xref: /freebsd/sys/amd64/vmm/intel/vmx.c (revision 8876613dc50029e88a84fd595d4a1f3c52c92350)
1 /*-
2  * Copyright (c) 2011 NetApp, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/smp.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/pcpu.h>
38 #include <sys/proc.h>
39 #include <sys/sysctl.h>
40 
41 #include <vm/vm.h>
42 #include <vm/pmap.h>
43 
44 #include <machine/psl.h>
45 #include <machine/cpufunc.h>
46 #include <machine/md_var.h>
47 #include <machine/segments.h>
48 #include <machine/smp.h>
49 #include <machine/specialreg.h>
50 #include <machine/vmparam.h>
51 
52 #include <machine/vmm.h>
53 #include <machine/vmm_dev.h>
54 #include "vmm_host.h"
55 #include "vmm_ipi.h"
56 #include "vmm_msr.h"
57 #include "vmm_ktr.h"
58 #include "vmm_stat.h"
59 #include "vlapic.h"
60 #include "vlapic_priv.h"
61 
62 #include "vmx_msr.h"
63 #include "ept.h"
64 #include "vmx_cpufunc.h"
65 #include "vmx.h"
66 #include "x86.h"
67 #include "vmx_controls.h"
68 
69 #define	PINBASED_CTLS_ONE_SETTING					\
70 	(PINBASED_EXTINT_EXITING	|				\
71 	 PINBASED_NMI_EXITING		|				\
72 	 PINBASED_VIRTUAL_NMI)
73 #define	PINBASED_CTLS_ZERO_SETTING	0
74 
75 #define PROCBASED_CTLS_WINDOW_SETTING					\
76 	(PROCBASED_INT_WINDOW_EXITING	|				\
77 	 PROCBASED_NMI_WINDOW_EXITING)
78 
79 #define	PROCBASED_CTLS_ONE_SETTING 					\
80 	(PROCBASED_SECONDARY_CONTROLS	|				\
81 	 PROCBASED_IO_EXITING		|				\
82 	 PROCBASED_MSR_BITMAPS		|				\
83 	 PROCBASED_CTLS_WINDOW_SETTING)
84 #define	PROCBASED_CTLS_ZERO_SETTING	\
85 	(PROCBASED_CR3_LOAD_EXITING |	\
86 	PROCBASED_CR3_STORE_EXITING |	\
87 	PROCBASED_IO_BITMAPS)
88 
89 #define	PROCBASED_CTLS2_ONE_SETTING	PROCBASED2_ENABLE_EPT
90 #define	PROCBASED_CTLS2_ZERO_SETTING	0
91 
92 #define VM_EXIT_CTLS_ONE_SETTING_NO_PAT					\
93 	(VM_EXIT_HOST_LMA			|			\
94 	VM_EXIT_SAVE_EFER			|			\
95 	VM_EXIT_LOAD_EFER)
96 
97 #define	VM_EXIT_CTLS_ONE_SETTING					\
98 	(VM_EXIT_CTLS_ONE_SETTING_NO_PAT       	|			\
99 	VM_EXIT_ACKNOWLEDGE_INTERRUPT		|			\
100 	VM_EXIT_SAVE_PAT			|			\
101 	VM_EXIT_LOAD_PAT)
102 #define	VM_EXIT_CTLS_ZERO_SETTING	VM_EXIT_SAVE_DEBUG_CONTROLS
103 
104 #define	VM_ENTRY_CTLS_ONE_SETTING_NO_PAT	VM_ENTRY_LOAD_EFER
105 
106 #define	VM_ENTRY_CTLS_ONE_SETTING					\
107 	(VM_ENTRY_CTLS_ONE_SETTING_NO_PAT     	|			\
108 	VM_ENTRY_LOAD_PAT)
109 #define	VM_ENTRY_CTLS_ZERO_SETTING					\
110 	(VM_ENTRY_LOAD_DEBUG_CONTROLS		|			\
111 	VM_ENTRY_INTO_SMM			|			\
112 	VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
113 
114 #define	guest_msr_rw(vmx, msr) \
115 	msr_bitmap_change_access((vmx)->msr_bitmap, (msr), MSR_BITMAP_ACCESS_RW)
116 
117 #define	guest_msr_ro(vmx, msr) \
118     msr_bitmap_change_access((vmx)->msr_bitmap, (msr), MSR_BITMAP_ACCESS_READ)
119 
120 #define	HANDLED		1
121 #define	UNHANDLED	0
122 
123 static MALLOC_DEFINE(M_VMX, "vmx", "vmx");
124 static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic");
125 
126 SYSCTL_DECL(_hw_vmm);
127 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW, NULL, NULL);
128 
129 int vmxon_enabled[MAXCPU];
130 static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
131 
132 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
133 static uint32_t exit_ctls, entry_ctls;
134 
135 static uint64_t cr0_ones_mask, cr0_zeros_mask;
136 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD,
137 	     &cr0_ones_mask, 0, NULL);
138 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD,
139 	     &cr0_zeros_mask, 0, NULL);
140 
141 static uint64_t cr4_ones_mask, cr4_zeros_mask;
142 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD,
143 	     &cr4_ones_mask, 0, NULL);
144 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD,
145 	     &cr4_zeros_mask, 0, NULL);
146 
147 static int vmx_no_patmsr;
148 
149 static int vmx_initialized;
150 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD,
151 	   &vmx_initialized, 0, "Intel VMX initialized");
152 
153 /*
154  * Optional capabilities
155  */
156 static int cap_halt_exit;
157 static int cap_pause_exit;
158 static int cap_unrestricted_guest;
159 static int cap_monitor_trap;
160 static int cap_invpcid;
161 
162 static int virtual_interrupt_delivery;
163 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD,
164     &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support");
165 
166 static int posted_interrupts;
167 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupts, CTLFLAG_RD,
168     &posted_interrupts, 0, "APICv posted interrupt support");
169 
170 static int pirvec;
171 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD,
172     &pirvec, 0, "APICv posted interrupt vector");
173 
174 static struct unrhdr *vpid_unr;
175 static u_int vpid_alloc_failed;
176 SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD,
177 	    &vpid_alloc_failed, 0, NULL);
178 
179 /*
180  * Use the last page below 4GB as the APIC access address. This address is
181  * occupied by the boot firmware so it is guaranteed that it will not conflict
182  * with a page in system memory.
183  */
184 #define	APIC_ACCESS_ADDRESS	0xFFFFF000
185 
186 static void vmx_inject_pir(struct vlapic *vlapic);
187 
188 #ifdef KTR
189 static const char *
190 exit_reason_to_str(int reason)
191 {
192 	static char reasonbuf[32];
193 
194 	switch (reason) {
195 	case EXIT_REASON_EXCEPTION:
196 		return "exception";
197 	case EXIT_REASON_EXT_INTR:
198 		return "extint";
199 	case EXIT_REASON_TRIPLE_FAULT:
200 		return "triplefault";
201 	case EXIT_REASON_INIT:
202 		return "init";
203 	case EXIT_REASON_SIPI:
204 		return "sipi";
205 	case EXIT_REASON_IO_SMI:
206 		return "iosmi";
207 	case EXIT_REASON_SMI:
208 		return "smi";
209 	case EXIT_REASON_INTR_WINDOW:
210 		return "intrwindow";
211 	case EXIT_REASON_NMI_WINDOW:
212 		return "nmiwindow";
213 	case EXIT_REASON_TASK_SWITCH:
214 		return "taskswitch";
215 	case EXIT_REASON_CPUID:
216 		return "cpuid";
217 	case EXIT_REASON_GETSEC:
218 		return "getsec";
219 	case EXIT_REASON_HLT:
220 		return "hlt";
221 	case EXIT_REASON_INVD:
222 		return "invd";
223 	case EXIT_REASON_INVLPG:
224 		return "invlpg";
225 	case EXIT_REASON_RDPMC:
226 		return "rdpmc";
227 	case EXIT_REASON_RDTSC:
228 		return "rdtsc";
229 	case EXIT_REASON_RSM:
230 		return "rsm";
231 	case EXIT_REASON_VMCALL:
232 		return "vmcall";
233 	case EXIT_REASON_VMCLEAR:
234 		return "vmclear";
235 	case EXIT_REASON_VMLAUNCH:
236 		return "vmlaunch";
237 	case EXIT_REASON_VMPTRLD:
238 		return "vmptrld";
239 	case EXIT_REASON_VMPTRST:
240 		return "vmptrst";
241 	case EXIT_REASON_VMREAD:
242 		return "vmread";
243 	case EXIT_REASON_VMRESUME:
244 		return "vmresume";
245 	case EXIT_REASON_VMWRITE:
246 		return "vmwrite";
247 	case EXIT_REASON_VMXOFF:
248 		return "vmxoff";
249 	case EXIT_REASON_VMXON:
250 		return "vmxon";
251 	case EXIT_REASON_CR_ACCESS:
252 		return "craccess";
253 	case EXIT_REASON_DR_ACCESS:
254 		return "draccess";
255 	case EXIT_REASON_INOUT:
256 		return "inout";
257 	case EXIT_REASON_RDMSR:
258 		return "rdmsr";
259 	case EXIT_REASON_WRMSR:
260 		return "wrmsr";
261 	case EXIT_REASON_INVAL_VMCS:
262 		return "invalvmcs";
263 	case EXIT_REASON_INVAL_MSR:
264 		return "invalmsr";
265 	case EXIT_REASON_MWAIT:
266 		return "mwait";
267 	case EXIT_REASON_MTF:
268 		return "mtf";
269 	case EXIT_REASON_MONITOR:
270 		return "monitor";
271 	case EXIT_REASON_PAUSE:
272 		return "pause";
273 	case EXIT_REASON_MCE:
274 		return "mce";
275 	case EXIT_REASON_TPR:
276 		return "tpr";
277 	case EXIT_REASON_APIC_ACCESS:
278 		return "apic-access";
279 	case EXIT_REASON_GDTR_IDTR:
280 		return "gdtridtr";
281 	case EXIT_REASON_LDTR_TR:
282 		return "ldtrtr";
283 	case EXIT_REASON_EPT_FAULT:
284 		return "eptfault";
285 	case EXIT_REASON_EPT_MISCONFIG:
286 		return "eptmisconfig";
287 	case EXIT_REASON_INVEPT:
288 		return "invept";
289 	case EXIT_REASON_RDTSCP:
290 		return "rdtscp";
291 	case EXIT_REASON_VMX_PREEMPT:
292 		return "vmxpreempt";
293 	case EXIT_REASON_INVVPID:
294 		return "invvpid";
295 	case EXIT_REASON_WBINVD:
296 		return "wbinvd";
297 	case EXIT_REASON_XSETBV:
298 		return "xsetbv";
299 	case EXIT_REASON_APIC_WRITE:
300 		return "apic-write";
301 	default:
302 		snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason);
303 		return (reasonbuf);
304 	}
305 }
306 #endif	/* KTR */
307 
308 static int
309 vmx_allow_x2apic_msrs(struct vmx *vmx)
310 {
311 	int i, error;
312 
313 	error = 0;
314 
315 	/*
316 	 * Allow readonly access to the following x2APIC MSRs from the guest.
317 	 */
318 	error += guest_msr_ro(vmx, MSR_APIC_ID);
319 	error += guest_msr_ro(vmx, MSR_APIC_VERSION);
320 	error += guest_msr_ro(vmx, MSR_APIC_LDR);
321 	error += guest_msr_ro(vmx, MSR_APIC_SVR);
322 
323 	for (i = 0; i < 8; i++)
324 		error += guest_msr_ro(vmx, MSR_APIC_ISR0 + i);
325 
326 	for (i = 0; i < 8; i++)
327 		error += guest_msr_ro(vmx, MSR_APIC_TMR0 + i);
328 
329 	for (i = 0; i < 8; i++)
330 		error += guest_msr_ro(vmx, MSR_APIC_IRR0 + i);
331 
332 	error += guest_msr_ro(vmx, MSR_APIC_ESR);
333 	error += guest_msr_ro(vmx, MSR_APIC_LVT_TIMER);
334 	error += guest_msr_ro(vmx, MSR_APIC_LVT_THERMAL);
335 	error += guest_msr_ro(vmx, MSR_APIC_LVT_PCINT);
336 	error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT0);
337 	error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT1);
338 	error += guest_msr_ro(vmx, MSR_APIC_LVT_ERROR);
339 	error += guest_msr_ro(vmx, MSR_APIC_ICR_TIMER);
340 	error += guest_msr_ro(vmx, MSR_APIC_DCR_TIMER);
341 	error += guest_msr_ro(vmx, MSR_APIC_ICR);
342 
343 	/*
344 	 * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest.
