1 /*- 2 * Copyright (c) 2011 NetApp, Inc. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD$ 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/smp.h> 35 #include <sys/kernel.h> 36 #include <sys/malloc.h> 37 #include <sys/pcpu.h> 38 #include <sys/proc.h> 39 #include <sys/sysctl.h> 40 41 #include <vm/vm.h> 42 #include <vm/pmap.h> 43 44 #include <machine/psl.h> 45 #include <machine/cpufunc.h> 46 #include <machine/md_var.h> 47 #include <machine/segments.h> 48 #include <machine/specialreg.h> 49 #include <machine/vmparam.h> 50 51 #include <machine/vmm.h> 52 #include "vmm_host.h" 53 #include "vmm_msr.h" 54 #include "vmm_ktr.h" 55 #include "vmm_stat.h" 56 #include "vlapic.h" 57 #include "vlapic_priv.h" 58 59 #include "vmx_msr.h" 60 #include "ept.h" 61 #include "vmx_cpufunc.h" 62 #include "vmx.h" 63 #include "x86.h" 64 #include "vmx_controls.h" 65 66 #define PINBASED_CTLS_ONE_SETTING \ 67 (PINBASED_EXTINT_EXITING | \ 68 PINBASED_NMI_EXITING | \ 69 PINBASED_VIRTUAL_NMI) 70 #define PINBASED_CTLS_ZERO_SETTING 0 71 72 #define PROCBASED_CTLS_WINDOW_SETTING \ 73 (PROCBASED_INT_WINDOW_EXITING | \ 74 PROCBASED_NMI_WINDOW_EXITING) 75 76 #define PROCBASED_CTLS_ONE_SETTING \ 77 (PROCBASED_SECONDARY_CONTROLS | \ 78 PROCBASED_IO_EXITING | \ 79 PROCBASED_MSR_BITMAPS | \ 80 PROCBASED_CTLS_WINDOW_SETTING) 81 #define PROCBASED_CTLS_ZERO_SETTING \ 82 (PROCBASED_CR3_LOAD_EXITING | \ 83 PROCBASED_CR3_STORE_EXITING | \ 84 PROCBASED_IO_BITMAPS) 85 86 #define PROCBASED_CTLS2_ONE_SETTING PROCBASED2_ENABLE_EPT 87 #define PROCBASED_CTLS2_ZERO_SETTING 0 88 89 #define VM_EXIT_CTLS_ONE_SETTING_NO_PAT \ 90 (VM_EXIT_HOST_LMA | \ 91 VM_EXIT_SAVE_EFER | \ 92 VM_EXIT_LOAD_EFER) 93 94 #define VM_EXIT_CTLS_ONE_SETTING \ 95 (VM_EXIT_CTLS_ONE_SETTING_NO_PAT | \ 96 VM_EXIT_SAVE_PAT | \ 97 VM_EXIT_LOAD_PAT) 98 #define VM_EXIT_CTLS_ZERO_SETTING VM_EXIT_SAVE_DEBUG_CONTROLS 99 100 #define VM_ENTRY_CTLS_ONE_SETTING_NO_PAT VM_ENTRY_LOAD_EFER 101 102 #define VM_ENTRY_CTLS_ONE_SETTING \ 103 (VM_ENTRY_CTLS_ONE_SETTING_NO_PAT | \ 104 VM_ENTRY_LOAD_PAT) 105 #define VM_ENTRY_CTLS_ZERO_SETTING \ 106 (VM_ENTRY_LOAD_DEBUG_CONTROLS | \ 107 VM_ENTRY_INTO_SMM | \ 108 VM_ENTRY_DEACTIVATE_DUAL_MONITOR) 109 110 #define guest_msr_rw(vmx, msr) \ 111 msr_bitmap_change_access((vmx)->msr_bitmap, (msr), MSR_BITMAP_ACCESS_RW) 112 113 #define HANDLED 1 114 #define UNHANDLED 0 115 116 static MALLOC_DEFINE(M_VMX, "vmx", "vmx"); 117 static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic"); 118 119 SYSCTL_DECL(_hw_vmm); 120 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW, NULL, NULL); 121 122 int vmxon_enabled[MAXCPU]; 123 static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE); 124 125 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2; 126 static uint32_t exit_ctls, entry_ctls; 127 128 static uint64_t cr0_ones_mask, cr0_zeros_mask; 129 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD, 130 &cr0_ones_mask, 0, NULL); 131 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD, 132 &cr0_zeros_mask, 0, NULL); 133 134 static uint64_t cr4_ones_mask, cr4_zeros_mask; 135 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD, 136 &cr4_ones_mask, 0, NULL); 137 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD, 138 &cr4_zeros_mask, 0, NULL); 139 140 static int vmx_no_patmsr; 141 142 static int vmx_initialized; 143 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD, 144 &vmx_initialized, 0, "Intel VMX initialized"); 145 146 /* 147 * Virtual NMI blocking conditions. 148 * 149 * Some processor implementations also require NMI to be blocked if 150 * the STI_BLOCKING bit is set. It is possible to detect this at runtime 151 * based on the (exit_reason,exit_qual) tuple being set to 152 * (EXIT_REASON_INVAL_VMCS, EXIT_QUAL_NMI_WHILE_STI_BLOCKING). 153 * 154 * We take the easy way out and also include STI_BLOCKING as one of the 155 * gating items for vNMI injection. 156 */ 157 static uint64_t nmi_blocking_bits = VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING | 158 VMCS_INTERRUPTIBILITY_NMI_BLOCKING | 159 VMCS_INTERRUPTIBILITY_STI_BLOCKING; 160 161 /* 162 * Optional capabilities 163 */ 164 static int cap_halt_exit; 165 static int cap_pause_exit; 166 static int cap_unrestricted_guest; 167 static int cap_monitor_trap; 168 static int cap_invpcid; 169 170 static struct unrhdr *vpid_unr; 171 static u_int vpid_alloc_failed; 172 SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD, 173 &vpid_alloc_failed, 0, NULL); 174 175 #ifdef KTR 176 static const char * 177 exit_reason_to_str(int reason) 178 { 179 static char reasonbuf[32]; 180 181 switch (reason) { 182 case EXIT_REASON_EXCEPTION: 183 return "exception"; 184 case EXIT_REASON_EXT_INTR: 185 return "extint"; 186 case EXIT_REASON_TRIPLE_FAULT: 187 return "triplefault"; 188 case EXIT_REASON_INIT: 189 return "init"; 190 case EXIT_REASON_SIPI: 191 return "sipi"; 192 case EXIT_REASON_IO_SMI: 193 return "iosmi"; 194 case EXIT_REASON_SMI: 195 return "smi"; 196 case EXIT_REASON_INTR_WINDOW: 197 return "intrwindow"; 198 case EXIT_REASON_NMI_WINDOW: 199 return "nmiwindow"; 200 case EXIT_REASON_TASK_SWITCH: 201 return "taskswitch"; 202 case EXIT_REASON_CPUID: 203 return "cpuid"; 204 case EXIT_REASON_GETSEC: 205 return "getsec"; 206 case EXIT_REASON_HLT: 207 return "hlt"; 208 case EXIT_REASON_INVD: 209 return "invd"; 210 case EXIT_REASON_INVLPG: 211 return "invlpg"; 212 case EXIT_REASON_RDPMC: 213 return "rdpmc"; 214 case EXIT_REASON_RDTSC: 215 return "rdtsc"; 216 case EXIT_REASON_RSM: 217 return "rsm"; 218 case EXIT_REASON_VMCALL: 219 return "vmcall"; 220 case EXIT_REASON_VMCLEAR: 221 return "vmclear"; 222 case EXIT_REASON_VMLAUNCH: 223 return "vmlaunch"; 224 case EXIT_REASON_VMPTRLD: 225 return "vmptrld"; 226 case EXIT_REASON_VMPTRST: 227 return "vmptrst"; 228 case EXIT_REASON_VMREAD: 229 return "vmread"; 230 case EXIT_REASON_VMRESUME: 231 return "vmresume"; 232 case EXIT_REASON_VMWRITE: 233 return "vmwrite"; 234 case EXIT_REASON_VMXOFF: 235 return "vmxoff"; 236 case EXIT_REASON_VMXON: 237 return "vmxon"; 238 case EXIT_REASON_CR_ACCESS: 239 return "craccess"; 240 case EXIT_REASON_DR_ACCESS: 241 return "draccess"; 242 case EXIT_REASON_INOUT: 243 return "inout"; 244 case EXIT_REASON_RDMSR: 245 return "rdmsr"; 246 case EXIT_REASON_WRMSR: 247 return "wrmsr"; 248 case EXIT_REASON_INVAL_VMCS: 249 return "invalvmcs"; 250 case EXIT_REASON_INVAL_MSR: 251 return "invalmsr"; 252 case EXIT_REASON_MWAIT: 253 return "mwait"; 254 case EXIT_REASON_MTF: 255 return "mtf"; 256 case EXIT_REASON_MONITOR: 257 return "monitor"; 258 case EXIT_REASON_PAUSE: 259 return "pause"; 260 case EXIT_REASON_MCE: 261 return "mce"; 262 case EXIT_REASON_TPR: 263 return "tpr"; 264 case EXIT_REASON_APIC: 265 