1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * Copyright (c) 2018 Joyent, Inc. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $FreeBSD$ 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_bhyve_snapshot.h" 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/smp.h> 40 #include <sys/kernel.h> 41 #include <sys/malloc.h> 42 #include <sys/pcpu.h> 43 #include <sys/proc.h> 44 #include <sys/reg.h> 45 #include <sys/smr.h> 46 #include <sys/sysctl.h> 47 48 #include <vm/vm.h> 49 #include <vm/pmap.h> 50 51 #include <machine/psl.h> 52 #include <machine/cpufunc.h> 53 #include <machine/md_var.h> 54 #include <machine/segments.h> 55 #include <machine/smp.h> 56 #include <machine/specialreg.h> 57 #include <machine/vmparam.h> 58 59 #include <machine/vmm.h> 60 #include <machine/vmm_dev.h> 61 #include <machine/vmm_instruction_emul.h> 62 #include <machine/vmm_snapshot.h> 63 64 #include "vmm_lapic.h" 65 #include "vmm_host.h" 66 #include "vmm_ioport.h" 67 #include "vmm_ktr.h" 68 #include "vmm_stat.h" 69 #include "vatpic.h" 70 #include "vlapic.h" 71 #include "vlapic_priv.h" 72 73 #include "ept.h" 74 #include "vmx_cpufunc.h" 75 #include "vmx.h" 76 #include "vmx_msr.h" 77 #include "x86.h" 78 #include "vmx_controls.h" 79 80 #define PINBASED_CTLS_ONE_SETTING \ 81 (PINBASED_EXTINT_EXITING | \ 82 PINBASED_NMI_EXITING | \ 83 PINBASED_VIRTUAL_NMI) 84 #define PINBASED_CTLS_ZERO_SETTING 0 85 86 #define PROCBASED_CTLS_WINDOW_SETTING \ 87 (PROCBASED_INT_WINDOW_EXITING | \ 88 PROCBASED_NMI_WINDOW_EXITING) 89 90 #define PROCBASED_CTLS_ONE_SETTING \ 91 (PROCBASED_SECONDARY_CONTROLS | \ 92 PROCBASED_MWAIT_EXITING | \ 93 PROCBASED_MONITOR_EXITING | \ 94 PROCBASED_IO_EXITING | \ 95 PROCBASED_MSR_BITMAPS | \ 96 PROCBASED_CTLS_WINDOW_SETTING | \ 97 PROCBASED_CR8_LOAD_EXITING | \ 98 PROCBASED_CR8_STORE_EXITING) 99 #define PROCBASED_CTLS_ZERO_SETTING \ 100 (PROCBASED_CR3_LOAD_EXITING | \ 101 PROCBASED_CR3_STORE_EXITING | \ 102 PROCBASED_IO_BITMAPS) 103 104 #define PROCBASED_CTLS2_ONE_SETTING PROCBASED2_ENABLE_EPT 105 #define PROCBASED_CTLS2_ZERO_SETTING 0 106 107 #define VM_EXIT_CTLS_ONE_SETTING \ 108 (VM_EXIT_SAVE_DEBUG_CONTROLS | \ 109 VM_EXIT_HOST_LMA | \ 110 VM_EXIT_SAVE_EFER | \ 111 VM_EXIT_LOAD_EFER | \ 112 VM_EXIT_ACKNOWLEDGE_INTERRUPT) 113 114 #define VM_EXIT_CTLS_ZERO_SETTING 0 115 116 #define VM_ENTRY_CTLS_ONE_SETTING \ 117 (VM_ENTRY_LOAD_DEBUG_CONTROLS | \ 118 VM_ENTRY_LOAD_EFER) 119 120 #define VM_ENTRY_CTLS_ZERO_SETTING \ 121 (VM_ENTRY_INTO_SMM | \ 122 VM_ENTRY_DEACTIVATE_DUAL_MONITOR) 123 124 #define HANDLED 1 125 #define UNHANDLED 0 126 127 static MALLOC_DEFINE(M_VMX, "vmx", "vmx"); 128 static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic"); 129 130 SYSCTL_DECL(_hw_vmm); 131 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 132 NULL); 133 134 int vmxon_enabled[MAXCPU]; 135 static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE); 136 137 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2; 138 static uint32_t exit_ctls, entry_ctls; 139 140 static uint64_t cr0_ones_mask, cr0_zeros_mask; 141 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD, 142 &cr0_ones_mask, 0, NULL); 143 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD, 144 &cr0_zeros_mask, 0, NULL); 145 146 static uint64_t cr4_ones_mask, cr4_zeros_mask; 147 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD, 148 &cr4_ones_mask, 0, NULL); 149 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD, 150 &cr4_zeros_mask, 0, NULL); 151 152 static int vmx_initialized; 153 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD, 154 &vmx_initialized, 0, "Intel VMX initialized"); 155 156 /* 157 * Optional capabilities 158 */ 159 static SYSCTL_NODE(_hw_vmm_vmx, OID_AUTO, cap, 160 CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 161 NULL); 162 163 static int cap_halt_exit; 164 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, halt_exit, CTLFLAG_RD, &cap_halt_exit, 0, 165 "HLT triggers a VM-exit"); 166 167 static int cap_pause_exit; 168 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, pause_exit, CTLFLAG_RD, &cap_pause_exit, 169 0, "PAUSE triggers a VM-exit"); 170 171 static int cap_wbinvd_exit; 172 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, wbinvd_exit, CTLFLAG_RD, &cap_wbinvd_exit, 173 0, "WBINVD triggers a VM-exit"); 174 175 static int cap_rdpid; 176 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, rdpid, CTLFLAG_RD, &cap_rdpid, 0, 177 "Guests are allowed to use RDPID"); 178 179 static int cap_rdtscp; 180 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, rdtscp, CTLFLAG_RD, &cap_rdtscp, 0, 181 "Guests are allowed to use RDTSCP"); 182 183 static int cap_unrestricted_guest; 184 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, unrestricted_guest, CTLFLAG_RD, 185 &cap_unrestricted_guest, 0, "Unrestricted guests"); 186 187 static int cap_monitor_trap; 188 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, monitor_trap, CTLFLAG_RD, 189 &cap_monitor_trap, 0, "Monitor trap flag"); 190 191 static int cap_invpcid; 192 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, invpcid, CTLFLAG_RD, &cap_invpcid, 193 0, "Guests are allowed to use INVPCID"); 194 195 static int tpr_shadowing; 196 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, tpr_shadowing, CTLFLAG_RD, 197 &tpr_shadowing, 0, "TPR shadowing support"); 198 199 static int virtual_interrupt_delivery; 200 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD, 201 &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support"); 202 203 static int posted_interrupts; 204 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, posted_interrupts, CTLFLAG_RD, 205 &posted_interrupts, 0, "APICv posted interrupt support"); 206 207 static int pirvec = -1; 208 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD, 209 &pirvec, 0, "APICv posted interrupt vector"); 210 211 static struct unrhdr *vpid_unr; 212 static u_int vpid_alloc_failed; 213 SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD, 214 &vpid_alloc_failed, 0, NULL); 215 216 int guest_l1d_flush; 217 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush, CTLFLAG_RD, 218 &guest_l1d_flush, 0, NULL); 219 int guest_l1d_flush_sw; 220 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush_sw, CTLFLAG_RD, 221 &guest_l1d_flush_sw, 0, NULL); 222 223 static struct msr_entry msr_load_list[1] __aligned(16); 224 225 /* 226 * The definitions of SDT probes for VMX. 227 */ 228 229 SDT_PROBE_DEFINE3(vmm, vmx, exit, entry, 230 "struct vmx *", "int", "struct vm_exit *"); 231 232 SDT_PROBE_DEFINE4(vmm, vmx, exit, taskswitch, 233 "struct vmx *", "int", "struct vm_exit *", "struct vm_task_switch *"); 234 235 SDT_PROBE_DEFINE4(vmm, vmx, exit, craccess, 236 "struct vmx *", "int", "struct vm_exit *", "uint64_t"); 237 238 SDT_PROBE_DEFINE4(vmm, vmx, exit, rdmsr, 239 "struct vmx *", "int", "struct vm_exit *", "uint32_t"); 240 241 SDT_PROBE_DEFINE5(vmm, vmx, exit, wrmsr, 242 "struct vmx *", "int", "struct vm_exit *", "uint32_t", "uint64_t"); 243 244 SDT_PROBE_DEFINE3(vmm, vmx, exit, halt, 245 "struct vmx *", "int", "struct vm_exit *"); 246 247 SDT_PROBE_DEFINE3(vmm, vmx, exit, mtrap, 248 "struct vmx *", "int", "struct vm_exit *"); 249 250 SDT_PROBE_DEFINE3(vmm, vmx, exit, pause, 251 "struct vmx *", "int", "struct vm_exit *"); 252 253 SDT_PROBE_DEFINE3(vmm, vmx, exit, intrwindow, 254 "struct vmx *", "int", "struct vm_exit *"); 255 256 SDT_PROBE_DEFINE4(vmm, vmx, exit, interrupt, 257 "struct vmx *", "int", "struct vm_exit *", "uint32_t"); 258 259 SDT_PROBE_DEFINE3(vmm, vmx, exit, nmiwindow, 260 "struct vmx *", "int", "struct vm_exit *"); 261 262 SDT_PROBE_DEFINE3(vmm, vmx, exit, inout, 263 "struct vmx *", "int", "struct vm_exit *"); 264 265 SDT_PROBE_DEFINE3(vmm, vmx, exit, cpuid, 266 "struct vmx *", "int", "struct vm_exit *"); 267 268 SDT_PROBE_DEFINE5(vmm, vmx, exit, exception, 269 "struct vmx *", "int", "struct vm_exit *", "uint32_t", "int"); 270 271 SDT_PROBE_DEFINE5(vmm, vmx, exit, nestedfault, 272 "struct vmx *", "int", "struct vm_exit *", "uint64_t", "uint64_t"); 273 274 SDT_PROBE_DEFINE4(vmm, vmx, exit, mmiofault, 275 "struct vmx *", "int", "struct vm_exit *", "uint64_t"); 276 277 SDT_PROBE_DEFINE3(vmm, vmx, exit, eoi, 278 "struct vmx *", "int", "struct vm_exit *"); 279 280 SDT_PROBE_DEFINE3(vmm, vmx, exit, apicaccess, 281 "struct vmx *", "int", "struct vm_exit *"); 282 283 SDT_PROBE_DEFINE4(vmm, vmx, exit, apicwrite, 284 "struct vmx *", "int", "struct vm_exit *", "struct vlapic *"); 285 286 SDT_PROBE_DEFINE3(vmm, vmx, exit, xsetbv, 287 "struct vmx *", "int", "struct vm_exit *"); 288 289 SDT_PROBE_DEFINE3(vmm, vmx, exit, monitor, 290 "struct vmx *", "int", "struct vm_exit *"); 291 292 SDT_PROBE_DEFINE3(vmm, vmx, exit, mwait, 293 "struct vmx *", "int", "struct vm_exit *"); 294 295 SDT_PROBE_DEFINE3(vmm, vmx, exit, vminsn, 296 "struct vmx *", "int", "struct vm_exit *"); 297 298 SDT_PROBE_DEFINE4(vmm, vmx, exit, unknown, 299 "struct vmx *", "int", "struct vm_exit *", "uint32_t"); 300 301 SDT_PROBE_DEFINE4(vmm, vmx, exit, return, 302 "struct vmx *", "int", "struct vm_exit *", "int"); 303 304 /* 305 * Use the last page below 4GB as the APIC access address. This address is 306 * occupied by the boot firmware so it is guaranteed that it will not conflict 307 * with a page in system memory. 308 */ 309 #define APIC_ACCESS_ADDRESS 0xFFFFF000 310 311 static int vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc); 312 static int vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval); 313 static int vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val); 314 static void vmx_inject_pir(struct vlapic *vlapic); 315 #ifdef BHYVE_SNAPSHOT 316 static int vmx_restore_tsc(void *arg, int vcpu, uint64_t now); 317 #endif 318 319 static inline bool 320 host_has_rdpid(void) 321 { 322 return ((cpu_stdext_feature2 & CPUID_STDEXT2_RDPID) != 0); 323 } 324 325 static inline bool 326 host_has_rdtscp(void) 327 { 328 return ((amd_feature & AMDID_RDTSCP) != 0); 329 } 330 331 #ifdef KTR 332 static const char * 333 exit_reason_to_str(int reason) 334 { 335 static char reasonbuf[32]; 336 337 switch (reason) { 338 case EXIT_REASON_EXCEPTION: 339 return "exception"; 340 case EXIT_REASON_EXT_INTR: 341 return "extint"; 342 case EXIT_REASON_TRIPLE_FAULT: 343 return "triplefault"; 344 case EXIT_REASON_INIT: 345 return "init"; 346 case EXIT_REASON_SIPI: 347 return "sipi"; 348 case EXIT_REASON_IO_SMI: 349 return "iosmi"; 350 case EXIT_REASON_SMI: 351 return "smi"; 352 case EXIT_REASON_INTR_WINDOW: 353 return "intrwindow"; 354 case EXIT_REASON_NMI_WINDOW: 355 return "nmiwindow"; 356 case EXIT_REASON_TASK_SWITCH: 357 return "taskswitch"; 358 case EXIT_REASON_CPUID: 359 return "cpuid"; 360 case EXIT_REASON_GETSEC: 361 return "getsec"; 362 case EXIT_REASON_HLT: 363 return "hlt"; 364 case EXIT_REASON_INVD: 365 return "invd"; 366 case EXIT_REASON_INVLPG: 367 return "invlpg"; 368 case EXIT_REASON_RDPMC: 369 return "rdpmc"; 370 case EXIT_REASON_RDTSC: 371 return "rdtsc"; 372 case EXIT_REASON_RSM: 373 return "rsm"; 374 case EXIT_REASON_VMCALL: 375 return "vmcall"; 376 case EXIT_REASON_VMCLEAR: 377 return "vmclear"; 378 case EXIT_REASON_VMLAUNCH: 379 return "vmlaunch"; 380 case EXIT_REASON_VMPTRLD: 381 return "vmptrld"; 382 case EXIT_REASON_VMPTRST: 383 return "vmptrst"; 384 case EXIT_REASON_VMREAD: 385 return "vmread"; 386 case EXIT_REASON_VMRESUME: 387 return "vmresume"; 388 case EXIT_REASON_VMWRITE: 389 return "vmwrite"; 390 case EXIT_REASON_VMXOFF: 391 return "vmxoff"; 392 case EXIT_REASON_VMXON: 393 return "vmxon"; 394 case EXIT_REASON_CR_ACCESS: 395 return "craccess"; 396 case EXIT_REASON_DR_ACCESS: 397 return "draccess"; 398 case EXIT_REASON_INOUT: 399 return "inout"; 400 case EXIT_REASON_RDMSR: 401 return "rdmsr"; 402 case EXIT_REASON_WRMSR: 403 return "wrmsr"; 404 case EXIT_REASON_INVAL_VMCS: 405 return "invalvmcs"; 406 case EXIT_REASON_INVAL_MSR: 407 return "invalmsr"; 408 case EXIT_REASON_MWAIT: 409 return "mwait"; 410 case EXIT_REASON_MTF: 411 return "mtf"; 412 case EXIT_REASON_MONITOR: 413 return "monitor"; 414 case EXIT_REASON_PAUSE: 415 return "pause"; 416 case EXIT_REASON_MCE_DURING_ENTRY: 417 return "mce-during-entry"; 418 case EXIT_REASON_TPR: 419 return "tpr"; 420 case EXIT_REASON_APIC_ACCESS: 421 return "apic-access"; 422 case EXIT_REASON_GDTR_IDTR: 423 return "gdtridtr"; 424 case EXIT_REASON_LDTR_TR: 425 return "ldtrtr"; 426 case EXIT_REASON_EPT_FAULT: 427 return "eptfault"; 428 case EXIT_REASON_EPT_MISCONFIG: 429 return "eptmisconfig"; 430 case EXIT_REASON_INVEPT: 431 return "invept"; 432 case EXIT_REASON_RDTSCP: 433 return "rdtscp"; 434 case EXIT_REASON_VMX_PREEMPT: 435 return "vmxpreempt"; 436 case EXIT_REASON_INVVPID: 437 return "invvpid"; 438 case EXIT_REASON_WBINVD: 439 return "wbinvd"; 440 case EXIT_REASON_XSETBV: 441 return "xsetbv"; 442 case EXIT_REASON_APIC_WRITE: 443 return "apic-write"; 444 default: 445 snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason); 446 return (reasonbuf); 447 } 448 } 449 #endif /* KTR */ 450 451 static int 452 vmx_allow_x2apic_msrs(struct vmx *vmx) 453 { 454 int i, error; 455 456 error = 0; 457 458 /* 459 * Allow readonly access to the following x2APIC MSRs from the guest. 460 */ 461 error += guest_msr_ro(vmx, MSR_APIC_ID); 462 error += guest_msr_ro(vmx, MSR_APIC_VERSION); 463 error += guest_msr_ro(vmx, MSR_APIC_LDR); 464 error += guest_msr_ro(vmx, MSR_APIC_SVR); 465 466 for (i = 0; i < 8; i++) 467 error += guest_msr_ro(vmx, MSR_APIC_ISR0 + i); 468 469 for (i = 0; i < 8; i++) 470 error += guest_msr_ro(vmx, MSR_APIC_TMR0 + i); 471 472 for (i = 0; i < 8; i++) 473 error += guest_msr_ro(vmx, MSR_APIC_IRR0 + i); 474 475 error += guest_msr_ro(vmx, MSR_APIC_ESR); 476 error += guest_msr_ro(vmx, MSR_APIC_LVT_TIMER); 477 error += guest_msr_ro(vmx, MSR_APIC_LVT_THERMAL); 478 error += guest_msr_ro(vmx, MSR_APIC_LVT_PCINT); 479 error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT0); 480 error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT1); 481 error += guest_msr_ro(vmx, MSR_APIC_LVT_ERROR); 482 error += guest_msr_ro(vmx, MSR_APIC_ICR_TIMER); 483 error += guest_msr_ro(vmx, MSR_APIC_DCR_TIMER); 484 error += guest_msr_ro(vmx, MSR_APIC_ICR); 485 486 /* 487 * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest. 488 * 489 * These registers get special treatment described in the section 490 * "Virtualizing MSR-Based APIC Accesses". 491 */ 492 error += guest_msr_rw(vmx, MSR_APIC_TPR); 493 error += guest_msr_rw(vmx, MSR_APIC_EOI); 494 error += guest_msr_rw(vmx, MSR_APIC_SELF_IPI); 495 496 return (error); 497 } 498 499 u_long 500 vmx_fix_cr0(u_long cr0) 501 { 502 503 return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask); 504 } 505 506 u_long 507 vmx_fix_cr4(u_long cr4) 508 { 509 510 return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask); 511 } 512 513 static void 514 vpid_free(int vpid) 515 { 516 if (vpid < 0 || vpid > 0xffff) 517 panic("vpid_free: invalid vpid %d", vpid); 518 519 /* 520 * VPIDs [0,VM_MAXCPU] are special and are not allocated from 521 * the unit number allocator. 522 */ 523 524 if (vpid > VM_MAXCPU) 525 free_unr(vpid_unr, vpid); 526 } 527 528 static void 529 vpid_alloc(uint16_t *vpid, int num) 530 { 531 int i, x; 532 533 if (num <= 0 || num > VM_MAXCPU) 534 panic("invalid number of vpids requested: %d", num); 535 536 /* 537 * If the "enable vpid" execution control is not enabled then the 538 * VPID is required to be 0 for all vcpus. 539 */ 540 if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) { 541 for (i = 0; i < num; i++) 542 vpid[i] = 0; 543 return; 544 } 545 546 /* 547 * Allocate a unique VPID for each vcpu from the unit number allocator. 548 */ 549 for (i = 0; i < num; i++) { 550 x = alloc_unr(vpid_unr); 551 if (x == -1) 552 break; 553 else 554 vpid[i] = x; 555 } 556 557 if (i < num) { 558 atomic_add_int(&vpid_alloc_failed, 1); 559 560 /* 561 * If the unit number allocator does not have enough unique 562 * VPIDs then we need to allocate from the [1,VM_MAXCPU] range. 