345 	 *
346 	 * These registers get special treatment described in the section
347 	 * "Virtualizing MSR-Based APIC Accesses".
348 	 */
349 	error += guest_msr_rw(vmx, MSR_APIC_TPR);
350 	error += guest_msr_rw(vmx, MSR_APIC_EOI);
351 	error += guest_msr_rw(vmx, MSR_APIC_SELF_IPI);
352 
353 	return (error);
354 }
355 
356 u_long
357 vmx_fix_cr0(u_long cr0)
358 {
359 
360 	return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
361 }
362 
363 u_long
364 vmx_fix_cr4(u_long cr4)
365 {
366 
367 	return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
368 }
369 
370 static void
371 vpid_free(int vpid)
372 {
373 	if (vpid < 0 || vpid > 0xffff)
374 		panic("vpid_free: invalid vpid %d", vpid);
375 
376 	/*
377 	 * VPIDs [0,VM_MAXCPU] are special and are not allocated from
378 	 * the unit number allocator.
379 	 */
380 
381 	if (vpid > VM_MAXCPU)
382 		free_unr(vpid_unr, vpid);
383 }
384 
385 static void
386 vpid_alloc(uint16_t *vpid, int num)
387 {
388 	int i, x;
389 
390 	if (num <= 0 || num > VM_MAXCPU)
391 		panic("invalid number of vpids requested: %d", num);
392 
393 	/*
394 	 * If the "enable vpid" execution control is not enabled then the
395 	 * VPID is required to be 0 for all vcpus.
396 	 */
397 	if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) {
398 		for (i = 0; i < num; i++)
399 			vpid[i] = 0;
400 		return;
401 	}
402 
403 	/*
404 	 * Allocate a unique VPID for each vcpu from the unit number allocator.
405 	 */
406 	for (i = 0; i < num; i++) {
407 		x = alloc_unr(vpid_unr);
408 		if (x == -1)
409 			break;
410 		else
411 			vpid[i] = x;
412 	}
413 
414 	if (i < num) {
415 		atomic_add_int(&vpid_alloc_failed, 1);
416 
417 		/*
418 		 * If the unit number allocator does not have enough unique
419 		 * VPIDs then we need to allocate from the [1,VM_MAXCPU] range.
420 		 *
421 		 * These VPIDs are not be unique across VMs but this does not
422 		 * affect correctness because the combined mappings are also
423 		 * tagged with the EP4TA which is unique for each VM.
424 		 *
425 		 * It is still sub-optimal because the invvpid will invalidate
426 		 * combined mappings for a particular VPID across all EP4TAs.
427 		 */
428 		while (i-- > 0)
429 			vpid_free(vpid[i]);
430 
431 		for (i = 0; i < num; i++)
432 			vpid[i] = i + 1;
433 	}
434 }
435 
436 static void
437 vpid_init(void)
438 {
439 	/*
440 	 * VPID 0 is required when the "enable VPID" execution control is
441 	 * disabled.
442 	 *
443 	 * VPIDs [1,VM_MAXCPU] are used as the "overflow namespace" when the
444 	 * unit number allocator does not have sufficient unique VPIDs to
445 	 * satisfy the allocation.
446 	 *
447 	 * The remaining VPIDs are managed by the unit number allocator.
448 	 */
449 	vpid_unr = new_unrhdr(VM_MAXCPU + 1, 0xffff, NULL);
450 }
451 
452 static void
453 msr_save_area_init(struct msr_entry *g_area, int *g_count)
454 {
455 	int cnt;
456 
457 	static struct msr_entry guest_msrs[] = {
458 		{ MSR_KGSBASE, 0, 0 },
459 	};
460 
461 	cnt = sizeof(guest_msrs) / sizeof(guest_msrs[0]);
462 	if (cnt > GUEST_MSR_MAX_ENTRIES)
463 		panic("guest msr save area overrun");
464 	bcopy(guest_msrs, g_area, sizeof(guest_msrs));
465 	*g_count = cnt;
466 }
467 
468 static void
469 vmx_disable(void *arg __unused)
470 {
471 	struct invvpid_desc invvpid_desc = { 0 };
472 	struct invept_desc invept_desc = { 0 };
473 
474 	if (vmxon_enabled[curcpu]) {
475 		/*
476 		 * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b.
477 		 *
478 		 * VMXON or VMXOFF are not required to invalidate any TLB
479 		 * caching structures. This prevents potential retention of
480 		 * cached information in the TLB between distinct VMX episodes.
481 		 */
482 		invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc);
483 		invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc);
484 		vmxoff();
485 	}
486 	load_cr4(rcr4() & ~CR4_VMXE);
487 }
488 
489 static int
490 vmx_cleanup(void)
491 {
492 
493 	if (pirvec != 0)
494 		vmm_ipi_free(pirvec);
495 
496 	if (vpid_unr != NULL) {
497 		delete_unrhdr(vpid_unr);
498 		vpid_unr = NULL;
499 	}
500 
501 	smp_rendezvous(NULL, vmx_disable, NULL, NULL);
502 
503 	return (0);
504 }
505 
506 static void
507 vmx_enable(void *arg __unused)
508 {
509 	int error;
510 
511 	load_cr4(rcr4() | CR4_VMXE);
512 
513 	*(uint32_t *)vmxon_region[curcpu] = vmx_revision();
514 	error = vmxon(vmxon_region[curcpu]);
515 	if (error == 0)
516 		vmxon_enabled[curcpu] = 1;
517 }
518 
519 static void
520 vmx_restore(void)
521 {
522 
523 	if (vmxon_enabled[curcpu])
524 		vmxon(vmxon_region[curcpu]);
525 }
526 
527 static int
528 vmx_init(int ipinum)
529 {
530 	int error, use_tpr_shadow;
531 	uint64_t fixed0, fixed1, feature_control;
532 	uint32_t tmp, procbased2_vid_bits;
533 
534 	/* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */
535 	if (!(cpu_feature2 & CPUID2_VMX)) {
536 		printf("vmx_init: processor does not support VMX operation\n");
537 		return (ENXIO);
538 	}
539 
540 	/*
541 	 * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits
542 	 * are set (bits 0 and 2 respectively).
543 	 */
544 	feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
545 	if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 ||
546 	    (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
547 		printf("vmx_init: VMX operation disabled by BIOS\n");
548 		return (ENXIO);
549 	}
550 
551 	/* Check support for primary processor-based VM-execution controls */
552 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
553 			       MSR_VMX_TRUE_PROCBASED_CTLS,
554 			       PROCBASED_CTLS_ONE_SETTING,
555 			       PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
556 	if (error) {
557 		printf("vmx_init: processor does not support desired primary "
558 		       "processor-based controls\n");
559 		return (error);
560 	}
561 
562 	/* Clear the processor-based ctl bits that are set on demand */
563 	procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
564 
565 	/* Check support for secondary processor-based VM-execution controls */
566 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
567 			       MSR_VMX_PROCBASED_CTLS2,
568 			       PROCBASED_CTLS2_ONE_SETTING,
569 			       PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
570 	if (error) {
571 		printf("vmx_init: processor does not support desired secondary "
572 		       "processor-based controls\n");
573 		return (error);
574 	}
575 
576 	/* Check support for VPID */
577 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
578 			       PROCBASED2_ENABLE_VPID, 0, &tmp);
579 	if (error == 0)
580 		procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
581 
582 	/* Check support for pin-based VM-execution controls */
583 	error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
584 			       MSR_VMX_TRUE_PINBASED_CTLS,
585 			       PINBASED_CTLS_ONE_SETTING,
586 			       PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
587 	if (error) {
588 		printf("vmx_init: processor does not support desired "
589 		       "pin-based controls\n");
590 		return (error);
591 	}
592 
593 	/* Check support for VM-exit controls */
594 	error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
595 			       VM_EXIT_CTLS_ONE_SETTING,
596 			       VM_EXIT_CTLS_ZERO_SETTING,
597 			       &exit_ctls);
598 	if (error) {
599 		/* Try again without the PAT MSR bits */
600 		error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS,
601 				       MSR_VMX_TRUE_EXIT_CTLS,
602 				       VM_EXIT_CTLS_ONE_SETTING_NO_PAT,
603 				       VM_EXIT_CTLS_ZERO_SETTING,
604 				       &exit_ctls);
605 		if (error) {
606 			printf("vmx_init: processor does not support desired "
607 			       "exit controls\n");
608 			return (error);
609 		} else {
610 			if (bootverbose)
611 				printf("vmm: PAT MSR access not supported\n");
612 			guest_msr_valid(MSR_PAT);
613 			vmx_no_patmsr = 1;
614 		}
615 	}
616 
617 	/* Check support for VM-entry controls */
618 	if (!vmx_no_patmsr) {
619 		error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS,
620 				       MSR_VMX_TRUE_ENTRY_CTLS,
621 				       VM_ENTRY_CTLS_ONE_SETTING,
622 				       VM_ENTRY_CTLS_ZERO_SETTING,
623 				       &entry_ctls);
624 	} else {
625 		error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS,
626 				       MSR_VMX_TRUE_ENTRY_CTLS,
627 				       VM_ENTRY_CTLS_ONE_SETTING_NO_PAT,
628 				       VM_ENTRY_CTLS_ZERO_SETTING,
629 				       &entry_ctls);
630 	}
631 
632 	if (error) {
633 		printf("vmx_init: processor does not support desired "
634 		       "entry controls\n");
635 		       return (error);
636 	}
637 
638 	/*
639 	 * Check support for optional features by testing them
640 	 * as individual bits
641 	 */
642 	cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
643 					MSR_VMX_TRUE_PROCBASED_CTLS,
644 					PROCBASED_HLT_EXITING, 0,
645 					&tmp) == 0);
646 
647 	cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
648 					MSR_VMX_PROCBASED_CTLS,
649 					PROCBASED_MTF, 0,
650 					&tmp) == 0);
651 
652 	cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
653 					 MSR_VMX_TRUE_PROCBASED_CTLS,
654 					 PROCBASED_PAUSE_EXITING, 0,
655 					 &tmp) == 0);
656 
657 	cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
658 					MSR_VMX_PROCBASED_CTLS2,
659 					PROCBASED2_UNRESTRICTED_GUEST, 0,
660 				        &tmp) == 0);
661 
662 	cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
663 	    MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
664 	    &tmp) == 0);
665 
666 	/*
667 	 * Check support for virtual interrupt delivery.
668 	 */
669 	procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
670 	    PROCBASED2_VIRTUALIZE_X2APIC_MODE |
671 	    PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
672 	    PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY);
673 
674 	use_tpr_shadow = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
675 	    MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0,
676 	    &tmp) == 0);
677 
678 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
679 	    procbased2_vid_bits, 0, &tmp);
680 	if (error == 0 && use_tpr_shadow) {
681 		virtual_interrupt_delivery = 1;
682 		TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid",
683 		    &virtual_interrupt_delivery);
684 	}
685 
686 	if (virtual_interrupt_delivery) {
687 		procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
688 		procbased_ctls2 |= procbased2_vid_bits;
689 		procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE;
690 
691 		/*
692 		 * Check for Posted Interrupts only if Virtual Interrupt
693 		 * Delivery is enabled.
694 		 */
695 		error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
696 		    MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0,
697 		    &tmp);
698 		if (error == 0) {
699 			pirvec = vmm_ipi_alloc();
700 			if (pirvec == 0) {
701 				if (bootverbose) {
702 					printf("vmx_init: unable to allocate "
703 					    "posted interrupt vector\n");
704 				}
705 			} else {
706 				posted_interrupts = 1;
707 				TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir",
708 				    &posted_interrupts);
709 			}
710 		}
711 	}
712 
713 	if (posted_interrupts)
714 		    pinbased_ctls |= PINBASED_POSTED_INTERRUPT;
715 
716 	/* Initialize EPT */
717 	error = ept_init(ipinum);
718 	if (error) {
719 		printf("vmx_init: ept initialization failed (%d)\n", error);
720 		return (error);
721 	}
722 
723 	/*
724 	 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
725 	 */
726 	fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
727 	fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
728 	cr0_ones_mask = fixed0 & fixed1;
729 	cr0_zeros_mask = ~fixed0 & ~fixed1;
730 
731 	/*
732 	 * CR0_PE and CR0_PG can be set to zero in VMX non-root operation
733 	 * if unrestricted guest execution is allowed.
734 	 */
735 	if (cap_unrestricted_guest)
736 		cr0_ones_mask &= ~(CR0_PG | CR0_PE);
737 
738 	/*
739 	 * Do not allow the guest to set CR0_NW or CR0_CD.
