xref: /freebsd/sys/amd64/vmm/intel/vmx.c (revision 8a166cafe0965f6bd72cd3d2f5372704f05cb5e8)
1 /*-
2  * Copyright (c) 2011 NetApp, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/smp.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/pcpu.h>
38 #include <sys/proc.h>
39 
40 #include <vm/vm.h>
41 #include <vm/pmap.h>
42 
43 #include <machine/psl.h>
44 #include <machine/cpufunc.h>
45 #include <machine/md_var.h>
46 #include <machine/pmap.h>
47 #include <machine/segments.h>
48 #include <machine/specialreg.h>
49 #include <machine/vmparam.h>
50 
51 #include <x86/apicreg.h>
52 
53 #include <machine/vmm.h>
54 #include "vmm_host.h"
55 #include "vmm_lapic.h"
56 #include "vmm_msr.h"
57 #include "vmm_ktr.h"
58 #include "vmm_stat.h"
59 
60 #include "vmx_msr.h"
61 #include "ept.h"
62 #include "vmx_cpufunc.h"
63 #include "vmx.h"
64 #include "x86.h"
65 #include "vmx_controls.h"
66 
67 #define	PINBASED_CTLS_ONE_SETTING					\
68 	(PINBASED_EXTINT_EXITING	|				\
69 	 PINBASED_NMI_EXITING		|				\
70 	 PINBASED_VIRTUAL_NMI)
71 #define	PINBASED_CTLS_ZERO_SETTING	0
72 
73 #define PROCBASED_CTLS_WINDOW_SETTING					\
74 	(PROCBASED_INT_WINDOW_EXITING	|				\
75 	 PROCBASED_NMI_WINDOW_EXITING)
76 
77 #define	PROCBASED_CTLS_ONE_SETTING 					\
78 	(PROCBASED_SECONDARY_CONTROLS	|				\
79 	 PROCBASED_IO_EXITING		|				\
80 	 PROCBASED_MSR_BITMAPS		|				\
81 	 PROCBASED_CTLS_WINDOW_SETTING)
82 #define	PROCBASED_CTLS_ZERO_SETTING	\
83 	(PROCBASED_CR3_LOAD_EXITING |	\
84 	PROCBASED_CR3_STORE_EXITING |	\
85 	PROCBASED_IO_BITMAPS)
86 
87 #define	PROCBASED_CTLS2_ONE_SETTING	PROCBASED2_ENABLE_EPT
88 #define	PROCBASED_CTLS2_ZERO_SETTING	0
89 
90 #define VM_EXIT_CTLS_ONE_SETTING_NO_PAT					\
91 	(VM_EXIT_HOST_LMA			|			\
92 	VM_EXIT_SAVE_EFER			|			\
93 	VM_EXIT_LOAD_EFER)
94 
95 #define	VM_EXIT_CTLS_ONE_SETTING					\
96 	(VM_EXIT_CTLS_ONE_SETTING_NO_PAT       	|			\
97 	VM_EXIT_SAVE_PAT			|			\
98 	VM_EXIT_LOAD_PAT)
99 #define	VM_EXIT_CTLS_ZERO_SETTING	VM_EXIT_SAVE_DEBUG_CONTROLS
100 
101 #define	VM_ENTRY_CTLS_ONE_SETTING_NO_PAT	VM_ENTRY_LOAD_EFER
102 
103 #define	VM_ENTRY_CTLS_ONE_SETTING					\
104 	(VM_ENTRY_CTLS_ONE_SETTING_NO_PAT     	|			\
105 	VM_ENTRY_LOAD_PAT)
106 #define	VM_ENTRY_CTLS_ZERO_SETTING					\
107 	(VM_ENTRY_LOAD_DEBUG_CONTROLS		|			\
108 	VM_ENTRY_INTO_SMM			|			\
109 	VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
110 
111 #define	guest_msr_rw(vmx, msr) \
112 	msr_bitmap_change_access((vmx)->msr_bitmap, (msr), MSR_BITMAP_ACCESS_RW)
113 
114 #define	HANDLED		1
115 #define	UNHANDLED	0
116 
117 MALLOC_DEFINE(M_VMX, "vmx", "vmx");
118 
119 int vmxon_enabled[MAXCPU];
120 static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
121 
122 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
123 static uint32_t exit_ctls, entry_ctls;
124 
125 static uint64_t cr0_ones_mask, cr0_zeros_mask;
126 static uint64_t cr4_ones_mask, cr4_zeros_mask;
127 
128 static volatile u_int nextvpid;
129 
130 static int vmx_no_patmsr;
131 
132 /*
133  * Virtual NMI blocking conditions.
134  *
135  * Some processor implementations also require NMI to be blocked if
136  * the STI_BLOCKING bit is set. It is possible to detect this at runtime
137  * based on the (exit_reason,exit_qual) tuple being set to
138  * (EXIT_REASON_INVAL_VMCS, EXIT_QUAL_NMI_WHILE_STI_BLOCKING).
139  *
140  * We take the easy way out and also include STI_BLOCKING as one of the
141  * gating items for vNMI injection.
142  */
143 static uint64_t nmi_blocking_bits = VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING |
144 				    VMCS_INTERRUPTIBILITY_NMI_BLOCKING |
145 				    VMCS_INTERRUPTIBILITY_STI_BLOCKING;
146 
147 /*
148  * Optional capabilities
149  */
150 static int cap_halt_exit;
151 static int cap_pause_exit;
152 static int cap_unrestricted_guest;
153 static int cap_monitor_trap;
154 
155 /* statistics */
156 static VMM_STAT_DEFINE(VCPU_MIGRATIONS, "vcpu migration across host cpus");
157 static VMM_STAT_DEFINE(VMEXIT_EXTINT, "vm exits due to external interrupt");
158 static VMM_STAT_DEFINE(VMEXIT_HLT_IGNORED, "number of times hlt was ignored");
159 static VMM_STAT_DEFINE(VMEXIT_HLT, "number of times hlt was intercepted");
160 
161 #ifdef KTR
162 static const char *
163 exit_reason_to_str(int reason)
164 {
165 	static char reasonbuf[32];
166 
167 	switch (reason) {
168 	case EXIT_REASON_EXCEPTION:
169 		return "exception";
170 	case EXIT_REASON_EXT_INTR:
171 		return "extint";
172 	case EXIT_REASON_TRIPLE_FAULT:
173 		return "triplefault";
174 	case EXIT_REASON_INIT:
175 		return "init";
176 	case EXIT_REASON_SIPI:
177 		return "sipi";
178 	case EXIT_REASON_IO_SMI:
179 		return "iosmi";
180 	case EXIT_REASON_SMI:
181 		return "smi";
182 	case EXIT_REASON_INTR_WINDOW:
183 		return "intrwindow";
184 	case EXIT_REASON_NMI_WINDOW:
185 		return "nmiwindow";
186 	case EXIT_REASON_TASK_SWITCH:
187 		return "taskswitch";
188 	case EXIT_REASON_CPUID:
189 		return "cpuid";
190 	case EXIT_REASON_GETSEC:
191 		return "getsec";
192 	case EXIT_REASON_HLT:
193 		return "hlt";
194 	case EXIT_REASON_INVD:
195 		return "invd";
196 	case EXIT_REASON_INVLPG:
197 		return "invlpg";
198 	case EXIT_REASON_RDPMC:
199 		return "rdpmc";
200 	case EXIT_REASON_RDTSC:
201 		return "rdtsc";
202 	case EXIT_REASON_RSM:
203 		return "rsm";
204 	case EXIT_REASON_VMCALL:
205 		return "vmcall";
206 	case EXIT_REASON_VMCLEAR:
207 		return "vmclear";
208 	case EXIT_REASON_VMLAUNCH:
209 		return "vmlaunch";
210 	case EXIT_REASON_VMPTRLD:
211 		return "vmptrld";
212 	case EXIT_REASON_VMPTRST:
213 		return "vmptrst";
214 	case EXIT_REASON_VMREAD:
215 		return "vmread";
216 	case EXIT_REASON_VMRESUME:
217 		return "vmresume";
218 	case EXIT_REASON_VMWRITE:
219 		return "vmwrite";
220 	case EXIT_REASON_VMXOFF:
221 		return "vmxoff";
222 	case EXIT_REASON_VMXON:
223 		return "vmxon";
224 	case EXIT_REASON_CR_ACCESS:
225 		return "craccess";
226 	case EXIT_REASON_DR_ACCESS:
227 		return "draccess";
228 	case EXIT_REASON_INOUT:
229 		return "inout";
230 	case EXIT_REASON_RDMSR:
231 		return "rdmsr";
232 	case EXIT_REASON_WRMSR:
233 		return "wrmsr";
234 	case EXIT_REASON_INVAL_VMCS:
235 		return "invalvmcs";
