_LDR);
412 	error += guest_msr_ro(vmx, MSR_APIC_SVR);
413 
414 	for (i = 0; i < 8; i++)
415 		error += guest_msr_ro(vmx, MSR_APIC_ISR0 + i);
416 
417 	for (i = 0; i < 8; i++)
418 		error += guest_msr_ro(vmx, MSR_APIC_TMR0 + i);
419 
420 	for (i = 0; i < 8; i++)
421 		error += guest_msr_ro(vmx, MSR_APIC_IRR0 + i);
422 
423 	error += guest_msr_ro(vmx, MSR_APIC_ESR);
424 	error += guest_msr_ro(vmx, MSR_APIC_LVT_TIMER);
425 	error += guest_msr_ro(vmx, MSR_APIC_LVT_THERMAL);
426 	error += guest_msr_ro(vmx, MSR_APIC_LVT_PCINT);
427 	error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT0);
428 	error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT1);
429 	error += guest_msr_ro(vmx, MSR_APIC_LVT_ERROR);
430 	error += guest_msr_ro(vmx, MSR_APIC_ICR_TIMER);
431 	error += guest_msr_ro(vmx, MSR_APIC_DCR_TIMER);
432 	error += guest_msr_ro(vmx, MSR_APIC_ICR);
433 
434 	/*
435 	 * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest.
436 	 *
437 	 * These registers get special treatment described in the section
438 	 * "Virtualizing MSR-Based APIC Accesses".
439 	 */
440 	error += guest_msr_rw(vmx, MSR_APIC_TPR);
441 	error += guest_msr_rw(vmx, MSR_APIC_EOI);
442 	error += guest_msr_rw(vmx, MSR_APIC_SELF_IPI);
443 
444 	return (error);
445 }
446 
447 u_long
448 vmx_fix_cr0(u_long cr0)
449 {
450 
451 	return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
452 }
453 
454 u_long
455 vmx_fix_cr4(u_long cr4)
456 {
457 
458 	return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
459 }
460 
461 static void
462 vpid_free(int vpid)
463 {
464 	if (vpid < 0 || vpid > 0xffff)
465 		panic("vpid_free: invalid vpid %d", vpid);
466 
467 	/*
468 	 * VPIDs [0,VM_MAXCPU] are special and are not allocated from
469 	 * the unit number allocator.
470 	 */
471 
472 	if (vpid > VM_MAXCPU)
473 		free_unr(vpid_unr, vpid);
474 }
475 
476 static void
477 vpid_alloc(uint16_t *vpid, int num)
478 {
479 	int i, x;
480 
481 	if (num <= 0 || num > VM_MAXCPU)
482 		panic("invalid number of vpids requested: %d", num);
483 
484 	/*
485 	 * If the "enable vpid" execution control is not enabled then the
486 	 * VPID is required to be 0 for all vcpus.
487 	 */
488 	if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) {
489 		for (i = 0; i < num; i++)
490 			vpid[i] = 0;
491 		return;
492 	}
493 
494 	/*
495 	 * Allocate a unique VPID for each vcpu from the unit number allocator.
496 	 */
497 	for (i = 0; i < num; i++) {
498 		x = alloc_unr(vpid_unr);
499 		if (x == -1)
500 			break;
501 		else
502 			vpid[i] = x;
503 	}
504 
505 	if (i < num) {
506 		atomic_add_int(&vpid_alloc_failed, 1);
507 
508 		/*
509 		 * If the unit number allocator does not have enough unique
510 		 * VPIDs then we need to allocate from the [1,VM_MAXCPU] range.
511 		 *
512 		 * These VPIDs are not be unique across VMs but this does not
513 		 * affect correctness because the combined mappings are also
514 		 * tagged with the EP4TA which is unique for each VM.
515 		 *
516 		 * It is still sub-optimal because the invvpid will invalidate
517 		 * combined mappings for a particular VPID across all EP4TAs.
518 		 */
519 		while (i-- > 0)
520 			vpid_free(vpid[i]);
521 
522 		for (i = 0; i < num; i++)
523 			vpid[i] = i + 1;
524 	}
525 }
526 
527 static void
528 vpid_init(void)
529 {
530 	/*
531 	 * VPID 0 is required when the "enable VPID" execution control is
532 	 * disabled.
533 	 *
534 	 * VPIDs [1,VM_MAXCPU] are used as the "overflow namespace" when the
535 	 * unit number allocator does not have sufficient unique VPIDs to
536 	 * satisfy the allocation.
537 	 *
538 	 * The remaining VPIDs are managed by the unit number allocator.
539 	 */
540 	vpid_unr = new_unrhdr(VM_MAXCPU + 1, 0xffff, NULL);
541 }
542 
543 static void
544 vmx_disable(void *arg __unused)
545 {
546 	struct invvpid_desc invvpid_desc = { 0 };
547 	struct invept_desc invept_desc = { 0 };
548 
549 	if (vmxon_enabled[curcpu]) {
550 		/*
551 		 * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b.
552 		 *
553 		 * VMXON or VMXOFF are not required to invalidate any TLB
554 		 * caching structures. This prevents potential retention of
555 		 * cached information in the TLB between distinct VMX episodes.
556 		 */
557 		invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc);
558 		invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc);
559 		vmxoff();
560 	}
561 	load_cr4(rcr4() & ~CR4_VMXE);
562 }
563 
564 static int
565 vmx_cleanup(void)
566 {
567 
568 	if (pirvec >= 0)
569 		lapic_ipi_free(pirvec);
570 
571 	if (vpid_unr != NULL) {
572 		delete_unrhdr(vpid_unr);
573 		vpid_unr = NULL;
574 	}
575 
576 	smp_rendezvous(NULL, vmx_disable, NULL, NULL);
577 
578 	return (0);
579 }
580 
581 static void
582 vmx_enable(void *arg __unused)
583 {
584 	int error;
585 	uint64_t feature_control;
586 
587 	feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
588 	if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 ||
589 	    (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
590 		wrmsr(MSR_IA32_FEATURE_CONTROL,
591 		    feature_control | IA32_FEATURE_CONTROL_VMX_EN |
592 		    IA32_FEATURE_CONTROL_LOCK);
593 	}
594 
595 	load_cr4(rcr4() | CR4_VMXE);
596 
597 	*(uint32_t *)vmxon_region[curcpu] = vmx_revision();
598 	error = vmxon(vmxon_region[curcpu]);
599 	if (error == 0)
600 		vmxon_enabled[curcpu] = 1;
601 }
602 
603 static void
604 vmx_restore(void)
605 {
606 
607 	if (vmxon_enabled[curcpu])
608 		vmxon(vmxon_region[curcpu]);
609 }
610 
611 static int
612 vmx_init(int ipinum)
613 {
614 	int error, use_tpr_shadow;
615 	uint64_t basic, fixed0, fixed1, feature_control;
616 	uint32_t tmp, procbased2_vid_bits;
617 
618 	/* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */
619 	if (!(cpu_feature2 & CPUID2_VMX)) {
620 		printf("vmx_init: processor does not support VMX operation\n");
621 		return (ENXIO);
622 	}
623 
624 	/*
625 	 * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits
626 	 * are set (bits 0 and 2 respectively).
627 	 */
628 	feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
629 	if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 1 &&
630 	    (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
631 		printf("vmx_init: VMX operation disabled by BIOS\n");
632 		return (ENXIO);
633 	}
634 
635 	/*
636 	 * Verify capabilities MSR_VMX_BASIC:
637 	 * - bit 54 indicates support for INS/OUTS decoding
638 	 */
639 	basic = rdmsr(MSR_VMX_BASIC);
640 	if ((basic & (1UL << 54)) == 0) {
641 		printf("vmx_init: processor does not support desired basic "
642 		    "capabilities\n");
643 		return (EINVAL);
644 	}
645 
646 	/* Check support for primary processor-based VM-execution controls */
647 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
648 			       MSR_VMX_TRUE_PROCBASED_CTLS,
649 			       PROCBASED_CTLS_ONE_SETTING,
650 			       PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
651 	if (error) {
652 		printf("vmx_init: processor does not support desired primary "
653 		       "processor-based controls\n");
654 		return (error);
655 	}
656 
657 	/* Clear the processor-based ctl bits that are set on demand */
658 	procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
659 
660 	/* Check support for secondary processor-based VM-execution controls */
661 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
662 			       MSR_VMX_PROCBASED_CTLS2,
663 			       PROCBASED_CTLS2_ONE_SETTING,
664 			       PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
665 	if (error) {
666 		printf("vmx_init: processor does not support desired secondary "
667 		       "processor-based controls\n");
668 		return (error);
669 	}
670 
671 	/* Check support for VPID */
672 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
673 			       PROCBASED2_ENABLE_VPID, 0, &tmp);
674 	if (error == 0)
675 		procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
676 
677 	/* Check support for pin-based VM-execution controls */
678 	error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
679 			       MSR_VMX_TRUE_PINBASED_CTLS,
680 			       PINBASED_CTLS_ONE_SETTING,
681 			       PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
682 	if (error) {
683 		printf("vmx_init: processor does not support desired "
684 		       "pin-based controls\n");
685 		return (error);
686 	}
687 
688 	/* Check support for VM-exit controls */
689 	error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
690 			       VM_EXIT_CTLS_ONE_SETTING,
691 			       VM_EXIT_CTLS_ZERO_SETTING,
692 			       &exit_ctls);
693 	if (error) {
694 		printf("vmx_init: processor does not support desired "
695 		    "exit controls\n");
696 		return (error);
697 	}
698 
699 	/* Check support for VM-entry controls */
700 	error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS,
701 	    VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING,
702 	    &entry_ctls);
703 	if (error) {
704 		printf("vmx_init: processor does not support desired "
705 		    "entry controls\n");
706 		return (error);
707 	}
708 
709 	/*
710 	 * Check support for optional features by testing them
711 	 * as individual bits
712 	 */
713 	cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
714 					MSR_VMX_TRUE_PROCBASED_CTLS,
715 					PROCBASED_HLT_EXITING, 0,
716 					&tmp) == 0);
717 
718 	cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
719 					MSR_VMX_PROCBASED_CTLS,
720 					PROCBASED_MTF, 0,
721 					&tmp) == 0);
722 
723 	cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
724 					 MSR_VMX_TRUE_PROCBASED_CTLS,
725 					 PROCBASED_PAUSE_EXITING, 0,
726 					 &tmp) == 0);
727 
728 	cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
729 					MSR_VMX_PROCBASED_CTLS2,
730 					PROCBASED2_UNRESTRICTED_GUEST, 0,
731 				        &tmp) == 0);
732 
733 	cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
734 	    MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
735 	    &tmp) == 0);
736 
737 	/*
738 	 * Check support for virtual interrupt delivery.
739 	 */
740 	procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
741 	    PROCBASED2_VIRTUALIZE_X2APIC_MODE |
742 	    PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
743 	    PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY);
744 
745 	use_tpr_shadow = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
746 	    MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0,
747 	    &tmp) == 0);
748 
749 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
750 	    procbased2_vid_bits, 0, &tmp);
751 	if (error == 0 && use_tpr_shadow) {
752 		virtual_interrupt_delivery = 1;
753 		TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid",
754 		    &virtual_interrupt_delivery);
755 	}
756 
757 	if (virtual_interrupt_delivery) {
758 		procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
759 		procbased_ctls2 |= procbased2_vid_bits;
760 		procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE;
761 
762 		/*
763 		 * No need to emulate accesses to %CR8 if virtual
764 		 * interrupt delivery is enabled.
765 		 */
766 		procbased_ctls &= ~PROCBASED_CR8_LOAD_EXITING;
767 		procbased_ctls &= ~PROCBASED_CR8_STORE_EXITING;
768 
769 		/*
770 		 * Check for Posted Interrupts only if Virtual Interrupt
771 		 * Delivery is enabled.
772 		 */
773 		error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
774 		    MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0,
775 		    &tmp);
776 		if (error == 0) {
777 			pirvec = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) :
778 			    &IDTVEC(justreturn));
779 			if (pirvec < 0) {
780 				if (bootverbose) {
781 					printf("vmx_init: unable to allocate "
782 					    "posted interrupt vector\n");
783 				}
784 			} else {
785 				posted_interrupts = 1;
786 				TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir",
787 				    &posted_interrupts);
788 			}
789 		}
790 	}
791 
792 	if (posted_interrupts)
793 		    pinbased_ctls |= PINBASED_POSTED_INTERRUPT;
794 
795 	/* Initialize EPT */
796 	error = ept_init(ipinum);
797 	if (error) {
798 		printf("vmx_init: ept initialization failed (%d)\n", error);
799 		return (error);
800 	}
801 
802 	/*
803 	 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
804 	 */
805 	fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
806 	fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
807 	cr0_ones_mask = fixed0 & fixed1;
808 	cr0_zeros_mask = ~fixed0 & ~fixed1;
809 
810 	/*
811 	 * CR0_PE and CR0_PG can be set to zero in VMX non-root operation
812 	 * if unrestricted guest execution is allowed.
813 	 */
814 	if (cap_unrestricted_guest)
815 		cr0_ones_mask &= ~(CR0_PG | CR0_PE);
816 
817 	/*
818 	 * Do not allow the guest to set CR0_NW or CR0_CD.
819 	 */
820 	cr0_zeros_mask |= (CR0_NW | CR0_CD);
821 
822 	fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
823 	fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
824 	cr4_ones_mask = fixed0 & fixed1;
825 	cr4_zeros_mask = ~fixed0 & ~fixed1;
826 
827 	vpid_init();
828 
829 	vmx_msr_init();
830 
831 	/* enable VMX operation */
832 	smp_rendezvous(NULL, vmx_enable, NULL, NULL);
833 
834 	vmx_initialized = 1;
835 
836 	return (0);
837 }
838 
839 static void
840 vmx_trigger_hostintr(int vector)
841 {
842 	uintptr_t func;
843 	struct gate_descriptor *gd;
844 
845 	gd = &idt[vector];
846 
847 	KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: "
848 	    "invalid vector %d", vector));
849 	KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present",
850 	    vector));
851 	KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d "
852 	    "has invalid type %d", vector, gd->gd_type));
853 	KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d "
854 	    "has invalid dpl %d", vector, gd->gd_dpl));
855 	KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor "
856 	    "for vector %d has invalid selector %d", vector, gd->gd_selector));
857 	KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid "
858 	    "IST %d", vector, gd->gd_ist));
859 
860 	func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset);
861 	vmx_call_isr(func);
862 }
863 
864 static int
865 vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial)
866 {
867 	int error, mask_ident, shadow_ident;
868 	uint64_t mask_value;
869 
870 	if (which != 0 && which != 4)
871 		panic("vmx_setup_cr_shadow: unknown cr%d", which);
872 
873 	if (which == 0) {
874 		mask_ident = VMCS_CR0_MASK;
875 		mask_value = cr0_ones_mask | cr0_zeros_mask;
876 		shadow_ident = VMCS_CR0_SHADOW;
877 	} else {
878 		mask_ident = VMCS_CR4_MASK;
879 		mask_value = cr4_ones_mask | cr4_zeros_mask;
880 		shadow_ident = VMCS_CR4_SHADOW;
881 	}
882 
883 	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value);
884 	if (error)
885 		return (error);
886 
887 	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial);
888 	if (error)
889 		return (error);
890 
891 	return (0);
892 }
893 #define	vmx_setup_cr0_shadow(vmcs,init)	vmx_setup_cr_shadow(0, (vmcs), (init))
894 #define	vmx_setup_cr4_shadow(vmcs,init)	vmx_setup_cr_shadow(4, (vmcs), (init))
895 
896 static void *
897 vmx_vminit(struct vm *vm, pmap_t pmap)
898 {
899 	uint16_t vpid[VM_MAXCPU];
900 	int i, error;
901 	struct vmx *vmx;
902 	struct vmcs *vmcs;
903 	uint32_t exc_bitmap;
904 
905 	vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO);
906 	if ((uintptr_t)vmx & PAGE_MASK) {
907 		panic("malloc of struct vmx not aligned on %d byte boundary",
908 		      PAGE_SIZE);
909 	}
910 	vmx->vm = vm;
911 
912 	vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pml4));
913 
914 	/*
915 	 * Clean up EPTP-tagged guest physical and combined mappings
916 	 *
917 	 * VMX transitions are not required to invalidate any guest physical
918 	 * mappings. So, it may be possible for stale guest physical mappings
919 	 * to be present in the processor TLBs.