740 	 */
741 	cr0_zeros_mask |= (CR0_NW | CR0_CD);
742 
743 	fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
744 	fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
745 	cr4_ones_mask = fixed0 & fixed1;
746 	cr4_zeros_mask = ~fixed0 & ~fixed1;
747 
748 	vpid_init();
749 
750 	/* enable VMX operation */
751 	smp_rendezvous(NULL, vmx_enable, NULL, NULL);
752 
753 	vmx_initialized = 1;
754 
755 	return (0);
756 }
757 
758 static void
759 vmx_trigger_hostintr(int vector)
760 {
761 	uintptr_t func;
762 	struct gate_descriptor *gd;
763 
764 	gd = &idt[vector];
765 
766 	KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: "
767 	    "invalid vector %d", vector));
768 	KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present",
769 	    vector));
770 	KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d "
771 	    "has invalid type %d", vector, gd->gd_type));
772 	KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d "
773 	    "has invalid dpl %d", vector, gd->gd_dpl));
774 	KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor "
775 	    "for vector %d has invalid selector %d", vector, gd->gd_selector));
776 	KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid "
777 	    "IST %d", vector, gd->gd_ist));
778 
779 	func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset);
780 	vmx_call_isr(func);
781 }
782 
783 static int
784 vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial)
785 {
786 	int error, mask_ident, shadow_ident;
787 	uint64_t mask_value;
788 
789 	if (which != 0 && which != 4)
790 		panic("vmx_setup_cr_shadow: unknown cr%d", which);
791 
792 	if (which == 0) {
793 		mask_ident = VMCS_CR0_MASK;
794 		mask_value = cr0_ones_mask | cr0_zeros_mask;
795 		shadow_ident = VMCS_CR0_SHADOW;
796 	} else {
797 		mask_ident = VMCS_CR4_MASK;
798 		mask_value = cr4_ones_mask | cr4_zeros_mask;
799 		shadow_ident = VMCS_CR4_SHADOW;
800 	}
801 
802 	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value);
803 	if (error)
804 		return (error);
805 
806 	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial);
807 	if (error)
808 		return (error);
809 
810 	return (0);
811 }
812 #define	vmx_setup_cr0_shadow(vmcs,init)	vmx_setup_cr_shadow(0, (vmcs), (init))
813 #define	vmx_setup_cr4_shadow(vmcs,init)	vmx_setup_cr_shadow(4, (vmcs), (init))
814 
815 static void *
816 vmx_vminit(struct vm *vm, pmap_t pmap)
817 {
818 	uint16_t vpid[VM_MAXCPU];
819 	int i, error, guest_msr_count;
820 	struct vmx *vmx;
821 	struct vmcs *vmcs;
822 
823 	vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO);
824 	if ((uintptr_t)vmx & PAGE_MASK) {
825 		panic("malloc of struct vmx not aligned on %d byte boundary",
826 		      PAGE_SIZE);
827 	}
828 	vmx->vm = vm;
829 
830 	vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pml4));
831 
832 	/*
833 	 * Clean up EPTP-tagged guest physical and combined mappings
834 	 *
835 	 * VMX transitions are not required to invalidate any guest physical
836 	 * mappings. So, it may be possible for stale guest physical mappings
837 	 * to be present in the processor TLBs.
838 	 *
839 	 * Combined mappings for this EP4TA are also invalidated for all VPIDs.
840 	 */
841 	ept_invalidate_mappings(vmx->eptp);
842 
843 	msr_bitmap_initialize(vmx->msr_bitmap);
844 
845 	/*
846 	 * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE.
847 	 * The guest FSBASE and GSBASE are saved and restored during
848 	 * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are
849 	 * always restored from the vmcs host state area on vm-exit.
850 	 *
851 	 * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in
852 	 * how they are saved/restored so can be directly accessed by the
853 	 * guest.
854 	 *
855 	 * Guest KGSBASE is saved and restored in the guest MSR save area.
856 	 * Host KGSBASE is restored before returning to userland from the pcb.
857 	 * There will be a window of time when we are executing in the host
858 	 * kernel context with a value of KGSBASE from the guest. This is ok
859 	 * because the value of KGSBASE is inconsequential in kernel context.
860 	 *
861 	 * MSR_EFER is saved and restored in the guest VMCS area on a
862 	 * VM exit and entry respectively. It is also restored from the
863 	 * host VMCS area on a VM exit.
864 	 */
865 	if (guest_msr_rw(vmx, MSR_GSBASE) ||
866 	    guest_msr_rw(vmx, MSR_FSBASE) ||
867 	    guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) ||
868 	    guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) ||
869 	    guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) ||
870 	    guest_msr_rw(vmx, MSR_KGSBASE) ||
871 	    guest_msr_rw(vmx, MSR_EFER))
872 		panic("vmx_vminit: error setting guest msr access");
873 
874 	/*
875 	 * MSR_PAT is saved and restored in the guest VMCS are on a VM exit
876 	 * and entry respectively. It is also restored from the host VMCS
877 	 * area on a VM exit. However, if running on a system with no
878 	 * MSR_PAT save/restore support, leave access disabled so accesses
879 	 * will be trapped.
880 	 */
881 	if (!vmx_no_patmsr && guest_msr_rw(vmx, MSR_PAT))
882 		panic("vmx_vminit: error setting guest pat msr access");
883 
884 	vpid_alloc(vpid, VM_MAXCPU);
885 
886 	if (virtual_interrupt_delivery) {
887 		error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE,
888 		    APIC_ACCESS_ADDRESS);
889 		/* XXX this should really return an error to the caller */
890 		KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error));
891 	}
892 
893 	for (i = 0; i < VM_MAXCPU; i++) {
894 		vmcs = &vmx->vmcs[i];
895 		vmcs->identifier = vmx_revision();
896 		error = vmclear(vmcs);
897 		if (error != 0) {
898 			panic("vmx_vminit: vmclear error %d on vcpu %d\n",
899 			      error, i);
900 		}
901 
902 		error = vmcs_init(vmcs);
903 		KASSERT(error == 0, ("vmcs_init error %d", error));
904 
905 		VMPTRLD(vmcs);
906 		error = 0;
907 		error += vmwrite(VMCS_HOST_RSP, (u_long)&vmx->ctx[i]);
908 		error += vmwrite(VMCS_EPTP, vmx->eptp);
909 		error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls);
910 		error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls);
911 		error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2);
912 		error += vmwrite(VMCS_EXIT_CTLS, exit_ctls);
913 		error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls);
914 		error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap));
915 		error += vmwrite(VMCS_VPID, vpid[i]);
916 		if (virtual_interrupt_delivery) {
917 			error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS);
918 			error += vmwrite(VMCS_VIRTUAL_APIC,
919 			    vtophys(&vmx->apic_page[i]));
920 			error += vmwrite(VMCS_EOI_EXIT0, 0);
921 			error += vmwrite(VMCS_EOI_EXIT1, 0);
922 			error += vmwrite(VMCS_EOI_EXIT2, 0);
923 			error += vmwrite(VMCS_EOI_EXIT3, 0);
924 		}
925 		if (posted_interrupts) {
926 			error += vmwrite(VMCS_PIR_VECTOR, pirvec);
927 			error += vmwrite(VMCS_PIR_DESC,
928 			    vtophys(&vmx->pir_desc[i]));
929 		}
930 		VMCLEAR(vmcs);
931 		KASSERT(error == 0, ("vmx_vminit: error customizing the vmcs"));
932 
933 		vmx->cap[i].set = 0;
934 		vmx->cap[i].proc_ctls = procbased_ctls;
935 		vmx->cap[i].proc_ctls2 = procbased_ctls2;
936 
937 		vmx->state[i].lastcpu = -1;
938 		vmx->state[i].vpid = vpid[i];
939 
940 		msr_save_area_init(vmx->guest_msrs[i], &guest_msr_count);
941 
942 		error = vmcs_set_msr_save(vmcs, vtophys(vmx->guest_msrs[i]),
943 		    guest_msr_count);
944 		if (error != 0)
945 			panic("vmcs_set_msr_save error %d", error);
946 
947 		/*
948 		 * Set up the CR0/4 shadows, and init the read shadow
949 		 * to the power-on register value from the Intel Sys Arch.
950 		 *  CR0 - 0x60000010
951 		 *  CR4 - 0
952 		 */
953 		error = vmx_setup_cr0_shadow(vmcs, 0x60000010);
954 		if (error != 0)
955 			panic("vmx_setup_cr0_shadow %d", error);
956 
957 		error = vmx_setup_cr4_shadow(vmcs, 0);
958 		if (error != 0)
959 			panic("vmx_setup_cr4_shadow %d", error);
960 
961 		vmx->ctx[i].pmap = pmap;
962 	}
963 
964 	return (vmx);
965 }
966 
967 static int
968 vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx)
969 {
970 	int handled, func;
971 
972 	func = vmxctx->guest_rax;
973 
974 	handled = x86_emulate_cpuid(vm, vcpu,
975 				    (uint32_t*)(&vmxctx->guest_rax),
976 				    (uint32_t*)(&vmxctx->guest_rbx),
977 				    (uint32_t*)(&vmxctx->guest_rcx),
978 				    (uint32_t*)(&vmxctx->guest_rdx));
979 	return (handled);
980 }
981 
982 static __inline void
983 vmx_run_trace(struct vmx *vmx, int vcpu)
984 {
985 #ifdef KTR
986 	VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %#lx", vmcs_guest_rip());
987 #endif
988 }
989 
990 static __inline void
991 vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason,
992 	       int handled)
993 {
994 #ifdef KTR
995 	VCPU_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx",
996 		 handled ? "handled" : "unhandled",
997 		 exit_reason_to_str(exit_reason), rip);
998 #endif
999 }
1000 
1001 static __inline void
1002 vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip)
1003 {
1004 #ifdef KTR
1005 	VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip);
1006 #endif
1007 }
1008 
1009 static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved");
1010 
1011 static void
1012 vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu, pmap_t pmap)
1013 {
1014 	struct vmxstate *vmxstate;
1015 	struct invvpid_desc invvpid_desc;
1016 
1017 	vmxstate = &vmx->state[vcpu];
1018 	if (vmxstate->lastcpu == curcpu)
1019 		return;
1020 
1021 	vmxstate->lastcpu = curcpu;
1022 
1023 	vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1);
1024 
1025 	vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
1026 	vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
1027 	vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
1028 
1029 	/*
1030 	 * If we are using VPIDs then invalidate all mappings tagged with 'vpid'
1031 	 *
1032 	 * We do this because this vcpu was executing on a different host
1033 	 * cpu when it last ran. We do not track whether it invalidated
1034 	 * mappings associated with its 'vpid' during that run. So we must
1035 	 * assume that the mappings associated with 'vpid' on 'curcpu' are
1036 	 * stale and invalidate them.
1037 	 *
1038 	 * Note that we incur this penalty only when the scheduler chooses to
1039 	 * move the thread associated with this vcpu between host cpus.
1040 	 *
1041 	 * Note also that this will invalidate mappings tagged with 'vpid'
1042 	 * for "all" EP4TAs.
1043 	 */
1044 	if (vmxstate->vpid != 0) {
1045 		if (pmap->pm_eptgen == vmx->eptgen[curcpu]) {
1046 			invvpid_desc._res1 = 0;
1047 			invvpid_desc._res2 = 0;
1048 			invvpid_desc.vpid = vmxstate->vpid;
1049 			invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
1050 		} else {
1051 			/*
1052 			 * The invvpid can be skipped if an invept is going to
1053 			 * be performed before entering the guest. The invept
1054 			 * will invalidate combined mappings tagged with
1055 			 * 'vmx->eptp' for all vpids.
1056 			 */
1057 			vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_SAVED, 1);
1058 		}
1059 	}
1060 }
1061 
1062 /*
1063  * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
1064  */
1065 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
1066 
1067 static void __inline
1068 vmx_set_int_window_exiting(struct vmx *vmx, int vcpu)
1069 {
1070 
1071 	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) {
1072 		vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
1073 		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1074 		VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting");
1075 	}
1076 }
1077 
1078 static void __inline
1079 vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu)
1080 {
1081 
1082 	KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0,
1083 	    ("intr_window_exiting not set: %#x", vmx->cap[vcpu].proc_ctls));
1084 	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
1085 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1086 	VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting");
1087 }
1088 
1089 static void __inline
1090 vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu)
1091 {
1092 
1093 	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) {
1094 		vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
1095 		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1096 		VCPU_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting");
1097 	}
1098 }
1099 
1100 static void __inline
1101 vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu)
1102 {
1103 
1104 	KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0,
1105 	    ("nmi_window_exiting not set %#x", vmx->cap[vcpu].proc_ctls));
1106 	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
1107 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1108 	VCPU_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting");
1109 }
1110 
1111 #define	NMI_BLOCKING	(VMCS_INTERRUPTIBILITY_NMI_BLOCKING |		\
1112 			 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1113 #define	HWINTR_BLOCKING	(VMCS_INTERRUPTIBILITY_STI_BLOCKING |		\
1114 			 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1115 
1116 static void
1117 vmx_inject_nmi(struct vmx *vmx, int vcpu)
1118 {
1119 	uint32_t gi, info;
1120 
1121 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1122 	KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest "
1123 	    "interruptibility-state %#x", gi));
1124 
1125 	info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1126 	KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid "
1127 	    "VM-entry interruption information %#x", info));
1128 
1129 	/*
1130 	 * Inject the virtual NMI. The vector must be the NMI IDT entry
1131 	 * or the VMCS entry check will fail.