236 	case EXIT_REASON_INVAL_MSR:
237 		return "invalmsr";
238 	case EXIT_REASON_MWAIT:
239 		return "mwait";
240 	case EXIT_REASON_MTF:
241 		return "mtf";
242 	case EXIT_REASON_MONITOR:
243 		return "monitor";
244 	case EXIT_REASON_PAUSE:
245 		return "pause";
246 	case EXIT_REASON_MCE:
247 		return "mce";
248 	case EXIT_REASON_TPR:
249 		return "tpr";
250 	case EXIT_REASON_APIC:
251 		return "apic";
252 	case EXIT_REASON_GDTR_IDTR:
253 		return "gdtridtr";
254 	case EXIT_REASON_LDTR_TR:
255 		return "ldtrtr";
256 	case EXIT_REASON_EPT_FAULT:
257 		return "eptfault";
258 	case EXIT_REASON_EPT_MISCONFIG:
259 		return "eptmisconfig";
260 	case EXIT_REASON_INVEPT:
261 		return "invept";
262 	case EXIT_REASON_RDTSCP:
263 		return "rdtscp";
264 	case EXIT_REASON_VMX_PREEMPT:
265 		return "vmxpreempt";
266 	case EXIT_REASON_INVVPID:
267 		return "invvpid";
268 	case EXIT_REASON_WBINVD:
269 		return "wbinvd";
270 	case EXIT_REASON_XSETBV:
271 		return "xsetbv";
272 	default:
273 		snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason);
274 		return (reasonbuf);
275 	}
276 }
277 
278 #ifdef SETJMP_TRACE
279 static const char *
280 vmx_setjmp_rc2str(int rc)
281 {
282 	switch (rc) {
283 	case VMX_RETURN_DIRECT:
284 		return "direct";
285 	case VMX_RETURN_LONGJMP:
286 		return "longjmp";
287 	case VMX_RETURN_VMRESUME:
288 		return "vmresume";
289 	case VMX_RETURN_VMLAUNCH:
290 		return "vmlaunch";
291 	case VMX_RETURN_AST:
292 		return "ast";
293 	default:
294 		return "unknown";
295 	}
296 }
297 
298 #define	SETJMP_TRACE(vmx, vcpu, vmxctx, regname)			  \
299 	VMM_CTR1((vmx)->vm, (vcpu), "setjmp trace " #regname " 0x%016lx", \
300 		 (vmxctx)->regname)
301 
302 static void
303 vmx_setjmp_trace(struct vmx *vmx, int vcpu, struct vmxctx *vmxctx, int rc)
304 {
305 	uint64_t host_rip, host_rsp;
306 
307 	if (vmxctx != &vmx->ctx[vcpu])
308 		panic("vmx_setjmp_trace: invalid vmxctx %p; should be %p",
309 			vmxctx, &vmx->ctx[vcpu]);
310 
311 	VMM_CTR1((vmx)->vm, (vcpu), "vmxctx = %p", vmxctx);
312 	VMM_CTR2((vmx)->vm, (vcpu), "setjmp return code %s(%d)",
313 		 vmx_setjmp_rc2str(rc), rc);
314 
315 	host_rsp = host_rip = ~0;
316 	vmread(VMCS_HOST_RIP, &host_rip);
317 	vmread(VMCS_HOST_RSP, &host_rsp);
318 	VMM_CTR2((vmx)->vm, (vcpu), "vmcs host_rip 0x%016lx, host_rsp 0x%016lx",
319 		 host_rip, host_rsp);
320 
321 	SETJMP_TRACE(vmx, vcpu, vmxctx, host_r15);
322 	SETJMP_TRACE(vmx, vcpu, vmxctx, host_r14);
323 	SETJMP_TRACE(vmx, vcpu, vmxctx, host_r13);
324 	SETJMP_TRACE(vmx, vcpu, vmxctx, host_r12);
325 	SETJMP_TRACE(vmx, vcpu, vmxctx, host_rbp);
326 	SETJMP_TRACE(vmx, vcpu, vmxctx, host_rsp);
327 	SETJMP_TRACE(vmx, vcpu, vmxctx, host_rbx);
328 	SETJMP_TRACE(vmx, vcpu, vmxctx, host_rip);
329 
330 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_rdi);
331 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_rsi);
332 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_rdx);
333 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_rcx);
334 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_r8);
335 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_r9);
336 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_rax);
337 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_rbx);
338 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_rbp);
339 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_r10);
340 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_r11);
341 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_r12);
342 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_r13);
343 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_r14);
344 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_r15);
345 	SETJMP_TRACE(vmx, vcpu, vmxctx, guest_cr2);
346 }
347 #endif
348 #else
349 static void __inline
350 vmx_setjmp_trace(struct vmx *vmx, int vcpu, struct vmxctx *vmxctx, int rc)
351 {
352 	return;
353 }
354 #endif	/* KTR */
355 
356 u_long
357 vmx_fix_cr0(u_long cr0)
358 {
359 
360 	return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
361 }
362 
363 u_long
364 vmx_fix_cr4(u_long cr4)
365 {
366 
367 	return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
368 }
369 
370 static void
371 msr_save_area_init(struct msr_entry *g_area, int *g_count)
372 {
373 	int cnt;
374 
375 	static struct msr_entry guest_msrs[] = {
376 		{ MSR_KGSBASE, 0, 0 },
377 	};
378 
379 	cnt = sizeof(guest_msrs) / sizeof(guest_msrs[0]);
380 	if (cnt > GUEST_MSR_MAX_ENTRIES)
381 		panic("guest msr save area overrun");
382 	bcopy(guest_msrs, g_area, sizeof(guest_msrs));
383 	*g_count = cnt;
384 }
385 
386 static void
387 vmx_disable(void *arg __unused)
388 {
389 	struct invvpid_desc invvpid_desc = { 0 };
390 	struct invept_desc invept_desc = { 0 };
391 
392 	if (vmxon_enabled[curcpu]) {
393 		/*
394 		 * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b.
395 		 *
396 		 * VMXON or VMXOFF are not required to invalidate any TLB
397 		 * caching structures. This prevents potential retention of
398 		 * cached information in the TLB between distinct VMX episodes.
399 		 */
400 		invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc);
401 		invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc);
402 		vmxoff();
403 	}
404 	load_cr4(rcr4() & ~CR4_VMXE);
405 }
406 
407 static int
408 vmx_cleanup(void)
409 {
410 
411 	smp_rendezvous(NULL, vmx_disable, NULL, NULL);
412 
413 	return (0);
414 }
415 
416 static void
417 vmx_enable(void *arg __unused)
418 {
419 	int error;
420 
421 	load_cr4(rcr4() | CR4_VMXE);
422 
423 	*(uint32_t *)vmxon_region[curcpu] = vmx_revision();
424 	error = vmxon(vmxon_region[curcpu]);
425 	if (error == 0)
426 		vmxon_enabled[curcpu] = 1;
427 }
428 
429 static int
430 vmx_init(void)
431 {
432 	int error;
433 	uint64_t fixed0, fixed1, feature_control;
434 	uint32_t tmp;
435 
436 	/* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */
437 	if (!(cpu_feature2 & CPUID2_VMX)) {
438 		printf("vmx_init: processor does not support VMX operation\n");
439 		return (ENXIO);
440 	}
441 
442 	/*
443 	 * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits
444 	 * are set (bits 0 and 2 respectively).