920 	 *
921 	 * Combined mappings for this EP4TA are also invalidated for all VPIDs.
922 	 */
923 	ept_invalidate_mappings(vmx->eptp);
924 
925 	msr_bitmap_initialize(vmx->msr_bitmap);
926 
927 	/*
928 	 * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE.
929 	 * The guest FSBASE and GSBASE are saved and restored during
930 	 * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are
931 	 * always restored from the vmcs host state area on vm-exit.
932 	 *
933 	 * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in
934 	 * how they are saved/restored so can be directly accessed by the
935 	 * guest.
936 	 *
937 	 * MSR_EFER is saved and restored in the guest VMCS area on a
938 	 * VM exit and entry respectively. It is also restored from the
939 	 * host VMCS area on a VM exit.
940 	 *
941 	 * The TSC MSR is exposed read-only. Writes are disallowed as
942 	 * that will impact the host TSC.  If the guest does a write
943 	 * the "use TSC offsetting" execution control is enabled and the
944 	 * difference between the host TSC and the guest TSC is written
945 	 * into the TSC offset in the VMCS.
946 	 */
947 	if (guest_msr_rw(vmx, MSR_GSBASE) ||
948 	    guest_msr_rw(vmx, MSR_FSBASE) ||
949 	    guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) ||
950 	    guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) ||
951 	    guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) ||
952 	    guest_msr_rw(vmx, MSR_EFER) ||
953 	    guest_msr_ro(vmx, MSR_TSC))
954 		panic("vmx_vminit: error setting guest msr access");
955 
956 	vpid_alloc(vpid, VM_MAXCPU);
957 
958 	if (virtual_interrupt_delivery) {
959 		error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE,
960 		    APIC_ACCESS_ADDRESS);
961 		/* XXX this should really return an error to the caller */
962 		KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error));
963 	}
964 
965 	for (i = 0; i < VM_MAXCPU; i++) {
966 		vmcs = &vmx->vmcs[i];
967 		vmcs->identifier = vmx_revision();
968 		error = vmclear(vmcs);
969 		if (error != 0) {
970 			panic("vmx_vminit: vmclear error %d on vcpu %d\n",
971 			      error, i);
972 		}
973 
974 		vmx_msr_guest_init(vmx, i);
975 
976 		error = vmcs_init(vmcs);
977 		KASSERT(error == 0, ("vmcs_init error %d", error));
978 
979 		VMPTRLD(vmcs);
980 		error = 0;
981 		error += vmwrite(VMCS_HOST_RSP, (u_long)&vmx->ctx[i]);
982 		error += vmwrite(VMCS_EPTP, vmx->eptp);
983 		error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls);
984 		error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls);
985 		error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2);
986 		error += vmwrite(VMCS_EXIT_CTLS, exit_ctls);
987 		error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls);
988 		error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap));
989 		error += vmwrite(VMCS_VPID, vpid[i]);
990 
991 		/* exception bitmap */
992 		if (vcpu_trace_exceptions(vm, i))
993 			exc_bitmap = 0xffffffff;
994 		else
995 			exc_bitmap = 1 << IDT_MC;
996 		error += vmwrite(VMCS_EXCEPTION_BITMAP, exc_bitmap);
997 
998 		vmx->ctx[i].guest_dr6 = DBREG_DR6_RESERVED1;
999 		error += vmwrite(VMCS_GUEST_DR7, DBREG_DR7_RESERVED1);
1000 
1001 		if (virtual_interrupt_delivery) {
1002 			error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS);
1003 			error += vmwrite(VMCS_VIRTUAL_APIC,
1004 			    vtophys(&vmx->apic_page[i]));
1005 			error += vmwrite(VMCS_EOI_EXIT0, 0);
1006 			error += vmwrite(VMCS_EOI_EXIT1, 0);
1007 			error += vmwrite(VMCS_EOI_EXIT2, 0);
1008 			error += vmwrite(VMCS_EOI_EXIT3, 0);
1009 		}
1010 		if (posted_interrupts) {
1011 			error += vmwrite(VMCS_PIR_VECTOR, pirvec);
1012 			error += vmwrite(VMCS_PIR_DESC,
1013 			    vtophys(&vmx->pir_desc[i]));
1014 		}
1015 		VMCLEAR(vmcs);
1016 		KASSERT(error == 0, ("vmx_vminit: error customizing the vmcs"));
1017 
1018 		vmx->cap[i].set = 0;
1019 		vmx->cap[i].proc_ctls = procbased_ctls;
1020 		vmx->cap[i].proc_ctls2 = procbased_ctls2;
1021 
1022 		vmx->state[i].nextrip = ~0;
1023 		vmx->state[i].lastcpu = NOCPU;
1024 		vmx->state[i].vpid = vpid[i];
1025 
1026 		/*
1027 		 * Set up the CR0/4 shadows, and init the read shadow
1028 		 * to the power-on register value from the Intel Sys Arch.
1029 		 *  CR0 - 0x60000010
1030 		 *  CR4 - 0
1031 		 */
1032 		error = vmx_setup_cr0_shadow(vmcs, 0x60000010);
1033 		if (error != 0)
1034 			panic("vmx_setup_cr0_shadow %d", error);
1035 
1036 		error = vmx_setup_cr4_shadow(vmcs, 0);
1037 		if (error != 0)
1038 			panic("vmx_setup_cr4_shadow %d", error);
1039 
1040 		vmx->ctx[i].pmap = pmap;
1041 	}
1042 
1043 	return (vmx);
1044 }
1045 
1046 static int
1047 vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx)
1048 {
1049 	int handled, func;
1050 
1051 	func = vmxctx->guest_rax;
1052 
1053 	handled = x86_emulate_cpuid(vm, vcpu,
1054 				    (uint32_t*)(&vmxctx->guest_rax),
1055 				    (uint32_t*)(&vmxctx->guest_rbx),
1056 				    (uint32_t*)(&vmxctx->guest_rcx),
1057 				    (uint32_t*)(&vmxctx->guest_rdx));
1058 	return (handled);
1059 }
1060 
1061 static __inline void
1062 vmx_run_trace(struct vmx *vmx, int vcpu)
1063 {
1064 #ifdef KTR
1065 	VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %#lx", vmcs_guest_rip());
1066 #endif
1067 }
1068 
1069 static __inline void
1070 vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason,
1071 	       int handled)
1072 {
1073 #ifdef KTR
1074 	VCPU_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx",
1075 		 handled ? "handled" : "unhandled",
1076 		 exit_reason_to_str(exit_reason), rip);
1077 #endif
1078 }
1079 
1080 static __inline void
1081 vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip)
1082 {
1083 #ifdef KTR
1084 	VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip);
1085 #endif
1086 }
1087 
1088 static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved");
1089 static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done");
1090 
1091 /*
1092  * Invalidate guest mappings identified by its vpid from the TLB.
1093  */
1094 static __inline void
1095 vmx_invvpid(struct vmx *vmx, int vcpu, pmap_t pmap, int running)
1096 {
1097 	struct vmxstate *vmxstate;
1098 	struct invvpid_desc invvpid_desc;
1099 
1100 	vmxstate = &vmx->state[vcpu];
1101 	if (vmxstate->vpid == 0)
1102 		return;
1103 
1104 	if (!running) {
1105 		/*
1106 		 * Set the 'lastcpu' to an invalid host cpu.
1107 		 *
1108 		 * This will invalidate TLB entries tagged with the vcpu's
1109 		 * vpid the next time it runs via vmx_set_pcpu_defaults().
1110 		 */
1111 		vmxstate->lastcpu = NOCPU;
1112 		return;
1113 	}
1114 
1115 	KASSERT(curthread->td_critnest > 0, ("%s: vcpu %d running outside "
1116 	    "critical section", __func__, vcpu));
1117 
1118 	/*
1119 	 * Invalidate all mappings tagged with 'vpid'
1120 	 *
1121 	 * We do this because this vcpu was executing on a different host
1122 	 * cpu when it last ran. We do not track whether it invalidated
1123 	 * mappings associated with its 'vpid' during that run. So we must
1124 	 * assume that the mappings associated with 'vpid' on 'curcpu' are
1125 	 * stale and invalidate them.
1126 	 *
1127 	 * Note that we incur this penalty only when the scheduler chooses to
1128 	 * move the thread associated with this vcpu between host cpus.
1129 	 *
1130 	 * Note also that this will invalidate mappings tagged with 'vpid'
1131 	 * for "all" EP4TAs.
1132 	 */
1133 	if (pmap->pm_eptgen == vmx->eptgen[curcpu]) {
1134 		invvpid_desc._res1 = 0;
1135 		invvpid_desc._res2 = 0;
1136 		invvpid_desc.vpid = vmxstate->vpid;
1137 		invvpid_desc.linear_addr = 0;
1138 		invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
1139 		vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_DONE, 1);
1140 	} else {
1141 		/*
1142 		 * The invvpid can be skipped if an invept is going to
1143 		 * be performed before entering the guest. The invept
1144 		 * will invalidate combined mappings tagged with
1145 		 * 'vmx->eptp' for all vpids.
1146 		 */
1147 		vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_SAVED, 1);
1148 	}
1149 }
1150 
1151 static void
1152 vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu, pmap_t pmap)
1153 {
1154 	struct vmxstate *vmxstate;
1155 
1156 	vmxstate = &vmx->state[vcpu];
1157 	if (vmxstate->lastcpu == curcpu)
1158 		return;
1159 
1160 	vmxstate->lastcpu = curcpu;
1161 
1162 	vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1);
1163 
1164 	vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
1165 	vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
1166 	vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
1167 	vmx_invvpid(vmx, vcpu, pmap, 1);
1168 }
1169 
1170 /*
1171  * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
1172  */
1173 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
1174 
1175 static void __inline
1176 vmx_set_int_window_exiting(struct vmx *vmx, int vcpu)
1177 {
1178 
1179 	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) {
1180 		vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
1181 		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1182 		VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting");
1183 	}
1184 }
1185 
1186 static void __inline
1187 vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu)
1188 {
1189 
1190 	KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0,
1191 	    ("intr_window_exiting not set: %#x", vmx->cap[vcpu].proc_ctls));
1192 	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
1193 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1194 	VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting");
1195 }
1196 
1197 static void __inline
1198 vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu)
1199 {
1200 
1201 	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) {
1202 		vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
1203 		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1204 		VCPU_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting");
1205 	}
1206 }
1207 
1208 static void __inline
1209 vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu)
1210 {
1211 
1212 	KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0,
1213 	    ("nmi_window_exiting not set %#x", vmx->cap[vcpu].proc_ctls));
1214 	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
1215 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1216 	VCPU_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting");
1217 }
1218 
1219 int
1220 vmx_set_tsc_offset(struct vmx *vmx, int vcpu, uint64_t offset)
1221 {
1222 	int error;
1223 
1224 	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_TSC_OFFSET) == 0) {
1225 		vmx->cap[vcpu].proc_ctls |= PROCBASED_TSC_OFFSET;
1226 		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1227 		VCPU_CTR0(vmx->vm, vcpu, "Enabling TSC offsetting");
1228 	}
1229 
1230 	error = vmwrite(VMCS_TSC_OFFSET, offset);
1231 
1232 	return (error);
1233 }
1234 
1235 #define	NMI_BLOCKING	(VMCS_INTERRUPTIBILITY_NMI_BLOCKING |		\
1236 			 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1237 #define	HWINTR_BLOCKING	(VMCS_INTERRUPTIBILITY_STI_BLOCKING |		\
1238 			 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1239 
1240 static void
1241 vmx_inject_nmi(struct vmx *vmx, int vcpu)
1242 {
1243 	uint32_t gi, info;
1244 
1245 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1246 	KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest "
1247 	    "interruptibility-state %#x", gi));
1248 
1249 	info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1250 	KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid "
1251 	    "VM-entry interruption information %#x", info));
1252 
1253 	/*
1254 	 * Inject the virtual NMI. The vector must be the NMI IDT entry
1255 	 * or the VMCS entry check will fail.
1256 	 */
1257 	info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID;
1258 	vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1259 
1260 	VCPU_CTR0(vmx->vm, vcpu, "Injecting vNMI");
1261 
1262 	/* Clear the request */
1263 	vm_nmi_clear(vmx->vm, vcpu);
1264 }
1265 
1266 static void
1267 vmx_inject_interrupts(struct vmx *vmx, int vcpu, struct vlapic *vlapic,
1268     uint64_t guestrip)
1269 {
1270 	int vector, need_nmi_exiting, extint_pending;
1271 	uint64_t rflags, entryinfo;
1272 	uint32_t gi, info;
1273 
1274 	if (vmx->state[vcpu].nextrip != guestrip) {
1275 		gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1276 		if (gi & HWINTR_BLOCKING) {
1277 			VCPU_CTR2(vmx->vm, vcpu, "Guest interrupt blocking "
1278 			    "cleared due to rip change: %#lx/%#lx",
1279 			    vmx->state[vcpu].nextrip, guestrip);
1280 			gi &= ~HWINTR_BLOCKING;
1281 			vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1282 		}
1283 	}
1284 
1285 	if (vm_entry_intinfo(vmx->vm, vcpu, &entryinfo)) {
1286 		KASSERT((entryinfo & VMCS_INTR_VALID) != 0, ("%s: entry "
1287 		    "intinfo is not valid: %#lx", __func__, entryinfo));
1288 
1289 		info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1290 		KASSERT((info & VMCS_INTR_VALID) == 0, ("%s: cannot inject "
1291 		     "pending exception: %#lx/%#x", __func__, entryinfo, info));
1292 
1293 		info = entryinfo;
1294 		vector = info & 0xff;
1295 		if (vector == IDT_BP || vector == IDT_OF) {
1296 			/*
1297 			 * VT-x requires #BP and #OF to be injected as software
1298 			 * exceptions.