1132 	 */
1133 	info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID;
1134 	vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1135 
1136 	VCPU_CTR0(vmx->vm, vcpu, "Injecting vNMI");
1137 
1138 	/* Clear the request */
1139 	vm_nmi_clear(vmx->vm, vcpu);
1140 }
1141 
1142 static void
1143 vmx_inject_interrupts(struct vmx *vmx, int vcpu, struct vlapic *vlapic)
1144 {
1145 	struct vm_exception exc;
1146 	int vector, need_nmi_exiting;
1147 	uint64_t rflags;
1148 	uint32_t gi, info;
1149 
1150 	if (vm_exception_pending(vmx->vm, vcpu, &exc)) {
1151 		KASSERT(exc.vector >= 0 && exc.vector < 32,
1152 		    ("%s: invalid exception vector %d", __func__, exc.vector));
1153 
1154 		info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1155 		KASSERT((info & VMCS_INTR_VALID) == 0, ("%s: cannot inject "
1156 		     "pending exception %d: %#x", __func__, exc.vector, info));
1157 
1158 		info = exc.vector | VMCS_INTR_T_HWEXCEPTION | VMCS_INTR_VALID;
1159 		if (exc.error_code_valid) {
1160 			info |= VMCS_INTR_DEL_ERRCODE;
1161 			vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, exc.error_code);
1162 		}
1163 		vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1164 	}
1165 
1166 	if (vm_nmi_pending(vmx->vm, vcpu)) {
1167 		/*
1168 		 * If there are no conditions blocking NMI injection then
1169 		 * inject it directly here otherwise enable "NMI window
1170 		 * exiting" to inject it as soon as we can.
1171 		 *
1172 		 * We also check for STI_BLOCKING because some implementations
1173 		 * don't allow NMI injection in this case. If we are running
1174 		 * on a processor that doesn't have this restriction it will
1175 		 * immediately exit and the NMI will be injected in the
1176 		 * "NMI window exiting" handler.
1177 		 */
1178 		need_nmi_exiting = 1;
1179 		gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1180 		if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) {
1181 			info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1182 			if ((info & VMCS_INTR_VALID) == 0) {
1183 				vmx_inject_nmi(vmx, vcpu);
1184 				need_nmi_exiting = 0;
1185 			} else {
1186 				VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI "
1187 				    "due to VM-entry intr info %#x", info);
1188 			}
1189 		} else {
1190 			VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI due to "
1191 			    "Guest Interruptibility-state %#x", gi);
1192 		}
1193 
1194 		if (need_nmi_exiting)
1195 			vmx_set_nmi_window_exiting(vmx, vcpu);
1196 	}
1197 
1198 	if (virtual_interrupt_delivery) {
1199 		vmx_inject_pir(vlapic);
1200 		return;
1201 	}
1202 
1203 	/*
1204 	 * If interrupt-window exiting is already in effect then don't bother
1205 	 * checking for pending interrupts. This is just an optimization and
1206 	 * not needed for correctness.
1207 	 */
1208 	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0) {
1209 		VCPU_CTR0(vmx->vm, vcpu, "Skip interrupt injection due to "
1210 		    "pending int_window_exiting");
1211 		return;
1212 	}
1213 
1214 	/* Ask the local apic for a vector to inject */
1215 	if (!vlapic_pending_intr(vlapic, &vector))
1216 		return;
1217 
1218 	KASSERT(vector >= 32 && vector <= 255, ("invalid vector %d", vector));
1219 
1220 	/* Check RFLAGS.IF and the interruptibility state of the guest */
1221 	rflags = vmcs_read(VMCS_GUEST_RFLAGS);
1222 	if ((rflags & PSL_I) == 0) {
1223 		VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1224 		    "rflags %#lx", vector, rflags);
1225 		goto cantinject;
1226 	}
1227 
1228 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1229 	if (gi & HWINTR_BLOCKING) {
1230 		VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1231 		    "Guest Interruptibility-state %#x", vector, gi);
1232 		goto cantinject;
1233 	}
1234 
1235 	info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1236 	if (info & VMCS_INTR_VALID) {
1237 		/*
1238 		 * This is expected and could happen for multiple reasons:
1239 		 * - A vectoring VM-entry was aborted due to astpending
1240 		 * - A VM-exit happened during event injection.
1241 		 * - An exception was injected above.
1242 		 * - An NMI was injected above or after "NMI window exiting"
1243 		 */
1244 		VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1245 		    "VM-entry intr info %#x", vector, info);
1246 		goto cantinject;
1247 	}
1248 
1249 	/* Inject the interrupt */
1250 	info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID;
1251 	info |= vector;
1252 	vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1253 
1254 	/* Update the Local APIC ISR */
1255 	vlapic_intr_accepted(vlapic, vector);
1256 
1257 	VCPU_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector);
1258 
1259 	return;
1260 
1261 cantinject:
1262 	/*
1263 	 * Set the Interrupt Window Exiting execution control so we can inject
1264 	 * the interrupt as soon as blocking condition goes away.
1265 	 */
1266 	vmx_set_int_window_exiting(vmx, vcpu);
1267 }
1268 
1269 /*
1270  * If the Virtual NMIs execution control is '1' then the logical processor
1271  * tracks virtual-NMI blocking in the Guest Interruptibility-state field of
1272  * the VMCS. An IRET instruction in VMX non-root operation will remove any
1273  * virtual-NMI blocking.
1274  *
1275  * This unblocking occurs even if the IRET causes a fault. In this case the
1276  * hypervisor needs to restore virtual-NMI blocking before resuming the guest.
1277  */
1278 static void
1279 vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid)
1280 {
1281 	uint32_t gi;
1282 
1283 	VCPU_CTR0(vmx->vm, vcpuid, "Restore Virtual-NMI blocking");
1284 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1285 	gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1286 	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1287 }
1288 
1289 static void
1290 vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid)
1291 {
1292 	uint32_t gi;
1293 
1294 	VCPU_CTR0(vmx->vm, vcpuid, "Clear Virtual-NMI blocking");
1295 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1296 	gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1297 	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1298 }
1299 
1300 static int
1301 vmx_emulate_xsetbv(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1302 {
1303 	struct vmxctx *vmxctx;
1304 	uint64_t xcrval;
1305 	const struct xsave_limits *limits;
1306 
1307 	vmxctx = &vmx->ctx[vcpu];
1308 	limits = vmm_get_xsave_limits();
1309 
1310 	/*
1311 	 * Note that the processor raises a GP# fault on its own if
1312 	 * xsetbv is executed for CPL != 0, so we do not have to
1313 	 * emulate that fault here.
1314 	 */
1315 
1316 	/* Only xcr0 is supported. */
1317 	if (vmxctx->guest_rcx != 0) {
1318 		vm_inject_gp(vmx->vm, vcpu);
1319 		return (HANDLED);
1320 	}
1321 
1322 	/* We only handle xcr0 if both the host and guest have XSAVE enabled. */
1323 	if (!limits->xsave_enabled || !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) {
1324 		vm_inject_ud(vmx->vm, vcpu);
1325 		return (HANDLED);
1326 	}
1327 
1328 	xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff);
1329 	if ((xcrval & ~limits->xcr0_allowed) != 0) {
1330 		vm_inject_gp(vmx->vm, vcpu);
1331 		return (HANDLED);
1332 	}
1333 
1334 	if (!(xcrval & XFEATURE_ENABLED_X87)) {
1335 		vm_inject_gp(vmx->vm, vcpu);
1336 		return (HANDLED);
1337 	}
1338 
1339 	if ((xcrval & (XFEATURE_ENABLED_AVX | XFEATURE_ENABLED_SSE)) ==
1340 	    XFEATURE_ENABLED_AVX) {
1341 		vm_inject_gp(vmx->vm, vcpu);
1342 		return (HANDLED);
1343 	}
1344 
1345 	/*
1346 	 * This runs "inside" vmrun() with the guest's FPU state, so
1347 	 * modifying xcr0 directly modifies the guest's xcr0, not the
1348 	 * host's.
1349 	 */
1350 	load_xcr(0, xcrval);
1351 	return (HANDLED);
1352 }
1353 
1354 static int
1355 vmx_emulate_cr_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1356 {
1357 	int cr, vmcs_guest_cr, vmcs_shadow_cr;
1358 	uint64_t crval, regval, ones_mask, zeros_mask;
1359 	const struct vmxctx *vmxctx;
1360 
1361 	/* We only handle mov to %cr0 or %cr4 at this time */
1362 	if ((exitqual & 0xf0) != 0x00)
1363 		return (UNHANDLED);
1364 
1365 	cr = exitqual & 0xf;
1366 	if (cr != 0 && cr != 4)
1367 		return (UNHANDLED);
1368 
1369 	regval = 0; /* silence gcc */
1370 	vmxctx = &vmx->ctx[vcpu];
1371 
1372 	/*
1373 	 * We must use vmcs_write() directly here because vmcs_setreg() will
1374 	 * call vmclear(vmcs) as a side-effect which we certainly don't want.
1375 	 */
1376 	switch ((exitqual >> 8) & 0xf) {
1377 	case 0:
1378 		regval = vmxctx->guest_rax;
1379 		break;
1380 	case 1:
1381 		regval = vmxctx->guest_rcx;
1382 		break;
1383 	case 2:
1384 		regval = vmxctx->guest_rdx;
1385 		break;
1386 	case 3:
1387 		regval = vmxctx->guest_rbx;
1388 		break;
1389 	case 4:
1390 		regval = vmcs_read(VMCS_GUEST_RSP);
1391 		break;
1392 	case 5:
1393 		regval = vmxctx->guest_rbp;
1394 		break;
1395 	case 6:
1396 		regval = vmxctx->guest_rsi;
1397 		break;
1398 	case 7:
1399 		regval = vmxctx->guest_rdi;
1400 		break;
1401 	case 8:
1402 		regval = vmxctx->guest_r8;
1403 		break;
1404 	case 9:
1405 		regval = vmxctx->guest_r9;
1406 		break;
1407 	case 10:
1408 		regval = vmxctx->guest_r10;
1409 		break;
1410 	case 11:
1411 		regval = vmxctx->guest_r11;
1412 		break;
1413 	case 12:
1414 		regval = vmxctx->guest_r12;
1415 		break;
1416 	case 13:
1417 		regval = vmxctx->guest_r13;
1418 		break;
1419 	case 14:
1420 		regval = vmxctx->guest_r14;
1421 		break;
1422 	case 15:
1423 		regval = vmxctx->guest_r15;
1424 		break;
1425 	}
1426 
1427 	if (cr == 0) {
1428 		ones_mask = cr0_ones_mask;
1429 		zeros_mask = cr0_zeros_mask;
1430 		vmcs_guest_cr = VMCS_GUEST_CR0;
1431 		vmcs_shadow_cr = VMCS_CR0_SHADOW;
1432 	} else {
1433 		ones_mask = cr4_ones_mask;
1434 		zeros_mask = cr4_zeros_mask;
1435 		vmcs_guest_cr = VMCS_GUEST_CR4;
1436 		vmcs_shadow_cr = VMCS_CR4_SHADOW;
1437 	}
1438 	vmcs_write(vmcs_shadow_cr, regval);
1439 
1440 	crval = regval | ones_mask;
1441 	crval &= ~zeros_mask;
1442 	vmcs_write(vmcs_guest_cr, crval);
1443 
1444 	if (cr == 0 && regval & CR0_PG) {
1445 		uint64_t efer, entry_ctls;
1446 
1447 		/*
1448 		 * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and
1449 		 * the "IA-32e mode guest" bit in VM-entry control must be
1450 		 * equal.