563 * 564 * These VPIDs are not be unique across VMs but this does not 565 * affect correctness because the combined mappings are also 566 * tagged with the EP4TA which is unique for each VM. 567 * 568 * It is still sub-optimal because the invvpid will invalidate 569 * combined mappings for a particular VPID across all EP4TAs. 570 */ 571 while (i-- > 0) 572 vpid_free(vpid[i]); 573 574 for (i = 0; i < num; i++) 575 vpid[i] = i + 1; 576 } 577 } 578 579 static void 580 vpid_init(void) 581 { 582 /* 583 * VPID 0 is required when the "enable VPID" execution control is 584 * disabled. 585 * 586 * VPIDs [1,VM_MAXCPU] are used as the "overflow namespace" when the 587 * unit number allocator does not have sufficient unique VPIDs to 588 * satisfy the allocation. 589 * 590 * The remaining VPIDs are managed by the unit number allocator. 591 */ 592 vpid_unr = new_unrhdr(VM_MAXCPU + 1, 0xffff, NULL); 593 } 594 595 static void 596 vmx_disable(void *arg __unused) 597 { 598 struct invvpid_desc invvpid_desc = { 0 }; 599 struct invept_desc invept_desc = { 0 }; 600 601 if (vmxon_enabled[curcpu]) { 602 /* 603 * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b. 604 * 605 * VMXON or VMXOFF are not required to invalidate any TLB 606 * caching structures. This prevents potential retention of 607 * cached information in the TLB between distinct VMX episodes. 608 */ 609 invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc); 610 invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc); 611 vmxoff(); 612 } 613 load_cr4(rcr4() & ~CR4_VMXE); 614 } 615 616 static int 617 vmx_modcleanup(void) 618 { 619 620 if (pirvec >= 0) 621 lapic_ipi_free(pirvec); 622 623 if (vpid_unr != NULL) { 624 delete_unrhdr(vpid_unr); 625 vpid_unr = NULL; 626 } 627 628 if (nmi_flush_l1d_sw == 1) 629 nmi_flush_l1d_sw = 0; 630 631 smp_rendezvous(NULL, vmx_disable, NULL, NULL); 632 633 return (0); 634 } 635 636 static void 637 vmx_enable(void *arg __unused) 638 { 639 int error; 640 uint64_t feature_control; 641 642 feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL); 643 if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 || 644 (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) { 645 wrmsr(MSR_IA32_FEATURE_CONTROL, 646 feature_control | IA32_FEATURE_CONTROL_VMX_EN | 647 IA32_FEATURE_CONTROL_LOCK); 648 } 649 650 load_cr4(rcr4() | CR4_VMXE); 651 652 *(uint32_t *)vmxon_region[curcpu] = vmx_revision(); 653 error = vmxon(vmxon_region[curcpu]); 654 if (error == 0) 655 vmxon_enabled[curcpu] = 1; 656 } 657 658 static void 659 vmx_modresume(void) 660 { 661 662 if (vmxon_enabled[curcpu]) 663 vmxon(vmxon_region[curcpu]); 664 } 665 666 static int 667 vmx_modinit(int ipinum) 668 { 669 int error; 670 uint64_t basic, fixed0, fixed1, feature_control; 671 uint32_t tmp, procbased2_vid_bits; 672 673 /* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */ 674 if (!(cpu_feature2 & CPUID2_VMX)) { 675 printf("vmx_modinit: processor does not support VMX " 676 "operation\n"); 677 return (ENXIO); 678 } 679 680 /* 681 * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits 682 * are set (bits 0 and 2 respectively). 683 */ 684 feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL); 685 if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 1 && 686 (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) { 687 printf("vmx_modinit: VMX operation disabled by BIOS\n"); 688 return (ENXIO); 689 } 690 691 /* 692 * Verify capabilities MSR_VMX_BASIC: 693 * - bit 54 indicates support for INS/OUTS decoding 694 */ 695 basic = rdmsr(MSR_VMX_BASIC); 696 if ((basic & (1UL << 54)) == 0) { 697 printf("vmx_modinit: processor does not support desired basic " 698 "capabilities\n"); 699 return (EINVAL); 700 } 701 702 /* Check support for primary processor-based VM-execution controls */ 703 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 704 MSR_VMX_TRUE_PROCBASED_CTLS, 705 PROCBASED_CTLS_ONE_SETTING, 706 PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls); 707 if (error) { 708 printf("vmx_modinit: processor does not support desired " 709 "primary processor-based controls\n"); 710 return (error); 711 } 712 713 /* Clear the processor-based ctl bits that are set on demand */ 714 procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING; 715 716 /* Check support for secondary processor-based VM-execution controls */ 717 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, 718 MSR_VMX_PROCBASED_CTLS2, 719 PROCBASED_CTLS2_ONE_SETTING, 720 PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2); 721 if (error) { 722 printf("vmx_modinit: processor does not support desired " 723 "secondary processor-based controls\n"); 724 return (error); 725 } 726 727 /* Check support for VPID */ 728 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2, 729 PROCBASED2_ENABLE_VPID, 0, &tmp); 730 if (error == 0) 731 procbased_ctls2 |= PROCBASED2_ENABLE_VPID; 732 733 /* Check support for pin-based VM-execution controls */ 734 error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS, 735 MSR_VMX_TRUE_PINBASED_CTLS, 736 PINBASED_CTLS_ONE_SETTING, 737 PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls); 738 if (error) { 739 printf("vmx_modinit: processor does not support desired " 740 "pin-based controls\n"); 741 return (error); 742 } 743 744 /* Check support for VM-exit controls */ 745 error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS, 746 VM_EXIT_CTLS_ONE_SETTING, 747 VM_EXIT_CTLS_ZERO_SETTING, 748 &exit_ctls); 749 if (error) { 750 printf("vmx_modinit: processor does not support desired " 751 "exit controls\n"); 752 return (error); 753 } 754 755 /* Check support for VM-entry controls */ 756 error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS, 757 VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING, 758 &entry_ctls); 759 if (error) { 760 printf("vmx_modinit: processor does not support desired " 761 "entry controls\n"); 762 return (error); 763 } 764 765 /* 766 * Check support for optional features by testing them 767 * as individual bits 768 */ 769 cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 770 MSR_VMX_TRUE_PROCBASED_CTLS, 771 PROCBASED_HLT_EXITING, 0, 772 &tmp) == 0); 773 774 cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 775 MSR_VMX_PROCBASED_CTLS, 776 PROCBASED_MTF, 0, 777 &tmp) == 0); 778 779 cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 780 MSR_VMX_TRUE_PROCBASED_CTLS, 781 PROCBASED_PAUSE_EXITING, 0, 782 &tmp) == 0); 783 784 cap_wbinvd_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, 785 MSR_VMX_PROCBASED_CTLS2, 786 PROCBASED2_WBINVD_EXITING, 787 0, 788 &tmp) == 0); 789 790 /* 791 * Check support for RDPID and/or RDTSCP. 792 * 793 * Support a pass-through-based implementation of these via the 794 * "enable RDTSCP" VM-execution control and the "RDTSC exiting" 795 * VM-execution control. 796 * 797 * The "enable RDTSCP" VM-execution control applies to both RDPID 798 * and RDTSCP (see SDM volume 3, section 25.3, "Changes to 799 * Instruction Behavior in VMX Non-root operation"); this is why 800 * only this VM-execution control needs to be enabled in order to 801 * enable passing through whichever of RDPID and/or RDTSCP are 802 * supported by the host. 803 * 804 * The "RDTSC exiting" VM-execution control applies to both RDTSC 805 * and RDTSCP (again, per SDM volume 3, section 25.3), and is 806 * already set up for RDTSC and RDTSCP pass-through by the current 807 * implementation of RDTSC. 808 * 809 * Although RDPID and RDTSCP are optional capabilities, since there 810 * does not currently seem to be a use case for enabling/disabling 811 * these via libvmmapi, choose not to support this and, instead, 812 * just statically always enable or always disable this support 813 * across all vCPUs on all VMs. (Note that there may be some 814 * complications to providing this functionality, e.g., the MSR 815 * bitmap is currently per-VM rather than per-vCPU while the 816 * capability API wants to be able to control capabilities on a 817 * per-vCPU basis). 818 */ 819 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, 820 MSR_VMX_PROCBASED_CTLS2, 821 PROCBASED2_ENABLE_RDTSCP, 0, &tmp); 822 cap_rdpid = error == 0 && host_has_rdpid(); 823 cap_rdtscp = error == 0 && host_has_rdtscp(); 824 if (cap_rdpid || cap_rdtscp) 825 procbased_ctls2 |= PROCBASED2_ENABLE_RDTSCP; 826 827 cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, 828 MSR_VMX_PROCBASED_CTLS2, 829 PROCBASED2_UNRESTRICTED_GUEST, 0, 830 &tmp) == 0); 831 832 cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, 833 MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0, 834 &tmp) == 0); 835 836 /* 837 * Check support for TPR shadow. 838 */ 839 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, 840 MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0, 841 &tmp); 842 if (error == 0) { 843 tpr_shadowing = 1; 844 TUNABLE_INT_FETCH("hw.vmm.vmx.use_tpr_shadowing", 845 &tpr_shadowing); 846 } 847 848 if (tpr_shadowing) { 849 procbased_ctls |= PROCBASED_USE_TPR_SHADOW; 850 procbased_ctls &= ~PROCBASED_CR8_LOAD_EXITING; 851 procbased_ctls &= ~PROCBASED_CR8_STORE_EXITING; 852 } 853 854 /* 855 * Check support for virtual interrupt delivery. 856 */ 857 procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES | 858 PROCBASED2_VIRTUALIZE_X2APIC_MODE | 859 PROCBASED2_APIC_REGISTER_VIRTUALIZATION | 860 PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY); 861 862 error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2, 863 procbased2_vid_bits, 0, &tmp); 864 if (error == 0 && tpr_shadowing) { 865 virtual_interrupt_delivery = 1; 866 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid", 867 &virtual_interrupt_delivery); 868 } 869 870 if (virtual_interrupt_delivery) { 871 procbased_ctls |= PROCBASED_USE_TPR_SHADOW; 872 procbased_ctls2 |= procbased2_vid_bits; 873 procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE; 874 875 /* 876 * Check for Posted Interrupts only if Virtual Interrupt 877 * Delivery is enabled. 878 */ 879 error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS, 880 MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0, 881 &tmp); 882 if (error == 0) { 883 pirvec = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) : 884 &IDTVEC(justreturn)); 885 if (pirvec < 0) { 886 if (bootverbose) { 887 printf("vmx_modinit: unable to " 888 "allocate posted interrupt " 889 "vector\n"); 890 } 891 } else { 892 posted_interrupts = 1; 893 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir", 894 &posted_interrupts); 895 } 896 } 897 } 898 899 if (posted_interrupts) 900 pinbased_ctls |= PINBASED_POSTED_INTERRUPT; 901 902 /* Initialize EPT */ 903 error = ept_init(ipinum); 904 if (error) { 905 printf("vmx_modinit: ept initialization failed (%d)\n", error); 906 return (error); 907 } 908 909 guest_l1d_flush = (cpu_ia32_arch_caps & 910 IA32_ARCH_CAP_SKIP_L1DFL_VMENTRY) == 0; 911 TUNABLE_INT_FETCH("hw.vmm.l1d_flush", &guest_l1d_flush); 912 913 /* 914 * L1D cache flush is enabled. Use IA32_FLUSH_CMD MSR when 915 * available. Otherwise fall back to the software flush 916 * method which loads enough data from the kernel text to 917 * flush existing L1D content, both on VMX entry and on NMI 918 * return. 919 */ 920 if (guest_l1d_flush) { 921 if ((cpu_stdext_feature3 & CPUID_STDEXT3_L1D_FLUSH) == 0) { 922 guest_l1d_flush_sw = 1; 923 TUNABLE_INT_FETCH("hw.vmm.l1d_flush_sw", 924 &guest_l1d_flush_sw); 925 } 926 if (guest_l1d_flush_sw) { 927 if (nmi_flush_l1d_sw <= 1) 928 nmi_flush_l1d_sw = 1; 929 } else { 930 msr_load_list[0].index = MSR_IA32_FLUSH_CMD; 931 msr_load_list[0].val = IA32_FLUSH_CMD_L1D; 932 } 933 } 934 935 /* 936 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1 937 */ 938 fixed0 = rdmsr(MSR_VMX_CR0_FIXED0); 939 fixed1 = rdmsr(MSR_VMX_CR0_FIXED1); 940 cr0_ones_mask = fixed0 & fixed1; 941 cr0_zeros_mask = ~fixed0 & ~fixed1; 942 943 /* 944 * CR0_PE and CR0_PG can be set to zero in VMX non-root operation 945 * if unrestricted guest execution is allowed. 946 */ 947 if (cap_unrestricted_guest) 948 cr0_ones_mask &= ~(CR0_PG | CR0_PE); 949 950 /* 951 * Do not allow the guest to set CR0_NW or CR0_CD. 952 */ 953 cr0_zeros_mask |= (CR0_NW | CR0_CD); 954 955 fixed0 = rdmsr(MSR_VMX_CR4_FIXED0); 956 fixed1 = rdmsr(MSR_VMX_CR4_FIXED1); 957 cr4_ones_mask = fixed0 & fixed1; 958 cr4_zeros_mask = ~fixed0 & ~fixed1; 959 960 vpid_init(); 961 962 vmx_msr_init(); 963 964 /* enable VMX operation */ 965 smp_rendezvous(NULL, vmx_enable, NULL, NULL); 966 967 vmx_initialized = 1; 968 969 return (0); 970 } 971 972 static void 973 vmx_trigger_hostintr(int vector) 974 { 975 uintptr_t func; 976 struct gate_descriptor *gd; 977 978 gd = &idt[vector]; 979 980 KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: " 981 "invalid vector %d", vector)); 982 KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present", 983 vector)); 984 KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d " 985 "has invalid type %d", vector, gd->gd_type)); 986 KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d " 987 "has invalid dpl %d", vector, gd->gd_dpl)); 988 KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor " 989 "for vector %d has invalid selector %d", vector, gd->gd_selector)); 990 KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid " 991 "IST %d", vector, gd->gd_ist)); 992 993 func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset); 994 vmx_call_isr(func); 995 } 996 997 static int 998 vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial) 999 { 1000 int error, mask_ident, shadow_ident; 1001 uint64_t mask_value; 1002 1003 if (which != 0 && which != 4) 1004 panic("vmx_setup_cr_shadow: unknown cr%d", which); 1005 1006 if (which == 0) { 1007 mask_ident = VMCS_CR0_MASK; 1008 mask_value = cr0_ones_mask | cr0_zeros_mask; 1009 shadow_ident = VMCS_CR0_SHADOW; 1010 } else { 1011 mask_ident = VMCS_CR4_MASK; 1012 mask_value = cr4_ones_mask | cr4_zeros_mask; 1013 shadow_ident = VMCS_CR4_SHADOW; 1014 } 1015 1016 error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value); 1017 if (error) 1018 return (error); 1019 1020 error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial); 1021 if (error) 1022 return (error); 1023 1024 return (0); 1025 } 1026 #define vmx_setup_cr0_shadow(vmcs,init) vmx_setup_cr_shadow(0, (vmcs), (init)) 1027 #define vmx_setup_cr4_shadow(vmcs,init) vmx_setup_cr_shadow(4, (vmcs), (init)) 1028 1029 static void * 1030 vmx_init(struct vm *vm, pmap_t pmap) 1031 { 1032 uint16_t vpid[VM_MAXCPU]; 1033 int i, error; 1034 struct vmx *vmx; 1035 struct vmcs *vmcs; 1036 uint32_t exc_bitmap; 1037 uint16_t maxcpus; 1038 1039 vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO); 1040 if ((uintptr_t)vmx & PAGE_MASK) { 1041 panic("malloc of struct vmx not aligned on %d byte boundary", 1042 PAGE_SIZE); 1043 } 1044 vmx->vm = vm; 1045 1046 vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pmltop)); 1047 1048 /* 1049 * Clean up EPTP-tagged guest physical and combined mappings 1050 * 1051 * VMX transitions are not required to invalidate any guest physical 1052 * mappings. So, it may be possible for stale guest physical mappings 1053 * to be present in the processor TLBs. 1054 * 1055 * Combined mappings for this EP4TA are also invalidated for all VPIDs. 1056 */ 1057 ept_invalidate_mappings(vmx->eptp); 1058 1059 msr_bitmap_initialize(vmx->msr_bitmap); 1060 1061 /* 1062 * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE. 1063 * The guest FSBASE and GSBASE are saved and restored during 1064 * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are 1065 * always restored from the vmcs host state area on vm-exit. 1066 * 1067 * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in 1068 * how they are saved/restored so can be directly accessed by the 1069 * guest. 1070 * 1071 * MSR_EFER is saved and restored in the guest VMCS area on a 1072 * VM exit and entry respectively. It is also restored from the 1073 * host VMCS area on a VM exit. 1074 * 1075 * The TSC MSR is exposed read-only. Writes are disallowed as 1076 * that will impact the host TSC. If the guest does a write 1077 * the "use TSC offsetting" execution control is enabled and the 1078 * difference between the host TSC and the guest TSC is written 1079 * into the TSC offset in the VMCS. 1080 * 1081 * Guest TSC_AUX support is enabled if any of guest RDPID and/or 1082 * guest RDTSCP support are enabled (since, as per Table 2-2 in SDM 1083 * volume 4, TSC_AUX is supported if any of RDPID and/or RDTSCP are 1084 * supported). If guest TSC_AUX support is enabled, TSC_AUX is 1085 * exposed read-only so that the VMM can do one fewer MSR read per 1086 * exit than if this register were exposed read-write; the guest 1087 * restore value can be updated during guest writes (expected to be 1088 * rare) instead of during all exits (common). 