1299 			 */
1300 			info &= ~VMCS_INTR_T_MASK;
1301 			info |= VMCS_INTR_T_SWEXCEPTION;
1302 		}
1303 
1304 		if (info & VMCS_INTR_DEL_ERRCODE)
1305 			vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, entryinfo >> 32);
1306 
1307 		vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1308 	}
1309 
1310 	if (vm_nmi_pending(vmx->vm, vcpu)) {
1311 		/*
1312 		 * If there are no conditions blocking NMI injection then
1313 		 * inject it directly here otherwise enable "NMI window
1314 		 * exiting" to inject it as soon as we can.
1315 		 *
1316 		 * We also check for STI_BLOCKING because some implementations
1317 		 * don't allow NMI injection in this case. If we are running
1318 		 * on a processor that doesn't have this restriction it will
1319 		 * immediately exit and the NMI will be injected in the
1320 		 * "NMI window exiting" handler.
1321 		 */
1322 		need_nmi_exiting = 1;
1323 		gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1324 		if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) {
1325 			info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1326 			if ((info & VMCS_INTR_VALID) == 0) {
1327 				vmx_inject_nmi(vmx, vcpu);
1328 				need_nmi_exiting = 0;
1329 			} else {
1330 				VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI "
1331 				    "due to VM-entry intr info %#x", info);
1332 			}
1333 		} else {
1334 			VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI due to "
1335 			    "Guest Interruptibility-state %#x", gi);
1336 		}
1337 
1338 		if (need_nmi_exiting)
1339 			vmx_set_nmi_window_exiting(vmx, vcpu);
1340 	}
1341 
1342 	extint_pending = vm_extint_pending(vmx->vm, vcpu);
1343 
1344 	if (!extint_pending && virtual_interrupt_delivery) {
1345 		vmx_inject_pir(vlapic);
1346 		return;
1347 	}
1348 
1349 	/*
1350 	 * If interrupt-window exiting is already in effect then don't bother
1351 	 * checking for pending interrupts. This is just an optimization and
1352 	 * not needed for correctness.
1353 	 */
1354 	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0) {
1355 		VCPU_CTR0(vmx->vm, vcpu, "Skip interrupt injection due to "
1356 		    "pending int_window_exiting");
1357 		return;
1358 	}
1359 
1360 	if (!extint_pending) {
1361 		/* Ask the local apic for a vector to inject */
1362 		if (!vlapic_pending_intr(vlapic, &vector))
1363 			return;
1364 
1365 		/*
1366 		 * From the Intel SDM, Volume 3, Section "Maskable
1367 		 * Hardware Interrupts":
1368 		 * - maskable interrupt vectors [16,255] can be delivered
1369 		 *   through the local APIC.
1370 		*/
1371 		KASSERT(vector >= 16 && vector <= 255,
1372 		    ("invalid vector %d from local APIC", vector));
1373 	} else {
1374 		/* Ask the legacy pic for a vector to inject */
1375 		vatpic_pending_intr(vmx->vm, &vector);
1376 
1377 		/*
1378 		 * From the Intel SDM, Volume 3, Section "Maskable
1379 		 * Hardware Interrupts":
1380 		 * - maskable interrupt vectors [0,255] can be delivered
1381 		 *   through the INTR pin.
1382 		 */
1383 		KASSERT(vector >= 0 && vector <= 255,
1384 		    ("invalid vector %d from INTR", vector));
1385 	}
1386 
1387 	/* Check RFLAGS.IF and the interruptibility state of the guest */
1388 	rflags = vmcs_read(VMCS_GUEST_RFLAGS);
1389 	if ((rflags & PSL_I) == 0) {
1390 		VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1391 		    "rflags %#lx", vector, rflags);
1392 		goto cantinject;
1393 	}
1394 
1395 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1396 	if (gi & HWINTR_BLOCKING) {
1397 		VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1398 		    "Guest Interruptibility-state %#x", vector, gi);
1399 		goto cantinject;
1400 	}
1401 
1402 	info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1403 	if (info & VMCS_INTR_VALID) {
1404 		/*
1405 		 * This is expected and could happen for multiple reasons:
1406 		 * - A vectoring VM-entry was aborted due to astpending
1407 		 * - A VM-exit happened during event injection.
1408 		 * - An exception was injected above.
1409 		 * - An NMI was injected above or after "NMI window exiting"
1410 		 */
1411 		VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1412 		    "VM-entry intr info %#x", vector, info);
1413 		goto cantinject;
1414 	}
1415 
1416 	/* Inject the interrupt */
1417 	info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID;
1418 	info |= vector;
1419 	vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1420 
1421 	if (!extint_pending) {
1422 		/* Update the Local APIC ISR */
1423 		vlapic_intr_accepted(vlapic, vector);
1424 	} else {
1425 		vm_extint_clear(vmx->vm, vcpu);
1426 		vatpic_intr_accepted(vmx->vm, vector);
1427 
1428 		/*
1429 		 * After we accepted the current ExtINT the PIC may
1430 		 * have posted another one.  If that is the case, set
1431 		 * the Interrupt Window Exiting execution control so
1432 		 * we can inject that one too.
1433 		 *
1434 		 * Also, interrupt window exiting allows us to inject any
1435 		 * pending APIC vector that was preempted by the ExtINT
1436 		 * as soon as possible. This applies both for the software
1437 		 * emulated vlapic and the hardware assisted virtual APIC.
1438 		 */
1439 		vmx_set_int_window_exiting(vmx, vcpu);
1440 	}
1441 
1442 	VCPU_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector);
1443 
1444 	return;
1445 
1446 cantinject:
1447 	/*
1448 	 * Set the Interrupt Window Exiting execution control so we can inject
1449 	 * the interrupt as soon as blocking condition goes away.
1450 	 */
1451 	vmx_set_int_window_exiting(vmx, vcpu);
1452 }
1453 
1454 /*
1455  * If the Virtual NMIs execution control is '1' then the logical processor
1456  * tracks virtual-NMI blocking in the Guest Interruptibility-state field of
1457  * the VMCS. An IRET instruction in VMX non-root operation will remove any
1458  * virtual-NMI blocking.
1459  *
1460  * This unblocking occurs even if the IRET causes a fault. In this case the
1461  * hypervisor needs to restore virtual-NMI blocking before resuming the guest.
1462  */
1463 static void
1464 vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid)
1465 {
1466 	uint32_t gi;
1467 
1468 	VCPU_CTR0(vmx->vm, vcpuid, "Restore Virtual-NMI blocking");
1469 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1470 	gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1471 	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1472 }
1473 
1474 static void
1475 vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid)
1476 {
1477 	uint32_t gi;
1478 
1479 	VCPU_CTR0(vmx->vm, vcpuid, "Clear Virtual-NMI blocking");
1480 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1481 	gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1482 	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1483 }
1484 
1485 static void
1486 vmx_assert_nmi_blocking(struct vmx *vmx, int vcpuid)
1487 {
1488 	uint32_t gi;
1489 
1490 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1491 	KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING,
1492 	    ("NMI blocking is not in effect %#x", gi));
1493 }
1494 
1495 static int
1496 vmx_emulate_xsetbv(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1497 {
1498 	struct vmxctx *vmxctx;
1499 	uint64_t xcrval;
1500 	const struct xsave_limits *limits;
1501 
1502 	vmxctx = &vmx->ctx[vcpu];
1503 	limits = vmm_get_xsave_limits();
1504 
1505 	/*
1506 	 * Note that the processor raises a GP# fault on its own if
1507 	 * xsetbv is executed for CPL != 0, so we do not have to
1508 	 * emulate that fault here.
1509 	 */
1510 
1511 	/* Only xcr0 is supported. */
1512 	if (vmxctx->guest_rcx != 0) {
1513 		vm_inject_gp(vmx->vm, vcpu);
1514 		return (HANDLED);
1515 	}
1516 
1517 	/* We only handle xcr0 if both the host and guest have XSAVE enabled. */
1518 	if (!limits->xsave_enabled || !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) {
1519 		vm_inject_ud(vmx->vm, vcpu);
1520 		return (HANDLED);
1521 	}
1522 
1523 	xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff);
1524 	if ((xcrval & ~limits->xcr0_allowed) != 0) {
1525 		vm_inject_gp(vmx->vm, vcpu);
1526 		return (HANDLED);
1527 	}
1528 
1529 	if (!(xcrval & XFEATURE_ENABLED_X87)) {
1530 		vm_inject_gp(vmx->vm, vcpu);
1531 		return (HANDLED);
1532 	}
1533 
1534 	/* AVX (YMM_Hi128) requires SSE. */
1535 	if (xcrval & XFEATURE_ENABLED_AVX &&
1536 	    (xcrval & XFEATURE_AVX) != XFEATURE_AVX) {
1537 		vm_inject_gp(vmx->vm, vcpu);
1538 		return (HANDLED);
1539 	}
1540 
1541 	/*
1542 	 * AVX512 requires base AVX (YMM_Hi128) as well as OpMask,
1543 	 * ZMM_Hi256, and Hi16_ZMM.
1544 	 */
1545 	if (xcrval & XFEATURE_AVX512 &&
1546 	    (xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) !=
1547 	    (XFEATURE_AVX512 | XFEATURE_AVX)) {
1548 		vm_inject_gp(vmx->vm, vcpu);
1549 		return (HANDLED);
1550 	}
1551 
1552 	/*
1553 	 * Intel MPX requires both bound register state flags to be
1554 	 * set.
1555 	 */
1556 	if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) !=
1557 	    ((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) {
1558 		vm_inject_gp(vmx->vm, vcpu);
1559 		return (HANDLED);
1560 	}
1561 
1562 	/*
1563 	 * This runs "inside" vmrun() with the guest's FPU state, so
1564 	 * modifying xcr0 directly modifies the guest's xcr0, not the
1565 	 * host's.
1566 	 */
1567 	load_xcr(0, xcrval);
1568 	return (HANDLED);
1569 }
1570 
1571 static uint64_t
1572 vmx_get_guest_reg(struct vmx *vmx, int vcpu, int ident)
1573 {
1574 	const struct vmxctx *vmxctx;
1575 
1576 	vmxctx = &vmx->ctx[vcpu];
1577 
1578 	switch (ident) {
1579 	case 0:
1580 		return (vmxctx->guest_rax);
1581 	case 1:
1582 		return (vmxctx->guest_rcx);
1583 	case 2:
1584 		return (vmxctx->guest_rdx);
1585 	case 3:
1586 		return (vmxctx->guest_rbx);
1587 	case 4:
1588 		return (vmcs_read(VMCS_GUEST_RSP));
1589 	case 5:
1590 		return (vmxctx->guest_rbp);
1591 	case 6:
1592 		return (vmxctx->guest_rsi);
1593 	case 7:
1594 		return (vmxctx->guest_rdi);
1595 	case 8:
1596 		return (vmxctx->guest_r8);
1597 	case 9:
1598 		return (vmxctx->guest_r9);
1599 	case 10:
1600 		return (vmxctx->guest_r10);
1601 	case 11:
1602 		return (vmxctx->guest_r11);
1603 	case 12:
1604 		return (vmxctx->guest_r12);
1605 	case 13:
1606 		return (vmxctx->guest_r13);
1607 	case 14:
1608 		return (vmxctx->guest_r14);
1609 	case 15:
1610 		return (vmxctx->guest_r15);
1611 	default:
1612 		panic("invalid vmx register %d", ident);
1613 	}
1614 }
1615 
1616 static void
1617 vmx_set_guest_reg(struct vmx *vmx, int vcpu, int ident, uint64_t regval)
1618 {
1619 	struct vmxctx *vmxctx;
1620 
1621 	vmxctx = &vmx->ctx[vcpu];
1622 
1623 	switch (ident) {
1624 	case 0:
1625 		vmxctx->guest_rax = regval;
1626 		break;
1627 	case 1:
1628 		vmxctx->guest_rcx = regval;
1629 		break;
1630 	case 2:
1631 		vmxctx->guest_rdx = regval;
1632 		break;
1633 	case 3:
1634 		vmxctx->guest_rbx = regval;
1635 		break;
1636 	case 4:
1637 		vmcs_write(VMCS_GUEST_RSP, regval);
1638 		break;
1639 	case 5:
1640 		vmxctx->guest_rbp = regval;
1641 		break;
1642 	case 6:
1643 		vmxctx->guest_rsi = regval;
1644 		break;
1645 	case 7:
1646 		vmxctx->guest_rdi = regval;
1647 		break;
1648 	case 8:
1649 		vmxctx->guest_r8 = regval;
1650 		break;
1651 	case 9:
1652 		vmxctx->guest_r9 = regval;
1653 		break;
1654 	case 10:
1655 		vmxctx->guest_r10 = regval;
1656 		break;
1657 	case 11:
1658 		vmxctx->guest_r11 = regval;
1659 		break;
1660 	case 12:
1661 		vmxctx->guest_r12 = regval;
1662 		break;
1663 	case 13:
1664 		vmxctx->guest_r13 = regval;
1665 		break;
1666 	case 14:
1667 		vmxctx->guest_r14 = regval;
1668 		break;
1669 	case 15:
1670 		vmxctx->guest_r15 = regval;
1671 		break;
1672 	default:
1673 		panic("invalid vmx register %d", ident);
1674 	}
1675 }
1676 
1677 static int
1678 vmx_emulate_cr0_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1679 {
1680 	uint64_t crval, regval;
1681 
1682 	/* We only handle mov to %cr0 at this time */
1683 	if ((exitqual & 0xf0) != 0x00)
1684 		return (UNHANDLED);
1685 
1686 	regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1687 
1688 	vmcs_write(VMCS_CR0_SHADOW, regval);
1689 
1690 	crval = regval | cr0_ones_mask;
1691 	crval &= ~cr0_zeros_mask;
1692 	vmcs_write(VMCS_GUEST_CR0, crval);
1693 
1694 	if (regval & CR0_PG) {
1695 		uint64_t efer, entry_ctls;
1696 
1697 		/*
1698 		 * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and
1699 		 * the "IA-32e mode guest" bit in VM-entry control must be
1700 		 * equal.