445 	 */
446 	feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
447 	if ((feature_control & 0x5) != 0x5) {
448 		printf("vmx_init: VMX operation disabled by BIOS\n");
449 		return (ENXIO);
450 	}
451 
452 	/* Check support for primary processor-based VM-execution controls */
453 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
454 			       MSR_VMX_TRUE_PROCBASED_CTLS,
455 			       PROCBASED_CTLS_ONE_SETTING,
456 			       PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
457 	if (error) {
458 		printf("vmx_init: processor does not support desired primary "
459 		       "processor-based controls\n");
460 		return (error);
461 	}
462 
463 	/* Clear the processor-based ctl bits that are set on demand */
464 	procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
465 
466 	/* Check support for secondary processor-based VM-execution controls */
467 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
468 			       MSR_VMX_PROCBASED_CTLS2,
469 			       PROCBASED_CTLS2_ONE_SETTING,
470 			       PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
471 	if (error) {
472 		printf("vmx_init: processor does not support desired secondary "
473 		       "processor-based controls\n");
474 		return (error);
475 	}
476 
477 	/* Check support for VPID */
478 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
479 			       PROCBASED2_ENABLE_VPID, 0, &tmp);
480 	if (error == 0)
481 		procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
482 
483 	/* Check support for pin-based VM-execution controls */
484 	error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
485 			       MSR_VMX_TRUE_PINBASED_CTLS,
486 			       PINBASED_CTLS_ONE_SETTING,
487 			       PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
488 	if (error) {
489 		printf("vmx_init: processor does not support desired "
490 		       "pin-based controls\n");
491 		return (error);
492 	}
493 
494 	/* Check support for VM-exit controls */
495 	error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
496 			       VM_EXIT_CTLS_ONE_SETTING,
497 			       VM_EXIT_CTLS_ZERO_SETTING,
498 			       &exit_ctls);
499 	if (error) {
500 		/* Try again without the PAT MSR bits */
501 		error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS,
502 				       MSR_VMX_TRUE_EXIT_CTLS,
503 				       VM_EXIT_CTLS_ONE_SETTING_NO_PAT,
504 				       VM_EXIT_CTLS_ZERO_SETTING,
505 				       &exit_ctls);
506 		if (error) {
507 			printf("vmx_init: processor does not support desired "
508 			       "exit controls\n");
509 			return (error);
510 		} else {
511 			if (bootverbose)
512 				printf("vmm: PAT MSR access not supported\n");
513 			guest_msr_valid(MSR_PAT);
514 			vmx_no_patmsr = 1;
515 		}
516 	}
517 
518 	/* Check support for VM-entry controls */
519 	if (!vmx_no_patmsr) {
520 		error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS,
521 				       MSR_VMX_TRUE_ENTRY_CTLS,
522 				       VM_ENTRY_CTLS_ONE_SETTING,
523 				       VM_ENTRY_CTLS_ZERO_SETTING,
524 				       &entry_ctls);
525 	} else {
526 		error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS,
527 				       MSR_VMX_TRUE_ENTRY_CTLS,
528 				       VM_ENTRY_CTLS_ONE_SETTING_NO_PAT,
529 				       VM_ENTRY_CTLS_ZERO_SETTING,
530 				       &entry_ctls);
531 	}
532 
533 	if (error) {
534 		printf("vmx_init: processor does not support desired "
535 		       "entry controls\n");
536 		       return (error);
537 	}
538 
539 	/*
540 	 * Check support for optional features by testing them
541 	 * as individual bits
542 	 */
543 	cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
544 					MSR_VMX_TRUE_PROCBASED_CTLS,
545 					PROCBASED_HLT_EXITING, 0,
546 					&tmp) == 0);
547 
548 	cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
549 					MSR_VMX_PROCBASED_CTLS,
550 					PROCBASED_MTF, 0,
551 					&tmp) == 0);
552 
553 	cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
554 					 MSR_VMX_TRUE_PROCBASED_CTLS,
555 					 PROCBASED_PAUSE_EXITING, 0,
556 					 &tmp) == 0);
557 
558 	cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
559 					MSR_VMX_PROCBASED_CTLS2,
560 					PROCBASED2_UNRESTRICTED_GUEST, 0,
561 				        &tmp) == 0);
562 
563 	/* Initialize EPT */
564 	error = ept_init();
565 	if (error) {
566 		printf("vmx_init: ept initialization failed (%d)\n", error);
567 		return (error);
568 	}
569 
570 	/*
571 	 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
572 	 */
573 	fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
574 	fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
575 	cr0_ones_mask = fixed0 & fixed1;
576 	cr0_zeros_mask = ~fixed0 & ~fixed1;
577 
578 	/*
579 	 * CR0_PE and CR0_PG can be set to zero in VMX non-root operation
580 	 * if unrestricted guest execution is allowed.
581 	 */
582 	if (cap_unrestricted_guest)
583 		cr0_ones_mask &= ~(CR0_PG | CR0_PE);
584 
585 	/*
586 	 * Do not allow the guest to set CR0_NW or CR0_CD.
587 	 */
588 	cr0_zeros_mask |= (CR0_NW | CR0_CD);
589 
590 	fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
591 	fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
592 	cr4_ones_mask = fixed0 & fixed1;
593 	cr4_zeros_mask = ~fixed0 & ~fixed1;
594 
595 	/* enable VMX operation */
596 	smp_rendezvous(NULL, vmx_enable, NULL, NULL);
597 
598 	return (0);
599 }
600 
601 /*
602  * If this processor does not support VPIDs then simply return 0.
603  *
604  * Otherwise generate the next value of VPID to use. Any value is alright
605  * as long as it is non-zero.
606  *
607  * We always execute in VMX non-root context with EPT enabled. Thus all
608  * combined mappings are tagged with the (EP4TA, VPID, PCID) tuple. This
609  * in turn means that multiple VMs can share the same VPID as long as
610  * they have distinct EPT page tables.
611  *
612  * XXX
613  * We should optimize this so that it returns VPIDs that are not in
614  * use. Then we will not unnecessarily invalidate mappings in
615  * vmx_set_pcpu_defaults() just because two or more vcpus happen to
616  * use the same 'vpid'.
617  */
618 static uint16_t
619 vmx_vpid(void)
620 {
621 	uint16_t vpid = 0;
622 
623 	if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) != 0) {
624 		do {
625 			vpid = atomic_fetchadd_int(&nextvpid, 1);
626 		} while (vpid == 0);
627 	}
628 
629 	return (vpid);
630 }
631 
632 static int
633 vmx_setup_cr_shadow(int which, struct vmcs *vmcs)
634 {
635 	int error, mask_ident, shadow_ident;
636 	uint64_t mask_value, shadow_value;
637 
638 	if (which != 0 && which != 4)
639 		panic("vmx_setup_cr_shadow: unknown cr%d", which);
640 
641 	if (which == 0) {
642 		mask_ident = VMCS_CR0_MASK;
643 		mask_value = cr0_ones_mask | cr0_zeros_mask;
644 		shadow_ident = VMCS_CR0_SHADOW;
645 		shadow_value = cr0_ones_mask;
646 	} else {
647 		mask_ident = VMCS_CR4_MASK;
648 		mask_value = cr4_ones_mask | cr4_zeros_mask;
649 		shadow_ident = VMCS_CR4_SHADOW;
650 		shadow_value = cr4_ones_mask;
651 	}
652 
653 	error = vmcs_setreg(vmcs, VMCS_IDENT(mask_ident), mask_value);
654 	if (error)
655 		return (error);
656 
657 	error = vmcs_setreg(vmcs, VMCS_IDENT(shadow_ident), shadow_value);
658 	if (error)
659 		return (error);
660 
661 	return (0);
662 }
663 #define	vmx_setup_cr0_shadow(vmcs)	vmx_setup_cr_shadow(0, (vmcs))
664 #define	vmx_setup_cr4_shadow(vmcs)	vmx_setup_cr_shadow(4, (vmcs))
665 
666 static void *
667 vmx_vminit(struct vm *vm)
668 {
669 	uint16_t vpid;
670 	int i, error, guest_msr_count;
671 	struct vmx *vmx;
672 
673 	vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO);
674 	if ((uintptr_t)vmx & PAGE_MASK) {
675 		panic("malloc of struct vmx not aligned on %d byte boundary",
676 		      PAGE_SIZE);
677 	}
678 	vmx->vm = vm;
679 
680 	/*
681 	 * Clean up EPTP-tagged guest physical and combined mappings
682 	 *
683 	 * VMX transitions are not required to invalidate any guest physical
684 	 * mappings. So, it may be possible for stale guest physical mappings
685 	 * to be present in the processor TLBs.
686 	 *
687 	 * Combined mappings for this EP4TA are also invalidated for all VPIDs.
688 	 */
689 	ept_invalidate_mappings(vtophys(vmx->pml4ept));
690 
691 	msr_bitmap_initialize(vmx->msr_bitmap);
692 
693 	/*
694 	 * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE.
695 	 * The guest FSBASE and GSBASE are saved and restored during
696 	 * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are
697 	 * always restored from the vmcs host state area on vm-exit.
698 	 *
699 	 * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in
700 	 * how they are saved/restored so can be directly accessed by the
701 	 * guest.