1089 */ 1090 if (guest_msr_rw(vmx, MSR_GSBASE) || 1091 guest_msr_rw(vmx, MSR_FSBASE) || 1092 guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) || 1093 guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) || 1094 guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) || 1095 guest_msr_rw(vmx, MSR_EFER) || 1096 guest_msr_ro(vmx, MSR_TSC) || 1097 ((cap_rdpid || cap_rdtscp) && guest_msr_ro(vmx, MSR_TSC_AUX))) 1098 panic("vmx_init: error setting guest msr access"); 1099 1100 vpid_alloc(vpid, VM_MAXCPU); 1101 1102 if (virtual_interrupt_delivery) { 1103 error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE, 1104 APIC_ACCESS_ADDRESS); 1105 /* XXX this should really return an error to the caller */ 1106 KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error)); 1107 } 1108 1109 maxcpus = vm_get_maxcpus(vm); 1110 for (i = 0; i < maxcpus; i++) { 1111 vmcs = &vmx->vmcs[i]; 1112 vmcs->identifier = vmx_revision(); 1113 error = vmclear(vmcs); 1114 if (error != 0) { 1115 panic("vmx_init: vmclear error %d on vcpu %d\n", 1116 error, i); 1117 } 1118 1119 vmx_msr_guest_init(vmx, i); 1120 1121 error = vmcs_init(vmcs); 1122 KASSERT(error == 0, ("vmcs_init error %d", error)); 1123 1124 VMPTRLD(vmcs); 1125 error = 0; 1126 error += vmwrite(VMCS_HOST_RSP, (u_long)&vmx->ctx[i]); 1127 error += vmwrite(VMCS_EPTP, vmx->eptp); 1128 error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls); 1129 error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls); 1130 if (vcpu_trap_wbinvd(vm, i)) { 1131 KASSERT(cap_wbinvd_exit, ("WBINVD trap not available")); 1132 procbased_ctls2 |= PROCBASED2_WBINVD_EXITING; 1133 } 1134 error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2); 1135 error += vmwrite(VMCS_EXIT_CTLS, exit_ctls); 1136 error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls); 1137 error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap)); 1138 error += vmwrite(VMCS_VPID, vpid[i]); 1139 1140 if (guest_l1d_flush && !guest_l1d_flush_sw) { 1141 vmcs_write(VMCS_ENTRY_MSR_LOAD, pmap_kextract( 1142 (vm_offset_t)&msr_load_list[0])); 1143 vmcs_write(VMCS_ENTRY_MSR_LOAD_COUNT, 1144 nitems(msr_load_list)); 1145 vmcs_write(VMCS_EXIT_MSR_STORE, 0); 1146 vmcs_write(VMCS_EXIT_MSR_STORE_COUNT, 0); 1147 } 1148 1149 /* exception bitmap */ 1150 if (vcpu_trace_exceptions(vm, i)) 1151 exc_bitmap = 0xffffffff; 1152 else 1153 exc_bitmap = 1 << IDT_MC; 1154 error += vmwrite(VMCS_EXCEPTION_BITMAP, exc_bitmap); 1155 1156 vmx->ctx[i].guest_dr6 = DBREG_DR6_RESERVED1; 1157 error += vmwrite(VMCS_GUEST_DR7, DBREG_DR7_RESERVED1); 1158 1159 if (tpr_shadowing) { 1160 error += vmwrite(VMCS_VIRTUAL_APIC, 1161 vtophys(&vmx->apic_page[i])); 1162 } 1163 1164 if (virtual_interrupt_delivery) { 1165 error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS); 1166 error += vmwrite(VMCS_EOI_EXIT0, 0); 1167 error += vmwrite(VMCS_EOI_EXIT1, 0); 1168 error += vmwrite(VMCS_EOI_EXIT2, 0); 1169 error += vmwrite(VMCS_EOI_EXIT3, 0); 1170 } 1171 if (posted_interrupts) { 1172 error += vmwrite(VMCS_PIR_VECTOR, pirvec); 1173 error += vmwrite(VMCS_PIR_DESC, 1174 vtophys(&vmx->pir_desc[i])); 1175 } 1176 VMCLEAR(vmcs); 1177 KASSERT(error == 0, ("vmx_init: error customizing the vmcs")); 1178 1179 vmx->cap[i].set = 0; 1180 vmx->cap[i].set |= cap_rdpid != 0 ? 1 << VM_CAP_RDPID : 0; 1181 vmx->cap[i].set |= cap_rdtscp != 0 ? 1 << VM_CAP_RDTSCP : 0; 1182 vmx->cap[i].proc_ctls = procbased_ctls; 1183 vmx->cap[i].proc_ctls2 = procbased_ctls2; 1184 vmx->cap[i].exc_bitmap = exc_bitmap; 1185 1186 vmx->state[i].nextrip = ~0; 1187 vmx->state[i].lastcpu = NOCPU; 1188 vmx->state[i].vpid = vpid[i]; 1189 1190 /* 1191 * Set up the CR0/4 shadows, and init the read shadow 1192 * to the power-on register value from the Intel Sys Arch. 1193 * CR0 - 0x60000010 1194 * CR4 - 0 1195 */ 1196 error = vmx_setup_cr0_shadow(vmcs, 0x60000010); 1197 if (error != 0) 1198 panic("vmx_setup_cr0_shadow %d", error); 1199 1200 error = vmx_setup_cr4_shadow(vmcs, 0); 1201 if (error != 0) 1202 panic("vmx_setup_cr4_shadow %d", error); 1203 1204 vmx->ctx[i].pmap = pmap; 1205 } 1206 1207 return (vmx); 1208 } 1209 1210 static int 1211 vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx) 1212 { 1213 int handled; 1214 1215 handled = x86_emulate_cpuid(vm, vcpu, (uint64_t *)&vmxctx->guest_rax, 1216 (uint64_t *)&vmxctx->guest_rbx, (uint64_t *)&vmxctx->guest_rcx, 1217 (uint64_t *)&vmxctx->guest_rdx); 1218 return (handled); 1219 } 1220 1221 static __inline void 1222 vmx_run_trace(struct vmx *vmx, int vcpu) 1223 { 1224 #ifdef KTR 1225 VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %#lx", vmcs_guest_rip()); 1226 #endif 1227 } 1228 1229 static __inline void 1230 vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason, 1231 int handled) 1232 { 1233 #ifdef KTR 1234 VCPU_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx", 1235 handled ? "handled" : "unhandled", 1236 exit_reason_to_str(exit_reason), rip); 1237 #endif 1238 } 1239 1240 static __inline void 1241 vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip) 1242 { 1243 #ifdef KTR 1244 VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip); 1245 #endif 1246 } 1247 1248 static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved"); 1249 static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done"); 1250 1251 /* 1252 * Invalidate guest mappings identified by its vpid from the TLB. 1253 */ 1254 static __inline void 1255 vmx_invvpid(struct vmx *vmx, int vcpu, pmap_t pmap, int running) 1256 { 1257 struct vmxstate *vmxstate; 1258 struct invvpid_desc invvpid_desc; 1259 1260 vmxstate = &vmx->state[vcpu]; 1261 if (vmxstate->vpid == 0) 1262 return; 1263 1264 if (!running) { 1265 /* 1266 * Set the 'lastcpu' to an invalid host cpu. 1267 * 1268 * This will invalidate TLB entries tagged with the vcpu's 1269 * vpid the next time it runs via vmx_set_pcpu_defaults(). 1270 */ 1271 vmxstate->lastcpu = NOCPU; 1272 return; 1273 } 1274 1275 KASSERT(curthread->td_critnest > 0, ("%s: vcpu %d running outside " 1276 "critical section", __func__, vcpu)); 1277 1278 /* 1279 * Invalidate all mappings tagged with 'vpid' 1280 * 1281 * We do this because this vcpu was executing on a different host 1282 * cpu when it last ran. We do not track whether it invalidated 1283 * mappings associated with its 'vpid' during that run. So we must 1284 * assume that the mappings associated with 'vpid' on 'curcpu' are 1285 * stale and invalidate them. 1286 * 1287 * Note that we incur this penalty only when the scheduler chooses to 1288 * move the thread associated with this vcpu between host cpus. 1289 * 1290 * Note also that this will invalidate mappings tagged with 'vpid' 1291 * for "all" EP4TAs. 1292 */ 1293 if (atomic_load_long(&pmap->pm_eptgen) == vmx->eptgen[curcpu]) { 1294 invvpid_desc._res1 = 0; 1295 invvpid_desc._res2 = 0; 1296 invvpid_desc.vpid = vmxstate->vpid; 1297 invvpid_desc.linear_addr = 0; 1298 invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc); 1299 vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_DONE, 1); 1300 } else { 1301 /* 1302 * The invvpid can be skipped if an invept is going to 1303 * be performed before entering the guest. The invept 1304 * will invalidate combined mappings tagged with 1305 * 'vmx->eptp' for all vpids. 1306 */ 1307 vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_SAVED, 1); 1308 } 1309 } 1310 1311 static void 1312 vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu, pmap_t pmap) 1313 { 1314 struct vmxstate *vmxstate; 1315 1316 vmxstate = &vmx->state[vcpu]; 1317 if (vmxstate->lastcpu == curcpu) 1318 return; 1319 1320 vmxstate->lastcpu = curcpu; 1321 1322 vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1); 1323 1324 vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase()); 1325 vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase()); 1326 vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase()); 1327 vmx_invvpid(vmx, vcpu, pmap, 1); 1328 } 1329 1330 /* 1331 * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set. 1332 */ 1333 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0); 1334 1335 static void __inline 1336 vmx_set_int_window_exiting(struct vmx *vmx, int vcpu) 1337 { 1338 1339 if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) { 1340 vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING; 1341 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); 1342 VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting"); 1343 } 1344 } 1345 1346 static void __inline 1347 vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu) 1348 { 1349 1350 KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0, 1351 ("intr_window_exiting not set: %#x", vmx->cap[vcpu].proc_ctls)); 1352 vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING; 1353 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); 1354 VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting"); 1355 } 1356 1357 static void __inline 1358 vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu) 1359 { 1360 1361 if ((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) { 1362 vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING; 1363 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); 1364 VCPU_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting"); 1365 } 1366 } 1367 1368 static void __inline 1369 vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu) 1370 { 1371 1372 KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0, 1373 ("nmi_window_exiting not set %#x", vmx->cap[vcpu].proc_ctls)); 1374 vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING; 1375 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); 1376 VCPU_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting"); 1377 } 1378 1379 int 1380 vmx_set_tsc_offset(struct vmx *vmx, int vcpu, uint64_t offset) 1381 { 1382 int error; 1383 1384 if ((vmx->cap[vcpu].proc_ctls & PROCBASED_TSC_OFFSET) == 0) { 1385 vmx->cap[vcpu].proc_ctls |= PROCBASED_TSC_OFFSET; 1386 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); 1387 VCPU_CTR0(vmx->vm, vcpu, "Enabling TSC offsetting"); 1388 } 1389 1390 error = vmwrite(VMCS_TSC_OFFSET, offset); 1391 #ifdef BHYVE_SNAPSHOT 1392 if (error == 0) 1393 error = vm_set_tsc_offset(vmx->vm, vcpu, offset); 1394 #endif 1395 return (error); 1396 } 1397 1398 #define NMI_BLOCKING (VMCS_INTERRUPTIBILITY_NMI_BLOCKING | \ 1399 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING) 1400 #define HWINTR_BLOCKING (VMCS_INTERRUPTIBILITY_STI_BLOCKING | \ 1401 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING) 1402 1403 static void 1404 vmx_inject_nmi(struct vmx *vmx, int vcpu) 1405 { 1406 uint32_t gi __diagused, info; 1407 1408 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1409 KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest " 1410 "interruptibility-state %#x", gi)); 1411 1412 info = vmcs_read(VMCS_ENTRY_INTR_INFO); 1413 KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid " 1414 "VM-entry interruption information %#x", info)); 1415 1416 /* 1417 * Inject the virtual NMI. The vector must be the NMI IDT entry 1418 * or the VMCS entry check will fail. 1419 */ 1420 info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID; 1421 vmcs_write(VMCS_ENTRY_INTR_INFO, info); 1422 1423 VCPU_CTR0(vmx->vm, vcpu, "Injecting vNMI"); 1424 1425 /* Clear the request */ 1426 vm_nmi_clear(vmx->vm, vcpu); 1427 } 1428 1429 static void 1430 vmx_inject_interrupts(struct vmx *vmx, int vcpu, struct vlapic *vlapic, 1431 uint64_t guestrip) 1432 { 1433 int vector, need_nmi_exiting, extint_pending; 1434 uint64_t rflags, entryinfo; 1435 uint32_t gi, info; 1436 1437 if (vmx->state[vcpu].nextrip != guestrip) { 1438 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1439 if (gi & HWINTR_BLOCKING) { 1440 VCPU_CTR2(vmx->vm, vcpu, "Guest interrupt blocking " 1441 "cleared due to rip change: %#lx/%#lx", 1442 vmx->state[vcpu].nextrip, guestrip); 1443 gi &= ~HWINTR_BLOCKING; 1444 vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi); 1445 } 1446 } 1447 1448 if (vm_entry_intinfo(vmx->vm, vcpu, &entryinfo)) { 1449 KASSERT((entryinfo & VMCS_INTR_VALID) != 0, ("%s: entry " 1450 "intinfo is not valid: %#lx", __func__, entryinfo)); 1451 1452 info = vmcs_read(VMCS_ENTRY_INTR_INFO); 1453 KASSERT((info & VMCS_INTR_VALID) == 0, ("%s: cannot inject " 1454 "pending exception: %#lx/%#x", __func__, entryinfo, info)); 1455 1456 info = entryinfo; 1457 vector = info & 0xff; 1458 if (vector == IDT_BP || vector == IDT_OF) { 1459 /* 1460 * VT-x requires #BP and #OF to be injected as software 1461 * exceptions. 1462 */ 1463 info &= ~VMCS_INTR_T_MASK; 1464 info |= VMCS_INTR_T_SWEXCEPTION; 1465 } 1466 1467 if (info & VMCS_INTR_DEL_ERRCODE) 1468 vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, entryinfo >> 32); 1469 1470 vmcs_write(VMCS_ENTRY_INTR_INFO, info); 1471 } 1472 1473 if (vm_nmi_pending(vmx->vm, vcpu)) { 1474 /* 1475 * If there are no conditions blocking NMI injection then 1476 * inject it directly here otherwise enable "NMI window 1477 * exiting" to inject it as soon as we can. 1478 * 1479 * We also check for STI_BLOCKING because some implementations 1480 * don't allow NMI injection in this case. If we are running 1481 * on a processor that doesn't have this restriction it will 1482 * immediately exit and the NMI will be injected in the 1483 * "NMI window exiting" handler. 1484 */ 1485 need_nmi_exiting = 1; 1486 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1487 if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) { 1488 info = vmcs_read(VMCS_ENTRY_INTR_INFO); 1489 if ((info & VMCS_INTR_VALID) == 0) { 1490 vmx_inject_nmi(vmx, vcpu); 1491 need_nmi_exiting = 0; 1492 } else { 1493 VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI " 1494 "due to VM-entry intr info %#x", info); 1495 } 1496 } else { 1497 VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI due to " 1498 "Guest Interruptibility-state %#x", gi); 1499 } 1500 1501 if (need_nmi_exiting) 1502 vmx_set_nmi_window_exiting(vmx, vcpu); 1503 } 1504 1505 extint_pending = vm_extint_pending(vmx->vm, vcpu); 1506 1507 if (!extint_pending && virtual_interrupt_delivery) { 1508 vmx_inject_pir(vlapic); 1509 return; 1510 } 1511 1512 /* 1513 * If interrupt-window exiting is already in effect then don't bother 1514 * checking for pending interrupts. This is just an optimization and 1515 * not needed for correctness. 1516 */ 1517 if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0) { 1518 VCPU_CTR0(vmx->vm, vcpu, "Skip interrupt injection due to " 1519 "pending int_window_exiting"); 1520 return; 1521 } 1522 1523 if (!extint_pending) { 1524 /* Ask the local apic for a vector to inject */ 1525 if (!vlapic_pending_intr(vlapic, &vector)) 1526 return; 1527 1528 /* 1529 * From the Intel SDM, Volume 3, Section "Maskable 1530 * Hardware Interrupts": 1531 * - maskable interrupt vectors [16,255] can be delivered 1532 * through the local APIC. 1533 */ 1534 KASSERT(vector >= 16 && vector <= 255, 1535 ("invalid vector %d from local APIC", vector)); 1536 } else { 1537 /* Ask the legacy pic for a vector to inject */ 1538 vatpic_pending_intr(vmx->vm, &vector); 1539 1540 /* 1541 * From the Intel SDM, Volume 3, Section "Maskable 1542 * Hardware Interrupts": 1543 * - maskable interrupt vectors [0,255] can be delivered 1544 * through the INTR pin. 1545 */ 1546 KASSERT(vector >= 0 && vector <= 255, 1547 ("invalid vector %d from INTR", vector)); 1548 } 1549 1550 /* Check RFLAGS.IF and the interruptibility state of the guest */ 1551 rflags = vmcs_read(VMCS_GUEST_RFLAGS); 1552 if ((rflags & PSL_I) == 0) { 1553 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to " 1554 "rflags %#lx", vector, rflags); 1555 goto cantinject; 1556 } 1557 1558 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1559 if (gi & HWINTR_BLOCKING) { 1560 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to " 1561 "Guest Interruptibility-state %#x", vector, gi); 1562 goto cantinject; 1563 } 1564 1565 info = vmcs_read(VMCS_ENTRY_INTR_INFO); 1566 if (info & VMCS_INTR_VALID) { 1567 /* 1568 * This is expected and could happen for multiple reasons: 1569 * - A vectoring VM-entry was aborted due to astpending 1570 * - A VM-exit happened during event injection. 