1701 		 */
1702 		efer = vmcs_read(VMCS_GUEST_IA32_EFER);
1703 		if (efer & EFER_LME) {
1704 			efer |= EFER_LMA;
1705 			vmcs_write(VMCS_GUEST_IA32_EFER, efer);
1706 			entry_ctls = vmcs_read(VMCS_ENTRY_CTLS);
1707 			entry_ctls |= VM_ENTRY_GUEST_LMA;
1708 			vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
1709 		}
1710 	}
1711 
1712 	return (HANDLED);
1713 }
1714 
1715 static int
1716 vmx_emulate_cr4_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1717 {
1718 	uint64_t crval, regval;
1719 
1720 	/* We only handle mov to %cr4 at this time */
1721 	if ((exitqual & 0xf0) != 0x00)
1722 		return (UNHANDLED);
1723 
1724 	regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1725 
1726 	vmcs_write(VMCS_CR4_SHADOW, regval);
1727 
1728 	crval = regval | cr4_ones_mask;
1729 	crval &= ~cr4_zeros_mask;
1730 	vmcs_write(VMCS_GUEST_CR4, crval);
1731 
1732 	return (HANDLED);
1733 }
1734 
1735 static int
1736 vmx_emulate_cr8_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1737 {
1738 	struct vlapic *vlapic;
1739 	uint64_t cr8;
1740 	int regnum;
1741 
1742 	/* We only handle mov %cr8 to/from a register at this time. */
1743 	if ((exitqual & 0xe0) != 0x00) {
1744 		return (UNHANDLED);
1745 	}
1746 
1747 	vlapic = vm_lapic(vmx->vm, vcpu);
1748 	regnum = (exitqual >> 8) & 0xf;
1749 	if (exitqual & 0x10) {
1750 		cr8 = vlapic_get_cr8(vlapic);
1751 		vmx_set_guest_reg(vmx, vcpu, regnum, cr8);
1752 	} else {
1753 		cr8 = vmx_get_guest_reg(vmx, vcpu, regnum);
1754 		vlapic_set_cr8(vlapic, cr8);
1755 	}
1756 
1757 	return (HANDLED);
1758 }
1759 
1760 /*
1761  * From section "Guest Register State" in the Intel SDM: CPL = SS.DPL
1762  */
1763 static int
1764 vmx_cpl(void)
1765 {
1766 	uint32_t ssar;
1767 
1768 	ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS);
1769 	return ((ssar >> 5) & 0x3);
1770 }
1771 
1772 static enum vm_cpu_mode
1773 vmx_cpu_mode(void)
1774 {
1775 	uint32_t csar;
1776 
1777 	if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) {
1778 		csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1779 		if (csar & 0x2000)
1780 			return (CPU_MODE_64BIT);	/* CS.L = 1 */
1781 		else
1782 			return (CPU_MODE_COMPATIBILITY);
1783 	} else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) {
1784 		return (CPU_MODE_PROTECTED);
1785 	} else {
1786 		return (CPU_MODE_REAL);
1787 	}
1788 }
1789 
1790 static enum vm_paging_mode
1791 vmx_paging_mode(void)
1792 {
1793 
1794 	if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG))
1795 		return (PAGING_MODE_FLAT);
1796 	if (!(vmcs_read(VMCS_GUEST_CR4) & CR4_PAE))
1797 		return (PAGING_MODE_32);
1798 	if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME)
1799 		return (PAGING_MODE_64);
1800 	else
1801 		return (PAGING_MODE_PAE);
1802 }
1803 
1804 static uint64_t
1805 inout_str_index(struct vmx *vmx, int vcpuid, int in)
1806 {
1807 	uint64_t val;
1808 	int error;
1809 	enum vm_reg_name reg;
1810 
1811 	reg = in ? VM_REG_GUEST_RDI : VM_REG_GUEST_RSI;
1812 	error = vmx_getreg(vmx, vcpuid, reg, &val);
1813 	KASSERT(error == 0, ("%s: vmx_getreg error %d", __func__, error));
1814 	return (val);
1815 }
1816 
1817 static uint64_t
1818 inout_str_count(struct vmx *vmx, int vcpuid, int rep)
1819 {
1820 	uint64_t val;
1821 	int error;
1822 
1823 	if (rep) {
1824 		error = vmx_getreg(vmx, vcpuid, VM_REG_GUEST_RCX, &val);
1825 		KASSERT(!error, ("%s: vmx_getreg error %d", __func__, error));
1826 	} else {
1827 		val = 1;
1828 	}
1829 	return (val);
1830 }
1831 
1832 static int
1833 inout_str_addrsize(uint32_t inst_info)
1834 {
1835 	uint32_t size;
1836 
1837 	size = (inst_info >> 7) & 0x7;
1838 	switch (size) {
1839 	case 0:
1840 		return (2);	/* 16 bit */
1841 	case 1:
1842 		return (4);	/* 32 bit */
1843 	case 2:
1844 		return (8);	/* 64 bit */
1845 	default:
1846 		panic("%s: invalid size encoding %d", __func__, size);
1847 	}
1848 }
1849 
1850 static void
1851 inout_str_seginfo(struct vmx *vmx, int vcpuid, uint32_t inst_info, int in,
1852     struct vm_inout_str *vis)
1853 {
1854 	int error, s;
1855 
1856 	if (in) {
1857 		vis->seg_name = VM_REG_GUEST_ES;
1858 	} else {
1859 		s = (inst_info >> 15) & 0x7;
1860 		vis->seg_name = vm_segment_name(s);
1861 	}
1862 
1863 	error = vmx_getdesc(vmx, vcpuid, vis->seg_name, &vis->seg_desc);
1864 	KASSERT(error == 0, ("%s: vmx_getdesc error %d", __func__, error));
1865 }
1866 
1867 static void
1868 vmx_paging_info(struct vm_guest_paging *paging)
1869 {
1870 	paging->cr3 = vmcs_guest_cr3();
1871 	paging->cpl = vmx_cpl();
1872 	paging->cpu_mode = vmx_cpu_mode();
1873 	paging->paging_mode = vmx_paging_mode();
1874 }
1875 
1876 static void
1877 vmexit_inst_emul(struct vm_exit *vmexit, uint64_t gpa, uint64_t gla)
1878 {
1879 	struct vm_guest_paging *paging;
1880 	uint32_t csar;
1881 
1882 	paging = &vmexit->u.inst_emul.paging;
1883 
1884 	vmexit->exitcode = VM_EXITCODE_INST_EMUL;
1885 	vmexit->inst_length = 0;
1886 	vmexit->u.inst_emul.gpa = gpa;
1887 	vmexit->u.inst_emul.gla = gla;
1888 	vmx_paging_info(paging);
1889 	switch (paging->cpu_mode) {
1890 	case CPU_MODE_REAL:
1891 		vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
1892 		vmexit->u.inst_emul.cs_d = 0;
1893 		break;
1894 	case CPU_MODE_PROTECTED:
1895 	case CPU_MODE_COMPATIBILITY:
1896 		vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
1897 		csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1898 		vmexit->u.inst_emul.cs_d = SEG_DESC_DEF32(csar);
1899 		break;
1900 	default:
1901 		vmexit->u.inst_emul.cs_base = 0;
1902 		vmexit->u.inst_emul.cs_d = 0;
1903 		break;
1904 	}
1905 	vie_init(&vmexit->u.inst_emul.vie, NULL, 0);
1906 }
1907 
1908 static int
1909 ept_fault_type(uint64_t ept_qual)
1910 {
1911 	int fault_type;
1912 
1913 	if (ept_qual & EPT_VIOLATION_DATA_WRITE)
1914 		fault_type = VM_PROT_WRITE;
1915 	else if (ept_qual & EPT_VIOLATION_INST_FETCH)
1916 		fault_type = VM_PROT_EXECUTE;
1917 	else
1918 		fault_type= VM_PROT_READ;
1919 
1920 	return (fault_type);
1921 }
1922 
1923 static boolean_t
1924 ept_emulation_fault(uint64_t ept_qual)
1925 {
1926 	int read, write;
1927 
1928 	/* EPT fault on an instruction fetch doesn't make sense here */
1929 	if (ept_qual & EPT_VIOLATION_INST_FETCH)
1930 		return (FALSE);
1931 
1932 	/* EPT fault must be a read fault or a write fault */
1933 	read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
1934 	write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
1935 	if ((read | write) == 0)
1936 		return (FALSE);
1937 
1938 	/*
1939 	 * The EPT violation must have been caused by accessing a
1940 	 * guest-physical address that is a translation of a guest-linear
1941 	 * address.
1942 	 */
1943 	if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
1944 	    (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
1945 		return (FALSE);
1946 	}
1947 
1948 	return (TRUE);
1949 }
1950 
1951 static __inline int
1952 apic_access_virtualization(struct vmx *vmx, int vcpuid)
1953 {
1954 	uint32_t proc_ctls2;
1955 
1956 	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
1957 	return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0);
1958 }
1959 
1960 static __inline int
1961 x2apic_virtualization(struct vmx *vmx, int vcpuid)
1962 {
1963 	uint32_t proc_ctls2;
1964 
1965 	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
1966 	return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0);
1967 }
1968 
1969 static int
1970 vmx_handle_apic_write(struct vmx *vmx, int vcpuid, struct vlapic *vlapic,
1971     uint64_t qual)
1972 {
1973 	int error, handled, offset;
1974 	uint32_t *apic_regs, vector;
1975 	bool retu;
1976 
1977 	handled = HANDLED;
1978 	offset = APIC_WRITE_OFFSET(qual);
1979 
1980 	if (!apic_access_virtualization(vmx, vcpuid)) {
1981 		/*
1982 		 * In general there should not be any APIC write VM-exits
1983 		 * unless APIC-access virtualization is enabled.
1984 		 *
1985 		 * However self-IPI virtualization can legitimately trigger
1986 		 * an APIC-write VM-exit so treat it specially.
1987 		 */
1988 		if (x2apic_virtualization(vmx, vcpuid) &&
1989 		    offset == APIC_OFFSET_SELF_IPI) {
1990 			apic_regs = (uint32_t *)(vlapic->apic_page);
1991 			vector = apic_regs[APIC_OFFSET_SELF_IPI / 4];
1992 			vlapic_self_ipi_handler(vlapic, vector);
1993 			return (HANDLED);
1994 		} else
1995 			return (UNHANDLED);
1996 	}
1997 
1998 	switch (offset) {
1999 	case APIC_OFFSET_ID:
2000 		vlapic_id_write_handler(vlapic);
2001 		break;
2002 	case APIC_OFFSET_LDR:
2003 		vlapic_ldr_write_handler(vlapic);
2004 		break;
2005 	case APIC_OFFSET_DFR:
2006 		vlapic_dfr_write_handler(vlapic);
2007 		break;
2008 	case APIC_OFFSET_SVR:
2009 		vlapic_svr_write_handler(vlapic);
2010 		break;
2011 	case APIC_OFFSET_ESR:
2012 		vlapic_esr_write_handler(vlapic);
2013 		break;
2014 	case APIC_OFFSET_ICR_LOW:
2015 		retu = false;
2016 		error = vlapic_icrlo_write_handler(vlapic, &retu);
2017 		if (error != 0 || retu)
2018 			handled = UNHANDLED;
2019 		break;
2020 	case APIC_OFFSET_CMCI_LVT:
2021 	case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT:
2022 		vlapic_lvt_write_handler(vlapic, offset);
2023 		break;
2024 	case APIC_OFFSET_TIMER_ICR:
2025 		vlapic_icrtmr_write_handler(vlapic);
2026 		break;
2027 	case APIC_OFFSET_TIMER_DCR:
2028 		vlapic_dcr_write_handler(vlapic);
2029 		break;
2030 	default:
2031 		handled = UNHANDLED;
2032 		break;
2033 	}
2034 	return (handled);
2035 }
2036 
2037 static bool
2038 apic_access_fault(struct vmx *vmx, int vcpuid, uint64_t gpa)
2039 {
2040 
2041 	if (apic_access_virtualization(vmx, vcpuid) &&
2042 	    (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE))
2043 		return (true);
2044 	else
2045 		return (false);
2046 }
2047 
2048 static int
2049 vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
2050 {
2051 	uint64_t qual;
2052 	int access_type, offset, allowed;
2053 
2054 	if (!apic_access_virtualization(vmx, vcpuid))
2055 		return (UNHANDLED);
2056 
2057 	qual = vmexit->u.vmx.exit_qualification;
2058 	access_type = APIC_ACCESS_TYPE(qual);
2059 	offset = APIC_ACCESS_OFFSET(qual);
2060 
2061 	allowed = 0;
2062 	if (access_type == 0) {
2063 		/*
2064 		 * Read data access to the following registers is expected.
2065 		 */
2066 		switch (offset) {
2067 		case APIC_OFFSET_APR:
2068 		case APIC_OFFSET_PPR:
2069 		case APIC_OFFSET_RRR:
2070 		case APIC_OFFSET_CMCI_LVT:
2071 		case APIC_OFFSET_TIMER_CCR:
2072 			allowed = 1;
2073 			break;
2074 		default:
2075 			break;
2076 		}
2077 	} else if (access_type == 1) {
2078 		/*
2079 		 * Write data access to the following registers is expected.
2080 		 */
2081 		switch (offset) {
2082 		case APIC_OFFSET_VER:
2083 		case APIC_OFFSET_APR:
2084 		case APIC_OFFSET_PPR:
2085 		case APIC_OFFSET_RRR:
2086 		case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7:
2087 		case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7:
2088 		case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7:
2089 		case APIC_OFFSET_CMCI_LVT:
2090 		case APIC_OFFSET_TIMER_CCR:
2091 			allowed = 1;
2092 			break;
2093 		default:
2094 			break;
2095 		}
2096 	}
2097 
2098 	if (allowed) {
2099 		vmexit_inst_emul(vmexit, DEFAULT_APIC_BASE + offset,
2100 		    VIE_INVALID_GLA);
2101 	}
2102 
2103 	/*
2104 	 * Regardless of whether the APIC-access is allowed this handler
2105 	 * always returns UNHANDLED:
2106 	 * - if the access is allowed then it is handled by emulating the
2107 	 *   instruction that caused the VM-exit (outside the critical section)
2108 	 * - if the access is not allowed then it will be converted to an
2109 	 *   exitcode of VM_EXITCODE_VMX and will be dealt with in userland.
2110 	 */
2111 	return (UNHANDLED);
2112 }
2113 
2114 static enum task_switch_reason
2115 vmx_task_switch_reason(uint64_t qual)
2116 {
2117 	int reason;
2118 
2119 	reason = (qual >> 30) & 0x3;
2120 	switch (reason) {
2121 	case 0:
2122 		return (TSR_CALL);
2123 	case 1:
2124 		return (TSR_IRET);
2125 	case 2:
2126 		return (TSR_JMP);
2127 	case 3:
2128 		return (TSR_IDT_GATE);
2129 	default:
2130 		panic("%s: invalid reason %d", __func__, reason);
2131 	}
2132 }
2133 
2134 static int
2135 emulate_wrmsr(struct vmx *vmx, int vcpuid, u_int num, uint64_t val, bool *retu)
2136 {
2137 	int error;
2138 
2139 	if (lapic_msr(num))
2140 		error = lapic_wrmsr(vmx->vm, vcpuid, num, val, retu);
2141 	else
2142 		error = vmx_wrmsr(vmx, vcpuid, num, val, retu);
2143 
2144 	return (error);
2145 }
2146 
2147 static int
2148 emulate_rdmsr(struct vmx *vmx, int vcpuid, u_int num, bool *retu)
2149 {
2150 	struct vmxctx *vmxctx;
2151 	uint64_t result;
2152 	uint32_t eax, edx;
2153 	int error;
2154 
2155 	if (lapic_msr(num))
2156 		error = lapic_rdmsr(vmx->vm, vcpuid, num, &result, retu);
2157 	else
2158 		error = vmx_rdmsr(vmx, vcpuid, num, &result, retu);
2159 
2160 	if (error == 0) {
2161 		eax = result;
2162 		vmxctx = &vmx->ctx[vcpuid];
2163 		error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RAX, eax);
2164 		KASSERT(error == 0, ("vmxctx_setreg(rax) error %d", error));
2165 
2166 		edx = result >> 32;
2167 		error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RDX, edx);
2168 		KASSERT(error == 0, ("vmxctx_setreg(rdx) error %d", error));
2169 	}
2170 
2171 	return (error);
2172 }
2173 
2174 static int
2175 vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
2176 {
2177 	int error, errcode, errcode_valid, handled, in;
2178 	struct vmxctx *vmxctx;
2179 	struct vlapic *vlapic;
2180 	struct vm_inout_str *vis;
2181 	struct vm_task_switch *ts;
2182 	uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, inst_info;
2183 	uint32_t intr_type, intr_vec, reason;
2184 	uint64_t exitintinfo, qual, gpa;
2185 	bool retu;
2186 
2187 	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0);
2188 	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0);
2189 
2190 	handled = UNHANDLED;
2191 	vmxctx = &vmx->ctx[vcpu];
2192 
2193 	qual = vmexit->u.vmx.exit_qualification;
2194 	reason = vmexit->u.vmx.exit_reason;
2195 	vmexit->exitcode = VM_EXITCODE_BOGUS;
2196 
2197 	vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1);
2198 	SDT_PROBE3(vmm, vmx, exit, entry, vmx, vcpu, vmexit);
2199 
2200 	/*
2201 	 * VM-entry failures during or after loading guest state.