702 	 *
703 	 * Guest KGSBASE is saved and restored in the guest MSR save area.
704 	 * Host KGSBASE is restored before returning to userland from the pcb.
705 	 * There will be a window of time when we are executing in the host
706 	 * kernel context with a value of KGSBASE from the guest. This is ok
707 	 * because the value of KGSBASE is inconsequential in kernel context.
708 	 *
709 	 * MSR_EFER is saved and restored in the guest VMCS area on a
710 	 * VM exit and entry respectively. It is also restored from the
711 	 * host VMCS area on a VM exit.
712 	 */
713 	if (guest_msr_rw(vmx, MSR_GSBASE) ||
714 	    guest_msr_rw(vmx, MSR_FSBASE) ||
715 	    guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) ||
716 	    guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) ||
717 	    guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) ||
718 	    guest_msr_rw(vmx, MSR_KGSBASE) ||
719 	    guest_msr_rw(vmx, MSR_EFER))
720 		panic("vmx_vminit: error setting guest msr access");
721 
722 	/*
723 	 * MSR_PAT is saved and restored in the guest VMCS are on a VM exit
724 	 * and entry respectively. It is also restored from the host VMCS
725 	 * area on a VM exit. However, if running on a system with no
726 	 * MSR_PAT save/restore support, leave access disabled so accesses
727 	 * will be trapped.
728 	 */
729 	if (!vmx_no_patmsr && guest_msr_rw(vmx, MSR_PAT))
730 		panic("vmx_vminit: error setting guest pat msr access");
731 
732 	for (i = 0; i < VM_MAXCPU; i++) {
733 		vmx->vmcs[i].identifier = vmx_revision();
734 		error = vmclear(&vmx->vmcs[i]);
735 		if (error != 0) {
736 			panic("vmx_vminit: vmclear error %d on vcpu %d\n",
737 			      error, i);
738 		}
739 
740 		vpid = vmx_vpid();
741 
742 		error = vmcs_set_defaults(&vmx->vmcs[i],
743 					  (u_long)vmx_longjmp,
744 					  (u_long)&vmx->ctx[i],
745 					  vtophys(vmx->pml4ept),
746 					  pinbased_ctls,
747 					  procbased_ctls,
748 					  procbased_ctls2,
749 					  exit_ctls, entry_ctls,
750 					  vtophys(vmx->msr_bitmap),
751 					  vpid);
752 
753 		if (error != 0)
754 			panic("vmx_vminit: vmcs_set_defaults error %d", error);
755 
756 		vmx->cap[i].set = 0;
757 		vmx->cap[i].proc_ctls = procbased_ctls;
758 
759 		vmx->state[i].lastcpu = -1;
760 		vmx->state[i].vpid = vpid;
761 
762 		msr_save_area_init(vmx->guest_msrs[i], &guest_msr_count);
763 
764 		error = vmcs_set_msr_save(&vmx->vmcs[i],
765 					  vtophys(vmx->guest_msrs[i]),
766 					  guest_msr_count);
767 		if (error != 0)
768 			panic("vmcs_set_msr_save error %d", error);
769 
770 		error = vmx_setup_cr0_shadow(&vmx->vmcs[i]);
771 		if (error != 0)
772 			panic("vmx_setup_cr0_shadow %d", error);
773 
774 		error = vmx_setup_cr4_shadow(&vmx->vmcs[i]);
775 		if (error != 0)
776 			panic("vmx_setup_cr4_shadow %d", error);
777 	}
778 
779 	return (vmx);
780 }
781 
782 static int
783 vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx)
784 {
785 	int handled, func;
786 
787 	func = vmxctx->guest_rax;
788 
789 	handled = x86_emulate_cpuid(vm, vcpu,
790 				    (uint32_t*)(&vmxctx->guest_rax),
791 				    (uint32_t*)(&vmxctx->guest_rbx),
792 				    (uint32_t*)(&vmxctx->guest_rcx),
793 				    (uint32_t*)(&vmxctx->guest_rdx));
794 	return (handled);
795 }
796 
797 static __inline void
798 vmx_run_trace(struct vmx *vmx, int vcpu)
799 {
800 #ifdef KTR
801 	VMM_CTR1(vmx->vm, vcpu, "Resume execution at 0x%0lx", vmcs_guest_rip());
802 #endif
803 }
804 
805 static __inline void
806 vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason,
807 	       int handled)
808 {
809 #ifdef KTR
810 	VMM_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx",
811 		 handled ? "handled" : "unhandled",
812 		 exit_reason_to_str(exit_reason), rip);
813 #endif
814 }
815 
816 static __inline void
817 vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip)
818 {
819 #ifdef KTR
820 	VMM_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip);
821 #endif
822 }
823 
824 static int
825 vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu)
826 {
827 	int error, lastcpu;
828 	struct vmxstate *vmxstate;
829 	struct invvpid_desc invvpid_desc = { 0 };
830 
831 	vmxstate = &vmx->state[vcpu];
832 	lastcpu = vmxstate->lastcpu;
833 	vmxstate->lastcpu = curcpu;
834 
835 	if (lastcpu == curcpu) {
836 		error = 0;
837 		goto done;
838 	}
839 
840 	vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1);
841 
842 	error = vmwrite(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
843 	if (error != 0)
844 		goto done;
845 
846 	error = vmwrite(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
847 	if (error != 0)
848 		goto done;
849 
850 	error = vmwrite(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
851 	if (error != 0)
852 		goto done;
853 
854 	/*
855 	 * If we are using VPIDs then invalidate all mappings tagged with 'vpid'
856 	 *
857 	 * We do this because this vcpu was executing on a different host
858 	 * cpu when it last ran. We do not track whether it invalidated
859 	 * mappings associated with its 'vpid' during that run. So we must
860 	 * assume that the mappings associated with 'vpid' on 'curcpu' are
861 	 * stale and invalidate them.
862 	 *
863 	 * Note that we incur this penalty only when the scheduler chooses to
864 	 * move the thread associated with this vcpu between host cpus.
865 	 *
866 	 * Note also that this will invalidate mappings tagged with 'vpid'
867 	 * for "all" EP4TAs.
868 	 */
869 	if (vmxstate->vpid != 0) {
870 		invvpid_desc.vpid = vmxstate->vpid;
871 		invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
872 	}
873 done:
874 	return (error);
875 }
876 
877 static void
878 vm_exit_update_rip(struct vm_exit *vmexit)
879 {
880 	int error;
881 
882 	error = vmwrite(VMCS_GUEST_RIP, vmexit->rip + vmexit->inst_length);
883 	if (error)
884 		panic("vmx_run: error %d writing to VMCS_GUEST_RIP", error);
885 }
886 
887 /*
888  * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
889  */
890 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
891 
892 static void __inline
893 vmx_set_int_window_exiting(struct vmx *vmx, int vcpu)
894 {
895 	int error;
896 
897 	vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
898 
899 	error = vmwrite(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
900 	if (error)
901 		panic("vmx_set_int_window_exiting: vmwrite error %d", error);
902 }
903 
904 static void __inline
905 vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu)
906 {
907 	int error;
908 
909 	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
910 
911 	error = vmwrite(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
912 	if (error)
913 		panic("vmx_clear_int_window_exiting: vmwrite error %d", error);
914 }
915 
916 static void __inline
917 vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu)
918 {
919 	int error;
920 
921 	vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
922 
923 	error = vmwrite(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
924 	if (error)
925 		panic("vmx_set_nmi_window_exiting: vmwrite error %d", error);
926 }
927 
928 static void __inline
929 vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu)
930 {
931 	int error;
932 
933 	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
934 
935 	error = vmwrite(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
936 	if (error)
937 		panic("vmx_clear_nmi_window_exiting: vmwrite error %d", error);
938 }
939 
940 static int
941 vmx_inject_nmi(struct vmx *vmx, int vcpu)
942 {
943 	int error;
944 	uint64_t info, interruptibility;
945 
946 	/* Bail out if no NMI requested */
947 	if (!vm_nmi_pending(vmx->vm, vcpu))
948 		return (0);
949 
950 	error = vmread(VMCS_GUEST_INTERRUPTIBILITY, &interruptibility);
951 	if (error) {
952 		panic("vmx_inject_nmi: vmread(interruptibility) %d",
953 			error);
954 	}
955 	if (interruptibility & nmi_blocking_bits)
956 		goto nmiblocked;
957 
958 	/*
959 	 * Inject the virtual NMI. The vector must be the NMI IDT entry
960 	 * or the VMCS entry check will fail.