return "apic"; 266 case EXIT_REASON_GDTR_IDTR: 267 return "gdtridtr"; 268 case EXIT_REASON_LDTR_TR: 269 return "ldtrtr"; 270 case EXIT_REASON_EPT_FAULT: 271 return "eptfault"; 272 case EXIT_REASON_EPT_MISCONFIG: 273 return "eptmisconfig"; 274 case EXIT_REASON_INVEPT: 275 return "invept"; 276 case EXIT_REASON_RDTSCP: 277 return "rdtscp"; 278 case EXIT_REASON_VMX_PREEMPT: 279 return "vmxpreempt"; 280 case EXIT_REASON_INVVPID: 281 return "invvpid"; 282 case EXIT_REASON_WBINVD: 283 return "wbinvd"; 284 case EXIT_REASON_XSETBV: 285 return "xsetbv"; 286 default: 287 snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason); 288 return (reasonbuf); 289 } 290 } 291 #endif /* KTR */ 292 293 u_long 294 vmx_fix_cr0(u_long cr0) 295 { 296 297 return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask); 298 } 299 300 u_long 301 vmx_fix_cr4(u_long cr4) 302 { 303 304 return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask); 305 } 306 307 static void 308 vpid_free(int vpid) 309 { 310 if (vpid < 0 || vpid > 0xffff) 311 panic("vpid_free: invalid vpid %d", vpid); 312 313 /* 314 * VPIDs [0,VM_MAXCPU] are special and are not allocated from 315 * the unit number allocator. 316 */ 317 318 if (vpid > VM_MAXCPU) 319 free_unr(vpid_unr, vpid); 320 } 321 322 static void 323 vpid_alloc(uint16_t *vpid, int num) 324 { 325 int i, x; 326 327 if (num <= 0 || num > VM_MAXCPU) 328 panic("invalid number of vpids requested: %d", num); 329 330 /* 331 * If the "enable vpid" execution control is not enabled then the 332 * VPID is required to be 0 for all vcpus. 333 */ 334 if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) { 335 for (i = 0; i < num; i++) 336 vpid[i] = 0; 337 return; 338 } 339 340 /* 341 * Allocate a unique VPID for each vcpu from the unit number allocator. 342 */ 343 for (i = 0; i < num; i++) { 344 x = alloc_unr(vpid_unr); 345 if (x == -1) 346 break; 347 else 348 vpid[i] = x; 349 } 350 351 if (i < num) { 352 atomic_add_int(&vpid_alloc_failed, 1); 353 354 /* 355 * If the unit number allocator does not have enough unique 356 * VPIDs then we need to allocate from the [1,VM_MAXCPU] range. 357 * 358 * These VPIDs are not be unique across VMs but this does not 359 * affect correctness because the combined mappings are also 360 * tagged with the EP4TA which is unique for each VM. 361 * 362 * It is still sub-optimal because the invvpid will invalidate 363 * combined mappings for a particular VPID across all EP4TAs. 364 */ 365 while (i-- > 0) 366 vpid_free(vpid[i]); 367 368 for (i = 0; i < num; i++) 369 vpid[i] = i + 1; 370 } 371 } 372 373 static void 374 vpid_init(void) 375 { 376 /* 377 * VPID 0 is required when the "enable VPID" execution control is 378 * disabled. 379 * 380 * VPIDs [1,VM_MAXCPU] are used as the "overflow namespace" when the 381 * unit number allocator does not have sufficient unique VPIDs to 382 * satisfy the allocation. 383 * 384 * The remaining VPIDs are managed by the unit number allocator. 385 */ 386 vpid_unr = new_unrhdr(VM_MAXCPU + 1, 0xffff, NULL); 387 } 388 389 static void 390 msr_save_area_init(struct msr_entry *g_area, int *g_count) 391 { 392 int cnt; 393 394 static struct msr_entry guest_msrs[] = { 395 { MSR_KGSBASE, 0, 0 }, 396 }; 397 398 cnt = sizeof(guest_msrs) / sizeof(guest_msrs[0]); 399 if (cnt > GUEST_MSR_MAX_ENTRIES) 400 panic("guest msr save area overrun"); 401 bcopy(guest_msrs, g_area, sizeof(guest_msrs)); 402 *g_count = cnt; 403 } 404 405 static void 406 vmx_disable(void *arg __unused) 407 { 408 struct invvpid_desc invvpid_desc = { 0 }; 409 struct invept_desc invept_desc = { 0 }; 410 411 if (vmxon_enabled[curcpu]) { 412 /* 413 * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b. 414 * 415 * VMXON or VMXOFF are not required to invalidate any TLB 416 * caching structures. This prevents potential retention of 417 * cached information in the TLB between distinct VMX episodes. 418 */ 419 invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc); 420 invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc); 421 vmxoff(); 422 } 423 load_cr4(rcr4() & ~CR4_VMXE); 424 } 425 426 static int 427 vmx_cleanup(void) 428 { 429 430 if (vpid_unr != NULL) { 431 delete_unrhdr(vpid_unr); 432 vpid_unr = NULL; 433 } 434 435 smp_rendezvous(NULL, vmx_disable, NULL, NULL); 436 437 return (0); 438 } 439 440 static void 441 vmx_enable(void *arg __unused) 442 { 443 int error; 444 445 load_cr4(rcr4() | CR4_VMXE); 446 447 *(uint32_t *)vmxon_region[curcpu] = vmx_revision(); 448 error = vmxon(vmxon_region[curcpu]); 449 if (error == 0) 450 vmxon_enabled[curcpu] = 1; 451 } 452 453 static void 454 vmx_restore(void) 455 { 456 457 if (vmxon_enabled[curcpu]) 458 vmxon(vmxon_region[curcpu]); 459 } 460 461 static int 462 vmx_init(void) 463 { 464 int error; 465 uint64_t fixed0, fixed1, feature_control; 466 uint32_t tmp; 467 468 /* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */ 469 if (!(cpu_feature2 & CPUID2_VMX)) { 470 printf("vmx_init: processor does not support VMX operation\n"); 471 return (ENXIO); 472 } 473 474 /* 475 * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits 476 * are set (bits 0 and 2 respectively). 477 */ 478 feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL); 479 if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 || 480 (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) { 481 printf("vmx_init: VMX operation disabled by BIOS\n"); 482 return (ENXIO); 483 } 484 485 /* Check support for primary processor-based VM-execution controls */ 486 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 487 MSR_VMX_TRUE_PROCBASED_CTLS, 488 PROCBASED_CTLS_ONE_SETTING, 489 PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls); 490 if (error) { 491 printf("vmx_init: processor does not support desired primary " 492 "processor-based controls\n"); 493 return (error); 494 } 495 496 /* Clear the processor-based ctl bits that are set on demand */ 497 procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING; 498 499 /* Check support for secondary processor-based VM-execution controls */ 500 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, 501 MSR_VMX_PROCBASED_CTLS2, 502 PROCBASED_CTLS2_ONE_SETTING, 503 PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2); 504 if (error) { 505 printf("vmx_init: processor does not support desired secondary " 506 "processor-based controls\n"); 507 return (error); 508 } 509 510 /* Check support for VPID */ 511 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2, 512 PROCBASED2_ENABLE_VPID, 0, &tmp); 513 if (error == 0) 514 procbased_ctls2 |= PROCBASED2_ENABLE_VPID; 515 516 /* Check support for pin-based VM-execution controls */ 517 error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS, 518 