2202 	 *
2203 	 * These VM-exits are uncommon but must be handled specially
2204 	 * as most VM-exit fields are not populated as usual.
2205 	 */
2206 	if (__predict_false(reason == EXIT_REASON_MCE_DURING_ENTRY)) {
2207 		VCPU_CTR0(vmx->vm, vcpu, "Handling MCE during VM-entry");
2208 		__asm __volatile("int $18");
2209 		return (1);
2210 	}
2211 
2212 	/*
2213 	 * VM exits that can be triggered during event delivery need to
2214 	 * be handled specially by re-injecting the event if the IDT
2215 	 * vectoring information field's valid bit is set.
2216 	 *
2217 	 * See "Information for VM Exits During Event Delivery" in Intel SDM
2218 	 * for details.
2219 	 */
2220 	idtvec_info = vmcs_idt_vectoring_info();
2221 	if (idtvec_info & VMCS_IDT_VEC_VALID) {
2222 		idtvec_info &= ~(1 << 12); /* clear undefined bit */
2223 		exitintinfo = idtvec_info;
2224 		if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2225 			idtvec_err = vmcs_idt_vectoring_err();
2226 			exitintinfo |= (uint64_t)idtvec_err << 32;
2227 		}
2228 		error = vm_exit_intinfo(vmx->vm, vcpu, exitintinfo);
2229 		KASSERT(error == 0, ("%s: vm_set_intinfo error %d",
2230 		    __func__, error));
2231 
2232 		/*
2233 		 * If 'virtual NMIs' are being used and the VM-exit
2234 		 * happened while injecting an NMI during the previous
2235 		 * VM-entry, then clear "blocking by NMI" in the
2236 		 * Guest Interruptibility-State so the NMI can be
2237 		 * reinjected on the subsequent VM-entry.
2238 		 *
2239 		 * However, if the NMI was being delivered through a task
2240 		 * gate, then the new task must start execution with NMIs
2241 		 * blocked so don't clear NMI blocking in this case.
2242 		 */
2243 		intr_type = idtvec_info & VMCS_INTR_T_MASK;
2244 		if (intr_type == VMCS_INTR_T_NMI) {
2245 			if (reason != EXIT_REASON_TASK_SWITCH)
2246 				vmx_clear_nmi_blocking(vmx, vcpu);
2247 			else
2248 				vmx_assert_nmi_blocking(vmx, vcpu);
2249 		}
2250 
2251 		/*
2252 		 * Update VM-entry instruction length if the event being
2253 		 * delivered was a software interrupt or software exception.
2254 		 */
2255 		if (intr_type == VMCS_INTR_T_SWINTR ||
2256 		    intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION ||
2257 		    intr_type == VMCS_INTR_T_SWEXCEPTION) {
2258 			vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2259 		}
2260 	}
2261 
2262 	switch (reason) {
2263 	case EXIT_REASON_TASK_SWITCH:
2264 		ts = &vmexit->u.task_switch;
2265 		ts->tsssel = qual & 0xffff;
2266 		ts->reason = vmx_task_switch_reason(qual);
2267 		ts->ext = 0;
2268 		ts->errcode_valid = 0;
2269 		vmx_paging_info(&ts->paging);
2270 		/*
2271 		 * If the task switch was due to a CALL, JMP, IRET, software
2272 		 * interrupt (INT n) or software exception (INT3, INTO),
2273 		 * then the saved %rip references the instruction that caused
2274 		 * the task switch. The instruction length field in the VMCS
2275 		 * is valid in this case.
2276 		 *
2277 		 * In all other cases (e.g., NMI, hardware exception) the
2278 		 * saved %rip is one that would have been saved in the old TSS
2279 		 * had the task switch completed normally so the instruction
2280 		 * length field is not needed in this case and is explicitly
2281 		 * set to 0.
2282 		 */
2283 		if (ts->reason == TSR_IDT_GATE) {
2284 			KASSERT(idtvec_info & VMCS_IDT_VEC_VALID,
2285 			    ("invalid idtvec_info %#x for IDT task switch",
2286 			    idtvec_info));
2287 			intr_type = idtvec_info & VMCS_INTR_T_MASK;
2288 			if (intr_type != VMCS_INTR_T_SWINTR &&
2289 			    intr_type != VMCS_INTR_T_SWEXCEPTION &&
2290 			    intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) {
2291 				/* Task switch triggered by external event */
2292 				ts->ext = 1;
2293 				vmexit->inst_length = 0;
2294 				if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2295 					ts->errcode_valid = 1;
2296 					ts->errcode = vmcs_idt_vectoring_err();
2297 				}
2298 			}
2299 		}
2300 		vmexit->exitcode = VM_EXITCODE_TASK_SWITCH;
2301 		SDT_PROBE4(vmm, vmx, exit, taskswitch, vmx, vcpu, vmexit, ts);
2302 		VCPU_CTR4(vmx->vm, vcpu, "task switch reason %d, tss 0x%04x, "
2303 		    "%s errcode 0x%016lx", ts->reason, ts->tsssel,
2304 		    ts->ext ? "external" : "internal",
2305 		    ((uint64_t)ts->errcode << 32) | ts->errcode_valid);
2306 		break;
2307 	case EXIT_REASON_CR_ACCESS:
2308 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1);
2309 		SDT_PROBE4(vmm, vmx, exit, craccess, vmx, vcpu, vmexit, qual);
2310 		switch (qual & 0xf) {
2311 		case 0:
2312 			handled = vmx_emulate_cr0_access(vmx, vcpu, qual);
2313 			break;
2314 		case 4:
2315 			handled = vmx_emulate_cr4_access(vmx, vcpu, qual);
2316 			break;
2317 		case 8:
2318 			handled = vmx_emulate_cr8_access(vmx, vcpu, qual);
2319 			break;
2320 		}
2321 		break;
2322 	case EXIT_REASON_RDMSR:
2323 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1);
2324 		retu = false;
2325 		ecx = vmxctx->guest_rcx;
2326 		VCPU_CTR1(vmx->vm, vcpu, "rdmsr 0x%08x", ecx);
2327 		SDT_PROBE4(vmm, vmx, exit, rdmsr, vmx, vcpu, vmexit, ecx);
2328 		error = emulate_rdmsr(vmx, vcpu, ecx, &retu);
2329 		if (error) {
2330 			vmexit->exitcode = VM_EXITCODE_RDMSR;
2331 			vmexit->u.msr.code = ecx;
2332 		} else if (!retu) {
2333 			handled = HANDLED;
2334 		} else {
2335 			/* Return to userspace with a valid exitcode */
2336 			KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2337 			    ("emulate_rdmsr retu with bogus exitcode"));
2338 		}
2339 		break;
2340 	case EXIT_REASON_WRMSR:
2341 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1);
2342 		retu = false;
2343 		eax = vmxctx->guest_rax;
2344 		ecx = vmxctx->guest_rcx;
2345 		edx = vmxctx->guest_rdx;
2346 		VCPU_CTR2(vmx->vm, vcpu, "wrmsr 0x%08x value 0x%016lx",
2347 		    ecx, (uint64_t)edx << 32 | eax);
2348 		SDT_PROBE5(vmm, vmx, exit, wrmsr, vmx, vmexit, vcpu, ecx,
2349 		    (uint64_t)edx << 32 | eax);
2350 		error = emulate_wrmsr(vmx, vcpu, ecx,
2351 		    (uint64_t)edx << 32 | eax, &retu);
2352 		if (error) {
2353 			vmexit->exitcode = VM_EXITCODE_WRMSR;
2354 			vmexit->u.msr.code = ecx;
2355 			vmexit->u.msr.wval = (uint64_t)edx << 32 | eax;
2356 		} else if (!retu) {
2357 			handled = HANDLED;
2358 		} else {
2359 			/* Return to userspace with a valid exitcode */
2360 			KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2361 			    ("emulate_wrmsr retu with bogus exitcode"));
2362 		}
2363 		break;
2364 	case EXIT_REASON_HLT:
2365 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1);
2366 		SDT_PROBE3(vmm, vmx, exit, halt, vmx, vcpu, vmexit);
2367 		vmexit->exitcode = VM_EXITCODE_HLT;
2368 		vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2369 		if (virtual_interrupt_delivery)
2370 			vmexit->u.hlt.intr_status =
2371 			    vmcs_read(VMCS_GUEST_INTR_STATUS);
2372 		else
2373 			vmexit->u.hlt.intr_status = 0;
2374 		break;
2375 	case EXIT_REASON_MTF:
2376 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1);
2377 		SDT_PROBE3(vmm, vmx, exit, mtrap, vmx, vcpu, vmexit);
2378 		vmexit->exitcode = VM_EXITCODE_MTRAP;
2379 		vmexit->inst_length = 0;
2380 		break;
2381 	case EXIT_REASON_PAUSE:
2382 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1);
2383 		SDT_PROBE3(vmm, vmx, exit, pause, vmx, vcpu, vmexit);
2384 		vmexit->exitcode = VM_EXITCODE_PAUSE;
2385 		break;
2386 	case EXIT_REASON_INTR_WINDOW:
2387 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1);
2388 		SDT_PROBE3(vmm, vmx, exit, intrwindow, vmx, vcpu, vmexit);
2389 		vmx_clear_int_window_exiting(vmx, vcpu);
2390 		return (1);
2391 	case EXIT_REASON_EXT_INTR:
2392 		/*
2393 		 * External interrupts serve only to cause VM exits and allow
2394 		 * the host interrupt handler to run.
2395 		 *
2396 		 * If this external interrupt triggers a virtual interrupt
2397 		 * to a VM, then that state will be recorded by the
2398 		 * host interrupt handler in the VM's softc. We will inject
2399 		 * this virtual interrupt during the subsequent VM enter.
2400 		 */
2401 		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2402 		SDT_PROBE4(vmm, vmx, exit, interrupt,
2403 		    vmx, vcpu, vmexit, intr_info);
2404 
2405 		/*
2406 		 * XXX: Ignore this exit if VMCS_INTR_VALID is not set.
2407 		 * This appears to be a bug in VMware Fusion?
2408 		 */
2409 		if (!(intr_info & VMCS_INTR_VALID))
2410 			return (1);
2411 		KASSERT((intr_info & VMCS_INTR_VALID) != 0 &&
2412 		    (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR,
2413 		    ("VM exit interruption info invalid: %#x", intr_info));
2414 		vmx_trigger_hostintr(intr_info & 0xff);
2415 
2416 		/*
2417 		 * This is special. We want to treat this as an 'handled'
2418 		 * VM-exit but not increment the instruction pointer.
2419 		 */
2420 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1);
2421 		return (1);
2422 	case EXIT_REASON_NMI_WINDOW:
2423 		SDT_PROBE3(vmm, vmx, exit, nmiwindow, vmx, vcpu, vmexit);
2424 		/* Exit to allow the pending virtual NMI to be injected */
2425 		if (vm_nmi_pending(vmx->vm, vcpu))
2426 			vmx_inject_nmi(vmx, vcpu);
2427 		vmx_clear_nmi_window_exiting(vmx, vcpu);
2428 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1);
2429 		return (1);
2430 	case EXIT_REASON_INOUT:
2431 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1);
2432 		vmexit->exitcode = VM_EXITCODE_INOUT;
2433 		vmexit->u.inout.bytes = (qual & 0x7) + 1;
2434 		vmexit->u.inout.in = in = (qual & 0x8) ? 1 : 0;
2435 		vmexit->u.inout.string = (qual & 0x10) ? 1 : 0;
2436 		vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0;
2437 		vmexit->u.inout.port = (uint16_t)(qual >> 16);
2438 		vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax);
2439 		if (vmexit->u.inout.string) {
2440 			inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO);
2441 			vmexit->exitcode = VM_EXITCODE_INOUT_STR;
2442 			vis = &vmexit->u.inout_str;
2443 			vmx_paging_info(&vis->paging);
2444 			vis->rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2445 			vis->cr0 = vmcs_read(VMCS_GUEST_CR0);
2446 			vis->index = inout_str_index(vmx, vcpu, in);
2447 			vis->count = inout_str_count(vmx, vcpu, vis->inout.rep);
2448 			vis->addrsize = inout_str_addrsize(inst_info);
2449 			inout_str_seginfo(vmx, vcpu, inst_info, in, vis);
2450 		}
2451 		SDT_PROBE3(vmm, vmx, exit, inout, vmx, vcpu, vmexit);
2452 		break;
2453 	case EXIT_REASON_CPUID:
2454 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1);
2455 		SDT_PROBE3(vmm, vmx, exit, cpuid, vmx, vcpu, vmexit);
2456 		handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx);
2457 		break;
2458 	case EXIT_REASON_EXCEPTION:
2459 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXCEPTION, 1);
2460 		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2461 		KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2462 		    ("VM exit interruption info invalid: %#x", intr_info));
2463 
2464 		intr_vec = intr_info & 0xff;
2465 		intr_type = intr_info & VMCS_INTR_T_MASK;
2466 
2467 		/*
2468 		 * If Virtual NMIs control is 1 and the VM-exit is due to a
2469 		 * fault encountered during the execution of IRET then we must
2470 		 * restore the state of "virtual-NMI blocking" before resuming
2471 		 * the guest.
2472 		 *
2473 		 * See "Resuming Guest Software after Handling an Exception".
2474 		 * See "Information for VM Exits Due to Vectored Events".
2475 		 */
2476 		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2477 		    (intr_vec != IDT_DF) &&
2478 		    (intr_info & EXIT_QUAL_NMIUDTI) != 0)
2479 			vmx_restore_nmi_blocking(vmx, vcpu);
2480 
2481 		/*
2482 		 * The NMI has already been handled in vmx_exit_handle_nmi().
2483 		 */
2484 		if (intr_type == VMCS_INTR_T_NMI)
2485 			return (1);
2486 
2487 		/*
2488 		 * Call the machine check handler by hand. Also don't reflect
2489 		 * the machine check back into the guest.