961 	 */
962 	info = VMCS_INTERRUPTION_INFO_NMI | VMCS_INTERRUPTION_INFO_VALID;
963 	info |= IDT_NMI;
964 
965 	error = vmwrite(VMCS_ENTRY_INTR_INFO, info);
966 	if (error)
967 		panic("vmx_inject_nmi: vmwrite(intrinfo) %d", error);
968 
969 	VMM_CTR0(vmx->vm, vcpu, "Injecting vNMI");
970 
971 	/* Clear the request */
972 	vm_nmi_clear(vmx->vm, vcpu);
973 	return (1);
974 
975 nmiblocked:
976 	/*
977 	 * Set the NMI Window Exiting execution control so we can inject
978 	 * the virtual NMI as soon as blocking condition goes away.
979 	 */
980 	vmx_set_nmi_window_exiting(vmx, vcpu);
981 
982 	VMM_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting");
983 	return (1);
984 }
985 
986 static void
987 vmx_inject_interrupts(struct vmx *vmx, int vcpu)
988 {
989 	int error, vector;
990 	uint64_t info, rflags, interruptibility;
991 
992 	const int HWINTR_BLOCKED = VMCS_INTERRUPTIBILITY_STI_BLOCKING |
993 				   VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING;
994 
995 	/*
996 	 * If there is already an interrupt pending then just return.
997 	 *
998 	 * This could happen if an interrupt was injected on a prior
999 	 * VM entry but the actual entry into guest mode was aborted
1000 	 * because of a pending AST.
1001 	 */
1002 	error = vmread(VMCS_ENTRY_INTR_INFO, &info);
1003 	if (error)
1004 		panic("vmx_inject_interrupts: vmread(intrinfo) %d", error);
1005 	if (info & VMCS_INTERRUPTION_INFO_VALID)
1006 		return;
1007 
1008 	/*
1009 	 * NMI injection has priority so deal with those first
1010 	 */
1011 	if (vmx_inject_nmi(vmx, vcpu))
1012 		return;
1013 
1014 	/* Ask the local apic for a vector to inject */
1015 	vector = lapic_pending_intr(vmx->vm, vcpu);
1016 	if (vector < 0)
1017 		return;
1018 
1019 	if (vector < 32 || vector > 255)
1020 		panic("vmx_inject_interrupts: invalid vector %d\n", vector);
1021 
1022 	/* Check RFLAGS.IF and the interruptibility state of the guest */
1023 	error = vmread(VMCS_GUEST_RFLAGS, &rflags);
1024 	if (error)
1025 		panic("vmx_inject_interrupts: vmread(rflags) %d", error);
1026 
1027 	if ((rflags & PSL_I) == 0)
1028 		goto cantinject;
1029 
1030 	error = vmread(VMCS_GUEST_INTERRUPTIBILITY, &interruptibility);
1031 	if (error) {
1032 		panic("vmx_inject_interrupts: vmread(interruptibility) %d",
1033 			error);
1034 	}
1035 	if (interruptibility & HWINTR_BLOCKED)
1036 		goto cantinject;
1037 
1038 	/* Inject the interrupt */
1039 	info = VMCS_INTERRUPTION_INFO_HW_INTR | VMCS_INTERRUPTION_INFO_VALID;
1040 	info |= vector;
1041 	error = vmwrite(VMCS_ENTRY_INTR_INFO, info);
1042 	if (error)
1043 		panic("vmx_inject_interrupts: vmwrite(intrinfo) %d", error);
1044 
1045 	/* Update the Local APIC ISR */
1046 	lapic_intr_accepted(vmx->vm, vcpu, vector);
1047 
1048 	VMM_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector);
1049 
1050 	return;
1051 
1052 cantinject:
1053 	/*
1054 	 * Set the Interrupt Window Exiting execution control so we can inject
1055 	 * the interrupt as soon as blocking condition goes away.
1056 	 */
1057 	vmx_set_int_window_exiting(vmx, vcpu);
1058 
1059 	VMM_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting");
1060 }
1061 
1062 static int
1063 vmx_emulate_cr_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1064 {
1065 	int error, cr, vmcs_guest_cr;
1066 	uint64_t regval, ones_mask, zeros_mask;
1067 	const struct vmxctx *vmxctx;
1068 
1069 	/* We only handle mov to %cr0 or %cr4 at this time */
1070 	if ((exitqual & 0xf0) != 0x00)
1071 		return (UNHANDLED);
1072 
1073 	cr = exitqual & 0xf;
1074 	if (cr != 0 && cr != 4)
1075 		return (UNHANDLED);
1076 
1077 	vmxctx = &vmx->ctx[vcpu];
1078 
1079 	/*
1080 	 * We must use vmwrite() directly here because vmcs_setreg() will
1081 	 * call vmclear(vmcs) as a side-effect which we certainly don't want.
1082 	 */
1083 	switch ((exitqual >> 8) & 0xf) {
1084 	case 0:
1085 		regval = vmxctx->guest_rax;
1086 		break;
1087 	case 1:
1088 		regval = vmxctx->guest_rcx;
1089 		break;
1090 	case 2:
1091 		regval = vmxctx->guest_rdx;
1092 		break;
1093 	case 3:
1094 		regval = vmxctx->guest_rbx;
1095 		break;
1096 	case 4:
1097 		error = vmread(VMCS_GUEST_RSP, &regval);
1098 		if (error) {
1099 			panic("vmx_emulate_cr_access: "
1100 			      "error %d reading guest rsp", error);
1101 		}
1102 		break;
1103 	case 5:
1104 		regval = vmxctx->guest_rbp;
1105 		break;
1106 	case 6:
1107 		regval = vmxctx->guest_rsi;
1108 		break;
1109 	case 7:
1110 		regval = vmxctx->guest_rdi;
1111 		break;
1112 	case 8:
1113 		regval = vmxctx->guest_r8;
1114 		break;
1115 	case 9:
1116 		regval = vmxctx->guest_r9;
1117 		break;
1118 	case 10:
1119 		regval = vmxctx->guest_r10;
1120 		break;
1121 	case 11:
1122 		regval = vmxctx->guest_r11;
1123 		break;
1124 	case 12:
1125 		regval = vmxctx->guest_r12;
1126 		break;
1127 	case 13:
1128 		regval = vmxctx->guest_r13;
1129 		break;
1130 	case 14:
1131 		regval = vmxctx->guest_r14;
1132 		break;
1133 	case 15:
1134 		regval = vmxctx->guest_r15;
1135 		break;
1136 	}
1137 
1138 	if (cr == 0) {
1139 		ones_mask = cr0_ones_mask;
1140 		zeros_mask = cr0_zeros_mask;
1141 		vmcs_guest_cr = VMCS_GUEST_CR0;
1142 	} else {
1143 		ones_mask = cr4_ones_mask;
1144 		zeros_mask = cr4_zeros_mask;
1145 		vmcs_guest_cr = VMCS_GUEST_CR4;
1146 	}
1147 	regval |= ones_mask;
1148 	regval &= ~zeros_mask;
1149 	error = vmwrite(vmcs_guest_cr, regval);
1150 	if (error) {
1151 		panic("vmx_emulate_cr_access: error %d writing cr%d",
1152 		      error, cr);
1153 	}
1154 
1155 	return (HANDLED);
1156 }
1157 
1158 static int
1159 vmx_ept_fault(struct vm *vm, int cpu,
1160 	      uint64_t gla, uint64_t gpa, uint64_t rip, int inst_length,
1161 	      uint64_t cr3, uint64_t ept_qual, struct vie *vie)
1162 {
1163 	int read, write, error;
1164 
1165 	/* EPT violation on an instruction fetch doesn't make sense here */
1166 	if (ept_qual & EPT_VIOLATION_INST_FETCH)
1167 		return (UNHANDLED);
1168 
1169 	/* EPT violation must be a read fault or a write fault */
1170 	read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
1171 	write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
1172 	if ((read | write) == 0)
1173 		return (UNHANDLED);
1174 
1175 	/*
1176 	 * The EPT violation must have been caused by accessing a
1177 	 * guest-physical address that is a translation of a guest-linear
1178 	 * address.