MSR_VMX_TRUE_PINBASED_CTLS, 519 PINBASED_CTLS_ONE_SETTING, 520 PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls); 521 if (error) { 522 printf("vmx_init: processor does not support desired " 523 "pin-based controls\n"); 524 return (error); 525 } 526 527 /* Check support for VM-exit controls */ 528 error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS, 529 VM_EXIT_CTLS_ONE_SETTING, 530 VM_EXIT_CTLS_ZERO_SETTING, 531 &exit_ctls); 532 if (error) { 533 /* Try again without the PAT MSR bits */ 534 error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, 535 MSR_VMX_TRUE_EXIT_CTLS, 536 VM_EXIT_CTLS_ONE_SETTING_NO_PAT, 537 VM_EXIT_CTLS_ZERO_SETTING, 538 &exit_ctls); 539 if (error) { 540 printf("vmx_init: processor does not support desired " 541 "exit controls\n"); 542 return (error); 543 } else { 544 if (bootverbose) 545 printf("vmm: PAT MSR access not supported\n"); 546 guest_msr_valid(MSR_PAT); 547 vmx_no_patmsr = 1; 548 } 549 } 550 551 /* Check support for VM-entry controls */ 552 if (!vmx_no_patmsr) { 553 error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, 554 MSR_VMX_TRUE_ENTRY_CTLS, 555 VM_ENTRY_CTLS_ONE_SETTING, 556 VM_ENTRY_CTLS_ZERO_SETTING, 557 &entry_ctls); 558 } else { 559 error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, 560 MSR_VMX_TRUE_ENTRY_CTLS, 561 VM_ENTRY_CTLS_ONE_SETTING_NO_PAT, 562 VM_ENTRY_CTLS_ZERO_SETTING, 563 &entry_ctls); 564 } 565 566 if (error) { 567 printf("vmx_init: processor does not support desired " 568 "entry controls\n"); 569 return (error); 570 } 571 572 /* 573 * Check support for optional features by testing them 574 * as individual bits 575 */ 576 cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 577 MSR_VMX_TRUE_PROCBASED_CTLS, 578 PROCBASED_HLT_EXITING, 0, 579 &tmp) == 0); 580 581 cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 582 MSR_VMX_PROCBASED_CTLS, 583 PROCBASED_MTF, 0, 584 &tmp) == 0); 585 586 cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 587 MSR_VMX_TRUE_PROCBASED_CTLS, 588 PROCBASED_PAUSE_EXITING, 0, 589 &tmp) == 0); 590 591 cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, 592 MSR_VMX_PROCBASED_CTLS2, 593 PROCBASED2_UNRESTRICTED_GUEST, 0, 594 &tmp) == 0); 595 596 cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, 597 MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0, 598 &tmp) == 0); 599 600 601 /* Initialize EPT */ 602 error = ept_init(); 603 if (error) { 604 printf("vmx_init: ept initialization failed (%d)\n", error); 605 return (error); 606 } 607 608 /* 609 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1 610 */ 611 fixed0 = rdmsr(MSR_VMX_CR0_FIXED0); 612 fixed1 = rdmsr(MSR_VMX_CR0_FIXED1); 613 cr0_ones_mask = fixed0 & fixed1; 614 cr0_zeros_mask = ~fixed0 & ~fixed1; 615 616 /* 617 * CR0_PE and CR0_PG can be set to zero in VMX non-root operation 618 * if unrestricted guest execution is allowed. 619 */ 620 if (cap_unrestricted_guest) 621 cr0_ones_mask &= ~(CR0_PG | CR0_PE); 622 623 /* 624 * Do not allow the guest to set CR0_NW or CR0_CD. 625 */ 626 cr0_zeros_mask |= (CR0_NW | CR0_CD); 627 628 fixed0 = rdmsr(MSR_VMX_CR4_FIXED0); 629 fixed1 = rdmsr(MSR_VMX_CR4_FIXED1); 630 cr4_ones_mask = fixed0 & fixed1; 631 cr4_zeros_mask = ~fixed0 & ~fixed1; 632 633 vpid_init(); 634 635 /* enable VMX operation */ 636 smp_rendezvous(NULL, vmx_enable, NULL, NULL); 637 638 vmx_initialized = 1; 639 640 return (0); 641 } 642 643 static int 644 vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial) 645 { 646 int error, mask_ident, shadow_ident; 647 uint64_t mask_value; 648 649 if (which != 0 && which != 4) 650 panic("vmx_setup_cr_shadow: unknown cr%d", which); 651 652 if (which == 0) { 653 mask_ident = VMCS_CR0_MASK; 654 mask_value = cr0_ones_mask | cr0_zeros_mask; 655 shadow_ident = VMCS_CR0_SHADOW; 656 } else { 657 mask_ident = VMCS_CR4_MASK; 658 mask_value = cr4_ones_mask | cr4_zeros_mask; 659 shadow_ident = VMCS_CR4_SHADOW; 660 } 661 662 error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value); 663 if (error) 664 return (error); 665 666 error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial); 667 if (error) 668 return (error); 669 670 return (0); 671 } 672 #define vmx_setup_cr0_shadow(vmcs,init) vmx_setup_cr_shadow(0, (vmcs), (init)) 673 #define vmx_setup_cr4_shadow(vmcs,init) vmx_setup_cr_shadow(4, (vmcs), (init)) 674 675 static void * 676 vmx_vminit(struct vm *vm, pmap_t pmap) 677 { 678 uint16_t vpid[VM_MAXCPU]; 679 int i, error, guest_msr_count; 680 struct vmx *vmx; 681 682 vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO); 683 if ((uintptr_t)vmx & PAGE_MASK) { 684 panic("malloc of struct vmx not aligned on %d byte boundary", 685 PAGE_SIZE); 686 } 687 vmx->vm = vm; 688 689 vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pml4)); 690 691 /* 692 * Clean up EPTP-tagged guest physical and combined mappings 693 * 694 * VMX transitions are not required to invalidate any guest physical 695 * mappings. So, it may be possible for stale guest physical mappings 696 * to be present in the processor TLBs. 697 * 698 * Combined mappings for this EP4TA are also invalidated for all VPIDs. 699 */ 700 ept_invalidate_mappings(vmx->eptp); 701 702 msr_bitmap_initialize(vmx->msr_bitmap); 703 704 /* 705 * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE. 706 * The guest FSBASE and GSBASE are saved and restored during 707 * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are 708 * always restored from the vmcs host state area on vm-exit. 709 * 710 * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in 711 * how they are saved/restored so can be directly accessed by the 712 * guest. 713 * 714 * Guest KGSBASE is saved and restored in the guest MSR save area. 715 * Host KGSBASE is restored before returning to userland from the pcb. 716 * There will be a window of time when we are executing in the host 717 * kernel context with a value of KGSBASE from the guest. This is ok 718 * because the value of KGSBASE is inconsequential in kernel context. 719 * 720 * MSR_EFER is saved and restored in the guest VMCS area on a 721 * VM exit and entry respectively. It is also restored from the 722 * host VMCS area on a VM exit. 723 */ 724 if (guest_msr_rw(vmx, MSR_GSBASE) || 725 guest_msr_rw(vmx, MSR_FSBASE) || 726 guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) || 727 guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) || 728 guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) || 729 guest_msr_rw(vmx, MSR_KGSBASE) || 730 guest_msr_rw(vmx, MSR_EFER)) 731 panic("vmx_vminit: error setting guest msr access"); 732 733 /* 734 * MSR_PAT is saved and restored in the guest VMCS are on a VM exit 735 * and entry respectively. It is also restored from the host VMCS 736 * area on a VM exit. However, if running on a system with no 737 * MSR_PAT save/restore support, leave access disabled so accesses 738 * will be trapped. 