2490 		 */
2491 		if (intr_vec == IDT_MC) {
2492 			VCPU_CTR0(vmx->vm, vcpu, "Vectoring to MCE handler");
2493 			__asm __volatile("int $18");
2494 			return (1);
2495 		}
2496 
2497 		if (intr_vec == IDT_PF) {
2498 			error = vmxctx_setreg(vmxctx, VM_REG_GUEST_CR2, qual);
2499 			KASSERT(error == 0, ("%s: vmxctx_setreg(cr2) error %d",
2500 			    __func__, error));
2501 		}
2502 
2503 		/*
2504 		 * Software exceptions exhibit trap-like behavior. This in
2505 		 * turn requires populating the VM-entry instruction length
2506 		 * so that the %rip in the trap frame is past the INT3/INTO
2507 		 * instruction.
2508 		 */
2509 		if (intr_type == VMCS_INTR_T_SWEXCEPTION)
2510 			vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2511 
2512 		/* Reflect all other exceptions back into the guest */
2513 		errcode_valid = errcode = 0;
2514 		if (intr_info & VMCS_INTR_DEL_ERRCODE) {
2515 			errcode_valid = 1;
2516 			errcode = vmcs_read(VMCS_EXIT_INTR_ERRCODE);
2517 		}
2518 		VCPU_CTR2(vmx->vm, vcpu, "Reflecting exception %d/%#x into "
2519 		    "the guest", intr_vec, errcode);
2520 		SDT_PROBE5(vmm, vmx, exit, exception,
2521 		    vmx, vcpu, vmexit, intr_vec, errcode);
2522 		error = vm_inject_exception(vmx->vm, vcpu, intr_vec,
2523 		    errcode_valid, errcode, 0);
2524 		KASSERT(error == 0, ("%s: vm_inject_exception error %d",
2525 		    __func__, error));
2526 		return (1);
2527 
2528 	case EXIT_REASON_EPT_FAULT:
2529 		/*
2530 		 * If 'gpa' lies within the address space allocated to
2531 		 * memory then this must be a nested page fault otherwise
2532 		 * this must be an instruction that accesses MMIO space.
2533 		 */
2534 		gpa = vmcs_gpa();
2535 		if (vm_mem_allocated(vmx->vm, vcpu, gpa) ||
2536 		    apic_access_fault(vmx, vcpu, gpa)) {
2537 			vmexit->exitcode = VM_EXITCODE_PAGING;
2538 			vmexit->inst_length = 0;
2539 			vmexit->u.paging.gpa = gpa;
2540 			vmexit->u.paging.fault_type = ept_fault_type(qual);
2541 			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
2542 			SDT_PROBE5(vmm, vmx, exit, nestedfault,
2543 			    vmx, vcpu, vmexit, gpa, qual);
2544 		} else if (ept_emulation_fault(qual)) {
2545 			vmexit_inst_emul(vmexit, gpa, vmcs_gla());
2546 			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INST_EMUL, 1);
2547 			SDT_PROBE4(vmm, vmx, exit, mmiofault,
2548 			    vmx, vcpu, vmexit, gpa);
2549 		}
2550 		/*
2551 		 * If Virtual NMIs control is 1 and the VM-exit is due to an
2552 		 * EPT fault during the execution of IRET then we must restore
2553 		 * the state of "virtual-NMI blocking" before resuming.
2554 		 *
2555 		 * See description of "NMI unblocking due to IRET" in
2556 		 * "Exit Qualification for EPT Violations".
2557 		 */
2558 		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2559 		    (qual & EXIT_QUAL_NMIUDTI) != 0)
2560 			vmx_restore_nmi_blocking(vmx, vcpu);
2561 		break;
2562 	case EXIT_REASON_VIRTUALIZED_EOI:
2563 		vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI;
2564 		vmexit->u.ioapic_eoi.vector = qual & 0xFF;
2565 		SDT_PROBE3(vmm, vmx, exit, eoi, vmx, vcpu, vmexit);
2566 		vmexit->inst_length = 0;	/* trap-like */
2567 		break;
2568 	case EXIT_REASON_APIC_ACCESS:
2569 		SDT_PROBE3(vmm, vmx, exit, apicaccess, vmx, vcpu, vmexit);
2570 		handled = vmx_handle_apic_access(vmx, vcpu, vmexit);
2571 		break;
2572 	case EXIT_REASON_APIC_WRITE:
2573 		/*
2574 		 * APIC-write VM exit is trap-like so the %rip is already
2575 		 * pointing to the next instruction.
2576 		 */
2577 		vmexit->inst_length = 0;
2578 		vlapic = vm_lapic(vmx->vm, vcpu);
2579 		SDT_PROBE4(vmm, vmx, exit, apicwrite,
2580 		    vmx, vcpu, vmexit, vlapic);
2581 		handled = vmx_handle_apic_write(vmx, vcpu, vlapic, qual);
2582 		break;
2583 	case EXIT_REASON_XSETBV:
2584 		SDT_PROBE3(vmm, vmx, exit, xsetbv, vmx, vcpu, vmexit);
2585 		handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit);
2586 		break;
2587 	case EXIT_REASON_MONITOR:
2588 		SDT_PROBE3(vmm, vmx, exit, monitor, vmx, vcpu, vmexit);
2589 		vmexit->exitcode = VM_EXITCODE_MONITOR;
2590 		break;
2591 	case EXIT_REASON_MWAIT:
2592 		SDT_PROBE3(vmm, vmx, exit, mwait, vmx, vcpu, vmexit);
2593 		vmexit->exitcode = VM_EXITCODE_MWAIT;
2594 		break;
2595 	default:
2596 		SDT_PROBE4(vmm, vmx, exit, unknown,
2597 		    vmx, vcpu, vmexit, reason);
2598 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1);
2599 		break;
2600 	}
2601 
2602 	if (handled) {
2603 		/*
2604 		 * It is possible that control is returned to userland
2605 		 * even though we were able to handle the VM exit in the
2606 		 * kernel.
2607 		 *
2608 		 * In such a case we want to make sure that the userland
2609 		 * restarts guest execution at the instruction *after*
2610 		 * the one we just processed. Therefore we update the
2611 		 * guest rip in the VMCS and in 'vmexit'.
2612 		 */
2613 		vmexit->rip += vmexit->inst_length;
2614 		vmexit->inst_length = 0;
2615 		vmcs_write(VMCS_GUEST_RIP, vmexit->rip);
2616 	} else {
2617 		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
2618 			/*
2619 			 * If this VM exit was not claimed by anybody then
2620 			 * treat it as a generic VMX exit.
2621 			 */
2622 			vmexit->exitcode = VM_EXITCODE_VMX;
2623 			vmexit->u.vmx.status = VM_SUCCESS;
2624 			vmexit->u.vmx.inst_type = 0;
2625 			vmexit->u.vmx.inst_error = 0;
2626 		} else {
2627 			/*
2628 			 * The exitcode and collateral have been populated.
2629 			 * The VM exit will be processed further in userland.
2630 			 */
2631 		}
2632 	}
2633 
2634 	SDT_PROBE4(vmm, vmx, exit, return,
2635 	    vmx, vcpu, vmexit, handled);
2636 	return (handled);
2637 }
2638 
2639 static __inline void
2640 vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit)
2641 {
2642 
2643 	KASSERT(vmxctx->inst_fail_status != VM_SUCCESS,
2644 	    ("vmx_exit_inst_error: invalid inst_fail_status %d",
2645 	    vmxctx->inst_fail_status));
2646 
2647 	vmexit->inst_length = 0;
2648 	vmexit->exitcode = VM_EXITCODE_VMX;
2649 	vmexit->u.vmx.status = vmxctx->inst_fail_status;
2650 	vmexit->u.vmx.inst_error = vmcs_instruction_error();
2651 	vmexit->u.vmx.exit_reason = ~0;
2652 	vmexit->u.vmx.exit_qualification = ~0;
2653 
2654 	switch (rc) {
2655 	case VMX_VMRESUME_ERROR:
2656 	case VMX_VMLAUNCH_ERROR:
2657 	case VMX_INVEPT_ERROR:
2658 		vmexit->u.vmx.inst_type = rc;
2659 		break;
2660 	default:
2661 		panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc);
2662 	}
2663 }
2664 
2665 /*
2666  * If the NMI-exiting VM execution control is set to '1' then an NMI in
2667  * non-root operation causes a VM-exit. NMI blocking is in effect so it is
2668  * sufficient to simply vector to the NMI handler via a software interrupt.
2669  * However, this must be done before maskable interrupts are enabled
2670  * otherwise the "iret" issued by an interrupt handler will incorrectly
2671  * clear NMI blocking.
2672  */
2673 static __inline void
2674 vmx_exit_handle_nmi(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
2675 {
2676 	uint32_t intr_info;
2677 
2678 	KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled"));
2679 
2680 	if (vmexit->u.vmx.exit_reason != EXIT_REASON_EXCEPTION)
2681 		return;
2682 
2683 	intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2684 	KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2685 	    ("VM exit interruption info invalid: %#x", intr_info));
2686 
2687 	if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) {
2688 		KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due "
2689 		    "to NMI has invalid vector: %#x", intr_info));
2690 		VCPU_CTR0(vmx->vm, vcpuid, "Vectoring to NMI handler");
2691 		__asm __volatile("int $2");
2692 	}
2693 }
2694 
2695 static __inline void
2696 vmx_dr_enter_guest(struct vmxctx *vmxctx)
2697 {
2698 	register_t rflags;
2699 
2700 	/* Save host control debug registers. */
2701 	vmxctx->host_dr7 = rdr7();
2702 	vmxctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR);
2703 
2704 	/*
2705 	 * Disable debugging in DR7 and DEBUGCTL to avoid triggering
2706 	 * exceptions in the host based on the guest DRx values.  The
2707 	 * guest DR7 and DEBUGCTL are saved/restored in the VMCS.
2708 	 */
2709 	load_dr7(0);
2710 	wrmsr(MSR_DEBUGCTLMSR, 0);
2711 
2712 	/*
2713 	 * Disable single stepping the kernel to avoid corrupting the
2714 	 * guest DR6.  A debugger might still be able to corrupt the
2715 	 * guest DR6 by setting a breakpoint after this point and then
2716 	 * single stepping.
2717 	 */
2718 	rflags = read_rflags();
2719 	vmxctx->host_tf = rflags & PSL_T;
2720 	write_rflags(rflags & ~PSL_T);
2721 
2722 	/* Save host debug registers. */
2723 	vmxctx->host_dr0 = rdr0();
2724 	vmxctx->host_dr1 = rdr1();
2725 	vmxctx->host_dr2 = rdr2();
2726 	vmxctx->host_dr3 = rdr3();
2727 	vmxctx->host_dr6 = rdr6();
2728 
2729 	/* Restore guest debug registers. */
2730 	load_dr0(vmxctx->guest_dr0);
2731 	load_dr1(vmxctx->guest_dr1);
2732 	load_dr2(vmxctx->guest_dr2);
2733 	load_dr3(vmxctx->guest_dr3);
2734 	load_dr6(vmxctx->guest_dr6);
2735 }
2736 
2737 static __inline void
2738 vmx_dr_leave_guest(struct vmxctx *vmxctx)
2739 {
2740 
2741 	/* Save guest debug registers. */
2742 	vmxctx->guest_dr0 = rdr0();
2743 	vmxctx->guest_dr1 = rdr1();
2744 	vmxctx->guest_dr2 = rdr2();
2745 	vmxctx->guest_dr3 = rdr3();
2746 	vmxctx->guest_dr6 = rdr6();
2747 
2748 	/*
2749 	 * Restore host debug registers.  Restore DR7, DEBUGCTL, and
2750 	 * PSL_T last.
2751 	 */
2752 	load_dr0(vmxctx->host_dr0);
2753 	load_dr1(vmxctx->host_dr1);
2754 	load_dr2(vmxctx->host_dr2);
2755 	load_dr3(vmxctx->host_dr3);
2756 	load_dr6(vmxctx->host_dr6);
2757 	wrmsr(MSR_DEBUGCTLMSR, vmxctx->host_debugctl);
2758 	load_dr7(vmxctx->host_dr7);
2759 	write_rflags(read_rflags() | vmxctx->host_tf);
2760 }
2761 
2762 static int
2763 vmx_run(void *arg, int vcpu, register_t rip, pmap_t pmap,
2764     struct vm_eventinfo *evinfo)
2765 {
2766 	int rc, handled, launched;
2767 	struct vmx *vmx;
2768 	struct vm *vm;
2769 	struct vmxctx *vmxctx;
2770 	struct vmcs *vmcs;
2771 	struct vm_exit *vmexit;
2772 	struct vlapic *vlapic;
2773 	uint32_t exit_reason;
2774 
2775 	vmx = arg;
2776 	vm = vmx->vm;
2777 	vmcs = &vmx->vmcs[vcpu];
2778 	vmxctx = &vmx->ctx[vcpu];
2779 	vlapic = vm_lapic(vm, vcpu);
2780 	vmexit = vm_exitinfo(vm, vcpu);
2781 	launched = 0;
2782 
2783 	KASSERT(vmxctx->pmap == pmap,
2784 	    ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap));
2785 
2786 	vmx_msr_guest_enter(vmx, vcpu);
2787 
2788 	VMPTRLD(vmcs);
2789 
2790 	/*
2791 	 * XXX
2792 	 * We do this every time because we may setup the virtual machine
2793 	 * from a different process than the one that actually runs it.
2794 	 *
2795 	 * If the life of a virtual machine was spent entirely in the context
2796 	 * of a single process we could do this once in vmx_vminit().
2797 	 */
2798 	vmcs_write(VMCS_HOST_CR3, rcr3());
2799 
2800 	vmcs_write(VMCS_GUEST_RIP, rip);
2801 	vmx_set_pcpu_defaults(vmx, vcpu, pmap);
2802 	do {
2803 		KASSERT(vmcs_guest_rip() == rip, ("%s: vmcs guest rip mismatch "
2804 		    "%#lx/%#lx", __func__, vmcs_guest_rip(), rip));
2805 
2806 		handled = UNHANDLED;
2807 		/*
2808 		 * Interrupts are disabled from this point on until the
2809 		 * guest starts executing. This is done for the following
2810 		 * reasons:
2811 		 *
2812 		 * If an AST is asserted on this thread after the check below,
2813 		 * then the IPI_AST notification will not be lost, because it
2814 		 * will cause a VM exit due to external interrupt as soon as
2815 		 * the guest state is loaded.
2816 		 *
2817 		 * A posted interrupt after 'vmx_inject_interrupts()' will
2818 		 * not be "lost" because it will be held pending in the host
2819 		 * APIC because interrupts are disabled. The pending interrupt
2820 		 * will be recognized as soon as the guest state is loaded.
2821 		 *
2822 		 * The same reasoning applies to the IPI generated by
2823 		 * pmap_invalidate_ept().
2824 		 */
2825 		disable_intr();
2826 		vmx_inject_interrupts(vmx, vcpu, vlapic, rip);
2827 
2828 		/*
2829 		 * Check for vcpu suspension after injecting events because
2830 		 * vmx_inject_interrupts() can suspend the vcpu due to a
2831 		 * triple fault.