1179 	 */
1180 	if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
1181 	    (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
1182 		return (UNHANDLED);
1183 	}
1184 
1185 	/* Fetch, decode and emulate the faulting instruction */
1186 	if (vmm_fetch_instruction(vm, cpu, rip, inst_length, cr3, vie) != 0)
1187 		return (UNHANDLED);
1188 
1189 	if (vmm_decode_instruction(vm, cpu, gla, vie) != 0)
1190 		return (UNHANDLED);
1191 
1192 	/*
1193 	 * Check if this is a local apic access
1194 	 */
1195 	if (gpa < DEFAULT_APIC_BASE || gpa >= DEFAULT_APIC_BASE + PAGE_SIZE)
1196 		return (UNHANDLED);
1197 
1198 	error = vmm_emulate_instruction(vm, cpu, gpa, vie,
1199 					lapic_mmio_read, lapic_mmio_write, 0);
1200 
1201 	return (error ? UNHANDLED : HANDLED);
1202 }
1203 
1204 static int
1205 vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1206 {
1207 	int error, handled;
1208 	struct vmcs *vmcs;
1209 	struct vmxctx *vmxctx;
1210 	uint32_t eax, ecx, edx;
1211 	uint64_t qual, gla, gpa, cr3, intr_info;
1212 
1213 	handled = 0;
1214 	vmcs = &vmx->vmcs[vcpu];
1215 	vmxctx = &vmx->ctx[vcpu];
1216 	qual = vmexit->u.vmx.exit_qualification;
1217 	vmexit->exitcode = VM_EXITCODE_BOGUS;
1218 
1219 	switch (vmexit->u.vmx.exit_reason) {
1220 	case EXIT_REASON_CR_ACCESS:
1221 		handled = vmx_emulate_cr_access(vmx, vcpu, qual);
1222 		break;
1223 	case EXIT_REASON_RDMSR:
1224 		ecx = vmxctx->guest_rcx;
1225 		error = emulate_rdmsr(vmx->vm, vcpu, ecx);
1226 		if (error) {
1227 			vmexit->exitcode = VM_EXITCODE_RDMSR;
1228 			vmexit->u.msr.code = ecx;
1229 		} else
1230 			handled = 1;
1231 		break;
1232 	case EXIT_REASON_WRMSR:
1233 		eax = vmxctx->guest_rax;
1234 		ecx = vmxctx->guest_rcx;
1235 		edx = vmxctx->guest_rdx;
1236 		error = emulate_wrmsr(vmx->vm, vcpu, ecx,
1237 					(uint64_t)edx << 32 | eax);
1238 		if (error) {
1239 			vmexit->exitcode = VM_EXITCODE_WRMSR;
1240 			vmexit->u.msr.code = ecx;
1241 			vmexit->u.msr.wval = (uint64_t)edx << 32 | eax;
1242 		} else
1243 			handled = 1;
1244 		break;
1245 	case EXIT_REASON_HLT:
1246 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1);
1247 		/*
1248 		 * If there is an event waiting to be injected then there is
1249 		 * no need to 'hlt'.
1250 		 */
1251 		error = vmread(VMCS_ENTRY_INTR_INFO, &intr_info);
1252 		if (error)
1253 			panic("vmx_exit_process: vmread(intrinfo) %d", error);
1254 
1255 		if (intr_info & VMCS_INTERRUPTION_INFO_VALID) {
1256 			handled = 1;
1257 			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT_IGNORED, 1);
1258 		} else
1259 			vmexit->exitcode = VM_EXITCODE_HLT;
1260 		break;
1261 	case EXIT_REASON_MTF:
1262 		vmexit->exitcode = VM_EXITCODE_MTRAP;
1263 		break;
1264 	case EXIT_REASON_PAUSE:
1265 		vmexit->exitcode = VM_EXITCODE_PAUSE;
1266 		break;
1267 	case EXIT_REASON_INTR_WINDOW:
1268 		vmx_clear_int_window_exiting(vmx, vcpu);
1269 		VMM_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting");
1270 		/* FALLTHRU */
1271 	case EXIT_REASON_EXT_INTR:
1272 		/*
1273 		 * External interrupts serve only to cause VM exits and allow
1274 		 * the host interrupt handler to run.
1275 		 *
1276 		 * If this external interrupt triggers a virtual interrupt
1277 		 * to a VM, then that state will be recorded by the
1278 		 * host interrupt handler in the VM's softc. We will inject
1279 		 * this virtual interrupt during the subsequent VM enter.
1280 		 */
1281 
1282 		/*
1283 		 * This is special. We want to treat this as an 'handled'
1284 		 * VM-exit but not increment the instruction pointer.
1285 		 */
1286 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1);
1287 		return (1);
1288 	case EXIT_REASON_NMI_WINDOW:
1289 		/* Exit to allow the pending virtual NMI to be injected */
1290 		vmx_clear_nmi_window_exiting(vmx, vcpu);
1291 		VMM_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting");
1292 		return (1);
1293 	case EXIT_REASON_INOUT:
1294 		vmexit->exitcode = VM_EXITCODE_INOUT;
1295 		vmexit->u.inout.bytes = (qual & 0x7) + 1;
1296 		vmexit->u.inout.in = (qual & 0x8) ? 1 : 0;
1297 		vmexit->u.inout.string = (qual & 0x10) ? 1 : 0;
1298 		vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0;
1299 		vmexit->u.inout.port = (uint16_t)(qual >> 16);
1300 		vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax);
1301 		break;
1302 	case EXIT_REASON_CPUID:
1303 		handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx);
1304 		break;
1305 	case EXIT_REASON_EPT_FAULT:
1306 		gla = vmcs_gla();
1307 		gpa = vmcs_gpa();
1308 		cr3 = vmcs_guest_cr3();
1309 		handled = vmx_ept_fault(vmx->vm, vcpu, gla, gpa,
1310 					vmexit->rip, vmexit->inst_length,
1311 					cr3, qual, &vmexit->u.paging.vie);
1312 		if (!handled) {
1313 			vmexit->exitcode = VM_EXITCODE_PAGING;
1314 			vmexit->u.paging.gpa = gpa;
1315 		}
1316 		break;
1317 	default:
1318 		break;
1319 	}
1320 
1321 	if (handled) {
1322 		/*
1323 		 * It is possible that control is returned to userland
1324 		 * even though we were able to handle the VM exit in the
1325 		 * kernel.
1326 		 *
1327 		 * In such a case we want to make sure that the userland
1328 		 * restarts guest execution at the instruction *after*
1329 		 * the one we just processed. Therefore we update the
1330 		 * guest rip in the VMCS and in 'vmexit'.
1331 		 */
1332 		vm_exit_update_rip(vmexit);
1333 		vmexit->rip += vmexit->inst_length;
1334 		vmexit->inst_length = 0;
1335 
1336 		/*
1337 		 * Special case for spinning up an AP - exit to userspace to
1338 		 * give the controlling process a chance to intercept and
1339 		 * spin up a thread for the AP.
1340 		 */
1341 		if (vmexit->exitcode == VM_EXITCODE_SPINUP_AP)
1342 			handled = 0;
1343 	} else {
1344 		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
1345 			/*
1346 			 * If this VM exit was not claimed by anybody then
1347 			 * treat it as a generic VMX exit.
1348 			 */
1349 			vmexit->exitcode = VM_EXITCODE_VMX;
1350 			vmexit->u.vmx.error = 0;
1351 		} else {
1352 			/*
1353 			 * The exitcode and collateral have been populated.
1354 			 * The VM exit will be processed further in userland.
1355 			 */
1356 		}
1357 	}
1358 	return (handled);
1359 }
1360 
1361 static int
1362 vmx_run(void *arg, int vcpu, register_t rip)
1363 {
1364 	int error, vie, rc, handled, astpending;
1365 	uint32_t exit_reason;
1366 	struct vmx *vmx;
1367 	struct vmxctx *vmxctx;
1368 	struct vmcs *vmcs;
1369 	struct vm_exit *vmexit;
1370 
1371 	vmx = arg;
1372 	vmcs = &vmx->vmcs[vcpu];
1373 	vmxctx = &vmx->ctx[vcpu];
1374 	vmxctx->launched = 0;
1375 
1376 	astpending = 0;
1377 	vmexit = vm_exitinfo(vmx->vm, vcpu);
1378 
1379 	/*
1380 	 * XXX Can we avoid doing this every time we do a vm run?
1381 	 */
1382 	VMPTRLD(vmcs);
1383 
1384 	/*
1385 	 * XXX
1386 	 * We do this every time because we may setup the virtual machine
1387 	 * from a different process than the one that actually runs it.
1388 	 *
1389 	 * If the life of a virtual machine was spent entirely in the context
1390 	 * of a single process we could do this once in vmcs_set_defaults().