739 */ 740 if (!vmx_no_patmsr && guest_msr_rw(vmx, MSR_PAT)) 741 panic("vmx_vminit: error setting guest pat msr access"); 742 743 vpid_alloc(vpid, VM_MAXCPU); 744 745 for (i = 0; i < VM_MAXCPU; i++) { 746 vmx->vmcs[i].identifier = vmx_revision(); 747 error = vmclear(&vmx->vmcs[i]); 748 if (error != 0) { 749 panic("vmx_vminit: vmclear error %d on vcpu %d\n", 750 error, i); 751 } 752 753 error = vmcs_set_defaults(&vmx->vmcs[i], 754 (u_long)vmx_exit_guest, 755 (u_long)&vmx->ctx[i], 756 vmx->eptp, 757 pinbased_ctls, 758 procbased_ctls, 759 procbased_ctls2, 760 exit_ctls, entry_ctls, 761 vtophys(vmx->msr_bitmap), 762 vpid[i]); 763 764 if (error != 0) 765 panic("vmx_vminit: vmcs_set_defaults error %d", error); 766 767 vmx->cap[i].set = 0; 768 vmx->cap[i].proc_ctls = procbased_ctls; 769 vmx->cap[i].proc_ctls2 = procbased_ctls2; 770 771 vmx->state[i].lastcpu = -1; 772 vmx->state[i].vpid = vpid[i]; 773 774 msr_save_area_init(vmx->guest_msrs[i], &guest_msr_count); 775 776 error = vmcs_set_msr_save(&vmx->vmcs[i], 777 vtophys(vmx->guest_msrs[i]), 778 guest_msr_count); 779 if (error != 0) 780 panic("vmcs_set_msr_save error %d", error); 781 782 /* 783 * Set up the CR0/4 shadows, and init the read shadow 784 * to the power-on register value from the Intel Sys Arch. 785 * CR0 - 0x60000010 786 * CR4 - 0 787 */ 788 error = vmx_setup_cr0_shadow(&vmx->vmcs[i], 0x60000010); 789 if (error != 0) 790 panic("vmx_setup_cr0_shadow %d", error); 791 792 error = vmx_setup_cr4_shadow(&vmx->vmcs[i], 0); 793 if (error != 0) 794 panic("vmx_setup_cr4_shadow %d", error); 795 796 vmx->ctx[i].pmap = pmap; 797 vmx->ctx[i].eptp = vmx->eptp; 798 } 799 800 return (vmx); 801 } 802 803 static int 804 vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx) 805 { 806 int handled, func; 807 808 func = vmxctx->guest_rax; 809 810 handled = x86_emulate_cpuid(vm, vcpu, 811 (uint32_t*)(&vmxctx->guest_rax), 812 (uint32_t*)(&vmxctx->guest_rbx), 813 (uint32_t*)(&vmxctx->guest_rcx), 814 (uint32_t*)(&vmxctx->guest_rdx)); 815 return (handled); 816 } 817 818 static __inline void 819 vmx_run_trace(struct vmx *vmx, int vcpu) 820 { 821 #ifdef KTR 822 VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %#lx", vmcs_guest_rip()); 823 #endif 824 } 825 826 static __inline void 827 vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason, 828 int handled) 829 { 830 #ifdef KTR 831 VCPU_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx", 832 handled ? "handled" : "unhandled", 833 exit_reason_to_str(exit_reason), rip); 834 #endif 835 } 836 837 static __inline void 838 vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip) 839 { 840 #ifdef KTR 841 VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip); 842 #endif 843 } 844 845 static void 846 vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu) 847 { 848 int lastcpu; 849 struct vmxstate *vmxstate; 850 struct invvpid_desc invvpid_desc = { 0 }; 851 852 vmxstate = &vmx->state[vcpu]; 853 lastcpu = vmxstate->lastcpu; 854 vmxstate->lastcpu = curcpu; 855 856 if (lastcpu == curcpu) 857 return; 858 859 vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1); 860 861 vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase()); 862 vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase()); 863 vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase()); 864 865 /* 866 * If we are using VPIDs then invalidate all mappings tagged with 'vpid' 867 * 868 * We do this because this vcpu was executing on a different host 869 * cpu when it last ran. We do not track whether it invalidated 870 * mappings associated with its 'vpid' during that run. So we must 871 * assume that the mappings associated with 'vpid' on 'curcpu' are 872 * stale and invalidate them. 873 * 874 * Note that we incur this penalty only when the scheduler chooses to 875 * move the thread associated with this vcpu between host cpus. 876 * 877 * Note also that this will invalidate mappings tagged with 'vpid' 878 * for "all" EP4TAs. 879 */ 880 if (vmxstate->vpid != 0) { 881 invvpid_desc.vpid = vmxstate->vpid; 882 invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc); 883 } 884 } 885 886 /* 887 * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set. 888 */ 889 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0); 890 891 static void __inline 892 vmx_set_int_window_exiting(struct vmx *vmx, int vcpu) 893 { 894 895 vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING; 896 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); 897 } 898 899 static void __inline 900 vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu) 901 { 902 903 vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING; 904 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); 905 } 906 907 static void __inline 908 vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu) 909 { 910 911 vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING; 912 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); 913 } 914 915 static void __inline 916 vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu) 917 { 918 919 vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING; 920 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); 921 } 922 923 static int 924 vmx_inject_nmi(struct vmx *vmx, int vcpu) 925 { 926 uint64_t info, interruptibility; 927 928 /* Bail out if no NMI requested */ 929 if (!vm_nmi_pending(vmx->vm, vcpu)) 930 return (0); 931 932 interruptibility = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 933 if (interruptibility & nmi_blocking_bits) 934 goto nmiblocked; 935 936 /* 937 * Inject the virtual NMI. The vector must be the NMI IDT entry 938 * or the VMCS entry check will fail. 939 */ 940 info = VMCS_INTERRUPTION_INFO_NMI | VMCS_INTERRUPTION_INFO_VALID; 941 info |= IDT_NMI; 942 vmcs_write(VMCS_ENTRY_INTR_INFO, info); 943 944 VCPU_CTR0(vmx->vm, vcpu, "Injecting vNMI"); 945 946 /* Clear the request */ 947 vm_nmi_clear(vmx->vm, vcpu); 948 return (1); 949 950 nmiblocked: 951 /* 952 * Set the NMI Window Exiting execution control so we can inject 953 * the virtual NMI as soon as blocking condition goes away. 954 */ 955 vmx_set_nmi_window_exiting(vmx, vcpu); 956 957 VCPU_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting"); 958 return (1); 959 } 960 961 static void 962 vmx_inject_interrupts(struct vmx *vmx, int vcpu, struct vlapic *vlapic) 963 { 964 int vector; 965 uint64_t info, rflags, interruptibility; 966 967 const int HWINTR_BLOCKED = VMCS_INTERRUPTIBILITY_STI_BLOCKING | 968 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING; 969 970 /* 971 * If there is already an interrupt pending then just return. 