2832 		 */
2833 		if (vcpu_suspended(evinfo)) {
2834 			enable_intr();
2835 			vm_exit_suspended(vmx->vm, vcpu, rip);
2836 			break;
2837 		}
2838 
2839 		if (vcpu_rendezvous_pending(evinfo)) {
2840 			enable_intr();
2841 			vm_exit_rendezvous(vmx->vm, vcpu, rip);
2842 			break;
2843 		}
2844 
2845 		if (vcpu_reqidle(evinfo)) {
2846 			enable_intr();
2847 			vm_exit_reqidle(vmx->vm, vcpu, rip);
2848 			break;
2849 		}
2850 
2851 		if (vcpu_should_yield(vm, vcpu)) {
2852 			enable_intr();
2853 			vm_exit_astpending(vmx->vm, vcpu, rip);
2854 			vmx_astpending_trace(vmx, vcpu, rip);
2855 			handled = HANDLED;
2856 			break;
2857 		}
2858 
2859 		if (vcpu_debugged(vm, vcpu)) {
2860 			enable_intr();
2861 			vm_exit_debug(vmx->vm, vcpu, rip);
2862 			break;
2863 		}
2864 
2865 		vmx_run_trace(vmx, vcpu);
2866 		vmx_dr_enter_guest(vmxctx);
2867 		rc = vmx_enter_guest(vmxctx, vmx, launched);
2868 		vmx_dr_leave_guest(vmxctx);
2869 
2870 		/* Collect some information for VM exit processing */
2871 		vmexit->rip = rip = vmcs_guest_rip();
2872 		vmexit->inst_length = vmexit_instruction_length();
2873 		vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
2874 		vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
2875 
2876 		/* Update 'nextrip' */
2877 		vmx->state[vcpu].nextrip = rip;
2878 
2879 		if (rc == VMX_GUEST_VMEXIT) {
2880 			vmx_exit_handle_nmi(vmx, vcpu, vmexit);
2881 			enable_intr();
2882 			handled = vmx_exit_process(vmx, vcpu, vmexit);
2883 		} else {
2884 			enable_intr();
2885 			vmx_exit_inst_error(vmxctx, rc, vmexit);
2886 		}
2887 		launched = 1;
2888 		vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled);
2889 		rip = vmexit->rip;
2890 	} while (handled);
2891 
2892 	/*
2893 	 * If a VM exit has been handled then the exitcode must be BOGUS
2894 	 * If a VM exit is not handled then the exitcode must not be BOGUS
2895 	 */
2896 	if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) ||
2897 	    (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) {
2898 		panic("Mismatch between handled (%d) and exitcode (%d)",
2899 		      handled, vmexit->exitcode);
2900 	}
2901 
2902 	if (!handled)
2903 		vmm_stat_incr(vm, vcpu, VMEXIT_USERSPACE, 1);
2904 
2905 	VCPU_CTR1(vm, vcpu, "returning from vmx_run: exitcode %d",
2906 	    vmexit->exitcode);
2907 
2908 	VMCLEAR(vmcs);
2909 	vmx_msr_guest_exit(vmx, vcpu);
2910 
2911 	return (0);
2912 }
2913 
2914 static void
2915 vmx_vmcleanup(void *arg)
2916 {
2917 	int i;
2918 	struct vmx *vmx = arg;
2919 
2920 	if (apic_access_virtualization(vmx, 0))
2921 		vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
2922 
2923 	for (i = 0; i < VM_MAXCPU; i++)
2924 		vpid_free(vmx->state[i].vpid);
2925 
2926 	free(vmx, M_VMX);
2927 
2928 	return;
2929 }
2930 
2931 static register_t *
2932 vmxctx_regptr(struct vmxctx *vmxctx, int reg)
2933 {
2934 
2935 	switch (reg) {
2936 	case VM_REG_GUEST_RAX:
2937 		return (&vmxctx->guest_rax);
2938 	case VM_REG_GUEST_RBX:
2939 		return (&vmxctx->guest_rbx);
2940 	case VM_REG_GUEST_RCX:
2941 		return (&vmxctx->guest_rcx);
2942 	case VM_REG_GUEST_RDX:
2943 		return (&vmxctx->guest_rdx);
2944 	case VM_REG_GUEST_RSI:
2945 		return (&vmxctx->guest_rsi);
2946 	case VM_REG_GUEST_RDI:
2947 		return (&vmxctx->guest_rdi);
2948 	case VM_REG_GUEST_RBP:
2949 		return (&vmxctx->guest_rbp);
2950 	case VM_REG_GUEST_R8:
2951 		return (&vmxctx->guest_r8);
2952 	case VM_REG_GUEST_R9:
2953 		return (&vmxctx->guest_r9);
2954 	case VM_REG_GUEST_R10:
2955 		return (&vmxctx->guest_r10);
2956 	case VM_REG_GUEST_R11:
2957 		return (&vmxctx->guest_r11);
2958 	case VM_REG_GUEST_R12:
2959 		return (&vmxctx->guest_r12);
2960 	case VM_REG_GUEST_R13:
2961 		return (&vmxctx->guest_r13);
2962 	case VM_REG_GUEST_R14:
2963 		return (&vmxctx->guest_r14);
2964 	case VM_REG_GUEST_R15:
2965 		return (&vmxctx->guest_r15);
2966 	case VM_REG_GUEST_CR2:
2967 		return (&vmxctx->guest_cr2);
2968 	case VM_REG_GUEST_DR0:
2969 		return (&vmxctx->guest_dr0);
2970 	case VM_REG_GUEST_DR1:
2971 		return (&vmxctx->guest_dr1);
2972 	case VM_REG_GUEST_DR2:
2973 		return (&vmxctx->guest_dr2);
2974 	case VM_REG_GUEST_DR3:
2975 		return (&vmxctx->guest_dr3);
2976 	case VM_REG_GUEST_DR6:
2977 		return (&vmxctx->guest_dr6);
2978 	default:
2979 		break;
2980 	}
2981 	return (NULL);
2982 }
2983 
2984 static int
2985 vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval)
2986 {
2987 	register_t *regp;
2988 
2989 	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
2990 		*retval = *regp;
2991 		return (0);
2992 	} else
2993 		return (EINVAL);
2994 }
2995 
2996 static int
2997 vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val)
2998 {
2999 	register_t *regp;
3000 
3001 	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
3002 		*regp = val;
3003 		return (0);
3004 	} else
3005 		return (EINVAL);
3006 }
3007 
3008 static int
3009 vmx_get_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t *retval)
3010 {
3011 	uint64_t gi;
3012 	int error;
3013 
3014 	error = vmcs_getreg(&vmx->vmcs[vcpu], running,
3015 	    VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY), &gi);
3016 	*retval = (gi & HWINTR_BLOCKING) ? 1 : 0;
3017 	return (error);
3018 }
3019 
3020 static int
3021 vmx_modify_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t val)
3022 {
3023 	struct vmcs *vmcs;
3024 	uint64_t gi;
3025 	int error, ident;
3026 
3027 	/*
3028 	 * Forcing the vcpu into an interrupt shadow is not supported.
3029 	 */
3030 	if (val) {
3031 		error = EINVAL;
3032 		goto done;
3033 	}
3034 
3035 	vmcs = &vmx->vmcs[vcpu];
3036 	ident = VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY);
3037 	error = vmcs_getreg(vmcs, running, ident, &gi);
3038 	if (error == 0) {
3039 		gi &= ~HWINTR_BLOCKING;
3040 		error = vmcs_setreg(vmcs, running, ident, gi);
3041 	}
3042 done:
3043 	VCPU_CTR2(vmx->vm, vcpu, "Setting intr_shadow to %#lx %s", val,
3044 	    error ? "failed" : "succeeded");
3045 	return (error);
3046 }
3047 
3048 static int
3049 vmx_shadow_reg(int reg)
3050 {
3051 	int shreg;
3052 
3053 	shreg = -1;
3054 
3055 	switch (reg) {
3056 	case VM_REG_GUEST_CR0:
3057 		shreg = VMCS_CR0_SHADOW;
3058                 break;
3059         case VM_REG_GUEST_CR4:
3060 		shreg = VMCS_CR4_SHADOW;
3061 		break;
3062 	default:
3063 		break;
3064 	}
3065 
3066 	return (shreg);
3067 }
3068 
3069 static int
3070 vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval)
3071 {
3072 	int running, hostcpu;
3073 	struct vmx *vmx = arg;
3074 
3075 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3076 	if (running && hostcpu != curcpu)
3077 		panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu);
3078 
3079 	if (reg == VM_REG_GUEST_INTR_SHADOW)
3080 		return (vmx_get_intr_shadow(vmx, vcpu, running, retval));
3081 
3082 	if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0)
3083 		return (0);
3084 
3085 	return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval));
3086 }
3087 
3088 static int
3089 vmx_setreg(void *arg, int vcpu, int reg, uint64_t val)
3090 {
3091 	int error, hostcpu, running, shadow;
3092 	uint64_t ctls;
3093 	pmap_t pmap;
3094 	struct vmx *vmx = arg;
3095 
3096 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3097 	if (running && hostcpu != curcpu)
3098 		panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu);
3099 
3100 	if (reg == VM_REG_GUEST_INTR_SHADOW)
3101 		return (vmx_modify_intr_shadow(vmx, vcpu, running, val));
3102 
3103 	if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0)
3104 		return (0);
3105 
3106 	error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val);
3107 
3108 	if (error == 0) {
3109 		/*
3110 		 * If the "load EFER" VM-entry control is 1 then the
3111 		 * value of EFER.LMA must be identical to "IA-32e mode guest"
3112 		 * bit in the VM-entry control.
3113 		 */
3114 		if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 &&
3115 		    (reg == VM_REG_GUEST_EFER)) {
3116 			vmcs_getreg(&vmx->vmcs[vcpu], running,
3117 				    VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls);
3118 			if (val & EFER_LMA)
3119 				ctls |= VM_ENTRY_GUEST_LMA;
3120 			else
3121 				ctls &= ~VM_ENTRY_GUEST_LMA;
3122 			vmcs_setreg(&vmx->vmcs[vcpu], running,
3123 				    VMCS_IDENT(VMCS_ENTRY_CTLS), ctls);
3124 		}
3125 
3126 		shadow = vmx_shadow_reg(reg);
3127 		if (shadow > 0) {
3128 			/*
3129 			 * Store the unmodified value in the shadow
3130 			 */
3131 			error = vmcs_setreg(&vmx->vmcs[vcpu], running,
3132 				    VMCS_IDENT(shadow), val);
3133 		}
3134 
3135 		if (reg == VM_REG_GUEST_CR3) {
3136 			/*
3137 			 * Invalidate the guest vcpu's TLB mappings to emulate
3138 			 * the behavior of updating %cr3.
3139 			 *
3140 			 * XXX the processor retains global mappings when %cr3
3141 			 * is updated but vmx_invvpid() does not.
3142 			 */
3143 			pmap = vmx->ctx[vcpu].pmap;
3144 			vmx_invvpid(vmx, vcpu, pmap, running);
3145 		}
3146 	}
3147 
3148 	return (error);
3149 }
3150 
3151 static int
3152 vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
3153 {
3154 	int hostcpu, running;
3155 	struct vmx *vmx = arg;
3156 
3157 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3158 	if (running && hostcpu != curcpu)
3159 		panic("vmx_getdesc: %s%d is running", vm_name(vmx->vm), vcpu);
3160 
3161 	return (vmcs_getdesc(&vmx->vmcs[vcpu], running, reg, desc));
3162 }
3163 
3164 static int
3165 vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
3166 {
3167 	int hostcpu, running;
3168 	struct vmx *vmx = arg;
3169 
3170 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3171 	if (running && hostcpu != curcpu)
3172 		panic("vmx_setdesc: %s%d is running", vm_name(vmx->vm), vcpu);
3173 
3174 	return (vmcs_setdesc(&vmx->vmcs[vcpu], running, reg, desc));
3175 }
3176 
3177 static int
3178 vmx_getcap(void *arg, int vcpu, int type, int *retval)
3179 {
3180 	struct vmx *vmx = arg;
3181 	int vcap;
3182 	int ret;
3183 
3184 	ret = ENOENT;
3185 
3186 	vcap = vmx->cap[vcpu].set;
3187 
3188 	switch (type) {
3189 	case VM_CAP_HALT_EXIT:
3190 		if (cap_halt_exit)
3191 			ret = 0;
3192 		break;
3193 	case VM_CAP_PAUSE_EXIT:
3194 		if (cap_pause_exit)
3195 			ret = 0;
3196 		break;
3197 	case VM_CAP_MTRAP_EXIT:
3198 		if (cap_monitor_trap)
3199 			ret = 0;
3200 		break;
3201 	case VM_CAP_UNRESTRICTED_GUEST:
3202 		if (cap_unrestricted_guest)
3203 			ret = 0;
3204 		break;
3205 	case VM_CAP_ENABLE_INVPCID:
3206 		if (cap_invpcid)
3207 			ret = 0;
3208 		break;
3209 	default:
3210 		break;
3211 	}
3212 
3213 	if (ret == 0)
3214 		*retval = (vcap & (1 << type)) ? 1 : 0;
3215 
3216 	return (ret);
3217 }
3218 
3219 static int
3220 vmx_setcap(void *arg, int vcpu, int type, int val)
3221 {
3222 	struct vmx *vmx = arg;
3223 	struct vmcs *vmcs = &vmx->vmcs[vcpu];
3224 	uint32_t baseval;
3225 	uint32_t *pptr;
3226 	int error;
3227 	int flag;
3228 	int reg;
3229 	int retval;
3230 
3231 	retval = ENOENT;
3232 	pptr = NULL;
3233 
3234 	switch (type) {
3235 	case VM_CAP_HALT_EXIT:
3236 		if (cap_halt_exit) {
3237 			retval = 0;
3238 			pptr = &vmx->cap[vcpu].proc_ctls;
3239 			baseval = *pptr;
3240 			flag = PROCBASED_HLT_EXITING;
3241 			reg = VMCS_PRI_PROC_BASED_CTLS;
3242 		}
3243 		break;
3244 	case VM_CAP_MTRAP_EXIT:
3245 		if (cap_monitor_trap) {
3246 			retval = 0;
3247 			pptr = &vmx->cap[vcpu].proc_ctls;
3248 			baseval = *pptr;
3249 			flag = PROCBASED_MTF;
3250 			reg = VMCS_PRI_PROC_BASED_CTLS;
3251 		}
3252 		break;
3253 	case VM_CAP_PAUSE_EXIT:
3254 		if (cap_pause_exit) {
3255 			retval = 0;
3256 			pptr = &vmx->cap[vcpu].proc_ctls;
3257 			baseval = *pptr;
3258 			flag = PROCBASED_PAUSE_EXITING;
3259 			reg = VMCS_PRI_PROC_BASED_CTLS;
3260 		}
3261 		break;
3262 	case VM_CAP_UNRESTRICTED_GUEST:
3263 		if (cap_unrestricted_guest) {
3264 			retval = 0;
3265 			pptr = &vmx->cap[vcpu].proc_ctls2;
3266 			baseval = *pptr;
3267 			flag = PROCBASED2_UNRESTRICTED_GUEST;
3268 			reg = VMCS_SEC_PROC_BASED_CTLS;
3269 		}
3270 		break;
3271 	case VM_CAP_ENABLE_INVPCID:
3272 		if (cap_invpcid) {
3273 			retval = 0;
3274 			pptr = &vmx->cap[vcpu].proc_ctls2;
3275 			baseval = *pptr;
3276 			flag = PROCBASED2_ENABLE_INVPCID;
3277 			reg = VMCS_SEC_PROC_BASED_CTLS;
3278 		}
3279 		break;
3280 	default:
3281 		break;
3282 	}
3283 
3284 	if (retval == 0) {
3285 		if (val) {
3286 			baseval |= flag;
3287 		} else {
3288 			baseval &= ~flag;
3289 		}
3290 		VMPTRLD(vmcs);
3291 		error = vmwrite(reg, baseval);
3292 		VMCLEAR(vmcs);
3293 
3294 		if (error) {
3295 			retval = error;
3296 		} else {
3297 			/*
3298 			 * Update optional stored flags, and record
3299 			 * setting
3300 			 */
3301 			if (pptr != NULL) {
3302 				*pptr = baseval;
3303 			}
3304 
3305 			if (val) {
3306 				vmx->cap[vcpu].set |= (1 << type);
3307 			} else {
3308 				vmx->cap[vcpu].set &= ~(1 << type);
3309 			}
3310 		}
3311 	}
3312 
3313         return (retval);
3314 }
3315 
3316 struct vlapic_vtx {
3317 	struct vlapic	vlapic;
3318 	struct pir_desc	*pir_desc;
3319 	struct vmx	*vmx;
3320 };
3321 
3322 #define	VMX_CTR_PIR(vm, vcpuid, pir_desc, notify, vector, level, msg)	\
3323 do {									\
3324 	VCPU_CTR2(vm, vcpuid, msg " assert %s-triggered vector %d",	\
3325 	    level ? "level" : "edge", vector);				\
3326 	VCPU_CTR1(vm, vcpuid, msg " pir0 0x%016lx", pir_desc->pir[0]);	\
3327 	VCPU_CTR1(vm, vcpuid, msg " pir1 0x%016lx", pir_desc->pir[1]);	\
3328 	VCPU_CTR1(vm, vcpuid, msg " pir2 0x%016lx", pir_desc->pir[2]);	\
3329 	VCPU_CTR1(vm, vcpuid, msg " pir3 0x%016lx", pir_desc->pir[3]);	\
3330 	VCPU_CTR1(vm, vcpuid, msg " notify: %s", notify ? "yes" : "no");\
3331 } while (0)
3332 
3333 /*
3334  * vlapic->ops handlers that utilize the APICv hardware assist described in
3335  * Chapter 29 of the Intel SDM.