1571 * - An exception was injected above. 1572 * - An NMI was injected above or after "NMI window exiting" 1573 */ 1574 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to " 1575 "VM-entry intr info %#x", vector, info); 1576 goto cantinject; 1577 } 1578 1579 /* Inject the interrupt */ 1580 info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID; 1581 info |= vector; 1582 vmcs_write(VMCS_ENTRY_INTR_INFO, info); 1583 1584 if (!extint_pending) { 1585 /* Update the Local APIC ISR */ 1586 vlapic_intr_accepted(vlapic, vector); 1587 } else { 1588 vm_extint_clear(vmx->vm, vcpu); 1589 vatpic_intr_accepted(vmx->vm, vector); 1590 1591 /* 1592 * After we accepted the current ExtINT the PIC may 1593 * have posted another one. If that is the case, set 1594 * the Interrupt Window Exiting execution control so 1595 * we can inject that one too. 1596 * 1597 * Also, interrupt window exiting allows us to inject any 1598 * pending APIC vector that was preempted by the ExtINT 1599 * as soon as possible. This applies both for the software 1600 * emulated vlapic and the hardware assisted virtual APIC. 1601 */ 1602 vmx_set_int_window_exiting(vmx, vcpu); 1603 } 1604 1605 VCPU_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector); 1606 1607 return; 1608 1609 cantinject: 1610 /* 1611 * Set the Interrupt Window Exiting execution control so we can inject 1612 * the interrupt as soon as blocking condition goes away. 1613 */ 1614 vmx_set_int_window_exiting(vmx, vcpu); 1615 } 1616 1617 /* 1618 * If the Virtual NMIs execution control is '1' then the logical processor 1619 * tracks virtual-NMI blocking in the Guest Interruptibility-state field of 1620 * the VMCS. An IRET instruction in VMX non-root operation will remove any 1621 * virtual-NMI blocking. 1622 * 1623 * This unblocking occurs even if the IRET causes a fault. In this case the 1624 * hypervisor needs to restore virtual-NMI blocking before resuming the guest. 1625 */ 1626 static void 1627 vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid) 1628 { 1629 uint32_t gi; 1630 1631 VCPU_CTR0(vmx->vm, vcpuid, "Restore Virtual-NMI blocking"); 1632 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1633 gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING; 1634 vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi); 1635 } 1636 1637 static void 1638 vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid) 1639 { 1640 uint32_t gi; 1641 1642 VCPU_CTR0(vmx->vm, vcpuid, "Clear Virtual-NMI blocking"); 1643 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1644 gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING; 1645 vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi); 1646 } 1647 1648 static void 1649 vmx_assert_nmi_blocking(struct vmx *vmx, int vcpuid) 1650 { 1651 uint32_t gi __diagused; 1652 1653 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); 1654 KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING, 1655 ("NMI blocking is not in effect %#x", gi)); 1656 } 1657 1658 static int 1659 vmx_emulate_xsetbv(struct vmx *vmx, int vcpu, struct vm_exit *vmexit) 1660 { 1661 struct vmxctx *vmxctx; 1662 uint64_t xcrval; 1663 const struct xsave_limits *limits; 1664 1665 vmxctx = &vmx->ctx[vcpu]; 1666 limits = vmm_get_xsave_limits(); 1667 1668 /* 1669 * Note that the processor raises a GP# fault on its own if 1670 * xsetbv is executed for CPL != 0, so we do not have to 1671 * emulate that fault here. 1672 */ 1673 1674 /* Only xcr0 is supported. */ 1675 if (vmxctx->guest_rcx != 0) { 1676 vm_inject_gp(vmx->vm, vcpu); 1677 return (HANDLED); 1678 } 1679 1680 /* We only handle xcr0 if both the host and guest have XSAVE enabled. */ 1681 if (!limits->xsave_enabled || !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) { 1682 vm_inject_ud(vmx->vm, vcpu); 1683 return (HANDLED); 1684 } 1685 1686 xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff); 1687 if ((xcrval & ~limits->xcr0_allowed) != 0) { 1688 vm_inject_gp(vmx->vm, vcpu); 1689 return (HANDLED); 1690 } 1691 1692 if (!(xcrval & XFEATURE_ENABLED_X87)) { 1693 vm_inject_gp(vmx->vm, vcpu); 1694 return (HANDLED); 1695 } 1696 1697 /* AVX (YMM_Hi128) requires SSE. */ 1698 if (xcrval & XFEATURE_ENABLED_AVX && 1699 (xcrval & XFEATURE_AVX) != XFEATURE_AVX) { 1700 vm_inject_gp(vmx->vm, vcpu); 1701 return (HANDLED); 1702 } 1703 1704 /* 1705 * AVX512 requires base AVX (YMM_Hi128) as well as OpMask, 1706 * ZMM_Hi256, and Hi16_ZMM. 1707 */ 1708 if (xcrval & XFEATURE_AVX512 && 1709 (xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) != 1710 (XFEATURE_AVX512 | XFEATURE_AVX)) { 1711 vm_inject_gp(vmx->vm, vcpu); 1712 return (HANDLED); 1713 } 1714 1715 /* 1716 * Intel MPX requires both bound register state flags to be 1717 * set. 1718 */ 1719 if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) != 1720 ((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) { 1721 vm_inject_gp(vmx->vm, vcpu); 1722 return (HANDLED); 1723 } 1724 1725 /* 1726 * This runs "inside" vmrun() with the guest's FPU state, so 1727 * modifying xcr0 directly modifies the guest's xcr0, not the 1728 * host's. 1729 */ 1730 load_xcr(0, xcrval); 1731 return (HANDLED); 1732 } 1733 1734 static uint64_t 1735 vmx_get_guest_reg(struct vmx *vmx, int vcpu, int ident) 1736 { 1737 const struct vmxctx *vmxctx; 1738 1739 vmxctx = &vmx->ctx[vcpu]; 1740 1741 switch (ident) { 1742 case 0: 1743 return (vmxctx->guest_rax); 1744 case 1: 1745 return (vmxctx->guest_rcx); 1746 case 2: 1747 return (vmxctx->guest_rdx); 1748 case 3: 1749 return (vmxctx->guest_rbx); 1750 case 4: 1751 return (vmcs_read(VMCS_GUEST_RSP)); 1752 case 5: 1753 return (vmxctx->guest_rbp); 1754 case 6: 1755 return (vmxctx->guest_rsi); 1756 case 7: 1757 return (vmxctx->guest_rdi); 1758 case 8: 1759 return (vmxctx->guest_r8); 1760 case 9: 1761 return (vmxctx->guest_r9); 1762 case 10: 1763 return (vmxctx->guest_r10); 1764 case 11: 1765 return (vmxctx->guest_r11); 1766 case 12: 1767 return (vmxctx->guest_r12); 1768 case 13: 1769 return (vmxctx->guest_r13); 1770 case 14: 1771 return (vmxctx->guest_r14); 1772 case 15: 1773 return (vmxctx->guest_r15); 1774 default: 1775 panic("invalid vmx register %d", ident); 1776 } 1777 } 1778 1779 static void 1780 vmx_set_guest_reg(struct vmx *vmx, int vcpu, int ident, uint64_t regval) 1781 { 1782 struct vmxctx *vmxctx; 1783 1784 vmxctx = &vmx->ctx[vcpu]; 1785 1786 switch (ident) { 1787 case 0: 1788 vmxctx->guest_rax = regval; 1789 break; 1790 case 1: 1791 vmxctx->guest_rcx = regval; 1792 break; 1793 case 2: 1794 vmxctx->guest_rdx = regval; 1795 break; 1796 case 3: 1797 vmxctx->guest_rbx = regval; 1798 break; 1799 case 4: 1800 vmcs_write(VMCS_GUEST_RSP, regval); 1801 break; 1802 case 5: 1803 vmxctx->guest_rbp = regval; 1804 break; 1805 case 6: 1806 vmxctx->guest_rsi = regval; 1807 break; 1808 case 7: 1809 vmxctx->guest_rdi = regval; 1810 break; 1811 case 8: 1812 vmxctx->guest_r8 = regval; 1813 break; 1814 case 9: 1815 vmxctx->guest_r9 = regval; 1816 break; 1817 case 10: 1818 vmxctx->guest_r10 = regval; 1819 break; 1820 case 11: 1821 vmxctx->guest_r11 = regval; 1822 break; 1823 case 12: 1824 vmxctx->guest_r12 = regval; 1825 break; 1826 case 13: 1827 vmxctx->guest_r13 = regval; 1828 break; 1829 case 14: 1830 vmxctx->guest_r14 = regval; 1831 break; 1832 case 15: 1833 vmxctx->guest_r15 = regval; 1834 break; 1835 default: 1836 panic("invalid vmx register %d", ident); 1837 } 1838 } 1839 1840 static int 1841 vmx_emulate_cr0_access(struct vmx *vmx, int vcpu, uint64_t exitqual) 1842 { 1843 uint64_t crval, regval; 1844 1845 /* We only handle mov to %cr0 at this time */ 1846 if ((exitqual & 0xf0) != 0x00) 1847 return (UNHANDLED); 1848 1849 regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf); 1850 1851 vmcs_write(VMCS_CR0_SHADOW, regval); 1852 1853 crval = regval | cr0_ones_mask; 1854 crval &= ~cr0_zeros_mask; 1855 vmcs_write(VMCS_GUEST_CR0, crval); 1856 1857 if (regval & CR0_PG) { 1858 uint64_t efer, entry_ctls; 1859 1860 /* 1861 * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and 1862 * the "IA-32e mode guest" bit in VM-entry control must be 1863 * equal. 1864 */ 1865 efer = vmcs_read(VMCS_GUEST_IA32_EFER); 1866 if (efer & EFER_LME) { 1867 efer |= EFER_LMA; 1868 vmcs_write(VMCS_GUEST_IA32_EFER, efer); 1869 entry_ctls = vmcs_read(VMCS_ENTRY_CTLS); 1870 entry_ctls |= VM_ENTRY_GUEST_LMA; 1871 vmcs_write(VMCS_ENTRY_CTLS, entry_ctls); 1872 } 1873 } 1874 1875 return (HANDLED); 1876 } 1877 1878 static int 1879 vmx_emulate_cr4_access(struct vmx *vmx, int vcpu, uint64_t exitqual) 1880 { 1881 uint64_t crval, regval; 1882 1883 /* We only handle mov to %cr4 at this time */ 1884 if ((exitqual & 0xf0) != 0x00) 1885 return (UNHANDLED); 1886 1887 regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf); 1888 1889 vmcs_write(VMCS_CR4_SHADOW, regval); 1890 1891 crval = regval | cr4_ones_mask; 1892 crval &= ~cr4_zeros_mask; 1893 vmcs_write(VMCS_GUEST_CR4, crval); 1894 1895 return (HANDLED); 1896 } 1897 1898 static int 1899 vmx_emulate_cr8_access(struct vmx *vmx, int vcpu, uint64_t exitqual) 1900 { 1901 struct vlapic *vlapic; 1902 uint64_t cr8; 1903 int regnum; 1904 1905 /* We only handle mov %cr8 to/from a register at this time. */ 1906 if ((exitqual & 0xe0) != 0x00) { 1907 return (UNHANDLED); 1908 } 1909 1910 vlapic = vm_lapic(vmx->vm, vcpu); 1911 regnum = (exitqual >> 8) & 0xf; 1912 if (exitqual & 0x10) { 1913 cr8 = vlapic_get_cr8(vlapic); 1914 vmx_set_guest_reg(vmx, vcpu, regnum, cr8); 1915 } else { 1916 cr8 = vmx_get_guest_reg(vmx, vcpu, regnum); 1917 vlapic_set_cr8(vlapic, cr8); 1918 } 1919 1920 return (HANDLED); 1921 } 1922 1923 /* 1924 * From section "Guest Register State" in the Intel SDM: CPL = SS.DPL 1925 */ 1926 static int 1927 vmx_cpl(void) 1928 { 1929 uint32_t ssar; 1930 1931 ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS); 1932 return ((ssar >> 5) & 0x3); 1933 } 1934 1935 static enum vm_cpu_mode 1936 vmx_cpu_mode(void) 1937 { 1938 uint32_t csar; 1939 1940 if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) { 1941 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS); 1942 if (csar & 0x2000) 1943 return (CPU_MODE_64BIT); /* CS.L = 1 */ 1944 else 1945 return (CPU_MODE_COMPATIBILITY); 1946 } else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) { 1947 return (CPU_MODE_PROTECTED); 1948 } else { 1949 return (CPU_MODE_REAL); 1950 } 1951 } 1952 1953 static enum vm_paging_mode 1954 vmx_paging_mode(void) 1955 { 1956 uint64_t cr4; 1957 1958 if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG)) 1959 return (PAGING_MODE_FLAT); 1960 cr4 = vmcs_read(VMCS_GUEST_CR4); 1961 if (!(cr4 & CR4_PAE)) 1962 return (PAGING_MODE_32); 1963 if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME) { 1964 if (!(cr4 & CR4_LA57)) 1965 return (PAGING_MODE_64); 1966 return (PAGING_MODE_64_LA57); 1967 } else 1968 return (PAGING_MODE_PAE); 1969 } 1970 1971 static uint64_t 1972 inout_str_index(struct vmx *vmx, int vcpuid, int in) 1973 { 1974 uint64_t val; 1975 int error __diagused; 1976 enum vm_reg_name reg; 1977 1978 reg = in ? VM_REG_GUEST_RDI : VM_REG_GUEST_RSI; 1979 error = vmx_getreg(vmx, vcpuid, reg, &val); 1980 KASSERT(error == 0, ("%s: vmx_getreg error %d", __func__, error)); 1981 return (val); 1982 } 1983 1984 static uint64_t 1985 inout_str_count(struct vmx *vmx, int vcpuid, int rep) 1986 { 1987 uint64_t val; 1988 int error __diagused; 1989 1990 if (rep) { 1991 error = vmx_getreg(vmx, vcpuid, VM_REG_GUEST_RCX, &val); 1992 KASSERT(!error, ("%s: vmx_getreg error %d", __func__, error)); 1993 } else { 1994 val = 1; 1995 } 1996 return (val); 1997 } 1998 1999 static int 2000 inout_str_addrsize(uint32_t inst_info) 2001 { 2002 uint32_t size; 2003 2004 size = (inst_info >> 7) & 0x7; 2005 switch (size) { 2006 case 0: 2007 return (2); /* 16 bit */ 2008 case 1: 2009 return (4); /* 32 bit */ 2010 case 2: 2011 return (8); /* 64 bit */ 2012 default: 2013 panic("%s: invalid size encoding %d", __func__, size); 2014 } 2015 } 2016 2017 static void 2018 inout_str_seginfo(struct vmx *vmx, int vcpuid, uint32_t inst_info, int in, 2019 struct vm_inout_str *vis) 2020 { 2021 int error __diagused, s; 2022 2023 if (in) { 2024 vis->seg_name = VM_REG_GUEST_ES; 2025 } else { 2026 s = (inst_info >> 15) & 0x7; 2027 vis->seg_name = vm_segment_name(s); 2028 } 2029 2030 error = vmx_getdesc(vmx, vcpuid, vis->seg_name, &vis->seg_desc); 2031 KASSERT(error == 0, ("%s: vmx_getdesc error %d", __func__, error)); 2032 } 2033 2034 static void 2035 vmx_paging_info(struct vm_guest_paging *paging) 2036 { 2037 paging->cr3 = vmcs_guest_cr3(); 2038 paging->cpl = vmx_cpl(); 2039 paging->cpu_mode = vmx_cpu_mode(); 2040 paging->paging_mode = vmx_paging_mode(); 2041 } 2042 2043 static void 2044 vmexit_inst_emul(struct vm_exit *vmexit, uint64_t gpa, uint64_t gla) 2045 { 2046 struct vm_guest_paging *paging; 2047 uint32_t csar; 2048 2049 paging = &vmexit->u.inst_emul.paging; 2050 2051 vmexit->exitcode = VM_EXITCODE_INST_EMUL; 2052 vmexit->inst_length = 0; 2053 vmexit->u.inst_emul.gpa = gpa; 2054 vmexit->u.inst_emul.gla = gla; 2055 vmx_paging_info(paging); 2056 switch (paging->cpu_mode) { 2057 case CPU_MODE_REAL: 2058 vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE); 2059 vmexit->u.inst_emul.cs_d = 0; 2060 break; 2061 case CPU_MODE_PROTECTED: 2062 case CPU_MODE_COMPATIBILITY: 2063 vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE); 2064 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS); 2065 vmexit->u.inst_emul.cs_d = SEG_DESC_DEF32(csar); 2066 break; 2067 default: 2068 vmexit->u.inst_emul.cs_base = 0; 2069 vmexit->u.inst_emul.cs_d = 0; 2070 break; 2071 } 2072 vie_init(&vmexit->u.inst_emul.vie, NULL, 0); 2073 } 2074 2075 static int 2076 ept_fault_type(uint64_t ept_qual) 2077 { 2078 int fault_type; 2079 2080 if (ept_qual & EPT_VIOLATION_DATA_WRITE) 2081 fault_type = VM_PROT_WRITE; 2082 else if (ept_qual & EPT_VIOLATION_INST_FETCH) 2083 fault_type = VM_PROT_EXECUTE; 2084 else 2085 fault_type= VM_PROT_READ; 2086 2087 return (fault_type); 2088 } 2089 2090 static bool 2091 ept_emulation_fault(uint64_t ept_qual) 2092 { 2093 int read, write; 2094 2095 /* EPT fault on an instruction fetch doesn't make sense here */ 2096 if (ept_qual & EPT_VIOLATION_INST_FETCH) 2097 return (false); 2098 2099 /* EPT fault must be a read fault or a write fault */ 2100 read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0; 2101 write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0; 2102 if ((read | write) == 0) 2103 return (false); 2104 2105 /* 2106 * The EPT violation must have been caused by accessing a 2107 * guest-physical address that is a translation of a guest-linear 2108 * address. 2109 */ 2110 if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 || 2111 (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) { 2112 return (false); 2113 } 2114 2115 return (true); 2116 } 2117 2118 static __inline int 2119 apic_access_virtualization(struct vmx *vmx, int vcpuid) 2120 { 2121 uint32_t proc_ctls2; 2122 2123 proc_ctls2 = vmx->cap[vcpuid].proc_ctls2; 2124 return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0); 2125 } 2126 2127 static __inline int 2128 x2apic_virtualization(struct vmx *vmx, int vcpuid) 2129 { 2130 uint32_t proc_ctls2; 2131 2132 proc_ctls2 = vmx->cap[vcpuid].proc_ctls2; 2133 return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0); 2134 } 2135 2136 static int 2137 vmx_handle_apic_write(struct vmx *vmx, int vcpuid, struct vlapic *vlapic, 2138 uint64_t qual) 2139 { 2140 int error, handled, offset; 2141 uint32_t *apic_regs, vector; 2142 bool retu; 2143 2144 handled = HANDLED; 2145 offset = APIC_WRITE_OFFSET(qual); 2146 2147 if (!apic_access_virtualization(vmx, vcpuid)) { 2148 /* 2149 * In general there should not be any APIC write VM-exits 2150 * unless APIC-access virtualization is enabled. 2151 * 2152 * However self-IPI virtualization can legitimately trigger 2153 * an APIC-write VM-exit so treat it specially. 