972 * 973 * This could happen if an interrupt was injected on a prior 974 * VM entry but the actual entry into guest mode was aborted 975 * because of a pending AST. 976 */ 977 info = vmcs_read(VMCS_ENTRY_INTR_INFO); 978 if (info & VMCS_INTERRUPTION_INFO_VALID) 979 return; 980 981 /* 982 * NMI injection has priority so deal with those first 983 */ 984 if (vmx_inject_nmi(vmx, vcpu)) 985 return; 986 987 /* Ask the local apic for a vector to inject */ 988 vector = vlapic_pending_intr(vlapic); 989 if (vector < 0) 990 return; 991 992 if (vector < 32 || vector > 255) 993 panic("vmx_inject_interrupts: invalid vector %d\n", vector); 994 995 /* Check RFLAGS.IF and the interruptibility state of the guest */ 996 rflags = vmcs_read(VMCS_GUEST_RFLAGS); 997 if ((rflags & PSL_I) == 0) 998 goto cantinject; 999 1000 interruptibility = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1001 if (interruptibility & HWINTR_BLOCKED) 1002 goto cantinject; 1003 1004 /* Inject the interrupt */ 1005 info = VMCS_INTERRUPTION_INFO_HW_INTR | VMCS_INTERRUPTION_INFO_VALID; 1006 info |= vector; 1007 vmcs_write(VMCS_ENTRY_INTR_INFO, info); 1008 1009 /* Update the Local APIC ISR */ 1010 vlapic_intr_accepted(vlapic, vector); 1011 1012 VCPU_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector); 1013 1014 return; 1015 1016 cantinject: 1017 /* 1018 * Set the Interrupt Window Exiting execution control so we can inject 1019 * the interrupt as soon as blocking condition goes away. 1020 */ 1021 vmx_set_int_window_exiting(vmx, vcpu); 1022 1023 VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting"); 1024 } 1025 1026 static int 1027 vmx_emulate_cr_access(struct vmx *vmx, int vcpu, uint64_t exitqual) 1028 { 1029 int cr, vmcs_guest_cr, vmcs_shadow_cr; 1030 uint64_t crval, regval, ones_mask, zeros_mask; 1031 const struct vmxctx *vmxctx; 1032 1033 /* We only handle mov to %cr0 or %cr4 at this time */ 1034 if ((exitqual & 0xf0) != 0x00) 1035 return (UNHANDLED); 1036 1037 cr = exitqual & 0xf; 1038 if (cr != 0 && cr != 4) 1039 return (UNHANDLED); 1040 1041 regval = 0; /* silence gcc */ 1042 vmxctx = &vmx->ctx[vcpu]; 1043 1044 /* 1045 * We must use vmcs_write() directly here because vmcs_setreg() will 1046 * call vmclear(vmcs) as a side-effect which we certainly don't want. 1047 */ 1048 switch ((exitqual >> 8) & 0xf) { 1049 case 0: 1050 regval = vmxctx->guest_rax; 1051 break; 1052 case 1: 1053 regval = vmxctx->guest_rcx; 1054 break; 1055 case 2: 1056 regval = vmxctx->guest_rdx; 1057 break; 1058 case 3: 1059 regval = vmxctx->guest_rbx; 1060 break; 1061 case 4: 1062 regval = vmcs_read(VMCS_GUEST_RSP); 1063 break; 1064 case 5: 1065 regval = vmxctx->guest_rbp; 1066 break; 1067 case 6: 1068 regval = vmxctx->guest_rsi; 1069 break; 1070 case 7: 1071 regval = vmxctx->guest_rdi; 1072 break; 1073 case 8: 1074 regval = vmxctx->guest_r8; 1075 break; 1076 case 9: 1077 regval = vmxctx->guest_r9; 1078 break; 1079 case 10: 1080 regval = vmxctx->guest_r10; 1081 break; 1082 case 11: 1083 regval = vmxctx->guest_r11; 1084 break; 1085 case 12: 1086 regval = vmxctx->guest_r12; 1087 break; 1088 case 13: 1089 regval = vmxctx->guest_r13; 1090 break; 1091 case 14: 1092 regval = vmxctx->guest_r14; 1093 break; 1094 case 15: 1095 regval = vmxctx->guest_r15; 1096 break; 1097 } 1098 1099 if (cr == 0) { 1100 ones_mask = cr0_ones_mask; 1101 zeros_mask = cr0_zeros_mask; 1102 vmcs_guest_cr = VMCS_GUEST_CR0; 1103 vmcs_shadow_cr = VMCS_CR0_SHADOW; 1104 } else { 1105 ones_mask = cr4_ones_mask; 1106 zeros_mask = cr4_zeros_mask; 1107 vmcs_guest_cr = VMCS_GUEST_CR4; 1108 vmcs_shadow_cr = VMCS_CR4_SHADOW; 1109 } 1110 vmcs_write(vmcs_shadow_cr, regval); 1111 1112 crval = regval | ones_mask; 1113 crval &= ~zeros_mask; 1114 vmcs_write(vmcs_guest_cr, crval); 1115 1116 if (cr == 0 && regval & CR0_PG) { 1117 uint64_t efer, entry_ctls; 1118 1119 /* 1120 * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and 1121 * the "IA-32e mode guest" bit in VM-entry control must be 1122 * equal. 1123 */ 1124 efer = vmcs_read(VMCS_GUEST_IA32_EFER); 1125 if (efer & EFER_LME) { 1126 efer |= EFER_LMA; 1127 vmcs_write(VMCS_GUEST_IA32_EFER, efer); 1128 entry_ctls = vmcs_read(VMCS_ENTRY_CTLS); 1129 entry_ctls |= VM_ENTRY_GUEST_LMA; 1130 vmcs_write(VMCS_ENTRY_CTLS, entry_ctls); 1131 } 1132 } 1133 1134 return (HANDLED); 1135 } 1136 1137 static int 1138 ept_fault_type(uint64_t ept_qual) 1139 { 1140 int fault_type; 1141 1142 if (ept_qual & EPT_VIOLATION_DATA_WRITE) 1143 fault_type = VM_PROT_WRITE; 1144 else if (ept_qual & EPT_VIOLATION_INST_FETCH) 1145 fault_type = VM_PROT_EXECUTE; 1146 else 1147 fault_type= VM_PROT_READ; 1148 1149 return (fault_type); 1150 } 1151 1152 static boolean_t 1153 ept_emulation_fault(uint64_t ept_qual) 1154 { 1155 int read, write; 1156 1157 /* EPT fault on an instruction fetch doesn't make sense here */ 1158 if (ept_qual & EPT_VIOLATION_INST_FETCH) 1159 return (FALSE); 1160 1161 /* EPT fault must be a read fault or a write fault */ 1162 read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0; 1163 write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0; 1164 if ((read | write) == 0) 1165 return (FALSE); 1166 1167 /* 1168 * The EPT violation must have been caused by accessing a 1169 * guest-physical address that is a translation of a guest-linear 1170 * address. 1171 */ 1172 if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 || 1173 (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) { 1174 return (FALSE); 1175 } 1176 1177 return (TRUE); 1178 } 1179 1180 static int 1181 vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit) 1182 { 1183 int error, handled; 1184 struct vmxctx *vmxctx; 1185 uint32_t eax, ecx, edx, idtvec_info, idtvec_err, reason; 1186 uint64_t qual, gpa; 1187 bool retu; 1188 1189 handled = 0; 1190 vmxctx = &vmx->ctx[vcpu]; 1191 1192 /* Collect some information for VM exit processing */ 1193 vmexit->rip = vmcs_guest_rip(); 1194 vmexit->inst_length = vmexit_instruction_length(); 1195 vmexit->u.vmx.exit_reason = vmcs_exit_reason(); 1196 vmexit->u.vmx.exit_qualification = vmcs_exit_qualification(); 1197 1198 qual = vmexit->u.vmx.exit_qualification; 1199 reason = vmexit->u.vmx.exit_reason; 1200 vmexit->exitcode = VM_EXITCODE_BOGUS; 1201 1202 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1); 1203 1204 /* 1205 * VM exits that could be triggered during event injection on the 1206 * previous VM entry need to be handled specially by re-injecting 1207 * the event. 1208 * 1209 * See "Information for VM Exits During Event Delivery" in Intel SDM 1210 * for details. 