3336  */
3337 static int
3338 vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level)
3339 {
3340 	struct vlapic_vtx *vlapic_vtx;
3341 	struct pir_desc *pir_desc;
3342 	uint64_t mask;
3343 	int idx, notify;
3344 
3345 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3346 	pir_desc = vlapic_vtx->pir_desc;
3347 
3348 	/*
3349 	 * Keep track of interrupt requests in the PIR descriptor. This is
3350 	 * because the virtual APIC page pointed to by the VMCS cannot be
3351 	 * modified if the vcpu is running.
3352 	 */
3353 	idx = vector / 64;
3354 	mask = 1UL << (vector % 64);
3355 	atomic_set_long(&pir_desc->pir[idx], mask);
3356 	notify = atomic_cmpset_long(&pir_desc->pending, 0, 1);
3357 
3358 	VMX_CTR_PIR(vlapic->vm, vlapic->vcpuid, pir_desc, notify, vector,
3359 	    level, "vmx_set_intr_ready");
3360 	return (notify);
3361 }
3362 
3363 static int
3364 vmx_pending_intr(struct vlapic *vlapic, int *vecptr)
3365 {
3366 	struct vlapic_vtx *vlapic_vtx;
3367 	struct pir_desc *pir_desc;
3368 	struct LAPIC *lapic;
3369 	uint64_t pending, pirval;
3370 	uint32_t ppr, vpr;
3371 	int i;
3372 
3373 	/*
3374 	 * This function is only expected to be called from the 'HLT' exit
3375 	 * handler which does not care about the vector that is pending.
3376 	 */
3377 	KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL"));
3378 
3379 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3380 	pir_desc = vlapic_vtx->pir_desc;
3381 
3382 	pending = atomic_load_acq_long(&pir_desc->pending);
3383 	if (!pending) {
3384 		/*
3385 		 * While a virtual interrupt may have already been
3386 		 * processed the actual delivery maybe pending the
3387 		 * interruptibility of the guest.  Recognize a pending
3388 		 * interrupt by reevaluating virtual interrupts
3389 		 * following Section 29.2.1 in the Intel SDM Volume 3.
3390 		 */
3391 		struct vm_exit *vmexit;
3392 		uint8_t rvi, ppr;
3393 
3394 		vmexit = vm_exitinfo(vlapic->vm, vlapic->vcpuid);
3395 		KASSERT(vmexit->exitcode == VM_EXITCODE_HLT,
3396 		    ("vmx_pending_intr: exitcode not 'HLT'"));
3397 		rvi = vmexit->u.hlt.intr_status & APIC_TPR_INT;
3398 		lapic = vlapic->apic_page;
3399 		ppr = lapic->ppr & APIC_TPR_INT;
3400 		if (rvi > ppr) {
3401 			return (1);
3402 		}
3403 
3404 		return (0);
3405 	}
3406 
3407 	/*
3408 	 * If there is an interrupt pending then it will be recognized only
3409 	 * if its priority is greater than the processor priority.
3410 	 *
3411 	 * Special case: if the processor priority is zero then any pending
3412 	 * interrupt will be recognized.
3413 	 */
3414 	lapic = vlapic->apic_page;
3415 	ppr = lapic->ppr & APIC_TPR_INT;
3416 	if (ppr == 0)
3417 		return (1);
3418 
3419 	VCPU_CTR1(vlapic->vm, vlapic->vcpuid, "HLT with non-zero PPR %d",
3420 	    lapic->ppr);
3421 
3422 	for (i = 3; i >= 0; i--) {
3423 		pirval = pir_desc->pir[i];
3424 		if (pirval != 0) {
3425 			vpr = (i * 64 + flsl(pirval) - 1) & APIC_TPR_INT;
3426 			return (vpr > ppr);
3427 		}
3428 	}
3429 	return (0);
3430 }
3431 
3432 static void
3433 vmx_intr_accepted(struct vlapic *vlapic, int vector)
3434 {
3435 
3436 	panic("vmx_intr_accepted: not expected to be called");
3437 }
3438 
3439 static void
3440 vmx_set_tmr(struct vlapic *vlapic, int vector, bool level)
3441 {
3442 	struct vlapic_vtx *vlapic_vtx;
3443 	struct vmx *vmx;
3444 	struct vmcs *vmcs;
3445 	uint64_t mask, val;
3446 
3447 	KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d", vector));
3448 	KASSERT(!vcpu_is_running(vlapic->vm, vlapic->vcpuid, NULL),
3449 	    ("vmx_set_tmr: vcpu cannot be running"));
3450 
3451 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3452 	vmx = vlapic_vtx->vmx;
3453 	vmcs = &vmx->vmcs[vlapic->vcpuid];
3454 	mask = 1UL << (vector % 64);
3455 
3456 	VMPTRLD(vmcs);
3457 	val = vmcs_read(VMCS_EOI_EXIT(vector));
3458 	if (level)
3459 		val |= mask;
3460 	else
3461 		val &= ~mask;
3462 	vmcs_write(VMCS_EOI_EXIT(vector), val);
3463 	VMCLEAR(vmcs);
3464 }
3465 
3466 static void
3467 vmx_enable_x2apic_mode(struct vlapic *vlapic)
3468 {
3469 	struct vmx *vmx;
3470 	struct vmcs *vmcs;
3471 	uint32_t proc_ctls2;
3472 	int vcpuid, error;
3473 
3474 	vcpuid = vlapic->vcpuid;
3475 	vmx = ((struct vlapic_vtx *)vlapic)->vmx;
3476 	vmcs = &vmx->vmcs[vcpuid];
3477 
3478 	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
3479 	KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0,
3480 	    ("%s: invalid proc_ctls2 %#x", __func__, proc_ctls2));
3481 
3482 	proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES;
3483 	proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE;
3484 	vmx->cap[vcpuid].proc_ctls2 = proc_ctls2;
3485 
3486 	VMPTRLD(vmcs);
3487 	vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2);
3488 	VMCLEAR(vmcs);
3489 
3490 	if (vlapic->vcpuid == 0) {
3491 		/*
3492 		 * The nested page table mappings are shared by all vcpus
3493 		 * so unmap the APIC access page just once.
3494 		 */
3495 		error = vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
3496 		KASSERT(error == 0, ("%s: vm_unmap_mmio error %d",
3497 		    __func__, error));
3498 
3499 		/*
3500 		 * The MSR bitmap is shared by all vcpus so modify it only
3501 		 * once in the context of vcpu 0.
3502 		 */
3503 		error = vmx_allow_x2apic_msrs(vmx);
3504 		KASSERT(error == 0, ("%s: vmx_allow_x2apic_msrs error %d",
3505 		    __func__, error));
3506 	}
3507 }
3508 
3509 static void
3510 vmx_post_intr(struct vlapic *vlapic, int hostcpu)
3511 {
3512 
3513 	ipi_cpu(hostcpu, pirvec);
3514 }
3515 
3516 /*
3517  * Transfer the pending interrupts in the PIR descriptor to the IRR
3518  * in the virtual APIC page.
3519  */
3520 static void
3521 vmx_inject_pir(struct vlapic *vlapic)
3522 {
3523 	struct vlapic_vtx *vlapic_vtx;
3524 	struct pir_desc *pir_desc;
3525 	struct LAPIC *lapic;
3526 	uint64_t val, pirval;
3527 	int rvi, pirbase = -1;
3528 	uint16_t intr_status_old, intr_status_new;
3529 
3530 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3531 	pir_desc = vlapic_vtx->pir_desc;
3532 	if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) {
3533 		VCPU_CTR0(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
3534 		    "no posted interrupt pending");
3535 		return;
3536 	}
3537 
3538 	pirval = 0;
3539 	pirbase = -1;
3540 	lapic = vlapic->apic_page;
3541 
3542 	val = atomic_readandclear_long(&pir_desc->pir[0]);
3543 	if (val != 0) {
3544 		lapic->irr0 |= val;
3545 		lapic->irr1 |= val >> 32;
3546 		pirbase = 0;
3547 		pirval = val;
3548 	}
3549 
3550 	val = atomic_readandclear_long(&pir_desc->pir[1]);
3551 	if (val != 0) {
3552 		lapic->irr2 |= val;
3553 		lapic->irr3 |= val >> 32;
3554 		pirbase = 64;
3555 		pirval = val;
3556 	}
3557 
3558 	val = atomic_readandclear_long(&pir_desc->pir[2]);
3559 	if (val != 0) {
3560 		lapic->irr4 |= val;
3561 		lapic->irr5 |= val >> 32;
3562 		pirbase = 128;
3563 		pirval = val;
3564 	}
3565 
3566 	val = atomic_readandclear_long(&pir_desc->pir[3]);
3567 	if (val != 0) {
3568 		lapic->irr6 |= val;
3569 		lapic->irr7 |= val >> 32;
3570 		pirbase = 192;
3571 		pirval = val;
3572 	}
3573 
3574 	VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir");
3575 
3576 	/*
3577 	 * Update RVI so the processor can evaluate pending virtual
3578 	 * interrupts on VM-entry.
3579 	 *
3580 	 * It is possible for pirval to be 0 here, even though the
3581 	 * pending bit has been set. The scenario is:
3582 	 * CPU-Y is sending a posted interrupt to CPU-X, which
3583 	 * is running a guest and processing posted interrupts in h/w.
3584 	 * CPU-X will eventually exit and the state seen in s/w is
3585 	 * the pending bit set, but no PIR bits set.
3586 	 *
3587 	 *      CPU-X                      CPU-Y
3588 	 *   (vm running)                (host running)
3589 	 *   rx posted interrupt
3590 	 *   CLEAR pending bit
3591 	 *				 SET PIR bit
3592 	 *   READ/CLEAR PIR bits
3593 	 *				 SET pending bit
3594 	 *   (vm exit)
3595 	 *   pending bit set, PIR 0
3596 	 */
3597 	if (pirval != 0) {
3598 		rvi = pirbase + flsl(pirval) - 1;
3599 		intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS);
3600 		intr_status_new = (intr_status_old & 0xFF00) | rvi;
3601 		if (intr_status_new > intr_status_old) {
3602 			vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new);
3603 			VCPU_CTR2(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
3604 			    "guest_intr_status changed from 0x%04x to 0x%04x",
3605 			    intr_status_old, intr_status_new);
3606 		}
3607 	}
3608 }
3609 
3610 static struct vlapic *
3611 vmx_vlapic_init(void *arg, int vcpuid)
3612 {
3613 	struct vmx *vmx;
3614 	struct vlapic *vlapic;
3615 	struct vlapic_vtx *vlapic_vtx;
3616 
3617 	vmx = arg;
3618 
3619 	vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO);
3620 	vlapic->vm = vmx->vm;
3621 	vlapic->vcpuid = vcpuid;
3622 	vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid];
3623 
3624 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3625 	vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid];
3626 	vlapic_vtx->vmx = vmx;
3627 
3628 	if (virtual_interrupt_delivery) {
3629 		vlapic->ops.set_intr_ready = vmx_set_intr_ready;
3630 		vlapic->ops.pending_intr = vmx_pending_intr;
3631 		vlapic->ops.intr_accepted = vmx_intr_accepted;
3632 		vlapic->ops.set_tmr = vmx_set_tmr;
3633 		vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode;
3634 	}
3635 
3636 	if (posted_interrupts)
3637 		vlapic->ops.post_intr = vmx_post_intr;
3638 
3639 	vlapic_init(vlapic);
3640 
3641 	return (vlapic);
3642 }
3643 
3644 static void
3645 vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic)
3646 {
3647 
3648 	vlapic_cleanup(vlapic);
3649 	free(vlapic, M_VLAPIC);
3650 }
3651 
3652 struct vmm_ops vmm_ops_intel = {
3653 	vmx_init,
3654 	vmx_cleanup,
3655 	vmx_restore,
3656 	vmx_vminit,
3657 	vmx_run,
3658 	vmx_vmcleanup,
3659 	vmx_getreg,
3660 	vmx_setreg,
3661 	vmx_getdesc,
3662 	vmx_setdesc,
3663 	vmx_getcap,
3664 	vmx_setcap,
3665 	ept_vmspace_alloc,
3666 	ept_vmspace_free,
3667 	vmx_vlapic_init,
3668 	vmx_vlapic_cleanup,
3669 };
3670