2154 */ 2155 if (x2apic_virtualization(vmx, vcpuid) && 2156 offset == APIC_OFFSET_SELF_IPI) { 2157 apic_regs = (uint32_t *)(vlapic->apic_page); 2158 vector = apic_regs[APIC_OFFSET_SELF_IPI / 4]; 2159 vlapic_self_ipi_handler(vlapic, vector); 2160 return (HANDLED); 2161 } else 2162 return (UNHANDLED); 2163 } 2164 2165 switch (offset) { 2166 case APIC_OFFSET_ID: 2167 vlapic_id_write_handler(vlapic); 2168 break; 2169 case APIC_OFFSET_LDR: 2170 vlapic_ldr_write_handler(vlapic); 2171 break; 2172 case APIC_OFFSET_DFR: 2173 vlapic_dfr_write_handler(vlapic); 2174 break; 2175 case APIC_OFFSET_SVR: 2176 vlapic_svr_write_handler(vlapic); 2177 break; 2178 case APIC_OFFSET_ESR: 2179 vlapic_esr_write_handler(vlapic); 2180 break; 2181 case APIC_OFFSET_ICR_LOW: 2182 retu = false; 2183 error = vlapic_icrlo_write_handler(vlapic, &retu); 2184 if (error != 0 || retu) 2185 handled = UNHANDLED; 2186 break; 2187 case APIC_OFFSET_CMCI_LVT: 2188 case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT: 2189 vlapic_lvt_write_handler(vlapic, offset); 2190 break; 2191 case APIC_OFFSET_TIMER_ICR: 2192 vlapic_icrtmr_write_handler(vlapic); 2193 break; 2194 case APIC_OFFSET_TIMER_DCR: 2195 vlapic_dcr_write_handler(vlapic); 2196 break; 2197 default: 2198 handled = UNHANDLED; 2199 break; 2200 } 2201 return (handled); 2202 } 2203 2204 static bool 2205 apic_access_fault(struct vmx *vmx, int vcpuid, uint64_t gpa) 2206 { 2207 2208 if (apic_access_virtualization(vmx, vcpuid) && 2209 (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE)) 2210 return (true); 2211 else 2212 return (false); 2213 } 2214 2215 static int 2216 vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit) 2217 { 2218 uint64_t qual; 2219 int access_type, offset, allowed; 2220 2221 if (!apic_access_virtualization(vmx, vcpuid)) 2222 return (UNHANDLED); 2223 2224 qual = vmexit->u.vmx.exit_qualification; 2225 access_type = APIC_ACCESS_TYPE(qual); 2226 offset = APIC_ACCESS_OFFSET(qual); 2227 2228 allowed = 0; 2229 if (access_type == 0) { 2230 /* 2231 * Read data access to the following registers is expected. 2232 */ 2233 switch (offset) { 2234 case APIC_OFFSET_APR: 2235 case APIC_OFFSET_PPR: 2236 case APIC_OFFSET_RRR: 2237 case APIC_OFFSET_CMCI_LVT: 2238 case APIC_OFFSET_TIMER_CCR: 2239 allowed = 1; 2240 break; 2241 default: 2242 break; 2243 } 2244 } else if (access_type == 1) { 2245 /* 2246 * Write data access to the following registers is expected. 2247 */ 2248 switch (offset) { 2249 case APIC_OFFSET_VER: 2250 case APIC_OFFSET_APR: 2251 case APIC_OFFSET_PPR: 2252 case APIC_OFFSET_RRR: 2253 case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7: 2254 case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7: 2255 case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7: 2256 case APIC_OFFSET_CMCI_LVT: 2257 case APIC_OFFSET_TIMER_CCR: 2258 allowed = 1; 2259 break; 2260 default: 2261 break; 2262 } 2263 } 2264 2265 if (allowed) { 2266 vmexit_inst_emul(vmexit, DEFAULT_APIC_BASE + offset, 2267 VIE_INVALID_GLA); 2268 } 2269 2270 /* 2271 * Regardless of whether the APIC-access is allowed this handler 2272 * always returns UNHANDLED: 2273 * - if the access is allowed then it is handled by emulating the 2274 * instruction that caused the VM-exit (outside the critical section) 2275 * - if the access is not allowed then it will be converted to an 2276 * exitcode of VM_EXITCODE_VMX and will be dealt with in userland. 2277 */ 2278 return (UNHANDLED); 2279 } 2280 2281 static enum task_switch_reason 2282 vmx_task_switch_reason(uint64_t qual) 2283 { 2284 int reason; 2285 2286 reason = (qual >> 30) & 0x3; 2287 switch (reason) { 2288 case 0: 2289 return (TSR_CALL); 2290 case 1: 2291 return (TSR_IRET); 2292 case 2: 2293 return (TSR_JMP); 2294 case 3: 2295 return (TSR_IDT_GATE); 2296 default: 2297 panic("%s: invalid reason %d", __func__, reason); 2298 } 2299 } 2300 2301 static int 2302 emulate_wrmsr(struct vmx *vmx, int vcpuid, u_int num, uint64_t val, bool *retu) 2303 { 2304 int error; 2305 2306 if (lapic_msr(num)) 2307 error = lapic_wrmsr(vmx->vm, vcpuid, num, val, retu); 2308 else 2309 error = vmx_wrmsr(vmx, vcpuid, num, val, retu); 2310 2311 return (error); 2312 } 2313 2314 static int 2315 emulate_rdmsr(struct vmx *vmx, int vcpuid, u_int num, bool *retu) 2316 { 2317 struct vmxctx *vmxctx; 2318 uint64_t result; 2319 uint32_t eax, edx; 2320 int error; 2321 2322 if (lapic_msr(num)) 2323 error = lapic_rdmsr(vmx->vm, vcpuid, num, &result, retu); 2324 else 2325 error = vmx_rdmsr(vmx, vcpuid, num, &result, retu); 2326 2327 if (error == 0) { 2328 eax = result; 2329 vmxctx = &vmx->ctx[vcpuid]; 2330 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RAX, eax); 2331 KASSERT(error == 0, ("vmxctx_setreg(rax) error %d", error)); 2332 2333 edx = result >> 32; 2334 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RDX, edx); 2335 KASSERT(error == 0, ("vmxctx_setreg(rdx) error %d", error)); 2336 } 2337 2338 return (error); 2339 } 2340 2341 static int 2342 vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit) 2343 { 2344 int error, errcode, errcode_valid, handled, in; 2345 struct vmxctx *vmxctx; 2346 struct vlapic *vlapic; 2347 struct vm_inout_str *vis; 2348 struct vm_task_switch *ts; 2349 uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, inst_info; 2350 uint32_t intr_type, intr_vec, reason; 2351 uint64_t exitintinfo, qual, gpa; 2352 bool retu; 2353 2354 CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0); 2355 CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0); 2356 2357 handled = UNHANDLED; 2358 vmxctx = &vmx->ctx[vcpu]; 2359 2360 qual = vmexit->u.vmx.exit_qualification; 2361 reason = vmexit->u.vmx.exit_reason; 2362 vmexit->exitcode = VM_EXITCODE_BOGUS; 2363 2364 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1); 2365 SDT_PROBE3(vmm, vmx, exit, entry, vmx, vcpu, vmexit); 2366 2367 /* 2368 * VM-entry failures during or after loading guest state. 2369 * 2370 * These VM-exits are uncommon but must be handled specially 2371 * as most VM-exit fields are not populated as usual. 2372 */ 2373 if (__predict_false(reason == EXIT_REASON_MCE_DURING_ENTRY)) { 2374 VCPU_CTR0(vmx->vm, vcpu, "Handling MCE during VM-entry"); 2375 __asm __volatile("int $18"); 2376 return (1); 2377 } 2378 2379 /* 2380 * VM exits that can be triggered during event delivery need to 2381 * be handled specially by re-injecting the event if the IDT 2382 * vectoring information field's valid bit is set. 2383 * 2384 * See "Information for VM Exits During Event Delivery" in Intel SDM 2385 * for details. 2386 */ 2387 idtvec_info = vmcs_idt_vectoring_info(); 2388 if (idtvec_info & VMCS_IDT_VEC_VALID) { 2389 idtvec_info &= ~(1 << 12); /* clear undefined bit */ 2390 exitintinfo = idtvec_info; 2391 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) { 2392 idtvec_err = vmcs_idt_vectoring_err(); 2393 exitintinfo |= (uint64_t)idtvec_err << 32; 2394 } 2395 error = vm_exit_intinfo(vmx->vm, vcpu, exitintinfo); 2396 KASSERT(error == 0, ("%s: vm_set_intinfo error %d", 2397 __func__, error)); 2398 2399 /* 2400 * If 'virtual NMIs' are being used and the VM-exit 2401 * happened while injecting an NMI during the previous 2402 * VM-entry, then clear "blocking by NMI" in the 2403 * Guest Interruptibility-State so the NMI can be 2404 * reinjected on the subsequent VM-entry. 2405 * 2406 * However, if the NMI was being delivered through a task 2407 * gate, then the new task must start execution with NMIs 2408 * blocked so don't clear NMI blocking in this case. 2409 */ 2410 intr_type = idtvec_info & VMCS_INTR_T_MASK; 2411 if (intr_type == VMCS_INTR_T_NMI) { 2412 if (reason != EXIT_REASON_TASK_SWITCH) 2413 vmx_clear_nmi_blocking(vmx, vcpu); 2414 else 2415 vmx_assert_nmi_blocking(vmx, vcpu); 2416 } 2417 2418 /* 2419 * Update VM-entry instruction length if the event being 2420 * delivered was a software interrupt or software exception. 2421 */ 2422 if (intr_type == VMCS_INTR_T_SWINTR || 2423 intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION || 2424 intr_type == VMCS_INTR_T_SWEXCEPTION) { 2425 vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length); 2426 } 2427 } 2428 2429 switch (reason) { 2430 case EXIT_REASON_TASK_SWITCH: 2431 ts = &vmexit->u.task_switch; 2432 ts->tsssel = qual & 0xffff; 2433 ts->reason = vmx_task_switch_reason(qual); 2434 ts->ext = 0; 2435 ts->errcode_valid = 0; 2436 vmx_paging_info(&ts->paging); 2437 /* 2438 * If the task switch was due to a CALL, JMP, IRET, software 2439 * interrupt (INT n) or software exception (INT3, INTO), 2440 * then the saved %rip references the instruction that caused 2441 * the task switch. The instruction length field in the VMCS 2442 * is valid in this case. 2443 * 2444 * In all other cases (e.g., NMI, hardware exception) the 2445 * saved %rip is one that would have been saved in the old TSS 2446 * had the task switch completed normally so the instruction 2447 * length field is not needed in this case and is explicitly 2448 * set to 0. 2449 */ 2450 if (ts->reason == TSR_IDT_GATE) { 2451 KASSERT(idtvec_info & VMCS_IDT_VEC_VALID, 2452 ("invalid idtvec_info %#x for IDT task switch", 2453 idtvec_info)); 2454 intr_type = idtvec_info & VMCS_INTR_T_MASK; 2455 if (intr_type != VMCS_INTR_T_SWINTR && 2456 intr_type != VMCS_INTR_T_SWEXCEPTION && 2457 intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) { 2458 /* Task switch triggered by external event */ 2459 ts->ext = 1; 2460 vmexit->inst_length = 0; 2461 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) { 2462 ts->errcode_valid = 1; 2463 ts->errcode = vmcs_idt_vectoring_err(); 2464 } 2465 } 2466 } 2467 vmexit->exitcode = VM_EXITCODE_TASK_SWITCH; 2468 SDT_PROBE4(vmm, vmx, exit, taskswitch, vmx, vcpu, vmexit, ts); 2469 VCPU_CTR4(vmx->vm, vcpu, "task switch reason %d, tss 0x%04x, " 2470 "%s errcode 0x%016lx", ts->reason, ts->tsssel, 2471 ts->ext ? "external" : "internal", 2472 ((uint64_t)ts->errcode << 32) | ts->errcode_valid); 2473 break; 2474 case EXIT_REASON_CR_ACCESS: 2475 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1); 2476 SDT_PROBE4(vmm, vmx, exit, craccess, vmx, vcpu, vmexit, qual); 2477 switch (qual & 0xf) { 2478 case 0: 2479 handled = vmx_emulate_cr0_access(vmx, vcpu, qual); 2480 break; 2481 case 4: 2482 handled = vmx_emulate_cr4_access(vmx, vcpu, qual); 2483 break; 2484 case 8: 2485 handled = vmx_emulate_cr8_access(vmx, vcpu, qual); 2486 break; 2487 } 2488 break; 2489 case EXIT_REASON_RDMSR: 2490 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1); 2491 retu = false; 2492 ecx = vmxctx->guest_rcx; 2493 VCPU_CTR1(vmx->vm, vcpu, "rdmsr 0x%08x", ecx); 2494 SDT_PROBE4(vmm, vmx, exit, rdmsr, vmx, vcpu, vmexit, ecx); 2495 error = emulate_rdmsr(vmx, vcpu, ecx, &retu); 2496 if (error) { 2497 vmexit->exitcode = VM_EXITCODE_RDMSR; 2498 vmexit->u.msr.code = ecx; 2499 } else if (!retu) { 2500 handled = HANDLED; 2501 } else { 2502 /* Return to userspace with a valid exitcode */ 2503 KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS, 2504 ("emulate_rdmsr retu with bogus exitcode")); 2505 } 2506 break; 2507 case EXIT_REASON_WRMSR: 2508 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1); 2509 retu = false; 2510 eax = vmxctx->guest_rax; 2511 ecx = vmxctx->guest_rcx; 2512 edx = vmxctx->guest_rdx; 2513 VCPU_CTR2(vmx->vm, vcpu, "wrmsr 0x%08x value 0x%016lx", 2514 ecx, (uint64_t)edx << 32 | eax); 2515 SDT_PROBE5(vmm, vmx, exit, wrmsr, vmx, vmexit, vcpu, ecx, 2516 (uint64_t)edx << 32 | eax); 2517 error = emulate_wrmsr(vmx, vcpu, ecx, 2518 (uint64_t)edx << 32 | eax, &retu); 2519 if (error) { 2520 vmexit->exitcode = VM_EXITCODE_WRMSR; 2521 vmexit->u.msr.code = ecx; 2522 vmexit->u.msr.wval = (uint64_t)edx << 32 | eax; 2523 } else if (!retu) { 2524 handled = HANDLED; 2525 } else { 2526 /* Return to userspace with a valid exitcode */ 2527 KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS, 2528 ("emulate_wrmsr retu with bogus exitcode")); 2529 } 2530 break; 2531 case EXIT_REASON_HLT: 2532 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1); 2533 SDT_PROBE3(vmm, vmx, exit, halt, vmx, vcpu, vmexit); 2534 vmexit->exitcode = VM_EXITCODE_HLT; 2535 vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS); 2536 if (virtual_interrupt_delivery) 2537 vmexit->u.hlt.intr_status = 2538 vmcs_read(VMCS_GUEST_INTR_STATUS); 2539 else 2540 vmexit->u.hlt.intr_status = 0; 2541 break; 2542 case EXIT_REASON_MTF: 2543 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1); 2544 SDT_PROBE3(vmm, vmx, exit, mtrap, vmx, vcpu, vmexit); 2545 vmexit->exitcode = VM_EXITCODE_MTRAP; 2546 vmexit->inst_length = 0; 2547 break; 2548 case EXIT_REASON_PAUSE: 2549 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1); 2550 SDT_PROBE3(vmm, vmx, exit, pause, vmx, vcpu, vmexit); 2551 vmexit->exitcode = VM_EXITCODE_PAUSE; 2552 break; 2553 case EXIT_REASON_INTR_WINDOW: 2554 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1); 2555 SDT_PROBE3(vmm, vmx, exit, intrwindow, vmx, vcpu, vmexit); 2556 vmx_clear_int_window_exiting(vmx, vcpu); 2557 return (1); 2558 case EXIT_REASON_EXT_INTR: 2559 /* 2560 * External interrupts serve only to cause VM exits and allow 2561 * the host interrupt handler to run. 2562 * 2563 * If this external interrupt triggers a virtual interrupt 2564 * to a VM, then that state will be recorded by the 2565 * host interrupt handler in the VM's softc. We will inject 2566 * this virtual interrupt during the subsequent VM enter. 2567 */ 2568 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO); 2569 SDT_PROBE4(vmm, vmx, exit, interrupt, 2570 vmx, vcpu, vmexit, intr_info); 2571 2572 /* 2573 * XXX: Ignore this exit if VMCS_INTR_VALID is not set. 2574 * This appears to be a bug in VMware Fusion? 2575 */ 2576 if (!(intr_info & VMCS_INTR_VALID)) 2577 return (1); 2578 KASSERT((intr_info & VMCS_INTR_VALID) != 0 && 2579 (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR, 2580 ("VM exit interruption info invalid: %#x", intr_info)); 2581 vmx_trigger_hostintr(intr_info & 0xff); 2582 2583 /* 2584 * This is special. We want to treat this as an 'handled' 2585 * VM-exit but not increment the instruction pointer. 2586 */ 2587 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1); 2588 return (1); 2589 case EXIT_REASON_NMI_WINDOW: 2590 SDT_PROBE3(vmm, vmx, exit, nmiwindow, vmx, vcpu, vmexit); 2591 /* Exit to allow the pending virtual NMI to be injected */ 2592 if (vm_nmi_pending(vmx->vm, vcpu)) 2593 vmx_inject_nmi(vmx, vcpu); 2594 vmx_clear_nmi_window_exiting(vmx, vcpu); 2595 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1); 2596 return (1); 2597 case EXIT_REASON_INOUT: 2598 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1); 2599 vmexit->exitcode = VM_EXITCODE_INOUT; 2600 vmexit->u.inout.bytes = (qual & 0x7) + 1; 2601 vmexit->u.inout.in = in = (qual & 0x8) ? 1 : 0; 2602 vmexit->u.inout.string = (qual & 0x10) ? 1 : 0; 2603 vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0; 2604 vmexit->u.inout.port = (uint16_t)(qual >> 16); 2605 vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax); 2606 if (vmexit->u.inout.string) { 2607 inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO); 2608 vmexit->exitcode = VM_EXITCODE_INOUT_STR; 2609 vis = &vmexit->u.inout_str; 2610 vmx_paging_info(&vis->paging); 2611 vis->rflags = vmcs_read(VMCS_GUEST_RFLAGS); 2612 vis->cr0 = vmcs_read(VMCS_GUEST_CR0); 2613 vis->index = inout_str_index(vmx, vcpu, in); 2614 vis->count = inout_str_count(vmx, vcpu, vis->inout.rep); 2615 vis->addrsize = inout_str_addrsize(inst_info); 2616 inout_str_seginfo(vmx, vcpu, inst_info, in, vis); 2617 } 2618 SDT_PROBE3(vmm, vmx, exit, inout, vmx, vcpu, vmexit); 2619 break; 2620 case EXIT_REASON_CPUID: 2621 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1); 2622 SDT_PROBE3(vmm, vmx, exit, cpuid, vmx, vcpu, vmexit); 2623 handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx); 2624 break; 2625 case EXIT_REASON_EXCEPTION: 2626 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXCEPTION, 1); 2627 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO); 2628 KASSERT((intr_info & VMCS_INTR_VALID) != 0, 2629 ("VM exit interruption info invalid: %#x", intr_info)); 2630 2631 intr_vec = intr_info & 0xff; 2632 intr_type = intr_info & VMCS_INTR_T_MASK; 2633 2634 /* 2635 * If Virtual NMIs control is 1 and the VM-exit is due to a 2636 * fault encountered during the execution of IRET then we must 2637 * restore the state of "virtual-NMI blocking" before resuming 2638 * the guest. 