1211 */ 1212 switch (reason) { 1213 case EXIT_REASON_EPT_FAULT: 1214 case EXIT_REASON_EPT_MISCONFIG: 1215 case EXIT_REASON_APIC: 1216 case EXIT_REASON_TASK_SWITCH: 1217 case EXIT_REASON_EXCEPTION: 1218 idtvec_info = vmcs_idt_vectoring_info(); 1219 if (idtvec_info & VMCS_IDT_VEC_VALID) { 1220 idtvec_info &= ~(1 << 12); /* clear undefined bit */ 1221 vmcs_write(VMCS_ENTRY_INTR_INFO, idtvec_info); 1222 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) { 1223 idtvec_err = vmcs_idt_vectoring_err(); 1224 vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, 1225 idtvec_err); 1226 } 1227 vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length); 1228 } 1229 default: 1230 break; 1231 } 1232 1233 switch (reason) { 1234 case EXIT_REASON_CR_ACCESS: 1235 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1); 1236 handled = vmx_emulate_cr_access(vmx, vcpu, qual); 1237 break; 1238 case EXIT_REASON_RDMSR: 1239 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1); 1240 retu = false; 1241 ecx = vmxctx->guest_rcx; 1242 error = emulate_rdmsr(vmx->vm, vcpu, ecx, &retu); 1243 if (error) { 1244 vmexit->exitcode = VM_EXITCODE_RDMSR; 1245 vmexit->u.msr.code = ecx; 1246 } else if (!retu) { 1247 handled = 1; 1248 } else { 1249 /* Return to userspace with a valid exitcode */ 1250 KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS, 1251 ("emulate_wrmsr retu with bogus exitcode")); 1252 } 1253 break; 1254 case EXIT_REASON_WRMSR: 1255 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1); 1256 retu = false; 1257 eax = vmxctx->guest_rax; 1258 ecx = vmxctx->guest_rcx; 1259 edx = vmxctx->guest_rdx; 1260 error = emulate_wrmsr(vmx->vm, vcpu, ecx, 1261 (uint64_t)edx << 32 | eax, &retu); 1262 if (error) { 1263 vmexit->exitcode = VM_EXITCODE_WRMSR; 1264 vmexit->u.msr.code = ecx; 1265 vmexit->u.msr.wval = (uint64_t)edx << 32 | eax; 1266 } else if (!retu) { 1267 handled = 1; 1268 } else { 1269 /* Return to userspace with a valid exitcode */ 1270 KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS, 1271 ("emulate_wrmsr retu with bogus exitcode")); 1272 } 1273 break; 1274 case EXIT_REASON_HLT: 1275 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1); 1276 vmexit->exitcode = VM_EXITCODE_HLT; 1277 vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS); 1278 break; 1279 case EXIT_REASON_MTF: 1280 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1); 1281 vmexit->exitcode = VM_EXITCODE_MTRAP; 1282 break; 1283 case EXIT_REASON_PAUSE: 1284 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1); 1285 vmexit->exitcode = VM_EXITCODE_PAUSE; 1286 break; 1287 case EXIT_REASON_INTR_WINDOW: 1288 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1); 1289 vmx_clear_int_window_exiting(vmx, vcpu); 1290 VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting"); 1291 return (1); 1292 case EXIT_REASON_EXT_INTR: 1293 /* 1294 * External interrupts serve only to cause VM exits and allow 1295 * the host interrupt handler to run. 1296 * 1297 * If this external interrupt triggers a virtual interrupt 1298 * to a VM, then that state will be recorded by the 1299 * host interrupt handler in the VM's softc. We will inject 1300 * this virtual interrupt during the subsequent VM enter. 1301 */ 1302 1303 /* 1304 * This is special. We want to treat this as an 'handled' 1305 * VM-exit but not increment the instruction pointer. 1306 */ 1307 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1); 1308 return (1); 1309 case EXIT_REASON_NMI_WINDOW: 1310 /* Exit to allow the pending virtual NMI to be injected */ 1311 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1); 1312 vmx_clear_nmi_window_exiting(vmx, vcpu); 1313 VCPU_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting"); 1314 return (1); 1315 case EXIT_REASON_INOUT: 1316 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1); 1317 vmexit->exitcode = VM_EXITCODE_INOUT; 1318 vmexit->u.inout.bytes = (qual & 0x7) + 1; 1319 vmexit->u.inout.in = (qual & 0x8) ? 1 : 0; 1320 vmexit->u.inout.string = (qual & 0x10) ? 1 : 0; 1321 vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0; 1322 vmexit->u.inout.port = (uint16_t)(qual >> 16); 1323 vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax); 1324 break; 1325 case EXIT_REASON_CPUID: 1326 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1); 1327 handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx); 1328 break; 1329 case EXIT_REASON_EPT_FAULT: 1330 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EPT_FAULT, 1); 1331 /* 1332 * If 'gpa' lies within the address space allocated to 1333 * memory then this must be a nested page fault otherwise 1334 * this must be an instruction that accesses MMIO space. 1335 */ 1336 gpa = vmcs_gpa(); 1337 if (vm_mem_allocated(vmx->vm, gpa)) { 1338 vmexit->exitcode = VM_EXITCODE_PAGING; 1339 vmexit->u.paging.gpa = gpa; 1340 vmexit->u.paging.fault_type = ept_fault_type(qual); 1341 } else if (ept_emulation_fault(qual)) { 1342 vmexit->exitcode = VM_EXITCODE_INST_EMUL; 1343 vmexit->u.inst_emul.gpa = gpa; 1344 vmexit->u.inst_emul.gla = vmcs_gla(); 1345 vmexit->u.inst_emul.cr3 = vmcs_guest_cr3(); 1346 } 1347 break; 1348 default: 1349 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1); 1350 break; 1351 } 1352 1353 if (handled) { 1354 /* 1355 * It is possible that control is returned to userland 1356 * even though we were able to handle the VM exit in the 1357 * kernel. 1358 * 1359 * In such a case we want to make sure that the userland 1360 * restarts guest execution at the instruction *after* 1361 * the one we just processed. Therefore we update the 1362 * guest rip in the VMCS and in 'vmexit'. 1363 */ 1364 vmexit->rip += vmexit->inst_length; 1365 vmexit->inst_length = 0; 1366 vmcs_write(VMCS_GUEST_RIP, vmexit->rip); 1367 } else { 1368 if (vmexit->exitcode == VM_EXITCODE_BOGUS) { 1369 /* 1370 * If this VM exit was not claimed by anybody then 1371 * treat it as a generic VMX exit. 1372 */ 1373 vmexit->exitcode = VM_EXITCODE_VMX; 1374 vmexit->u.vmx.status = VM_SUCCESS; 1375 } else { 1376 /* 1377 * The exitcode and collateral have been populated. 1378 * The VM exit will be processed further in userland. 