1391 	 */
1392 	if ((error = vmwrite(VMCS_HOST_CR3, rcr3())) != 0)
1393 		panic("vmx_run: error %d writing to VMCS_HOST_CR3", error);
1394 
1395 	if ((error = vmwrite(VMCS_GUEST_RIP, rip)) != 0)
1396 		panic("vmx_run: error %d writing to VMCS_GUEST_RIP", error);
1397 
1398 	if ((error = vmx_set_pcpu_defaults(vmx, vcpu)) != 0)
1399 		panic("vmx_run: error %d setting up pcpu defaults", error);
1400 
1401 	do {
1402 		lapic_timer_tick(vmx->vm, vcpu);
1403 		vmx_inject_interrupts(vmx, vcpu);
1404 		vmx_run_trace(vmx, vcpu);
1405 		rc = vmx_setjmp(vmxctx);
1406 #ifdef SETJMP_TRACE
1407 		vmx_setjmp_trace(vmx, vcpu, vmxctx, rc);
1408 #endif
1409 		switch (rc) {
1410 		case VMX_RETURN_DIRECT:
1411 			if (vmxctx->launched == 0) {
1412 				vmxctx->launched = 1;
1413 				vmx_launch(vmxctx);
1414 			} else
1415 				vmx_resume(vmxctx);
1416 			panic("vmx_launch/resume should not return");
1417 			break;
1418 		case VMX_RETURN_LONGJMP:
1419 			break;			/* vm exit */
1420 		case VMX_RETURN_AST:
1421 			astpending = 1;
1422 			break;
1423 		case VMX_RETURN_VMRESUME:
1424 			vie = vmcs_instruction_error();
1425 			if (vmxctx->launch_error == VM_FAIL_INVALID ||
1426 			    vie != VMRESUME_WITH_NON_LAUNCHED_VMCS) {
1427 				printf("vmresume error %d vmcs inst error %d\n",
1428 					vmxctx->launch_error, vie);
1429 				goto err_exit;
1430 			}
1431 			vmx_launch(vmxctx);	/* try to launch the guest */
1432 			panic("vmx_launch should not return");
1433 			break;
1434 		case VMX_RETURN_VMLAUNCH:
1435 			vie = vmcs_instruction_error();
1436 #if 1
1437 			printf("vmlaunch error %d vmcs inst error %d\n",
1438 				vmxctx->launch_error, vie);
1439 #endif
1440 			goto err_exit;
1441 		default:
1442 			panic("vmx_setjmp returned %d", rc);
1443 		}
1444 
1445 		/* enable interrupts */
1446 		enable_intr();
1447 
1448 		/* collect some basic information for VM exit processing */
1449 		vmexit->rip = rip = vmcs_guest_rip();
1450 		vmexit->inst_length = vmexit_instruction_length();
1451 		vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
1452 		vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
1453 
1454 		if (astpending) {
1455 			handled = 1;
1456 			vmexit->inst_length = 0;
1457 			vmexit->exitcode = VM_EXITCODE_BOGUS;
1458 			vmx_astpending_trace(vmx, vcpu, rip);
1459 			break;
1460 		}
1461 
1462 		handled = vmx_exit_process(vmx, vcpu, vmexit);
1463 		vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled);
1464 
1465 	} while (handled);
1466 
1467 	/*
1468 	 * If a VM exit has been handled then the exitcode must be BOGUS
1469 	 * If a VM exit is not handled then the exitcode must not be BOGUS
1470 	 */
1471 	if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) ||
1472 	    (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) {
1473 		panic("Mismatch between handled (%d) and exitcode (%d)",
1474 		      handled, vmexit->exitcode);
1475 	}
1476 
1477 	VMM_CTR1(vmx->vm, vcpu, "goto userland: exitcode %d",vmexit->exitcode);
1478 
1479 	/*
1480 	 * XXX
1481 	 * We need to do this to ensure that any VMCS state cached by the
1482 	 * processor is flushed to memory. We need to do this in case the
1483 	 * VM moves to a different cpu the next time it runs.
1484 	 *
1485 	 * Can we avoid doing this?
1486 	 */
1487 	VMCLEAR(vmcs);
1488 	return (0);
1489 
1490 err_exit:
1491 	vmexit->exitcode = VM_EXITCODE_VMX;
1492 	vmexit->u.vmx.exit_reason = (uint32_t)-1;
1493 	vmexit->u.vmx.exit_qualification = (uint32_t)-1;
1494 	vmexit->u.vmx.error = vie;
1495 	VMCLEAR(vmcs);
1496 	return (ENOEXEC);
1497 }
1498 
1499 static void
1500 vmx_vmcleanup(void *arg)
1501 {
1502 	int error;
1503 	struct vmx *vmx = arg;
1504 
1505 	/*
1506 	 * XXXSMP we also need to clear the VMCS active on the other vcpus.
1507 	 */
1508 	error = vmclear(&vmx->vmcs[0]);
1509 	if (error != 0)
1510 		panic("vmx_vmcleanup: vmclear error %d on vcpu 0", error);
1511 
1512 	ept_vmcleanup(vmx);
1513 	free(vmx, M_VMX);
1514 
1515 	return;
1516 }
1517 
1518 static register_t *
1519 vmxctx_regptr(struct vmxctx *vmxctx, int reg)
1520 {
1521 
1522 	switch (reg) {
1523 	case VM_REG_GUEST_RAX:
1524 		return (&vmxctx->guest_rax);
1525 	case VM_REG_GUEST_RBX:
1526 		return (&vmxctx->guest_rbx);
1527 	case VM_REG_GUEST_RCX:
1528 		return (&vmxctx->guest_rcx);
1529 	case VM_REG_GUEST_RDX:
1530 		return (&vmxctx->guest_rdx);
1531 	case VM_REG_GUEST_RSI:
1532 		return (&vmxctx->guest_rsi);
1533 	case VM_REG_GUEST_RDI:
1534 		return (&vmxctx->guest_rdi);
1535 	case VM_REG_GUEST_RBP:
1536 		return (&vmxctx->guest_rbp);
1537 	case VM_REG_GUEST_R8:
1538 		return (&vmxctx->guest_r8);
1539 	case VM_REG_GUEST_R9:
1540 		return (&vmxctx->guest_r9);
1541 	case VM_REG_GUEST_R10:
1542 		return (&vmxctx->guest_r10);
1543 	case VM_REG_GUEST_R11:
1544 		return (&vmxctx->guest_r11);
1545 	case VM_REG_GUEST_R12:
1546 		return (&vmxctx->guest_r12);
1547 	case VM_REG_GUEST_R13:
1548 		return (&vmxctx->guest_r13);
1549 	case VM_REG_GUEST_R14:
1550 		return (&vmxctx->guest_r14);
1551 	case VM_REG_GUEST_R15:
1552 		return (&vmxctx->guest_r15);
1553 	default:
1554 		break;
1555 	}
1556 	return (NULL);
1557 }
1558 
1559 static int
1560 vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval)
1561 {
1562 	register_t *regp;
1563 
1564 	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
1565 		*retval = *regp;
1566 		return (0);
1567 	} else
1568 		return (EINVAL);
1569 }
1570 
1571 static int
1572 vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val)
1573 {
1574 	register_t *regp;
1575 
1576 	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
1577 		*regp = val;
1578 		return (0);
1579 	} else
1580 		return (EINVAL);
1581 }
1582 
1583 static int
1584 vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval)
1585 {
1586 	struct vmx *vmx = arg;
1587 
1588 	if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0)
1589 		return (0);
1590 
1591 	/*
1592 	 * If the vcpu is running then don't mess with the VMCS.
1593 	 *
1594 	 * vmcs_getreg will VMCLEAR the vmcs when it is done which will cause
1595 	 * the subsequent vmlaunch/vmresume to fail.
1596 	 */
1597 	if (vcpu_is_running(vmx->vm, vcpu))
1598 		panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu);
1599 
1600 	return (vmcs_getreg(&vmx->vmcs[vcpu], reg, retval));
1601 }
1602 
1603 static int
1604 vmx_setreg(void *arg, int vcpu, int reg, uint64_t val)
1605 {
1606 	int error;
1607 	uint64_t ctls;
1608 	struct vmx *vmx = arg;
1609 
1610 	/*
1611 	 * XXX Allow caller to set contents of the guest registers saved in
1612 	 * the 'vmxctx' even though the vcpu might be running. We need this
1613 	 * specifically to support the rdmsr emulation that will set the
1614 	 * %eax and %edx registers during vm exit processing.