2639 * 2640 * See "Resuming Guest Software after Handling an Exception". 2641 * See "Information for VM Exits Due to Vectored Events". 2642 */ 2643 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 && 2644 (intr_vec != IDT_DF) && 2645 (intr_info & EXIT_QUAL_NMIUDTI) != 0) 2646 vmx_restore_nmi_blocking(vmx, vcpu); 2647 2648 /* 2649 * The NMI has already been handled in vmx_exit_handle_nmi(). 2650 */ 2651 if (intr_type == VMCS_INTR_T_NMI) 2652 return (1); 2653 2654 /* 2655 * Call the machine check handler by hand. Also don't reflect 2656 * the machine check back into the guest. 2657 */ 2658 if (intr_vec == IDT_MC) { 2659 VCPU_CTR0(vmx->vm, vcpu, "Vectoring to MCE handler"); 2660 __asm __volatile("int $18"); 2661 return (1); 2662 } 2663 2664 /* 2665 * If the hypervisor has requested user exits for 2666 * debug exceptions, bounce them out to userland. 2667 */ 2668 if (intr_type == VMCS_INTR_T_SWEXCEPTION && intr_vec == IDT_BP && 2669 (vmx->cap[vcpu].set & (1 << VM_CAP_BPT_EXIT))) { 2670 vmexit->exitcode = VM_EXITCODE_BPT; 2671 vmexit->u.bpt.inst_length = vmexit->inst_length; 2672 vmexit->inst_length = 0; 2673 break; 2674 } 2675 2676 if (intr_vec == IDT_PF) { 2677 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_CR2, qual); 2678 KASSERT(error == 0, ("%s: vmxctx_setreg(cr2) error %d", 2679 __func__, error)); 2680 } 2681 2682 /* 2683 * Software exceptions exhibit trap-like behavior. This in 2684 * turn requires populating the VM-entry instruction length 2685 * so that the %rip in the trap frame is past the INT3/INTO 2686 * instruction. 2687 */ 2688 if (intr_type == VMCS_INTR_T_SWEXCEPTION) 2689 vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length); 2690 2691 /* Reflect all other exceptions back into the guest */ 2692 errcode_valid = errcode = 0; 2693 if (intr_info & VMCS_INTR_DEL_ERRCODE) { 2694 errcode_valid = 1; 2695 errcode = vmcs_read(VMCS_EXIT_INTR_ERRCODE); 2696 } 2697 VCPU_CTR2(vmx->vm, vcpu, "Reflecting exception %d/%#x into " 2698 "the guest", intr_vec, errcode); 2699 SDT_PROBE5(vmm, vmx, exit, exception, 2700 vmx, vcpu, vmexit, intr_vec, errcode); 2701 error = vm_inject_exception(vmx->vm, vcpu, intr_vec, 2702 errcode_valid, errcode, 0); 2703 KASSERT(error == 0, ("%s: vm_inject_exception error %d", 2704 __func__, error)); 2705 return (1); 2706 2707 case EXIT_REASON_EPT_FAULT: 2708 /* 2709 * If 'gpa' lies within the address space allocated to 2710 * memory then this must be a nested page fault otherwise 2711 * this must be an instruction that accesses MMIO space. 2712 */ 2713 gpa = vmcs_gpa(); 2714 if (vm_mem_allocated(vmx->vm, vcpu, gpa) || 2715 apic_access_fault(vmx, vcpu, gpa)) { 2716 vmexit->exitcode = VM_EXITCODE_PAGING; 2717 vmexit->inst_length = 0; 2718 vmexit->u.paging.gpa = gpa; 2719 vmexit->u.paging.fault_type = ept_fault_type(qual); 2720 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NESTED_FAULT, 1); 2721 SDT_PROBE5(vmm, vmx, exit, nestedfault, 2722 vmx, vcpu, vmexit, gpa, qual); 2723 } else if (ept_emulation_fault(qual)) { 2724 vmexit_inst_emul(vmexit, gpa, vmcs_gla()); 2725 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INST_EMUL, 1); 2726 SDT_PROBE4(vmm, vmx, exit, mmiofault, 2727 vmx, vcpu, vmexit, gpa); 2728 } 2729 /* 2730 * If Virtual NMIs control is 1 and the VM-exit is due to an 2731 * EPT fault during the execution of IRET then we must restore 2732 * the state of "virtual-NMI blocking" before resuming. 2733 * 2734 * See description of "NMI unblocking due to IRET" in 2735 * "Exit Qualification for EPT Violations". 2736 */ 2737 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 && 2738 (qual & EXIT_QUAL_NMIUDTI) != 0) 2739 vmx_restore_nmi_blocking(vmx, vcpu); 2740 break; 2741 case EXIT_REASON_VIRTUALIZED_EOI: 2742 vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI; 2743 vmexit->u.ioapic_eoi.vector = qual & 0xFF; 2744 SDT_PROBE3(vmm, vmx, exit, eoi, vmx, vcpu, vmexit); 2745 vmexit->inst_length = 0; /* trap-like */ 2746 break; 2747 case EXIT_REASON_APIC_ACCESS: 2748 SDT_PROBE3(vmm, vmx, exit, apicaccess, vmx, vcpu, vmexit); 2749 handled = vmx_handle_apic_access(vmx, vcpu, vmexit); 2750 break; 2751 case EXIT_REASON_APIC_WRITE: 2752 /* 2753 * APIC-write VM exit is trap-like so the %rip is already 2754 * pointing to the next instruction. 2755 */ 2756 vmexit->inst_length = 0; 2757 vlapic = vm_lapic(vmx->vm, vcpu); 2758 SDT_PROBE4(vmm, vmx, exit, apicwrite, 2759 vmx, vcpu, vmexit, vlapic); 2760 handled = vmx_handle_apic_write(vmx, vcpu, vlapic, qual); 2761 break; 2762 case EXIT_REASON_XSETBV: 2763 SDT_PROBE3(vmm, vmx, exit, xsetbv, vmx, vcpu, vmexit); 2764 handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit); 2765 break; 2766 case EXIT_REASON_MONITOR: 2767 SDT_PROBE3(vmm, vmx, exit, monitor, vmx, vcpu, vmexit); 2768 vmexit->exitcode = VM_EXITCODE_MONITOR; 2769 break; 2770 case EXIT_REASON_MWAIT: 2771 SDT_PROBE3(vmm, vmx, exit, mwait, vmx, vcpu, vmexit); 2772 vmexit->exitcode = VM_EXITCODE_MWAIT; 2773 break; 2774 case EXIT_REASON_TPR: 2775 vlapic = vm_lapic(vmx->vm, vcpu); 2776 vlapic_sync_tpr(vlapic); 2777 vmexit->inst_length = 0; 2778 handled = HANDLED; 2779 break; 2780 case EXIT_REASON_VMCALL: 2781 case EXIT_REASON_VMCLEAR: 2782 case EXIT_REASON_VMLAUNCH: 2783 case EXIT_REASON_VMPTRLD: 2784 case EXIT_REASON_VMPTRST: 2785 case EXIT_REASON_VMREAD: 2786 case EXIT_REASON_VMRESUME: 2787 case EXIT_REASON_VMWRITE: 2788 case EXIT_REASON_VMXOFF: 2789 case EXIT_REASON_VMXON: 2790 SDT_PROBE3(vmm, vmx, exit, vminsn, vmx, vcpu, vmexit); 2791 vmexit->exitcode = VM_EXITCODE_VMINSN; 2792 break; 2793 case EXIT_REASON_INVD: 2794 case EXIT_REASON_WBINVD: 2795 /* ignore exit */ 2796 handled = HANDLED; 2797 break; 2798 default: 2799 SDT_PROBE4(vmm, vmx, exit, unknown, 2800 vmx, vcpu, vmexit, reason); 2801 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1); 2802 break; 2803 } 2804 2805 if (handled) { 2806 /* 2807 * It is possible that control is returned to userland 2808 * even though we were able to handle the VM exit in the 2809 * kernel. 2810 * 2811 * In such a case we want to make sure that the userland 2812 * restarts guest execution at the instruction *after* 2813 * the one we just processed. Therefore we update the 2814 * guest rip in the VMCS and in 'vmexit'. 2815 */ 2816 vmexit->rip += vmexit->inst_length; 2817 vmexit->inst_length = 0; 2818 vmcs_write(VMCS_GUEST_RIP, vmexit->rip); 2819 } else { 2820 if (vmexit->exitcode == VM_EXITCODE_BOGUS) { 2821 /* 2822 * If this VM exit was not claimed by anybody then 2823 * treat it as a generic VMX exit. 2824 */ 2825 vmexit->exitcode = VM_EXITCODE_VMX; 2826 vmexit->u.vmx.status = VM_SUCCESS; 2827 vmexit->u.vmx.inst_type = 0; 2828 vmexit->u.vmx.inst_error = 0; 2829 } else { 2830 /* 2831 * The exitcode and collateral have been populated. 2832 * The VM exit will be processed further in userland. 2833 */ 2834 } 2835 } 2836 2837 SDT_PROBE4(vmm, vmx, exit, return, 2838 vmx, vcpu, vmexit, handled); 2839 return (handled); 2840 } 2841 2842 static __inline void 2843 vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit) 2844 { 2845 2846 KASSERT(vmxctx->inst_fail_status != VM_SUCCESS, 2847 ("vmx_exit_inst_error: invalid inst_fail_status %d", 2848 vmxctx->inst_fail_status)); 2849 2850 vmexit->inst_length = 0; 2851 vmexit->exitcode = VM_EXITCODE_VMX; 2852 vmexit->u.vmx.status = vmxctx->inst_fail_status; 2853 vmexit->u.vmx.inst_error = vmcs_instruction_error(); 2854 vmexit->u.vmx.exit_reason = ~0; 2855 vmexit->u.vmx.exit_qualification = ~0; 2856 2857 switch (rc) { 2858 case VMX_VMRESUME_ERROR: 2859 case VMX_VMLAUNCH_ERROR: 2860 vmexit->u.vmx.inst_type = rc; 2861 break; 2862 default: 2863 panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc); 2864 } 2865 } 2866 2867 /* 2868 * If the NMI-exiting VM execution control is set to '1' then an NMI in 2869 * non-root operation causes a VM-exit. NMI blocking is in effect so it is 2870 * sufficient to simply vector to the NMI handler via a software interrupt. 2871 * However, this must be done before maskable interrupts are enabled 2872 * otherwise the "iret" issued by an interrupt handler will incorrectly 2873 * clear NMI blocking. 2874 */ 2875 static __inline void 2876 vmx_exit_handle_nmi(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit) 2877 { 2878 uint32_t intr_info; 2879 2880 KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled")); 2881 2882 if (vmexit->u.vmx.exit_reason != EXIT_REASON_EXCEPTION) 2883 return; 2884 2885 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO); 2886 KASSERT((intr_info & VMCS_INTR_VALID) != 0, 2887 ("VM exit interruption info invalid: %#x", intr_info)); 2888 2889 if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) { 2890 KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due " 2891 "to NMI has invalid vector: %#x", intr_info)); 2892 VCPU_CTR0(vmx->vm, vcpuid, "Vectoring to NMI handler"); 2893 __asm __volatile("int $2"); 2894 } 2895 } 2896 2897 static __inline void 2898 vmx_dr_enter_guest(struct vmxctx *vmxctx) 2899 { 2900 register_t rflags; 2901 2902 /* Save host control debug registers. */ 2903 vmxctx->host_dr7 = rdr7(); 2904 vmxctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR); 2905 2906 /* 2907 * Disable debugging in DR7 and DEBUGCTL to avoid triggering 2908 * exceptions in the host based on the guest DRx values. The 2909 * guest DR7 and DEBUGCTL are saved/restored in the VMCS. 2910 */ 2911 load_dr7(0); 2912 wrmsr(MSR_DEBUGCTLMSR, 0); 2913 2914 /* 2915 * Disable single stepping the kernel to avoid corrupting the 2916 * guest DR6. A debugger might still be able to corrupt the 2917 * guest DR6 by setting a breakpoint after this point and then 2918 * single stepping. 2919 */ 2920 rflags = read_rflags(); 2921 vmxctx->host_tf = rflags & PSL_T; 2922 write_rflags(rflags & ~PSL_T); 2923 2924 /* Save host debug registers. */ 2925 vmxctx->host_dr0 = rdr0(); 2926 vmxctx->host_dr1 = rdr1(); 2927 vmxctx->host_dr2 = rdr2(); 2928 vmxctx->host_dr3 = rdr3(); 2929 vmxctx->host_dr6 = rdr6(); 2930 2931 /* Restore guest debug registers. */ 2932 load_dr0(vmxctx->guest_dr0); 2933 load_dr1(vmxctx->guest_dr1); 2934 load_dr2(vmxctx->guest_dr2); 2935 load_dr3(vmxctx->guest_dr3); 2936 load_dr6(vmxctx->guest_dr6); 2937 } 2938 2939 static __inline void 2940 vmx_dr_leave_guest(struct vmxctx *vmxctx) 2941 { 2942 2943 /* Save guest debug registers. */ 2944 vmxctx->guest_dr0 = rdr0(); 2945 vmxctx->guest_dr1 = rdr1(); 2946 vmxctx->guest_dr2 = rdr2(); 2947 vmxctx->guest_dr3 = rdr3(); 2948 vmxctx->guest_dr6 = rdr6(); 2949 2950 /* 2951 * Restore host debug registers. Restore DR7, DEBUGCTL, and 2952 * PSL_T last. 2953 */ 2954 load_dr0(vmxctx->host_dr0); 2955 load_dr1(vmxctx->host_dr1); 2956 load_dr2(vmxctx->host_dr2); 2957 load_dr3(vmxctx->host_dr3); 2958 load_dr6(vmxctx->host_dr6); 2959 wrmsr(MSR_DEBUGCTLMSR, vmxctx->host_debugctl); 2960 load_dr7(vmxctx->host_dr7); 2961 write_rflags(read_rflags() | vmxctx->host_tf); 2962 } 2963 2964 static __inline void 2965 vmx_pmap_activate(struct vmx *vmx, pmap_t pmap) 2966 { 2967 long eptgen; 2968 int cpu; 2969 2970 cpu = curcpu; 2971 2972 CPU_SET_ATOMIC(cpu, &pmap->pm_active); 2973 smr_enter(pmap->pm_eptsmr); 2974 eptgen = atomic_load_long(&pmap->pm_eptgen); 2975 if (eptgen != vmx->eptgen[cpu]) { 2976 vmx->eptgen[cpu] = eptgen; 2977 invept(INVEPT_TYPE_SINGLE_CONTEXT, 2978 (struct invept_desc){ .eptp = vmx->eptp, ._res = 0 }); 2979 } 2980 } 2981 2982 static __inline void 2983 vmx_pmap_deactivate(struct vmx *vmx, pmap_t pmap) 2984 { 2985 smr_exit(pmap->pm_eptsmr); 2986 CPU_CLR_ATOMIC(curcpu, &pmap->pm_active); 2987 } 2988 2989 static int 2990 vmx_run(void *arg, int vcpu, register_t rip, pmap_t pmap, 2991 struct vm_eventinfo *evinfo) 2992 { 2993 int rc, handled, launched; 2994 struct vmx *vmx; 2995 struct vm *vm; 2996 struct vmxctx *vmxctx; 2997 struct vmcs *vmcs; 2998 struct vm_exit *vmexit; 2999 struct vlapic *vlapic; 3000 uint32_t exit_reason; 3001 struct region_descriptor gdtr, idtr; 3002 uint16_t ldt_sel; 3003 3004 vmx = arg; 3005 vm = vmx->vm; 3006 vmcs = &vmx->vmcs[vcpu]; 3007 vmxctx = &vmx->ctx[vcpu]; 3008 vlapic = vm_lapic(vm, vcpu); 3009 vmexit = vm_exitinfo(vm, vcpu); 3010 launched = 0; 3011 3012 KASSERT(vmxctx->pmap == pmap, 3013 ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap)); 3014 3015 vmx_msr_guest_enter(vmx, vcpu); 3016 3017 VMPTRLD(vmcs); 3018 3019 /* 3020 * XXX 3021 * We do this every time because we may setup the virtual machine 3022 * from a different process than the one that actually runs it. 3023 * 3024 * If the life of a virtual machine was spent entirely in the context 3025 * of a single process we could do this once in vmx_init(). 3026 */ 3027 vmcs_write(VMCS_HOST_CR3, rcr3()); 3028 3029 vmcs_write(VMCS_GUEST_RIP, rip); 3030 vmx_set_pcpu_defaults(vmx, vcpu, pmap); 3031 do { 3032 KASSERT(vmcs_guest_rip() == rip, ("%s: vmcs guest rip mismatch " 3033 "%#lx/%#lx", __func__, vmcs_guest_rip(), rip)); 3034 3035 handled = UNHANDLED; 3036 /* 3037 * Interrupts are disabled from this point on until the 3038 * guest starts executing. This is done for the following 3039 * reasons: 3040 * 3041 * If an AST is asserted on this thread after the check below, 3042 * then the IPI_AST notification will not be lost, because it 3043 * will cause a VM exit due to external interrupt as soon as 3044 * the guest state is loaded. 3045 * 3046 * A posted interrupt after 'vmx_inject_interrupts()' will 3047 * not be "lost" because it will be held pending in the host 3048 * APIC because interrupts are disabled. The pending interrupt 3049 * will be recognized as soon as the guest state is loaded. 3050 * 3051 * The same reasoning applies to the IPI generated by 3052 * pmap_invalidate_ept(). 3053 */ 3054 disable_intr(); 3055 vmx_inject_interrupts(vmx, vcpu, vlapic, rip); 3056 3057 /* 3058 * Check for vcpu suspension after injecting events because 3059 * vmx_inject_interrupts() can suspend the vcpu due to a 3060 * triple fault. 3061 */ 3062 if (vcpu_suspended(evinfo)) { 3063 enable_intr(); 3064 vm_exit_suspended(vmx->vm, vcpu, rip); 3065 break; 3066 } 3067 3068 if (vcpu_rendezvous_pending(evinfo)) { 3069 enable_intr(); 3070 vm_exit_rendezvous(vmx->vm, vcpu, rip); 3071 break; 3072 } 3073 3074 if (vcpu_reqidle(evinfo)) { 3075 enable_intr(); 3076 vm_exit_reqidle(vmx->vm, vcpu, rip); 3077 break; 3078 } 3079 3080 if (vcpu_should_yield(vm, vcpu)) { 3081 enable_intr(); 3082 vm_exit_astpending(vmx->vm, vcpu, rip); 3083 vmx_astpending_trace(vmx, vcpu, rip); 3084 handled = HANDLED; 3085 break; 3086 } 3087 3088 if (vcpu_debugged(vm, vcpu)) { 3089 enable_intr(); 3090 vm_exit_debug(vmx->vm, vcpu, rip); 3091 break; 3092 } 3093 3094 /* 3095 * If TPR Shadowing is enabled, the TPR Threshold 3096 * must be updated right before entering the guest. 3097 */ 3098 if (tpr_shadowing && !virtual_interrupt_delivery) { 3099 if ((vmx->cap[vcpu].proc_ctls & PROCBASED_USE_TPR_SHADOW) != 0) { 3100 vmcs_write(VMCS_TPR_THRESHOLD, vlapic_get_cr8(vlapic)); 3101 } 3102 } 3103 3104 /* 3105 * VM exits restore the base address but not the 3106 * limits of GDTR and IDTR. The VMCS only stores the 3107 * base address, so VM exits set the limits to 0xffff. 3108 * Save and restore the full GDTR and IDTR to restore 3109 * the limits. 3110 * 3111 * The VMCS does not save the LDTR at all, and VM 3112 * exits clear LDTR as if a NULL selector were loaded. 3113 * The userspace hypervisor probably doesn't use a 3114 * LDT, but save and restore it to be safe. 3115 */ 3116 sgdt(&gdtr); 3117 sidt(&idtr); 3118 ldt_sel = sldt(); 3119 3120 /* 3121 * The TSC_AUX MSR must be saved/restored while interrupts 3122 * are disabled so that it is not possible for the guest 3123 * TSC_AUX MSR value to be overwritten by the resume 3124 * portion of the IPI_SUSPEND codepath. This is why the 3125 * transition of this MSR is handled separately from those 3126 * handled by vmx_msr_guest_{enter,exit}(), which are ok to 3127 * be transitioned with preemption disabled but interrupts 3128 * enabled. 3129 * 3130 * These vmx_msr_guest_{enter,exit}_tsc_aux() calls can be 3131 * anywhere in this loop so long as they happen with 3132 * interrupts disabled. This location is chosen for 3133 * simplicity. 3134 */ 3135 vmx_msr_guest_enter_tsc_aux(vmx, vcpu); 3136 3137 vmx_dr_enter_guest(vmxctx); 3138 3139 /* 3140 * Mark the EPT as active on this host CPU and invalidate 3141 * EPTP-tagged TLB entries if required. 