1379 */ 1380 } 1381 } 1382 return (handled); 1383 } 1384 1385 static __inline int 1386 vmx_exit_astpending(struct vmx *vmx, int vcpu, struct vm_exit *vmexit) 1387 { 1388 1389 vmexit->rip = vmcs_guest_rip(); 1390 vmexit->inst_length = 0; 1391 vmexit->exitcode = VM_EXITCODE_BOGUS; 1392 vmx_astpending_trace(vmx, vcpu, vmexit->rip); 1393 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_ASTPENDING, 1); 1394 1395 return (HANDLED); 1396 } 1397 1398 static __inline int 1399 vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit) 1400 { 1401 1402 KASSERT(vmxctx->inst_fail_status != VM_SUCCESS, 1403 ("vmx_exit_inst_error: invalid inst_fail_status %d", 1404 vmxctx->inst_fail_status)); 1405 1406 vmexit->rip = vmcs_guest_rip(); 1407 vmexit->inst_length = 0; 1408 1409 vmexit->exitcode = VM_EXITCODE_VMX; 1410 vmexit->u.vmx.status = vmxctx->inst_fail_status; 1411 vmexit->u.vmx.inst_error = vmcs_instruction_error(); 1412 vmexit->u.vmx.exit_reason = ~0; 1413 vmexit->u.vmx.exit_qualification = ~0; 1414 1415 switch (rc) { 1416 case VMX_VMRESUME_ERROR: 1417 case VMX_VMLAUNCH_ERROR: 1418 case VMX_INVEPT_ERROR: 1419 vmexit->u.vmx.inst_type = rc; 1420 break; 1421 default: 1422 panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc); 1423 } 1424 1425 return (UNHANDLED); 1426 } 1427 1428 static int 1429 vmx_run(void *arg, int vcpu, register_t startrip, pmap_t pmap) 1430 { 1431 int rc, handled, launched; 1432 struct vmx *vmx; 1433 struct vmxctx *vmxctx; 1434 struct vmcs *vmcs; 1435 struct vm_exit *vmexit; 1436 struct vlapic *vlapic; 1437 1438 vmx = arg; 1439 vmcs = &vmx->vmcs[vcpu]; 1440 vmxctx = &vmx->ctx[vcpu]; 1441 vlapic = vm_lapic(vmx->vm, vcpu); 1442 vmexit = vm_exitinfo(vmx->vm, vcpu); 1443 launched = 0; 1444 1445 KASSERT(vmxctx->pmap == pmap, 1446 ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap)); 1447 KASSERT(vmxctx->eptp == vmx->eptp, 1448 ("eptp %p different than ctx eptp %#lx", eptp, vmxctx->eptp)); 1449 1450 VMPTRLD(vmcs); 1451 1452 /* 1453 * XXX 1454 * We do this every time because we may setup the virtual machine 1455 * from a different process than the one that actually runs it. 1456 * 1457 * If the life of a virtual machine was spent entirely in the context 1458 * of a single process we could do this once in vmcs_set_defaults(). 1459 */ 1460 vmcs_write(VMCS_HOST_CR3, rcr3()); 1461 1462 vmcs_write(VMCS_GUEST_RIP, startrip); 1463 vmx_set_pcpu_defaults(vmx, vcpu); 1464 do { 1465 /* 1466 * Interrupts are disabled from this point on until the 1467 * guest starts executing. This is done for the following 1468 * reasons: 1469 * 1470 * If an AST is asserted on this thread after the check below, 1471 * then the IPI_AST notification will not be lost, because it 1472 * will cause a VM exit due to external interrupt as soon as 1473 * the guest state is loaded. 1474 * 1475 * A posted interrupt after 'vmx_inject_interrupts()' will 1476 * not be "lost" because it will be held pending in the host 1477 * APIC because interrupts are disabled. The pending interrupt 1478 * will be recognized as soon as the guest state is loaded. 1479 * 1480 * The same reasoning applies to the IPI generated by 1481 * pmap_invalidate_ept(). 1482 */ 1483 disable_intr(); 1484 if (curthread->td_flags & (TDF_ASTPENDING | TDF_NEEDRESCHED)) { 1485 enable_intr(); 1486 handled = vmx_exit_astpending(vmx, vcpu, vmexit); 1487 break; 1488 } 1489 1490 vmx_inject_interrupts(vmx, vcpu, vlapic); 1491 vmx_run_trace(vmx, vcpu); 1492 rc = vmx_enter_guest(vmxctx, launched); 1493 enable_intr(); 1494 if (rc == VMX_GUEST_VMEXIT) { 1495 launched = 1; 1496 handled = vmx_exit_process(vmx, vcpu, vmexit); 1497 } else { 1498 handled = vmx_exit_inst_error(vmxctx, rc, vmexit); 1499 } 1500 1501 vmx_exit_trace(vmx, vcpu, vmexit->rip, 1502 vmexit->u.vmx.exit_reason, handled); 1503 } while (handled); 1504 1505 /* 1506 * If a VM exit has been handled then the exitcode must be BOGUS 1507 * If a VM exit is not handled then the exitcode must not be BOGUS 1508 */ 1509 if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) || 1510 (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) { 1511 panic("Mismatch between handled (%d) and exitcode (%d)", 1512 handled, vmexit->exitcode); 1513 } 1514 1515 if (!handled) 1516 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_USERSPACE, 1); 1517 1518 VCPU_CTR1(vmx->vm, vcpu, "returning from vmx_run: exitcode %d", 1519 vmexit->exitcode); 1520 1521 VMCLEAR(vmcs); 1522 return (0); 1523 } 1524 1525 static void 1526 vmx_vmcleanup(void *arg) 1527 { 1528 int i, error; 1529 struct vmx *vmx = arg; 1530 1531 for (i = 0; i < VM_MAXCPU; i++) 1532 vpid_free(vmx->state[i].vpid); 1533 1534 /* 1535 * XXXSMP we also need to clear the VMCS active on the other vcpus. 1536 */ 1537 error = vmclear(&vmx->vmcs[0]); 1538 if (error != 0) 1539 panic("vmx_vmcleanup: vmclear error %d on vcpu 0", error); 1540 1541 free(vmx, M_VMX); 1542 1543 return; 1544 } 1545 1546 static register_t * 1547 vmxctx_regptr(struct vmxctx *vmxctx, int reg) 1548 { 1549 1550 switch (reg) { 1551 case VM_REG_GUEST_RAX: 1552 return (&vmxctx->guest_rax); 1553 case VM_REG_GUEST_RBX: 1554 return (&vmxctx->guest_rbx); 1555 case VM_REG_GUEST_RCX: 1556 return (&vmxctx->guest_rcx); 1557 case VM_REG_GUEST_RDX: 1558 return (&vmxctx->guest_rdx); 1559 case VM_REG_GUEST_RSI: 1560 return (&vmxctx->guest_rsi); 1561 case VM_REG_GUEST_RDI: 1562 return (&vmxctx->guest_rdi); 1563 case VM_REG_GUEST_RBP: 1564 return (&vmxctx->guest_rbp); 1565 case VM_REG_GUEST_R8: 1566 return (&vmxctx->guest_r8); 1567 case VM_REG_GUEST_R9: 1568 return (&vmxctx->guest_r9); 1569 case VM_REG_GUEST_R10: 1570 return (&vmxctx->guest_r10); 1571 case VM_REG_GUEST_R11: 1572 return (&vmxctx->guest_r11); 1573 case VM_REG_GUEST_R12: 1574 return (&vmxctx->guest_r12); 1575 case VM_REG_GUEST_R13: 1576 return (&vmxctx->guest_r13); 1577 case VM_REG_GUEST_R14: 1578 return (&vmxctx->guest_r14); 1579 case VM_REG_GUEST_R15: 1580 return (&vmxctx->guest_r15); 1581 default: 1582 break; 1583 } 1584 return (NULL); 1585 } 1586 1587 static int 1588 vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval) 1589 { 1590 register_t *regp; 1591 1592 if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) { 1593 *retval = *regp; 1594 return (0); 1595 } else 1596 return (EINVAL); 1597 } 1598 1599 static int 1600 vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val) 1601 { 1602 register_t *regp; 1603 1604 if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) { 1605 *regp = val; 1606 return (0); 1607 } else 1608 return (EINVAL); 1609 } 1610 1611 static int 1612 vmx_shadow_reg(int reg) 1613 { 1614 int shreg; 1615 1616 shreg = -1; 1617 1618 switch (reg) { 1619 case VM_REG_GUEST_CR0: 1620 shreg = VMCS_CR0_SHADOW; 1621 break; 1622 case VM_REG_GUEST_CR4: 1623 shreg = VMCS_CR4_SHADOW; 1624 break; 1625 default: 1626 break; 1627 } 1628 1629 return (shreg); 1630 } 1631 1632 static int 1633 vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval) 1634 { 1635 int running, hostcpu; 1636 struct vmx *vmx = arg; 1637 1638 running = vcpu_is_running(vmx->vm, vcpu, &hostcpu); 1639 if (running && hostcpu != curcpu) 1640 panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu); 1641 1642 if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0) 1643 return (0); 1644 1645 return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval)); 1646 } 1647 1648 static int 1649 vmx_setreg(void *arg, int vcpu, int reg, uint64_t val) 1650 { 1651 int error, hostcpu, running, shadow; 1652 uint64_t ctls; 1653 struct vmx *vmx = arg; 1654 1655 running = vcpu_is_running(vmx->vm, vcpu, &hostcpu); 1656 if (running && hostcpu != curcpu) 1657 panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu); 1658 1659 if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0) 1660 return (0); 1661 1662 error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val); 1663 1664 if (error == 0) { 1665 /* 1666 * If the "load EFER" VM-entry control is 1 then the 1667 * value of EFER.LMA must be identical to "IA-32e mode guest" 1668 * bit in the VM-entry control. 