1451 		 */
1452 		efer = vmcs_read(VMCS_GUEST_IA32_EFER);
1453 		if (efer & EFER_LME) {
1454 			efer |= EFER_LMA;
1455 			vmcs_write(VMCS_GUEST_IA32_EFER, efer);
1456 			entry_ctls = vmcs_read(VMCS_ENTRY_CTLS);
1457 			entry_ctls |= VM_ENTRY_GUEST_LMA;
1458 			vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
1459 		}
1460 	}
1461 
1462 	return (HANDLED);
1463 }
1464 
1465 static enum vie_cpu_mode
1466 vmx_cpu_mode(void)
1467 {
1468 
1469 	if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA)
1470 		return (CPU_MODE_64BIT);
1471 	else
1472 		return (CPU_MODE_COMPATIBILITY);
1473 }
1474 
1475 static enum vie_paging_mode
1476 vmx_paging_mode(void)
1477 {
1478 
1479 	if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG))
1480 		return (PAGING_MODE_FLAT);
1481 	if (!(vmcs_read(VMCS_GUEST_CR4) & CR4_PAE))
1482 		return (PAGING_MODE_32);
1483 	if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME)
1484 		return (PAGING_MODE_64);
1485 	else
1486 		return (PAGING_MODE_PAE);
1487 }
1488 
1489 static int
1490 ept_fault_type(uint64_t ept_qual)
1491 {
1492 	int fault_type;
1493 
1494 	if (ept_qual & EPT_VIOLATION_DATA_WRITE)
1495 		fault_type = VM_PROT_WRITE;
1496 	else if (ept_qual & EPT_VIOLATION_INST_FETCH)
1497 		fault_type = VM_PROT_EXECUTE;
1498 	else
1499 		fault_type= VM_PROT_READ;
1500 
1501 	return (fault_type);
1502 }
1503 
1504 static boolean_t
1505 ept_emulation_fault(uint64_t ept_qual)
1506 {
1507 	int read, write;
1508 
1509 	/* EPT fault on an instruction fetch doesn't make sense here */
1510 	if (ept_qual & EPT_VIOLATION_INST_FETCH)
1511 		return (FALSE);
1512 
1513 	/* EPT fault must be a read fault or a write fault */
1514 	read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
1515 	write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
1516 	if ((read | write) == 0)
1517 		return (FALSE);
1518 
1519 	/*
1520 	 * The EPT violation must have been caused by accessing a
1521 	 * guest-physical address that is a translation of a guest-linear
1522 	 * address.
1523 	 */
1524 	if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
1525 	    (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
1526 		return (FALSE);
1527 	}
1528 
1529 	return (TRUE);
1530 }
1531 
1532 static __inline int
1533 apic_access_virtualization(struct vmx *vmx, int vcpuid)
1534 {
1535 	uint32_t proc_ctls2;
1536 
1537 	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
1538 	return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0);
1539 }
1540 
1541 static __inline int
1542 x2apic_virtualization(struct vmx *vmx, int vcpuid)
1543 {
1544 	uint32_t proc_ctls2;
1545 
1546 	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
1547 	return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0);
1548 }
1549 
1550 static int
1551 vmx_handle_apic_write(struct vmx *vmx, int vcpuid, struct vlapic *vlapic,
1552     uint64_t qual)
1553 {
1554 	int error, handled, offset;
1555 	uint32_t *apic_regs, vector;
1556 	bool retu;
1557 
1558 	handled = HANDLED;
1559 	offset = APIC_WRITE_OFFSET(qual);
1560 
1561 	if (!apic_access_virtualization(vmx, vcpuid)) {
1562 		/*
1563 		 * In general there should not be any APIC write VM-exits
1564 		 * unless APIC-access virtualization is enabled.
1565 		 *
1566 		 * However self-IPI virtualization can legitimately trigger
1567 		 * an APIC-write VM-exit so treat it specially.
1568 		 */
1569 		if (x2apic_virtualization(vmx, vcpuid) &&
1570 		    offset == APIC_OFFSET_SELF_IPI) {
1571 			apic_regs = (uint32_t *)(vlapic->apic_page);
1572 			vector = apic_regs[APIC_OFFSET_SELF_IPI / 4];
1573 			vlapic_self_ipi_handler(vlapic, vector);
1574 			return (HANDLED);
1575 		} else
1576 			return (UNHANDLED);
1577 	}
1578 
1579 	switch (offset) {
1580 	case APIC_OFFSET_ID:
1581 		vlapic_id_write_handler(vlapic);
1582 		break;
1583 	case APIC_OFFSET_LDR:
1584 		vlapic_ldr_write_handler(vlapic);
1585 		break;
1586 	case APIC_OFFSET_DFR:
1587 		vlapic_dfr_write_handler(vlapic);
1588 		break;
1589 	case APIC_OFFSET_SVR:
1590 		vlapic_svr_write_handler(vlapic);
1591 		break;
1592 	case APIC_OFFSET_ESR:
1593 		vlapic_esr_write_handler(vlapic);
1594 		break;
1595 	case APIC_OFFSET_ICR_LOW:
1596 		retu = false;
1597 		error = vlapic_icrlo_write_handler(vlapic, &retu);
1598 		if (error != 0 || retu)
1599 			handled = UNHANDLED;
1600 		break;
1601 	case APIC_OFFSET_CMCI_LVT:
1602 	case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT:
1603 		vlapic_lvt_write_handler(vlapic, offset);
1604 		break;
1605 	case APIC_OFFSET_TIMER_ICR:
1606 		vlapic_icrtmr_write_handler(vlapic);
1607 		break;
1608 	case APIC_OFFSET_TIMER_DCR:
1609 		vlapic_dcr_write_handler(vlapic);
1610 		break;
1611 	default:
1612 		handled = UNHANDLED;
1613 		break;
1614 	}
1615 	return (handled);
1616 }
1617 
1618 static bool
1619 apic_access_fault(struct vmx *vmx, int vcpuid, uint64_t gpa)
1620 {
1621 
1622 	if (apic_access_virtualization(vmx, vcpuid) &&
1623 	    (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE))
1624 		return (true);
1625 	else
1626 		return (false);
1627 }
1628 
1629 static int
1630 vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
1631 {
1632 	uint64_t qual;
1633 	int access_type, offset, allowed;
1634 
1635 	if (!apic_access_virtualization(vmx, vcpuid))
1636 		return (UNHANDLED);
1637 
1638 	qual = vmexit->u.vmx.exit_qualification;
1639 	access_type = APIC_ACCESS_TYPE(qual);
1640 	offset = APIC_ACCESS_OFFSET(qual);
1641 
1642 	allowed = 0;
1643 	if (access_type == 0) {
1644 		/*
1645 		 * Read data access to the following registers is expected.
1646 		 */
1647 		switch (offset) {
1648 		case APIC_OFFSET_APR:
1649 		case APIC_OFFSET_PPR:
1650 		case APIC_OFFSET_RRR:
1651 		case APIC_OFFSET_CMCI_LVT:
1652 		case APIC_OFFSET_TIMER_CCR:
1653 			allowed = 1;
1654 			break;
1655 		default:
1656 			break;
1657 		}
1658 	} else if (access_type == 1) {
1659 		/*
1660 		 * Write data access to the following registers is expected.
1661 		 */
1662 		switch (offset) {
1663 		case APIC_OFFSET_VER:
1664 		case APIC_OFFSET_APR:
1665 		case APIC_OFFSET_PPR:
1666 		case APIC_OFFSET_RRR:
1667 		case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7:
1668 		case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7:
1669 		case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7:
1670 		case APIC_OFFSET_CMCI_LVT:
1671 		case APIC_OFFSET_TIMER_CCR:
1672 			allowed = 1;
1673 			break;
1674 		default:
1675 			break;
1676 		}
1677 	}
1678 
1679 	if (allowed) {
1680 		vmexit->exitcode = VM_EXITCODE_INST_EMUL;
1681 		vmexit->u.inst_emul.gpa = DEFAULT_APIC_BASE + offset;
1682 		vmexit->u.inst_emul.gla = VIE_INVALID_GLA;
1683 		vmexit->u.inst_emul.cr3 = vmcs_guest_cr3();
1684 		vmexit->u.inst_emul.cpu_mode = vmx_cpu_mode();
1685 		vmexit->u.inst_emul.paging_mode = vmx_paging_mode();
1686 	}
1687 
1688 	/*
1689 	 * Regardless of whether the APIC-access is allowed this handler
1690 	 * always returns UNHANDLED:
1691 	 * - if the access is allowed then it is handled by emulating the
1692 	 *   instruction that caused the VM-exit (outside the critical section)
1693 	 * - if the access is not allowed then it will be converted to an
1694 	 *   exitcode of VM_EXITCODE_VMX and will be dealt with in userland.
1695 	 */
1696 	return (UNHANDLED);
1697 }
1698 
1699 static int
1700 vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1701 {
1702 	int error, handled;
1703 	struct vmxctx *vmxctx;
1704 	struct vlapic *vlapic;
1705 	uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, reason;
1706 	uint64_t qual, gpa;
1707 	bool retu;
1708 
1709 	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0);
1710 	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0);
1711 
1712 	handled = UNHANDLED;
1713 	vmxctx = &vmx->ctx[vcpu];
1714 
1715 	qual = vmexit->u.vmx.exit_qualification;
1716 	reason = vmexit->u.vmx.exit_reason;
1717 	vmexit->exitcode = VM_EXITCODE_BOGUS;
1718 
1719 	vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1);
1720 
1721 	/*
1722 	 * VM exits that could be triggered during event injection on the
1723 	 * previous VM entry need to be handled specially by re-injecting
1724 	 * the event.
1725 	 *
1726 	 * See "Information for VM Exits During Event Delivery" in Intel SDM
1727 	 * for details.
1728 	 */
1729 	switch (reason) {
1730 	case EXIT_REASON_EPT_FAULT:
1731 	case EXIT_REASON_EPT_MISCONFIG:
1732 	case EXIT_REASON_APIC_ACCESS:
1733 	case EXIT_REASON_TASK_SWITCH:
1734 	case EXIT_REASON_EXCEPTION:
1735 		idtvec_info = vmcs_idt_vectoring_info();
1736 		if (idtvec_info & VMCS_IDT_VEC_VALID) {
1737 			idtvec_info &= ~(1 << 12); /* clear undefined bit */
1738 			vmcs_write(VMCS_ENTRY_INTR_INFO, idtvec_info);
1739 			if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
1740 				idtvec_err = vmcs_idt_vectoring_err();
1741 				vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR,
1742 				    idtvec_err);
1743 			}
1744 			/*
1745 			 * If 'virtual NMIs' are being used and the VM-exit
1746 			 * happened while injecting an NMI during the previous
1747 			 * VM-entry, then clear "blocking by NMI" in the Guest
1748 			 * Interruptibility-state.
1749 			 */
1750 			if ((idtvec_info & VMCS_INTR_T_MASK) ==
1751 			    VMCS_INTR_T_NMI) {
1752 				 vmx_clear_nmi_blocking(vmx, vcpu);
1753 			}
1754 			vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
1755 		}
1756 	default:
1757 		idtvec_info = 0;
1758 		break;
1759 	}
1760 
1761 	switch (reason) {
1762 	case EXIT_REASON_CR_ACCESS:
1763 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1);
1764 		handled = vmx_emulate_cr_access(vmx, vcpu, qual);
1765 		break;
1766 	case EXIT_REASON_RDMSR:
1767 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1);
1768 		retu = false;
1769 		ecx = vmxctx->guest_rcx;
1770 		error = emulate_rdmsr(vmx->vm, vcpu, ecx, &retu);
1771 		if (error) {
1772 			vmexit->exitcode = VM_EXITCODE_RDMSR;
1773 			vmexit->u.msr.code = ecx;
1774 		} else if (!retu) {
1775 			handled = HANDLED;
1776 		} else {
1777 			/* Return to userspace with a valid exitcode */
1778 			KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1779 			    ("emulate_wrmsr retu with bogus exitcode"));
1780 		}
1781 		break;
1782 	case EXIT_REASON_WRMSR:
1783 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1);
1784 		retu = false;
1785 		eax = vmxctx->guest_rax;
1786 		ecx = vmxctx->guest_rcx;
1787 		edx = vmxctx->guest_rdx;
1788 		error = emulate_wrmsr(vmx->vm, vcpu, ecx,
1789 		    (uint64_t)edx << 32 | eax, &retu);
1790 		if (error) {
1791 			vmexit->exitcode = VM_EXITCODE_WRMSR;
1792 			vmexit->u.msr.code = ecx;
1793 			vmexit->u.msr.wval = (uint64_t)edx << 32 | eax;
1794 		} else if (!retu) {
1795 			handled = HANDLED;
1796 		} else {
1797 			/* Return to userspace with a valid exitcode */
1798 			KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1799 			    ("emulate_wrmsr retu with bogus exitcode"));
1800 		}
1801 		break;
1802 	case EXIT_REASON_HLT:
1803 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1);
1804 		vmexit->exitcode = VM_EXITCODE_HLT;
1805 		vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS);
1806 		break;
1807 	case EXIT_REASON_MTF:
1808 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1);
1809 		vmexit->exitcode = VM_EXITCODE_MTRAP;
1810 		break;
1811 	case EXIT_REASON_PAUSE:
1812 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1);
1813 		vmexit->exitcode = VM_EXITCODE_PAUSE;
1814 		break;
1815 	case EXIT_REASON_INTR_WINDOW:
1816 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1);
1817 		vmx_clear_int_window_exiting(vmx, vcpu);
1818 		return (1);
1819 	case EXIT_REASON_EXT_INTR:
1820 		/*
1821 		 * External interrupts serve only to cause VM exits and allow
1822 		 * the host interrupt handler to run.