3142 */ 3143 vmx_pmap_activate(vmx, pmap); 3144 3145 vmx_run_trace(vmx, vcpu); 3146 rc = vmx_enter_guest(vmxctx, vmx, launched); 3147 3148 vmx_pmap_deactivate(vmx, pmap); 3149 vmx_dr_leave_guest(vmxctx); 3150 vmx_msr_guest_exit_tsc_aux(vmx, vcpu); 3151 3152 bare_lgdt(&gdtr); 3153 lidt(&idtr); 3154 lldt(ldt_sel); 3155 3156 /* Collect some information for VM exit processing */ 3157 vmexit->rip = rip = vmcs_guest_rip(); 3158 vmexit->inst_length = vmexit_instruction_length(); 3159 vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason(); 3160 vmexit->u.vmx.exit_qualification = vmcs_exit_qualification(); 3161 3162 /* Update 'nextrip' */ 3163 vmx->state[vcpu].nextrip = rip; 3164 3165 if (rc == VMX_GUEST_VMEXIT) { 3166 vmx_exit_handle_nmi(vmx, vcpu, vmexit); 3167 enable_intr(); 3168 handled = vmx_exit_process(vmx, vcpu, vmexit); 3169 } else { 3170 enable_intr(); 3171 vmx_exit_inst_error(vmxctx, rc, vmexit); 3172 } 3173 launched = 1; 3174 vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled); 3175 rip = vmexit->rip; 3176 } while (handled); 3177 3178 /* 3179 * If a VM exit has been handled then the exitcode must be BOGUS 3180 * If a VM exit is not handled then the exitcode must not be BOGUS 3181 */ 3182 if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) || 3183 (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) { 3184 panic("Mismatch between handled (%d) and exitcode (%d)", 3185 handled, vmexit->exitcode); 3186 } 3187 3188 VCPU_CTR1(vm, vcpu, "returning from vmx_run: exitcode %d", 3189 vmexit->exitcode); 3190 3191 VMCLEAR(vmcs); 3192 vmx_msr_guest_exit(vmx, vcpu); 3193 3194 return (0); 3195 } 3196 3197 static void 3198 vmx_cleanup(void *arg) 3199 { 3200 int i; 3201 struct vmx *vmx = arg; 3202 uint16_t maxcpus; 3203 3204 if (apic_access_virtualization(vmx, 0)) 3205 vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE); 3206 3207 maxcpus = vm_get_maxcpus(vmx->vm); 3208 for (i = 0; i < maxcpus; i++) 3209 vpid_free(vmx->state[i].vpid); 3210 3211 free(vmx, M_VMX); 3212 3213 return; 3214 } 3215 3216 static register_t * 3217 vmxctx_regptr(struct vmxctx *vmxctx, int reg) 3218 { 3219 3220 switch (reg) { 3221 case VM_REG_GUEST_RAX: 3222 return (&vmxctx->guest_rax); 3223 case VM_REG_GUEST_RBX: 3224 return (&vmxctx->guest_rbx); 3225 case VM_REG_GUEST_RCX: 3226 return (&vmxctx->guest_rcx); 3227 case VM_REG_GUEST_RDX: 3228 return (&vmxctx->guest_rdx); 3229 case VM_REG_GUEST_RSI: 3230 return (&vmxctx->guest_rsi); 3231 case VM_REG_GUEST_RDI: 3232 return (&vmxctx->guest_rdi); 3233 case VM_REG_GUEST_RBP: 3234 return (&vmxctx->guest_rbp); 3235 case VM_REG_GUEST_R8: 3236 return (&vmxctx->guest_r8); 3237 case VM_REG_GUEST_R9: 3238 return (&vmxctx->guest_r9); 3239 case VM_REG_GUEST_R10: 3240 return (&vmxctx->guest_r10); 3241 case VM_REG_GUEST_R11: 3242 return (&vmxctx->guest_r11); 3243 case VM_REG_GUEST_R12: 3244 return (&vmxctx->guest_r12); 3245 case VM_REG_GUEST_R13: 3246 return (&vmxctx->guest_r13); 3247 case VM_REG_GUEST_R14: 3248 return (&vmxctx->guest_r14); 3249 case VM_REG_GUEST_R15: 3250 return (&vmxctx->guest_r15); 3251 case VM_REG_GUEST_CR2: 3252 return (&vmxctx->guest_cr2); 3253 case VM_REG_GUEST_DR0: 3254 return (&vmxctx->guest_dr0); 3255 case VM_REG_GUEST_DR1: 3256 return (&vmxctx->guest_dr1); 3257 case VM_REG_GUEST_DR2: 3258 return (&vmxctx->guest_dr2); 3259 case VM_REG_GUEST_DR3: 3260 return (&vmxctx->guest_dr3); 3261 case VM_REG_GUEST_DR6: 3262 return (&vmxctx->guest_dr6); 3263 default: 3264 break; 3265 } 3266 return (NULL); 3267 } 3268 3269 static int 3270 vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval) 3271 { 3272 register_t *regp; 3273 3274 if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) { 3275 *retval = *regp; 3276 return (0); 3277 } else 3278 return (EINVAL); 3279 } 3280 3281 static int 3282 vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val) 3283 { 3284 register_t *regp; 3285 3286 if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) { 3287 *regp = val; 3288 return (0); 3289 } else 3290 return (EINVAL); 3291 } 3292 3293 static int 3294 vmx_get_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t *retval) 3295 { 3296 uint64_t gi; 3297 int error; 3298 3299 error = vmcs_getreg(&vmx->vmcs[vcpu], running, 3300 VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY), &gi); 3301 *retval = (gi & HWINTR_BLOCKING) ? 1 : 0; 3302 return (error); 3303 } 3304 3305 static int 3306 vmx_modify_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t val) 3307 { 3308 struct vmcs *vmcs; 3309 uint64_t gi; 3310 int error, ident; 3311 3312 /* 3313 * Forcing the vcpu into an interrupt shadow is not supported. 3314 */ 3315 if (val) { 3316 error = EINVAL; 3317 goto done; 3318 } 3319 3320 vmcs = &vmx->vmcs[vcpu]; 3321 ident = VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY); 3322 error = vmcs_getreg(vmcs, running, ident, &gi); 3323 if (error == 0) { 3324 gi &= ~HWINTR_BLOCKING; 3325 error = vmcs_setreg(vmcs, running, ident, gi); 3326 } 3327 done: 3328 VCPU_CTR2(vmx->vm, vcpu, "Setting intr_shadow to %#lx %s", val, 3329 error ? "failed" : "succeeded"); 3330 return (error); 3331 } 3332 3333 static int 3334 vmx_shadow_reg(int reg) 3335 { 3336 int shreg; 3337 3338 shreg = -1; 3339 3340 switch (reg) { 3341 case VM_REG_GUEST_CR0: 3342 shreg = VMCS_CR0_SHADOW; 3343 break; 3344 case VM_REG_GUEST_CR4: 3345 shreg = VMCS_CR4_SHADOW; 3346 break; 3347 default: 3348 break; 3349 } 3350 3351 return (shreg); 3352 } 3353 3354 static int 3355 vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval) 3356 { 3357 int running, hostcpu; 3358 struct vmx *vmx = arg; 3359 3360 running = vcpu_is_running(vmx->vm, vcpu, &hostcpu); 3361 if (running && hostcpu != curcpu) 3362 panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu); 3363 3364 if (reg == VM_REG_GUEST_INTR_SHADOW) 3365 return (vmx_get_intr_shadow(vmx, vcpu, running, retval)); 3366 3367 if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0) 3368 return (0); 3369 3370 return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval)); 3371 } 3372 3373 static int 3374 vmx_setreg(void *arg, int vcpu, int reg, uint64_t val) 3375 { 3376 int error, hostcpu, running, shadow; 3377 uint64_t ctls; 3378 pmap_t pmap; 3379 struct vmx *vmx = arg; 3380 3381 running = vcpu_is_running(vmx->vm, vcpu, &hostcpu); 3382 if (running && hostcpu != curcpu) 3383 panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu); 3384 3385 if (reg == VM_REG_GUEST_INTR_SHADOW) 3386 return (vmx_modify_intr_shadow(vmx, vcpu, running, val)); 3387 3388 if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0) 3389 return (0); 3390 3391 /* Do not permit user write access to VMCS fields by offset. */ 3392 if (reg < 0) 3393 return (EINVAL); 3394 3395 error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val); 3396 3397 if (error == 0) { 3398 /* 3399 * If the "load EFER" VM-entry control is 1 then the 3400 * value of EFER.LMA must be identical to "IA-32e mode guest" 3401 * bit in the VM-entry control. 3402 */ 3403 if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 && 3404 (reg == VM_REG_GUEST_EFER)) { 3405 vmcs_getreg(&vmx->vmcs[vcpu], running, 3406 VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls); 3407 if (val & EFER_LMA) 3408 ctls |= VM_ENTRY_GUEST_LMA; 3409 else 3410 ctls &= ~VM_ENTRY_GUEST_LMA; 3411 vmcs_setreg(&vmx->vmcs[vcpu], running, 3412 VMCS_IDENT(VMCS_ENTRY_CTLS), ctls); 3413 } 3414 3415 shadow = vmx_shadow_reg(reg); 3416 if (shadow > 0) { 3417 /* 3418 * Store the unmodified value in the shadow 3419 */ 3420 error = vmcs_setreg(&vmx->vmcs[vcpu], running, 3421 VMCS_IDENT(shadow), val); 3422 } 3423 3424 if (reg == VM_REG_GUEST_CR3) { 3425 /* 3426 * Invalidate the guest vcpu's TLB mappings to emulate 3427 * the behavior of updating %cr3. 3428 * 3429 * XXX the processor retains global mappings when %cr3 3430 * is updated but vmx_invvpid() does not. 3431 */ 3432 pmap = vmx->ctx[vcpu].pmap; 3433 vmx_invvpid(vmx, vcpu, pmap, running); 3434 } 3435 } 3436 3437 return (error); 3438 } 3439 3440 static int 3441 vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc) 3442 { 3443 int hostcpu, running; 3444 struct vmx *vmx = arg; 3445 3446 running = vcpu_is_running(vmx->vm, vcpu, &hostcpu); 3447 if (running && hostcpu != curcpu) 3448 panic("vmx_getdesc: %s%d is running", vm_name(vmx->vm), vcpu); 3449 3450 return (vmcs_getdesc(&vmx->vmcs[vcpu], running, reg, desc)); 3451 } 3452 3453 static int 3454 vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc) 3455 { 3456 int hostcpu, running; 3457 struct vmx *vmx = arg; 3458 3459 running = vcpu_is_running(vmx->vm, vcpu, &hostcpu); 3460 if (running && hostcpu != curcpu) 3461 panic("vmx_setdesc: %s%d is running", vm_name(vmx->vm), vcpu); 3462 3463 return (vmcs_setdesc(&vmx->vmcs[vcpu], running, reg, desc)); 3464 } 3465 3466 static int 3467 vmx_getcap(void *arg, int vcpu, int type, int *retval) 3468 { 3469 struct vmx *vmx = arg; 3470 int vcap; 3471 int ret; 3472 3473 ret = ENOENT; 3474 3475 vcap = vmx->cap[vcpu].set; 3476 3477 switch (type) { 3478 case VM_CAP_HALT_EXIT: 3479 if (cap_halt_exit) 3480 ret = 0; 3481 break; 3482 case VM_CAP_PAUSE_EXIT: 3483 if (cap_pause_exit) 3484 ret = 0; 3485 break; 3486 case VM_CAP_MTRAP_EXIT: 3487 if (cap_monitor_trap) 3488 ret = 0; 3489 break; 3490 case VM_CAP_RDPID: 3491 if (cap_rdpid) 3492 ret = 0; 3493 break; 3494 case VM_CAP_RDTSCP: 3495 if (cap_rdtscp) 3496 ret = 0; 3497 break; 3498 case VM_CAP_UNRESTRICTED_GUEST: 3499 if (cap_unrestricted_guest) 3500 ret = 0; 3501 break; 3502 case VM_CAP_ENABLE_INVPCID: 3503 if (cap_invpcid) 3504 ret = 0; 3505 break; 3506 case VM_CAP_BPT_EXIT: 3507 case VM_CAP_IPI_EXIT: 3508 ret = 0; 3509 break; 3510 default: 3511 break; 3512 } 3513 3514 if (ret == 0) 3515 *retval = (vcap & (1 << type)) ? 1 : 0; 3516 3517 return (ret); 3518 } 3519 3520 static int 3521 vmx_setcap(void *arg, int vcpu, int type, int val) 3522 { 3523 struct vmx *vmx = arg; 3524 struct vmcs *vmcs = &vmx->vmcs[vcpu]; 3525 struct vlapic *vlapic; 3526 uint32_t baseval; 3527 uint32_t *pptr; 3528 int error; 3529 int flag; 3530 int reg; 3531 int retval; 3532 3533 retval = ENOENT; 3534 pptr = NULL; 3535 3536 switch (type) { 3537 case VM_CAP_HALT_EXIT: 3538 if (cap_halt_exit) { 3539 retval = 0; 3540 pptr = &vmx->cap[vcpu].proc_ctls; 3541 baseval = *pptr; 3542 flag = PROCBASED_HLT_EXITING; 3543 reg = VMCS_PRI_PROC_BASED_CTLS; 3544 } 3545 break; 3546 case VM_CAP_MTRAP_EXIT: 3547 if (cap_monitor_trap) { 3548 retval = 0; 3549 pptr = &vmx->cap[vcpu].proc_ctls; 3550 baseval = *pptr; 3551 flag = PROCBASED_MTF; 3552 reg = VMCS_PRI_PROC_BASED_CTLS; 3553 } 3554 break; 3555 case VM_CAP_PAUSE_EXIT: 3556 if (cap_pause_exit) { 3557 retval = 0; 3558 pptr = &vmx->cap[vcpu].proc_ctls; 3559 baseval = *pptr; 3560 flag = PROCBASED_PAUSE_EXITING; 3561 reg = VMCS_PRI_PROC_BASED_CTLS; 3562 } 3563 break; 3564 case VM_CAP_RDPID: 3565 case VM_CAP_RDTSCP: 3566 if (cap_rdpid || cap_rdtscp) 3567 /* 3568 * Choose not to support enabling/disabling 3569 * RDPID/RDTSCP via libvmmapi since, as per the 3570 * discussion in vmx_modinit(), RDPID/RDTSCP are 3571 * either always enabled or always disabled. 3572 */ 3573 error = EOPNOTSUPP; 3574 break; 3575 case VM_CAP_UNRESTRICTED_GUEST: 3576 if (cap_unrestricted_guest) { 3577 retval = 0; 3578 pptr = &vmx->cap[vcpu].proc_ctls2; 3579 baseval = *pptr; 3580 flag = PROCBASED2_UNRESTRICTED_GUEST; 3581 reg = VMCS_SEC_PROC_BASED_CTLS; 3582 } 3583 break; 3584 case VM_CAP_ENABLE_INVPCID: 3585 if (cap_invpcid) { 3586 retval = 0; 3587 pptr = &vmx->cap[vcpu].proc_ctls2; 3588 baseval = *pptr; 3589 flag = PROCBASED2_ENABLE_INVPCID; 3590 reg = VMCS_SEC_PROC_BASED_CTLS; 3591 } 3592 break; 3593 case VM_CAP_BPT_EXIT: 3594 retval = 0; 3595 3596 /* Don't change the bitmap if we are tracing all exceptions. */ 3597 if (vmx->cap[vcpu].exc_bitmap != 0xffffffff) { 3598 pptr = &vmx->cap[vcpu].exc_bitmap; 3599 baseval = *pptr; 3600 flag = (1 << IDT_BP); 3601 reg = VMCS_EXCEPTION_BITMAP; 3602 } 3603 break; 3604 case VM_CAP_IPI_EXIT: 3605 retval = 0; 3606 3607 vlapic = vm_lapic(vmx->vm, vcpu); 3608 vlapic->ipi_exit = val; 3609 break; 3610 default: 3611 break; 3612 } 3613 3614 if (retval) 3615 return (retval); 3616 3617 if (pptr != NULL) { 3618 if (val) { 3619 baseval |= flag; 3620 } else { 3621 baseval &= ~flag; 3622 } 3623 VMPTRLD(vmcs); 3624 error = vmwrite(reg, baseval); 3625 VMCLEAR(vmcs); 3626 3627 if (error) 3628 return (error); 3629 3630 /* 3631 * Update optional stored flags, and record 3632 * setting 3633 */ 3634 *pptr = baseval; 3635 } 3636 3637 if (val) { 3638 vmx->cap[vcpu].set |= (1 << type); 3639 } else { 3640 vmx->cap[vcpu].set &= ~(1 << type); 3641 } 3642 3643 return (0); 3644 } 3645 3646 static struct vmspace * 3647 vmx_vmspace_alloc(vm_offset_t min, vm_offset_t max) 3648 { 3649 return (ept_vmspace_alloc(min, max)); 3650 } 3651 3652 static void 3653 vmx_vmspace_free(struct vmspace *vmspace) 3654 { 3655 ept_vmspace_free(vmspace); 3656 } 3657 3658 struct vlapic_vtx { 3659 struct vlapic vlapic; 3660 struct pir_desc *pir_desc; 3661 struct vmx *vmx; 3662 u_int pending_prio; 3663 }; 3664 3665 #define VPR_PRIO_BIT(vpr) (1 << ((vpr) >> 4)) 3666 3667 #define VMX_CTR_PIR(vm, vcpuid, pir_desc, notify, vector, level, msg) \ 3668 do { \ 3669 VCPU_CTR2(vm, vcpuid, msg " assert %s-triggered vector %d", \ 3670 level ? "level" : "edge", vector); \ 3671 VCPU_CTR1(vm, vcpuid, msg " pir0 0x%016lx", pir_desc->pir[0]); \ 3672 VCPU_CTR1(vm, vcpuid, msg " pir1 0x%016lx", pir_desc->pir[1]); \ 3673 VCPU_CTR1(vm, vcpuid, msg " pir2 0x%016lx", pir_desc->pir[2]); \ 3674 VCPU_CTR1(vm, vcpuid, msg " pir3 0x%016lx", pir_desc->pir[3]); \ 3675 VCPU_CTR1(vm, vcpuid, msg " notify: %s", notify ? "yes" : "no");\ 3676 } while (0) 3677 3678 /* 3679 * vlapic->ops handlers that utilize the APICv hardware assist described in 3680 * Chapter 29 of the Intel SDM. 3681 */ 3682 static int 3683 vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level) 3684 { 3685 struct vlapic_vtx *vlapic_vtx; 3686 struct pir_desc *pir_desc; 3687 uint64_t mask; 3688 int idx, notify = 0; 3689 3690 vlapic_vtx = (struct vlapic_vtx *)vlapic; 3691 pir_desc = vlapic_vtx->pir_desc; 3692 3693 /* 3694 * Keep track of interrupt requests in the PIR descriptor. This is 3695 * because the virtual APIC page pointed to by the VMCS cannot be 3696 * modified if the vcpu is running. 3697 */ 3698 idx = vector / 64; 3699 mask = 1UL << (vector % 64); 3700 atomic_set_long(&pir_desc->pir[idx], mask); 3701 3702 /* 3703 * A notification is required whenever the 'pending' bit makes a 3704 * transition from 0->1. 3705 * 3706 * Even if the 'pending' bit is already asserted, notification about 3707 * the incoming interrupt may still be necessary. For example, if a 3708 * vCPU is HLTed with a high PPR, a low priority interrupt would cause 3709 * the 0->1 'pending' transition with a notification, but the vCPU 3710 * would ignore the interrupt for the time being. The same vCPU would 3711 * need to then be notified if a high-priority interrupt arrived which 3712 * satisfied the PPR. 3713 * 3714 * The priorities of interrupts injected while 'pending' is asserted 3715 * are tracked in a custom bitfield 'pending_prio'. Should the 3716 * to-be-injected interrupt exceed the priorities already present, the 3717 * notification is sent. The priorities recorded in 'pending_prio' are 3718 * cleared whenever the 'pending' bit makes another 0->1 transition. 3719 */ 3720 if (atomic_cmpset_long(&pir_desc->pending, 0, 1) != 0) { 3721 notify = 1; 3722 vlapic_vtx->pending_prio = 0; 3723 } else { 3724 const u_int old_prio = vlapic_vtx->pending_prio; 3725 const u_int prio_bit = VPR_PRIO_BIT(vector & APIC_TPR_INT); 3726 3727 if ((old_prio & prio_bit) == 0 && prio_bit > old_prio) { 3728 atomic_set_int(&vlapic_vtx->pending_prio, prio_bit); 3729 notify = 1; 3730 } 3731 } 3732 3733 VMX_CTR_PIR(vlapic->vm, vlapic->vcpuid, pir_desc, notify, vector, 3734 level, "vmx_set_intr_ready"); 3735 return (notify); 3736 } 3737 3738 static int 3739 vmx_pending_intr(struct vlapic *vlapic, int *vecptr) 3740 { 3741 struct vlapic_vtx *vlapic_vtx; 3742 struct pir_desc *pir_desc; 3743 struct LAPIC *lapic; 3744 uint64_t pending, pirval; 3745 uint32_t ppr, vpr; 3746 int i; 3747 3748 /* 3749 * This function is only expected to be called from the 'HLT' exit 3750 * handler which does not care about the vector that is pending. 