1615 	 */
1616 	if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0)
1617 		return (0);
1618 
1619 	/*
1620 	 * If the vcpu is running then don't mess with the VMCS.
1621 	 *
1622 	 * vmcs_setreg will VMCLEAR the vmcs when it is done which will cause
1623 	 * the subsequent vmlaunch/vmresume to fail.
1624 	 */
1625 	if (vcpu_is_running(vmx->vm, vcpu))
1626 		panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu);
1627 
1628 	error = vmcs_setreg(&vmx->vmcs[vcpu], reg, val);
1629 
1630 	if (error == 0) {
1631 		/*
1632 		 * If the "load EFER" VM-entry control is 1 then the
1633 		 * value of EFER.LMA must be identical to "IA-32e mode guest"
1634 		 * bit in the VM-entry control.
1635 		 */
1636 		if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 &&
1637 		    (reg == VM_REG_GUEST_EFER)) {
1638 			vmcs_getreg(&vmx->vmcs[vcpu],
1639 				    VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls);
1640 			if (val & EFER_LMA)
1641 				ctls |= VM_ENTRY_GUEST_LMA;
1642 			else
1643 				ctls &= ~VM_ENTRY_GUEST_LMA;
1644 			vmcs_setreg(&vmx->vmcs[vcpu],
1645 				    VMCS_IDENT(VMCS_ENTRY_CTLS), ctls);
1646 		}
1647 	}
1648 
1649 	return (error);
1650 }
1651 
1652 static int
1653 vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
1654 {
1655 	struct vmx *vmx = arg;
1656 
1657 	return (vmcs_getdesc(&vmx->vmcs[vcpu], reg, desc));
1658 }
1659 
1660 static int
1661 vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
1662 {
1663 	struct vmx *vmx = arg;
1664 
1665 	return (vmcs_setdesc(&vmx->vmcs[vcpu], reg, desc));
1666 }
1667 
1668 static int
1669 vmx_inject(void *arg, int vcpu, int type, int vector, uint32_t code,
1670 	   int code_valid)
1671 {
1672 	int error;
1673 	uint64_t info;
1674 	struct vmx *vmx = arg;
1675 	struct vmcs *vmcs = &vmx->vmcs[vcpu];
1676 
1677 	static uint32_t type_map[VM_EVENT_MAX] = {
1678 		0x1,		/* VM_EVENT_NONE */
1679 		0x0,		/* VM_HW_INTR */
1680 		0x2,		/* VM_NMI */
1681 		0x3,		/* VM_HW_EXCEPTION */
1682 		0x4,		/* VM_SW_INTR */
1683 		0x5,		/* VM_PRIV_SW_EXCEPTION */
1684 		0x6,		/* VM_SW_EXCEPTION */
1685 	};
1686 
1687 	/*
1688 	 * If there is already an exception pending to be delivered to the
1689 	 * vcpu then just return.
1690 	 */
1691 	error = vmcs_getreg(vmcs, VMCS_IDENT(VMCS_ENTRY_INTR_INFO), &info);
1692 	if (error)
1693 		return (error);
1694 
1695 	if (info & VMCS_INTERRUPTION_INFO_VALID)
1696 		return (EAGAIN);
1697 
1698 	info = vector | (type_map[type] << 8) | (code_valid ? 1 << 11 : 0);
1699 	info |= VMCS_INTERRUPTION_INFO_VALID;
1700 	error = vmcs_setreg(vmcs, VMCS_IDENT(VMCS_ENTRY_INTR_INFO), info);
1701 	if (error != 0)
1702 		return (error);
1703 
1704 	if (code_valid) {
1705 		error = vmcs_setreg(vmcs,
1706 				    VMCS_IDENT(VMCS_ENTRY_EXCEPTION_ERROR),
1707 				    code);
1708 	}
1709 	return (error);
1710 }
1711 
1712 static int
1713 vmx_getcap(void *arg, int vcpu, int type, int *retval)
1714 {
1715 	struct vmx *vmx = arg;
1716 	int vcap;
1717 	int ret;
1718 
1719 	ret = ENOENT;
1720 
1721 	vcap = vmx->cap[vcpu].set;
1722 
1723 	switch (type) {
1724 	case VM_CAP_HALT_EXIT:
1725 		if (cap_halt_exit)
1726 			ret = 0;
1727 		break;
1728 	case VM_CAP_PAUSE_EXIT:
1729 		if (cap_pause_exit)
1730 			ret = 0;
1731 		break;
1732 	case VM_CAP_MTRAP_EXIT:
1733 		if (cap_monitor_trap)
1734 			ret = 0;
1735 		break;
1736 	case VM_CAP_UNRESTRICTED_GUEST:
1737 		if (cap_unrestricted_guest)
1738 			ret = 0;
1739 		break;
1740 	default:
1741 		break;
1742 	}
1743 
1744 	if (ret == 0)
1745 		*retval = (vcap & (1 << type)) ? 1 : 0;
1746 
1747 	return (ret);
1748 }
1749 
1750 static int
1751 vmx_setcap(void *arg, int vcpu, int type, int val)
1752 {
1753 	struct vmx *vmx = arg;
1754 	struct vmcs *vmcs = &vmx->vmcs[vcpu];
1755 	uint32_t baseval;
1756 	uint32_t *pptr;
1757 	int error;
1758 	int flag;
1759 	int reg;
1760 	int retval;
1761 
1762 	retval = ENOENT;
1763 	pptr = NULL;
1764 
1765 	switch (type) {
1766 	case VM_CAP_HALT_EXIT:
1767 		if (cap_halt_exit) {
1768 			retval = 0;
1769 			pptr = &vmx->cap[vcpu].proc_ctls;
1770 			baseval = *pptr;
1771 			flag = PROCBASED_HLT_EXITING;
1772 			reg = VMCS_PRI_PROC_BASED_CTLS;
1773 		}
1774 		break;
1775 	case VM_CAP_MTRAP_EXIT:
1776 		if (cap_monitor_trap) {
1777 			retval = 0;
1778 			pptr = &vmx->cap[vcpu].proc_ctls;
1779 			baseval = *pptr;
1780 			flag = PROCBASED_MTF;
1781 			reg = VMCS_PRI_PROC_BASED_CTLS;
1782 		}
1783 		break;
1784 	case VM_CAP_PAUSE_EXIT:
1785 		if (cap_pause_exit) {
1786 			retval = 0;
1787 			pptr = &vmx->cap[vcpu].proc_ctls;
1788 			baseval = *pptr;
1789 			flag = PROCBASED_PAUSE_EXITING;
1790 			reg = VMCS_PRI_PROC_BASED_CTLS;
1791 		}
1792 		break;
1793 	case VM_CAP_UNRESTRICTED_GUEST:
1794 		if (cap_unrestricted_guest) {
1795 			retval = 0;
1796 			baseval = procbased_ctls2;
1797 			flag = PROCBASED2_UNRESTRICTED_GUEST;
1798 			reg = VMCS_SEC_PROC_BASED_CTLS;
1799 		}
1800 		break;
1801 	default:
1802 		break;
1803 	}
1804 
1805 	if (retval == 0) {
1806 		if (val) {
1807 			baseval |= flag;
1808 		} else {
1809 			baseval &= ~flag;
1810 		}
1811 		VMPTRLD(vmcs);
1812 		error = vmwrite(reg, baseval);
1813 		VMCLEAR(vmcs);
1814 
1815 		if (error) {
1816 			retval = error;
1817 		} else {
1818 			/*
1819 			 * Update optional stored flags, and record
1820 			 * setting
1821 			 */
1822 			if (pptr != NULL) {
1823 				*pptr = baseval;
1824 			}
1825 
1826 			if (val) {
1827 				vmx->cap[vcpu].set |= (1 << type);
1828 			} else {
1829 				vmx->cap[vcpu].set &= ~(1 << type);
1830 			}
1831 		}
1832 	}
1833 
1834         return (retval);
1835 }
1836 
1837 struct vmm_ops vmm_ops_intel = {
1838 	vmx_init,
1839 	vmx_cleanup,
1840 	vmx_vminit,
1841 	vmx_run,
1842 	vmx_vmcleanup,
1843 	ept_vmmmap_set,
1844 	ept_vmmmap_get,
1845 	vmx_getreg,
1846 	vmx_setreg,
1847 	vmx_getdesc,
1848 	vmx_setdesc,
1849 	vmx_inject,
1850 	vmx_getcap,
1851 	vmx_setcap
1852 };
1853