1823 		 *
1824 		 * If this external interrupt triggers a virtual interrupt
1825 		 * to a VM, then that state will be recorded by the
1826 		 * host interrupt handler in the VM's softc. We will inject
1827 		 * this virtual interrupt during the subsequent VM enter.
1828 		 */
1829 		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
1830 
1831 		/*
1832 		 * XXX: Ignore this exit if VMCS_INTR_VALID is not set.
1833 		 * This appears to be a bug in VMware Fusion?
1834 		 */
1835 		if (!(intr_info & VMCS_INTR_VALID))
1836 			return (1);
1837 		KASSERT((intr_info & VMCS_INTR_VALID) != 0 &&
1838 		    (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR,
1839 		    ("VM exit interruption info invalid: %#x", intr_info));
1840 		vmx_trigger_hostintr(intr_info & 0xff);
1841 
1842 		/*
1843 		 * This is special. We want to treat this as an 'handled'
1844 		 * VM-exit but not increment the instruction pointer.
1845 		 */
1846 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1);
1847 		return (1);
1848 	case EXIT_REASON_NMI_WINDOW:
1849 		/* Exit to allow the pending virtual NMI to be injected */
1850 		if (vm_nmi_pending(vmx->vm, vcpu))
1851 			vmx_inject_nmi(vmx, vcpu);
1852 		vmx_clear_nmi_window_exiting(vmx, vcpu);
1853 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1);
1854 		return (1);
1855 	case EXIT_REASON_INOUT:
1856 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1);
1857 		vmexit->exitcode = VM_EXITCODE_INOUT;
1858 		vmexit->u.inout.bytes = (qual & 0x7) + 1;
1859 		vmexit->u.inout.in = (qual & 0x8) ? 1 : 0;
1860 		vmexit->u.inout.string = (qual & 0x10) ? 1 : 0;
1861 		vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0;
1862 		vmexit->u.inout.port = (uint16_t)(qual >> 16);
1863 		vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax);
1864 		break;
1865 	case EXIT_REASON_CPUID:
1866 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1);
1867 		handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx);
1868 		break;
1869 	case EXIT_REASON_EXCEPTION:
1870 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXCEPTION, 1);
1871 		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
1872 		KASSERT((intr_info & VMCS_INTR_VALID) != 0,
1873 		    ("VM exit interruption info invalid: %#x", intr_info));
1874 
1875 		/*
1876 		 * If Virtual NMIs control is 1 and the VM-exit is due to a
1877 		 * fault encountered during the execution of IRET then we must
1878 		 * restore the state of "virtual-NMI blocking" before resuming
1879 		 * the guest.
1880 		 *
1881 		 * See "Resuming Guest Software after Handling an Exception".
1882 		 */
1883 		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
1884 		    (intr_info & 0xff) != IDT_DF &&
1885 		    (intr_info & EXIT_QUAL_NMIUDTI) != 0)
1886 			vmx_restore_nmi_blocking(vmx, vcpu);
1887 
1888 		/*
1889 		 * The NMI has already been handled in vmx_exit_handle_nmi().
1890 		 */
1891 		if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI)
1892 			return (1);
1893 		break;
1894 	case EXIT_REASON_EPT_FAULT:
1895 		/*
1896 		 * If 'gpa' lies within the address space allocated to
1897 		 * memory then this must be a nested page fault otherwise
1898 		 * this must be an instruction that accesses MMIO space.
1899 		 */
1900 		gpa = vmcs_gpa();
1901 		if (vm_mem_allocated(vmx->vm, gpa) ||
1902 		    apic_access_fault(vmx, vcpu, gpa)) {
1903 			vmexit->exitcode = VM_EXITCODE_PAGING;
1904 			vmexit->u.paging.gpa = gpa;
1905 			vmexit->u.paging.fault_type = ept_fault_type(qual);
1906 			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
1907 		} else if (ept_emulation_fault(qual)) {
1908 			vmexit->exitcode = VM_EXITCODE_INST_EMUL;
1909 			vmexit->u.inst_emul.gpa = gpa;
1910 			vmexit->u.inst_emul.gla = vmcs_gla();
1911 			vmexit->u.inst_emul.cr3 = vmcs_guest_cr3();
1912 			vmexit->u.inst_emul.cpu_mode = vmx_cpu_mode();
1913 			vmexit->u.inst_emul.paging_mode = vmx_paging_mode();
1914 			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INST_EMUL, 1);
1915 		}
1916 		/*
1917 		 * If Virtual NMIs control is 1 and the VM-exit is due to an
1918 		 * EPT fault during the execution of IRET then we must restore
1919 		 * the state of "virtual-NMI blocking" before resuming.
1920 		 *
1921 		 * See description of "NMI unblocking due to IRET" in
1922 		 * "Exit Qualification for EPT Violations".
1923 		 */
1924 		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
1925 		    (qual & EXIT_QUAL_NMIUDTI) != 0)
1926 			vmx_restore_nmi_blocking(vmx, vcpu);
1927 		break;
1928 	case EXIT_REASON_VIRTUALIZED_EOI:
1929 		vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI;
1930 		vmexit->u.ioapic_eoi.vector = qual & 0xFF;
1931 		vmexit->inst_length = 0;	/* trap-like */
1932 		break;
1933 	case EXIT_REASON_APIC_ACCESS:
1934 		handled = vmx_handle_apic_access(vmx, vcpu, vmexit);
1935 		break;
1936 	case EXIT_REASON_APIC_WRITE:
1937 		/*
1938 		 * APIC-write VM exit is trap-like so the %rip is already
1939 		 * pointing to the next instruction.
1940 		 */
1941 		vmexit->inst_length = 0;
1942 		vlapic = vm_lapic(vmx->vm, vcpu);
1943 		handled = vmx_handle_apic_write(vmx, vcpu, vlapic, qual);
1944 		break;
1945 	case EXIT_REASON_XSETBV:
1946 		handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit);
1947 		break;
1948 	default:
1949 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1);
1950 		break;
1951 	}
1952 
1953 	if (handled) {
1954 		/*
1955 		 * It is possible that control is returned to userland
1956 		 * even though we were able to handle the VM exit in the
1957 		 * kernel.
1958 		 *
1959 		 * In such a case we want to make sure that the userland
1960 		 * restarts guest execution at the instruction *after*
1961 		 * the one we just processed. Therefore we update the
1962 		 * guest rip in the VMCS and in 'vmexit'.
1963 		 */
1964 		vmexit->rip += vmexit->inst_length;
1965 		vmexit->inst_length = 0;
1966 		vmcs_write(VMCS_GUEST_RIP, vmexit->rip);
1967 	} else {
1968 		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
1969 			/*
1970 			 * If this VM exit was not claimed by anybody then
1971 			 * treat it as a generic VMX exit.
1972 			 */
1973 			vmexit->exitcode = VM_EXITCODE_VMX;
1974 			vmexit->u.vmx.status = VM_SUCCESS;
1975 			vmexit->u.vmx.inst_type = 0;
1976 			vmexit->u.vmx.inst_error = 0;
1977 		} else {
1978 			/*
1979 			 * The exitcode and collateral have been populated.
1980 			 * The VM exit will be processed further in userland.
1981 			 */
1982 		}
1983 	}
1984 	return (handled);
1985 }
1986 
1987 static __inline int
1988 vmx_exit_astpending(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1989 {
1990 
1991 	vmexit->rip = vmcs_guest_rip();
1992 	vmexit->inst_length = 0;
1993 	vmexit->exitcode = VM_EXITCODE_BOGUS;
1994 	vmx_astpending_trace(vmx, vcpu, vmexit->rip);
1995 	vmm_stat_incr(vmx->vm, vcpu, VMEXIT_ASTPENDING, 1);
1996 
1997 	return (HANDLED);
1998 }
1999 
2000 static __inline int
2001 vmx_exit_rendezvous(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
2002 {
2003 
2004 	vmexit->rip = vmcs_guest_rip();
2005 	vmexit->inst_length = 0;
2006 	vmexit->exitcode = VM_EXITCODE_RENDEZVOUS;
2007 	vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RENDEZVOUS, 1);
2008 
2009 	return (UNHANDLED);
2010 }
2011 
2012 static __inline int
2013 vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit)
2014 {
2015 
2016 	KASSERT(vmxctx->inst_fail_status != VM_SUCCESS,
2017 	    ("vmx_exit_inst_error: invalid inst_fail_status %d",
2018 	    vmxctx->inst_fail_status));
2019 
2020 	vmexit->inst_length = 0;
2021 	vmexit->exitcode = VM_EXITCODE_VMX;
2022 	vmexit->u.vmx.status = vmxctx->inst_fail_status;
2023 	vmexit->u.vmx.inst_error = vmcs_instruction_error();
2024 	vmexit->u.vmx.exit_reason = ~0;
2025 	vmexit->u.vmx.exit_qualification = ~0;
2026 
2027 	switch (rc) {
2028 	case VMX_VMRESUME_ERROR:
2029 	case VMX_VMLAUNCH_ERROR:
2030 	case VMX_INVEPT_ERROR:
2031 		vmexit->u.vmx.inst_type = rc;
2032 		break;
2033 	default:
2034 		panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc);
2035 	}
2036 
2037 	return (UNHANDLED);
2038 }
2039 
2040 /*
2041  * If the NMI-exiting VM execution control is set to '1' then an NMI in
2042  * non-root operation causes a VM-exit. NMI blocking is in effect so it is
2043  * sufficient to simply vector to the NMI handler via a software interrupt.
2044  * However, this must be done before maskable interrupts are enabled
2045  * otherwise the "iret" issued by an interrupt handler will incorrectly
2046  * clear NMI blocking.
2047  */
2048 static __inline void
2049 vmx_exit_handle_nmi(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
2050 {
2051 	uint32_t intr_info;
2052 
2053 	KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled"));
2054 
2055 	if (vmexit->u.vmx.exit_reason != EXIT_REASON_EXCEPTION)
2056 		return;
2057 
2058 	intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2059 	KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2060 	    ("VM exit interruption info invalid: %#x", intr_info));
2061 
2062 	if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) {
2063 		KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due "
2064 		    "to NMI has invalid vector: %#x", intr_info));
2065 		VCPU_CTR0(vmx->vm, vcpuid, "Vectoring to NMI handler");
2066 		__asm __volatile("int $2");
2067 	}
2068 }
2069 
2070 static int
2071 vmx_run(void *arg, int vcpu, register_t startrip, pmap_t pmap,
2072     void *rendezvous_cookie)
2073 {
2074 	int rc, handled, launched;
2075 	struct vmx *vmx;
2076 	struct vm *vm;
2077 	struct vmxctx *vmxctx;
2078 	struct vmcs *vmcs;
2079 	struct vm_exit *vmexit;
2080 	struct vlapic *vlapic;
2081 	uint64_t rip;
2082 	uint32_t exit_reason;
2083 
2084 	vmx = arg;
2085 	vm = vmx->vm;
2086 	vmcs = &vmx->vmcs[vcpu];
2087 	vmxctx = &vmx->ctx[vcpu];
2088 	vlapic = vm_lapic(vm, vcpu);
2089 	vmexit = vm_exitinfo(vm, vcpu);
2090 	launched = 0;
2091 
2092 	KASSERT(vmxctx->pmap == pmap,
2093 	    ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap));
2094 
2095 	VMPTRLD(vmcs);
2096 
2097 	/*
2098 	 * XXX
2099 	 * We do this every time because we may setup the virtual machine
2100 	 * from a different process than the one that actually runs it.
2101 	 *
2102 	 * If the life of a virtual machine was spent entirely in the context
2103 	 * of a single process we could do this once in vmx_vminit().