1669 */ 1670 if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 && 1671 (reg == VM_REG_GUEST_EFER)) { 1672 vmcs_getreg(&vmx->vmcs[vcpu], running, 1673 VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls); 1674 if (val & EFER_LMA) 1675 ctls |= VM_ENTRY_GUEST_LMA; 1676 else 1677 ctls &= ~VM_ENTRY_GUEST_LMA; 1678 vmcs_setreg(&vmx->vmcs[vcpu], running, 1679 VMCS_IDENT(VMCS_ENTRY_CTLS), ctls); 1680 } 1681 1682 shadow = vmx_shadow_reg(reg); 1683 if (shadow > 0) { 1684 /* 1685 * Store the unmodified value in the shadow 1686 */ 1687 error = vmcs_setreg(&vmx->vmcs[vcpu], running, 1688 VMCS_IDENT(shadow), val); 1689 } 1690 } 1691 1692 return (error); 1693 } 1694 1695 static int 1696 vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc) 1697 { 1698 struct vmx *vmx = arg; 1699 1700 return (vmcs_getdesc(&vmx->vmcs[vcpu], reg, desc)); 1701 } 1702 1703 static int 1704 vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc) 1705 { 1706 struct vmx *vmx = arg; 1707 1708 return (vmcs_setdesc(&vmx->vmcs[vcpu], reg, desc)); 1709 } 1710 1711 static int 1712 vmx_inject(void *arg, int vcpu, int type, int vector, uint32_t code, 1713 int code_valid) 1714 { 1715 int error; 1716 uint64_t info; 1717 struct vmx *vmx = arg; 1718 struct vmcs *vmcs = &vmx->vmcs[vcpu]; 1719 1720 static uint32_t type_map[VM_EVENT_MAX] = { 1721 0x1, /* VM_EVENT_NONE */ 1722 0x0, /* VM_HW_INTR */ 1723 0x2, /* VM_NMI */ 1724 0x3, /* VM_HW_EXCEPTION */ 1725 0x4, /* VM_SW_INTR */ 1726 0x5, /* VM_PRIV_SW_EXCEPTION */ 1727 0x6, /* VM_SW_EXCEPTION */ 1728 }; 1729 1730 /* 1731 * If there is already an exception pending to be delivered to the 1732 * vcpu then just return. 1733 */ 1734 error = vmcs_getreg(vmcs, 0, VMCS_IDENT(VMCS_ENTRY_INTR_INFO), &info); 1735 if (error) 1736 return (error); 1737 1738 if (info & VMCS_INTERRUPTION_INFO_VALID) 1739 return (EAGAIN); 1740 1741 info = vector | (type_map[type] << 8) | (code_valid ? 1 << 11 : 0); 1742 info |= VMCS_INTERRUPTION_INFO_VALID; 1743 error = vmcs_setreg(vmcs, 0, VMCS_IDENT(VMCS_ENTRY_INTR_INFO), info); 1744 if (error != 0) 1745 return (error); 1746 1747 if (code_valid) { 1748 error = vmcs_setreg(vmcs, 0, 1749 VMCS_IDENT(VMCS_ENTRY_EXCEPTION_ERROR), 1750 code); 1751 } 1752 return (error); 1753 } 1754 1755 static int 1756 vmx_getcap(void *arg, int vcpu, int type, int *retval) 1757 { 1758 struct vmx *vmx = arg; 1759 int vcap; 1760 int ret; 1761 1762 ret = ENOENT; 1763 1764 vcap = vmx->cap[vcpu].set; 1765 1766 switch (type) { 1767 case VM_CAP_HALT_EXIT: 1768 if (cap_halt_exit) 1769 ret = 0; 1770 break; 1771 case VM_CAP_PAUSE_EXIT: 1772 if (cap_pause_exit) 1773 ret = 0; 1774 break; 1775 case VM_CAP_MTRAP_EXIT: 1776 if (cap_monitor_trap) 1777 ret = 0; 1778 break; 1779 case VM_CAP_UNRESTRICTED_GUEST: 1780 if (cap_unrestricted_guest) 1781 ret = 0; 1782 break; 1783 case VM_CAP_ENABLE_INVPCID: 1784 if (cap_invpcid) 1785 ret = 0; 1786 break; 1787 default: 1788 break; 1789 } 1790 1791 if (ret == 0) 1792 *retval = (vcap & (1 << type)) ? 1 : 0; 1793 1794 return (ret); 1795 } 1796 1797 static int 1798 vmx_setcap(void *arg, int vcpu, int type, int val) 1799 { 1800 struct vmx *vmx = arg; 1801 struct vmcs *vmcs = &vmx->vmcs[vcpu]; 1802 uint32_t baseval; 1803 uint32_t *pptr; 1804 int error; 1805 int flag; 1806 int reg; 1807 int retval; 1808 1809 retval = ENOENT; 1810 pptr = NULL; 1811 1812 switch (type) { 1813 case VM_CAP_HALT_EXIT: 1814 if (cap_halt_exit) { 1815 retval = 0; 1816 pptr = &vmx->cap[vcpu].proc_ctls; 1817 baseval = *pptr; 1818 flag = PROCBASED_HLT_EXITING; 1819 reg = VMCS_PRI_PROC_BASED_CTLS; 1820 } 1821 break; 1822 case VM_CAP_MTRAP_EXIT: 1823 if (cap_monitor_trap) { 1824 retval = 0; 1825 pptr = &vmx->cap[vcpu].proc_ctls; 1826 baseval = *pptr; 1827 flag = PROCBASED_MTF; 1828 reg = VMCS_PRI_PROC_BASED_CTLS; 1829 } 1830 break; 1831 case VM_CAP_PAUSE_EXIT: 1832 if (cap_pause_exit) { 1833 retval = 0; 1834 pptr = &vmx->cap[vcpu].proc_ctls; 1835 baseval = *pptr; 1836 flag = PROCBASED_PAUSE_EXITING; 1837 reg = VMCS_PRI_PROC_BASED_CTLS; 1838 } 1839 break; 1840 case VM_CAP_UNRESTRICTED_GUEST: 1841 if (cap_unrestricted_guest) { 1842 retval = 0; 1843 pptr = &vmx->cap[vcpu].proc_ctls2; 1844 baseval = *pptr; 1845 flag = PROCBASED2_UNRESTRICTED_GUEST; 1846 reg = VMCS_SEC_PROC_BASED_CTLS; 1847 } 1848 break; 1849 case VM_CAP_ENABLE_INVPCID: 1850 if (cap_invpcid) { 1851 retval = 0; 1852 pptr = &vmx->cap[vcpu].proc_ctls2; 1853 baseval = *pptr; 1854 flag = PROCBASED2_ENABLE_INVPCID; 1855 reg = VMCS_SEC_PROC_BASED_CTLS; 1856 } 1857 break; 1858 default: 1859 break; 1860 } 1861 1862 if (retval == 0) { 1863 if (val) { 1864 baseval |= flag; 1865 } else { 1866 baseval &= ~flag; 1867 } 1868 VMPTRLD(vmcs); 1869 error = vmwrite(reg, baseval); 1870 VMCLEAR(vmcs); 1871 1872 if (error) { 1873 retval = error; 1874 } else { 1875 /* 1876 * Update optional stored flags, and record 1877 * setting 1878 */ 1879 if (pptr != NULL) { 1880 *pptr = baseval; 1881 } 1882 1883 if (val) { 1884 vmx->cap[vcpu].set |= (1 << type); 1885 } else { 1886 vmx->cap[vcpu].set &= ~(1 << type); 1887 } 1888 } 1889 } 1890 1891 return (retval); 1892 } 1893 1894 static struct vlapic * 1895 vmx_vlapic_init(void *arg, int vcpuid) 1896 { 1897 struct vmx *vmx; 1898 struct vlapic *vlapic; 1899 1900 vmx = arg; 1901 1902 vlapic = malloc(sizeof(struct vlapic), M_VLAPIC, M_WAITOK | M_ZERO); 1903 vlapic->vm = vmx->vm; 1904 vlapic->vcpuid = vcpuid; 1905 vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid]; 1906 1907 vlapic_init(vlapic); 1908 1909 return (vlapic); 1910 } 1911 1912 static void 1913 vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic) 1914 { 1915 1916 vlapic_cleanup(vlapic); 1917 free(vlapic, M_VLAPIC); 1918 } 1919 1920 struct vmm_ops vmm_ops_intel = { 1921 vmx_init, 1922 vmx_cleanup, 1923 vmx_restore, 1924 vmx_vminit, 1925 vmx_run, 1926 vmx_vmcleanup, 1927 vmx_getreg, 1928 vmx_setreg, 1929 vmx_getdesc, 1930 vmx_setdesc, 1931 vmx_inject, 1932 vmx_getcap, 1933 vmx_setcap, 1934 ept_vmspace_alloc, 1935 ept_vmspace_free, 1936 vmx_vlapic_init, 1937 vmx_vlapic_cleanup, 1938 }; 1939