3751 */ 3752 KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL")); 3753 3754 vlapic_vtx = (struct vlapic_vtx *)vlapic; 3755 pir_desc = vlapic_vtx->pir_desc; 3756 3757 pending = atomic_load_acq_long(&pir_desc->pending); 3758 if (!pending) { 3759 /* 3760 * While a virtual interrupt may have already been 3761 * processed the actual delivery maybe pending the 3762 * interruptibility of the guest. Recognize a pending 3763 * interrupt by reevaluating virtual interrupts 3764 * following Section 29.2.1 in the Intel SDM Volume 3. 3765 */ 3766 struct vm_exit *vmexit; 3767 uint8_t rvi, ppr; 3768 3769 vmexit = vm_exitinfo(vlapic->vm, vlapic->vcpuid); 3770 KASSERT(vmexit->exitcode == VM_EXITCODE_HLT, 3771 ("vmx_pending_intr: exitcode not 'HLT'")); 3772 rvi = vmexit->u.hlt.intr_status & APIC_TPR_INT; 3773 lapic = vlapic->apic_page; 3774 ppr = lapic->ppr & APIC_TPR_INT; 3775 if (rvi > ppr) { 3776 return (1); 3777 } 3778 3779 return (0); 3780 } 3781 3782 /* 3783 * If there is an interrupt pending then it will be recognized only 3784 * if its priority is greater than the processor priority. 3785 * 3786 * Special case: if the processor priority is zero then any pending 3787 * interrupt will be recognized. 3788 */ 3789 lapic = vlapic->apic_page; 3790 ppr = lapic->ppr & APIC_TPR_INT; 3791 if (ppr == 0) 3792 return (1); 3793 3794 VCPU_CTR1(vlapic->vm, vlapic->vcpuid, "HLT with non-zero PPR %d", 3795 lapic->ppr); 3796 3797 vpr = 0; 3798 for (i = 3; i >= 0; i--) { 3799 pirval = pir_desc->pir[i]; 3800 if (pirval != 0) { 3801 vpr = (i * 64 + flsl(pirval) - 1) & APIC_TPR_INT; 3802 break; 3803 } 3804 } 3805 3806 /* 3807 * If the highest-priority pending interrupt falls short of the 3808 * processor priority of this vCPU, ensure that 'pending_prio' does not 3809 * have any stale bits which would preclude a higher-priority interrupt 3810 * from incurring a notification later. 3811 */ 3812 if (vpr <= ppr) { 3813 const u_int prio_bit = VPR_PRIO_BIT(vpr); 3814 const u_int old = vlapic_vtx->pending_prio; 3815 3816 if (old > prio_bit && (old & prio_bit) == 0) { 3817 vlapic_vtx->pending_prio = prio_bit; 3818 } 3819 return (0); 3820 } 3821 return (1); 3822 } 3823 3824 static void 3825 vmx_intr_accepted(struct vlapic *vlapic, int vector) 3826 { 3827 3828 panic("vmx_intr_accepted: not expected to be called"); 3829 } 3830 3831 static void 3832 vmx_set_tmr(struct vlapic *vlapic, int vector, bool level) 3833 { 3834 struct vlapic_vtx *vlapic_vtx; 3835 struct vmx *vmx; 3836 struct vmcs *vmcs; 3837 uint64_t mask, val; 3838 3839 KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d", vector)); 3840 KASSERT(!vcpu_is_running(vlapic->vm, vlapic->vcpuid, NULL), 3841 ("vmx_set_tmr: vcpu cannot be running")); 3842 3843 vlapic_vtx = (struct vlapic_vtx *)vlapic; 3844 vmx = vlapic_vtx->vmx; 3845 vmcs = &vmx->vmcs[vlapic->vcpuid]; 3846 mask = 1UL << (vector % 64); 3847 3848 VMPTRLD(vmcs); 3849 val = vmcs_read(VMCS_EOI_EXIT(vector)); 3850 if (level) 3851 val |= mask; 3852 else 3853 val &= ~mask; 3854 vmcs_write(VMCS_EOI_EXIT(vector), val); 3855 VMCLEAR(vmcs); 3856 } 3857 3858 static void 3859 vmx_enable_x2apic_mode_ts(struct vlapic *vlapic) 3860 { 3861 struct vmx *vmx; 3862 struct vmcs *vmcs; 3863 uint32_t proc_ctls; 3864 int vcpuid; 3865 3866 vcpuid = vlapic->vcpuid; 3867 vmx = ((struct vlapic_vtx *)vlapic)->vmx; 3868 vmcs = &vmx->vmcs[vcpuid]; 3869 3870 proc_ctls = vmx->cap[vcpuid].proc_ctls; 3871 proc_ctls &= ~PROCBASED_USE_TPR_SHADOW; 3872 proc_ctls |= PROCBASED_CR8_LOAD_EXITING; 3873 proc_ctls |= PROCBASED_CR8_STORE_EXITING; 3874 vmx->cap[vcpuid].proc_ctls = proc_ctls; 3875 3876 VMPTRLD(vmcs); 3877 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, proc_ctls); 3878 VMCLEAR(vmcs); 3879 } 3880 3881 static void 3882 vmx_enable_x2apic_mode_vid(struct vlapic *vlapic) 3883 { 3884 struct vmx *vmx; 3885 struct vmcs *vmcs; 3886 uint32_t proc_ctls2; 3887 int vcpuid, error __diagused; 3888 3889 vcpuid = vlapic->vcpuid; 3890 vmx = ((struct vlapic_vtx *)vlapic)->vmx; 3891 vmcs = &vmx->vmcs[vcpuid]; 3892 3893 proc_ctls2 = vmx->cap[vcpuid].proc_ctls2; 3894 KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0, 3895 ("%s: invalid proc_ctls2 %#x", __func__, proc_ctls2)); 3896 3897 proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES; 3898 proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE; 3899 vmx->cap[vcpuid].proc_ctls2 = proc_ctls2; 3900 3901 VMPTRLD(vmcs); 3902 vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2); 3903 VMCLEAR(vmcs); 3904 3905 if (vlapic->vcpuid == 0) { 3906 /* 3907 * The nested page table mappings are shared by all vcpus 3908 * so unmap the APIC access page just once. 3909 */ 3910 error = vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE); 3911 KASSERT(error == 0, ("%s: vm_unmap_mmio error %d", 3912 __func__, error)); 3913 3914 /* 3915 * The MSR bitmap is shared by all vcpus so modify it only 3916 * once in the context of vcpu 0. 3917 */ 3918 error = vmx_allow_x2apic_msrs(vmx); 3919 KASSERT(error == 0, ("%s: vmx_allow_x2apic_msrs error %d", 3920 __func__, error)); 3921 } 3922 } 3923 3924 static void 3925 vmx_post_intr(struct vlapic *vlapic, int hostcpu) 3926 { 3927 3928 ipi_cpu(hostcpu, pirvec); 3929 } 3930 3931 /* 3932 * Transfer the pending interrupts in the PIR descriptor to the IRR 3933 * in the virtual APIC page. 3934 */ 3935 static void 3936 vmx_inject_pir(struct vlapic *vlapic) 3937 { 3938 struct vlapic_vtx *vlapic_vtx; 3939 struct pir_desc *pir_desc; 3940 struct LAPIC *lapic; 3941 uint64_t val, pirval; 3942 int rvi, pirbase = -1; 3943 uint16_t intr_status_old, intr_status_new; 3944 3945 vlapic_vtx = (struct vlapic_vtx *)vlapic; 3946 pir_desc = vlapic_vtx->pir_desc; 3947 if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) { 3948 VCPU_CTR0(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: " 3949 "no posted interrupt pending"); 3950 return; 3951 } 3952 3953 pirval = 0; 3954 pirbase = -1; 3955 lapic = vlapic->apic_page; 3956 3957 val = atomic_readandclear_long(&pir_desc->pir[0]); 3958 if (val != 0) { 3959 lapic->irr0 |= val; 3960 lapic->irr1 |= val >> 32; 3961 pirbase = 0; 3962 pirval = val; 3963 } 3964 3965 val = atomic_readandclear_long(&pir_desc->pir[1]); 3966 if (val != 0) { 3967 lapic->irr2 |= val; 3968 lapic->irr3 |= val >> 32; 3969 pirbase = 64; 3970 pirval = val; 3971 } 3972 3973 val = atomic_readandclear_long(&pir_desc->pir[2]); 3974 if (val != 0) { 3975 lapic->irr4 |= val; 3976 lapic->irr5 |= val >> 32; 3977 pirbase = 128; 3978 pirval = val; 3979 } 3980 3981 val = atomic_readandclear_long(&pir_desc->pir[3]); 3982 if (val != 0) { 3983 lapic->irr6 |= val; 3984 lapic->irr7 |= val >> 32; 3985 pirbase = 192; 3986 pirval = val; 3987 } 3988 3989 VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir"); 3990 3991 /* 3992 * Update RVI so the processor can evaluate pending virtual 3993 * interrupts on VM-entry. 3994 * 3995 * It is possible for pirval to be 0 here, even though the 3996 * pending bit has been set. The scenario is: 3997 * CPU-Y is sending a posted interrupt to CPU-X, which 3998 * is running a guest and processing posted interrupts in h/w. 3999 * CPU-X will eventually exit and the state seen in s/w is 4000 * the pending bit set, but no PIR bits set. 4001 * 4002 * CPU-X CPU-Y 4003 * (vm running) (host running) 4004 * rx posted interrupt 4005 * CLEAR pending bit 4006 * SET PIR bit 4007 * READ/CLEAR PIR bits 4008 * SET pending bit 4009 * (vm exit) 4010 * pending bit set, PIR 0 4011 */ 4012 if (pirval != 0) { 4013 rvi = pirbase + flsl(pirval) - 1; 4014 intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS); 4015 intr_status_new = (intr_status_old & 0xFF00) | rvi; 4016 if (intr_status_new > intr_status_old) { 4017 vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new); 4018 VCPU_CTR2(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: " 4019 "guest_intr_status changed from 0x%04x to 0x%04x", 4020 intr_status_old, intr_status_new); 4021 } 4022 } 4023 } 4024 4025 static struct vlapic * 4026 vmx_vlapic_init(void *arg, int vcpuid) 4027 { 4028 struct vmx *vmx; 4029 struct vlapic *vlapic; 4030 struct vlapic_vtx *vlapic_vtx; 4031 4032 vmx = arg; 4033 4034 vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO); 4035 vlapic->vm = vmx->vm; 4036 vlapic->vcpuid = vcpuid; 4037 vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid]; 4038 4039 vlapic_vtx = (struct vlapic_vtx *)vlapic; 4040 vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid]; 4041 vlapic_vtx->vmx = vmx; 4042 4043 if (tpr_shadowing) { 4044 vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_ts; 4045 } 4046 4047 if (virtual_interrupt_delivery) { 4048 vlapic->ops.set_intr_ready = vmx_set_intr_ready; 4049 vlapic->ops.pending_intr = vmx_pending_intr; 4050 vlapic->ops.intr_accepted = vmx_intr_accepted; 4051 vlapic->ops.set_tmr = vmx_set_tmr; 4052 vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_vid; 4053 } 4054 4055 if (posted_interrupts) 4056 vlapic->ops.post_intr = vmx_post_intr; 4057 4058 vlapic_init(vlapic); 4059 4060 return (vlapic); 4061 } 4062 4063 static void 4064 vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic) 4065 { 4066 4067 vlapic_cleanup(vlapic); 4068 free(vlapic, M_VLAPIC); 4069 } 4070 4071 #ifdef BHYVE_SNAPSHOT 4072 static int 4073 vmx_snapshot(void *arg, struct vm_snapshot_meta *meta) 4074 { 4075 struct vmx *vmx; 4076 struct vmxctx *vmxctx; 4077 int i; 4078 int ret; 4079 4080 vmx = arg; 4081 4082 KASSERT(vmx != NULL, ("%s: arg was NULL", __func__)); 4083 4084 for (i = 0; i < VM_MAXCPU; i++) { 4085 SNAPSHOT_BUF_OR_LEAVE(vmx->guest_msrs[i], 4086 sizeof(vmx->guest_msrs[i]), meta, ret, done); 4087 4088 vmxctx = &vmx->ctx[i]; 4089 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rdi, meta, ret, done); 4090 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rsi, meta, ret, done); 4091 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rdx, meta, ret, done); 4092 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rcx, meta, ret, done); 4093 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r8, meta, ret, done); 4094 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r9, meta, ret, done); 4095 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rax, meta, ret, done); 4096 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rbx, meta, ret, done); 4097 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rbp, meta, ret, done); 4098 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r10, meta, ret, done); 4099 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r11, meta, ret, done); 4100 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r12, meta, ret, done); 4101 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r13, meta, ret, done); 4102 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r14, meta, ret, done); 4103 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r15, meta, ret, done); 4104 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_cr2, meta, ret, done); 4105 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr0, meta, ret, done); 4106 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr1, meta, ret, done); 4107 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr2, meta, ret, done); 4108 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr3, meta, ret, done); 4109 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr6, meta, ret, done); 4110 } 4111 4112 done: 4113 return (ret); 4114 } 4115 4116 static int 4117 vmx_vmcx_snapshot(void *arg, struct vm_snapshot_meta *meta, int vcpu) 4118 { 4119 struct vmcs *vmcs; 4120 struct vmx *vmx; 4121 int err, run, hostcpu; 4122 4123 vmx = (struct vmx *)arg; 4124 err = 0; 4125 4126 KASSERT(arg != NULL, ("%s: arg was NULL", __func__)); 4127 vmcs = &vmx->vmcs[vcpu]; 4128 4129 run = vcpu_is_running(vmx->vm, vcpu, &hostcpu); 4130 if (run && hostcpu != curcpu) { 4131 printf("%s: %s%d is running", __func__, vm_name(vmx->vm), vcpu); 4132 return (EINVAL); 4133 } 4134 4135 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR0, meta); 4136 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR3, meta); 4137 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR4, meta); 4138 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_DR7, meta); 4139 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RSP, meta); 4140 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RIP, meta); 4141 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RFLAGS, meta); 4142 4143 /* Guest segments */ 4144 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_ES, meta); 4145 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_ES, meta); 4146 4147 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CS, meta); 4148 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_CS, meta); 4149 4150 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_SS, meta); 4151 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_SS, meta); 4152 4153 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_DS, meta); 4154 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_DS, meta); 4155 4156 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_FS, meta); 4157 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_FS, meta); 4158 4159 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_GS, meta); 4160 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_GS, meta); 4161 4162 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_TR, meta); 4163 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_TR, meta); 4164 4165 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_LDTR, meta); 4166 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_LDTR, meta); 4167 4168 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_EFER, meta); 4169 4170 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_IDTR, meta); 4171 err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_GDTR, meta); 4172 4173 /* Guest page tables */ 4174 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE0, meta); 4175 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE1, meta); 4176 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE2, meta); 4177 err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE3, meta); 4178 4179 /* Other guest state */ 4180 err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_CS, meta); 4181 err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_ESP, meta); 4182 err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_EIP, meta); 4183 err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_INTERRUPTIBILITY, meta); 4184 err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_ACTIVITY, meta); 4185 err += vmcs_snapshot_any(vmcs, run, VMCS_ENTRY_CTLS, meta); 4186 err += vmcs_snapshot_any(vmcs, run, VMCS_EXIT_CTLS, meta); 4187 4188 return (err); 4189 } 4190 4191 static int 4192 vmx_restore_tsc(void *arg, int vcpu, uint64_t offset) 4193 { 4194 struct vmcs *vmcs; 4195 struct vmx *vmx = (struct vmx *)arg; 4196 int error, running, hostcpu; 4197 4198 KASSERT(arg != NULL, ("%s: arg was NULL", __func__)); 4199 vmcs = &vmx->vmcs[vcpu]; 4200 4201 running = vcpu_is_running(vmx->vm, vcpu, &hostcpu); 4202 if (running && hostcpu != curcpu) { 4203 printf("%s: %s%d is running", __func__, vm_name(vmx->vm), vcpu); 4204 return (EINVAL); 4205 } 4206 4207 if (!running) 4208 VMPTRLD(vmcs); 4209 4210 error = vmx_set_tsc_offset(vmx, vcpu, offset); 4211 4212 if (!running) 4213 VMCLEAR(vmcs); 4214 return (error); 4215 } 4216 #endif 4217 4218 const struct vmm_ops vmm_ops_intel = { 4219 .modinit = vmx_modinit, 4220 .modcleanup = vmx_modcleanup, 4221 .modresume = vmx_modresume, 4222 .init = vmx_init, 4223 .run = vmx_run, 4224 .cleanup = vmx_cleanup, 4225 .getreg = vmx_getreg, 4226 .setreg = vmx_setreg, 4227 .getdesc = vmx_getdesc, 4228 .setdesc = vmx_setdesc, 4229 .getcap = vmx_getcap, 4230 .setcap = vmx_setcap, 4231 .vmspace_alloc = vmx_vmspace_alloc, 4232 .vmspace_free = vmx_vmspace_free, 4233 .vlapic_init = vmx_vlapic_init, 4234 .vlapic_cleanup = vmx_vlapic_cleanup, 4235 #ifdef BHYVE_SNAPSHOT 4236 .snapshot = vmx_snapshot, 4237 .vmcx_snapshot = vmx_vmcx_snapshot, 4238 .restore_tsc = vmx_restore_tsc, 4239 #endif 4240 }; 4241