2104 	 */
2105 	vmcs_write(VMCS_HOST_CR3, rcr3());
2106 
2107 	vmcs_write(VMCS_GUEST_RIP, startrip);
2108 	vmx_set_pcpu_defaults(vmx, vcpu, pmap);
2109 	do {
2110 		/*
2111 		 * Interrupts are disabled from this point on until the
2112 		 * guest starts executing. This is done for the following
2113 		 * reasons:
2114 		 *
2115 		 * If an AST is asserted on this thread after the check below,
2116 		 * then the IPI_AST notification will not be lost, because it
2117 		 * will cause a VM exit due to external interrupt as soon as
2118 		 * the guest state is loaded.
2119 		 *
2120 		 * A posted interrupt after 'vmx_inject_interrupts()' will
2121 		 * not be "lost" because it will be held pending in the host
2122 		 * APIC because interrupts are disabled. The pending interrupt
2123 		 * will be recognized as soon as the guest state is loaded.
2124 		 *
2125 		 * The same reasoning applies to the IPI generated by
2126 		 * pmap_invalidate_ept().
2127 		 */
2128 		disable_intr();
2129 		if (curthread->td_flags & (TDF_ASTPENDING | TDF_NEEDRESCHED)) {
2130 			enable_intr();
2131 			handled = vmx_exit_astpending(vmx, vcpu, vmexit);
2132 			break;
2133 		}
2134 
2135 		if (vcpu_rendezvous_pending(rendezvous_cookie)) {
2136 			enable_intr();
2137 			handled = vmx_exit_rendezvous(vmx, vcpu, vmexit);
2138 			break;
2139 		}
2140 
2141 		vmx_inject_interrupts(vmx, vcpu, vlapic);
2142 		vmx_run_trace(vmx, vcpu);
2143 		rc = vmx_enter_guest(vmxctx, vmx, launched);
2144 
2145 		/* Collect some information for VM exit processing */
2146 		vmexit->rip = rip = vmcs_guest_rip();
2147 		vmexit->inst_length = vmexit_instruction_length();
2148 		vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
2149 		vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
2150 
2151 		if (rc == VMX_GUEST_VMEXIT) {
2152 			vmx_exit_handle_nmi(vmx, vcpu, vmexit);
2153 			enable_intr();
2154 			handled = vmx_exit_process(vmx, vcpu, vmexit);
2155 		} else {
2156 			enable_intr();
2157 			handled = vmx_exit_inst_error(vmxctx, rc, vmexit);
2158 		}
2159 		launched = 1;
2160 		vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled);
2161 	} while (handled);
2162 
2163 	/*
2164 	 * If a VM exit has been handled then the exitcode must be BOGUS
2165 	 * If a VM exit is not handled then the exitcode must not be BOGUS
2166 	 */
2167 	if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) ||
2168 	    (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) {
2169 		panic("Mismatch between handled (%d) and exitcode (%d)",
2170 		      handled, vmexit->exitcode);
2171 	}
2172 
2173 	if (!handled)
2174 		vmm_stat_incr(vm, vcpu, VMEXIT_USERSPACE, 1);
2175 
2176 	VCPU_CTR1(vm, vcpu, "returning from vmx_run: exitcode %d",
2177 	    vmexit->exitcode);
2178 
2179 	VMCLEAR(vmcs);
2180 	return (0);
2181 }
2182 
2183 static void
2184 vmx_vmcleanup(void *arg)
2185 {
2186 	int i, error;
2187 	struct vmx *vmx = arg;
2188 
2189 	if (apic_access_virtualization(vmx, 0))
2190 		vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
2191 
2192 	for (i = 0; i < VM_MAXCPU; i++)
2193 		vpid_free(vmx->state[i].vpid);
2194 
2195 	/*
2196 	 * XXXSMP we also need to clear the VMCS active on the other vcpus.
2197 	 */
2198 	error = vmclear(&vmx->vmcs[0]);
2199 	if (error != 0)
2200 		panic("vmx_vmcleanup: vmclear error %d on vcpu 0", error);
2201 
2202 	free(vmx, M_VMX);
2203 
2204 	return;
2205 }
2206 
2207 static register_t *
2208 vmxctx_regptr(struct vmxctx *vmxctx, int reg)
2209 {
2210 
2211 	switch (reg) {
2212 	case VM_REG_GUEST_RAX:
2213 		return (&vmxctx->guest_rax);
2214 	case VM_REG_GUEST_RBX:
2215 		return (&vmxctx->guest_rbx);
2216 	case VM_REG_GUEST_RCX:
2217 		return (&vmxctx->guest_rcx);
2218 	case VM_REG_GUEST_RDX:
2219 		return (&vmxctx->guest_rdx);
2220 	case VM_REG_GUEST_RSI:
2221 		return (&vmxctx->guest_rsi);
2222 	case VM_REG_GUEST_RDI:
2223 		return (&vmxctx->guest_rdi);
2224 	case VM_REG_GUEST_RBP:
2225 		return (&vmxctx->guest_rbp);
2226 	case VM_REG_GUEST_R8:
2227 		return (&vmxctx->guest_r8);
2228 	case VM_REG_GUEST_R9:
2229 		return (&vmxctx->guest_r9);
2230 	case VM_REG_GUEST_R10:
2231 		return (&vmxctx->guest_r10);
2232 	case VM_REG_GUEST_R11:
2233 		return (&vmxctx->guest_r11);
2234 	case VM_REG_GUEST_R12:
2235 		return (&vmxctx->guest_r12);
2236 	case VM_REG_GUEST_R13:
2237 		return (&vmxctx->guest_r13);
2238 	case VM_REG_GUEST_R14:
2239 		return (&vmxctx->guest_r14);
2240 	case VM_REG_GUEST_R15:
2241 		return (&vmxctx->guest_r15);
2242 	default:
2243 		break;
2244 	}
2245 	return (NULL);
2246 }
2247 
2248 static int
2249 vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval)
2250 {
2251 	register_t *regp;
2252 
2253 	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
2254 		*retval = *regp;
2255 		return (0);
2256 	} else
2257 		return (EINVAL);
2258 }
2259 
2260 static int
2261 vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val)
2262 {
2263 	register_t *regp;
2264 
2265 	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
2266 		*regp = val;
2267 		return (0);
2268 	} else
2269 		return (EINVAL);
2270 }
2271 
2272 static int
2273 vmx_shadow_reg(int reg)
2274 {
2275 	int shreg;
2276 
2277 	shreg = -1;
2278 
2279 	switch (reg) {
2280 	case VM_REG_GUEST_CR0:
2281 		shreg = VMCS_CR0_SHADOW;
2282                 break;
2283         case VM_REG_GUEST_CR4:
2284 		shreg = VMCS_CR4_SHADOW;
2285 		break;
2286 	default:
2287 		break;
2288 	}
2289 
2290 	return (shreg);
2291 }
2292 
2293 static int
2294 vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval)
2295 {
2296 	int running, hostcpu;
2297 	struct vmx *vmx = arg;
2298 
2299 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2300 	if (running && hostcpu != curcpu)
2301 		panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu);
2302 
2303 	if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0)
2304 		return (0);
2305 
2306 	return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval));
2307 }
2308 
2309 static int
2310 vmx_setreg(void *arg, int vcpu, int reg, uint64_t val)
2311 {
2312 	int error, hostcpu, running, shadow;
2313 	uint64_t ctls;
2314 	struct vmx *vmx = arg;
2315 
2316 	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2317 	if (running && hostcpu != curcpu)
2318 		panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu);
2319 
2320 	if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0)
2321 		return (0);
2322 
2323 	error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val);
2324 
2325 	if (error == 0) {
2326 		/*
2327 		 * If the "load EFER" VM-entry control is 1 then the
2328 		 * value of EFER.LMA must be identical to "IA-32e mode guest"
2329 		 * bit in the VM-entry control.
2330 		 */
2331 		if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 &&
2332 		    (reg == VM_REG_GUEST_EFER)) {
2333 			vmcs_getreg(&vmx->vmcs[vcpu], running,
2334 				    VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls);
2335 			if (val & EFER_LMA)
2336 				ctls |= VM_ENTRY_GUEST_LMA;
2337 			else
2338 				ctls &= ~VM_ENTRY_GUEST_LMA;
2339 			vmcs_setreg(&vmx->vmcs[vcpu], running,
2340 				    VMCS_IDENT(VMCS_ENTRY_CTLS), ctls);
2341 		}
2342 
2343 		shadow = vmx_shadow_reg(reg);
2344 		if (shadow > 0) {
2345 			/*
2346 			 * Store the unmodified value in the shadow
2347 			 */
2348 			error = vmcs_setreg(&vmx->vmcs[vcpu], running,
2349 				    VMCS_IDENT(shadow), val);
2350 		}
2351 	}
2352 
2353 	return (error);
2354 }
2355 
2356 static int
2357 vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
2358 {
2359 	struct vmx *vmx = arg;
2360 
2361 	return (vmcs_getdesc(&vmx->vmcs[vcpu], reg, desc));
2362 }
2363 
2364 static int
2365 vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
2366 {
2367 	struct vmx *vmx = arg;
2368 
2369 	return (vmcs_setdesc(&vmx->vmcs[vcpu], reg, desc));
2370 }
2371 
2372 static int
2373 vmx_getcap(void *arg, int vcpu, int type, int *retval)
2374 {
2375 	struct vmx *vmx = arg;
2376 	int vcap;
2377 	int ret;
2378 
2379 	ret = ENOENT;
2380 
2381 	vcap = vmx->cap[vcpu].set;
2382 
2383 	switch (type) {
2384 	case VM_CAP_HALT_EXIT:
2385 		if (cap_halt_exit)
2386 			ret = 0;
2387 		break;
2388 	case VM_CAP_PAUSE_EXIT:
2389 		if (cap_pause_exit)
2390 			ret = 0;
2391 		break;
2392 	case VM_CAP_MTRAP_EXIT:
2393 		if (cap_monitor_trap)
2394 			ret = 0;
2395 		break;
2396 	case VM_CAP_UNRESTRICTED_GUEST:
2397 		if (cap_unrestricted_guest)
2398 			ret = 0;
2399 		break;
2400 	case VM_CAP_ENABLE_INVPCID:
2401 		if (cap_invpcid)
2402 			ret = 0;
2403 		break;
2404 	default:
2405 		break;
2406 	}
2407 
2408 	if (ret == 0)
2409 		*retval = (vcap & (1 << type)) ? 1 : 0;
2410 
2411 	return (ret);
2412 }
2413 
2414 static int
2415 vmx_setcap(void *arg, int vcpu, int type, int val)
2416 {
2417 	struct vmx *vmx = arg;
2418 	struct vmcs *vmcs = &vmx->vmcs[vcpu];
2419 	uint32_t baseval;
2420 	uint32_t *pptr;
2421 	int error;
2422 	int flag;
2423 	int reg;
2424 	int retval;
2425 
2426 	retval = ENOENT;
2427 	pptr = NULL;
2428 
2429 	switch (type) {
2430 	case VM_CAP_HALT_EXIT:
2431 		if (cap_halt_exit) {
2432 			retval = 0;
2433 			pptr = &vmx->cap[vcpu].proc_ctls;
2434 			baseval = *pptr;
2435 			flag = PROCBASED_HLT_EXITING;
2436 			reg = VMCS_PRI_PROC_BASED_CTLS;
2437 		}
2438 		break;
2439 	case VM_CAP_MTRAP_EXIT:
2440 		if (cap_monitor_trap) {
2441 			retval = 0;
2442 			pptr = &vmx->cap[vcpu].proc_ctls;
2443 			baseval = *pptr;
2444 			flag = PROCBASED_MTF;
2445 			reg = VMCS_PRI_PROC_BASED_CTLS;
2446 		}
2447 		break;
2448 	case VM_CAP_PAUSE_EXIT:
2449 		if (cap_pause_exit) {
2450 			retval = 0;
2451 			pptr = &vmx->cap[vcpu].proc_ctls;
2452 			baseval = *pptr;
2453 			flag = PROCBASED_PAUSE_EXITING;
2454 			reg = VMCS_PRI_PROC_BASED_CTLS;
2455 		}
2456 		break;
2457 	case VM_CAP_UNRESTRICTED_GUEST:
2458 		if (cap_unrestricted_guest) {
2459 			retval = 0;
2460 			pptr = &vmx->cap[vcpu].proc_ctls2;
2461 			baseval = *pptr;
2462 			flag = PROCBASED2_UNRESTRICTED_GUEST;
2463 			reg = VMCS_SEC_PROC_BASED_CTLS;
2464 		}
2465 		break;
2466 	case VM_CAP_ENABLE_INVPCID:
2467 		if (cap_invpcid) {
2468 			retval = 0;
2469 			pptr = &vmx->cap[vcpu].proc_ctls2;
2470 			baseval = *pptr;
2471 			flag = PROCBASED2_ENABLE_INVPCID;
2472 			reg = VMCS_SEC_PROC_BASED_CTLS;
2473 		}
2474 		break;
2475 	default:
2476 		break;
2477 	}
2478 
2479 	if (retval == 0) {
2480 		if (val) {
2481 			baseval |= flag;
2482 		} else {
2483 			baseval &= ~flag;
2484 		}
2485 		VMPTRLD(vmcs);
2486 		error = vmwrite(reg, baseval);
2487 		VMCLEAR(vmcs);
2488 
2489 		if (error) {
2490 			retval = error;
2491 		} else {
2492 			/*
2493 			 * Update optional stored flags, and record
2494 			 * setting
2495 			 */
2496 			if (pptr != NULL) {
2497 				*pptr = baseval;
2498 			}
2499 
2500 			if (val) {
2501 				vmx->cap[vcpu].set |= (1 << type);
2502 			} else {
2503 				vmx->cap[vcpu].set &= ~(1 << type);
2504 			}
2505 		}
2506 	}
2507 
2508         return (retval);
2509 }
2510 
2511 struct vlapic_vtx {
2512 	struct vlapic	vlapic;
2513 	struct pir_desc	*pir_desc;
2514 	struct vmx	*vmx;
2515 };
2516 
2517 #define	VMX_CTR_PIR(vm, vcpuid, pir_desc, notify, vector, level, msg)	\
2518 do {									\
2519 	VCPU_CTR2(vm, vcpuid, msg " assert %s-triggered vector %d",	\
2520 	    level ? "level" : "edge", vector);				\
2521 	VCPU_CTR1(vm, vcpuid, msg " pir0 0x%016lx", pir_desc->pir[0]);	\
2522 	VCPU_CTR1(vm, vcpuid, msg " pir1 0x%016lx", pir_desc->pir[1]);	\
2523 	VCPU_CTR1(vm, vcpuid, msg " pir2 0x%016lx", pir_desc->pir[2]);	\
2524 	VCPU_CTR1(vm, vcpuid, msg " pir3 0x%016lx", pir_desc->pir[3]);	\
2525 	VCPU_CTR1(vm, vcpuid, msg " notify: %s", notify ? "yes" : "no");\
2526 } while (0)
2527 
2528 /*
2529  * vlapic->ops handlers that utilize the APICv hardware assist described in
2530  * Chapter 29 of the Intel SDM.
2531  */
2532 static int
2533 vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level)
2534 {
2535 	struct vlapic_vtx *vlapic_vtx;
2536 	struct pir_desc *pir_desc;
2537 	uint64_t mask;
2538 	int idx, notify;
2539 
2540 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
2541 	pir_desc = vlapic_vtx->pir_desc;
2542 
2543 	/*
2544 	 * Keep track of interrupt requests in the PIR descriptor. This is
2545 	 * because the virtual APIC page pointed to by the VMCS cannot be
2546 	 * modified if the vcpu is running.
2547 	 */
2548 	idx = vector / 64;
2549 	mask = 1UL << (vector % 64);
2550 	atomic_set_long(&pir_desc->pir[idx], mask);
2551 	notify = atomic_cmpset_long(&pir_desc->pending, 0, 1);
2552 
2553 	VMX_CTR_PIR(vlapic->vm, vlapic->vcpuid, pir_desc, notify, vector,
2554 	    level, "vmx_set_intr_ready");
2555 	return (notify);
2556 }
2557 
2558 static int
2559 vmx_pending_intr(struct vlapic *vlapic, int *vecptr)
2560 {
2561 	struct vlapic_vtx *vlapic_vtx;
2562 	struct pir_desc *pir_desc;
2563 	struct LAPIC *lapic;
2564 	uint64_t pending, pirval;
2565 	uint32_t ppr, vpr;
2566 	int i;
2567 
2568 	/*
2569 	 * This function is only expected to be called from the 'HLT' exit
2570 	 * handler which does not care about the vector that is pending.
2571 	 */
2572 	KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL"));
2573 
2574 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
2575 	pir_desc = vlapic_vtx->pir_desc;
2576 
2577 	pending = atomic_load_acq_long(&pir_desc->pending);
2578 	if (!pending)
2579 		return (0);	/* common case */
2580 
2581 	/*
2582 	 * If there is an interrupt pending then it will be recognized only
2583 	 * if its priority is greater than the processor priority.
2584 	 *
2585 	 * Special case: if the processor priority is zero then any pending
2586 	 * interrupt will be recognized.
2587 	 */
2588 	lapic = vlapic->apic_page;
2589 	ppr = lapic->ppr & 0xf0;
2590 	if (ppr == 0)
2591 		return (1);
2592 
2593 	VCPU_CTR1(vlapic->vm, vlapic->vcpuid, "HLT with non-zero PPR %d",
2594 	    lapic->ppr);
2595 
2596 	for (i = 3; i >= 0; i--) {
2597 		pirval = pir_desc->pir[i];
2598 		if (pirval != 0) {
2599 			vpr = (i * 64 + flsl(pirval) - 1) & 0xf0;
2600 			return (vpr > ppr);
2601 		}
2602 	}
2603 	return (0);
2604 }
2605 
2606 static void
2607 vmx_intr_accepted(struct vlapic *vlapic, int vector)
2608 {
2609 
2610 	panic("vmx_intr_accepted: not expected to be called");
2611 }
2612 
2613 static void
2614 vmx_set_tmr(struct vlapic *vlapic, int vector, bool level)
2615 {
2616 	struct vlapic_vtx *vlapic_vtx;
2617 	struct vmx *vmx;
2618 	struct vmcs *vmcs;
2619 	uint64_t mask, val;
2620 
2621 	KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d", vector));
2622 	KASSERT(!vcpu_is_running(vlapic->vm, vlapic->vcpuid, NULL),
2623 	    ("vmx_set_tmr: vcpu cannot be running"));
2624 
2625 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
2626 	vmx = vlapic_vtx->vmx;
2627 	vmcs = &vmx->vmcs[vlapic->vcpuid];
2628 	mask = 1UL << (vector % 64);
2629 
2630 	VMPTRLD(vmcs);
2631 	val = vmcs_read(VMCS_EOI_EXIT(vector));
2632 	if (level)
2633 		val |= mask;
2634 	else
2635 		val &= ~mask;
2636 	vmcs_write(VMCS_EOI_EXIT(vector), val);
2637 	VMCLEAR(vmcs);
2638 }
2639 
2640 static void
2641 vmx_enable_x2apic_mode(struct vlapic *vlapic)
2642 {
2643 	struct vmx *vmx;
2644 	struct vmcs *vmcs;
2645 	uint32_t proc_ctls2;
2646 	int vcpuid, error;
2647 
2648 	vcpuid = vlapic->vcpuid;
2649 	vmx = ((struct vlapic_vtx *)vlapic)->vmx;
2650 	vmcs = &vmx->vmcs[vcpuid];
2651 
2652 	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
2653 	KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0,
2654 	    ("%s: invalid proc_ctls2 %#x", __func__, proc_ctls2));
2655 
2656 	proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES;
2657 	proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE;
2658 	vmx->cap[vcpuid].proc_ctls2 = proc_ctls2;
2659 
2660 	VMPTRLD(vmcs);
2661 	vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2);
2662 	VMCLEAR(vmcs);
2663 
2664 	if (vlapic->vcpuid == 0) {
2665 		/*
2666 		 * The nested page table mappings are shared by all vcpus
2667 		 * so unmap the APIC access page just once.
2668 		 */
2669 		error = vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
2670 		KASSERT(error == 0, ("%s: vm_unmap_mmio error %d",
2671 		    __func__, error));
2672 
2673 		/*
2674 		 * The MSR bitmap is shared by all vcpus so modify it only
2675 		 * once in the context of vcpu 0.
2676 		 */
2677 		error = vmx_allow_x2apic_msrs(vmx);
2678 		KASSERT(error == 0, ("%s: vmx_allow_x2apic_msrs error %d",
2679 		    __func__, error));
2680 	}
2681 }
2682 
2683 static void
2684 vmx_post_intr(struct vlapic *vlapic, int hostcpu)
2685 {
2686 
2687 	ipi_cpu(hostcpu, pirvec);
2688 }
2689 
2690 /*
2691  * Transfer the pending interrupts in the PIR descriptor to the IRR
2692  * in the virtual APIC page.
2693  */
2694 static void
2695 vmx_inject_pir(struct vlapic *vlapic)
2696 {
2697 	struct vlapic_vtx *vlapic_vtx;
2698 	struct pir_desc *pir_desc;
2699 	struct LAPIC *lapic;
2700 	uint64_t val, pirval;
2701 	int rvi, pirbase;
2702 	uint16_t intr_status_old, intr_status_new;
2703 
2704 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
2705 	pir_desc = vlapic_vtx->pir_desc;
2706 	if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) {
2707 		VCPU_CTR0(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
2708 		    "no posted interrupt pending");
2709 		return;
2710 	}
2711 
2712 	pirval = 0;
2713 	lapic = vlapic->apic_page;
2714 
2715 	val = atomic_readandclear_long(&pir_desc->pir[0]);
2716 	if (val != 0) {
2717 		lapic->irr0 |= val;
2718 		lapic->irr1 |= val >> 32;
2719 		pirbase = 0;
2720 		pirval = val;
2721 	}
2722 
2723 	val = atomic_readandclear_long(&pir_desc->pir[1]);
2724 	if (val != 0) {
2725 		lapic->irr2 |= val;
2726 		lapic->irr3 |= val >> 32;
2727 		pirbase = 64;
2728 		pirval = val;
2729 	}
2730 
2731 	val = atomic_readandclear_long(&pir_desc->pir[2]);
2732 	if (val != 0) {
2733 		lapic->irr4 |= val;
2734 		lapic->irr5 |= val >> 32;
2735 		pirbase = 128;
2736 		pirval = val;
2737 	}
2738 
2739 	val = atomic_readandclear_long(&pir_desc->pir[3]);
2740 	if (val != 0) {
2741 		lapic->irr6 |= val;
2742 		lapic->irr7 |= val >> 32;
2743 		pirbase = 192;
2744 		pirval = val;
2745 	}
2746 	VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir");
2747 
2748 	/*
2749 	 * Update RVI so the processor can evaluate pending virtual
2750 	 * interrupts on VM-entry.
2751 	 */
2752 	if (pirval != 0) {
2753 		rvi = pirbase + flsl(pirval) - 1;
2754 		intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS);
2755 		intr_status_new = (intr_status_old & 0xFF00) | rvi;
2756 		if (intr_status_new > intr_status_old) {
2757 			vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new);
2758 			VCPU_CTR2(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
2759 			    "guest_intr_status changed from 0x%04x to 0x%04x",
2760 			    intr_status_old, intr_status_new);
2761 		}
2762 	}
2763 }
2764 
2765 static struct vlapic *
2766 vmx_vlapic_init(void *arg, int vcpuid)
2767 {
2768 	struct vmx *vmx;
2769 	struct vlapic *vlapic;
2770 	struct vlapic_vtx *vlapic_vtx;
2771 
2772 	vmx = arg;
2773 
2774 	vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO);
2775 	vlapic->vm = vmx->vm;
2776 	vlapic->vcpuid = vcpuid;
2777 	vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid];
2778 
2779 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
2780 	vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid];
2781 	vlapic_vtx->vmx = vmx;
2782 
2783 	if (virtual_interrupt_delivery) {
2784 		vlapic->ops.set_intr_ready = vmx_set_intr_ready;
2785 		vlapic->ops.pending_intr = vmx_pending_intr;
2786 		vlapic->ops.intr_accepted = vmx_intr_accepted;
2787 		vlapic->ops.set_tmr = vmx_set_tmr;
2788 		vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode;
2789 	}
2790 
2791 	if (posted_interrupts)
2792 		vlapic->ops.post_intr = vmx_post_intr;
2793 
2794 	vlapic_init(vlapic);
2795 
2796 	return (vlapic);
2797 }
2798 
2799 static void
2800 vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic)
2801 {
2802 
2803 	vlapic_cleanup(vlapic);
2804 	free(vlapic, M_VLAPIC);
2805 }
2806 
2807 struct vmm_ops vmm_ops_intel = {
2808 	vmx_init,
2809 	vmx_cleanup,
2810 	vmx_restore,
2811 	vmx_vminit,
2812 	vmx_run,
2813 	vmx_vmcleanup,
2814 	vmx_getreg,
2815 	vmx_setreg,
2816 	vmx_getdesc,
2817 	vmx_setdesc,
2818 	vmx_getcap,
2819 	vmx_setcap,
2820 	ept_vmspace_alloc,
2821 	ept_vmspace_free,
2822 	vmx_vlapic_init,
2823 	vmx_vlapic_cleanup,
2824 };
2825